WO2020107852A1 - 卫星、终端设备、卫星通信系统和卫星通信方法 - Google Patents

卫星、终端设备、卫星通信系统和卫星通信方法 Download PDF

Info

Publication number
WO2020107852A1
WO2020107852A1 PCT/CN2019/090307 CN2019090307W WO2020107852A1 WO 2020107852 A1 WO2020107852 A1 WO 2020107852A1 CN 2019090307 W CN2019090307 W CN 2019090307W WO 2020107852 A1 WO2020107852 A1 WO 2020107852A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
signaling
mac
layer
data
Prior art date
Application number
PCT/CN2019/090307
Other languages
English (en)
French (fr)
Inventor
陈军
王光健
杜颖钢
刘鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19888520.4A priority Critical patent/EP3879923A4/en
Priority to KR1020217018889A priority patent/KR102498933B1/ko
Publication of WO2020107852A1 publication Critical patent/WO2020107852A1/zh
Priority to US17/329,718 priority patent/US11606136B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/18582Arrangements for data linking, i.e. for data framing, for error recovery, for multiple access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/118Arrangements specific to free-space transmission, i.e. transmission through air or vacuum specially adapted for satellite communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18521Systems of inter linked satellites, i.e. inter satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present application relates to the field of satellite communication, and more specifically, to satellites, terminal equipment, satellite communication systems, and satellite communication methods.
  • NR new radio
  • 5G 5th Generation
  • the current mobile communication network based on the coverage of the base station has limited coverage, and it has been unable to meet people's demand for information at any time and any place.
  • using a base station coverage-based model to provide ultra-wide-area coverage poses huge economic and feasibility challenges in remote areas, deserts, oceans, and air.
  • Satellite communication Compared with traditional mobile communication, satellite communication has a wider coverage, can overcome natural geographical barriers such as oceans, deserts, and mountains, and its communication cost is independent of transmission distance. Satellite communication can be an effective supplement to traditional mobile communication to overcome the deficiencies of traditional mobile communication.
  • the present application provides a satellite, terminal equipment, a satellite communication system, and a satellite communication method, which can reduce the delay of the satellite communication system in processing data and/or signaling.
  • a satellite communication method including: a first satellite obtains data and/or signaling at a MAC layer of a media access control, the first satellite is a low-orbit satellite; When the signaling requires the MAC layer first processing, the first satellite performs the MAC layer first processing on the data and/or the signaling, and the MAC layer first processing includes a hybrid automatic repeat request At least one of HARQ function processing and random access RA function processing.
  • a low-orbit satellite acquires data and/or signaling at the MAC layer, and when HARQ function processing and/or RA function processing is required, performs HARQ function processing and/or RA function on the first satellite Processing, so that while considering the complexity and cost of the on-board system of the low-orbit satellite, HARQ function processing and/or RA function processing is processed on the low-orbit satellite, which can reduce the time for the satellite communication system to process data and/or signaling Delay.
  • the on-board system of the first satellite includes a MAC entity and an entity below the MAC protocol layer, the MAC entity includes a hybrid automatic repeat request HARQ function module and a random access RA functional module.
  • the on-board system of the first satellite may further include a first MAC control module for controlling HARQ functions and RA functions.
  • the satellite communication method further includes: when the data and/or the signaling needs to perform ARQ function processing, the first satellite Or the signaling performs the ARQ function processing.
  • processing the ARQ function in the first satellite in low orbit can further reduce the delay of the satellite communication system.
  • the on-board system of the first satellite may further include an RLC entity, and the RLC entity includes an automatic retransmission request ARQ function module.
  • the satellite communication method further includes: when the data and/or the signaling needs to be processed in the second layer of the MAC layer or the protocol layer above the MAC, the The first satellite sends the data and/or the signaling to the second satellite.
  • the MAC layer second processing includes other MAC layer functional processing except HARQ function processing and RA function processing.
  • the second satellite is Medium-orbit satellites or high-orbit satellites.
  • the corresponding processing is performed on the second satellite in mid-orbit or high-orbit; or the second satellite performs MAC The upper protocol layer processing; making the on-board system taking into account the complexity and cost of medium orbit satellites or high orbit satellites, at the same time, part of the processing is placed on the medium orbit satellites or high orbit satellites, which can reduce the data and data processing of satellite communication systems And/or signaling delay.
  • the protocol layer under the MAC may include a PHY layer.
  • the protocol layer above the MAC may include one or more layers of the RLC layer, PDCP layer, and SDAP layer; or, the protocol layer above the MAC may include one or more layers of the RLC layer, PDCP layer, and RRC layer.
  • the protocol layer above the MAC may also include other layers above the MAC layer, which is not limited in this application.
  • the first satellite acquiring data and/or signaling at the MAC layer includes: the first satellite receives the data and/or the terminal device at the physical PHY layer. Or the signaling, and perform PHY layer processing on the data and/or the signaling and send it to the MAC layer.
  • PHY layer processing may include channel coding, modulation, interleaving, scrambling, and rate matching.
  • the signaling that needs to be processed by the first MAC layer includes random access process signaling and/or HARQ process signaling.
  • the signaling of the random access process and/or HARQ process which will bring a large system delay, is processed on the low-orbit satellite.
  • the signaling that needs to be processed at the protocol layer above the MAC includes radio resource control RRC signaling.
  • the remaining higher-layer signaling is handled by the mid-orbit or high-orbit satellites.
  • a satellite communication method including: a second satellite receives data and/or signaling at a media access control MAC layer or a protocol layer above the MAC, and the second satellite is a medium-orbit satellite or an orbit Satellite; the second satellite performs MAC layer second processing on the data and/or the signaling at the MAC layer, the MAC layer second processing includes HARQ function processing except for hybrid automatic repeat request and random access RA MAC layer functional processing other than functional processing; and/or the second satellite performs MAC protocol layer processing on the data and/or the signaling on the MAC protocol layer.
  • a medium-orbit satellite or a high-orbit satellite receives data and/or signaling at the MAC layer or the protocol layer above the MAC, and needs to perform other MAC layers in addition to HARQ function processing and/or RA function processing
  • the second satellite performs the corresponding processing; or the second satellite performs the protocol layer processing above the MAC; so that while considering the complexity and cost of the mid-orbit satellite or high-orbit satellite on-board system, part of the processing Putting it on medium-orbit satellites or high-orbit satellites can reduce the delay of the satellite communication system in processing data and/or signaling.
  • the on-board system of the second satellite includes a MAC entity and an entity above the MAC protocol layer, the MAC entity includes a HARQ function module and random access except hybrid automatic repeat request MAC layer functional modules other than RA functional modules.
  • the MAC entity further includes a second MAC control module of other MAC layer functions besides the HARQ function and the RA function.
  • the satellite communication method further includes: when the data and/or the signaling needs to perform ARQ function processing, the second satellite Or the signaling performs the ARQ function processing.
  • the on-board system of the second satellite further includes an RLC entity, and the RLC entity includes an automatic retransmission request ARQ function module.
  • the second satellite receiving data and/or signaling at the MAC layer or the protocol layer above the MAC includes: the second satellite is at the MAC layer or the protocol above the MAC The layer receives the data and/or the signaling sent by the terminal device, and the data and/or the signaling does not include the header of the protocol layer below the MAC layer.
  • the data and/or the signaling may include a MAC layer header, or may not include a MAC layer header, and directly include a higher layer header and are transmitted at a higher layer.
  • the second satellite receiving data and/or signaling at the MAC layer or the protocol layer above the MAC includes: the second satellite is at the MAC layer or the protocol above the MAC The layer receives data and/or signaling sent by a first satellite, which is a low-orbit satellite.
  • the signaling performed by the protocol layer above the MAC for the protocol layer processing above the MAC includes radio resource control RRC signaling.
  • a satellite communication method including: a terminal device transmits data and/or signaling with a first satellite at a physical PHY layer, the first satellite is a low-orbit satellite; the terminal device accesses media Control the MAC layer or the protocol layer above the MAC to transmit data and/or signaling with the second satellite, the data and/or the signaling does not include the header of the protocol layer below the MAC layer, and the second satellite is in mid-orbit Satellite or high-orbit satellite.
  • the present application provides a satellite for performing the method in the first aspect or any possible implementation manner thereof.
  • the satellite may include a module for performing the method in the first aspect or any possible implementation thereof.
  • the present application provides a satellite for performing the method in the second aspect or any possible implementation manner thereof.
  • the satellite may include a module for performing the method in the second aspect or any possible implementation thereof.
  • the present application provides a terminal device, configured to perform the method in the third aspect or any possible implementation manner thereof.
  • the terminal device may include a module for performing the method in the second aspect or any possible implementation manner thereof.
  • the present application provides a satellite, the satellite includes a processor and a memory, the memory is used to store instructions, and the processor is used to execute the instructions stored in the memory, so that the satellite performs the first aspect or any possibility Method in the implementation.
  • the present application provides a satellite, the satellite includes a processor and a memory, the memory is used to store instructions, and the processor is used to execute the instructions stored in the memory, so that the satellite performs the second aspect or any possibility Method in the implementation.
  • the present application provides a terminal device, the terminal device includes a processor and a memory, the memory is used to store instructions, and the processor is used to execute the instructions stored in the memory, so that the terminal device performs the third aspect or The method in any possible implementation.
  • the present application provides a computer-readable storage medium having instructions stored thereon, which when executed on a computer, causes the computer to execute the method of the first aspect and any possible implementation manner thereof.
  • the present application provides a computer-readable storage medium having instructions stored thereon, which when executed on a computer, causes the computer to perform the method of the second aspect and any possible implementation manner thereof.
  • the present application provides a computer-readable storage medium having instructions stored thereon, which when executed on a computer, causes the computer to perform the method of the third aspect and any possible implementation thereof.
  • the present application provides a computer program product including instructions, characterized in that when the computer runs the finger of the computer program product, the computer executes the method of the first aspect and any possible implementation manner thereof .
  • the present application provides a computer program product including instructions, characterized in that, when the computer runs the finger of the computer program product, the computer executes the method of the second aspect and any possible implementation manner thereof .
  • the present application provides a computer program product including instructions, characterized in that, when the computer runs the finger of the computer program product, the computer executes the method of the third aspect and any possible implementation manner thereof .
  • the present application provides a computer chip that causes a computer to perform the method of the first aspect and any possible implementation manner thereof.
  • the present application provides a computer chip that causes a computer to perform the method of the second aspect and any possible implementation manner thereof.
  • the present application provides a computer chip that enables a computer to perform the method of the third aspect and any possible implementation manner thereof.
  • the present application provides a satellite communication system, including: the satellite according to the fourth or seventh aspect, the satellite according to the fifth or eighth aspect, and the ground station.
  • the present application provides a satellite communication system, including the satellite and the ground station according to the fourth aspect or the seventh aspect.
  • the present application provides a satellite communication system, including: the satellite according to the fourth aspect or the seventh aspect, the satellite according to the fifth aspect or the eighth aspect, the ground station, and the sixth aspect or the first aspect
  • the terminal device described in the ninth aspect including: the satellite according to the fourth aspect or the seventh aspect, the satellite according to the fifth aspect or the eighth aspect, the ground station, and the sixth aspect or the first aspect The terminal device described in the ninth aspect.
  • the present application provides a satellite communication system, including: the satellite, the ground station described in the fourth aspect or the seventh aspect, and the terminal device described in the sixth aspect or the ninth aspect.
  • the present application provides a satellite, the satellite is a first satellite, and is used to perform the method described in the first aspect and any possible implementation manner thereof.
  • the present application provides a satellite, the satellite is a second satellite, and is used to perform the method described in the second aspect and any possible implementation manner thereof.
  • the present application provides a terminal device for performing the method described in the third aspect and any possible implementation manner thereof.
  • the present application provides a satellite communication system, including: the satellite in the twenty-third aspect, the satellite in the twenty-fourth aspect, and the ground station.
  • the present application provides a satellite communication system, including: the satellite in the twenty-third aspect, the satellite in the twenty-fourth aspect, the ground station, and the terminal in the twenty-fifth aspect device.
  • the present application provides a satellite communication system, including the satellite and the ground station in the twenty-third aspect.
  • the present application provides a satellite communication system, including: the satellite in the twenty-third aspect, the ground station, and the terminal device in the twenty-fifth aspect.
  • the present application provides a satellite.
  • the satellite is a first satellite and includes a processor for executing a program in a memory to implement the method described in the first aspect and any possible implementation manner thereof.
  • the present application provides a satellite, the satellite is a second satellite, and includes a processor, configured to execute a program in a memory to implement the second aspect and any possible implementation manner thereof method.
  • the present application provides a terminal device, including a processor, configured to execute a program in a memory to implement the method described in the third aspect and any possible implementation manner thereof.
  • the present application provides a satellite communication system, including: the satellite described in the thirty aspect, the satellite described in the thirty-first aspect, and the ground station.
  • this application provides a satellite communication system, including: the satellite according to the thirtyth aspect, the satellite according to the thirty-first aspect, the ground station, and the terminal equipment according to the thirty-second aspect .
  • the present application provides a satellite communication system, including: the satellite and the ground station described in the thirtyth aspect.
  • the present application provides a satellite communication system, including: the satellite in the thirtyth aspect, the ground station, and the terminal device in the thirty-second aspect.
  • the present application provides a satellite.
  • the satellite is a first satellite and includes: a processor coupled to a memory; a memory used to store a computer program; a processor used to execute A computer program stored in the memory, so that the first satellite executes the method described in the first aspect and any possible implementation manner thereof.
  • the present application provides a satellite, the satellite is a second satellite, and includes: a processor coupled to a memory; a memory used to store a computer program; a processor used to execute A computer program stored in the memory, so that the second satellite executes the method described in the second aspect and any possible implementation manner thereof.
  • the present application provides a terminal device, including: a processor coupled to a memory; a memory to store a computer program; a processor to execute a computer program stored in the memory , So that the terminal device executes the method described in the third aspect and any possible implementation manner thereof.
  • the present application provides a satellite communication system, including: the satellite according to the thirty-seventh aspect, the satellite according to the thirty-eighth aspect, and the ground station.
  • the present application provides a satellite communication system, including: the satellite according to the thirty-seventh aspect, the satellite according to the thirty-eighth aspect, the ground station, and the terminal according to the thirty-ninth aspect device.
  • the present application provides a satellite communication system, including: the satellite and the ground station according to the thirty-seventh aspect.
  • the present application provides a satellite communication system, including: the satellite according to the thirty-seventh aspect, the ground station, and the terminal device according to the thirty-ninth aspect.
  • the present application provides a satellite, the satellite being the first satellite, including: a processor and a transceiver; the processor is used to execute a computer program stored in a memory, so that the first A satellite performs the method described in the first aspect and any possible implementation manner thereof.
  • the present application provides a satellite, the satellite is a second satellite, including: a processor and a transceiver; the processor is used to execute a computer program stored in a memory, so that the first The second satellite performs the method described in the second aspect and any possible implementation manner thereof.
  • the present application provides a terminal device, including: a processor and a transceiver; the processor is configured to execute a computer program stored in a memory, so that the terminal device performs the third aspect and its The method described in any possible implementation.
  • the present application provides a satellite communication system, including: the satellite according to the forty-fourth aspect, the satellite according to the forty-fifth aspect, and the ground station.
  • this application provides a satellite communication system, including: the satellite according to the forty-fourth aspect, the satellite according to the forty-fifth aspect, the ground station, and the terminal according to the forty-sixth aspect device.
  • the present application provides a satellite communication system, including: the satellite and the ground station according to the forty-fourth aspect.
  • the present application provides a satellite communication system, which includes the satellite in the forty-fourth aspect, the ground station, and the terminal device in the forty-sixth aspect.
  • the present application provides a satellite.
  • the satellite is a first satellite and includes: a processor, a memory, and a transceiver; the memory is used to store a computer program; and the processor is used to execute a satellite.
  • the present application provides a satellite.
  • the satellite is a second satellite, including: a processor, a memory, and a transceiver; the memory is used to store a computer program; and the processor is used to execute A computer program stored in the memory, so that the second satellite executes the method described in the second aspect and any possible implementation manner thereof.
  • the present application provides a terminal device, including: a processor, a memory, and a transceiver; the memory is used to store a computer program; the processor is used to execute a computer program stored in the memory, In order for the terminal device to perform the method described in the third aspect and any possible implementation manner thereof.
  • the present application provides a satellite communication system, including: the satellite according to the fiftieth aspect, the satellite according to the fifty-first aspect, and the ground station.
  • the present application provides a satellite communication system, including: the satellite according to the fiftyth aspect, the satellite according to the fifty-first aspect, the ground station, and the terminal equipment according to the fifty-second aspect .
  • the present application provides a satellite communication system, including: the satellite and the ground station according to the fiftieth aspect.
  • the present application provides a satellite communication system, including: the satellite in the fiftyth aspect, the ground station, and the terminal device in the fifty-second aspect.
  • the present application provides a satellite, including a unit or means for performing the steps described in the first aspect and any possible implementation manner thereof.
  • the present application provides a satellite, characterized in that it includes units or means for performing the steps described in the second aspect and any possible implementation manner thereof.
  • the present application provides a terminal device, which is characterized by including a unit or means for performing each step described in the third aspect and any possible implementation manner thereof.
  • the present application provides a satellite communication system, including: the satellite in the fifty-sixth aspect, the satellite in the fifty-seventh aspect, and the ground station.
  • the present application provides a satellite communication system, including: the satellite in the fifty-sixth aspect, the satellite ground station in the fifty-seventh aspect, and the terminal equipment in the fifty-eighth aspect.
  • the present application provides a satellite communication system, including: the satellite and the ground station according to the fifty-sixth aspect.
  • the present application provides a satellite communication system, the satellite, the ground station in the fifty-sixth aspect, and the terminal equipment in the fifty-eighth aspect.
  • the present application provides a processor, the processor including: at least one circuit configured to execute the first aspect and any possible implementation manner thereof or the second aspect and any possible aspect thereof The implementation manner or the method described in the third aspect and any possible implementation manner thereof.
  • Figure 1 is a schematic diagram of a multi-layer satellite communication architecture.
  • Figure 2 is a schematic diagram of a single-layer satellite communication architecture.
  • FIG. 3 is a schematic diagram of a protocol stack of a data plane in a mobile communication network.
  • FIG. 4 is a schematic diagram of a protocol stack of a control plane in a mobile communication network.
  • FIG. 5 is a schematic diagram of the data plane delay of the LTE system.
  • FIG. 6 is a schematic diagram of functions and function division of the MAC layer according to an embodiment provided by the present application.
  • FIG. 7 is a schematic diagram of the deployment of a protocol stack under a multi-layer satellite communication architecture according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a satellite communication method according to an embodiment provided by this application.
  • FIG. 9 is a schematic flowchart of a satellite communication method according to another embodiment provided by this application.
  • FIG. 10 is a schematic flowchart of a satellite communication method according to another embodiment provided by this application.
  • FIG. 11 is a schematic flowchart of a satellite communication method according to another embodiment provided by this application.
  • FIG. 12 is a schematic flowchart of a satellite communication method according to another embodiment provided by this application.
  • FIG. 13 is a schematic diagram of the deployment of a protocol stack under a single-layer satellite communication architecture according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a satellite according to an embodiment of the present application.
  • 15 is a schematic block diagram of a satellite according to another embodiment provided by this application.
  • 16 is a schematic block diagram of a satellite according to yet another embodiment provided by this application.
  • 17 is a schematic block diagram of a satellite according to yet another embodiment provided by this application.
  • Satellite communication systems usually include satellites and ground stations. According to different orbit heights, satellites can be classified into the following three types: geostationary orbit (GEO) satellites, also known as geostationary orbit satellites or high-orbit satellites; and medium earth orbit (MEO) satellites, also Referred to as mid-orbit satellites; and low earth orbit (LEO) satellites, also referred to as low-orbit satellites.
  • GEO geostationary orbit
  • MEO medium earth orbit
  • LEO low earth orbit
  • the orbital height of the GEO satellite is 35786km. Its main advantage is that it is relatively stationary and provides a large coverage area. However, because of this, the shortcomings of GEO satellites are also relatively prominent: for example, the distance from the ground is too large, requiring a large-caliber antenna; the transmission delay is large, about 0.5 seconds, which cannot meet the needs of real-time services; orbit resources are relatively Tension, high cost of launch, and inability to provide coverage for polar regions, etc.
  • the orbit height of the MEO satellite is 2000km to 35786km, and the global coverage can be achieved by using a relatively small number of MEO satellites.
  • the transmission delay of the MEO satellite is larger than that of the LEO satellite, and it is currently mainly used for positioning and navigation.
  • the LEO satellite has an orbital altitude of 300km to 2000km.
