WO2020108575A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2020108575A1
WO2020108575A1 PCT/CN2019/121654 CN2019121654W WO2020108575A1 WO 2020108575 A1 WO2020108575 A1 WO 2020108575A1 CN 2019121654 W CN2019121654 W CN 2019121654W WO 2020108575 A1 WO2020108575 A1 WO 2020108575A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
shaft
hinge
box
making
Prior art date
Application number
PCT/CN2019/121654
Other languages
English (en)
French (fr)
Inventor
崔向前
高永红
符栋华
王利品
Original Assignee
海信容声(广东)冰箱有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信容声(广东)冰箱有限公司 filed Critical 海信容声(广东)冰箱有限公司
Priority to EP19888605.3A priority Critical patent/EP3889525B1/en
Priority to US17/271,772 priority patent/US11614263B2/en
Publication of WO2020108575A1 publication Critical patent/WO2020108575A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/10Producing ice by using rotating or otherwise moving moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • F16H21/40Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and oscillating motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/06Multiple ice moulds or trays therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures

Definitions

  • the present disclosure relates to a refrigerator.
  • the refrigerator includes: a freezer compartment and an ice making device.
  • the temperature of the freezing compartment is lower than zero degrees Celsius; the ice-making device is disposed in the freezing compartment.
  • the ice-making device includes: a bracket, a plurality of ice-making boxes arranged in parallel, a connecting rod rotating shaft, and a swinging member.
  • Each ice box in the plurality of ice boxes includes a box body and a drive shaft and a hinge shaft connected to the box body, the drive shaft and the hinge shaft are parallel to each other, and the ice box passes The corresponding hinge axis is hinged in the bracket.
  • the connecting rod rotating shaft includes a rotating shaft and a swing shaft that are parallel to each other and spaced apart, and a connecting section connecting the rotating shaft and the swing shaft; the connecting rod rotating shaft is hinged to the bracket through the rotating shaft.
  • the swing member includes a body, a hinge hole provided on the body, and a plurality of support portions; the swing shaft is installed in the hinge hole, and the drive shaft of the ice box is installed on a corresponding support portion, The swing member is swingably connected between the bracket and the plurality of ice-making bins.
  • the rotating shaft drives the swinging shaft to rotate, so that the swinging shaft drives the swinging member to swing, thereby causing the swinging member to drive the driving shaft to rotate around the corresponding hinged shaft, and finally makes each ice making
  • the box rotates around the corresponding hinge axis.
  • the drive shaft is configured to: during the rotation of the plurality of ice-making bins from the ice-making position to the de-icing position, the connection line between each of the drive shafts and the corresponding hinged shaft is wound around the corresponding The hinge shaft rotates and stops before reaching the connection line between the rotating shaft and the corresponding hinge shaft for the first time.
  • FIG. 1 is a schematic structural diagram of a refrigerator according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic structural diagram of another refrigerator according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic structural view of a plurality of ice making bins in an ice making device in an ice making position according to some embodiments of the present disclosure
  • FIG. 4 is a schematic structural view of a plurality of ice-making bins shown in FIG. 3 in a de-icing position;
  • FIG. 5 is a schematic exploded view of an ice making device according to some embodiments of the present disclosure.
  • FIG. 6 is a schematic diagram of an assembling structure of a swinging member and an ice making box according to some embodiments of the present disclosure
  • FIG. 7 is a schematic diagram of an assembling structure of a swinging member, a connecting rod rotating shaft and three ice-making bins according to some embodiments of the present disclosure
  • FIG. 8 is a schematic structural diagram of a connecting rod rotating shaft according to some embodiments of the present disclosure.
  • FIG. 9 is a cross-sectional view taken along line E-E' shown in FIG. 8;
  • FIG. 10 is a schematic structural diagram of a swinging member according to some embodiments of the present disclosure.
  • FIG. 11 is a schematic diagram of an assembly relationship in which a connecting rod rotating shaft is installed in a mounting hole according to some embodiments of the present disclosure
  • FIG. 12 is a cross-sectional view along F-F' direction shown in FIG. 11;
  • FIG. 13 is a schematic diagram of an assembly relationship of a connecting rod rotating shaft installed in a hinge hole according to some embodiments of the present disclosure
  • FIG. 14 is a cross-sectional view along G-G' direction shown in FIG. 13;
  • 15 is a schematic diagram of an assembly relationship between a manual knob and a connecting rod rotating shaft according to some embodiments of the present disclosure
  • FIG. 16 is a cross-sectional view taken along line H-H' shown in FIG. 15;
  • 17 is a schematic diagram of an exploded structure of a manual knob and a connecting rod rotating shaft according to some embodiments of the present disclosure
  • FIG. 18 is a schematic diagram of an equivalent structure of an ice making device according to some embodiments of the present disclosure.
  • Figure 19 is a motion analysis diagram of a common four-bar linkage mechanism
  • FIG. 20 is a motion analysis comparison diagram of a basic design of an ice making device and another design based on the basic design according to some embodiments of the present disclosure
  • 21 is a motion analysis comparison diagram of a variant design of an ice-making device and another design based on the variant design according to some embodiments of the present disclosure
  • FIG. 22 is a motion analysis comparison chart of another variant design of an ice-making device according to some embodiments of the present disclosure and another design based on the variant design;
  • FIG. 23 is a motion analysis comparison diagram of still another variant design of the ice making device and another design based on the variant design according to some embodiments of the present disclosure.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present disclosure, unless otherwise stated, “plurality” means two or more.
  • the refrigerator 100 includes: a freezer compartment 1 and an ice making device 2.
  • the temperature of the freezing compartment 1 is lower than zero degrees Celsius, and the ice-making device 2 is installed in the freezing compartment 1.
  • the ice-making device 2 is installed in the freezing compartment 1 in a drawable manner, so that the space utilization rate in the freezing compartment 1 can be improved.
  • the refrigerator 100 further includes: an ice storage box 3, the ice storage box 3 is disposed in the freezing compartment 1 and is located below the ice making device 2, so as to facilitate receiving and storing from The ice making device 2 falls into the ice in the ice storage box 3.
  • the ice-making device 2 includes: a support 21, a plurality of ice-making bins 22 arranged in parallel, a connecting rod rotating shaft 23 and a swinging member 24.
  • Each ice box 22 in the above-mentioned plurality of ice boxes 22 includes a box body 221 and a driving shaft 222 and a hinge shaft 223 connected to the box body 221.
  • the drive shaft 222 and the hinge shaft 223 are parallel to each other (that is, the axis of the drive shaft 222 and the hinge shaft 223 are parallel to each other).
  • Each ice box 22 is hinged in the bracket 21 via a corresponding hinge axis 223, so that each ice box 22 can rotate around the corresponding hinge axis 223 in the bracket 21 with the corresponding hinge axis 223 as a fixed point.
  • the structure of the bracket 21 includes various types.
  • the bracket 21 includes a rectangular frame, and the rectangular frame is arranged in a ring shape.
  • the shape of each box 221 is rectangular or square. In this way, a plurality of box bodies 221 can be provided in the bracket 21 to improve the utilization ratio of the space occupied by the bracket 21 and the space utilization ratio of the refrigerator 100.
  • the driving shaft 222 is connected to the corresponding box 221 by a fixed connection or a detachable connection
  • the hinge shaft 223 is connected to the corresponding box 221 by a fixed connection or a detachable connection. Since the ice box 22 needs to rotate between the ice making position and the de-icing position, and the drive shaft 222 and the hinge shaft 223 fail, the probability of needing to be replaced is very small, so the drive shaft 222 and the hinge shaft 223 usually use a fixed connection with The corresponding box 221 is connected.
  • the hinge shaft 223 includes various structures. Exemplarily, referring to FIGS. 3 to 5, the hinge shaft 223 includes a first hinge shaft 2231 and a second hinge shaft 2232.
  • the first hinge shaft 2231 is located on the first side of the corresponding box 221 (as shown in the upper left side of the box 221 in FIG. 5) and the first frame of the rectangular frame (as shown in the upper left side of the bracket 21 in FIG. 5)
  • the second hinge shaft 2232 is located on the second side of the corresponding box 221 (as shown in the lower right side of the box 221 in FIG. 5) and the second frame of the rectangular frame (as shown in the bracket 21 in FIG. 5) Between the bottom right frame).
  • first side is opposite to the second side
  • first frame is opposite to the second frame
  • axis of the first hinge shaft 2231 and the axis of the second hinge shaft 2232 coincide, so that each box 221 can be provided with two
  • the relative point support improves the stability of rotation of each ice box 22 about the axis of the corresponding first hinge shaft 2231.
  • the connecting rod rotating shaft 23 includes a rotating shaft 231 and a swing shaft 232 parallel to each other and spaced apart, and a connection connecting the rotating shaft 231 and the swing shaft 232 In section 233, the connecting rod rotating shaft 23 is hinged to the bracket 21 through the rotating shaft 231.
  • the bracket 21 is provided with a first hole 211, and the rotating shaft 231 can pass through the first hole 211, so that the connecting rod rotating shaft 23 can rotate around the first hole 211 as a fixed point.
  • connection section 233 is, for example, a plate structure or a strip structure.
  • the rotation shaft 231 and the swing shaft 232 are parallel to each other and spaced apart, which means that the axis of the rotation shaft 231 and the swing shaft 232 are parallel to each other.
  • the rotation shaft 231 and the swing shaft 232 are located at opposite ends of the connecting section 233, respectively. Located on two opposite sides of the connecting section 233.
  • the connecting section 233 has a certain rigidity, so that the relative distance between the rotating shaft 231 and the swinging shaft 232 can be kept substantially unchanged.
  • the swing member 24 includes a body 241 and a hinge hole 242 provided on the body 241 and a plurality of support portions 243, the swing shaft 232 is installed in the hinge hole 242, each The driving shaft 222 of the ice making box 22 is mounted on the corresponding support portion 243 so that the swinging member 24 is swingably connected between the bracket 21 and the plurality of ice making boxes 22.
  • the overall shape of the body 241 is a sheet or a plate, which can reduce the space occupied by the body 241, and can also reduce the swing resistance of the body 241 during the swing process, so that the body 241 swings more smoothly.
  • the structure of the body 241 is, for example, a hollow structure, which can reduce the weight of the body 241.
  • the body 241 has a certain rigidity, so that during the swinging process of the swinging member 24, deformation can be avoided, and thus the relative distance between the swinging shaft 232 mounted on the swinging member 24 and the plurality of driving shafts 222 can be maintained constant.
  • the de-icing process after making ice by using the ice-making device 2 is as follows: applying a driving force to the rotating shaft 231 to rotate the rotating shaft 231, the rotating shaft 231 drives the swing shaft 232 to rotate, and then the swing shaft 232 drives the swing through the hinge hole 242 Piece 24 swings.
  • a plurality of driving shafts 222 mounted on the plurality of supporting portions 243 are driven to rotate around the corresponding hinge shafts 223, respectively. Since each driving shaft 222 is connected to the corresponding box 221, during the rotation of each driving shaft 222 about the corresponding hinge shaft 223, each ice making box 22 will be driven to rotate about the corresponding hinge shaft 223, respectively.
  • Each ice making box 22 is driven to rotate from the ice making position to the deicing position to complete one-time deicing of all the ice making boxes 22.
  • each ice making box 22 of the ice making device 2 used in the refrigerator 100 will be schematically described below.
  • the ice making device 2 includes three ice making boxes 22 as an example.
  • Each ice making box 22, connecting rotating shaft 23 and swinging member 24 of the ice making device 2 shown in FIGS. 3 to 7 can be equivalent to the structure shown in FIG. 18, the structure is that the user stands facing the ice making box 22 is obtained by observing the surfaces of the driving shaft 222 and the hinge shaft 223. For example, the position of the user is the position of the eyes as shown in FIG. 4.
  • the ice box 22 on the right is the third ice box.
  • the drive shaft 222 of the first ice box is equivalent to A1
  • the hinge shaft 223 is equivalent to B1
  • the drive shaft 222 of the second ice box is equivalent to A2
  • the hinge shaft 223 is equivalent to B2
