WO2020108015A1 - 基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法 - Google Patents
基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法 Download PDFInfo
- Publication number
- WO2020108015A1 WO2020108015A1 PCT/CN2019/105874 CN2019105874W WO2020108015A1 WO 2020108015 A1 WO2020108015 A1 WO 2020108015A1 CN 2019105874 W CN2019105874 W CN 2019105874W WO 2020108015 A1 WO2020108015 A1 WO 2020108015A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant protection
- width
- grape
- grapes
- vineyard
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000010354 integration Effects 0.000 title claims abstract description 22
- 238000012377 drug delivery Methods 0.000 title abstract 2
- 241000196324 Embryophyta Species 0.000 claims abstract description 76
- 241000219095 Vitis Species 0.000 claims abstract description 52
- 235000009754 Vitis X bourquina Nutrition 0.000 claims abstract description 49
- 235000012333 Vitis X labruscana Nutrition 0.000 claims abstract description 49
- 235000014787 Vitis vinifera Nutrition 0.000 claims abstract description 49
- 238000005507 spraying Methods 0.000 claims abstract description 47
- 241000219094 Vitaceae Species 0.000 claims abstract description 38
- 235000021021 grapes Nutrition 0.000 claims abstract description 38
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 25
- 230000002265 prevention Effects 0.000 claims abstract description 23
- 239000007921 spray Substances 0.000 claims description 52
- 238000013507 mapping Methods 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 238000009423 ventilation Methods 0.000 claims description 7
- 238000012935 Averaging Methods 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 5
- 238000003900 soil pollution Methods 0.000 claims description 5
- 239000002699 waste material Substances 0.000 claims description 5
- 241000607479 Yersinia pestis Species 0.000 claims description 4
- 230000006806 disease prevention Effects 0.000 claims description 2
- 239000003814 drug Substances 0.000 description 5
- 238000009369 viticulture Methods 0.000 description 4
- 230000009418 agronomic effect Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 235000009434 Actinidia chinensis Nutrition 0.000 description 1
- 244000298697 Actinidia deliciosa Species 0.000 description 1
- 235000009436 Actinidia deliciosa Nutrition 0.000 description 1
- 240000001008 Dimocarpus longan Species 0.000 description 1
- 235000000235 Euphoria longan Nutrition 0.000 description 1
- 244000157072 Hylocereus undatus Species 0.000 description 1
- 235000018481 Hylocereus undatus Nutrition 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000003630 growth substance Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
Definitions
- the invention relates to an operation method in which the plant protection drone has an effective spraying width and a viticulture frame type under different operation heights in the process of aerial application to the vineyard, so as to realize the accuracy and precision based on the integration of agricultural machinery and agronomy Medicine saving and green operation. More specifically, it refers to a single-arm fence vineyard aerial application operation method based on the integration of agricultural machinery and agronomy.
- viticulture racks As a high-value-added fruit, grapes are planted in large areas both at home and abroad. The selection of viticulture racks should generally be determined according to the variety characteristics, local climate characteristics and local planting habits.
- scaffolds are mostly used in the area north of the Great Wall of China in order to have a wide line spacing for winter plants to take cold soil and prevent the root system from being exposed to frost damage due to large amounts of borrowed soil.
- Horizontal scaffolding that is, a beam is erected on a vertical pillar, and the wire is drawn on the beam to form a horizontal frame surface, and the row spacing is mostly 4.0m ⁇ 6.0m.
- the grape row spacing In the grape production area from the south of the Great Wall to the Yellow River Basin, fences are mostly used, and the single wall fence is the most used in production, which has the advantages of convenient management, better ventilation and light transmission conditions.
- the grape row spacing In the selection of grape row spacing, the grape row spacing varies depending on the rack type, variety and climatic conditions. When using trellis-type planting, the row spacing is mostly from 4.0m to 10.0m. Among them, the varieties with particularly strong growth potential and easy to form, such as longan, can adopt a large row spacing of 6.0m to 10.0m. Generally, the varieties with moderate growth potential are used 4.0m ⁇ 6.0m line spacing. When using the hedge-type planting, the row spacing is too wide is not conducive to improving the surface and effective shelf surface per acre.
- the row distance of the single hedge is equal to or slightly larger than the height of 2.0m ⁇
- the distance between 2.5m is suitable.
- the buried area in the north is generally widened to 2.5m ⁇ 3m, and the height is preferably 1.8m ⁇ 2.0m.
- the hedge-type cultivation frame type is further divided into a single-arm fence, a double-arm fence, and a V-shaped fence.
- a single-arm fence type vineyard growers often want plant protection.
