WO2020107964A1 - 磁动力移动结构 - Google Patents

磁动力移动结构 Download PDF

Info

Publication number
WO2020107964A1
WO2020107964A1 PCT/CN2019/102489 CN2019102489W WO2020107964A1 WO 2020107964 A1 WO2020107964 A1 WO 2020107964A1 CN 2019102489 W CN2019102489 W CN 2019102489W WO 2020107964 A1 WO2020107964 A1 WO 2020107964A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
crankshaft
moving structure
chamber
magnetic power
Prior art date
Application number
PCT/CN2019/102489
Other languages
English (en)
French (fr)
Inventor
吴建洪
罗治斌
朱瑞震
Original Assignee
广州天磁科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州天磁科技有限公司 filed Critical 广州天磁科技有限公司
Publication of WO2020107964A1 publication Critical patent/WO2020107964A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders

Definitions

  • the invention relates to the field of engines, in particular to a magnetic power moving structure.
  • An engine is a machine that can convert other forms of energy into mechanical energy. It is now widely used in the field of transportation as a combustion engine.
  • the combustion engine is a power machine that burns fuel inside the machine and converts it The released heat energy is directly converted into power heat engine.
  • the combustion engine in a broad sense includes not only a reciprocating piston combustion engine, a rotary piston engine and a free piston engine, but also a rotary impeller type jet engine, but the combustion engine is generally referred to as a piston combustion engine.
  • Piston combustion engines are most common in reciprocating pistons. Piston combustion engines mix fuel and air and burn them in their cylinders. The heat energy released allows the cylinders to produce high-temperature and high-pressure gas. Gas expansion pushes the piston to work, and then outputs mechanical work through the crank connecting rod mechanism or other mechanisms to drive the driven machinery to work.
  • the common ones are diesel engines and gasoline engines. By converting internal energy into mechanical energy, the internal energy is changed by doing work.
  • the structure of traditional gasoline and diesel engines is to push the piston, push the connecting rod, push the crankshaft after the explosion, convert the linear force into a rotating force, and transmit the generated mechanical force through the sprocket for enterprise production and improve people's quality of life.
  • the pistons and cylinders of gasoline and diesel engines are in a gap-free state. High-speed friction will generate a large amount of heat in the case of gapless contact. If the heat is too late to dissipate, it will "pull" and destroy the cylinder. If the intermittent piston and cylinder are too large, the energy cannot be fully utilized. Therefore, there is an urgent need for a friction-reducing magnetic power moving structure that uses rolling friction of bearings to reduce wear, reduce heat generation, reduce the configuration of cooling systems, and reduce manufacturing difficulty and production costs.
  • the object of the present invention is to provide a friction reducing magnetic power moving structure.
  • a magnetic power moving structure includes a housing, a Z-direction chamber disposed inside the housing, a Z-direction magnet disposed in the Z-direction cavity, a crankshaft with a bearing connected to the interior of the housing, and a Z-direction cavity disposed between each Z-direction cavity and the crankshaft At least three X-direction chambers, an X-direction magnet provided in the X-direction chamber, a connecting rod hinged at one end to the corresponding X-direction magnet, a drive assembly for driving the Z-direction magnet to move in the Z direction, and respectively provided in the Z-direction At least one pair of first radial bearings and at least one pair of second radial bearings on the magnet; the central axis of each first radial bearing is parallel to the Y direction, the same pair of first radial bearings are distributed along the X direction, and the same pair of The two outer rings of a radial bearing are in contact with the left and right inner wall surfaces of the Z direction chamber perpen