  • the drive shaft 222 of the ice box is equivalent to A3, and the hinge shaft 223 is equivalent to B3.
  • the swing axis 232 is equivalent to O1
  • the rotation axis 231 is equivalent to P1.
  • A1-B1-P1-O1 are connected end to end, based on the relative distance between P1 and O1 remains basically unchanged, the relative positional relationship between A1 and B1 and B1 and P1 remains basically unchanged, so that A1-B1 -P1-O1 constitutes a four-bar linkage.
  • A2-B2-P1-O1 and A3-B3-P1-O1 respectively constitute a four-bar linkage.
  • the fixed rod AD is called a rack
  • the rods AB and CD respectively connected to the rack AD are called connecting rods
  • the rod BC not connected to the rack is called For the connecting rod.
  • the link lever CD drives the link lever AB and the link lever BC to move on a straight line (not considering each lever Due to its own gravity)
  • the moment acting on the connecting rod BC and the connecting rod AB as the follower is 0, and the connecting rod AB and the connecting rod BC cannot continue to move at this time.
  • the position where the connecting rod AB and connecting rod BC move to a straight line is called the dead center position.
  • connection line P1-B1 is a part of the bracket 1 in the actual structure and functions as a rack;
  • the line P1-O1 is the connecting section 233, which functions as a connecting rod;
  • the connecting line A1-B1 is a part of the first ice box in the actual structure, and functions as a connecting rod;
  • O1-A1 is a part of the swing member 24, and functions as a connecting rod. The situation is similar for the second ice box and the third ice box.
  • the position of A1 (or A2, A3) can be configured so that each ice box 22 rotates from the ice-making position to the de-icing position
  • the line A1-B1 (or A2-B2, A3-B3) between A1 (or A2, A3) and B1 (or B2, B3) can rotate around B1 (or B2, B3), and in the first Stop before reaching the connection P1-B1 (or P2-B2, P3-B3) between P1 and B1 (or B2, B3).
  • the positions of B1 (or B2, B3), or the positions of P1 and O1 can also be configured.
  • the plane where the ice making box 22 is located is perpendicular or nearly perpendicular to the gravity direction of the ice making box 22. That is to say, the ice making position of the ice making box 22 is a position where the ice making box 22 is at a horizontal plane or a position close to a horizontal plane.
  • the rotation angle of the ice making box 22 is greater than or equal to 90°, so that the ice in the ice making box 22 can fall out of the ice making box 22.
  • A1-B1 is designed to rotate at least 90° in the clockwise direction, it can be stopped before reaching P1-B1 for the first time;
  • A2-B2 Designed to be able to stop before reaching P1-B2 for the first time when rotating at least 90° in the clockwise direction;
  • designing A3-B3 to be able to be at the first position when rotating at least 90° in the clockwise direction Stop before reaching P1-B3.
  • the four-link mechanism A1-B1-P1-O1, A2-B2-P1-O1, and A3-B3-P1-O1 can be avoided from being located at the dead point position during the rotation, and the four-link mechanism A1-B1- P1-O1, A2-B2-P1-O1 and A3-B3-P1-O1 rotation performance and smooth rotation.
  • the ice-making device 2 in the refrigerator 100 provided by some embodiments of the present disclosure, by providing a link assembly 23, a swinging member 24, and a plurality of ice-making bins 22, uses a connecting section 233 of the link rotating shaft 23 to connect the rotating shaft 231 and the swing
  • the relative distance makes the distance between the rotating shaft 231, the swing shaft 232, the driving shafts 222, and the corresponding hinge shafts 223 remains constant while the link shaft 23 drives the multiple ice bins 22 through the swing member 24 to rotate simultaneously Change to form multiple four-bar linkages.
  • some embodiments of the present disclosure on this basis, by configuring the position of the rotation shaft 231, or the position of the swing shaft 232, or the position of each drive shaft 222, or the position of each hinge axis 223, so that each During the rotation of the ice box 22 from the ice making position to the de-icing position, the connection line between each drive shaft 222 and the corresponding hinge shaft 223 rotates around the corresponding hinge shaft 223 and reaches the rotation shaft 231 for the first time Stop the connection with the corresponding hinge shaft 223 before it can prevent each ice box 22 from encountering the dead point position during the rotation to the de-icing position, thereby preventing the ice box 22 from rotating smoothly or even getting stuck In a dead situation, the rotation performance and smoothness of the ice box 22 are improved.
  • the plane defined by the axis of the driving shaft 222 and the axis of the hinge shaft 223 of each ice box 22 is parallel to the plane defined by the axis of the swing shaft 232 and the axis of the rotation shaft 231. Also, the distance between the axis of the drive shaft 222 and the axis of the hinge shaft 223 of each ice box 22 is equal to the distance between the axis of the swing shaft 232 and the axis of the rotation shaft 231.
  • the four-bar linkage constituted by the swing shaft 232 and the rotation shaft 231 and the drive shaft 222 and the hinge shaft 223 in each ice box 22 is a parallelogram mechanism.
  • the swing shaft 232 and the rotation shaft 231 and the driving shaft 222 and the hinge shaft 223 of the plurality of ice bins 22 together constitute a co-lateral multi-link parallel four-bar linkage mechanism.
  • the other connecting rod can The rotation angle is close to 180°, and in the process of one connecting rod of the ordinary four-linkage mechanism driving the connecting rod and the other connecting rod to rotate, the rotating angle of the other connecting rod before reaching the dead point position is different from 180° More.
  • each ice box 22 can be increased The range of the rotatable angle before reaching the dead point position, and improves the stability of the synchronized rotation of each ice box 22.
  • A1, A2, A3, B1 , B2 and B3 are located in the plane determined by the plurality of ice bins 22 (for example, in the horizontal plane), P1 is vertically positioned higher than B1, B2, and B3, and observed at the position shown in FIG. 4 At this time, A1 is on the left side of B1, A2 is on the left side of B2, and A3 is on the left side of B3.
  • Such a design can be called a basic design.
  • the basic design shown in FIG. 18 may cause a problem that the plurality of ice making bins 22 do not move smoothly during the rotation of the plurality of ice making bins 22 from the ice making position to the deicing position.
  • some embodiments of the present disclosure provide another design based on the above basic design, so that during the rotation of the multiple ice making bins 22 from the ice making position to the deicing position, the The connection line between the drive shaft 222 and the corresponding hinge shaft 223 can be stopped before reaching the connection line between the rotation shaft 231 and the corresponding hinge shaft 223 for the first time.
  • the three parallelogram mechanisms A1-B1-P1-O1, A2-B2-P1-O1 and A3-B3-P1-O1 in the basic design are clockwise at P1-O1 as the active part
  • the parallelogram mechanisms A2-B2-P1-O1 and A3-B3-P1-O1 may encounter the position of the dead point, causing the rotation of multiple ice bins 22 to be unsmooth.
  • FIG. 20 and FIG. 21 another embodiment provided by some embodiments of the present disclosure based on the above basic design is shown below.
  • each ice-making box 22 is located at the ice-making position, along the direction in which the bottom surface of the ice-making box 22 points to its top surface (vertical or approaching the direction perpendicular to the horizontal plane), the rotating shaft 231 is located above the hinge shaft 223, And in the surface of each ice making box 22 including the driving shaft 222 and the hinge shaft 223, the driving shaft 222 is located at the upper left of the corresponding hinge shaft 223.
  • the bottom surface of the ice making box 22 is the bottom surface of the box body 221
  • the top surface of the ice making box 22 is the top surface of the box body 221.
  • the specific positions of the rotating shaft 231 above the hinge shaft 223 include a plurality of, some embodiments of the present disclosure are not limited to this, and the setting is selected according to actual needs.
  • the rotation axis 231 is located above the hinge axis 223, and is located between the hinge axis 223 of the first ice box 22 and the hinge axis 223 of the second ice box 22 (as shown in FIG. 20), or located at the first Between the hinge axis 223 of the two ice making bins 22 and the hinge axis 223 of the third ice making bin 22 (as shown in FIG. 21).
  • the driving shaft 222 is located at the upper left of the corresponding hinge shaft 223, including: along the direction of the bottom surface of the ice box 22 pointing to the top surface thereof, the driving shaft 222 is located at the left side of the corresponding hinge shaft 223,
  • the rotating shafts 231 are located on the same horizontal plane as or above the rotating shafts 231. That is to say, each drive shaft 222 will not be located directly above the corresponding hinge shaft 223, the plane defined by the axis of each drive shaft 222 and the axis of the corresponding hinge shaft 223 is determined by the multiple ice boxes 22
  • the angle between the planes (for example, the top surfaces of the plurality of ice makers 22) is an acute angle.
  • the included angle between the plane defined by the axis of the drive shaft 222 and the axis of the corresponding hinge shaft 223 and the top surfaces of the plurality of ice bins 22 is within the protection scope of the present invention. For example, 10°, 15°, 27°, 45°, 60°, 75°, 86°, etc.
  • the drive shaft 222 of the first ice box is equivalent to A*1
  • the drive shaft 222 of the second ice box is equivalent to A*2
  • the third ice The drive shaft 222 of the box is equivalent to A*3, and the swing shaft 232 is equivalent to O*1.
  • P1-O*1 as the active part rotates approximately 90° in the clockwise direction
  • three parallelogram mechanisms A*1-B1-P1-O*1, A* 2-B2-P1-O*1 and A*3-B3-P1-O*1 will not encounter dead spots.
  • each ice making box 22 rotates 90° or more to rotate from the ice making position to the deicing position, and it is possible to avoid encountering the dead point position, thereby making the rotation process of each ice making box 22 smoother.
  • the above design is more labor-saving in the process of rotating a plurality of ice bins 22 than the basic design. This is explained in detail below.
  • FIG. 20 For the basic design, at the initial moment during the simultaneous rotation of the three ice bins 22, the movement direction v, the force direction F and the movement normal direction f of A3 are all shown in FIG. 20.
  • the acute angle between the force direction F and the movement direction v is the pressure angle a2
  • the angle between the force direction F and the movement normal direction f is the transmission angle r2.
  • the positions of B1, B2, and B3 are unchanged, and along the vertical direction, the position of A*1 is between P1 and B1, and the position of A*2 is between P1 and B2, A* The positions of 3 are located between P1 and B3.
  • the distance between A*1 and B1 to the top surface of the corresponding ice box 22 is different, while in the basic design, the distance between A1 and B1 to the top surface of the corresponding ice box 22 is the same. 22 is the same.
  • the motion direction v of the A*3 the force direction F, the opposite direction of the force direction -F, the normal direction of motion f, the pressure angle a1 and the transmission angle r1
  • the pressure angle a1 is smaller than the pressure angle a2
  • the transmission angle r1 is larger than the transmission angle r2.
  • the position of A*1 when the position of A*1 is between P1 and B1, the position of A*2 is between P1 and B2, and the position of A*3 is between P1 and B3, it can be adjusted
  • the position of O*1 to adjust the size of the pressure angle a1 can further make the pressure angle a1 as small as possible to effectively improve the smoothness of the rotation of each ice box 22 and make the rotation of each ice box 22 more Effortless.
  • FIG. 20 only analyzes the motions of the three ice-making bins 22. If the number of the ice-making bins 22 is four or more, the pressure angle of the ice-making bin 22 farther away from the swing axis 232 of the swinging member 24 The degree of reduction is more obvious than that of the basic design, which not only avoids the phenomenon that the ice making box 22 cannot rotate or even gets stuck, improves the rotation performance of the ice making box 22, but also makes the rotation of these ice making boxes more labor-saving. Moreover, by providing a plurality of ice-making bins 22, it is also possible to take out more ice during the one-time ice extraction process, which effectively improves the ice extraction efficiency.
  • the angle between the plane defined by the axis of the driving shaft 222 of each ice box 22 and the axis of the hinge shaft 223 and the plane determined by the multiple ice boxes 22 is equal, which can cause the multiple ice boxes 22 to rotate During the process, the synchronous rotation can be basically maintained, and the stability of the rotation of the plurality of ice bins 22 can be improved.
  • the above basic design also has multiple variant designs.
  • FIG. 22 a variant design provided by the present disclosure is shown in FIG. 22.
  • the three parallelogram mechanisms A1-B1-P1-O1, A2-B2-P1-O1 and A3-B3-P1-O1 shown in the figure, A1, A2, A3, B1, B2 and B3 is located in the plane determined by the multiple ice-making bins 2 (for example, in a horizontal plane), P1 is positioned higher than B1, B2, and B3 in the vertical direction, and when viewed in the position shown in FIG. 4, A1 Located to the right of B1, A2 to the right of B2, and A3 to the right of B3.