  • the LEO satellite has a lower orbital height than the MEO satellite and the GEO satellite, the data propagation delay is smaller, the power loss is smaller, and the launch cost is lower. Therefore, communication networks based on LEO satellites have made considerable progress in recent years.
  • Based on the LEO satellite as an access point for information make full use of the ability of the satellite to cover a wider area than the base station to form efficient coverage in the air, ocean, and remote areas.
  • LTE long-term evolution
  • NR Future 5G
  • a relatively simple implementation is to include the complete protocol stack of the LTE system/NR system in the satellite communication system. Without introducing new network elements, in the current satellite communication system, all protocol stack processing is completed at the ground station, and the satellite is only used as a relay forwarding unit. However, this has the disadvantage that the processing of data and/or signaling is not performed until the data and/or signaling goes from the terminal to the satellite and then to the ground station, which makes the entire data flow or signaling flow very large.
  • a typical scenario is the division of the protocol stack of the central unit (CU)-distributive unit (DU) in the cloud radio access network (CRAN) architecture.
  • the CU-DU protocol stack is divided in a flexible manner, and can be arbitrarily divided at the physical layer (PHY) and media access control (MAC) layer.
  • PHY physical layer
  • MAC media access control
  • the satellite's on-board system needs to consider factors such as the transmission capacity of the feeder link, the delay, and the power loss of the link between the satellites and the ground. It also needs to consider the satellite's cost, volume, and mechanical mechanical effects.
  • the architecture of the satellite communication system is relatively complicated, and it is divided into a multi-layer satellite communication architecture and a single-layer satellite communication architecture. Therefore, the division of the protocol stack of the satellite communication system cannot simply transplant the division of the protocol stack of the mobile communication system on the ground.
  • FIG. 1 is a schematic diagram of a multi-layer satellite communication architecture 100.
  • the multi-layer satellite communication architecture 100 has multi-layer satellite coverage.
  • the first-tier satellite 120 close to the terminal device 110 is a low-orbit satellite
  • the second-tier satellite 130 above the first-tier satellite 120 is a medium-orbit satellite or a high-orbit satellite.
  • the terminal device 110 sends data or signaling to the first layer satellite 120, and the first layer satellite 120 forwards the data to the second layer satellite 130.
  • the second layer satellite 130 forwards the data or signaling to the ground station 140.
  • the ground station 140 then routes the data or signaling to the Internet 160 via the routing device 150.
  • FIG. 2 is a schematic diagram of a single-layer satellite communication architecture 200. As shown in FIG. 2, only a single-layer satellite exists in the single-layer satellite communication architecture 200. Taking into account the user's demand for delay and the limitations of terminal equipment transmit power, when using a single-layer satellite for coverage, more consideration is given to low-orbit satellite scenarios.
  • the terminal device 210 sends data or signaling to the low-orbit satellite 220.
  • the low-orbit satellite 220 forwards the data or signaling to the ground station 230.
  • the ground station 230 then routes the data or signaling to the Internet 250 via the routing device 240.
  • the satellite implements a protocol stack compatible with the existing LTE system or NR system.
  • protocol stack also known as the protocol framework.
  • FIG. 3 is a schematic diagram of a data plane (data) protocol stack in a mobile communication network.
  • the terminal device first uses the service data adaptation protocol (service data adaptation protocol, SDAP) layer to provide quality of service (QoS) data
  • the stream and radio bearer are mapped and sent to the packet data convergence protocol (packet data convergence protocol, PDCP) layer; the PDCP layer performs packet header compression and encryption on the data and sends it to the radio link control (RLC) layer; RLC layer
  • the data is sent to the MAC layer after being divided and cascaded; the MAC layer multiplexes and combines the transmission format of the current data packet, selects the appropriate transmission format, and sends it to the PHY layer; finally, the transmission format combination selected by the PHY layer After modulation and coding, it is sent to the network equipment.
  • the network device sequentially demodulates and decodes the PHY layer, MAC layer, RLC layer, PDCP layer, and SDAP layer, demultiplexes, reassembles the data, decompresses and decrypts, and demaps the QoS data stream and the wireless bearer to get the terminal device to send.
  • the data sequentially demodulates and decodes the PHY layer, MAC layer, RLC layer, PDCP layer, and SDAP layer, demultiplexes, reassembles the data, decompresses and decrypts, and demaps the QoS data stream and the wireless bearer to get the terminal device to send.
  • the data sequentially demodulates and decodes the PHY layer, MAC layer, RLC layer, PDCP layer, and SDAP layer, demultiplexes, reassembles the data, decompresses and decrypts, and demaps the QoS data stream and the wireless bearer to get the terminal device to send.
  • the data sequentially demodulates
  • FIG. 4 is a schematic diagram of a protocol stack of a control plane in a mobile communication network. Based on the protocol stack shown in Figure 4, during the transmission of signaling, the terminal device encapsulates and encrypts the signaling in sequence by the radio resource control (RRC) layer, PDCP layer, RLC layer, MAC layer, and PHY layer And integrity protection, block and cascade, multiplexing and selecting the appropriate transmission format and other processing, and finally send the modulation and coding according to the selected transmission format to the network equipment.
  • RRC radio resource control
  • the sequence of network equipment is demodulated and decoded by the PHY layer, MAC layer, RLC layer, PDCP layer and RRC layer, demultiplexed, reassembled data, decrypted and verified, and decapsulated to obtain the signaling sent by the terminal device. Then, the network device performs corresponding processing according to the signaling.
  • the protocol stack of the terminal device may also include a non-access stratum (NAS).
  • the NAS layer is not located on the network equipment of the access network, but on the core network access and mobility management function (access and mobility management function, AMF) entity.
  • the network device may be a base station, and the base station may be used to communicate with one or more terminals, or may be used to communicate with one or more base stations with partial terminal functions (such as a macro base station and a micro base station, such as an access point , Communication between).
  • the base station may be an evolved base station (evolved Node B, eNB) in the LTE system, and a base station (for example, gNB) in the 5G system and the NR system.
  • the base station may also be an access point (access point, AP), transport node (transport point, TRP), CU, or other network entity, and may include some or all of the functions of the above network entities.
  • Terminal devices can be distributed throughout the wireless communication system, either stationary or mobile.
  • the terminal device may be a mobile device, a mobile station, a mobile unit, a machine-to-machine (M2M) terminal, a wireless unit, a remote unit, User agents, mobile clients, user equipment (UE), etc.
  • M2M machine-to-machine
  • UE user equipment
  • the delay of the control plane of the LTE system can be approximately defined as the time for the terminal device to transition from the idle state to the active state.
  • the delay of the initial access process is tested.
  • the initial access process includes random access (RA), RRC connection (RRC connection), initialization (initialization) and broadcasting (broadcasting) and other processes.
  • the test results show that the delay caused by the RA process is the main part of the control plane delay, which even accounts for about 70% of the total delay of the entire control plane and data plane.
  • the RA function is located in the MAC layer.
  • the data plane is also called the user plane.
  • the delay of the data plane can be approximately defined as the Internet Protocol (Internet Protocol) data packets from the terminal device/base station IP layer (NR system corresponding to the SDAP layer
  • the protocol layer is above the SDAP layer;
  • the LTE system corresponds to the protocol layer connected to the PDCP layer, above the PDCP layer) to the transmission time between the base station/terminal equipment.
  • FIG. 5 is a schematic diagram of the data plane delay of the LTE system. As shown in Figure 5, for uplink or downlink unilateral transmission delay, the data plane delay calculation formula is as follows:
  • the first item is the processing delay of the terminal device 1.5ms
  • the second item is the duration of a subframe specified by the protocol (for example, 1ms)
  • the third item is the processing delay of the network device 1.5ms
  • the last The item is the hybrid automatic repeat request (HARQ) delay of the terminal device.
  • HARQ hybrid automatic repeat request
  • the LTE system stipulates that the maximum number of HARQ times is 8, and n is the transmission delay. It can be seen from equation (1) that for satellite communication systems, even low-orbit satellites, the transmission time is more than 2ms. If there is data retransmission, the data plane delay consumption is mainly reflected in HARQ.
  • the HARQ/automatic repeat request (ARQ) data transmission method is adopted. Multiple repeated retransmissions will bring a larger system Delay.
  • the HARQ function is located in the MAC layer, and the ARQ function is located in the RLC layer. In order to shorten the system delay, the other factors described in the foregoing are taken into consideration, and this application considers the division from the MAC layer and RLC layer related functions in the protocol stack of the satellite communication system.
  • FIG. 6 is a schematic diagram of functions and function division of the MAC layer according to an embodiment provided by the present application.
  • the existing LTE system/NR system agreement stipulates that the main functions of the MAC layer include: mapping of logical channels and transmission channels, scheduling, mulitplexing, de-multiplexing, and logical channel priority processing , HARQ and RA, etc.
  • the on-board system of the low-level low-orbit satellite located in the multi-layer satellite communication architecture includes a MAC entity and an entity below the MAC protocol layer.
  • the MAC entity includes a HARQ function module and an RA function module.
  • the on-board system of high-level satellites (medium-orbit satellites or high-orbit satellites) located in a multi-layer satellite communication architecture includes MAC entities and entities above the MAC protocol layer.
  • MAC entities include other than HARQ function modules and RA function modules MAC layer functional modules, such as multiplexing functional modules, demultiplexing functional modules, and logical channel priority processing functional modules. Therefore, the protocol stack deployment of the low-level satellite and the protocol stack deployment of the high-level satellite constitute a complete protocol stack relative to the terminal device.
  • the MAC entity, the protocol layer entity below the MAC, and the protocol layer entity above the MAC are entities based on the functional level.
  • the low-level low-orbit satellite may be referred to as the first satellite
  • the high-level mid-orbit satellite or high-orbit satellite may be referred to as the second satellite.
  • the protocol layer under the MAC may include a PHY layer.
  • the protocol layer above the MAC may include one or more layers of the RLC layer, PDCP layer, and SDAP layer; or, the protocol layer above the MAC may include one or more layers of the RLC layer, PDCP layer, and RRC layer.
  • the protocol layer above the MAC may also include other layers above the MAC layer, which is not limited in this application.
  • FIG. 7 is a schematic diagram of the deployment of a protocol stack under a multi-layer satellite communication architecture according to an embodiment of the present application.
  • the on-board system of the first satellite may further include a first MAC control module for controlling the HARQ function and the RA function.
  • the first MAC control module may include a cell-radio network temporary identifier (C-RNTI) module and a time alignment command (time alignment, common, TA, commond) module, etc.
  • C-RNTI cell-radio network temporary identifier
  • time alignment command time alignment, common, TA, commond
  • the first MAC control module may be deployed on the satellite system of the second satellite, which is not limited in the embodiment of the present application.
  • the on-board system of the second satellite may further include a second MAC control module for controlling other MAC layer functions besides the HARQ function and the RA function.
  • the second MAC control module may include a control module for controlling functions such as multiplexing function, demultiplexing function, and logical channel priority processing function.
  • the HARQ function module in the MAC layer of the first satellite can respectively share a downlink shared channel (DL-SCH) and an uplink shared channel (uplink shared channel, UL) with the PHY layer of the first satellite. -SCH) communication.
  • the RA function module in the MAC layer of the first satellite can communicate with a random access channel (RACH) in the PHY layer of the first satellite.
  • RACH random access channel
  • the logical channel priority processing function module in the MAC layer of the second satellite can be connected to the dedicated traffic channel (DTCH), dedicated control channel (DCCH) and common control channel of the RLC layer of the second satellite respectively (common control channel, CCCH) communication.
  • the demultiplexing function module in the MAC layer of the second satellite may also communicate with the DTCH, DCCH, and CCCH of the RLC layer of the second satellite, respectively.
  • the existing LTE system/NR system protocol stipulates that CU and CU exchange information through the Xn interface, and CU and DU exchange information through the F1 interface.
  • the interface between the second satellite may be similarly called Xn, and the interface between the first satellite and the second satellite is F1. This is not limited.
  • FIG. 8 is a schematic flowchart of a satellite communication method 300 according to an embodiment provided by the present application.
  • the satellite communication method 300 includes: S310, the first satellite obtains data and/or signaling at the MAC layer of the media access control, the first satellite is a low-orbit satellite; S320, the data and/or the signal When the MAC layer first processing is required, the first satellite performs the MAC layer first processing on the data and/or the signaling.
  • the MAC layer first processing includes hybrid automatic repeat request HARQ function processing and random access At least one of RA function processing.
  • the low-orbit satellite acquires data and/or signaling at the MAC layer, and when HARQ function processing and/or RA function processing is required, performs HARQ function processing and/or RA on the first satellite Functional processing makes it possible to achieve the complexity and cost of the on-board system of low-orbit satellites, while HARQ function processing and/or RA function processing is processed on low-orbit satellites, which can reduce the data and/or signaling of satellite communication systems. Delay.
  • Putting HARQ function processing and RA function processing on low-orbit satellites can prevent data and/or signaling from being forwarded between satellites and then from the satellite to the ground station before processing, which can reduce the data processing and And/or signaling delay.
  • the satellite communication method 300 may further include: when the data and/or the signaling needs to be processed at the MAC layer or the protocol layer above the MAC, the first satellite
  • the second satellite sends the data and/or the signaling.
  • the MAC layer second processing includes other MAC layer functional processing except HARQ function processing and RA function processing.
  • the second satellite is a medium-orbit satellite or a high-orbit satellite. The orbital height of the second satellite is higher than that of the first satellite.
  • the first satellite sends the data and/or the signaling to the second satellite, which may be that the first satellite sends the data and/or the signaling at the MAC layer to the MAC layer of the second satellite.
  • Data and/or signaling does not need to perform HARQ function processing and/or RA function processing, but needs to perform other MAC layer function processing (MAC layer second processing) in addition to HARQ function processing and /RA function processing, or
  • MAC layer second processing MAC layer function processing
  • the first satellite After the first satellite obtains the data and/or signaling, it forwards the data and/or signaling to the second satellite with a higher orbital height, so that the second satellite can perform other MAC layers Functional processing, if necessary, the processing of the protocol layer above the MAC.
  • S310 the first satellite acquires data and/or signaling at the MAC layer, which may include: the first satellite receives the data and/or signaling sent by the terminal device at the physical PHY layer, The data and/or the signaling is processed by the PHY layer and sent to the MAC layer.
  • the first satellite can receive data and/or signaling sent by the terminal device at the PHY layer. after that. Perform the corresponding PHY layer processing and send to the MAC layer, and then send the partial processing of the MAC layer to the MAC layer of the second satellite.
  • PHY layer processing may include channel coding, modulation, interleaving, scrambling, and rate matching.
  • FIG. 9 is a schematic flowchart of a satellite communication method 400 according to another embodiment provided by this application.
  • the satellite communication method 400 includes: S410.
  • a second satellite receives data and/or signaling at a media access control MAC layer or a protocol layer above the MAC, and the second satellite is a medium-orbit satellite or a high-orbit satellite S420, the second satellite performs MAC layer second processing on the data and/or the signaling at the MAC layer, the second processing of the MAC layer includes in addition to the hybrid automatic repeat request HARQ function processing and the random access RA function processing Other MAC layer function processing; and/or the second satellite performs MAC protocol layer processing on the data and/or the signaling on the MAC protocol layer.
  • the medium-orbit satellite or the high-orbit satellite receives data and/or signaling at the MAC layer or the protocol layer above the MAC, and when other MACs other than HARQ function processing and/or RA function processing are required
  • the layer functions are processed, the corresponding processing is performed on the second satellite; or the second satellite performs the protocol layer processing on the MAC; so that while taking into account the complexity and cost of the mid-orbit satellite or high-orbit satellite, the system will be part of
  • the processing is placed on medium-orbit satellites or high-orbit satellites, which can reduce the delay of the satellite communication system in processing data and/or signaling.
  • the S410 second satellite receives data and/or signaling at the MAC layer or the protocol layer above the MAC, which may include: the second satellite receives the terminal device for sending at the MAC layer or the protocol layer above the MAC The data and/or the signaling, the data and/or the signaling does not include the header of the protocol layer below the MAC layer.
  • the terminal equipment transmits data and/or signaling with the medium-orbit satellite or the high-orbit satellite in the media access control MAC layer or the protocol layer above the MAC.
  • the second satellite in mid-orbit or high-orbit communicates directly with the terminal device at the MAC layer or the protocol layer above the MAC, and this communication process may be parallel with other communication steps (for example, the signaling interaction step of the first satellite in low orbit), The delay of the satellite communication system in processing data and/or signaling can be further reduced.
  • the data and/or signaling does not include the protocol layer below the MAC layer Header, otherwise the on-board system of medium-orbit satellites or high-orbit satellites cannot be processed. If the protocol layer above the MAC, such as the RLC layer or RRC layer, transmits data and/or signaling, the data and/or signaling may not include the header of the protocol layer below the RLC layer or RRC layer, and this application does not do this limited.
  • the S410 second satellite receives data and/or signaling at the MAC layer or the protocol layer above the MAC, and may include: the second satellite receives the first at the MAC layer or the protocol layer above the MAC
  • the first satellite is a low-orbit satellite, that is, the orbital height of the second satellite is higher than that of the first satellite.
  • the on-board system of the first satellite is deployed with a MAC layer entity and a protocol layer entity under the MAC. After receiving the data and/or signaling, it can process from the lower layer layer by layer and then send it to the second satellite. This communication process can be compatible with the processing of the protocol stack of the existing mobile communication system.
  • the uplink schemes for transmitting data and signaling are described in detail below.
  • the processing of data by each protocol layer of the terminal device includes:
  • the SDAP layer maps the data stream to be sent to the radio bearer and sends it to the PDCP layer;
  • the PDCP layer compresses the IP header of the transmission control protocol (transmission control protocol, TCP)/user data protocol (user data protocol, UDP) and sends it to the RLC layer;
  • the RLC layer blocks and cascades the data packets and forwards them to the MAC layer;
  • the MAC layer multiplexes the data packets and selects the appropriate transmission format combination to send to the PHY layer for modulation and coding;
  • the data packet is sent to the first satellite through the air interface.
  • the processing of data by each protocol layer on the satellite side corresponding to the terminal equipment includes:
  • the first satellite receives the data sent by the PHY layer of the terminal device at the PHY layer, performs demodulation and decoding, and performs necessary retransmission processing on the data;
  • the PHY layer of the first satellite sends the decoded data to the MAC layer of the second satellite, and the MAC layer of the second satellite performs the operations such as removing the MAC packet header and demultiplexing and sends it to the RLC layer of the second satellite;
  • the RLC layer of the second satellite reassembles the data packet and sends it to the PDCP layer of the second satellite;
  • the PDCP layer of the second satellite decrypts the encrypted data and decompresses the compressed IP data and sends it to the SDAP layer of the second satellite;
  • the SDAP layer of the second satellite maps the data stream to obtain the original data sent by the terminal device, and then the second satellite sends the obtained data to the ground station.
  • the processing of the signaling by each protocol layer of the terminal equipment includes:
  • the terminal equipment encapsulates the signaling by the RRC layer and sends it to the PDCP layer;
  • the PDCP layer encrypts the received signaling and sends it to the RLC layer after integrity protection operations;
  • the RLC layer transfers to the MAC layer after dividing the signaling and performing cascading operations
  • the MAC layer multiplexes the signaling and selects the appropriate transmission format to send to the PHY layer;
  • the PHY layer performs modulation and coding on the signaling and sends it to the first satellite;
  • the processing of signaling by each protocol layer on the satellite side corresponding to the terminal equipment includes:
  • the first satellite receives the signaling sent by the PHY layer of the terminal device at the PHY layer, demodulates and decodes it, and forwards it to the MAC layer of the first satellite; if the signaling is RA process signaling, the first satellite directly sends The terminal equipment feeds back MSG2 and MSG4; if the signaling is MSG3 when the terminal equipment is performing RA, the HARQ feedback is also performed on the MAC layer of the first satellite; if the signaling is non-random access process signaling, the first satellite’s The MAC layer forwards the signaling to the MAC layer of the second satellite;
  • the MAC layer of the second satellite demultiplexes the received signaling and decapsulates it, and sends it to the RLC layer;
  • the RLC layer of the second satellite reorganizes the data and sends it to the PDCP layer above it;
  • the signaling is sent to the RRC layer of the second satellite;
  • the RRC layer of the second satellite performs unpacking header processing on the signaling, and notifies the ground station after the processing is completed.
  • RA processes including competition-based/non-competitive-based RA processes; RRC connection process; and RRC reconfiguration process as examples to describe the satellite communication method of the present application in detail.
  • FIG. 10 is a schematic flowchart of a satellite communication method 500 according to another embodiment provided by this application.
  • the embodiment of FIG. 10 is described by combining the contention-based RA process and the RRC connection process.
  • the satellite communication method 500 includes the following steps.
  • the terminal device sends a physical random access channel (physical random access channel, PRACH) preamble (preamble) to the first satellite.
  • PRACH physical random access channel
  • the first satellite receives the PRACH preamble sent by the terminal device.
  • MAC or RRC, etc. indicated by the terminal device, the first satellite, and the second satellite mean that the corresponding signaling processing is at the MAC layer or RRC layer.
  • the PRACH preamble is MAC layer signaling
  • the first satellite receives the PRACH preamble sent by the PHY layer of the terminal device at the PHY layer, performs corresponding processing, and then sends the PRACH preamble to the MAC layer of the first satellite for signaling processing.
  • the first satellite After processing the PRACH preamble, the first satellite feeds back a random access response (random access response) to the terminal device.
  • a random access response random access response
  • the first optional solution is: the terminal device sends an RRC connection establishment request to the first satellite. After receiving the signaling, the first satellite may start layer-by-layer processing from the PHY layer, and then send it to the second satellite through the MAC layer.
  • the first optional solution can be compatible with the processing of the protocol stack of the existing mobile communication system.
  • the second optional solution is that the terminal device sends an RRC connection establishment request to the second satellite directly at the MAC layer or directly at the RRC layer.
  • the first optional solution because S530 and S540 are parallel, so the access delay of the satellite communication system can be further reduced.
  • the first satellite feeds back random access contention resolution signaling to the terminal device.
  • step S550 there are also two optional solutions, and the first optional solution is shown in FIG.
  • the first optional solution is: after receiving the RRC connection establishment request forwarded by the first satellite, the second satellite undergoes RRC layer processing, and feeds back the RRC connection establishment command to the terminal device through the first satellite.
  • the second optional solution is that the second satellite feeds back the RRC connection establishment command to the terminal device directly at the MAC layer or directly at the RRC layer.