  • the left and right inner wall surfaces of the Z-direction chamber are provided with a number of third radial bearings, the central axis of each third radial bearing is parallel to the Y direction, and the outer ring of each third radial bearing and the Z-direction magnet Offset.
  • the four inner wall surfaces of the X direction chamber parallel to the X direction are respectively provided with a number of fourth radial bearings, the central axis of each fourth radial bearing is perpendicular to the X direction, and the outer ring of each fourth radial bearing is X-direction magnets counteract.
  • the third radial bearing and the fourth radial bearing are needle roller bearings.
  • the Z-direction chamber is in communication with the X-direction chamber.
  • crankshaft is a non-fully supported crankshaft.
  • the main shaft journals at both ends of the crankshaft penetrate the housing, the main shaft journal sleeves at both ends of the crankshaft are provided with output wheels, and the output wheels are coaxially arranged with the main shaft journals of the crankshaft.
  • it further includes a generator and a battery electrically connected to the generator.
  • the output wheel drives the generator to rotate and generate electricity.
  • the electrical energy generated by the generator is stored in the battery and used to drive the servo motor.
  • the X-direction magnet is provided with a mounting base, and the end of the connecting rod close to the X-direction magnet is hinged with the mounting base.
  • the driving assembly includes a rack fixed on the Z-direction magnet, a gear meshing with the rack, and a servo motor for driving the gear to rotate.
  • the gear is coaxially arranged on the output shaft of the servo motor.
  • the first centripetal bearings are arranged in pairs to prevent the Z-direction magnet from swaying in the direction of the Z-direction chamber in the Z-direction.
  • the radial bearing can be used to support the radial characteristics. Make the Z-direction magnet move steadily in the Z-direction chamber in the Z-direction chamber, avoid the high-speed movement of the Z-direction magnet in the Z-direction chamber to generate high temperature, reduce wear and energy loss, reduce the cooling system, and simplify the suction of the traditional engine- Compression-work-exhaust four-stroke structure, the structure is small, saving production costs.
  • FIG. 1 is a schematic diagram 1 of the magnetic power moving structure of the present invention.
  • FIG. 2 is a schematic diagram 2 of the magnetic power moving structure of the present invention.
  • FIG. 3 is a schematic diagram 3 of the magnetic power moving structure of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
  • installation should be understood in a broad sense, for example, it can be a fixed connection or a detachable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
  • FIG. 2 omits the first radial bearing and related structures above it; in addition, the connection mode of the servo motor 703, the gear 702, and the rack 701 is existing.
  • a magnetic power moving structure includes a housing 10, a Z-direction chamber 101 provided inside the housing 10, a Z-direction magnet 20 provided inside the Z-direction chamber 101, a crankshaft 80 bearing connected to the inside of the housing 10, and provided in each Three X-direction chambers 102 between the Z-direction chamber 101 and the crankshaft 80, an X-direction magnet 30 provided in the X-direction chamber 102, a connecting rod 40 with one end hinged to the corresponding X-direction magnet 30, for driving Z
  • X, Y, and Z are based on the orientation of FIG. 1 to establish a three-dimensional coordinate system.
  • the crankshaft 80 is a crankshaft 80 of the prior art.
  • the crankshaft 80 is symmetrically distributed from beginning to end. Since the structure of the crankshaft 80 is the prior art, the difference is only based on the number of different cylinders and the choice of formation. The technology does not involve the improvement of the present invention and will not be repeated here.
  • the technical solutions of the present invention will be described by taking rectangular X-direction chamber 102 and X-direction chamber 102 as examples.
  • the driving component drives the Z-direction magnet 20 to move in the Z-direction chamber 101 in the Z-direction, and the pair of first centripetal bearings 501 restrict the Z-direction magnet 20 in the X-direction to ensure that the Z-direction magnet 20 is in the X direction.