- the effective spraying width of the man-machine can cover or slightly exceed the average width of the grapes in the width direction of the two adjacent independent planting rows, so as not to cause the liquid medicine to spray too much on the wider fence
- the ventilation and lighting lines cause waste of chemical liquid and soil pollution, which is also consistent with the requirements of precision, medicine saving and green operation advocated by the state.
- the object of the present invention is to provide a single-arm fence type vineyard aerial application operation method based on agricultural machinery and agronomy integration to solve the above technical problems.
- This operation method synergistically corresponds the effective spray width of plant protection drones at different operating heights with the single-arm fence type grape cultivation frame type commonly used in the Yellow River Basin, thereby achieving the single-arm fence type vineyard prevention and control agent aerial spray Accurate, medicine-saving and green operations based on the integration of agricultural machinery and agronomy during the construction process.
- the technical problem solved by the present invention can be realized by the following technical solution: a single-arm fence type vineyard aerial spraying operation method based on agricultural machinery and agronomy integration, including the following steps.
- Step 1 Determine the average plant height of the grapes under the single-arm hedge-type cultivation frame and the average width of the grapes in the width direction of two adjacent independent planting rows
- the average plant height of the grapes on the work plot is calculated by sampling and averaging
- Step 2 Determine the average spray width of two adjacent independent rows in the width direction of the grape planting information based on the grape cultivation information.
- W S the precise spraying width W S when spraying the grape prevention and control agent is applied
- W P the average width of the grapes in the width direction of two adjacent independent planting rows
- W A the additional adjustment spray width
- Step 3 Do spot mapping and plant protection drone route planning on the operation vineyard plot
- step (B) Use the area enclosed by all the recording points of step (A) surveying and mapping as the working area, and use the single-arm hedge type cultivation frame type plant protection drone calculated in the second step to implement grape prevention and control agent spraying
- the precise spray width W S during operation is set to the width of the route.
- the route center of the plant protection drone always coincides with the center line of the adjacent two independent planting rows, the route of the plant protection drone is automatically completed in the ground station. planning.
- Step 4 Determine the flight height of the plant protection drone under the effective spray height of the ground to the grape canopy under the accurate spray height
- Step 5 Carry out aerial spraying of plant protection drone for grape prevention and control agents
- the plant protection drone calculated by the fourth step is highly accurate sprayed on the grape canopy.
- precision flying height H S as an actual ground working height, according to a certain speed in flight, the flight operations cantilever embedded trellis direction, to complete the job on grapes prevention agent Lot air spraying.
- the coverage of the effective spray width of the plant protection drone during the flight of the single-line operation refers to that the effective spray width of the plant protection drone just covers or slightly exceeds the average width of the grapes in the width direction of two adjacent independent planting rows width.
- the value range of the additional adjustment spray width W A is 0-0.4m.
- the boundary of the operation vineyard plot is extended to the outside of the plot by a certain distance, and the value range of this distance is 0.2m-0.4m.
- the flight speed range of the plant protection drone is 2.0m/s to 4.5m/s.
- the plant protection UAV is one of electric multi-rotor, electric single-rotor and oil-driven single-rotor.
- the grape prevention and control agent is one or a combination of grape disease prevention and control agents, grape pest prevention and control agents, and grape growth regulating agents.
- the single-arm fence type vineyard aerial spraying operation method based on agricultural machinery and agronomic fusion proposed by the present invention guarantees the plant protection drone in a single route from a technical perspective During the operation flight, the effective spraying width just covers or slightly exceeds the average width of the grapes in the width direction of the two adjacent independent planting rows, which meets the grower's desire not to spray too much liquid medicine between the wider hedges for ventilation and lighting
- the actual requirements of waste of medicine liquid and soil pollution in the line have realized precise, medicine-saving and green operations
- the single-arm fence type vineyard aerial pesticide application method based on the integration of agricultural machinery and agronomy proposed by the present invention
- the effective spraying amplitude of the drone at different operating heights is coordinated with the single-arm hedge viticulture frame commonly used in the Yellow River Basin, which realizes the integration of agricultural machinery and agronomy in the process of plant protection drone spraying.
- FIG. 1 is a flowchart of a single-arm fence type vineyard aerial application operation method based on agricultural machinery and agronomy integration of the present invention.
- Fig. 2 shows the precision spray width W S , average grape width W P , additional adjustment spray width W A , and precision flight when the plant protection drone implements the control spraying operation of the single-arm fence vineyard in the head-up state height H S, the theory of surface flying height H R, showing the relationship between the average height of grapes H P.