  • some embodiments of the present disclosure provide another design based on the above-described variant design.
  • FIG. 22 another design provided by some embodiments of the present disclosure based on the above variant design is shown below.
  • each ice-making box 22 is located at the ice-making position, along the direction in which the bottom surface of the ice-making box 22 points to its top surface (vertical or approaching the direction perpendicular to the horizontal plane), the rotating shaft 231 is located above the hinge shaft 223, And in the surface of each ice-making box 22 including the driving shaft 222 and the hinge shaft 223, the driving shaft 222 is located at the lower right of the hinge shaft 223.
  • each drive shaft 222 will not be located directly under the corresponding hinge shaft 223.
  • the drive shaft 222 of the first ice box is equivalent to A*1
  • the drive shaft 222 of the second ice box is equivalent to A*2
  • the drive of the third ice box The axis 222 is equivalent to A*3, and the swing axis 232 is equivalent to O*1.
  • P1-O*1 as the active part rotates approximately 90° in the clockwise direction
  • three parallelogram mechanisms A*1-B1-P1-O*1, A*2-B2 -P1-O*1 and A*3-B3-P1-O*1 will not encounter dead spots.
  • each ice making box 22 rotates 90° or more to rotate from the ice making position to the deicing position, and it is possible to avoid encountering the dead point position, thereby making the rotation process of each ice making box 22 smoother.
  • FIG. 23 another variant design provided by the present disclosure is shown in FIG. 23.
  • A1, A2, A3, B1, B2 and B3 is located in the plane determined by the plurality of ice bins 22 (for example, in a horizontal plane), P1's position in the vertical direction is lower than B1, B2, and B3, and when viewed in the position shown in Fig. 4, A1 is located On the left side of B1, A2 is on the left side of B2, and A3 is on the left side of B3.
  • some embodiments of the present disclosure provide another design based on the above-described variant design.
  • FIG. 23 another design provided by some embodiments of the present disclosure based on the above variant design is shown below.
  • each ice-making box 22 is located at the ice-making position, along the direction in which the bottom surface of the ice-making box 22 points to its top surface (perpendicular or approaching the vertical horizontal direction), the rotating shaft 231 is located below the hinge shaft 223 And in the surface of each ice-making box 22 including the driving shaft 222 and the hinge shaft 223, the driving shaft 222 is located at the lower left of the hinge shaft 223.
  • each drive shaft 222 will not be located directly under the corresponding hinge shaft 223.
  • the drive shaft 222 of the first ice box is equivalent to A*1
  • the drive shaft 222 of the second ice box is equivalent to A*2
  • the drive of the third ice box The axis 222 is equivalent to A*3, and the swing axis 232 is equivalent to O*1.
  • P1-O*1 as an active part rotates approximately 90° in the counterclockwise direction
  • three parallelogram mechanisms A*1-B1-P1-O*1, A*2-B2- P1-O*1 and A*3-B3-P1-O*1 will not encounter dead spots.
  • each ice making box 22 rotates 90° or more to rotate from the ice making position to the deicing position, and it is possible to avoid encountering the dead point position, thereby making the rotation process of each ice making box 22 smoother.
  • each ice making box 22 of the ice making device 2 On the basis of understanding the above-mentioned rotation principle of each ice making box 22 of the ice making device 2, the shape and structure of each component in the ice making device 2 can be obtained through corresponding structural design.
  • Some embodiments of the present disclosure take the rotation principle shown in FIG. 20 (corresponding to FIG. 7) as an example to provide an ice-making device 2 in the refrigerator 100.
  • the overall structure of the ice-making device 2 is shown in FIGS. 3 to 17, and the structure of the ice-making device 2 will be exemplarily described below.
  • a plurality of support portions 243 of the swing member 24 in the ice making device 2 are located below the body 241, and the hinge hole 242 is located in the middle region of the body 241, along the vertical direction, the hinge hole 242 Located above each support portion 243.
  • the swing shaft 232 connected to the hinge hole 243 can be located above the plurality of drive shafts 222.
  • each support portion 243 can also be located above the corresponding hinge shaft 223.
  • the structure of the plurality of support portions 243 includes various types.
  • the plurality of support portions 243 includes at least one of the following: an arc-shaped groove, a U-shaped groove, or a through hole.
  • the arc-shaped groove or the U-shaped groove is, for example, the structure shown in FIG. 10.
  • the structure of the plurality of supporting portions 243 adopts an arc-shaped groove or a U-shaped groove with a relatively simple structure, so that the processing technology of the swinging member 24 is relatively simple, and it is convenient to install or detach the multiple driving shafts 222.
  • the structure of the plurality of support parts 243 adopts through holes, which can prevent the plurality of drive shafts 222 from falling out of the corresponding support parts 243.
  • the swinging member 24 swings and drives the plurality of driving shafts 222 mounted on the plurality of supporting portions 243 to rotate around the corresponding hinge shafts 223, the ice box 22 may be along the axial direction of the driving shaft 222 Shaking will cause displacement of the drive shaft 222 in the direction of its own axis.
  • each ice box 22 further includes a limit block 224, the limit block 224 is disposed at the end of the corresponding drive shaft 222 facing away from the corresponding box 221, and The limit block 224 is configured to limit the displacement of the corresponding drive shaft 222 in the direction of its own axis.
  • the stopper 224 is located at the end of the swing member 24 facing away from the ice box 22, so that the drive shaft moves in the direction pointing to the box body 221 (i.e. During the movement of the ice box 22 in a direction away from the swing member 24, the displacement of the driving shaft 222 can be defined by the limit block 224, thereby preventing the ice box 22 from detaching from the swing member 24.
  • connection methods between the limit block 224 and the corresponding drive shaft 222, and the connection method matches the structure of the support portion 243.
  • the structure of the support portion 243 adopts an arc-shaped groove or a U-shaped groove
  • the limiting block 224 is connected to the corresponding drive shaft 222 in a fixed connection manner or a detachable connection manner.
  • the structure of the supporting portion 243 adopts a through hole
  • the limiting block 224 is detachably connected to the corresponding driving shaft 222.
  • connection between the swing member 24 and the swing shaft 232 includes multiple types.
  • the swing shaft 232 is fixedly mounted on the swing member 24.
  • the swing shaft 232 is fixedly installed in the hinge hole 242 of the swing member 24.
  • the swing shaft 232 is detachably connected to the swing member 24. This facilitates the installation and removal between the connecting rod rotating shaft 23 and the swing member 24.
  • the swing member 24 further includes a mounting hole 244 and an opening 245 provided on the body 241, and the mounting hole 244 and the hinge hole 242 communicate with each other through the opening 245.
  • the diameter of the mounting hole 244 is larger than the diameter of the hinge hole 242 and the diameter of the swing shaft 232, respectively.
  • the dimension L2 of the opening 245 in the direction perpendicular to the center of the mounting hole 244 and the center of the hinge hole 242 is smaller than the diameter of the swing shaft 232.
  • the size of the opening 245 in the direction parallel to the line connecting the center of the mounting hole 244 and the center of the hinge hole 242 is greater than or equal to zero.
  • the swing shaft 232 includes a flat section 2321, the thickness L1 of the flat section 2321 is smaller than the dimension L2 of the opening in a direction perpendicular to the center of the mounting hole 244 and the center of the hinge hole 242, to The flat section 2321 can enter the hinge hole 242 from the mounting hole 244 through the opening 245.
  • the connecting rod rotating shaft 23 further includes a convex edge 234, which is disposed at the end of the swing shaft 232 away from the connecting section 233, and the maximum size of the convex edge 234 It is larger than the diameter of the hinge hole 242 and smaller than the diameter of the mounting hole 244.
  • the shape of the convex edge 234 includes various types. Exemplarily, the shape of the convex edge 234 includes a circle, an ellipse, a square, or a rectangle.
  • the maximum size of the convex edge 234 is related to the shape of the convex edge 234. Exemplarily, the shape of the convex edge 234 is a circle, the maximum size is the diameter of the circle; the shape of the convex edge 234 is an oval, the maximum size is the long axis size of the ellipse; the shape of the convex edge 234 is For a square or rectangle, the maximum size is the size of the diagonal of the square or rectangle.
  • the maximum size of the convex edge 234 is larger than the diameter of the hinge hole 242 and smaller than the diameter of the mounting hole 244, it is possible to ensure that the convex edge 234 can pass the installation when the swing shaft 232 and the swing member 24 are detachably connected Hole 244, and after the swing shaft 232 is located in the hinge hole 242, the displacement of the swing shaft 232 along the direction of its own axis is restricted.
  • the ice-making device 2 further includes: a manual knob 25, the manual knob 25 is disposed on a side of the bracket 21 facing away from each ice-making box 22, and the manual knob 25 is connected to The rotation shaft 231 of the lever rotation shaft 23 is connected.
  • the rotating shaft 231 can be rotated by rotating the manual knob 25, and thereby the plurality of ice making bins 22 can be rotated, as compared with the rotating shaft 231 to rotate the plurality of ice making bins 22 , More labor-saving.
  • the ice-making device 2 may also be connected to the rotating shaft 231 using an electric knob.
  • connection between the manual knob 25 and the rotating shaft 231 is a direct connection.
  • connection between the manual knob 25 and the rotating shaft 231 is an indirect connection.
  • the connecting rod rotating shaft 23 further includes a fixing section 235, which is connected to the end of the rotating shaft 231 away from the connecting section 233, and the manual knob 25 is installed on the fixing section 235.
  • the fixing section 235 includes a clamping slot 2351
  • the manual knob 25 includes a mounting slot 251
  • a buckle 252 disposed in the mounting slot 251 and cooperating with the clamping slot 2351. This can make the connection between the fixed section 235 and the manual knob 25 relatively stable.
  • a sliding table is provided in the mounting groove 251, and a sliding groove matched with the sliding table is provided on the fixing section 235, so that the fixing section 235 can be more tightly installed in the installation groove 25, avoiding rotation and manual rotation 25 During the process, the fixed section 235 and the manual knob 25 are relatively displaced.
  • a mounting hole for inserting the rotating shaft 231 is opened in the manual knob 25, and a positioning hole is opened in the side wall of the rotating shaft 231. After the rotating shaft 231 is fixed in the mounting hole, a positioning pin is passed through the manual knob 25 to fix Position the hole. In this way, the connection between the rotating shaft 231 and the manual knob 25 can be further fixed.
  • the rotation direction is marked on the manual knob 25, so as to clearly display the required rotation of the multiple ice making bins 22 from the ice making position to the deicing position Direction.
  • the ice-making device 2 further includes a plurality of resetting members 26 configured to drive the plurality of ice-making bins 22 to reset from the de-icing position to the ice-making position.
  • the plurality of return members 26 include at least one of the following: a torsion spring or a cylinder.
  • the torsion spring is sleeved on the hinge shaft 223 of each ice box 22, and the two arms of the torsion spring are connected to the bracket 21 and the hinge shaft 223 respectively.
  • the torsion spring will be compressed and stop applying force to the link shaft 23, and each ice box 22 can Under the action of the restoring force of the torsion spring, it rotates from the de-icing position to the ice-making position.
  • the torsion spring takes up less space, the installation relationship is relatively simple, and the manufacturing cost of the ice-making device 2 can be reduced.
  • the plurality of resetting members 26 include a jacking cylinder
  • one end of the jacking cylinder is connected to the box body 221 of each ice making box 22 and the other end is connected to the bracket 21.
  • the tightening cylinder will extend.
  • each ice box 22 needs to be rotated from the de-icing position to the ice making position, the tightening cylinder will Further shortening, each ice box 22 is pulled back to the ice making position.
  • driving multiple ice bins 22 to rotate synchronously may also be achieved by a structure including a drive motor, a transmission shaft, a transmission wheel, and a conveyor belt, the transmission shaft is connected to the output shaft of the drive motor, and the transmission wheel is installed On the driving shaft 222, the transmission wheels on the two adjacent ice-making bins 22 are connected by a conveyor belt.
  • the transmission wheels and the conveyor belt can be used to drive a plurality of ice-making bins 22 to rotate synchronously.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)
  • Refrigerator Housings (AREA)