  • the distance between the direction and the X-direction chamber 102 guarantees the smooth rotation of the crankshaft 80; during the movement of the Z-direction magnet 20, the X-direction magnet 30 in the corresponding X-direction chamber 102 generates a repulsive force, and the X-direction magnet 30 Move along the X-direction chamber 102 and drive the connecting rod 40 to drive the crankshaft 80.
  • the crankshaft 80 rotates.
  • the X-direction magnet 30 in the other X-direction chamber 102 is driven by the crankshaft 80 to move closer to the corresponding Z-direction chamber 101 That is, the X-direction magnet 30 is reset in the X-direction.
  • the Z-direction magnet 20 is in contact with the Z-direction chamber 101 through the first radial bearing 501 and the second radial bearing 502. And reduce friction.
  • the left and right inner walls of the Z-direction chamber 101 are respectively provided with a number of third radial bearings 503, and the central axis of each third radial bearing 503 Parallel to the Y direction, the outer ring of each third radial bearing 503 abuts the Z-direction magnet 20.
  • the third radial bearing 503 replaces the first radial bearing 501 to continue normal use.
  • the four inner wall surfaces of the X-direction chamber 102 parallel to the X direction are respectively provided with a number of fourth radial bearings 504, the central axis of each fourth radial bearing 504 is perpendicular to the X direction, and the outer ring of each fourth radial bearing 504 Contrary to the X-direction magnet 30.
  • the fourth radial bearing 504 sliding friction between the X-direction magnet 30 and the X-direction chamber 102 is avoided, energy loss is reduced, and heat generation in the X-direction chamber 102 is avoided.
  • the third radial bearing 503 and the fourth radial bearing 504 are needle roller bearings. Compared with other types of radial bearings, needle roller bearings have a small volume, which effectively reduces the volume of the magnetic power moving structure.
  • the Z-direction chamber 101 and the X-direction chamber 102 are in communication.
  • the crankshaft 80 is a non-fully supported crankshaft 80.
  • the crankshaft 80 adopts a non-fully supported crankshaft 80, and the number of main journals of the crankshaft 80 is smaller than the number of the X-direction chambers 102, shortening the length of the crankshaft 80 and reducing the volume of the magnetic power moving structure.
  • It also includes a generator and a battery electrically connected to the generator.
  • the output wheel drives the generator to rotate and generate electricity.
  • the electrical energy generated by the generator is stored in the battery and used to drive the servo motor 703 to work.
  • the X-direction magnet 30 is provided with a mounting base 60, and the end of the connecting rod 40 near the X-direction magnet 30 is hinged with the mounting base 60.
  • the driving assembly includes a rack 701 fixed on the Z-direction magnet 20, a gear 702 meshed with the rack 701, and a servo motor 703 for driving the gear 702 to rotate.
  • the gear 702 is coaxially disposed on the output shaft of the servo motor 703.
  • the servo motor 703 can have a built-in encoder to precisely control the forward and reverse rotation, rotation speed and rotation angle of the motor.
  • the gear 702 is driven by the servo motor 703 to control the rack 701 meshed with the gear 702 to drive the transverse magnet in the Z-direction chamber 101 along Z In the reciprocating direction, the force of the servo motor 703 does not directly act on the Z-direction magnet 20 to prevent the Z-direction magnet 20 from being damaged and the transmission is stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种磁动力移动结构,包括外壳(10)、设置于外壳(10)内部的Z向腔室(101)、设置于Z向腔室(101)内的Z向磁铁(20)、轴承连接于外壳(10)内部的曲轴(80)、设置于各Z向腔室(101)与曲轴(80)之间的X向腔室(102)、设置于X向腔室(102)内的X向磁铁(30)、一端与对应X向磁铁(30)铰接的连接杆(40)、驱动组件以及分别设置于Z向磁铁(20)上的至少一对第一向心轴承(501)至少一对第二向心轴承(502);各第一向心轴承(501)的中轴线平行于Y方向,同一对第一向心轴承(501)沿X方向分布,同一对第一向心轴承(501)的两个外圈分别与Z向腔室(101)垂直于X方向的左右两个内壁面相抵;第二向心轴承(502)的中轴线平行于X方向,各第二向心轴承(502)的外圈与Z向腔室(101)底部的内壁面相抵;各X向腔室(102)相互平行。该磁动力移动结构摩擦力小,结构简单,生产成本低。