- FIG. 3 is a schematic diagram of a plant protection drone when performing a spraying operation of prevention and control agents over a single-arm fence vineyard in a plan view.
- the present invention is a single-arm fence type vineyard aerial spraying operation method based on agricultural machinery agronomy integration, including the following steps.
- Step 1 Determine the average plant height of the grapes under the single-arm hedge-type cultivation frame and the average width of the grapes in the width direction of two adjacent independent planting rows
- the grape variety planted in a working vineyard is Weidale ice grapes.
- the vineyard uses a single-arm hedge-type cultivation frame, where the row spacing is 3.0m and the height of the column is 2.0m. With the method of average value, the average plant height of the grapes on the working plot is calculated to be 1.8m;
- Step 2 Determine the average spray width of two adjacent independent rows in the width direction of the grape planting information based on the grape cultivation information.
- the precise spray width W S is 4.0m when the grape prevention and control agent spraying operation is carried out.
- the average width W P of the grapes in the width direction of two adjacent independent planting rows is 3.8m, additional adjustment spray
- the width W A is 0.2m.
- Step 3 Do spot mapping and plant protection drone route planning on the operation vineyard plot
- step (B) Use the area enclosed by all the recording points of step (A) surveying and mapping as the working area, and use the single-arm hedge type cultivation frame type plant protection drone calculated in the second step to implement grape prevention and control agent spraying
- the precise spray width W S during operation is 4.0m, which is set to the route width.
- the plant protection drone is completed in the ground station on the premise that the route center of the plant protection drone always coincides with the center line of the adjacent two independent planting rows. Automatic route planning.
- Step 4 Determine the flight height of the plant protection drone under the effective spray height of the ground to the grape canopy under the accurate spray height
- step (B) From the effective spray pattern of the selected plant protection drone to the surface, select a value that is consistent with the precise spray pattern W S mentioned in the second step, and then refer to the various effective spray patterns of the model on the surface in step (A)