  • the first optional solution is that: the terminal device feeds back the RRC connection establishment completion signaling to the first satellite, and the first satellite forwards it to the second satellite after receiving the RRC connection establishment completion signaling of the terminal device.
  • the second optional solution is: the terminal equipment directly feeds back the RRC connection establishment completion signaling to the second satellite at the MAC layer or the RRC layer.
  • the first two signalings in the RA process in FIG. 10, namely the PRACH preamble and the random access response, can be completed only by interacting between the terminal device and the first satellite, and thus the satellite communication method of the present application can reduce access Delay.
  • FIG. 11 is a schematic flowchart of a satellite communication method 600 according to another embodiment provided by this application.
  • the embodiment of FIG. 11 is described with a non-competitive RA flow.
  • the non-contention-based RA process is mainly used in scenarios where users switch. In this case, the non-contention-based RA process and RRC connection reconfiguration are coupled together.
  • the old first satellite represents the first satellite that the user's business is about to cut out
  • the new first satellite represents the first satellite that will provide services to the user.
  • the satellite communication method 600 includes the following steps.
  • S610 The second satellite sends an RRC reconfiguration command, and this command includes the index of the PRACH preamble when the user switches. Similar to the satellite communication method 500, S610 has two optional solutions. The first optional solution is: the second satellite directly sends an RRC reconfiguration command to the terminal device. The second optional solution is: the second satellite forwards the RRC reconfiguration command to the terminal device through the old first satellite. Correspondingly, the terminal device receives the RRC reconfiguration command. It should be understood that in FIG. 11, the PHY, MAC, or RRC, etc. marked by the terminal device, the old first satellite, the new first satellite, and the second satellite mean that the corresponding signaling processing is at the PHY, MAC layer, or RRC layer .
  • the terminal device sends a PRACH preamble to the new first satellite. That is, the terminal equipment performs non-contention random access.
  • the new first satellite sends a physical downlink control channel (physical downlink control channel, PDCCH) scheduling command to the terminal device.
  • a physical downlink control channel physical downlink control channel, PDCCH
  • the new first satellite sends a random access response to the terminal device, including the index of the user's random access preamble, uplink grant (UL_grant) resources, timing advance, and temporary C-RNTI.
  • UL_grant uplink grant
  • S650 the terminal device sends RRC reconfiguration completion signaling.
  • S650 has two options. The first optional solution is: the terminal device directly sends RRC reconfiguration completion signaling to the second satellite. The second optional solution is that the terminal device forwards the RRC reconfiguration completion signaling to the second satellite through the new first satellite.
  • FIG. 12 is a schematic flowchart of a satellite communication method 700 according to another embodiment provided by this application.
  • the embodiment of FIG. 12 is described with the RRC reconfiguration process. Unlike the RRC connection process, the RRC reconfiguration process is combined with the measurement report. Due to the movement of the first satellite, the terminal device sends a handover, and a handover measurement report is triggered at this time.
  • the handover measurement report in the NR system protocol is issued by the RRC layer through an RRC reconfiguration command, and the terminal device feeds back to the second satellite after completing the measurement.
  • the satellite communication method 700 includes the following steps.
  • the second satellite sends an RRC reconfiguration command to the terminal device.
  • the measurement report instruction is included in the RRC reconfiguration command. It should be understood that in FIG. 12, RRC indicated by the terminal device, the first satellite, and the second satellite means that the corresponding signaling processing is at the RRC layer.
  • the terminal device returns RRC reconfiguration completion signaling to the second satellite.
  • the first optional solution is: the terminal device organizes the data generated after the measurement is completed into a measurement report response and sends it to the first satellite, and the first satellite forwards the measurement report response to the second satellite.
  • the second optional solution is that the terminal device directly sends the measurement report response to the second satellite. Unlike the mobile communication system on the ground, for the LTE system or the NR system, the measurement report response is fed back to the base station serving it, and the embodiment of the present application needs to feed back to the satellite serving it.
  • HARQ process signaling and the like are also completed on the first satellite in low orbit, and the HARQ process will not be described in detail herein.
  • the registration authentication process signaling and the like are also completed on the mid-orbit or high-orbit second satellite, and the registration authentication process will not be described in detail in this article.
  • uplink data some embodiments of the present application may encapsulate layers on the terminal device side according to a complete protocol stack structure; on the satellite side, they may be sequentially on the protocol layers of the first satellite and the second satellite Unpack.
  • the processing of downlink data is similar to that of uplink data and will not be repeated here.
  • the signaling layer may be encapsulated on the terminal device side according to a complete protocol stack structure; on the satellite side, the first satellite may be based on the PHY layer and MAC layer.
  • the signaling decapsulation is sequentially processed accordingly, and then the signaling is forwarded from the MAC layer of the first satellite to the MAC layer of the second satellite.
  • the first satellite has decapsulated the MAC layer. If the MAC layer of the second satellite does not need to perform the second MAC layer processing on the signaling, the MAC layer of the second satellite transparently transmits the signaling and transparently transmits the signaling to the MAC.
  • the upper protocol layer if the MAC layer of the second satellite needs to perform the second MAC layer processing on the signaling, the MAC layer of the second satellite performs the second MAC layer processing on the signaling. Send to each protocol layer above the MAC.
  • the signaling layer may be encapsulated layer by layer on the terminal device side according to a complete protocol stack structure.
  • the header of the MAC layer may include information on whether the first processing of the MAC layer needs to be performed.
  • the first satellite decapsulates the PHY layer. If the information in the MAC layer header indicates that the MAC layer first processing is required, the first satellite decapsulates the MAC layer and performs the MAC layer first processing.
  • the MAC layer of the first satellite sends signaling to the MAC layer of the second satellite; if the information in the header of the MAC layer indicates that the MAC layer first processing is not required, the first satellite does not decapsulate the MAC layer , Directly send the signaling to the MAC layer of the second satellite, the MAC layer of the second satellite decapsulates the signaling, and then performs the second processing of the MAC layer or the processing of the protocol layer above the MAC.
  • the signaling layer may be encapsulated from the MAC layer to each protocol layer above MAC on the terminal device side.
  • the terminal equipment does not communicate with the second satellite directly through the first satellite.
  • the MAC layer of the second satellite on the satellite side decapsulates the signaling, and then performs the second processing of the MAC layer or the processing of the protocol layer above the MAC.
  • the signaling layer may be encapsulated from the corresponding protocol layer (eg, RRC layer) on the terminal device side.
  • the terminal equipment does not communicate with the second satellite directly through the first satellite.
  • the RRC layer of the second satellite on the satellite side decapsulates the signaling, and then performs the RRC layer processing.
  • Downlink signaling is similar to uplink signaling processing and will not be repeated here.
  • the schemes based on FIGS. 8 to 12 are all RLC entities whose ARQ function module is located on the second satellite, and when the data and/or the signaling needs to be processed by the ARQ function, the second satellite compares the data and/or Or the signaling performs the ARQ function processing.
  • the ARQ function module of the RLC entity may be located on the first satellite.
  • the protocol stack of the low-orbit satellite includes the HARQ function module and the RA function module of the PHY layer, the MAC layer, and the ARQ function module of the RLC layer.
  • the protocol stack of medium-orbit satellites or high-orbit satellites includes the RLC (TM/UM Mode) layer and the protocol stack above the RLC layer.
  • the high-orbit satellite only includes transparent mode (TM)/unacknowledged mode (UM) .
  • the protocol stack of an on-board system of a satellite includes only the first satellite
  • the protocol stack of the ground station includes other functional modules of the RLC layer except the ARQ function, and the upper layer of the RLC. That is, the RLC layer of the protocol stack of the ground station only has UM/TM.
  • Satellite-to-satellite and satellite-to-ground stations transmit based on IP protocol.
  • the HARQ function module/ARQ function module can be added to ensure the reliability of the data transmission between the MAC layer and the RLC layer.
  • the satellite 800 is a low-orbit satellite.
  • the satellite-based system of the satellite 800 includes a MAC entity and a protocol layer entity under the MAC.
  • the MAC entity includes a hybrid automatic repeat request HARQ function module and a random access RA function module.
  • the satellite 800 includes an acquisition module 810 and a processing module 820.
  • the acquiring module 810 is used to acquire data and/or signaling at the MAC layer; the processing module 820 is used to perform the first MAC layer processing on the data and/or signaling, and And/or the signaling performs the MAC layer first processing, and the MAC layer first processing includes at least one of HARQ function processing through the HARQ function module and RA function processing through the RA function module.
  • Embodiments of the present application provide that low-orbit satellites obtain data and/or signaling at the MAC layer.
  • HARQ function processing and/or RA function processing is required, HARQ function processing and/or RA function processing is performed on the low-orbit satellites, so that While considering the complexity and cost of the on-board system of low-orbit satellites, HARQ function processing and/or RA function processing are processed on the low-orbit satellites, which can reduce the delay of the satellite communication system in processing data and/or signaling.
  • the on-board system of the satellite 800 further includes an RLC entity, and the RLC entity includes an automatic retransmission request ARQ function module; the processing module 820 is further used for the data and/or Or when the signaling requires ARQ function processing, perform the ARQ function processing on the data and/or the signaling.
  • the processing module 820 is configured to: when the data and/or the signaling needs to be processed at the MAC layer or at the protocol layer above the MAC, to the second satellite Sending the data and/or the signaling, the MAC layer second processing includes other MAC layer functional processing except HARQ function processing and RA function processing, and the second satellite is a medium-orbit satellite or a high-orbit satellite.
  • the acquisition module 810 is specifically configured to: receive, by the physical PHY layer in the protocol layer under the MAC, the data and/or the signaling sent by the terminal device, and The data and/or the signaling is processed by the PHY layer and sent to the MAC layer.
  • the signaling that requires MAC layer first processing includes random access process signaling and/or HARQ process signaling.
  • the signaling that requires processing at the protocol layer above the MAC includes radio resource control RRC signaling.
  • the MAC entity is also used as a first MAC control module that controls the HARQ function and the RA function.
  • the satellite 900 is a low-orbit satellite.
  • the satellite 900 shown in FIG. 15 may include a processor 910 and a memory 920.
  • Computer instructions are stored in the memory 920, and when the processor 910 executes the computer instructions, the satellite 900 performs the following steps: acquiring data and/or signaling at the MAC layer; and at the data and/or all
  • the MAC layer first processing is performed on the data and/or the signaling
  • the MAC layer first processing includes hybrid automatic repeat request HARQ function processing and randomization At least one of access RA processing.
  • Embodiments of the present application provide that low-orbit satellites acquire data and/or signaling at the MAC layer.
  • HARQ function processing and/or RA function processing is required, HARQ function processing and/or RA function processing is performed on the low-orbit satellite, so While considering the complexity and cost of the on-board system of low-orbit satellites, HARQ function processing and/or RA function processing are processed on the low-orbit satellites, which can reduce the delay of the satellite communication system in processing data and/or signaling.
  • the on-board system of the satellite 900 includes a MAC entity and an entity below the MAC protocol layer, the MAC entity includes a hybrid automatic repeat request HARQ function module and a random access RA function module .
  • the on-board system of the satellite 900 further includes an RLC entity, the RLC entity includes an automatic retransmission request ARQ function module; the processor 910 is further configured to execute the computer instructions,
  • the satellite 900 is caused to perform the following steps: when the data and/or the signaling needs to perform ARQ function processing, perform the ARQ function processing on the data and/or signaling.
  • the processor 910 is further configured to execute the computer instructions, so that the satellite 900 performs the following steps: MAC layer second is required in the data and/or the signaling When processing or processing of the protocol layer above the MAC, the data and/or the signaling is sent to the second satellite, and the second processing of the MAC layer includes other MAC layer functional processing except HARQ function processing and RA function processing ,
  • the second satellite is a medium-orbit satellite or a high-orbit satellite.
  • the processor 910 executes the computer instructions to cause the satellite 900 to acquire data and/or signaling at the MAC layer, including: receiving by the physical PHY layer in the protocol layer under the MAC The data and/or the signaling sent by the terminal device, and the PHY layer processing is performed on the data and/or the signaling and then sent to the MAC layer.
  • the signaling that requires MAC layer first processing includes random access process signaling and/or HARQ process signaling.
  • the signaling that requires processing at the protocol layer above the MAC includes radio resource control RRC signaling.
  • the MAC entity is also used as a first MAC control module that controls the HARQ function and the RA function.
  • the satellite 800 shown in FIG. 14 or the satellite 900 shown in FIG. 15 may be used to perform the operation or process of the low-orbit satellite in the above method embodiment, and the operations and/or operations of various modules and devices in the satellite 800 or the satellite 900 and/or Or the functions are respectively for implementing the corresponding processes of the low-orbit satellites in the above method embodiments, and for the sake of brevity, they are not repeated here.
  • FIG. 16 is a schematic block diagram of a satellite 1000 according to yet another embodiment provided by this application.
  • the satellite 1000 is a medium-orbit satellite or a high-orbit satellite.
  • the on-board system of the satellite 1000 includes a MAC entity and a protocol layer entity above the MAC.
  • the MAC entity includes a HARQ function module and a random access RA except hybrid automatic repeat request.
  • MAC layer functional modules other than functional modules.
  • the satellite 1000 includes an acquisition module 1010 and a processing module 1020.
  • the obtaining module 1010 is used to obtain data and/or signaling at the MAC layer or the protocol layer above the MAC; the processing module 1020 is used to transmit the data and/or signaling by the other MAC layer functional modules Perform MAC layer second processing, the MAC layer second processing includes other MAC layer functional processing in addition to the hybrid automatic repeat request HARQ function processing and random access RA function processing; and/or through a protocol layer entity above the MAC Perform protocol layer processing above MAC on the data and/or the signaling.
  • the mid-orbit satellite or the high-orbit satellite in the embodiment of the present application receives data and/or signaling at the MAC layer or the protocol layer above the MAC, when other MAC layer functional processing other than HARQ functional processing and/or RA functional processing is required , Then the second satellite performs the corresponding processing; or the second satellite performs the protocol layer processing above the MAC; so that while taking into account the complexity and cost of the mid-orbit satellite or high-orbit satellite on-board system, part of the processing is placed in the middle On orbiting satellites or high-orbiting satellites, the delay of the satellite communication system in processing data and/or signaling can be reduced.
  • the on-board system of the satellite 1000 further includes an RLC entity, and the RLC entity includes an automatic retransmission request ARQ function module; the processing module 1020 is further used for the data and/or Or when the signaling requires ARQ function processing, perform the ARQ function processing on the data and/or the signaling.
  • the obtaining module 1010 is specifically configured to: receive the data and/or the signaling sent by the terminal device at the MAC layer or the protocol layer above the MAC, and the data and/or The signaling does not include the header of the protocol layer below the MAC layer.
  • the obtaining module 1010 is specifically configured to: receive data and/or signaling sent by a first satellite at a MAC layer or a protocol layer above the MAC, and the first satellite is a low-orbit satellite .
  • the signaling performed by the protocol layer above MAC entity by the entity above the MAC layer includes radio resource control RRC signaling.
  • the MAC entity further includes a second MAC control module for other MAC layer functions besides the HARQ function and the RA function.
  • FIG. 17 is a schematic block diagram of a satellite 1100 according to yet another embodiment provided by this application.
  • the satellite 1100 is a medium-orbit satellite or a high-orbit satellite.
  • the satellite 1100 shown in FIG. 17 may include a processor 1110 and a memory 1120.
  • the memory 1120 stores computer instructions.
  • the satellite 1100 When the processor 1110 executes the computer instructions, the satellite 1100 performs the following steps: receiving data and/or signaling at the MAC layer or a protocol layer above the MAC; at the MAC The layer performs second MAC layer processing on the data and/or the signaling, and the second MAC layer processing includes other MAC layer functional processing besides hybrid automatic repeat request HARQ function processing and random access RA function processing ; And/or the second satellite performs protocol layer processing above MAC on the data layer and/or the signaling on the protocol layer above the MAC.
  • the mid-orbit satellite or the high-orbit satellite in the embodiment of the present application receives data and/or signaling at the MAC layer or the protocol layer above the MAC, when other MAC layer functional processing other than HARQ functional processing and/or RA functional processing is required , Then the second satellite performs the corresponding processing; or the second satellite performs the protocol layer processing above the MAC; so that while taking into account the complexity and cost of the mid-orbit satellite or high-orbit satellite on-board system, part of the processing is placed in the middle On orbiting satellites or high-orbiting satellites, the delay of the satellite communication system in processing data and/or signaling can be reduced.
  • the on-board system of the satellite 1100 includes a MAC entity and an entity above the MAC protocol layer, the MAC entity includes a HARQ function module and a random access RA function except hybrid automatic repeat request MAC layer functional modules other than modules.
  • the on-board system of the satellite 1100 further includes an RLC entity, the RLC entity includes an automatic retransmission request ARQ function module; the processor 1110 is further configured to execute the computer instructions,
  • the satellite 1100 is caused to perform the following step: when the data and/or the signaling needs to perform ARQ function processing, perform the ARQ function processing on the data and/or signaling.
  • the processor 1110 executes the computer instructions to cause the satellite 1100 to receive data and/or signaling at the MAC layer or the protocol layer above the MAC, including: at the MAC layer or MAC
  • the upper protocol layer receives the data and/or the signaling sent by the terminal device, and the data and/or the signaling does not include the header of the protocol layer below the MAC layer.
  • the processor 1110 executes the computer instructions to cause the satellite 1100 to receive data and/or signaling at the MAC layer or the protocol layer above the MAC, including: at the MAC layer or MAC
  • the upper protocol layer receives data and/or signaling sent by a first satellite, which is a low-orbit satellite.
  • the signaling performed by the protocol layer above MAC entity by the entity above the MAC layer includes radio resource control RRC signaling.
  • the MAC entity further includes a second MAC control module for other MAC layer functions besides the HARQ function and the RA function.
  • the satellite 1000 shown in FIG. 16 or the satellite 1100 shown in FIG. 17 may be used to perform the operations or processes of the orbiting satellite or the high-orbiting satellite in the above method embodiment, and each module and device in the satellite 1000 or the satellite 1100
  • the operations and/or functions are for implementing the corresponding processes of the orbiting satellites or the high-orbiting satellites in the above method embodiments, and for the sake of brevity, they will not be repeated here.
  • the present application also provides a terminal device.
  • the terminal device includes: a transmission module for transmitting data and/or signaling with a first satellite at a physical PHY layer, the first satellite is a low-orbit satellite; and the transmission module It is also used to transmit data and/or signaling with the second satellite at the MAC layer or protocol layer above the MAC, and the data and/or signaling transmitted with the second satellite does not include the MAC layer
  • the second satellite is a medium-orbit satellite or a high-orbit satellite.
  • the present application also provides a terminal device, which includes a processor and a memory.
  • Computer instructions are stored in the memory, and when the processor executes the computer instructions, the terminal device performs the following steps: transmitting data and/or signaling with the first satellite at the physical PHY layer, the first satellite is a low-orbit satellite;
  • the MAC layer or the protocol layer above the MAC transmits data and/or signaling with the second satellite, the data and/or the signaling does not include the header of the protocol layer below the MAC layer, and the second satellite is a mid-orbit satellite Or high-orbit satellites.
  • the present application also provides a satellite communication system, including a satellite 800 (or satellite 900), a satellite 1000 (or satellite 1100), and a ground station.
  • a satellite communication system including a satellite 800 (or satellite 900), a satellite 1000 (or satellite 1100), and a ground station.
  • the present application also provides a satellite communication system, including a satellite 800 (or satellite 900) and a ground station.
  • a satellite communication system including a satellite 800 (or satellite 900) and a ground station.
  • processors mentioned in the embodiments of the present application may include a central processing unit (central processing) CPU, a network processor (NP), or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the PLD may be a complex programmable logic device (complex programmable logic device (CPLD), a field programmable logic gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL), or any combination thereof.
  • the memory mentioned in the embodiments of the present application may be volatile memory (volatile memory) or non-volatile memory (non-volatile memory), or may include both volatile and non-volatile memory .
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erase programmable EPROM (EEPROM), flash memory (flash memory), hard disk (drive), or solid-state drive (SSD).
  • the volatile memory may be a random access memory (random access memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous RAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data SDRAM double data SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • An embodiment of the present application further provides a computer-readable storage medium on which instructions are stored, and when the instructions run on a computer, the computer is caused to perform the steps performed by the low-orbit satellite in the foregoing method embodiment.
  • Embodiments of the present application also provide a computer-readable storage medium on which instructions are stored, and when the instructions run on a computer, the computer is allowed to perform the above method embodiment executed by a medium-orbit satellite or a high-orbit satellite step.
  • An embodiment of the present application further provides a computer program product including instructions.
  • the computer runs the finger of the computer program product, the computer executes the steps performed by the low-orbit satellite in the foregoing method embodiment.
  • An embodiment of the present application further provides a computer program product including instructions.
  • the computer runs the finger of the computer program product, the computer executes the steps performed by the medium-orbit satellite or the high-orbit satellite in the foregoing method embodiment.
  • An embodiment of the present application further provides a computer chip, which causes the computer to execute the steps performed by the low-orbit satellite in the foregoing method embodiment.
  • An embodiment of the present application further provides a computer chip, which causes the computer to perform the steps performed by the medium-orbit satellite or the high-orbit satellite in the foregoing method embodiment.
  • the device provided by the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transferred from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, SSD), or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD semiconductor medium
  • the size of the sequence numbers of the above processes does not mean that the execution order is sequential, and the execution order of each process should be determined by its function and inherent logic, and should not correspond to the implementation process of the embodiments of the application Constitute any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本申请提供了一种卫星、终端设备、卫星通信系统和卫星通信方法,该卫星通信方法包括:第一卫星在媒体接入控制MAC层获取数据和/或信令,第一卫星为低轨卫星;在该数据和/或该信令需要进行MAC层第一处理时,该第一卫星对该数据和/或该信令进行该MAC层第一处理,该MAC层第一处理包括混合自动重传请求HARQ功能处理和随机接入RA功能处理中的至少一种。本申请的卫星通信方法,低轨卫星在MAC层获取数据和/或信令,当需要进行HARQ功能处理和/或RA功能处理时,在第一卫星进行执行HARQ功能处理和/或RA功能处理,使得兼顾低轨卫星的星上系统实现复杂度和成本的同时,可以降低卫星通信系统处理数据和/或信令的时延。