Abstract

一种冰箱(100),包括冷冻室(1)和制冰装置(2),制冰装置(2)包括支架(21)、多个制冰盒(22)、连杆转轴(23)和摆动件(24)。多个制冰盒(22)中的每个制冰盒(22)包括盒体(221)及与盒体(221)连接的驱动轴(222)和铰接轴(223)。连杆转轴(23)包括相互平行且间隔设置的转动轴(231)和摆动轴(232)以及连接转动轴(231)和摆动轴(232)的连接段(233)。摆动件(24)包括本体(241)以及设置在本体(241)上的铰接孔(242)和支撑部(243)。转动轴(231)带动摆动轴(232)转动,进而带动摆动件(24)摆动,带动驱动轴(222)绕对应的铰接轴(223)转动,使得制冰盒(22)转动。驱动轴(222)配置为在多个制冰盒(22)从制冰位置转动到脱冰位置的过程中,每个驱动轴(222)和对应的铰接轴(223)之间的连线绕对应的铰接轴(223)旋转,并在第一次到达转动轴(231)和对应的铰接轴(223)之间的连线前停止。

Description

冰箱
本申请要求于2018年11月28日提交中国专利局、申请号为201811449062.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及一种冰箱。
背景技术
随着用户对冰箱的各种功能需求的增加,市场上带有各种功能的冰箱越来越多。示例性的,基于用户对冰的需求,目前出现了带有制冰功能的冰箱。
发明内容
提供一种冰箱。所述冰箱包括:冷冻室和制冰装置。所述冷冻室的温度低于零摄氏度;所述制冰装置设置在所述冷冻室内。所述制冰装置包括:支架、并行排列的多个制冰盒、连杆转轴以及摆动件。所述多个制冰盒中的每个制冰盒包括盒体以及与所述盒体连接的驱动轴和铰接轴,所述驱动轴和所述铰接轴互相平行,且所述制冰盒通过对应的所述铰接轴铰接于所述支架内。所述连杆转轴包括相互平行且间隔设置的转动轴和摆动轴,以及连接所述转动轴和所述摆动轴的连接段;所述连杆转轴通过所述转动轴铰接于所述支架上。所述摆动件包括本体以及设置在所述本体上的铰接孔和多个支撑部;所述摆动轴安装在所述铰接孔内,所述制冰盒的驱动轴安装在对应的支撑部上,使得所述摆动件可摆动地连接于所述支架和所述多个制冰盒之间。所述转动轴带动所述摆动轴转动,使得所述摆动轴带动所述摆动件摆动,进而使得所述摆动件带动所述驱动轴绕对应的所述铰接轴转动,最终使得各所述制冰盒绕对应的所述铰接轴转动。所述驱动轴被配置为:在所述多个制冰盒从制冰位置转动到脱冰位置的过程中,每个所述驱动轴和对应的所述铰接轴之间的连线绕对应的所述铰接轴旋转,并在第一次到达所述转动轴和对应的所述铰接轴之间的连线前停止。
附图说明
为了更清楚地说明本公开的一些实施例或相关技术中的技术方案,下 面将对本公开的一些实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开的一些实施例中的一种冰箱的结构示意图;
图2为根据本公开的一些实施例中的另一种冰箱的结构示意图;
图3为根据本公开的一些实施例中的一种制冰装置中的多个制冰盒位于制冰位置的结构示意图;
图4为图3中所示的多个制冰盒位于脱冰位置结构示意图;
图5为根据本公开的一些实施例中的一种制冰装置的分解结构示意图;
图6为根据本公开的一些实施例中的一种摆动件和一个制冰盒的装配结构示意图;
图7为根据本公开的一些实施例中的一种摆动件、连杆转轴和三个制冰盒的装配结构示意图;
图8为根据本公开的一些实施例中的一种连杆转轴的结构示意图;
图9为图8所示的沿E-E'向的剖视图;
图10为根据本公开的一些实施例中的一种摆动件的结构示意图;
图11为根据本公开的一些实施例中的一种连杆转轴安装在安装孔内的装配关系示意图;
图12为图11所示的沿F-F'向的剖视图;
图13为根据本公开的一些实施例中的一种连杆转轴安装在铰接孔内的装配关系示意图;
图14为图13所示的沿G-G'向的剖视图;
图15为根据本公开的一些实施例中的一种手动旋钮与连杆转轴的装配关系示意图;
图16为图15所示的沿H-H'向的剖视图;
图17为根据本公开的一些实施例中的一种手动旋钮与连杆转轴的分解结构示意图;
图18为根据本公开的一些实施例中的一种制冰装置的等效结构示意图;
图19为一种普通的四连杆机构的运动分析图;
图20为根据本公开的一些实施例中的一种制冰装置的基础设计与基于该基础设计的另一设计的运动分析对比图;
图21为根据本公开的一些实施例中的一种制冰装置的变型设计与基于该变型设计的另一设计的运动分析对比图;
图22为根据本公开的一些实施例中的另一种制冰装置的变型设计与基于该变型设计的另一设计的运动分析对比图;
图23为根据本公开的一些实施例中的又一种制冰装置的变型设计与基于该变型设计的另一设计的运动分析对比图。
具体实施方式
下面结合附图对本公开的一些实施例提供的冰箱进行详细描述。
在本公开的描述中,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
请参阅图1和图2,本公开的一些实施例提供了一种冰箱100。该冰箱100包括:冷冻室1和制冰装置2。冷冻室1的温度低于零摄氏度,制冰装置2设置在冷冻室1内。此处,制冰装置2采用可抽拉的方式设置在冷冻室1内,这样可以提高冷冻室1内的空间利用率。
在一些示例中,请参阅图1和图2,冰箱100还包括:储冰盒3,该储冰盒3设置在冷冻室1内,且位于制冰装置2的下方,以便于接收并存储从制冰装置2落入储冰盒3内的冰。
在一些实施例中,请参阅图3~图7,上述制冰装置2包括:支架21、并行排列的多个制冰盒22、连杆转轴23和摆动件24。
在一些示例中,请参阅图5和图6,上述多个制冰盒22中的每个制冰盒22包括盒体221以及与盒体221连接的驱动轴222和铰接轴223。驱动轴222和铰接轴223相互平行(也即驱动轴222的轴线和铰接轴223的轴线相互平行)。每个制冰盒22通过对应的铰接轴223铰接在支架21内, 这样使得每个制冰盒22能够以对应的铰接轴223为定点,绕对应的铰接轴223在支架21内转动。
此处,支架21的结构包括多种。示例性的,请参阅图5,支架21包括矩形框架,该矩形框架呈环状设置。相应的,每个盒体221的形状为矩形或正方形等。这样可以在支架21内设置多个盒体221,提高支架21所占空间的利用率以及冰箱100的空间利用率。
上述驱动轴222和铰接轴223与对应的盒体221之间的连接方式包括多种。示例性的,驱动轴222采用固定连接的方式或可拆卸连接的方式连接在对应的盒体221上;铰接轴223采用固定连接的方式或可拆卸连接的方式连接在对应的盒体221上。由于制冰盒22需要在制冰位置和脱冰位置之间旋转,且驱动轴222和铰接轴223发生故障、需要更换的概率很小,所以驱动轴222和铰接轴223通常采用固定连接方式与对应的盒体221连接。
铰接轴223包括多种结构。示例性的,请参阅图3~图5,铰接轴223包括第一铰接轴2231和第二铰接轴2232。第一铰接轴2231位于对应的盒体221的第一侧(如图5中所示盒体221的左上侧)和矩形框架的第一边框(如图5中所示支架21的左上侧边框)之间,第二铰接轴2232位于对应的盒体221的第二侧(如图5中所示盒体221的右下侧)和矩形框架的第二边框(如图5中所示支架21的右下侧边框)之间。此处,第一侧与第二侧相对,且第一边框与第二边框相对,第一铰接轴2231的轴线和第二铰接轴2232的轴线重合,这样可以为每个盒体221提供两个相对的点支撑,提高每个制冰盒22绕对应的第一铰接轴2231的轴线转动的稳定性。
在一些示例中,请参阅图3~图5以及图7和图8,上述连杆转轴23包括相互平行且间隔设置的转动轴231和摆动轴232,以及连接转动轴231和摆动轴232的连接段233,连杆转轴23通过转动轴231铰接于支架21上。示例性的,请参阅图5,支架21上设置有第一孔211,转动轴231可以穿过第一孔211,使得连杆转轴23能够以第一孔211为定点转动。
上述连接段233的结构例如为板状结构或条状结构等。上述转动轴231和摆动轴232相互平行且间隔设置,指的是转动轴231的轴线和摆动轴232的轴线相互平行,转动轴231和摆动轴232分别位于连接段233的相对两端,且分别位于连接段233的相对两个侧面上。连接段233具有一定的刚性,这样可以使得转动轴231和摆动轴232之间的相对距离基本保持不变。
在一些示例中,请参阅图3~图7,上述摆动件24包括本体241以及设置在本体241上的铰接孔242和多个支撑部243,上述摆动轴232安装在铰接孔242内,每个制冰盒22的驱动轴222安装在对应的支撑部243上,使得摆动件24可摆动地连接于支架21和所述多个制冰盒22之间。
上述本体241的整体形状呈片状或板状,这样可以减小本体241所占用的空间,还可以减少本体241在摆动过程中的摆动阻力,使本体241的摆动较为顺畅。本体241的结构例如为镂空结构,这样可以减轻本体241的重量。
此外,本体241具有一定的刚度,这样在摆动件24摆动的过程中,可以避免发生变形,进而能够使得安装在摆动件24上的摆动轴232和多个驱动轴222之间的相对距离基本保持不变。
采用上述制冰装置2制冰后的脱冰过程为:向转动轴231施加一使得转动轴231转动的驱动力,则转动轴231带动摆动轴232转动,进而摆动轴232通过铰接孔242带动摆动件24摆动。在摆动件24摆动的过程中,会带动安装在其多个支撑部243上的多个驱动轴222分别绕对应的铰接轴223转动。由于每个驱动轴222分别与对应的盒体221连接,这样在每个驱动轴222绕对应的铰接轴223转动的过程中,会带动各制冰盒22分别绕对应的铰接轴223转动,进而带动各制冰盒22从制冰位置旋转至脱冰位置,完成所有制冰盒22的一次性脱冰。
为便于本领域的技术人员更好地理解本公开的内容,下面对冰箱100中使用的制冰装置2的各个制冰盒22的转动原理进行示意性说明。此处以制冰装置2包括三个制冰盒22为例。
图3~图7中所示的制冰装置2的各制冰盒22、连接转轴23和摆动件24可以等效为如图18所示的结构,该结构是用户站在面对制冰盒22的包括有驱动轴222和铰接轴223的表面观察而得到的。例如,用户的位置是如图4中所示的眼睛的位置。