- Step 5 Carry out aerial spraying of plant protection drone for grape prevention and control agents
- the plant protection drone calculated by the fourth step is highly accurate sprayed on the grape canopy.
- the precise flying height H S is 4.8m as the actual ground operation height, and the flying operation is carried out in the direction of the single-arm fence embedding according to the flying speed of 4.0m/s, and the grape growth regulator citric acid chelated iron aqueous solution is used as the spraying agent. Completion of aerial spraying of grape prevention and control agents on the work plot.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Catching Or Destruction (AREA)
Abstract
一种基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法,包括:第一步:确定单臂篱架式栽培架式下的葡萄平均株高、相邻两个独立种植行宽度方向上的葡萄平均幅宽;第二步:根据葡萄栽培信息确定相邻两个独立种植行宽度方向上葡萄平均幅宽对植保无人机的精准喷幅需求;第三步:对作业葡萄园地块进行打点测绘和植保无人机航线规划;第四步:根据植保无人机对地有效喷幅下的飞行高度确定其对葡萄冠层高度精准喷幅下的飞行高度;第五步:进行葡萄防控药剂的植保无人机航空喷施作业,该方法实现了精准、省药、绿色作业。
Description
本发明涉及一种在对葡萄园进行航空施药过程中将植保无人机在不同作业高度下有效喷幅与葡萄栽培架式进行协同对应的作业方法,以实现农机农艺融合基础上的精准、省药、绿色作业。更特别地说,是指一种基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法。
葡萄作为一种高附加值水果,在国内外均有大面积栽植。在葡萄栽培架式选择上,一般应根据品种特性、当地气候特点以及当地栽植习惯来确定。一般在我国长城以北地区大多采用棚架,以便有较宽的行距,供冬季植株防寒取土,并使根系不致因大量取土而裸露受冻害;在我国淮河以南地区应用较多的有水平式棚架,即在垂直的支柱上架设横梁,横梁上牵引铁丝,形成一个水平架面,行距多为4.0m~6.0m。而在长城以南至黄河流域的葡萄产区多采用篱架,且生产中用得最多的是单壁篱架,它具有管理方便,通风透光条件较好等优点。在葡萄行距选择上,葡萄的行距因架式、品种和气候条件不同而异。采用棚架式栽植时,行距多在4.0m~10.0m不等,其中生长势特强、易成形的品种如龙眼,可采取6.0m~10.0m的大行距,一般生长势中庸的品种都采用4.0m~6.0m的行距。采用篱架式栽植时,行距过宽不利于提高每亩架面和有效架面,在不埋土区或轻度埋土区,单篱架的行距以等于或稍大于架高即2.0m~2.5m之间为宜,北方埋土地区一般适当加宽行距到2.5m~3m,架高以1.8m~2.0m为宜。
当前,在使用植保无人机进行葡萄病虫害植保无人机施药作业中发现,作业人员往往不会站在农机农艺融合的角度去开展航空喷施作业。比如,飞手在确定植保无人机飞行高度、航线宽度等作业参数时,往往并不考虑所选机型在不同作业高度下的有效喷幅与葡萄所用栽培架式是否相契合,而国内不同葡萄种植区域如黄河流域、淮河流域、东北地区等多采用不同的栽培架式。以篱架式葡萄栽培架式为例,篱架式栽培架式又分为单臂篱架、双臂篱架和V形篱架式,比如单臂篱架式葡萄园种植户往往希望植保无人机在单航线作业飞行过程中其有效喷幅刚好能覆盖或略微超出相邻两个独立种植行宽度方向上的葡萄平均幅宽,从而不致使药液过多地喷在较宽的篱架间通风采光行里造成药液浪费和土壤污染,这也与国家提倡的精准、省药、绿色型作业要求相一致。因此,在葡萄园病虫害航空施药过程中需要将植保无人机在不同作业高度下的有效喷幅与葡萄栽培架式进行协同对应,进而实现农机农艺融合基础上的精准、省药、绿色作业。
发明内容
本发明的目的在于,提供一种基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法,以解决上述技术问题。该作业方法将植保无人机在不同作业高度下的有效喷幅与黄河流域普遍采用的单臂篱架式葡萄栽培架式进行协同对应,进而实现单臂篱架式葡萄园防控药剂航空喷施过程中农机农艺融合基础上的精准、省药、绿色作业。
本发明所解决的技术问题可以采用以下技术方案来实现:基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法,包括有下列步骤。
第一步:确定单臂篱架式栽培架式下的葡萄平均株高、相邻两个独立种植行宽度方向上的葡萄平均幅宽
(A)根据作业地块上葡萄的栽培品种和生长周期,采用抽样测量并求取平均值的方法,计算出作业地块上的葡萄平均株高;