Description

卫星、终端设备、卫星通信系统和卫星通信方法
本申请要求于2018年11月26日提交中国专利局、申请号为201811415697.3、申请名称为“卫星、终端设备、卫星通信系统和卫星通信方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及卫星通信领域,并且更具体地,涉及卫星、终端设备、卫星通信系统和卫星通信方法。
背景技术
用户在对未来演进的新空口(new radio,NR)系统,也称为第五代移动通信(the 5th Generation,5G)系统提出更多样化的业务类型需求的同时,也提出了更广的业务覆盖需求。然而,当前基于基站覆盖的移动通信网络的覆盖能力有限,已经不能满足人们在任意时间、任意地点获取信息的需求。并且,使用基于基站覆盖的模式提供超广域的覆盖对于偏远地区、沙漠、海洋和空中等场景存在经济性和可行性方面的巨大挑战。
卫星通信相对于传统的移动通信,具有更广的覆盖范围,可以克服海洋、沙漠、高山等自然地理障碍,并且其通信成本与传输距离无关。卫星通信可以作为传统的移动通信的有效的补充,以克服传统的移动通信的不足。
当前的卫星通信系统中,所有的协议栈处理均在地面站完成,卫星仅作为中继转发单元。换而言之,卫星对数据和/或信令进行接收后直接转发,或者仅做简单解调后转发,而不做任何协议栈相应的处理。由此,数据和/或信令的处理在数据和/或信令从终端到卫星再到地面站才开始执行,这使得整个数据流程或信令流程的时延很大。
发明内容
本申请提供一种卫星、终端设备、卫星通信系统和卫星通信方法,能够降低卫星通信系统处理数据和/或信令的时延。
第一方面,提供了一种卫星通信方法,包括:第一卫星在媒体接入控制MAC层获取数据和/或信令,所述第一卫星为低轨卫星;在所述数据和/或所述信令需要进行MAC层第一处理时,所述第一卫星对所述数据和/或所述信令进行所述MAC层第一处理,所述MAC层第一处理包括混合自动重传请求HARQ功能处理和随机接入RA功能处理中的至少一种。
第一方面的卫星通信方法,低轨卫星在MAC层获取数据和/或信令,当需要进行HARQ功能处理和/或RA功能处理时,在第一卫星进行执行HARQ功能处理和/或RA功能处理,使得在兼顾低轨卫星的星上系统实现复杂度和成本的同时,HARQ功能处理和/或RA功能处理在低轨卫星进行处理,可以降低卫星通信系统处理数据和/或信令的时延。
在第一方面的一种可能的实现方式中,第一卫星的星上系统包括MAC实体和MAC之下协议层的实体,所述MAC实体包括混合自动重传请求HARQ功能模块和随机接入RA功能模块。
在第一方面的一种可能的实现方式中,为了便于控制,第一卫星的星上系统还可以包括用于控制HARQ功能和RA功能的第一MAC控制模块。
在第一方面的一种可能的实现方式中,所述卫星通信方法还包括:在所述数据和/或所述信令需要进行ARQ功能处理时,所述第一卫星对所述数据和/或所述信令进行所述ARQ功能处理。本可能的实现方式中,将ARQ功能处理放在低轨的第一卫星进行处理,可以进一步降低卫星通信系统的时延。
在第一方面的一种可能的实现方式中,第一卫星的星上系统还可以包括RLC实体,所述RLC实体包括自动重传请求ARQ功能模块。
在第一方面的一种可能的实现方式中,所述卫星通信方法还包括:在所述数据和/或所述信令需要进行MAC层第二处理或MAC之上协议层的处理时,所述第一卫星向第二卫星发送所述数据和/或所述信令,所述MAC层第二处理包括除HARQ功能处理和RA功能处理以外的其他MAC层功能处理,所述第二卫星为中轨卫星或高轨卫星。本可能的实现方式中,当需要进行除HARQ功能处理和/或RA功能处理以外的其他MAC层功能处理时,则在中轨或高轨的第二卫星进行相应处理;或者第二卫星进行MAC之上协议层处理;使得在兼顾中轨卫星或高轨卫星的星上系统实现复杂度和成本的同时,将一部分处理放在中轨卫星或高轨卫星上,可以降低卫星通信系统处理数据和/或信令的时延。
应理解,MAC之下协议层可以包括PHY层。MAC之上协议层可以包括RLC层、PDCP层和SDAP层中的一层或多层;或者,MAC之上协议层可以包括RLC层、PDCP层和RRC层中的一层或多层。MAC之上协议层还可以包括位于MAC层之上的其他层,本申请对此不作限定。
在第一方面的一种可能的实现方式中,所述第一卫星在MAC层获取数据和/或信令,包括:所述第一卫星在物理PHY层接收终端设备发送的所述数据和/或所述信令,并对所述数据和/或所述信令进行PHY层处理后发送到MAC层。其中,PHY层处理可以包括信道编码、调制、交织、加扰和速率匹配等等。
在第一方面的一种可能的实现方式中,需要进行第一MAC层处理的信令包括随机接入过程信令和/或HARQ过程信令。本可能的实现方式中,会带来较大的系统时延的随机接入过程和/或HARQ过程的信令在低轨卫星处理。
在第一方面的一种可能的实现方式中,需要进行MAC之上协议层的处理的信令包括无线资源控制RRC信令。本可能的实现方式中,其余的更高层的信令在中轨或高轨卫星处理。
第二方面,提供了一种卫星通信方法,包括:第二卫星在媒体接入控制MAC层或MAC之上协议层接收数据和/或信令,所述第二卫星为中轨卫星或高轨卫星;所述第二卫星在MAC层对所述数据和/或所述信令进行MAC层第二处理,所述MAC层第二处理包括除混合自动重传请求HARQ功能处理和随机接入RA功能处理以外的其他MAC层功能处理;和/或所述第二卫星在MAC之上协议层对所述数据和/或所述信令进行MAC之上协议层处理。
第二方面的卫星通信方法,中轨卫星或高轨卫星在MAC层或MAC之上协议层接收数据和/或信令,当需要进行除HARQ功能处理和/或RA功能处理以外的其他MAC层功能处理时,则在第二卫星进行相应处理;或者第二卫星进行MAC之上协议层处理;使得在兼顾中轨卫星或高轨卫星的星上系统实现复杂度和成本的同时,将一部分处理放在中轨卫星或高轨卫星上,可以降低卫星通信系统处理数据和/或信令的时延。
在第二方面的一种可能的实现方式中,第二卫星的星上系统包括MAC实体和MAC之上协议层的实体,所述MAC实体包括除混合自动重传请求HARQ功能模块和随机接入RA功能模块以外的其他MAC层功能模块。
在第二方面的一种可能的实现方式中,MAC实体还包括除HARQ功能和RA功能以外的其他MAC层功能的第二MAC控制模块。
在第二方面的一种可能的实现方式中,所述卫星通信方法还包括:在所述数据和/或所述信令需要进行ARQ功能处理时,所述第二卫星对所述数据和/或所述信令进行所述ARQ功能处理。
在第二方面的一种可能的实现方式中,第二卫星的星上系统还包括RLC实体,所述RLC实体包括自动重传请求ARQ功能模块。
在第二方面的一种可能的实现方式中,所述第二卫星在MAC层或MAC之上协议层接收数据和/或信令,包括:所述第二卫星在MAC层或MAC之上协议层接收终端设备发送的所述数据和/或所述信令,所述数据和/或所述信令不包括MAC层之下协议层的报头。本可能的实现方式中,所述数据和/或所述信令可以是包括MAC层报头的,也可以是不包括MAC层报头,直接包括更高层的报头并在更高层传输的。
在第二方面的一种可能的实现方式中,所述第二卫星在MAC层或MAC之上协议层接收数据和/或信令,包括:所述第二卫星在MAC层或MAC之上协议层接收第一卫星发送的数据和/或信令,所述第一卫星为低轨卫星。
在第二方面的一种可能的实现方式中,在MAC之上协议层进行MAC之上协议层处理的信令包括无线资源控制RRC信令。
第三方面,提供了一种卫星通信方法,包括:终端设备在物理PHY层与第一卫星传输数据和/或信令,所述第一卫星为低轨卫星;所述终端设备在媒体接入控制MAC层或MAC之上协议层与第二卫星传输数据和/或信令,所述数据和/或所述信令不包括MAC层之下协议层的报头,所述第二卫星为中轨卫星或高轨卫星。
第四方面,本申请提供了一种卫星,用于执行上述第一方面或其任一可能的实现方式中的方法。具体地,该卫星可以包括用于执行第一方面或其任一可能的实现方式中的方法的模块。
第五方面,本申请提供了一种卫星,用于执行上述第二方面或其任一可能的实现方式中的方法。具体地,该卫星可以包括用于执行第二方面或其任一可能的实现方式中的方法的模块。
第六方面,本申请提供了一种终端设备,用于执行上述第三方面或其任一可能的实现方式中的方法。具体地,该终端设备可以包括用于执行第二方面或其任一可能的实现方式中的方法的模块。
第七方面,本申请提供了一种卫星,该卫星包括处理器和存储器,该存储器用于存储 指令,该处理器用于执行该存储器存储的指令,使得该卫星执行第一方面或其任一可能的实现方式中的方法。
第八方面,本申请提供了一种卫星,该卫星包括处理器和存储器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,使得该卫星执行第二方面或其任一可能的实现方式中的方法。
第九方面,本申请提供了一种终端设备,该终端设备包括处理器和存储器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,使得该终端设备执行第三方面或其任一可能的实现方式中的方法。
第十方面,本申请提供了一种计算机可读存储介质,其上存储有指令,当该指令在计算机上运行时,使得该计算机执行第一方面及其任一可能的实现方式的方法。
第十一方面,本申请提供了一种计算机可读存储介质,其上存储有指令,当该指令在计算机上运行时,使得该计算机执行第二方面及其任一可能的实现方式的方法。
第十二方面,本申请提供了一种计算机可读存储介质,其上存储有指令,当该指令在计算机上运行时,使得该计算机执行第三方面及其任一可能的实现方式的方法。
第十三方面,本申请提供了一种包括指令的计算机程序产品,其特征在于,当计算机运行该计算机程序产品的该指时,该计算机执行第一方面及其任一可能的实现方式的方法。
第十四方面,本申请提供了一种包括指令的计算机程序产品,其特征在于,当计算机运行该计算机程序产品的该指时,该计算机执行第二方面及其任一可能的实现方式的方法。
第十五方面,本申请提供了一种包括指令的计算机程序产品,其特征在于,当计算机运行该计算机程序产品的该指时,该计算机执行第三方面及其任一可能的实现方式的方法。
第十六方面,本申请提供了一种计算机芯片,该计算机芯片使得计算机执行第一方面及其任一可能的实现方式的方法。
第十七方面,本申请提供了一种计算机芯片,该计算机芯片使得计算机执行第二方面及其任一可能的实现方式的方法。
第十八方面,本申请提供了一种计算机芯片,该计算机芯片使得计算机执行第三方面及其任一可能的实现方式的方法。
第十九方面,本申请提供了一种卫星通信系统,包括:第四方面或第七方面所述的卫星、第五方面或第八方面所述的卫星和地面站。
第二十方面,本申请提供了一种卫星通信系统,包括:第四方面或第七方面所述的卫星和地面站。
第二十一方面,本申请提供了一种卫星通信系统,包括:第四方面或第七方面所述的卫星、第五方面或第八方面所述的卫星、地面站和第六方面或第九方面所述的终端设备。
第二十二方面,本申请提供了一种卫星通信系统,包括:第四方面或第七方面所述的卫星、地面站和第六方面或第九方面所述的终端设备。
第二十三方面,本申请提供了一种卫星,所述卫星为第一卫星,用于执行第一方面及其任一可能的实现方式所述的方法。
第二十四方面,本申请提供了一种卫星,所述卫星为第二卫星,用于执行第二方面及其任一可能的实现方式所述的方法。
第二十五方面,本申请提供了一种终端设备,用于执行第三方面及其任一可能的实现 方式所述的方法。
第二十六方面,本申请提供了一种卫星通信系统,包括:第二十三方面所述的卫星、第二十四方面所述的卫星和地面站。
第二十七方面,本申请提供了一种卫星通信系统,包括:第二十三方面所述的卫星、第二十四方面所述的卫星、地面站和第二十五方面所述的终端设备。
第二十八方面,本申请提供了一种卫星通信系统,包括:第二十三方面所述的卫星和地面站。
第二十九方面,本申请提供了一种卫星通信系统,包括:第二十三方面所述的卫星、地面站和第二十五方面所述的终端设备。
第三十方面,本申请提供了一种卫星,所述卫星为第一卫星,包括处理器,用于执行存储器中的程序以实现第一方面及其任一可能的实现方式所述的方法。
第三十一方面,本申请提供了一种卫星,所述卫星为第二卫星,包括处理器,用于执行存储器中的程序以实现实现第二方面及其任一可能的实现方式所述的方法。
第三十二方面,本申请提供了一种终端设备,包括处理器,用于执行存储器中的程序以实现第三方面及其任一可能的实现方式所述的方法。
第三十三方面,本申请提供了一种卫星通信系统,包括:第三十方面所述的卫星、第三十一方面所述的卫星和地面站。
第三十四方面,本申请提供了一种卫星通信系统,包括:第三十方面所述的卫星、第三十一方面所述的卫星、地面站和第三十二方面所述的终端设备。
第三十五方面,本申请提供了一种卫星通信系统,包括:第三十方面所述的卫星和地面站。
第三十六方面,本申请提供了一种卫星通信系统,包括:第三十方面所述的卫星、地面站和第三十二方面所述的终端设备。
第三十七方面,本申请提供了一种卫星,所述卫星为第一卫星,包括:处理器,所述处理器与存储器耦合;存储器,用于存储计算机程序;处理器,用于执行所述存储器中存储的计算机程序,以使得所述第一卫星执行第一方面及其任一可能的实现方式所述的方法。
第三十八方面,本申请提供了一种卫星,所述卫星为第二卫星,包括:处理器,所述处理器与存储器耦合;存储器,用于存储计算机程序;处理器,用于执行所述存储器中存储的计算机程序,以使得所述第二卫星执行第二方面及其任一可能的实现方式所述的方法。
第三十九方面,本申请提供了一种终端设备,包括:处理器,所述处理器与存储器耦合;存储器,用于存储计算机程序;处理器,用于执行所述存储器中存储的计算机程序,以使得所述终端设备执行第三方面及其任一可能的实现方式所述的方法。
第四十方面,本申请提供了一种卫星通信系统,包括:第三十七方面所述的卫星、第三十八方面所述的卫星和地面站。
第四十一方面,本申请提供了一种卫星通信系统,包括:第三十七方面所述的卫星、第三十八方面所述的卫星、地面站和第三十九方面所述的终端设备。
第四十二方面,本申请提供了一种卫星通信系统,包括:第三十七方面所述的卫星和地面站。
第四十三方面,本申请提供了一种卫星通信系统,包括:第三十七方面所述的卫星、 地面站和第三十九方面所述的终端设备。
第四十四方面,本申请提供了一种卫星,所述卫星为第一卫星,包括:处理器和收发器;所述处理器,用于执行存储器中存储的计算机程序,以使得所述第一卫星执行第一方面及其任一可能的实现方式所述的方法。
第四十五方面,本申请提供了一种卫星,所述卫星为第二卫星,包括:处理器和收发器;所述处理器,用于执行存储器中存储的计算机程序,以使得所述第二卫星执行第二方面及其任一可能的实现方式所述的方法。
第四十六方面,本申请提供了一种终端设备,包括:处理器和收发器;所述处理器,用于执行存储器中存储的计算机程序,以使得所述终端设备执行第三方面及其任一可能的实现方式所述的方法。
第四十七方面,本申请提供了一种卫星通信系统,包括:第四十四方面所述的卫星、第四十五方面所述的卫星和地面站。
第四十七方面,本申请提供了一种卫星通信系统,包括:第四十四方面所述的卫星、第四十五方面所述的卫星、地面站和第四十六方面所述的终端设备。
第四十八方面,本申请提供了一种卫星通信系统,包括:第四十四方面所述的卫星和地面站。
第四十九方面,本申请提供了一种卫星通信系统,其特征在于,包括:第四十四方面所述的卫星、地面站和第四十六方面所述的终端设备。
第五十方面,本申请提供了一种卫星,所述卫星为第一卫星,包括:处理器,存储器和收发器;所述存储器,用于存储计算机程序;所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述第一卫星执行第一方面及其任一可能的实现方式所述的方法。
第五十一方面,本申请提供了一种卫星,所述卫星为第二卫星,包括:处理器,存储器和收发器;所述存储器,用于存储计算机程序;所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述第二卫星执行第二方面及其任一可能的实现方式所述的方法。
第五十二方面,本申请提供了终端设备,包括:处理器,存储器和收发器;所述存储器,用于存储计算机程序;所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述终端设备执行第三方面及其任一可能的实现方式所述的方法。
第五十三方面,本申请提供了一种卫星通信系统,包括:第五十方面所述的卫星、第五十一方面所述的卫星和地面站。
第五十三方面,本申请提供了一种卫星通信系统,包括:第五十方面所述的卫星、第五十一方面所述的卫星、地面站和第五十二方面所述的终端设备。
第五十四方面,本申请提供了一种卫星通信系统,包括:第五十方面所述的卫星和地面站。
第五十五方面,本申请提供了一种卫星通信系统,包括:第五十方面所述的卫星、地面站和第五十二方面所述的终端设备。
第五十六方面,本申请提供了一种卫星,包括用于执行第一方面及其任一可能的实现方式所述的各个步骤的单元或手段。
第五十七方面,本申请提供了一种卫星,其特征在于,包括用于执行第二方面及其任一可能的实现方式所述的各个步骤的单元或手段。
第五十八方面,本申请提供了一种终端设备,其特征在于,包括用于执行第三方面及其任一可能的实现方式所述的各个步骤的单元或手段。
第五十九方面,本申请提供了一种卫星通信系统,包括:第五十六方面所述的卫星、第五十七方面所述的卫星和地面站。
第六十方面,本申请提供了一种卫星通信系统,包括:第五十六方面所述的卫星、第五十七方面所述的卫星地面站和第五十八方面所述的终端设备。
第六十一方面,本申请提供了一种卫星通信系统,包括:第五十六方面所述的卫星和地面站。
第六十二方面,本申请提供了一种卫星通信系统,第五十六方面所述的卫星、地面站和第五十八方面所述的终端设备。
第六十三方面,本申请提供了一种处理器,该处理器包括:至少一种电路,用于执行如第一方面及其任一可能的实现方式或第二方面及其任一可能的实现方式或第三方面及其任一可能的实现方式所述的方法。
附图说明
图1是多层卫星通信架构的场景示意图。
图2是单层卫星通信架构的场景示意图。
图3是移动通信网络中数据面的协议栈的示意图。
图4是移动通信网络中控制面的协议栈的示意图。
图5是LTE系统的数据面时延的示意图。
图6是本申请提供的一个实施例的MAC层的功能及功能划分的示意图。
图7是本申请提供的一个实施例的多层卫星通信架构下协议栈的部署的示意图。
图8是本申请提供的一个实施例的卫星通信方法的示意性流程图。
图9是本申请提供的另一个实施例的卫星通信方法的示意性流程图。
图10是本申请提供的而另一个实施例的卫星通信方法的示意性流程图。
图11是本申请提供的而另一个实施例的卫星通信方法的示意性流程图。
图12是本申请提供的而另一个实施例的卫星通信方法的示意性流程图。
图13是本申请提供的一个实施例的单层卫星通信架构下协议栈的部署的示意图。
图14是本申请提供的一个实施例的卫星的示意性框图。
图15是本申请提供的另一个实施例的卫星的示意性框图。
图16是本申请提供的又一个实施例的卫星的示意性框图。
图17是本申请提供的又一个实施例的卫星的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
首先,对卫星通信系统进行简单的说明。卫星通信系统通常包括卫星和地面站。根据轨道高度的不同,可以将卫星分为如下三种:地球静止轨道(geostationary earth orbit,GEO)卫星,也称同步轨道卫星或高轨卫星;地球中轨(medium earth orbit,MEO)卫星,也简称为中轨卫星;以及地球低轨(low earth orbit,LEO)卫星,也简称为低轨卫星。
GEO卫星的轨道高度为35786km,其主要的优点是相对地面静止并且提供很大的覆盖面积。然而也正由于此,GEO卫星的缺点也相对突出:例如,距离地面距离过大,需要较大口径的天线;传输时延较大,在0.5秒左右,无法满足实时业务的需求;轨道资源相对紧张,发射成本高并且无法为两极地区提供覆盖等。
MEO卫星的轨道高度为2000km~35786km,使用相对较少数目的MEO卫星即可以实现全球覆盖。MEO卫星的传输时延相比LEO卫星较大,目前其主要的用于定位导航。
LEO卫星的轨道高度为300km~2000km。LEO卫星比MEO卫星和GEO卫星的轨道高度低,数据传播时延更小,功率损耗更小,发射成本更低。因此,基于LEO卫星的通信网络近年来取得了长足进展。基于LEO卫星作为信息的接入点,充分利用卫星相对于基站更广域覆盖的能力,形成对空中、海洋、以及偏远地区的高效覆盖,同时可以与长期演进(long term evolution,LTE)网络或未来的5G(NR)网络融合,在采用相同终端设备的前提下可为用户提供更广的覆盖和更好的用户体验。