请参阅图18,面对制冰盒22的包括有驱动轴222和铰接轴223的表面,左侧的制冰盒22为第一个制冰盒,中间的制冰盒22为第二个制冰盒,右侧的制冰盒22为第三个制冰盒。第一个制冰盒的驱动轴222等效为A1、铰接轴223等效为B1,第二个制冰盒的驱动轴222等效为A2、铰接轴223等效为B2,第三个制冰盒的驱动轴222等效为A3、铰接轴223等效为B3。摆动轴232等效为O1,转动轴231等效为P1。B1、B2、B3以及P1仅具 有旋转自由度,A1、A2、A3以及O1既具有旋转自由度,又具有平移自由度。将A1-B1-P1-O1依次首尾相接,基于P1和O1之间的相对距离基本保持不变,A1和B1以及B1和P1之间的相对位置关系基本保持不变,这样使得A1-B1-P1-O1构成了一个四连杆机构。类似地,A2-B2-P1-O1和A3-B3-P1-O1分别构成了一个四连杆机构。
请参阅图19,在一个四连杆机构中,固定不动的杆AD称为机架,与机架AD分别相连的杆AB和CD称为连架杆,不与机架相连的杆BC称为连杆。如图19中的虚线所示,在以连架杆CD作为主动件进行顺时针旋转的情况下,若连架杆CD带动连架杆AB和连杆BC运动到一条直线上(不考虑各个杆本身的重力影响),则作用在连杆BC和作为从动件的连架杆AB上的力矩为0,此时连架杆AB和连杆BC不能继续运动。连架杆AB和连杆BC运动到一条直线上的位置称为死点位置。
在如图18中所示的等效的四连杆机构中,以第一个制冰盒为例,连线P1-B1在实际结构中为支架1的一部分,起到机架的作用;连线P1-O1在实际结构中为连接段233,起到连架杆的作用;连线A1-B1在实际结构中为第一个制冰盒的一部分,起到连架杆的作用;连线O1-A1在实际结构中为摆动件24的一部分,起到连杆的作用。第二个制冰盒和第三个制冰盒的情形与此类似。
在P1、O1以及B1(或B2、B3)位置确定的情况下,可以配置A1(或A2、A3)的位置,以使得在每个制冰盒22从制冰位置转动到脱冰位置的过程中,A1(或A2、A3)和B1(或B2、B3)之间的连线A1-B1(或A2-B2、A3-B3)能够绕B1(或B2、B3)旋转,并在第一次到达P1和B1(或B2、B3)之间的连线P1-B1(或P2-B2、P3-B3)前停止。当然,也可以配置B1(或B2、B3)的位置、或者P1和O1的位置。这样,可以避免四连杆机构位于死点位置,也即可以避免每个制冰盒22从制冰位置转动到脱冰位置的过程中出现转动不顺畅或甚至卡死的情况。
在一些示例中,在制冰盒22位于制冰位置的情况下,制冰盒22所在平面与制冰盒22的重力方向垂直或趋近于垂直。也就是说,制冰盒22的制冰位置为制冰盒22处于水平面的位置或处于趋近于水平面的位置。在制冰盒22位于脱冰位置的情况下,制冰盒22所旋转的角度大于或等于90°,以便于制冰盒22内的冰能够从制冰盒22内脱落。
示例性的,以P1-O1为主动件,发明人希望将A1-B1设计为在顺时针 方向上旋转至少90°的情况下,能够在第一次到达P1-B1前停止;将A2-B2设计为在顺时针方向上旋转至少90°的情况下,能够在第一次到达P1-B2前停止;将A3-B3设计为在顺时针方向上旋转至少90°的情况下,能够在第一次到达P1-B3前停止。这样,可以避免四连杆机构A1-B1-P1-O1、A2-B2-P1-O1和A3-B3-P1-O1在转动的过程中位于死点位置,提高四连杆机构A1-B1-P1-O1、A2-B2-P1-O1和A3-B3-P1-O1的转动性能以及转动的顺畅性。例如,可以将A1的位置设置在A1'处,将A2的位置设置在A2'处,并将A3的位置设置在A3'处。
本公开的一些实施例提供的冰箱100中的制冰装置2,通过设置连杆组件23、摆动件24以及多个制冰盒22,利用连杆转轴23的连接段233连接转动轴231和摆动轴232,并固定转动轴231和摆动轴232之间的相对距离,利用摆动件24连接摆动轴232和各制冰盒22的驱动轴222,并固定摆动轴232和各驱动轴222之间的相对距离,使得连杆转轴23通过摆动件24带动多个制冰盒22同时转动的过程中,转动轴231、摆动轴232、各驱动轴222以及对应的各铰接轴223之间的距离保持不变,构成多个四连杆机构。而且,本公开的一些实施例在此基础上,通过配置转动轴231的位置,或配置摆动轴232的位置,或配置各驱动轴222的位置,或配置各铰接轴223的位置,使得每个制冰盒22从制冰位置转动到脱冰位置的过程中,每个驱动轴222和对应的铰接轴223之间的连线绕对应的铰接轴223旋转,并在第一次到达转动轴231和对应的铰接轴223之间的连线前停止,这样可以避免每个制冰盒22在转动到脱冰位置的过程中遇到死点位置,进而避免出现制冰盒22转动不顺畅甚至卡死的情况,提高制冰盒22的转动性能和顺畅性。
在一些实施例中,每个制冰盒22的驱动轴222的轴线和铰接轴223的轴线所确定的平面,均平行于摆动轴232的轴线与转动轴231的轴线所确定的平面。并且,每个制冰盒22的驱动轴222的轴线与铰接轴223的轴线之间的距离等于摆动轴232的轴线与转动轴231的轴线之间的距离。这也就意味着摆动轴232和转动轴231以及每个制冰盒22中的驱动轴222和铰接轴223所构成的四连杆机构为平行四边形机构。摆动轴232和转动轴231以及多个制冰盒22中的驱动轴222和铰接轴223共同构成共边多联平行四连杆机构。
此处,请参阅图18和图19,从图中可以看出,平行四边形机构的一 连架杆带动连杆和另一连架杆转动的过程中,另一连架杆在到达死点位置之前的可转动角度趋近于180°,而普通的四连杆机构的一连架杆带动连杆和另一连架杆转动的过程中,另一连架杆在到达死点位置之前的可转动角度与180°相差较多。由此,通过将摆动轴232和转动轴231以及每个制冰盒22中的驱动轴222和铰接轴223所构成的四连杆机构设置为平行四边形机构,可以增大每个制冰盒22在到达死点位置前的可转动角度范围,并提高各个制冰盒22的同步转动的稳定性。
需要注意的是,在如图18中所示的3个平行四边形机构A1-B1-P1-O1、A2-B2-P1-O1和A3-B3-P1-O1中,A1、A2、A3、B1、B2和B3位于多个制冰盒22所确定的平面内(例如为水平面内),P1在竖直方向上的位置高于B1、B2和B3,并且在以如图4所示的位置观察时,A1位于B1的左侧,A2位于B2的左侧,A3位于B3的左侧。可以将这样的设计称为基础设计。从图18可以看出,在该基础设计下,若以P1-O1为主动件、并且使其绕顺时针旋转,A1-B1在转过90°后不会达到P1-B1的位置,也即第一制冰盒从制冰位置旋转到脱冰位置的过程中,不会遇到死点位置。但是,A2-B2在转过小于90°的角度后,就会到达P1-B2的位置,也即第二制冰盒在未旋转至脱冰位置就会遇到死点位置。同样地,A3-B3在转过小于90°的角度后,就会到达P1-B3的位置,也即第三制冰盒在未旋转至脱冰位置就会遇到死点位置。
由此,如图18中所示的基础设计在多个制冰盒22从制冰位置旋转到脱冰位置的过程中,可能会产生多个制冰盒22运动不顺畅的问题。为此,本公开的一些实施例提供了一种基于上述基础设计的另一设计,以使得多个制冰盒22从制冰位置旋转到脱冰位置的过程中,每个制冰盒22的驱动轴222和对应的铰接轴223之间的连线能够在第一次到达转动轴231和对应的铰接轴223之间的连线前停止。
请参阅图20,所述基础设计中的3个平行四边形机构A1-B1-P1-O1、A2-B2-P1-O1和A3-B3-P1-O1,在作为主动件的P1-O1顺时针旋转大致90°时,平行四边形机构A2-B2-P1-O1和A3-B3-P1-O1有可能会遇到死点位置,导致多个制冰盒22的旋转不顺畅。
由此,在一些实施例中,请参阅图20和图21,本公开的一些实施例基于上述基础设计提供的一种另一设计如下所示。
在每个制冰盒22位于制冰位置的情况下,沿制冰盒22的底面指向其 顶面的方向(垂直或趋近于垂直水平面的方向),转动轴231位于铰接轴223的上方,且在每个制冰盒22的包括有驱动轴222和铰接轴223的表面中,驱动轴222位于对应的铰接轴223的左上方。
此处,制冰盒22的底面为盒体221的底面,制冰盒22的顶面为盒体221的顶面。
转动轴231位于铰接轴223的上方的具体位置包括多个,本公开的一些实施例对此不做限定,根据实际需要选择设置。例如,转动轴231位于铰接轴223的上方,且位于第一个制冰盒22的铰接轴223和第二个制冰盒22的铰接轴223之间(如图20所示),或位于第二个制冰盒22的铰接轴223和第三个制冰盒22的铰接轴223之间(如图21所示)。
驱动轴222位于对应的铰接轴223的左上方,包括:沿制冰盒22的底面指向其顶面的方向,驱动轴222位于对应的铰接轴223的左侧,且位于对应的铰接轴223和转动轴231之间,或与转动轴231位于同一水平面,或位于转动轴231的上方。也就是说,每个驱动轴222不会位于对应的铰接轴223的正上方,每个驱动轴222的轴线与对应的铰接轴223的轴线所确定的平面与多个制冰盒22所确定的平面(例如为多个制冰盒22的顶面)之间的夹角为锐角。需要说明的是,驱动轴222的轴线与对应的铰接轴223的轴线所确定的平面与多个制冰盒22的顶面之间的夹角为任何值均在本发明保护的范围之内,例如10°、15°、27°、45°、60°、75°、86°等。
如图20和图21中所示,将第一个制冰盒的驱动轴222等效为A*1,第二个制冰盒的驱动轴222等效为A*2,第三个制冰盒的驱动轴222等效为A*3,摆动轴232等效为O*1。从图20和图21中可以看出,作为主动件的P1-O*1沿顺时针的方向旋转大致90°后,3个平行四边形机构A*1-B1-P1-O*1、A*2-B2-P1-O*1和A*3-B3-P1-O*1不会遇到死点位置。由此,各制冰盒22在旋转90°或更多以从制冰位置旋转到脱冰位置,能够避免遇到死点位置,从而会使得各制冰盒22的旋转过程更加顺畅。
此外,上述设计相比基础设计,在旋转多个制冰盒22的过程中,上述设计更为省力。下面详细说明。