(B)根据作业地块上葡萄的单臂篱架式栽培架式,采用抽样测量并求取平均值的方法,计算出相邻两个独立种植行宽度方向上的葡萄平均幅宽。
第二步:根据葡萄栽培信息确定相邻两个独立种植行宽度方向上葡萄平均幅宽对植保无人机的精准喷幅需求
(A)根据作业地块上葡萄的单臂篱架式栽培架式,在考虑防止药液过多地喷在宽度较大的篱架间通风采光行里以造成药液浪费和土壤污染的情况下,确定植保无人机在单航线作业飞行过程中其有效喷幅的覆盖范围;
(B)根据步骤(A)中所确定的植保无人机在单航线作业飞行过程中其有效喷幅的覆盖范围,按照公式W
S=W
P+W
A计算单臂篱架式栽培架式下植保无人机实施葡萄防控药剂喷施作业时的精准喷幅W
S,式中W
P为相邻两个独立种植行宽度方向上的葡萄平均幅宽,W
A为附加调整喷幅。
第三步:对作业葡萄园地块进行打点测绘和植保无人机航线规划
(A)利用测绘杆对作业葡萄园地块边界处的记录点进行打点测绘,为保证所有记录点所围成的区域能够完整覆盖作业地块,从而避免在边界处出现漏喷现象,打点作业时先将作业葡萄园地块的边界分别向地块外侧扩展一定距离,再将所有的交点作为记录点按顺序进行打点测绘;
(B)将步骤(A)打点测绘的所有记录点所围成的区域作为作业区域,将第二步计算得到的单臂篱架式栽培架式下植保无人机实施葡萄防控药剂喷施作业时的精准喷幅W
S设置为航线宽度,在保证植保无人机航线中心始终与相邻两个独立种植行中心线相重合的前提下,在 地面站中完成植保无人机的航线自动规划。
第四步:根据植保无人机对地有效喷幅下的飞行高度确定其对葡萄冠层高度精准喷幅下的飞行高度
(A)选择实施葡萄防控药剂喷施作业的植保无人机机型,根据该机型上喷头的布置形式以及该机型所标定的作业性能,明确该机型各种对地表有效喷幅与其对地表理论飞行高度的对应关系;
(B)从所选植保无人机对地表有效喷幅中选择与第二步中所述精准喷幅W
S相一致的数值,进而参考步骤(A)中该机型各种对地表有效喷幅与其对地表理论飞行高度的对应关系,确定与所述精准喷幅W
S相对应的对地表理论飞行高度H
R,然后按照公式H
S=H
R+H
P计算所选植保无人机对葡萄冠层高度精准喷幅下的精准飞行高度H
S,式中H
P为第一步所采集到的作业地块上的葡萄平均株高。
第五步:进行葡萄防控药剂的植保无人机航空喷施作业
借助第四步所选择的植保无人机,按照第三步完成的作业地块打点测绘和航线规划情况,以第四步计算所得所选植保无人机对葡萄冠层高度精准喷幅下的精准飞行高度H
S作为实际对地作业高度,按照一定的飞行速度沿单臂篱架埋设方向进行飞行作业,完成作业地块上葡萄防控药剂的航空喷施。
所述植保无人机在单航线作业飞行过程中其有效喷幅的覆盖范围,是指植保无人机的有效喷幅刚好覆盖或略微超出相邻两个独立种植行宽度方向上的葡萄平均幅宽。
所述附加调整喷幅W
A的数值范围为0~0.4m。
所述的打点作业时将作业葡萄园地块的边界分别向地块外侧扩展一定距离,该距离的数值范围为0.2m~0.4m。
所述植保无人机的飞行速度范围为2.0m/s~4.5m/s。
所述植保无人机是电动多旋翼、电动单旋翼、油动单旋翼中的一种。
所述葡萄防控药剂是葡萄病害防控药剂、葡萄虫害防控药剂、葡萄生长调节药剂中的一种或几种的组合。
本发明与现有技术相比,具有如下优点:(1)本发明提出的基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法,从技术角度保证了植保无人机在单航线作业飞行过程中其有效喷幅刚好覆盖或略微超出相邻两个独立种植行宽度方向上的葡萄平均幅宽,满足了种植户不想使药液过多地喷在较宽的篱架间通风采光行里造成药液浪费和土壤污染的现实需求,实现了精准、省药、绿色作业;(2)本发明提出的基于农机农艺融合的单臂篱架式葡萄园 航空施药作业方法,将植保无人机在不同作业高度下的有效喷幅与黄河流域普遍采用的单臂篱架式葡萄栽培架式进行协同对应,实现了植保无人机喷药过程中的农机农艺融合,符合国家对农机农艺融合的总体要求;(3)本发明提出的基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法,为猕猴桃、火龙果等其他采用单臂篱架式栽培方式的水果,开展相关防控药剂的航空喷施,提供了一种可借鉴的作业规范。
图1是本发明基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法流程框图。
图2是平视状态下植保无人机在单臂篱架式葡萄园实施防控药剂喷施作业时所述精准喷幅W
S、葡萄平均幅宽W
P、附加调整喷幅W
A、精准飞行高度H
S、对地表理论飞行高度H
R、葡萄平均株高H
P之间的关系示意图。
图3是俯视状态下植保无人机在单臂篱架式葡萄园上空实施防控药剂喷施作业时的示意图。
图中:1、葡萄植株 2、单臂篱架 3、篱架间通风采光行 4、精准喷施区域 5、植保无人机。
下面将结合附图和实施例对本发明作进一步的详细说明。
参见图1、图2、图3所示,本发明是基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法,包括有下列步骤。
第一步:确定单臂篱架式栽培架式下的葡萄平均株高、相邻两个独立种植行宽度方向上的葡萄平均幅宽
(A)某作业葡萄园所栽植的葡萄品种为威代尔冰葡萄,该葡萄园采用单臂篱架式栽培架式,其中行距为3.0m、立柱高度为2.0m,采用抽样测量并求取平均值的方法,计算出作业地块上的葡萄平均株高为1.8m;
(B)根据作业地块上葡萄的单臂篱架式栽培架式,采用抽样测量并求取平均值的方法,计算出相邻两个独立种植行宽度方向上的葡萄平均幅宽为3.8m。