卫星通信系统与地面的移动通信系统融合的通信场景中,要求使用普通的终端设备即可以接入卫星通信系统。因此需要对卫星通信系统与地面的移动通信系统进行协议栈的融合。一种较为简单的实现方式是在卫星通信系统中包括LTE系统/NR系统的完整的协议栈。在不引入新的网元的前提下,当前的卫星通信系统中,所有的协议栈处理均在地面站完成,卫星仅作为中继转发单元。但是这样产生的缺点是:数据和/或信令的处理在数据和/或信令从终端到卫星再到地面站才开始执行,这使得整个数据流程或信令流程的时延很大。
关于协议栈的部署,地面的移动通信系统,例如现有的LTE系统中或下一代的NR系统中均有涉及协议栈的划分。一种典型的场景是云无线接入网(cloud radio access network,CRAN)架构中的中央单元(central unit,CU)-分布式单元(distributive unit,DU)的协议栈划分。CU-DU的协议栈划分方式较为灵活,可以在物理层(physical layer,PHY)、媒体接入控制(media access control,MAC)层等进行任意划分。
然而,卫星的星上系统需要综合考虑馈电链路的传输容量、时延、星地间链路的功率损耗等因素,还需要考虑卫星的成本、体积以及机械力学效应等。此外,卫星通信系统的架构较为复杂,又分为多层卫星通信架构和单层卫星通信架构。因此卫星通信系统的协议栈的划分不能简单地移植地面的移动通信系统的协议栈的划分。
接下来,分别对多层卫星通信架构和单层卫星通信架构进行简单的说明。
图1是多层卫星通信架构100的场景示意图。如图1所示,多层卫星通信架构100存在多层卫星覆盖。以两层卫星通系统为例,靠近终端设备110的第一层卫星120为低轨卫星,第一层卫星120之上的第二层卫星130为中轨卫星或高轨卫星。对上行传输而言,终端设备110将数据或信令发送至第一层卫星120,第一层卫星120再将数据转发至第二层卫星130。第二层卫星130将数据或信令转发至地面站140。地面站140再将数据或信令经路由设备150路由至互联网160。
图2是单层卫星通信架构200的场景示意图。如图2所示,单层卫星通信架构200中只存在单层卫星。考虑到满足用户对于时延的需求以及终端设备发射功率的限制,采用单层卫星做覆盖时,更多地考虑低轨卫星的场景。对上行传输而言,终端设备210将数据或信令发送至低轨卫星220。低轨卫星220将数据或信令转发至地面站230。地面站230再 将数据或信令经路由设备240路由至互联网250。
无论是低轨卫星、中轨卫星还是高轨卫星,为了保证用户采用与地面统一的终端设备即可接入网络,需要考虑卫星实现支持与现有LTE系统或者NR系统兼容的协议栈。
接下来,对协议栈,也称协议框架进行简单的说明。
在现有协议框架中,任何数据或信令的传输均需要依赖各层协议的支持。
图3是移动通信网络中数据面(data plane)的协议栈的示意图。基于图3所示的协议栈,数据在传输过程中,如上行传输过程中,终端设备先由服务数据自适应协议(service data adaptation protocol,SDAP)层对服务质量(quality of service,QoS)数据流与无线承载进行映射后发往分组数据汇聚协议(packet data convergence protocol,PDCP)层;PDCP层对数据进行包头压缩和加密后发往无线链路控制(radio link control,RLC)层;RLC层对数据实施分块和级联后发往MAC层;MAC层对当前的数据包进行复用和传输格式组合,选择合适的传输格式后发往PHY层;最后由PHY层选定的传输格式组合进行调制编码后发送至网络设备。网络设备顺序经过PHY层、MAC层、RLC层、PDCP层和SDAP层解调译码,解复用,重组数据,解压缩和解密后和QoS数据流与无线承载进行解映射得到终端设备所发送的数据。
图4是移动通信网络中控制面(control plane)的协议栈的示意图。基于图4所示的协议栈,信令在传输过程中,终端设备由无线资源控制(radio resource control,RRC)层、PDCP层、RLC层、MAC层和PHY层依次将信令进行封装,加密和完整性保护,分块和级联,复用和选择合适的传输格式等处理,最后按选定的传输格式调制编码发送至网络设备。网络设备顺序由PHY层、MAC层、RLC层、PDCP层和RRC层进行解调译码,解复用,重组数据,解密和验证以及解封装后得到终端设备所发送的信令。而后,网络设备根据该信令进行相应的处理。终端设备的协议栈还可以包括非接入层(non-access stratum,NAS)。NAS层不位于接入网的网络设备上,而是在核心网的接入和移动管理功能(access and mobility management function,AMF)实体上。
其中,网络设备可以为基站,基站可以用于与一个或多个终端进行通信,也可以用于与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是LTE系统中的演进型基站(evolved Node B,eNB),以及5G系统、NR系统中的基站(例如gNB)。另外,基站也可以为接入点(access point,AP)、传输节点(transport point,TRP)、CU或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
终端设备可以分布在整个无线通信系统中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端设备可以是移动设备、移动台(mobile station)、移动单元(mobile unit)、机器对机器(machine-to-machine,M2M)终端、无线单元,远程单元、用户代理、移动客户端、用户设备(user equipment,UE)等。
最后,对数据面产生的时延和控制面产生的时延进行简单的说明。
在本申请中,可以将LTE系统的控制面的时延近似定义为终端设备从空闲(idle)状态转换为激活(active)状态的时间。根据实际的LTE系统,对初始接入过程的时延进行测试。该初始接入过程中包括随机接入(random access,RA)、RRC连接(RRC connection)、初始化(initialization)和广播(broadcasting)等过程。测试结果表明RA过程造成的时延 是控制面的时延的主要部分,其甚至占到整个控制面与数据面的总时延的70%左右。RA功能位于MAC层。
数据面也称为用户面,在本申请中数据面的时延可以近似定义为网络间互连协议(Internet Protocol,IP)数据包从终端设备/基站的IP层(NR系统中对应连接SDAP层的协议层,在SDAP层之上;LTE系统对应连接PDCP层的协议层,在PDCP层之上)到基站/终端设备之间的传输时间。图5是LTE系统的数据面时延的示意图。如图5所示,对于上行或下行单方面传输时延而言,数据面的时延计算公式如下:
t UP=1.5+1+1.5+n*8=8n+4  (1)
其中,包括第一项即终端设备的处理时延1.5ms,第二项即协议规定的一个子帧的持续时间(例如为1ms),第三项为网络设备的处理时延1.5ms,最后一项为终端设备的混合自动重传请求(hybrid automatic repeat request,HARQ)时延。LTE系统规定最大的HARQ次数为8,n为传输时延。从式(1)可以看出对于卫星通信系统,即使是低轨卫星,传输时间也在2ms以上。如果存在数据重传,数据面的时延消耗主要体现在HARQ上。如果考虑高轨卫星的场景,其高度为35786km,可以计算其往返传输的时延大约为238ms。如果存在多次重传,仅仅是传输时延就将成为系统的瓶颈。现有LTE系统/NR系统的协议规定为了保证数据传输的可靠性,采用基于HARQ/自动重传请求(automatic repeat request,ARQ)数据传输方式,多次反复重传将会带来更大的系统时延。HARQ功能位于MAC层,ARQ功能位于RLC层。为了缩短系统时延,统合考虑前文描述的其他因素,本申请考虑从卫星通信系统的协议栈中的MAC层与RLC层相关的功能处着眼进行划分。
结合图6和图7对多层卫星通信架构下协议栈的部署进行详细说明。
图6是本申请提供的一个实施例的MAC层的功能及功能划分的示意图。现有的LTE系统/NR系统的协议中规定,MAC层的主要功能包括:逻辑信道与传输信道的映射、调度、复用(mulitplexing)、解复用(de-multiplexing)、逻辑信道优先级处理、HARQ和RA等等。
本申请的一些实施例中,位于多层卫星通信架构中的低层的低轨卫星的星上系统包括MAC实体和MAC之下协议层的实体,MAC实体包括HARQ功能模块和RA功能模块。位于多层卫星通信架构中的高层的卫星(中轨卫星或高轨卫星)的星上系统包括MAC实体和MAC之上协议层的实体,MAC实体包括除HARQ功能模块和RA功能模块以外的其他MAC层功能模块,例如复用功能模块、解复用功能模块和逻辑信道优先级处理功能模块等。由此,低层的卫星的协议栈部署和高层的卫星的协议栈部署构成相对于终端设备的完整的协议栈。
应理解,MAC实体、MAC之下协议层的实体和MAC之上协议层的实体是基于功能层面的实体。
本文中,对于两层卫星通信架构,可以将低层的低轨卫星称为第一卫星,将高层的中轨卫星或高轨卫星称为第二卫星。
应理解,MAC之下协议层可以包括PHY层。MAC之上协议层可以包括RLC层、PDCP层和SDAP层中的一层或多层;或者,MAC之上协议层可以包括RLC层、PDCP层和RRC层中的一层或多层。MAC之上协议层还可以包括位于MAC层之上的其他层,本申请对此不作限定。
图7是本申请提供的一个实施例的多层卫星通信架构下协议栈的部署的示意图。
可选地,如图7所示,第一卫星的星上系统还可以包括用于控制HARQ功能和RA功能的第一MAC控制模块。第一MAC控制模块可以包括小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)模块和时间对齐命令(time alignment commond,TA commond)模块等。当然,可以将第一MAC控制模块部署在第二卫星的星上系统上,本申请实施例对此不做限定。
可选地,如图7所示,第二卫星的星上系统还可以包括用于控制除HARQ功能和RA功能以外的其他MAC层功能的第二MAC控制模块。第二MAC控制模块可以包括用于控制复用功能、解复用功能和逻辑信道优先级处理功能等功能的控制模块。
在本申请实施例中,第一卫星的MAC层中的HARQ功能模块可以分别与第一卫星的PHY层的下行共享信道(downlink shared channel,DL-SCH)和上行共享信道(uplink shared channel,UL-SCH)通信。第一卫星的MAC层中的RA功能模块可以与第一卫星的PHY层的随机接入信道(random access channel,RACH)通信。
第二卫星的MAC层中的逻辑信道优先级处理功能模块可以分别与第二卫星的RLC层的专用业务信道(dedicated traffic channel,DTCH)、专用控制信道(dedicated control channel,DCCH)和公共控制信道(common control channel,CCCH)通信。第二卫星的MAC层中的解复用功能模块也可以分别与第二卫星的RLC层的DTCH、DCCH和CCCH通信。
可选地,现有的LTE系统/NR系统的协议规定CU与CU通过Xn接口进行信息交互,CU与DU通过F1接口进行信息交互。在本申请的卫星通信系统中,为了保持与地面的移动通信系统的协议兼容,类似地可以称第二卫星间的接口为Xn,第一卫星与第二卫星的接口为F1,但本申请对此不做限定。
基于图6和图7所描述的多层卫星通信架构下协议栈的部署,本申请提供了一种卫星通信方法。图8是本申请提供的一个实施例的卫星通信方法300的示意性流程图。如图8所示,卫星通信方法300包括:S310,第一卫星在媒体接入控制MAC层获取数据和/或信令,第一卫星为低轨卫星;S320,在该数据和/或该信令需要进行MAC层第一处理时,该第一卫星对该数据和/或该信令进行该MAC层第一处理,该MAC层第一处理包括混合自动重传请求HARQ功能处理和随机接入RA功能处理中的至少一种。
本申请实施例的卫星通信方法,低轨卫星在MAC层获取数据和/或信令,当需要进行HARQ功能处理和/或RA功能处理时,在第一卫星进行执行HARQ功能处理和/或RA功能处理,使得在兼顾低轨卫星的星上系统实现复杂度和成本的同时,HARQ功能处理和/或RA功能处理在低轨卫星进行处理,可以降低卫星通信系统处理数据和/或信令的时延。
将HARQ功能处理和RA功能处理放在低轨卫星上,能够避免数据和/或信令在卫星之间转发、再由卫星转发到地面站之后才开始进行处理,可以降低卫星通信系统处理数据和/或信令的时延。
可选地,在一些实施例中,卫星通信方法300还可以包括:在该数据和/或该信令需要进行MAC层第二处理或MAC之上协议层的处理时,该第一卫星向第二卫星发送该数据和/或该信令,该MAC层第二处理包括除HARQ功能处理和RA功能处理以外的其他MAC层功能处理,该第二卫星为中轨卫星或高轨卫星,即该第二卫星的轨道高度高于该 第一卫星的轨道高度。
还应理解,第一卫星向第二卫星发送该数据和/或该信令,可以是第一卫星在MAC层向第二卫星的MAC层发送该数据和/或该信令。
在数据和/或信令不需要进行HARQ功能处理和/或RA功能处理,而是需要进行除HARQ功能处理和/RA功能处理以外的其他MAC层功能处理(MAC层第二处理),或者需要MAC之上协议层的处理时,则第一卫星获取到数据和/或信令后,将数据和/或信令转发至轨道高度更高的第二卫星,以由第二卫星进行其他MAC层功能处理,必要时进行MAC之上协议层的处理。
可选地,在一些实施例中,S310第一卫星在MAC层获取数据和/或信令,可以包括:该第一卫星在物理PHY层接收终端设备发送的该数据和/或该信令,并对该数据和/或该信令进行PHY层处理后发送到MAC层。
由于第一卫星的星上系统部署有PHY层和MAC层的部分功能模块,第一卫星可以在PHY层接收终端设备发送的数据和/或信令。之后。进行相应的PHY层处理,发送到MAC层,进行MAC层的部分处理后再发送到第二卫星的MAC层。其中,PHY层处理可以包括信道编码、调制、交织、加扰和速率匹配等等。
相对应地,对于中轨卫星或高轨卫星,图9是本申请提供的另一个实施例的卫星通信方法400的示意性流程图。如图9所示,卫星通信方法400包括:S410,第二卫星在媒体接入控制MAC层或MAC之上协议层接收数据和/或信令,该第二卫星为中轨卫星或高轨卫星;S420,该第二卫星在MAC层对该数据和/或该信令进行MAC层第二处理,该MAC层第二处理包括除混合自动重传请求HARQ功能处理和随机接入RA功能处理以外的其他MAC层功能处理;和/或该第二卫星在MAC之上协议层对该数据和/或该信令进行MAC之上协议层处理。
本申请实施例的卫星通信方法,中轨卫星或高轨卫星在MAC层或MAC之上协议层接收数据和/或信令,当需要进行除HARQ功能处理和/或RA功能处理以外的其他MAC层功能处理时,则在第二卫星进行相应处理;或者第二卫星进行MAC之上协议层处理;使得在兼顾中轨卫星或高轨卫星的星上系统实现复杂度和成本的同时,将一部分处理放在中轨卫星或高轨卫星上,可以降低卫星通信系统处理数据和/或信令的时延。
可选地,在一些实施例中,S410第二卫星在MAC层或MAC之上协议层接收数据和/或信令,可以包括:第二卫星在MAC层或MAC之上协议层接收终端设备发送的该数据和/或该信令,该数据和/或该信令不包括MAC层之下协议层的报头。终端设备相对应地,在媒体接入控制MAC层或MAC之上协议层与中轨卫星或高轨卫星传输数据和/或信令。
中轨或高轨的第二卫星在MAC层或MAC之上协议层直接与终端设备进行通信,该通信过程可以与其他通信步骤(例如,低轨的第一卫星的信令交互步骤)并行,可以进一步降低卫星通信系统处理数据和/或信令的时延。
由于中轨卫星或高轨卫星的星上系统仅部署了MAC层实体及MAC之上协议层实体,因此,与第二卫星进行通信时,数据和/或信令不包括MAC层之下协议层的报头,否则中轨卫星或高轨卫星的星上系统无法处理。如果在MAC之上协议层,例如RLC层或RRC层传输数据和/或信令,数据和/或信令还可以不包括RLC层或RRC层之下协议层的报头,本申请对此不做限定。
可选地,在另一些实施例中,S410第二卫星在MAC层或MAC之上协议层接收数据和/或信令,可以包括:第二卫星在MAC层或MAC之上协议层接收第一卫星发送的数据和/或信令,该第一卫星为低轨卫星,即该第二卫星的轨道高度高于该第一卫星的轨道高度。第一卫星的星上系统部署有MAC层实体及MAC之下协议层实体,接收到数据和/或信令后,可以从低层开始逐层处理,之后发送给第二卫星。该通信过程可以与现有的移动通信系统的协议栈的处理兼容。
下面基于两层卫星通信架构,分别对传输数据和传输信令的上行方案进行详细说明。
对于终端设备发送数据的场景,终端设备各协议层对数据的处理包括:
1)SDAP层将要发送的数据流与无线承载进行映射后发往PDCP层;
2)PDCP层对传输控制协议(transmission control protocol,TCP)/用户数据报协议(user data protocol,UDP)的IP数据头进行压缩后发往RLC层;
3)RLC层对数据包进行分块和级联处理后转发给MAC层;
4)MAC层对数据包进行复用和选择合适的传输格式组合后发往PHY层进行调制编码;
5)在PHY层将数据包通过空口发送给第一卫星。
与终端设备对应的卫星侧各协议层对数据的处理包括:
1)第一卫星在PHY层接收终端设备的PHY层发送的数据,并进行解调和译码,同时对数据进行必要的重传处理;
2)第一卫星的PHY层将译码后的数据发送至第二卫星的MAC层,由第二卫星的MAC层进行去掉MAC包头和解复用等操作后发往第二卫星的RLC层;
3)第二卫星的RLC层将数据包进行重组后发往第二卫星的PDCP层;
4)第二卫星的PDCP层对加密过的数据进行解密以及将压缩过的IP数据进行解压缩后发往第二卫星的SDAP层;
5)第二卫星的SDAP层对数据流进行映射后得到终端设备发送的原始数据,之后第二卫星将所得到的数据发送给地面站。
对于终端设备发送信令的场景,终端设备各协议层对信令的处理包括:
1)终端设备由RRC层将信令进行封装后发往PDCP层;
2)PDCP层对接收到的信令进行加密以及完整性保护操作后发给RLC层;
3)RLC层在对信令进行分块以及进行级联操作后转给MAC层;
4)MAC层对信令进行复用以及选择合适的传输格式后发往PHY层;
5)PHY层对信令进行调制编码后发送给第一卫星;
与终端设备对应的卫星侧各协议层对信令的处理包括:
1)第一卫星在PHY层接收终端设备的PHY层发送的信令,并进行解调和译码后转发给第一卫星的MAC层;如果信令是RA过程信令,第一卫星直接向终端设备反馈MSG2以及MSG4;如果信令是终端设备在进行RA时的MSG3,其进行HARQ的反馈也在第一卫星的MAC层进行;如果信令是非随机接入过程信令,第一卫星的MAC层将信令转发给第二卫星的MAC层;
2)第二卫星的MAC层对接收到的信令进行解复用以及去包头的操作之后发往RLC层;
3)第二卫星的RLC层对数据进行重组后发往其上层的PDCP层;
4)第二卫星的PDCP层对信令进行解密以及完整性验证后将信令发往第二卫星的RRC层;
5)第二卫星的RRC层对信令进行解包头处理,处理完成后通知给地面站。
下面以RA流程,包括基于竞争的/基于非竞争的RA流程;RRC连接流程;和RRC重配置流程等几个流程为例,对本申请的卫星通信方法进行详细说明。
图10是本申请提供的而另一个实施例的卫星通信方法500的示意性流程图。为了描述方便起见,图10的实施例以基于竞争的RA流程与RRC连接流程合并来进行描述。如图10所示,卫星通信方法500包括以下步骤。
S510,终端设备向第一卫星发送物理随机接入信道(physical random access channel,PRACH)前导码(preamble code)。相对应地,第一卫星接收终端设备发送的PRACH前导码。应理解,图10中,终端设备、第一卫星和第二卫星所标示的MAC或RRC等是指相应地信令处理是在MAC层或RRC层。例如,PRACH前导码为MAC层信令,第一卫星在PHY层接收终端设备的PHY层发送的PRACH前导码,进行相应处理后将PRACH前导码发送至第一卫星的MAC层进行信令处理。
S520,第一卫星对PRACH前导码进行处理后,向终端设备反馈随机接入响应(random access response)。
S530,该步骤有两种可选的方案,图10中示出的是第一种可选方案。第一种可选方案为:终端设备向第一卫星发送RRC连接建立请求。第一卫星接收到信令后,可以从PHY层开始逐层处理,之后通过MAC层发送给第二卫星。第一种可选方案可以与现有的移动通信系统的协议栈的处理兼容。第二种可选方案为:终端设备直接在MAC层或直接在RRC层发送RRC连接建立请求给第二卫星。第一种可选方案因为S530和S540是并行的,因此可以进一步降低卫星通信系统的接入时延。