请参阅图20,对于基础设计而言,在三个制冰盒22同步旋转过程中的初始时刻,A3的运动方向v、受力方向F和运动法线方向f均如图20中所示,受力方向F与运动方向v所夹的锐角为压力角a2,受力方向F与 运动法线方向f间的夹角为传动角r2。在如图20所示的设计中,B1、B2和B3位置不变,沿竖直方向,A*1的位置位于P1和B1之间,A*2的位置位于P1和B2之间,A*3的位置均位于P1和B3之间。例如,沿竖直方向,A*1与B1到相应的制冰盒22的顶面的距离不同,而基础设计中A1与B1到相应制冰盒22的顶面的距离相同,其他制冰盒22也是如此。在三个制冰盒22同步旋转过程中的初始时刻,A*3的运动方向v、受力方向F、受力方向的反方向-F、运动法线方向f、压力角a1和传动角r1均如图20所示,从图20中明显得到:压力角a1小于压力角a2,传动角r1大于传动角r2,通过减小压力角,就可提高驱动轴A*3的传动性能,进而使第三个制冰盒22的旋转更加省力,而且也更加顺畅。
此外,沿竖直方向,在A*1的位置位于P1和B1之间、A*2的位置位于P1和B2之间以及A*3的位置均位于P1和B3之间的情况下,可以调整O*1的位置,以调整压力角a1的大小,进而可以使得压力角a1尽可能的小,以有效提高各制冰盒22的旋转的顺畅性,并使得各制冰盒22的旋转更为省力。
图20仅对三个制冰盒22的运动进行分析,若制冰盒22的个数为四个或四个以上,距离摆动件24的摆动轴232较远的制冰盒22的压力角相比基础设计减小程度会更加明显,这样不仅可以避免出现制冰盒22不能旋转,甚至卡死的现象,提高制冰盒22的转动性能,还能够使这些制冰盒的旋转更加省力。而且,设置多个制冰盒22,还可以在一次性取冰的过程中取出较多的冰,有效提高了取冰效率。
各制冰盒22的驱动轴222的轴线与铰接轴223的轴线所确定的平面与多个制冰盒22所确定的平面之间的夹角相等,这样可以使得多个制冰盒22在旋转的过程中,能够基本保持同步旋转,提高多个制冰盒22的旋转的稳定性。
本公开提供的一些实施例中,上述基础设计还具有多个变型设计。
在一些实施例中,本公开提供的一种变型设计如图22所示。请参阅图22,图中所示的3个平行四边形机构A1-B1-P1-O1、A2-B2-P1-O1和A3-B3-P1-O1中,A1、A2、A3、B1、B2和B3位于多个制冰盒2所确定的平面内(例如为水平面内),P1在竖直方向上的位置高于B1、B2和B3,并且在以如图4所示的位置观察时,A1位于B1的右侧,A2位于B2的右侧,A3位于B3的右侧。
从图22中可以看出,在上述变型设计中,若以P1-O1为主动件、并且使其沿顺时针方向旋转,A1-B1在转过90°后不会达到P1-B1的位置,也即第一制冰盒从制冰位置旋转到脱冰位置的过程中,不会遇到死点位置。但是,A2-B2在转过小于90°的角度后,就会到达P1-B2的位置,也即第二制冰盒在未旋转至脱冰位置就会遇到死点位置。同样地,A3-B3在转过小于90°的角度后,就会到达P1-B3的位置,也即第三制冰盒在未旋转至脱冰位置就会遇到死点位置。
由此,如图22中所示的变型设计,在多个制冰盒22从制冰位置旋转到脱冰位置的过程中,可能会产生多个制冰盒22运动不顺畅的问题。为此,本公开的一些实施例提供了一种基于上述变型设计的另一设计。
请参阅图22,本公开的一些实施例基于上述变型设计提供的另一设计如下所示。
在每个制冰盒22位于制冰位置的情况下,沿制冰盒22的底面指向其顶面的方向(垂直或趋近于垂直水平面的方向),转动轴231位于铰接轴223的上方,且在每个制冰盒22的包括有驱动轴222和铰接轴223的表面中,驱动轴222位于铰接轴223的右下方。此处,每个驱动轴222不会位于对应的铰接轴223的正下方。
如图22中所示,将第一个制冰盒的驱动轴222等效为A*1,第二个制冰盒的驱动轴222等效为A*2,第三个制冰盒的驱动轴222等效为A*3,摆动轴232等效为O*1。从图22中可以看到,作为主动件的P1-O*1沿顺时针的方向旋转大致90°后,3个平行四边形机构A*1-B1-P1-O*1、A*2-B2-P1-O*1和A*3-B3-P1-O*1不会遇到死点位置。由此,各制冰盒22在旋转90°或更多以从制冰位置旋转到脱冰位置,能够避免遇到死点位置,从而会使得各制冰盒22的旋转过程更加顺畅。
在另一些实施例中,本公开提供的另一种变型设计如图23所示。请参阅图23,图中所示的3个平行四边形机构A1-B1-P1-O1、A2-B2-P1-O1和A3-B3-P1-O1中,A1、A2、A3、B1、B2和B3位于多个制冰盒22所确定的平面内(例如为水平面内),P1在竖直方向上的位置低于B1、B2和B3,并且在以图4所示的位置观察时,A1位于B1的左侧,A2位于B2的左侧,A3位于B3的左侧。
从图23中可以看出,在上述变型设计中,若以P1-O1为主动件、并且使其沿逆时针方向旋转,A1-B1在转过90°后不会达到连线P1-B1的 位置,也即第一制冰盒从制冰位置旋转到脱冰位置的过程中,不会遇到死点位置。但是,A2-B2在转过小于90°的角度后,就会到达P1-B2的位置,也即第二制冰盒在未旋转至脱冰位置就会遇到死点位置。同样地,A3-B3在转过小于90°的角度后,就会到达P1-B3的位置,也即第三制冰盒在未旋转至脱冰位置就会遇到死点位置。
由此,如图23所示的变型设计中,在多个制冰盒22从制冰位置旋转到脱冰位置的过程中,可能会产生多个制冰盒22运动不顺畅的问题。为此,本公开的一些实施例提供了一种基于上述变型设计的另一设计。
请参阅图23,本公开的一些实施例基于上述变型设计提供的另一设计如下所示。
在每个制冰盒22位于制冰位置的情况下,沿制冰盒22的底面指向其顶面的方向(垂直或趋近于垂直水平面的方向),转动轴231位于铰接轴223的下方,且在每个制冰盒22的包括有驱动轴222和铰接轴223的表面中,驱动轴222位于铰接轴223的左下方。此处,每个驱动轴222不会位于对应的铰接轴223的正下方。
如图23中所示,将第一个制冰盒的驱动轴222等效为A*1,第二个制冰盒的驱动轴222等效为A*2,第三个制冰盒的驱动轴222等效为A*3,摆动轴232等效为O*1。从图23中可以看到,作为主动件的P1-O*1沿逆时针方向旋转大致90°后,3个平行四边形机构A*1-B1-P1-O*1、A*2-B2-P1-O*1和A*3-B3-P1-O*1不会遇到死点位置。由此,各制冰盒22在旋转90°或更多以从制冰位置旋转到脱冰位置,能够避免遇到死点位置,从而会使得各制冰盒22的旋转过程更加顺畅。
在了解制冰装置2的各个制冰盒22的上述转动原理的基础上,可以通过相应的结构设计,获得制冰装置2中各个零部件的形状和构造。本公开一些实施例以图20所示的转动原理(与图7相对应)为例,提供了冰箱100中的一种制冰装置2。该制冰装置2的整体结构如图3~图17所示,下面将对该制冰装置2的结构进行示例性的描述。
在一些实施例中,请参阅图10,制冰装置2中的摆动件24的多个支撑部243位于本体241的下方,铰接孔242位于本体241的中部区域,沿竖直方向,铰接孔242位于每个支撑部243的上方。这样可以使得与铰接孔243连接的摆动轴232位于多个驱动轴222的上方,基于驱动轴222位于对应的铰接轴223的上方,会使得每个支撑部243也位于对应的铰接轴 223的上方,这样在多个制冰盒22从制冰位置旋转至脱冰位置的过程中,避免多个支撑部243产生运动干涉,使得多个制冰盒22的旋转更为顺畅。
上述多个支撑部243的结构包括多种。示例性的,多个支撑部243包括以下至少一种:弧形槽、U形槽或通孔。此处,弧形槽或U形槽例如为图10中所示的结构。上述多个支撑部243的结构采用结构较为简单的弧形槽或U形槽,可以使摆动件24的加工工艺较为简单,且便于对多个驱动轴222进行安装或拆卸。上述多个支撑部243的结构采用通孔,可以避免多个驱动轴222从对应的支撑部243内脱落。
此处,在摆动件24摆动,并带动安装在多个支撑部243上的多个驱动轴222分别绕对应的铰接轴223转动的过程中,制冰盒22可能会沿驱动轴222的轴向产生晃动,也就会使得驱动轴222在沿其自身轴向的方向产生位移。
在一些实施例中,请参阅图5和图6,每个制冰盒22还包括限位块224,该限位块224设置在对应的驱动轴222的背离对应的盒体221的一端,且该限位块224配置为限制对应的驱动轴222沿其自身的轴线方向的位移。在将每个驱动轴222安装到对应的支撑部243上后,限位块224位于摆动件24的背离制冰盒22的一端,这样在驱动轴沿指向盒体221的方向移动(也即制冰盒22沿背离摆动件24的方向移动)的过程中,可以通过限位块224限定驱动轴222的位移,进而防止制冰盒22从摆动件24上脱离。
限位块224与对应的驱动轴222的连接方式包括多种,且该连接方式与支撑部243的结构相配合。示例性的,若支撑部243的结构采用弧形槽或U形槽,则限位块224采用固定连接的方式或可拆卸连接的方式与对应的驱动轴222连接。若支撑部243的结构采用通孔,则限位块224采用可拆卸连接的方式与对应的驱动轴222连接。
在一些实施例中,摆动件24与摆动轴232之间的连接包括多种。
在一些示例中,摆动轴232固定安装在摆动件24上。例如,摆动轴232固定安装在摆动件24的铰接孔242内。
在另一些示例中,摆动轴232可拆卸地连接在摆动件24上。这样便于连杆转轴23和摆动件24之间的安装和拆卸。
示例性的,请参阅图10~图14,摆动件24还包括设置在本体241上的安装孔244和开口245,安装孔244和铰接孔242通过开口245相连通。安装孔244的孔径分别大于铰接孔242的孔径和摆动轴232的直径,开口 245沿垂直于安装孔244的中心与铰接孔242的中心连线的方向上的尺寸L2小于摆动轴232的直径。此处,开口245沿平行于安装孔244的中心与铰接孔242的中心连线的方向上的尺寸大于或等于0。
请参阅图8和图9,摆动轴232包括扁位段2321,扁位段2321的厚度L1小于开口沿垂直于安装孔244的中心与铰接孔242的中心连线的方向上的尺寸L2,以使得扁位段2321能够通过开口245由安装孔244进入铰接孔242。
请继续参阅图10~图14,在摆动轴232的安装过程中,先将摆动轴232插入安装孔244内,转动摆动轴232,使得摆动轴232在扁位段2321的作用下,将摆动轴232移动至铰接孔242,之后再次转动摆动轴232,使得摆动轴232卡在铰接孔242内,避免摆动轴232由于扁位段2321的作用从铰接孔242内脱出。
在一些实施例中,请参阅图8、图12以及图14,连杆转轴23还包括凸沿234,该凸沿234设置在摆动轴232的远离连接段233的一端,凸沿234的最大尺寸大于铰接孔242的孔径,且小于安装孔244的孔径。