第二步:根据葡萄栽培信息确定相邻两个独立种植行宽度方向上葡萄平均幅宽对植保无人机的精准喷幅需求
(A)根据作业地块上葡萄的单臂篱架式栽培架式,在考虑防止药液过多地喷在宽度较大的篱架间通风采光行里以造成药液浪费和土壤污染的情况下,确定植保无人机在单航线作业飞行过程中其有效喷幅要略微超出相邻两个独立种植行宽度方向上的葡萄平均幅宽0.2m;
(B)根据步骤(A)中所确定的植保无人机在单航线作业飞行过程中其有效喷幅的覆盖范 围,按照公式W
S=W
P+W
A计算单臂篱架式栽培架式下植保无人机实施葡萄防控药剂喷施作业时的精准喷幅W
S为4.0m,式中相邻两个独立种植行宽度方向上的葡萄平均幅宽W
P为3.8m,附加调整喷幅W
A为0.2m。
第三步:对作业葡萄园地块进行打点测绘和植保无人机航线规划
(A)利用测绘杆对作业葡萄园地块边界处的记录点进行打点测绘,为保证所有记录点所围成的区域能够完整覆盖作业地块,从而避免在边界处出现漏喷现象,打点作业时先将作业葡萄园地块的边界分别向地块外侧扩展0.4m,再将所有的交点作为记录点按顺序进行打点测绘;
(B)将步骤(A)打点测绘的所有记录点所围成的区域作为作业区域,将第二步计算得到的单臂篱架式栽培架式下植保无人机实施葡萄防控药剂喷施作业时的精准喷幅W
S即4.0m设置为航线宽度,在保证植保无人机航线中心始终与相邻两个独立种植行中心线相重合的前提下,在地面站中完成植保无人机的航线自动规划。
第四步:根据植保无人机对地有效喷幅下的飞行高度确定其对葡萄冠层高度精准喷幅下的飞行高度
(A)选择极飞P20电动多旋翼植保无人机作为实施葡萄防控药剂喷施作业的植保无人机机型,根据该机型上喷头的布置形式以及该机型所标定的作业性能,明确该机型各种对地表有效喷幅与其对地表理论飞行高度的线性对应关系为:该机型对地表理论飞行高度分别为1.0m、1.5m、2.0m、2.5m、3.0m、3.5m时所对应的对地表有效喷幅分别为2.0m、2.5m、3.0m、3.5m、4.0m、4.5m;
(B)从所选植保无人机对地表有效喷幅中选择与第二步中所述精准喷幅W
S相一致的数值,进而参考步骤(A)中该机型各种对地表有效喷幅与其对地表理论飞行高度的对应关系,确定与所述精准喷幅W
S为4.0m相对应的对地表理论飞行高度H
R为3.0m,然后按照公式H
S=H
R+H
P计算所选植保无人机对葡萄冠层高度精准喷幅下的精准飞行高度H
S为4.8m,式中第一步所采集到的作业地块上的葡萄平均株高H
P为1.8m。
第五步:进行葡萄防控药剂的植保无人机航空喷施作业
借助第四步所选择的植保无人机,按照第三步完成的作业地块打点测绘和航线规划情况,以第四步计算所得所选植保无人机对葡萄冠层高度精准喷幅下的精准飞行高度H
S即4.8m作为实际对地作业高度,按照4.0m/s的飞行速度沿单臂篱架埋设方向进行飞行作业,以葡萄生长调节剂柠檬酸螯合铁水溶液作为喷施药剂,完成作业地块上葡萄防控药剂的航空喷施。
Claims (7)
- 基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法,其特征在于,包括有下列步骤:第一步:确定单臂篱架式栽培架式下的葡萄平均株高、相邻两个独立种植行宽度方向上的葡萄平均幅宽(A)根据作业地块上葡萄的栽培品种和生长周期,采用抽样测量并求取平均值的方法,计算出作业地块上的葡萄平均株高;(B)根据作业地块上葡萄的单臂篱架式栽培架式,采用抽样测量并求取平均值的方法,计算出相邻两个独立种植行宽度方向上的葡萄平均幅宽;第二步:根据葡萄栽培信息确定相邻两个独立种植行宽度方向上葡萄平均幅宽对植保无人机的精准喷幅需求(A)根据作业地块上葡萄的单臂篱架式栽培架式,在考虑防止药液过多地喷在宽度较大的篱架间通风采光行里以造成药液浪费和土壤污染的情况下,确定植保无人机在单航线作业飞行过程中其有效喷幅的覆盖范围;(B)根据步骤(A)中所确定的植保无人机在单航线作业飞行过程中其有效喷幅的覆盖范围,按照公式W S=W P+W A计算单臂篱架式栽培架式下植保无人机实施葡萄防控药剂喷施作业时的精准喷幅W S,式中W P为相邻两个独立种植行宽度方向上的葡萄平均幅宽,W A为附加调整喷幅;第三步:对作业葡萄园地块进行打点测绘和植保无人机航线规划(A)利用测绘杆对作业葡萄园地块边界处的记录点进行打点测绘,为保证所有记录点所围成的区域能够完整覆盖作业地块,从而避免在边界处出现漏喷现象,打点作业时先将作业葡萄园地块的边界分别向地块外侧扩展一定距离,再将所有的交点作为记录点按顺序进行打点测绘;(B)将步骤(A)打点测绘的所有记录点所围成的区域作为作业区域,将第二步计算得到的单臂篱架式栽培架式下植保无人机实施葡萄防控药剂喷施作业时的精准喷幅W S设置为航线宽度,在保证植保无人机航线中心始终与相邻两个独立种植行中心线相重合的前提下,在地面站中完成植保无人机的航线自动规划;第四步:根据植保无人机对地有效喷幅下的飞行高度确定其对葡萄冠层高度精准喷幅下的飞行高度(A)选择实施葡萄防控药剂喷施作业的植保无人机机型,根据该机型上喷头的布置 形式以及该机型所标定的作业性能,明确该机型各种对地表有效喷幅与其对地表理论飞行高度的对应关系;(B)从所选植保无人机对地表有效喷幅中选择与第二步中所述精准喷幅W S相一致的数值,进而参考步骤(A)中该机型各种对地表有效喷幅与其对地表理论飞行高度的对应关系,确定与所述精准喷幅W S相对应的对地表理论飞行高度H R,然后按照公式H S=H R+H P计算所选植保无人机对葡萄冠层高度精准喷幅下的精准飞行高度H S,式中H P为第一步所采集到的作业地块上的葡萄平均株高;第五步:进行葡萄防控药剂的植保无人机航空喷施作业借助第四步所选择的植保无人机,按照第三步完成的作业地块打点测绘和航线规划情况,以第四步计算所得所选植保无人机对葡萄冠层高度精准喷幅下的精准飞行高度H S作为实际对地作业高度,按照一定的飞行速度沿单臂篱架埋设方向进行飞行作业,完成作业地块上葡萄防控药剂的航空喷施。