S540,第一卫星向终端设备反馈随机接入竞争解决信令。
S550,对应步骤S530,也有两种可选的方案,图10中示出的是第一种可选方案。第一种可选方案为:第二卫星在接收到第一卫星转发的RRC连接建立请求后,经过RRC层处理,通过第一卫星向终端设备反馈RRC连接建立命令。第二种可选方案为:第二卫星直接在MAC层或直接在RRC层向终端设备反馈RRC连接建立命令。
S560,对应步骤S530和S550,也有两种可选的方案,图10中示出的是第一种可选方案。第一种可选方案为:终端设备向第一卫星反馈RRC连接建立完成信令,第一卫星在接收到终端设备的RRC连接建立完成信令后转发给第二卫星。第二种可选方案为:终端设备直接在MAC层或直接在RRC层向第二卫星反馈RRC连接建立完成信令。
图10中RA过程中的前两条信令,即PRACH前导码以及随机接入响应,只需在终端设备与第一卫星中交互即可完成,由此本申请的卫星通信方法可以降低接入时延。
图11是本申请提供的而另一个实施例的卫星通信方法600的示意性流程图。图11的实施例以基于非竞争的RA流程来进行描述。基于非竞争的RA流程主要应用于用户发生切换的场景,此时非竞争的RA流程和RRC连接重配置耦合在一起。如图11所示,旧的第一卫星表示用户的业务即将切出的第一卫星,新的第一卫星表示即将为用户提供服务的第一卫星。卫星通信方法600包括以下步骤。
S610,第二卫星发送RRC重配置命令,此命令包含用户切换时PRACH前导码的索引。与卫星通信方法500类似地,S610有两种可选的方案。第一种可选方案为:第二卫星直接向终端设备发送RRC重配置命令。第二种可选方案为:第二卫星通过旧的第一卫星进行向终端设备转发RRC重配置命令。相对应地,终端设备接收RRC重配置命令。应理解,图11中,终端设备、旧的第一卫星、新的第一卫星和第二卫星所标示的PHY、MAC或RRC等是指相应地信令处理是在PHY、MAC层或RRC层。
S620,终端设备向新的第一卫星发送PRACH前导码。即终端设备进行非竞争的随机接入。
S630,新的第一卫星向终端设备发送物理下行控制信道(physical downlink control channel,PDCCH)调度命令。
S640,新的第一卫星向终端设备发送随机接入响应,其中包括用户的随机接入前导码的索引、上行授权(UL_grant)资源、定时提前以及临时的C-RNTI等。
S650,终端设备发送RRC重配置完成信令。S650有两种可选的方案。第一种可选方案为:终端设备直接向第二卫星发送RRC重配置完成信令。第二种可选方案为:终端设备通过新的第一卫星进行向第二卫星转发RRC重配置完成信令。
图12是本申请提供的而另一个实施例的卫星通信方法700的示意性流程图。图12的实施例以RRC重配置流程来进行描述。与RRC连接流程不同的是,RRC重配置流程结合测量报告进行。由于第一卫星的移动,导致终端设备发送切换,此时触发切换测量报告,NR系统的协议中的切换测量报告由RRC层通过RRC重配置命令发出,终端设备完成测量后反馈给第二卫星。卫星通信方法700包括以下步骤。
S710,第二卫星向终端设备发送RRC重配置命令。RRC重配置命令中包括测量报告指令。应理解,图12中,终端设备、第一卫星和第二卫星所标示的RRC是指相应地信令处理是在RRC层。
S720,终端设备向第二卫星返回RRC重配置完成信令。
S730,有两种可选的方案,图12中示出的是第一种可选的方案。第一种可选的方案为:终端设备将测量完成生成的数据整理成测量报告响应发送给第一卫星,第一卫星将测量报告响应转发给第二卫星。第二种可选的方案为:终端设备直接将测量报告响应发给第二卫星。与地面的移动通信系统不同的是,对于LTE系统或者NR系统,测量报告响应反馈给为其提供服务的基站,本申请实施例需要反馈给为其提供服务的卫星。
应理解,与随机接入过程信令类似,HARQ过程信令等也在低轨的第一卫星完成,本文不再对HARQ过程进行赘述。与RRC信令类似,注册认证过程信令等也在中轨或高轨的第二卫星完成,本文不再对注册认证过程进行赘述。
应理解,对于上行数据而言,本申请一些实施例在终端设备侧可以按完整的协议栈结构对其层层封装;在卫星侧则可以按序在第一卫星和第二卫星的各协议层解封装。下行数据与上行数据处理类似,此处不再赘述。
还应理解,对于上行信令而言,本申请一些实施例中,在终端设备侧可以按完整的协议栈结构对信令层层封装;在卫星侧第一卫星可以依PHY层、MAC层的顺序对信令解封装进行相应的处理,然后将信令由第一卫星的MAC层向第二卫星的MAC层转发。第一卫星已对MAC层解封装,如果第二卫星的MAC层无需再对信令进行MAC层第二处理, 则第二卫星的MAC层对信令进行透传,将信令透传至MAC之上协议层;如果第二卫星的MAC层需要对信令进行MAC层第二处理,则第二卫星的MAC层对信令进行MAC层第二处理,MAC层第二处理完成后将信令发送至MAC之上的各协议层。
本申请另一些实施例中,在终端设备侧可以按完整的协议栈结构对信令层层封装。其中,在MAC层的报头中可以包括是否需要进行MAC层第一处理的信息。在卫星侧第一卫星在PHY层进行解封装,如果MAC层的报头中的信息指示需要进行MAC层第一处理,则第一卫星对MAC层进行解封装进行MAC层第一处理,MAC层第一处理完成后第一卫星的MAC层将信令发送至第二卫星的MAC层;如果MAC层的报头中的信息指示不需要进行MAC层第一处理,则第一卫星不对MAC层进行解封装,直接将信令发送至第二卫星的MAC层,第二卫星的MAC层对信令进行解封装,继而进行MAC层第二处理或者进行MAC之上协议层的处理。
本申请又一些实施例中,对于MAC层信令或MAC之上协议层信令,在终端设备侧可以从MAC层开始至MAC之上各协议层对信令层层封装。终端设备不通过第一卫星,直接与第二卫星通信。在卫星侧第二卫星的MAC层对信令进行解封装,继而进行MAC层第二处理或者进行MAC之上协议层的处理。
本申请又一些实施例中,对于MAC之上协议层信令,在终端设备侧可以从相应地协议层(例如RRC层)开始对信令层层封装。终端设备不通过第一卫星,直接与第二卫星通信。在卫星侧第二卫星的RRC层对信令进行解封装,继而进行RRC层的处理。
下行信令与上行信令处理类似,此处不再赘述。
图8至图12基于的方案均为RLC实体的ARQ功能模块位于第二卫星,在所述数据和/或所述信令需要进行ARQ功能处理时,所述第二卫星对所述数据和/或所述信令进行所述ARQ功能处理。
在本申请的另一个实施例中,RLC实体的ARQ功能模块可以位于第一卫星,在所述数据和/或所述信令需要进行ARQ功能处理时,所述第一卫星对所述数据和/或所述信令进行所述ARQ功能处理。由此涉及ARQ功能处理时,将其放在低轨的第一卫星进行处理,可以进一步降低卫星通信系统的时延。换而言之,低轨卫星的协议栈包括PHY层、MAC层的HARQ功能模块和RA功能模块,以及RLC层的ARQ功能模块。中轨卫星或高轨卫星的协议栈包括RLC(TM/UM Mode)层及RLC以上层的协议栈,高轨卫星只包括透明模式(transparent mode,TM)/非确认模式(unacknowledged mode,UM)。
单层卫星通信架构相对于多层卫星通信架构的方案的不同是,星上系统的复杂度以及数据传输的稳定性为协议栈划分的主要考虑因素。本申请对于单层卫星通信架构提供的实施例中,卫星(单层卫星通信架构仅包括第一卫星)的星上系统的协议栈包括PHY层和MAC层,其中MAC层的HARQ功能与RLC层的ARQ功能合并到MAC层。地面站的协议栈包括RLC层除ARQ功能以外的其他功能模块,以及RLC之上层。即地面站的协议栈的RLC层只拥有UM/TM。卫星与卫星,卫星与地面站之间基于IP协议进行传输。卫星与卫星,卫星地面间为了保证数据传输的稳定性可以增加HARQ功能模块/ARQ功能模块,以保证MAC层与RLC层间的数据传输的可靠性,此时地面站上的RLC层不再拥有数据重排功能。图13是本申请提供的一个实施例的单层卫星通信架构下协议栈的部署的示意图。
图14是本申请提供的一个实施例的卫星800的示意性框图。卫星800为低轨卫星,所述卫星800的星上系统包括MAC实体和MAC之下协议层的实体,所述MAC实体包括混合自动重传请求HARQ功能模块和随机接入RA功能模块。所述卫星800包括获取模块810和处理模块820。所述获取模块810用于在MAC层获取数据和/或信令;所述处理模块820用于在所述数据和/或所述信令需要进行MAC层第一处理时,对所述数据和/或所述信令进行所述MAC层第一处理,所述MAC层第一处理包括通过HARQ功能模块进行HARQ功能处理和通过RA功能模块进行RA功能处理中的至少一种。
本申请实施例提供低轨卫星在MAC层获取数据和/或信令,当需要进行HARQ功能处理和/或RA功能处理时,在低轨卫星进行执行HARQ功能处理和/或RA功能处理,使得在兼顾低轨卫星的星上系统实现复杂度和成本的同时,HARQ功能处理和/或RA功能处理在低轨卫星进行处理,可以降低卫星通信系统处理数据和/或信令的时延。
可选地,在一些实施例中,所述卫星800的星上系统还包括RLC实体,所述RLC实体包括自动重传请求ARQ功能模块;所述处理模块820还用于在所述数据和/或所述信令需要进行ARQ功能处理时,对所述数据和/或所述信令进行所述ARQ功能处理。
可选地,在一些实施例中,所述处理模块820用于:在所述数据和/或所述信令需要进行MAC层第二处理或MAC之上协议层的处理时,向第二卫星发送所述数据和/或所述信令,所述MAC层第二处理包括除HARQ功能处理和RA功能处理以外的其他MAC层功能处理,所述第二卫星为中轨卫星或高轨卫星。
可选地,在一些实施例中,所述获取模块810具体用于:在MAC之下协议层中的物理PHY层接收终端设备发送的所述数据和/或所述信令,并对所述数据和/或所述信令进行PHY层处理后发送到MAC层。
可选地,在一些实施例中,需要进行MAC层第一处理的信令包括随机接入过程信令和/或HARQ过程信令。
可选地,在一些实施例中,需要进行MAC之上协议层的处理的信令包括无线资源控制RRC信令。
可选地,在一些实施例中,所述MAC实体还用于控制HARQ功能和RA功能的第一MAC控制模块。
图15是本申请提供的另一个实施例的卫星900的示意性框图。卫星900为低轨卫星。如图15所示的卫星900可以包括处理器910和存储器920。所述存储器920中存储有计算机指令,所述处理器910执行所述计算机指令时,使得所述卫星900执行以下步骤:在MAC层获取数据和/或信令;在所述数据和/或所述信令需要进行MAC层第一处理时,对所述数据和/或所述信令进行所述MAC层第一处理,所述MAC层第一处理包括混合自动重传请求HARQ功能处理和随机接入RA功能处理中的至少一种。
本申请实施例提供低轨卫星在MAC层获取数据和/或信令,当需要进行HARQ功能处理和/或RA功能处理时,在低轨卫星进行执行HARQ功能处理和/或RA功能处理,使得在兼顾低轨卫星的星上系统实现复杂度和成本的同时,HARQ功能处理和/或RA功能处理在低轨卫星进行处理,可以降低卫星通信系统处理数据和/或信令的时延。
可选地,在一些实施例中,所述卫星900的星上系统包括MAC实体和MAC之下协议层的实体,所述MAC实体包括混合自动重传请求HARQ功能模块和随机接入RA功能 模块。
可选地,在一些实施例中,所述卫星900的星上系统还包括RLC实体,所述RLC实体包括自动重传请求ARQ功能模块;所述处理器910还用于执行所述计算机指令,使得所述卫星900执行以下步骤:在所述数据和/或所述信令需要进行ARQ功能处理时,对所述数据和/或所述信令进行所述ARQ功能处理。
可选地,在一些实施例中,所述处理器910还用于执行所述计算机指令,使得所述卫星900执行以下步骤:在所述数据和/或所述信令需要进行MAC层第二处理或MAC之上协议层的处理时,向第二卫星发送所述数据和/或所述信令,所述MAC层第二处理包括除HARQ功能处理和RA功能处理以外的其他MAC层功能处理,所述第二卫星为中轨卫星或高轨卫星。
可选地,在一些实施例中,所述处理器910执行所述计算机指令使得所述卫星900在MAC层获取数据和/或信令,包括:在MAC之下协议层中的物理PHY层接收终端设备发送的所述数据和/或所述信令,并对所述数据和/或所述信令进行PHY层处理后发送到MAC层。
可选地,在一些实施例中,需要进行MAC层第一处理的信令包括随机接入过程信令和/或HARQ过程信令。
可选地,在一些实施例中,需要进行MAC之上协议层的处理的信令包括无线资源控制RRC信令。
可选地,在一些实施例中,所述MAC实体还用于控制HARQ功能和RA功能的第一MAC控制模块。
应理解,图14所示的卫星800或图15所示的卫星900,可用于执行上述方法实施例低轨卫星的操作或流程,并且卫星800或卫星900中的各个模块和器件的操作和/或功能分别为了实现上述方法实施例低轨卫星的相应流程,为了简洁,此处不再赘述。
图16是本申请提供的又一个实施例的卫星1000的示意性框图。卫星1000为中轨卫星或高轨卫星,所述卫星1000的星上系统包括MAC实体和MAC之上协议层的实体,所述MAC实体包括除混合自动重传请求HARQ功能模块和随机接入RA功能模块以外的其他MAC层功能模块。所述卫星1000包括获取模块1010和处理模块1020。所述获取模块1010用于在MAC层或MAC之上协议层获取数据和/或信令;所述处理模块1020用于通过所述其他MAC层功能模块对所述数据和/或所述信令进行MAC层第二处理,所述MAC层第二处理包括除混合自动重传请求HARQ功能处理和随机接入RA功能处理以外的其他MAC层功能处理;和/或通过MAC之上协议层的实体对所述数据和/或所述信令进行MAC之上协议层处理。
本申请实施例的中轨卫星或高轨卫星在MAC层或MAC之上协议层接收数据和/或信令,当需要进行除HARQ功能处理和/或RA功能处理以外的其他MAC层功能处理时,则在第二卫星进行相应处理;或者第二卫星进行MAC之上协议层处理;使得在兼顾中轨卫星或高轨卫星的星上系统实现复杂度和成本的同时,将一部分处理放在中轨卫星或高轨卫星上,可以降低卫星通信系统处理数据和/或信令的时延。
可选地,在一些实施例中,所述卫星1000的星上系统还包括RLC实体,所述RLC实体包括自动重传请求ARQ功能模块;所述处理模块1020还用于在所述数据和/或所述 信令需要进行ARQ功能处理时,对所述数据和/或所述信令进行所述ARQ功能处理。
可选地,在一些实施例中,所述获取模块1010具体用于:在MAC层或MAC之上协议层接收终端设备发送的所述数据和/或所述信令,所述数据和/或所述信令不包括MAC层之下协议层的报头。
可选地,在一些实施例中,所述获取模块1010具体用于:在MAC层或MAC之上协议层接收第一卫星发送的数据和/或信令,所述第一卫星为低轨卫星。
可选地,在一些实施例中,通过MAC之上协议层的实体进行MAC之上协议层处理的信令包括无线资源控制RRC信令。
可选地,在一些实施例中,MAC实体还包括除HARQ功能和RA功能以外的其他MAC层功能的第二MAC控制模块。
图17是本申请提供的又一个实施例的卫星1100的示意性框图。卫星1100为中轨卫星或高轨卫星。如图17所示的卫星1100可以包括处理器1110和存储器1120。所述存储器1120中存储有计算机指令,所述处理器1110执行所述计算机指令时,使得所述卫星1100执行以下步骤:在MAC层或MAC之上协议层接收数据和/或信令;在MAC层对所述数据和/或所述信令进行MAC层第二处理,所述MAC层第二处理包括除混合自动重传请求HARQ功能处理和随机接入RA功能处理以外的其他MAC层功能处理;和/或所述第二卫星在MAC之上协议层对所述数据和/或所述信令进行MAC之上协议层处理。
本申请实施例的中轨卫星或高轨卫星在MAC层或MAC之上协议层接收数据和/或信令,当需要进行除HARQ功能处理和/或RA功能处理以外的其他MAC层功能处理时,则在第二卫星进行相应处理;或者第二卫星进行MAC之上协议层处理;使得在兼顾中轨卫星或高轨卫星的星上系统实现复杂度和成本的同时,将一部分处理放在中轨卫星或高轨卫星上,可以降低卫星通信系统处理数据和/或信令的时延。
可选地,在一些实施例中,所述卫星1100的星上系统包括MAC实体和MAC之上协议层的实体,所述MAC实体包括除混合自动重传请求HARQ功能模块和随机接入RA功能模块以外的其他MAC层功能模块。
可选地,在一些实施例中,所述卫星1100的星上系统还包括RLC实体,所述RLC实体包括自动重传请求ARQ功能模块;所述处理器1110还用于执行所述计算机指令,使得所述卫星1100执行以下步骤:在所述数据和/或所述信令需要进行ARQ功能处理时,对所述数据和/或所述信令进行所述ARQ功能处理。
可选地,在一些实施例中,所述处理器1110执行所述计算机指令使得所述卫星1100在MAC层或MAC之上协议层接收数据和/或信令,包括:在MAC层或MAC之上协议层接收终端设备发送的所述数据和/或所述信令,所述数据和/或所述信令不包括MAC层之下协议层的报头。
可选地,在一些实施例中,所述处理器1110执行所述计算机指令使得所述卫星1100在MAC层或MAC之上协议层接收数据和/或信令,包括:在MAC层或MAC之上协议层接收第一卫星发送的数据和/或信令,所述第一卫星为低轨卫星。
可选地,在一些实施例中,通过MAC之上协议层的实体进行MAC之上协议层处理的信令包括无线资源控制RRC信令。
可选地,在一些实施例中,MAC实体还包括除HARQ功能和RA功能以外的其他 MAC层功能的第二MAC控制模块。
应理解,图16所示的卫星1000或图17所示的卫星1100,可用于执行上述方法实施例中轨卫星或高轨卫星的操作或流程,并且卫星1000或卫星1100中的各个模块和器件的操作和/或功能分别为了实现上述方法实施例中轨卫星或高轨卫星的相应流程,为了简洁,此处不再赘述。
本申请还提供一种终端设备,该终端设备,包括:传输模块,用于在物理PHY层与第一卫星传输数据和/或信令,所述第一卫星为低轨卫星;所述传输模块还用于在媒体接入控制MAC层或MAC之上协议层与第二卫星传输数据和/或信令,与所述第二卫星传输的所述数据和/或所述信令不包括MAC层之下协议层的报头,所述第二卫星为中轨卫星或高轨卫星。
本申请还提供一种终端设备,该终端设备包括处理器和存储器。存储器中存储有计算机指令,处理器执行所述计算机指令时,使得终端设备执行以下步骤:在物理PHY层与第一卫星传输数据和/或信令,所述第一卫星为低轨卫星;在MAC层或MAC之上协议层与第二卫星传输数据和/或信令,所述数据和/或所述信令不包括MAC层之下协议层的报头,所述第二卫星为中轨卫星或高轨卫星。
本申请还提供一种卫星通信系统,包括根据卫星800(或卫星900)、卫星1000(或卫星1100)和地面站。
本申请还提供一种卫星通信系统,包括根据卫星800(或卫星900)和地面站。
应理解,本申请实施例中提及的处理器可以包括中央处理器(central processing pnit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
还应理解,本申请实施例中提及的存储器可以是易失性存储器(volatile memory)或非易失性存储器(non-volatile memory),或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、快闪存储器(flash memory)、硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器 件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,当所述指令在计算机上运行时,使得所述计算机执行上述方法实施例的由低轨卫星执行的步骤。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,当所述指令在计算机上运行时,使得所述计算机执行上述方法实施例的由中轨卫星或高轨卫星执行的步骤。
本申请实施例还提供一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指时,所述计算机执行上述方法实施例的由低轨卫星执行的步骤。
本申请实施例还提供一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指时,所述计算机执行上述方法实施例的由中轨卫星或高轨卫星执行的步骤。
本申请实施例还提供一种计算机芯片,该计算机芯片使得计算机执行上述方法实施例的由低轨卫星执行的步骤。
本申请实施例还提供一种计算机芯片,该计算机芯片使得计算机执行上述方法实施例的由中轨卫星或高轨卫星执行的步骤。
本申请实施例提供给的设备,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (88)