Description

磁动力移动结构 技术领域
本发明涉及发动机领域,具体涉及一种磁动力移动结构。
背景技术
发动机是一种能够把其它形式的能转化为机械能的机器,现广泛应用于交通领域的主要为燃烧发动机,燃烧发动机,是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。广义上的燃烧发动机不仅包括往复活塞式燃烧发动机、旋转活塞式发动机和自由活塞式发动机,也包括旋转叶轮式的喷气式发动机,但通常所说的燃烧发动机是指活塞式燃烧发动机。活塞式燃烧发动机以往复活塞式最为普遍。活塞式燃烧发动机将燃料和空气混合,在其汽缸内燃烧,释放出的热能使汽缸内产生高温高压的燃气。燃气膨胀推动活塞作功,再通过曲柄连接杆机构或其他机构将机械功输出,驱动从动机械工作。常见的有柴油机和汽油机,通过将内能转化为机械能,是通过做功改变内能。
传统的汽油、柴油发动机的结构是爆炸后推动活塞、推动连杆、推动曲轴,将直线力转变成旋转力,通过链轮将产生的机械力传输出来用于企业生产和提高人们的生活质量。为保证能量充分利用,汽油、柴油发动机的活塞与缸体处于无间隙状态,在无间隙接触情况下高速摩擦会产生大量的热量,热量来不及散发就会“拉烧”而将缸体毁坏。活塞与缸体间歇过大,就不能充分利用能量。因此,亟需一种减少摩擦的磁动力移动结构,利用轴承的滚动摩擦减少磨损,降低发热量, 减少冷却系统的配置,降低制造难度和生产成本。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种减少摩擦的磁动力移动结构。
本发明的目的采用以下技术方案实现:
一种磁动力移动结构,包括外壳、设置于外壳内部的Z向腔室、设置于Z向腔室内的Z向磁铁、轴承连接于外壳内部的曲轴、设置于各Z向腔室与曲轴之间的至少三个X向腔室、设置于X向腔室内的X向磁铁、一端与对应X向磁铁铰接的连接杆、用于驱动Z向磁铁沿Z方向运动的驱动组件以及分别设置于Z向磁铁上的至少一对第一向心轴承和至少一对第二向心轴承;各第一向心轴承的中轴线平行于Y方向,同一对第一向心轴承沿X方向分布,同一对第一向心轴承的两个外圈分别与Z向腔室垂直于X方向的左右两个内壁面相抵;第二向心轴承的中轴线平行于X方向,各第二向心轴承的外圈与Z向腔室底部的内壁面相抵;Z向磁铁与Z向腔室的各内壁面之间留有间隙;各X向腔室相互平行。
优选的,Z向腔室的左右两个内壁面分别设有若干第三向心轴承,各第三向心轴承的中轴线平行于Y方向,各第三向心轴承的外圈与Z向磁铁相抵。
优选的,X向腔室平行于X方向的四个内壁面分别设有若干第四向心轴承,各第四向心轴承的中轴线垂直于X方向,各第四向心轴承的外圈与X向磁铁相抵。
优选的,第三向心轴承和第四向心轴承为滚针轴承。
优选的,Z向腔室与X向腔室相通。
优选的,曲轴为非全支承曲轴。
优选的,曲轴两端的主轴颈贯穿外壳,曲轴两端的主轴颈套设有输出轮,输出轮与曲轴的主轴颈同轴设置。
优选的,还包括发电机以及与发电机电连接的蓄电池,输出轮带动发电机旋转发电,发电机产生的电能储存于蓄电池,用于驱动伺服电机工作。
优选的,其特征在于,X向磁铁上设有安装座,连接杆靠近X向磁铁的一端与安装座铰接。
优选的,驱动组件包括固定于Z向磁铁上的齿条、与齿条啮合的齿轮和用于驱动齿轮转动的伺服电机,齿轮同轴设置于伺服电机的输出轴上。
与现有技术相比,本发明的有益效果在于:
通过成对设置的第一向心轴承,防止Z向磁铁在Z向腔室内沿Z向方向运动过程中发生左右晃动,结合第二向心轴承,利用向心轴承能在径向上承重的特点,使Z向磁铁在Z向腔室中稳定沿Z方向来回移动,避免Z向磁铁在Z向腔室中高速运动产生高温,减少磨损和能量损耗,减少冷却系统,精简了传统发动机的吸气-压缩-做功-排气四冲程结构,结构体积小,节约生产成本。
附图说明
图1为本发明的磁动力移动结构示意图一。
图2为本发明的磁动力移动结构示意图二。
图3为本发明的磁动力移动结构示意图三。
具体实施方式
下面详细描述本发明的具体实施方式,具体实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体 情况理解上述术语在本发明中的具体含义。
下面将结合附图以及具体实施方式,对本发明做进一步描述:
作为本发明的具体实施方式之一,如图1-3所示,图2省略第一向心轴承及其上方的相关结构;另外伺服电机703、齿轮702和齿条701的连接方式为现有技术,对于本领域技术人员而言是清楚的,根据说明书以及附图的结合能清楚说明磁动力移动结构。
一种磁动力移动结构,包括外壳10、设置于外壳10内部的Z向腔室101、设置于Z向腔室101内的Z向磁铁20、轴承连接于外壳10内部的曲轴80、设置于各Z向腔室101与曲轴80之间的三个X向腔室102、设置于X向腔室102内的X向磁铁30、一端与对应X向磁铁30铰接的连接杆40、用于驱动Z向磁铁20沿Z方向运动的驱动组件以及分别设置于Z向磁铁20上的两对第一向心轴承501和两对第二向心轴承502;各第一向心轴承501的中轴线平行于Y方向,同一对第一向心轴承501沿X方向分布,同一对第一向心轴承501的两个外圈分别与Z向腔室101垂直于X方向的左右两个内壁面相抵;第二向心轴承502的中轴线平行于X方向,各第二向心轴承502的外圈与Z向腔室101底部的内壁面相抵;Z向磁铁20与Z向腔室101的各内壁面之间留有间隙;各X向腔室102相互平行。
本发明中的X、Y和Z是根据图1的方位建立三维坐标系。
曲轴80为现有技术的曲轴80,曲轴80的曲拐首尾对称分布,由于曲轴80的结构为现有技术,区别仅在于根据不同缸数以及形成的选择,对于本领域普通技术人员为现有技术,不涉及本发明的改进, 在此不再赘述。以矩形的X向腔室102和X向腔室102为例对本发明技术方案进行说明。
工作原理:驱动组件驱动Z向磁铁20在Z向腔室101沿Z方向运动,成对设置的第一向心轴承501对Z向磁铁20进行X方向上的限制,保证Z向磁铁20在X方向上与X向腔室102之间的距离,保证曲轴80的平稳转动;Z向磁铁20运动的过程中对相应的X向腔室102内的X向磁铁30产生排斥力,X向磁铁30沿X向腔室102移动并驱动连接杆40对曲轴80进行驱动,曲轴80发生转动,其他X向腔室102中的X向磁铁30受曲轴80的带动往靠近对应Z向腔室101方向移动,即X向磁铁30在X方向上复位,运动过程中,Z向磁铁20通过第一向心轴承501和第二向心轴承502与Z向腔室101接触,利用向心轴承的结果实现承重以及减少摩擦。
为防止第一向心轴承501损坏影响磁动力移动结构的正常使用,Z向腔室101的左右两个内壁面分别设有若干第三向心轴承503,各第三向心轴承503的中轴线平行于Y方向,各第三向心轴承503的外圈与Z向磁铁20相抵。当第一向心轴承501损坏时,通过第三向心轴承503替代第一向心轴承501继续正常使用。
X向腔室102平行于X方向的四个内壁面分别设有若干第四向心轴承504,各第四向心轴承504的中轴线垂直于X方向,各第四向心轴承504的外圈与X向磁铁30相抵。通过设置第四向心轴承504,避免X向磁铁30与X向腔室102发生滑动摩擦,减少能量损耗,避免X向腔室102发热。
第三向心轴承503和第四向心轴承504为滚针轴承。滚针轴承相对于其他类型的向心轴承,体积小,有效减小磁动力移动结构的体积。
为防止Z向磁铁20与X向磁铁30之间有遮挡物影响Z向磁铁20的磁场分布,Z向腔室101与X向腔室102相通。
曲轴80为非全支承曲轴80。
曲轴80采用非全支撑曲轴80,曲轴80的主轴颈数比X向腔室102的数目少,缩短曲轴80的长度,减小磁动力移动结构体积。
曲轴80两端的主轴颈贯穿外壳10,曲轴80两端的主轴颈套设有输出轮,输出轮与曲轴80的主轴颈同轴设置。
还包括发电机以及与发电机电连接的蓄电池,输出轮带动发电机旋转发电,发电机产生的电能储存于蓄电池,用于驱动伺服电机703工作。
X向磁铁30上设有安装座60,连接杆40靠近X向磁铁30的一端与安装座60铰接。
驱动组件包括固定于Z向磁铁20上的齿条701、与齿条701啮合的齿轮702和用于驱动齿轮702转动的伺服电机703,齿轮702同轴设置于伺服电机703的输出轴上。
伺服电机703可内置编码器,精确控制电机正反转、转速以及旋转角度,齿轮702受伺服电机703驱动,从而控制与齿轮702啮合的齿条701带动横向磁铁在Z向腔室101内沿Z方向往复运动,伺服电机703的作用力不直接作用于Z向磁铁20,防止Z向磁铁20受损,传动稳定。
对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (10)