凸沿234的形状包括多种。示例性的,凸沿234的形状包括圆形、椭圆形、正方形或长方形等。凸沿234的最大尺寸与凸沿234的形状相关。示例性的,凸沿234的形状为圆形,则最大尺寸为该圆形的直径;凸沿234的形状为椭圆形,则最大尺寸为该椭圆形的长轴尺寸;凸沿234的形状为正方形或长方形,则最大尺寸为该正方形或长方形的对角线的尺寸。
通过将凸沿234的最大尺寸设置为大于铰接孔242的孔径,且小于安装孔244的孔径,可以在摆动轴232与摆动件24为可拆卸的连接的情况下,确保凸沿234能够通过安装孔244,且在摆动轴232位于铰接孔242内后,限制摆动轴232沿其自身轴线方向的位移。
在一些实施例中,请参阅图15~图17,制冰装置2还包括:手动旋钮25,手动旋钮25设置在支架21的背离每个制冰盒22的一侧,且手动旋钮25与连杆转轴23的转动轴231连接。通过设置与转动轴231连接的手动旋钮25,可以通过转动手动旋钮25使得转动轴231转动,进而使多个制冰盒22转动,相比通过转动轴231转动以使多个制冰盒22转动,更为省力。
此处,制冰装置2还可以采用电动旋钮与转动轴231连接。
在一些示例中,手动旋钮25与转动轴231的连接为直接连接。
在另一示例中,手动旋钮25与转动轴231的连接为间接连接。请继续参阅图15~图17,连杆转轴23还包括固定段235,该固定段235与转动轴231的远离连接段233的一端连接,手动旋钮25安装在固定段235上。
上述固定段235包括卡槽2351,手动旋钮25包括安装槽251,以及设置在安装槽251内且与卡槽2351相配合的卡扣252。这样可以使得固定段235与手动旋钮25之间的连接较为稳固。
此外,在安装槽251内设置有滑台,固定段235上设置有与滑台相配合的滑槽,这样可以使得固定段235更为紧固的安装在安装槽25内,避免旋转手动旋转25的过程中,固定段235与手动旋钮25发生相对位移。此外,手动旋钮25内开设有供转动轴231插入的安装孔,转动轴231的侧壁上开设有定位孔,在将转动轴231固定在安装孔后,采用定位销穿过手动旋钮25固定在定位孔内。这样可以进一步的固定转动轴231和手动旋钮25之间的连接此处,手动旋钮25上标识有旋转方向,以便于清楚显示多个制冰盒22从制冰位置到脱冰位置的所需旋转的方向。
在一些实施例中,请参阅图5,制冰装置2还包括多个复位件26,该多个复位件26配置为驱动多个制冰盒22从脱冰位置复位至制冰位置。
上述多个复位件26包括以下至少一种:扭簧或顶紧气缸。
在多个复位件26包括扭簧的情况下,扭簧套设在每个制冰盒22的铰接轴223上,扭簧的两个支臂分别与支架21和铰接轴223连接。这样在转动连杆转轴23使得每个制冰盒22从制冰位置旋转至脱冰位置后,扭簧会被压缩,停止向连杆转轴23施加力,每个制冰盒22能够在对应的扭簧的回复力的作用下,从脱冰位置旋转至制冰位置。扭簧的占用空间小,安装关系较为简单,且可以降低制冰装置2的制造成本。
在多个复位件26包括顶紧气缸的情况下,顶紧气缸的一端与每个制冰盒22的盒体221连接,另一端与支架21连接。这样在每个制冰盒22从制冰位置旋转至脱冰位置后,顶紧气缸会伸长,在需要将每个制冰盒22从脱冰位置旋转至制冰位置后,顶紧气缸会再缩短,将每个制冰盒22拉回至制冰位置。
在一些实施例中,带动多个制冰盒22同步旋转还可通过下述结构实现,结构包括:驱动电机、传动轴、传动轮以及传送带,传动轴与驱动电机的输出轴连接,传动轮安装在驱动轴222上,相邻两个制冰盒22上的传动轮通过传送带连接,在驱动电机工作的过程中,可以通过传送轮与传送 带相配合带动多个制冰盒22同步旋转。
在本公开的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种冰箱,包括:
    冷冻室,所述冷冻室的温度低于零摄氏度;
    制冰装置,所述制冰装置设置在所述冷冻室内;其中,
    所述制冰装置包括:
    支架;
    并行排列的多个制冰盒,所述多个制冰盒中的每个制冰盒包括盒体以及与所述盒体连接的驱动轴和铰接轴,所述驱动轴和所述铰接轴互相平行,且所述制冰盒通过对应的所述铰接轴铰接于所述支架内;
    连杆转轴,所述连杆转轴包括相互平行且间隔设置的转动轴和摆动轴,以及连接所述转动轴和所述摆动轴的连接段;所述连杆转轴通过所述转动轴铰接于所述支架上;
    摆动件,所述摆动件包括本体以及设置在所述本体上的铰接孔和多个支撑部;所述摆动轴安装在所述铰接孔内,所述制冰盒的驱动轴安装在对应的支撑部上,使得所述摆动件可摆动地连接于所述支架和所述多个制冰盒之间;
    其中,所述转动轴带动所述摆动轴转动,使得所述摆动轴带动所述摆动件摆动,进而使得所述摆动件带动所述驱动轴绕对应的所述铰接轴转动,最终使得各所述制冰盒绕对应的所述铰接轴转动;
    其中,所述驱动轴被配置为:在所述多个制冰盒从制冰位置转动到脱冰位置的过程中,每个所述驱动轴和对应的所述铰接轴之间的连线绕对应的所述铰接轴旋转,并在第一次到达所述转动轴和对应的所述铰接轴之间的连线前停止。
  2. 根据权利要求1所述的冰箱,其中,
    每个所述制冰盒的所述驱动轴的轴线和所述铰接轴的轴线所确定的平面,均平行于所述摆动轴的轴线与所述转动轴的轴线所确定的平面;
    每个所述制冰盒的所述驱动轴的轴线与所述铰接轴的轴线之间的距离等于所述摆动轴的轴线与所述转动轴的轴线之间的距离。
  3. 根据权利要求2所述的冰箱,其中,
    在所述多个制冰盒位于制冰位置的情况下,所述多个制冰盒所在的平面与所述多个制冰盒的重力方向垂直或趋近于垂直;
    在所述多个制冰盒位于脱冰位置的情况下,所述多个制冰盒所旋转的 角度大于或等于90°。
  4. 根据权利要求2所述的冰箱,其中,在所述多个制冰盒位于制冰位置的情况下,沿所述多个制冰盒的底面指向所述多个制冰盒的顶面的方向,所述转动轴位于所述制冰盒的所述铰接轴的上方,且在每个制冰盒的包括有所述驱动轴和所述铰接轴的表面中,所述驱动轴位于对应的所述铰接轴的左上方。
  5. 根据权利要求4所述的冰箱,其中,在所述多个制冰盒位于制冰位置的情况下,所述驱动轴的轴线与相应的所述铰接轴的轴线所确定的平面和所述多个制冰盒所确定的平面之间的夹角为锐角。
  6. 根据权利要求1所述的冰箱,其中,各所述驱动轴的轴线与对应的所述铰接轴的轴线所确定的平面和所述多个制冰盒所确定的平面之间的夹角相等。
  7. 根据权利要求2所述的冰箱,其中,在所述多个制冰盒位于制冰位置的情况下,沿所述多个制冰盒的底面指向所述多个制冰盒的顶面的方向,所述转动轴位于所述制冰盒的所述铰接轴的上方,且在每个制冰盒的包括有所述驱动轴和所述铰接轴的表面中,所述驱动轴位于所述铰接轴的右下方。
  8. 根据权利要求2所述的冰箱,其中,在所述多个制冰盒位于制冰位置的情况下,沿所述多个制冰盒的底面指向所述多个制冰盒的顶面的方向,所述转动轴位于所述制冰盒的所述铰接轴的下方,且在每个制冰盒的包括有所述驱动轴和所述铰接轴的表面中,所述驱动轴位于所述铰接轴的左下方。
  9. 根据权利要求1~8中任一项所述的冰箱,其中,
    所述支架包括矩形框架;
    所述铰接轴包括第一铰接轴和第二铰接轴;其中,
    所述第一铰接轴位于对应的所述盒体的第一侧和所述矩形框架的第一边框之间,所述第二铰接轴位于对应的所述盒体的第二侧和所述矩形框架的第二边框之间;所述第一侧与所述第二侧相对,且所述第一边框与所述第二边框相对。
  10. 根据权利要求1~8中任一项所述的冰箱,其中,所述摆动件还包括设置在所述本体上的安装孔和开口,所述安装孔和所述铰接孔通过所述开口相连通;
    所述安装孔的孔径大于所述铰接孔的孔径且大于所述摆动轴的直径,所述开口的尺寸小于所述摆动轴的直径;
    所述摆动轴包括扁位段,所述扁位段的厚度小于所述开口沿垂直于所述安装孔的中心与所述铰接孔的中心连线的方向上的尺寸,以使得所述扁位段能够通过所述开口由所述安装孔进入所述铰接孔。
  11. 根据权利要求10所述的冰箱,其中,所述连杆转轴还包括凸沿,所述凸沿设置在所述摆动轴的远离所述连接段的一端,所述凸沿的最大尺寸大于所述铰接孔的孔径,且小于所述安装孔的孔径。
  12. 根据权利要求1~8中任一项所述的冰箱,其中,所述多个支撑部包括以下至少一种:弧形槽、U形槽或通孔。
  13. 根据权利要求1~8中任一项所述的冰箱,其中,每个所述制冰盒还包括限位块,所述限位块设置在对应的所述驱动轴的背离对应的所述盒体的一端,所述限位块配置为限制对应的所述驱动轴沿其自身的轴线方向的位移。
  14. 根据权利要求1~8中任一项所述的冰箱,其中,所述制冰装置还包括手动旋钮;
    所述手动旋钮设置在所述支架的背离所述多个制冰盒的一侧,且与所述转动轴连接。
  15. 根据权利要求14所述的冰箱,其中,所述连杆转轴还包括固定段;
    所述固定段与所述转动轴的背离所述连接段的一端连接;
    所述手动旋钮安装在所述固定段上。
  16. 根据权利要求15所述的冰箱,其中,所述固定段包括卡槽;
    所述手动旋钮包括安装槽,以及设置在所述安装槽内的卡扣,所述卡扣与所述卡槽相配合。
  17. 根据权利要求1所述的冰箱,其中,所述制冰装置还包括多个复位件,所述多个复位件配置为驱动所述多个制冰盒从所述脱冰位置复位至所述制冰位置。
  18. 根据权利要求17所述的冰箱,其中,所述多个复位件包括以下至少一种:扭簧或顶紧气缸。
PCT/CN2019/121654 2018-11-28 2019-11-28 冰箱 WO2020108575A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19888605.3A EP3889525B1 (en) 2018-11-28 2019-11-28 Refrigerator
US17/271,772 US11614263B2 (en) 2018-11-28 2019-11-28 Refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811449062.5 2018-11-28
CN201811449062.5A CN109579407B (zh) 2018-11-28 2018-11-28 一种冰箱