  1. 一种卫星,其特征在于,所述卫星为低轨卫星,所述卫星的星上系统包括媒体接入控制MAC实体和MAC之下协议层的实体,所述MAC实体包括混合自动重传请求HARQ功能模块和随机接入RA功能模块,所述卫星包括获取模块和处理模块;
    所述获取模块用于在MAC层获取数据和/或信令;
    所述处理模块用于在所述数据和/或所述信令需要进行MAC层第一处理时,对所述数据和/或所述信令进行所述MAC层第一处理,所述MAC层第一处理包括通过HARQ功能模块进行HARQ功能处理和通过RA功能模块进行RA功能处理中的至少一种。
  2. 根据权利要求1所述的卫星,其特征在于,所述卫星的星上系统还包括无线链路控制RLC实体,所述RLC实体包括自动重传请求ARQ功能模块;
    所述处理模块还用于在所述数据和/或所述信令需要进行ARQ功能处理时,对所述数据和/或所述信令进行所述ARQ功能处理。
  3. 根据权利要求1或2所述的卫星,其特征在于,所述处理模块用于:
    在所述数据和/或所述信令需要进行MAC层第二处理或MAC之上协议层的处理时,向第二卫星发送所述数据和/或所述信令,所述MAC层第二处理包括除HARQ功能处理和RA功能处理以外的其他MAC层功能处理,所述第二卫星为中轨卫星或高轨卫星。
  4. 根据权利要求1至3中任一项所述的卫星,其特征在于,所述获取模块具体用于:
    在MAC之下协议层中的物理PHY层接收终端设备发送的所述数据和/或所述信令,并对所述数据和/或所述信令进行PHY层处理后发送到MAC层。
  5. 根据权利要求1至4中任一项所述的卫星,其特征在于,所述MAC实体还包括用于控制HARQ功能和RA功能的第一MAC控制模块。
  6. 根据权利要求1至5中任一项所述的卫星,其特征在于,需要进行MAC层第一处理的信令包括随机接入过程信令和/或HARQ过程信令。
  7. 根据权利要求1至6中任一项所述的卫星,其特征在于,需要进行MAC之上协议层的处理的信令包括无线资源控制RRC信令。
  8. 一种卫星,其特征在于,所述卫星为中轨卫星或高轨卫星,所述卫星的星上系统包括媒体接入控制MAC实体和MAC之上协议层的实体,所述MAC实体包括除混合自动重传请求HARQ功能模块和随机接入RA功能模块以外的其他MAC层功能模块,所述卫星包括获取模块和处理模块;
    所述获取模块用于在MAC层或MAC之上协议层获取数据和/或信令;
    所述处理模块用于通过所述其他MAC层功能模块对所述数据和/或所述信令进行MAC层第二处理,所述MAC层第二处理包括除混合自动重传请求HARQ功能处理和随机接入RA功能处理以外的其他MAC层功能处理;和/或通过MAC之上协议层的实体对所述数据和/或所述信令进行MAC之上协议层处理。
  9. 根据权利要求8所述的卫星,其特征在于,所述卫星的星上系统还包括无线链路控制RLC实体,所述RLC实体包括自动重传请求ARQ功能模块;
    所述处理模块还用于在所述数据和/或所述信令需要进行ARQ功能处理时,对所述数 据和/或所述信令进行所述ARQ功能处理。
  10. 根据权利要求8或9所述的卫星,其特征在于,所述获取模块具体用于:
    在MAC层或MAC之上协议层接收终端设备发送的所述数据和/或所述信令,所述数据和/或所述信令不包括MAC层之下协议层的报头。
  11. 根据权利要求8或9所述的卫星,其特征在于,所述获取模块具体用于:
    在MAC层或MAC之上协议层接收第一卫星发送的数据和/或信令,所述第一卫星为低轨卫星。
  12. 根据权利要求8至11中任一项所述的卫星,其特征在于,所述MAC实体还包括除HARQ功能和RA功能以外的其他MAC层功能的第二MAC控制模块。
  13. 根据权利要求8至12中任一项所述的卫星,其特征在于,通过MAC之上协议层的实体进行MAC之上协议层处理的信令包括无线资源控制RRC信令。
  14. 一种终端设备,其特征在于,包括:
    传输模块,用于在物理PHY层与第一卫星传输数据和/或信令,所述第一卫星为低轨卫星;
    所述传输模块还用于在媒体接入控制MAC层或MAC之上协议层与第二卫星传输数据和/或信令,与所述第二卫星传输的所述数据和/或所述信令不包括MAC层之下协议层的报头,所述第二卫星为中轨卫星或高轨卫星。
  15. 一种卫星通信系统,其特征在于,包括:根据权利要求1至7中任一项所述的卫星、根据权利要求8至13中任一项所述的卫星和地面站。
  16. 一种卫星通信系统,其特征在于,包括:根据权利要求1至7中任一项所述的卫星、根据权利要求8至13中任一项所述的卫星、地面站和根据权利要求14所述的终端设备。
  17. 一种卫星通信系统,其特征在于,包括:根据权利要求1至7中任一项所述的卫星和地面站。
  18. 一种卫星通信系统,其特征在于,包括:根据权利要求1至7中任一项所述的卫星、地面站和根据权利要求14所述的终端设备。
  19. 一种卫星通信方法,其特征在于,包括:
    第一卫星在媒体接入控制MAC层获取数据和/或信令,所述第一卫星为低轨卫星;
    在所述数据和/或所述信令需要进行MAC层第一处理时,所述第一卫星对所述数据和/或所述信令进行所述MAC层第一处理,所述MAC层第一处理包括混合自动重传请求HARQ功能处理和随机接入RA功能处理中的至少一种。
  20. 根据权利要求19所述的卫星通信方法,其特征在于,所述第一卫星的星上系统包括MAC实体和MAC之下协议层的实体,所述MAC实体包括混合自动重传请求HARQ功能模块和随机接入RA功能模块。
  21. 根据权利要求20所述的卫星通信方法,其特征在于,所述MAC实体还包括用于控制HARQ功能和RA功能的第一MAC控制模块。
  22. 根据权利要求19至21中任一项所述的卫星通信方法,其特征在于,所述卫星通信方法还包括:
    在所述数据和/或所述信令需要进行自动重传请求ARQ功能处理时,所述第一卫星对 所述数据和/或所述信令进行所述ARQ功能处理。
  23. 根据权利要求22所述的卫星通信方法,其特征在于,所述第一卫星的星上系统包括无线链路控制RLC实体,所述RLC实体包括ARQ功能模块。
  24. 根据权利要求19至23中任一项所述的卫星通信方法,其特征在于,所述卫星通信方法还包括:
    在所述数据和/或所述信令需要进行MAC层第二处理或MAC之上协议层的处理时,所述第一卫星向第二卫星发送所述数据和/或所述信令,所述MAC层第二处理包括除HARQ功能处理和RA功能处理以外的其他MAC层功能处理,所述第二卫星为中轨卫星或高轨卫星。
  25. 根据权利要求19至24中任一项所述的卫星通信方法,其特征在于,所述第一卫星在MAC层获取数据和/或信令,包括:
    所述第一卫星在物理PHY层接收终端设备发送的所述数据和/或所述信令,并对所述数据和/或所述信令进行PHY层处理后发送到MAC层。
  26. 根据权利要求19至25中任一项所述的卫星通信方法,其特征在于,需要进行第一MAC层处理的信令包括随机接入过程信令和/或HARQ过程信令。
  27. 根据权利要求19至24中任一项所述的卫星通信方法,其特征在于,需要进行MAC之上协议层的处理的信令包括无线资源控制RRC信令。
  28. 一种卫星通信方法,其特征在于,包括:
    第二卫星在媒体接入控制MAC层或MAC之上协议层接收数据和/或信令,所述第二卫星为中轨卫星或高轨卫星;
    所述第二卫星在MAC层对所述数据和/或所述信令进行MAC层第二处理,所述MAC层第二处理包括除混合自动重传请求HARQ功能处理和随机接入RA功能处理以外的其他MAC层功能处理;和/或所述第二卫星在MAC之上协议层对所述数据和/或所述信令进行MAC之上协议层处理。
  29. 根据权利要求28所述的卫星通信方法,其特征在于,所述第二卫星的星上系统包括MAC实体和MAC之上协议层的实体,所述MAC实体包括除混合自动重传请求HARQ功能模块和随机接入RA功能模块以外的其他MAC层功能模块。
  30. 根据权利要求29所述的卫星通信方法,其特征在于,所述MAC实体还包括用于控制除HARQ功能和RA功能以外的其他MAC层功能的第二MAC控制模块。
  31. 根据权利要求28至30中任一项所述的卫星通信方法,其特征在于,所述卫星通信方法还包括:
    在所述数据和/或所述信令需要进行自动重传请求ARQ功能处理时,所述第二卫星对所述数据和/或所述信令进行所述ARQ功能处理。
  32. 根据权利要求31所述的卫星通信方法,其特征在于,所述第二卫星的星上系统还包括无线链路控制RLC实体,所述RLC实体包括自动重传请求ARQ功能模块。
  33. 根据权利要求28至32中任一项所述的卫星通信方法,其特征在于,
    所述第二卫星在MAC层或MAC之上协议层接收数据和/或信令,包括:
    所述第二卫星在MAC层或MAC之上协议层接收终端设备发送的所述数据和/或所述信令,所述数据和/或所述信令不包括MAC层之下协议层的报头。
  34. 根据权利要求28至32中任一项所述的卫星通信方法,其特征在于,
    所述第二卫星在MAC层或MAC之上协议层接收数据和/或信令,包括:
    所述第二卫星在MAC层或MAC之上协议层接收第一卫星发送的数据和/或信令,所述第一卫星为低轨卫星。
  35. 根据权利要求28至34中任一项所述的卫星通信方法,其特征在于,在MAC之上协议层进行MAC之上协议层处理的信令包括无线资源控制RRC信令。
  36. 一种卫星通信方法,其特征在于,包括:
    终端设备在物理PHY层与第一卫星传输数据和/或信令,所述第一卫星为低轨卫星;
    所述终端设备在媒体接入控制MAC层或MAC之上协议层与第二卫星传输数据和/或信令,所述数据和/或所述信令不包括MAC层之下协议层的报头,所述第二卫星为中轨卫星或高轨卫星。
  37. 一种卫星,其特征在于,所述卫星为低轨卫星,所述卫星包括处理器和存储器,所述存储器中存储有计算机指令,所述处理器执行所述计算机指令时,使得所述卫星执行权利要求19至27中任一项所述的卫星通信方法。
  38. 一种卫星,其特征在于,所述卫星为中轨卫星或高轨卫星,所述卫星包括处理器和存储器,所述存储器中存储有计算机指令,所述处理器执行所述计算机指令时,使得所述卫星执行权利要求28至35中任一项所述的卫星通信方法。
  39. 一种终端设备,其特征在于,所述终端设备包括处理器和存储器,所述存储器中存储有计算机指令,所述处理器执行所述计算机指令时,使得所述终端设备执行权利要求36所述的卫星通信方法。
  40. 一种卫星通信系统,其特征在于,包括:根据权利要求37所述的卫星、根据权利要求38所述的卫星和地面站。
  41. 一种卫星通信系统,其特征在于,包括:根据权利要求37所述的卫星、根据权利要求38所述的卫星、地面站和根据权利要求39所述的终端设备。
  42. 一种卫星通信系统,其特征在于,包括:根据权利要求37所述的卫星和地面站。
  43. 一种卫星通信系统,其特征在于,包括:根据权利要求37所述的卫星、地面站和根据权利要求39所述的终端设备。
  44. 一种卫星,其特征在于,所述卫星为第一卫星,用于执行如权利要求19至27中任一项所述的方法。
  45. 一种卫星,其特征在于,所述卫星为第二卫星,用于执行如权利要求28至35中任一项所述的方法。
  46. 一种终端设备,其特征在于,用于执行如权利要求36所述的方法。
  47. 一种卫星通信系统,其特征在于,包括:根据权利要求44所述的卫星、根据权利要求45所述的卫星和地面站。
  48. 一种卫星通信系统,其特征在于,包括:根据权利要求44所述的卫星、根据权利要求45所述的卫星、地面站和根据权利要求46所述的终端设备。
  49. 一种卫星通信系统,其特征在于,包括:根据权利要求44所述的卫星和地面站。
  50. 一种卫星通信系统,其特征在于,包括:根据权利要求44所述的卫星、地面站和根据权利要求46所述的终端设备。
  51. 一种卫星,其特征在于,所述卫星为第一卫星,包括处理器,用于执行存储器中的程序以实现如权利要求19至27中任一项所述的方法。
  52. 一种卫星,其特征在于,所述卫星为第二卫星,包括处理器,用于执行存储器中的程序以实现如权利要求28至35中任一项所述的方法。
  53. 一种终端设备,其特征在于,包括处理器,用于执行存储器中的程序以实现如权利要求36所述的方法。
  54. 一种卫星通信系统,其特征在于,包括:根据权利要求51所述的卫星、根据权利要求52所述的卫星和地面站。
  55. 一种卫星通信系统,其特征在于,包括:根据权利要求51所述的卫星、根据权利要求52所述的卫星、地面站和根据权利要求53所述的终端设备。
  56. 一种卫星通信系统,其特征在于,包括:根据权利要求51所述的卫星和地面站。
  57. 一种卫星通信系统,其特征在于,包括:根据权利要求51所述的卫星、地面站和根据权利要求53所述的终端设备。
  58. 一种卫星,其特征在于,所述卫星为第一卫星,包括:处理器,所述处理器与存储器耦合;
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述第一卫星执行如权利要求19至27中任一项所述的方法。
  59. 一种卫星,其特征在于,所述卫星为第二卫星,包括:处理器,所述处理器与存储器耦合;
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述第二卫星执行如权利要求28至35中任一项所述的方法。
  60. 一种终端设备,其特征在于,包括:处理器,所述处理器与存储器耦合;
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述终端设备执行如权利要求36所述的方法。
  61. 一种卫星通信系统,其特征在于,包括:根据权利要求58所述的卫星、根据权利要求59所述的卫星和地面站。
  62. 一种卫星通信系统,其特征在于,包括:根据权利要求58所述的卫星、根据权利要求59所述的卫星、地面站和根据权利要求60所述的终端设备。
  63. 一种卫星通信系统,其特征在于,包括:根据权利要求58所述的卫星和地面站。
  64. 一种卫星通信系统,其特征在于,包括:根据权利要求58所述的卫星、地面站和根据权利要求60所述的终端设备。
  65. 一种卫星,其特征在于,所述卫星为第一卫星,包括:处理器和收发器;
    所述处理器,用于执行存储器中存储的计算机程序,以使得所述第一卫星执行如权利要求19至27中任一项所述的方法。
  66. 一种卫星,其特征在于,所述卫星为第二卫星,包括:处理器和收发器;
    所述处理器,用于执行存储器中存储的计算机程序,以使得所述第二卫星执行如权利 要求28至35中任一项所述的方法。
  67. 一种终端设备,其特征在于,包括:处理器和收发器;
    所述处理器,用于执行存储器中存储的计算机程序,以使得所述终端设备执行如权利要求36所述的方法。
  68. 一种卫星通信系统,其特征在于,包括:根据权利要求65所述的卫星、根据权利要求66所述的卫星和地面站。
  69. 一种卫星通信系统,其特征在于,包括:根据权利要求65所述的卫星、根据权利要求66所述的卫星、地面站和根据权利要求67所述的终端设备。
  70. 一种卫星通信系统,其特征在于,包括:根据权利要求65所述的卫星和地面站。
  71. 一种卫星通信系统,其特征在于,包括:根据权利要求65所述的卫星、地面站和根据权利要求67所述的终端设备。
  72. 一种卫星,其特征在于,所述卫星为第一卫星,包括:处理器,存储器和收发器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述第一卫星执行如权利要求19至27中任一项所述的方法。
  73. 一种卫星,其特征在于,所述卫星为第二卫星,包括:处理器,存储器和收发器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述第二卫星执行如权利要求28至35中任一项所述的方法。
  74. 一种终端设备,其特征在于,包括:处理器,存储器和收发器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述终端设备执行如权利要求36所述的方法。
  75. 一种卫星通信系统,其特征在于,包括:根据权利要求72所述的卫星、根据权利要求73所述的卫星和地面站。
  76. 一种卫星通信系统,其特征在于,包括:根据权利要求72所述的卫星、根据权利要求73所述的卫星、地面站和根据权利要求74所述的终端设备。
  77. 一种卫星通信系统,其特征在于,包括:根据权利要求72所述的卫星和地面站。
  78. 一种卫星通信系统,其特征在于,包括:根据权利要求72所述的卫星、地面站和根据权利要求74所述的终端设备。
  79. 一种卫星,其特征在于,包括用于执行权利要求19至27中任一项所述的各个步骤的单元或手段。
  80. 一种卫星,其特征在于,包括用于执行权利要求28至35中任一项所述的各个步骤的单元或手段。
  81. 一种终端设备,其特征在于,包括用于执行权利要求36所述的各个步骤的单元或手段。
  82. 一种卫星通信系统,其特征在于,包括:根据权利要求79所述的卫星、根据权利要求80所述的卫星和地面站。
  83. 一种卫星通信系统,其特征在于,包括:根据权利要求79所述的卫星、根据权 利要求80所述的卫星、地面站和根据权利要求81所述的终端设备。
  84. 一种卫星通信系统,其特征在于,包括:根据权利要求79所述的卫星和地面站。
  85. 一种卫星通信系统,其特征在于,包括:根据权利要求79所述的卫星、地面站和根据权利要求81所述的终端设备。
  86. 一种处理器,其特征在于,该处理器包括:至少一种电路,用于执行如权利要求19至27或28至35或36中任一项所述的方法。
  87. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求19至27或28至35或36中任一项所述的方法被执行。
  88. 一种计算机程序,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求19至27或28至35或36中任一项所述的方法被执行。
PCT/CN2019/090307 2018-11-26 2019-06-06 卫星、终端设备、卫星通信系统和卫星通信方法 WO2020107852A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19888520.4A EP3879923A4 (en) 2019-06-06 Satellite, terminal device, and satellite-based communication system and method
KR1020217018889A KR102498933B1 (ko) 2018-11-26 2019-06-06 위성, 단말 장치, 위성 통신 시스템 및 위성 통신 방법
US17/329,718 US11606136B2 (en) 2018-11-26 2021-05-25 Satellite, terminal device, satellite communication system, and satellite communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811415697.3A CN111224707B (zh) 2018-11-26 2018-11-26 卫星、终端设备、卫星通信系统和卫星通信方法
CN201811415697.3 2018-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/329,718 Continuation US11606136B2 (en) 2018-11-26 2021-05-25 Satellite, terminal device, satellite communication system, and satellite communication method