  1. 一种磁动力移动结构,其特征在于,包括外壳、设置于所述外壳内部的Z向腔室、设置于所述Z向腔室内的Z向磁铁、轴承连接于所述外壳内部的曲轴、设置于各所述Z向腔室与所述曲轴之间的至少三个X向腔室、设置于所述X向腔室内的X向磁铁、一端与对应所述X向磁铁铰接的连接杆、用于驱动所述Z向磁铁沿Z方向运动的驱动组件以及分别设置于所述Z向磁铁上的至少一对第一向心轴承和至少一对第二向心轴承;各所述第一向心轴承的中轴线平行于Y方向,同一对所述第一向心轴承沿X方向分布,同一对所述第一向心轴承的两个外圈分别与所述Z向腔室垂直于X方向的左右两个内壁面相抵;所述第二向心轴承的中轴线平行于X方向,各所述第二向心轴承的外圈与所述Z向腔室底部的内壁面相抵;所述Z向磁铁与所述Z向腔室的各内壁面之间留有间隙;各所述X向腔室相互平行。
  2. 根据权利要求1所述的磁动力移动结构,其特征在于,所述Z向腔室的左右两个内壁面分别设有若干第三向心轴承,各所述第三向心轴承的中轴线平行于Y方向,各所述第三向心轴承的外圈与所述Z向磁铁相抵。
  3. 根据权利要求2所述的磁动力移动结构,其特征在于,所述X腔室平行于X方向的四个内壁面分别设有若干第四向心轴承,各第四向心轴承的中轴线垂直于X方向,各第四向心轴承的外圈与所述X向磁铁相抵。
  4. 根据权利要求3所述的磁动力移动结构,其特征在于,所述第三向心轴承和第四向心轴承为滚针轴承。
  5. 根据权利要求1所述的磁动力移动结构,其特征在于,所述Z向腔室与各所述X向腔室相通。
  6. 根据权利要求1所述的磁动力移动结构,其特征在于,所述曲轴为非全支承曲轴。
  7. 根据权利要求1所述的磁动力移动结构,其特征在于,所述曲轴两端的主轴颈贯穿所述外壳,所述曲轴两端的主轴颈套设有输出轮,所述输出轮与所述曲轴的主轴颈同轴设置。
  8. 根据权利要求7所述的磁动力移动结构,其特征在于,还包括发电机以及与所述发电机电连接的蓄电池,所述输出轮带动所述发电机旋转发电,所述发电机产生的电能储存于所述蓄电池,用于驱动伺服电机工作。
  9. 根据权利要求1所述的磁动力移动结构,其特征在于,所述X向磁铁上设有安装座,所述连接杆靠近所述X向磁铁的一端与所述安装座铰接。
  10. 根据权利要求9所述的磁动力移动结构,其特征在于,所述驱动组件包括固定于所述Z向磁铁上的齿条、与齿条啮合的齿轮和用于驱动所述齿轮转动的伺服电机,所述齿轮同轴设置于所述伺服电机的输出轴上。
PCT/CN2019/102489 2018-11-30 2019-08-26 磁动力移动结构 WO2020107964A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811454554.3A CN109236462B (zh) 2018-11-30 2018-11-30 磁动力移动结构
CN201811454554.3 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020107964A1 true WO2020107964A1 (zh) 2020-06-04