Publications (1)

Publication Number Publication Date
WO2020108575A1 true WO2020108575A1 (zh) 2020-06-04

Family

ID=65923782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121654 WO2020108575A1 (zh) 2018-11-28 2019-11-28 冰箱

Country Status (5)

Country Link
US (1) US11614263B2 (zh)
EP (1) EP3889525B1 (zh)
CN (1) CN109579407B (zh)
AU (1) AU2019101732A4 (zh)
WO (1) WO2020108575A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115200304A (zh) * 2021-04-14 2022-10-18 海信(山东)冰箱有限公司 冰箱

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109579407B (zh) * 2018-11-28 2020-11-17 海信容声(广东)冰箱有限公司 一种冰箱
CN115307376B (zh) * 2021-05-08 2023-11-14 青岛海尔电冰箱有限公司 制冰装置、制冰方法、冰箱
CN115451630A (zh) * 2021-11-19 2022-12-09 合肥美的电冰箱有限公司 制冰装置及制冷设备
CN115435520A (zh) * 2021-11-19 2022-12-06 合肥美的电冰箱有限公司 制冰装置及制冷设备
EP4206577A4 (en) * 2021-11-19 2023-11-29 Hefei Midea Refrigerator Co., Ltd. ICE MAKING DEVICE AND COOLING DEVICE
CN115406145A (zh) * 2021-11-19 2022-11-29 合肥美的电冰箱有限公司 制冰装置及制冷设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140772A (ja) * 1989-10-25 1991-06-14 Matsushita Refrig Co Ltd 自動製氷装置
CN2890786Y (zh) * 2006-04-19 2007-04-18 苏州三星电子有限公司 冰箱制冰装置
US20070163285A1 (en) * 2006-01-19 2007-07-19 Samsung Electronics Co., Ltd. Refrigerator with ice making device
CN102494452A (zh) * 2011-12-08 2012-06-13 合肥美的荣事达电冰箱有限公司 用于冰箱的制冰机及具有它的冰箱
CN104748468A (zh) * 2013-12-31 2015-07-01 苏州三星电子有限公司 旋转制冰盒
CN107606839A (zh) * 2017-09-26 2018-01-19 青岛海尔股份有限公司 制冰装置及具有其的制冷设备
CN109579407A (zh) * 2018-11-28 2019-04-05 海信容声(广东)冰箱有限公司 一种冰箱

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2104480A (en) * 1936-10-16 1938-01-04 Nash Kelvinator Corp Refrigerating apparatus
US2278229A (en) * 1939-09-21 1942-03-31 Hoover Co Refrigeration
US3188827A (en) * 1963-06-17 1965-06-15 Dole Valve Co Automatic ice maker having a thermally sensitive power unit
FR2125204B1 (zh) * 1971-02-19 1973-11-23 Air Liquide
FR2402421A1 (fr) * 1977-09-07 1979-04-06 Stef Perfectionnements apportes aux procedes et dispositifs pour la congelation de produits fluides
US4852359A (en) * 1988-07-27 1989-08-01 Manzotti Ermanno J Process and apparatus for making clear ice cubes
JP2727280B2 (ja) 1992-09-04 1998-03-11 株式会社三協精機製作所 製氷皿の振動装置
JP2005180823A (ja) * 2003-12-19 2005-07-07 Hoshizaki Electric Co Ltd 自動製氷機
JP4043466B2 (ja) * 2004-09-30 2008-02-06 三洋電機株式会社 自動製氷機を備えた冷凍冷蔵庫
CN2874365Y (zh) * 2006-03-28 2007-02-28 顾维 具有逻辑控制机构的制冰装置
KR101212087B1 (ko) * 2007-12-06 2012-12-13 삼성전자주식회사 냉장고
US8443619B2 (en) * 2008-01-16 2013-05-21 Samsung Electronics Co., Ltd. Ice making unit and refrigerator having the same
AU2009343710B2 (en) * 2009-04-01 2012-08-30 Lg Electronics Inc. Refrigerator having ice making device
CN202309403U (zh) * 2011-10-14 2012-07-04 天津百利二通机械有限公司 电动装置内装电机定子拆卸专用工具
KR102432001B1 (ko) * 2015-10-14 2022-08-16 삼성전자주식회사 냉장고
KR20190125657A (ko) * 2018-04-30 2019-11-07 주식회사 위니아대우 냉장고용 제빙기

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140772A (ja) * 1989-10-25 1991-06-14 Matsushita Refrig Co Ltd 自動製氷装置
US20070163285A1 (en) * 2006-01-19 2007-07-19 Samsung Electronics Co., Ltd. Refrigerator with ice making device
CN2890786Y (zh) * 2006-04-19 2007-04-18 苏州三星电子有限公司 冰箱制冰装置
CN102494452A (zh) * 2011-12-08 2012-06-13 合肥美的荣事达电冰箱有限公司 用于冰箱的制冰机及具有它的冰箱
CN104748468A (zh) * 2013-12-31 2015-07-01 苏州三星电子有限公司 旋转制冰盒
CN107606839A (zh) * 2017-09-26 2018-01-19 青岛海尔股份有限公司 制冰装置及具有其的制冷设备
CN109579407A (zh) * 2018-11-28 2019-04-05 海信容声(广东)冰箱有限公司 一种冰箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3889525A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115200304A (zh) * 2021-04-14 2022-10-18 海信(山东)冰箱有限公司 冰箱
CN115200304B (zh) * 2021-04-14 2024-01-26 海信冰箱有限公司 冰箱

Also Published As

Publication number Publication date
CN109579407A (zh) 2019-04-05
EP3889525B1 (en) 2024-01-03
CN109579407B (zh) 2020-11-17
US11614263B2 (en) 2023-03-28
EP3889525A1 (en) 2021-10-06
US20210325099A1 (en) 2021-10-21
EP3889525A4 (en) 2022-08-24
AU2019101732A4 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2020108575A1 (zh) 冰箱
WO2017148192A1 (zh) 具有缓冲功能的门铰链
US8061663B2 (en) Support mechanism
JP4928544B2 (ja) 航空機の着陸装置格納室のためのドアの開閉システム
JP2011513605A (ja) 減衰装置を有するヒンジ
WO2017000842A1 (zh) 冰箱
US10655381B2 (en) Locking device and opening and closing mechanism having the same
KR100765242B1 (ko) 평판형 tv용 벽걸이식 거치대
EP3190250B1 (en) Hinge
WO2022194233A1 (zh) 铰链及具有其的制冷设备
JP2014530310A (ja) 家具部品を移動させるための同期装置
WO2019128833A1 (zh) 冰箱及其搁物架
WO2022194231A1 (zh) 铰链及具有其的制冷设备
US11956523B2 (en) Camera assembly, rotating shaft assembly and laptop
JP2008076457A (ja) 表示パネル支持装置
CN205001785U (zh) 支架
US7954781B2 (en) Flat panel display support with a hinge assembly
JPS6345336U (zh)
EP2495726A2 (en) Cover assembly of optical disk device
WO2015078312A1 (zh) 一种双向开关装置以及具有该装置的冰箱
CN215889708U (zh) 铰链及具有其的制冷设备
CN213015880U (zh) 一种门窗用铰链
CN114743462A (zh) 显示装置
CN221265943U (zh) 一种煎烤器转动结构
CN209943854U (zh) 一种显示器支架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019888605

Country of ref document: EP

Effective date: 20210628