Publications (1)

Publication Number Publication Date
WO2020107852A1 true WO2020107852A1 (zh) 2020-06-04

Family

ID=70806429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090307 WO2020107852A1 (zh) 2018-11-26 2019-06-06 卫星、终端设备、卫星通信系统和卫星通信方法

Country Status (4)

Country Link
US (1) US11606136B2 (zh)
KR (1) KR102498933B1 (zh)
CN (1) CN111224707B (zh)
WO (1) WO2020107852A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543173A (zh) * 2021-06-29 2021-10-22 中国电子科技集团公司电子科学研究院 卫星5g融合网络的网元部署架构和网元部署方法
CN114465655A (zh) * 2022-01-24 2022-05-10 上海卫星工程研究所 一种卫星数传数据的重传方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113810095B (zh) * 2020-06-15 2022-12-06 华为技术有限公司 确定数字处理操作切分点的方法及装置
CN112020084B (zh) * 2020-07-21 2021-07-20 北京邮电大学 一种卫星场景下两步随机接入信道设计及信号检测方法
CN114070481B (zh) * 2020-07-31 2023-08-11 中国信息通信研究院 一种物理信道的传输方法和设备
CN114827920B (zh) * 2021-01-11 2023-04-28 大唐移动通信设备有限公司 一种通信方法、装置、设备和可读存储介质
CN112953726B (zh) * 2021-03-01 2022-09-06 西安电子科技大学 融合双层卫星网络星地和星间组网认证方法、系统及应用
CN113056029B (zh) * 2021-03-10 2022-05-17 浙江大学 一种适用于低轨卫星网络的能量受限终端随机接入方法
CN114285460B (zh) * 2021-12-31 2024-04-19 浙江时空道宇科技有限公司 卫星测控方法、装置、电子设备、存储介质及程序产品
WO2023153823A1 (ko) * 2022-02-09 2023-08-17 현대자동차주식회사 비-지상 네트워크에서 복합 자동 재전송 요청을 위한 방법 및 장치
CN114499649A (zh) * 2022-03-30 2022-05-13 阿里巴巴达摩院(杭州)科技有限公司 卫星通信方法、装置、设备、系统及存储介质
WO2024092697A1 (zh) * 2022-11-04 2024-05-10 华为技术有限公司 通信方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101552933A (zh) * 2009-05-04 2009-10-07 中国人民解放军空军工程大学 低/中轨道双层卫星光网络自适应路由系统及代理路由计算方法
CN102355315A (zh) * 2011-07-08 2012-02-15 西安电子科技大学 天基网广播方法
CN106993312A (zh) * 2017-04-28 2017-07-28 北京邮电大学 空间信息网络中基于最小化最大传输时间的多波束负载均衡方法
US20170290034A1 (en) * 2016-04-01 2017-10-05 Futurewei Technologies, Inc. Auxiliary Content Delivery

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113498B2 (en) 2002-06-05 2006-09-26 Broadcom Corporation Virtual switch
WO2008085811A2 (en) 2007-01-04 2008-07-17 Interdigital Technology Corporation Method and apparatus for hybrid automatic repeat request transmission
CN101127703B (zh) * 2007-08-06 2010-06-30 北京航空航天大学 用于宽带卫星通信的星载路由交换系统
US20090289839A1 (en) * 2007-09-26 2009-11-26 Viasat, Inc Dynamic Sub-Channel Sizing
KR101124066B1 (ko) * 2008-12-03 2012-04-12 한국전자통신연구원 왕복 지연시간이 긴 시스템에서의 arq와 harq의 상호작용 방법
US8850067B2 (en) 2009-10-22 2014-09-30 Verizon Patent And Licensing Inc. Internet protocol (IP) address pool management and allocation
FR2954635B1 (fr) 2009-12-17 2016-03-11 Astrium Sas Systeme spatial hybride base sur une constellation de satellites en orbite basse agissant comme repeteurs spatiaux pour ameliorer l'emission et la reception de signaux geostationnaires
CN101807952B (zh) * 2010-03-09 2013-01-23 北京大学 基于星上部分基带交换的卫星移动通信方法
KR101789352B1 (ko) 2010-05-03 2017-10-23 인터디지탈 패튼 홀딩스, 인크 인터넷 프로토콜(ip) 어드레스의 할당 및 단문 메시지 서비스(sms) 전송 동안의 사용
US9392636B2 (en) 2011-09-19 2016-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for setting up a packet data network (PDN) connection
US10097259B2 (en) * 2014-12-31 2018-10-09 Hughes Network Systems, Llc Satellite receiver doppler compensation using resampled satellite signals
US10009093B2 (en) * 2015-05-01 2018-06-26 Qualcomm Incorporated Handoff for satellite communication
US10177837B2 (en) * 2015-06-17 2019-01-08 Hughes Network Systems, Llc Approaches for high speed global packet data services for LEO/MEO satellite systems
WO2016205765A1 (en) 2015-06-17 2016-12-22 Hughes Network Systems, Llc Approaches for high speed global packet data services leo/meo satellite systems
CN106059654A (zh) * 2016-08-04 2016-10-26 深圳市华讯星通讯有限公司 终端无线通信方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101552933A (zh) * 2009-05-04 2009-10-07 中国人民解放军空军工程大学 低/中轨道双层卫星光网络自适应路由系统及代理路由计算方法
CN102355315A (zh) * 2011-07-08 2012-02-15 西安电子科技大学 天基网广播方法
US20170290034A1 (en) * 2016-04-01 2017-10-05 Futurewei Technologies, Inc. Auxiliary Content Delivery
CN106993312A (zh) * 2017-04-28 2017-07-28 北京邮电大学 空间信息网络中基于最小化最大传输时间的多波束负载均衡方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543173A (zh) * 2021-06-29 2021-10-22 中国电子科技集团公司电子科学研究院 卫星5g融合网络的网元部署架构和网元部署方法
CN114465655A (zh) * 2022-01-24 2022-05-10 上海卫星工程研究所 一种卫星数传数据的重传方法
CN114465655B (zh) * 2022-01-24 2024-02-09 上海卫星工程研究所 一种卫星数传数据的重传方法

Also Published As

Publication number Publication date
US11606136B2 (en) 2023-03-14
CN111224707B (zh) 2021-12-28
US20210281318A1 (en) 2021-09-09
CN111224707A (zh) 2020-06-02
EP3879923A1 (en) 2021-09-15
KR20210093314A (ko) 2021-07-27
KR102498933B1 (ko) 2023-02-10

Similar Documents

Publication Publication Date Title
WO2020107852A1 (zh) 卫星、终端设备、卫星通信系统和卫星通信方法
US11997725B2 (en) Satellite communication method, apparatus, and system
US20220217607A1 (en) Handover method and apparatus in satellite communications
CN101873164B (zh) 处理数据传递的中继站及控制数据传递的相关方法
US10172066B2 (en) Flexible bearer handling
KR20200013053A (ko) 통신 방법 및 장치
WO2018202131A1 (zh) 通信方法、装置及系统
CN114071693B (zh) 通信方法及装置
US20230231661A1 (en) Channel transmission method, terminal device and network device
WO2022151272A1 (zh) 定时器启动方法、装置、终端及存储介质
WO2024040393A1 (zh) 无线通信的方法、终端设备、接入网设备和核心网设备
EP4228328A1 (en) Non-terrestrial network epoch time indication considering sfn cycle
WO2023077456A1 (zh) 随机接入的方法、终端设备和网络设备
WO2023216242A1 (zh) 连接配置方法和终端
WO2024031981A1 (zh) 通信方法及装置
WO2024067206A1 (zh) 一种通信方法、通信装置及系统
WO2022133675A1 (zh) 无线通信方法和终端设备
EP4355012A1 (en) Communication method, apparatus, and system
WO2023245649A1 (en) Method and apparatus of supporting delay budget handling
WO2023206488A1 (zh) 一种上行传输方法及装置、终端设备、网络设备
EP4311350A1 (en) Wireless communication method, terminal device and network device
WO2023137643A1 (zh) 重复传输请求方法、装置、设备、系统、芯片及存储介质
EP4287756A1 (en) Method for establishing connection, and terminal device
WO2024078039A1 (zh) 信息传输方法和通信装置
WO2023077385A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019888520

Country of ref document: EP

Effective date: 20210609

Ref document number: 20217018889

Country of ref document: KR

Kind code of ref document: A