Family

ID=65074355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102489 WO2020107964A1 (zh) 2018-11-30 2019-08-26 磁动力移动结构

Country Status (2)

Country Link
CN (1) CN109236462B (zh)
WO (1) WO2020107964A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109236462B (zh) * 2018-11-30 2024-03-29 广州天磁科技有限公司 磁动力移动结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201623672U (zh) * 2010-01-08 2010-11-03 蔡晓青 活塞式磁助力装置
CN202004693U (zh) * 2011-04-12 2011-10-05 张洋 动磁传动器
CN202150813U (zh) * 2010-05-13 2012-02-22 贾立进 电力发动机
CN106341057A (zh) * 2016-10-17 2017-01-18 韦福华 磁力装置
US20170070114A1 (en) * 2014-05-13 2017-03-09 Katsushito YAMANO Rotary power generating apparatus and electric generating apparatus
CN109236462A (zh) * 2018-11-30 2019-01-18 广州天磁科技有限公司 磁动力移动结构
CN209212382U (zh) * 2018-11-30 2019-08-06 广州天磁科技有限公司 磁动力移动结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR908140A (fr) * 1944-06-07 1946-04-01 Moteur électro-mécanique
CN101217247A (zh) * 2007-01-05 2008-07-09 叶建国 一种电机(电动机和发电机)装置
CN201204538Y (zh) * 2008-06-05 2009-03-04 宗伟军 电磁发动机
CN103138528B (zh) * 2011-11-22 2014-12-10 周登荣 用于空气动力发动机总成的电磁助力器
CN204835813U (zh) * 2015-08-08 2015-12-02 蔡晓青 电磁动力机
CN205753824U (zh) * 2016-07-05 2016-11-30 曹林 一种磁力发动机
CN106787586A (zh) * 2016-11-24 2017-05-31 尹梓又 一种电磁式驱动发动机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201623672U (zh) * 2010-01-08 2010-11-03 蔡晓青 活塞式磁助力装置
CN202150813U (zh) * 2010-05-13 2012-02-22 贾立进 电力发动机
CN202004693U (zh) * 2011-04-12 2011-10-05 张洋 动磁传动器
US20170070114A1 (en) * 2014-05-13 2017-03-09 Katsushito YAMANO Rotary power generating apparatus and electric generating apparatus
CN106341057A (zh) * 2016-10-17 2017-01-18 韦福华 磁力装置
CN109236462A (zh) * 2018-11-30 2019-01-18 广州天磁科技有限公司 磁动力移动结构
CN209212382U (zh) * 2018-11-30 2019-08-06 广州天磁科技有限公司 磁动力移动结构

Also Published As

Publication number Publication date
CN109236462A (zh) 2019-01-18
CN109236462B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US8662052B2 (en) Rotary piston internal combustion engine power unit
CN102094710B (zh) 双相激波摆杆式高速内燃机
CN102661195A (zh) 圆周旋转式活塞发动机
WO2020107964A1 (zh) 磁动力移动结构
CN111472887A (zh) 齿条活塞式内燃发动机
CN102979619A (zh) 任意齿差数滚移传动内燃机
JP2010506081A (ja) ロータリーピストン式内燃機関
CN209212382U (zh) 磁动力移动结构
CN102828825A (zh) 对称双相凸轮摆动式高转速内燃机
CN105781737A (zh) 动力单元组合曲柄行星轮发动机
WO2020042693A1 (zh) 磁力往复式驱动结构
US10161299B2 (en) Fixed-rail rotor pump and fixed-rail rotor pump combined supercharging internal-combustion engine
CN111022180B (zh) 一种滑槽连杆式动力机系统
CN103047003A (zh) 外凸内任意齿差凸轮移动式传动内燃机
US11913375B2 (en) Biaxial supporting device for rotary opposed piston engine
CN101963095A (zh) 环缸发动机
KR20200125738A (ko) 6-상 열역학적 사이클을 가진 비대칭 회전식 엔진
CN205178744U (zh) 五缸电磁力发动机
CN103089426A (zh) 外凸内任意齿差凸轮套筒传动内燃机
CN217926251U (zh) 一种自锁型汽车发动机冷却水泵用轴连轴承
JP2016535197A (ja) 彗星ギアシャフト付きロータリピストンエンジン
CN201031731Y (zh) 滚筒发动机
CN109899154B (zh) 双转子发动机
CN113027601B (zh) 一种双转子内燃机
CN213684314U (zh) 一种多转子发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC - (EPO FORM 1205A) - 15.09.2021

122 Ep: pct application non-entry in european phase

Ref document number: 19888452

Country of ref document: EP

Kind code of ref document: A1