- 根据权利要求1所述的基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法,其特征在于:所述植保无人机在单航线作业飞行过程中其有效喷幅的覆盖范围,是指植保无人机的有效喷幅刚好覆盖或略微超出相邻两个独立种植行宽度方向上的葡萄平均幅宽。
- 根据权利要求1所述的基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法,其特征在于:所述附加调整喷幅W A的数值范围为0~0.4m。
- 根据权利要求1所述的基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法,其特征在于:所述的打点作业时将作业葡萄园地块的边界分别向地块外侧扩展一定距离,该距离的数值范围为0.2m~0.4m。
- 根据权利要求1所述的基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法,其特征在于:所述植保无人机的飞行速度范围为2.0m/s~4.5m/s。
- 根据权利要求1所述的基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法,其特征在于:所述植保无人机是电动多旋翼、电动单旋翼、油动单旋翼中的一种。
- 根据权利要求1所述的基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法,其特征在于:所述葡萄防控药剂是葡萄病害防控药剂、葡萄虫害防控药剂、葡萄生长调节药剂中的一种或几种的组合。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811426154.1 | 2018-11-27 | ||
CN201811426154.1A CN109445461A (zh) | 2018-11-27 | 2018-11-27 | 基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020108015A1 true WO2020108015A1 (zh) | 2020-06-04 |
Family
ID=65555538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/105874 WO2020108015A1 (zh) | 2018-11-27 | 2019-09-16 | 基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN109445461A (zh) |
WO (1) | WO2020108015A1 (zh) |
ZA (1) | ZA201907571B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109445461A (zh) * | 2018-11-27 | 2019-03-08 | 山东理工大学 | 基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法 |
CN110081873A (zh) * | 2019-03-11 | 2019-08-02 | 丰疆智能科技研究院(常州)有限公司 | 区域打点识别方法和农机打点识别系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106428564A (zh) * | 2016-09-18 | 2017-02-22 | 成都天麒科技有限公司 | 一种基于农作物生长周期的无人机喷洒方法及系统 |
WO2017175804A1 (ja) * | 2016-04-08 | 2017-10-12 | 株式会社ナイルワークス | 無人飛行体による薬剤散布方法、プログラム、および、装置 |
CN108664034A (zh) * | 2018-05-10 | 2018-10-16 | 杭州瓦屋科技有限公司 | 植保无人机在茶园的仿地飞行方法及装置 |
CN109445461A (zh) * | 2018-11-27 | 2019-03-08 | 山东理工大学 | 基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104503464B (zh) * | 2014-12-30 | 2017-01-18 | 中南大学 | 基于计算机的凸多边形农田无人机喷洒作业航迹规划方法 |
CN104808660B (zh) * | 2015-03-04 | 2017-10-03 | 中南大学 | 凹凸混合复杂多边形农田无人机喷洒作业航迹规划方法 |
CN106997209B (zh) * | 2016-01-25 | 2020-09-08 | 深圳市鼎创旭飞科技有限公司 | 植保无人机喷施作业方法和系统 |
CN105955294A (zh) * | 2016-05-26 | 2016-09-21 | 北京大工科技有限公司 | 控制无人机植保作业的方法及装置 |
CN106167098B (zh) * | 2016-09-07 | 2018-09-25 | 南京林业大学 | 一种基于立体测量的旋翼无人机自动施药系统与方法 |
CN106873620B (zh) * | 2017-02-22 | 2019-06-25 | 华中农业大学 | 基于工作单元按需独立启停的农用无人机精确控制方法 |
CN108482676B (zh) * | 2018-03-19 | 2020-08-28 | 中国农业大学 | 一种多旋翼植保无人机自适应喷幅调控装置及方法 |
CN108871335B (zh) * | 2018-06-14 | 2020-10-23 | 华南农业大学 | 一种无人机喷施作业航线及载荷规划方法 |
-
2018
- 2018-11-27 CN CN201811426154.1A patent/CN109445461A/zh active Pending
-
2019
- 2019-09-16 WO PCT/CN2019/105874 patent/WO2020108015A1/zh active Application Filing
- 2019-11-15 ZA ZA2019/07571A patent/ZA201907571B/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017175804A1 (ja) * | 2016-04-08 | 2017-10-12 | 株式会社ナイルワークス | 無人飛行体による薬剤散布方法、プログラム、および、装置 |
CN106428564A (zh) * | 2016-09-18 | 2017-02-22 | 成都天麒科技有限公司 | 一种基于农作物生长周期的无人机喷洒方法及系统 |
CN108664034A (zh) * | 2018-05-10 | 2018-10-16 | 杭州瓦屋科技有限公司 | 植保无人机在茶园的仿地飞行方法及装置 |
CN109445461A (zh) * | 2018-11-27 | 2019-03-08 | 山东理工大学 | 基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法 |
Also Published As
Publication number | Publication date |
---|---|
ZA201907571B (en) | 2020-02-26 |
CN109445461A (zh) | 2019-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105900770B (zh) | 一种篱壁模式栽培枸杞的方法 | |
EP1387611B1 (de) | Verfahren und system zum volumenspezifischen beeinflussen von boden und pflanzen | |
CN103988824A (zh) | 一种基于双目视觉技术的自动对靶喷施系统 | |
WO2020108015A1 (zh) | 基于农机农艺融合的单臂篱架式葡萄园航空施药作业方法 | |
CN103999841A (zh) | 一种自动对靶喷施系统 | |
CN107173365A (zh) | 一种基于自走式多自由度平台的仿无人机农业喷药作业装置 | |
CN207341058U (zh) | 一种基于自走式多自由度平台的仿无人机农业喷药作业装置 | |
CN109247324B (zh) | 一膜六行栽培模式下棉花脱叶药剂的航空喷施作业方法 | |
CN105557448A (zh) | 一种适宜埋土防寒区葡萄双平棚架及葡萄栽培的方法 | |
CN205409283U (zh) | 一种无人机果树喷洒装置 | |
CN109511444B (zh) | 三膜十二行栽培模式下棉花脱叶药剂的航空喷施作业方法 | |
CN109329252A (zh) | 基于农机农艺融合的双臂篱架式葡萄园航空施药作业方法 | |
CN109328718A (zh) | 宽窄行栽培模式下棉花脱叶药剂的航空喷施作业方法 | |
Zhou et al. | Dosage adjustment for pesticide application in vineyards | |
CN109566032B (zh) | 一种猕猴桃种植水肥调控方法 | |
WO2020098528A1 (zh) | 一膜三行栽培模式下棉花脱叶药剂的航空喷施作业方法 | |
CN109452045A (zh) | 一种立体栽培架用循环喷雾机 | |
Triloff et al. | Adjusting and straightening the air distribution of sprayers for three dimensional crops: the state of the art. | |
CN114467689A (zh) | 一种作物混种的智能灌溉系统 | |
CN206302885U (zh) | 一种葡萄培育种植装置 | |
WO2019237412A1 (zh) | 一种用于自动操控的无人机植保监控系统及方法 | |
CN110367006A (zh) | 一种防治栾树多态毛蚜虫的方法 | |
CN112056191B (zh) | 一种用于园林养护的喷灌装置以及控制方法 | |
CN212605834U (zh) | 一种烟草施药控制装置、飞行器 | |
CN218921378U (zh) | 山地梯田苹果园自动打药防根系吸药残及压草装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19890446 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19890446 Country of ref document: EP Kind code of ref document: A1 |