WO2020107798A1 - 一种应用于压缩机的储液罐 - Google Patents

一种应用于压缩机的储液罐 Download PDF

Info

Publication number
WO2020107798A1
WO2020107798A1 PCT/CN2019/084512 CN2019084512W WO2020107798A1 WO 2020107798 A1 WO2020107798 A1 WO 2020107798A1 CN 2019084512 W CN2019084512 W CN 2019084512W WO 2020107798 A1 WO2020107798 A1 WO 2020107798A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid storage
sleeve
separator
storage tank
liquid
Prior art date
Application number
PCT/CN2019/084512
Other languages
English (en)
French (fr)
Inventor
汪亚东
王若峰
乔光宝
张振富
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020107798A1 publication Critical patent/WO2020107798A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Definitions

  • the present application relates to the technical field of compressor accessories, for example, to a liquid storage tank applied to a compressor.
  • the air-conditioning system is very prone to compressor suction liquid-carrying phenomenon due to insufficient evaporation heat exchange under low-temperature working conditions, and even liquid shock may occur in severe cases.
  • a liquid storage tank is added at the suction end of the compressor to separate the gas-liquid refrigerant.
  • the gaseous refrigerant enters the compressor from the liquid storage tank through the air outlet pipe, and the liquid refrigerant and lubricating oil are accumulated at the bottom of the liquid storage tank.
  • a liquid return hole is provided on the side wall of the air outlet pipe of the liquid storage tank, and a mixture of a small amount of liquid refrigerant and lubricating oil can enter the air outlet pipe through the liquid return hole and then enter the compressor.
  • Appropriate amount of liquid refrigerant and lubricating oil mixture enter the compressor cylinder, which can ensure the smooth oil return of the compressor and reduce the wear of the compressor.
  • the embodiments of the present disclosure provide a liquid storage tank applied to a compressor.
  • the above-mentioned liquid storage tank applied to the compressor includes: a housing having an air intake pipe and an air outlet pipe, the air outlet pipe includes an extension section that extends into the interior of the casing, Also includes: a separator and a sleeve configured to separate liquid refrigerant, the separator is disposed between the intake pipe and the extension section, and the sleeve sleeve is disposed outside the extension section , The end of the sleeve away from the separator is closed, and the end close to the separator is configured to receive the liquid refrigerant separated by the separator.
  • a liquid storage space, an oil return hole is provided on the wall of the extending section, and the oil return hole communicates with the first liquid storage space.
  • the liquid storage tank applied to the compressor of the present disclosure is provided with a sleeve on the outside of the extending section of the air outlet pipe, and the sleeve receives the liquid refrigerant, so that the liquid refrigerant first falls between the sleeve and the air outlet pipe.
  • a certain pressure difference is generated on the oil return hole located in the first liquid storage space, so that the lubricating oil flows smoothly through the oil return hole.
  • the compressor liquid storage tank of the present disclosure not only satisfies the smooth oil return of the compressor, but also avoids the phenomenon of compressor suction and liquid.
  • FIG. 1 is a longitudinal cross-sectional view of a liquid storage tank applied to a compressor provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a sleeve provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a sleeve provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a sleeve provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a separator provided by an embodiment of the present disclosure.
  • the terms "include”, “include” or any other variant thereof are intended to cover non-exclusive inclusion, so that a structure, device, or device that includes a series of elements includes not only those elements, but also others that are not explicitly listed Elements, or include elements inherent to such structures, devices, or equipment. Without further restrictions, the element defined by the sentence "including one" does not exclude that there are other identical elements in the structure, device or equipment that includes the element.
  • the embodiments in this document are described in a progressive manner. Each embodiment focuses on the differences from other embodiments. The same and similar parts between the embodiments can be referred to each other.
  • connection should be understood in a broad sense, for example, it can be a mechanical connection or an electrical connection, or it can be the communication between two elements, It may be directly connected or indirectly connected through an intermediate medium.
  • connection should be understood in a broad sense, for example, it can be a mechanical connection or an electrical connection, or it can be the communication between two elements, It may be directly connected or indirectly connected through an intermediate medium.
  • connection should be understood in a broad sense, for example, it can be a mechanical connection or an electrical connection, or it can be the communication between two elements, It may be directly connected or indirectly connected through an intermediate medium.
  • the term “plurality” means two or more.
  • A/B means: A or B.
  • a and/or B means: A or B, or A and B.
  • Fig. 1 is a longitudinal sectional view showing a liquid storage tank applied to a compressor according to an exemplary embodiment.
  • a liquid storage tank applied to a compressor includes a housing 1 having an air intake pipe 2 and an air outlet pipe 3.
  • the air outlet pipe 3 includes an extension section 31 that extends into the interior of the casing 1
  • the liquid storage tank further includes: a separator 4 configured to separate the liquid refrigerant and a sleeve 32, the separator 4 is disposed between the intake pipe 2 and the extension section 31, and the sleeve 32 is disposed in the extension section 31 Outside, the end of the sleeve 32 remote from the separator 4 is closed, and the end close to the separator 4 is configured to receive the liquid refrigerant separated by the separator 4, and a first liquid storage space is formed between the sleeve 32 and the extension section 31 61.
  • An oil return hole 310 is provided on the pipe wall of the extending section 31, and the oil return hole 310 communicates with the first liquid storage space 61.
  • the diameter of the oil return hole 310 is 0.8 mm to 1.5 mm. If the diameter of the oil return hole 310 is greater than 1.5mm, it will cause more liquid refrigerant to enter the extension section 31, and enter the compressor through the air outlet pipe to make the compressor run too wet; if the diameter of the oil return hole 310 is less than 0.8mm, The oil return will not be smooth, leaving the lubricating oil in the first liquid storage space 61.
  • the separator 4 separates the liquid refrigerant and the lubricating oil therein, and the liquid refrigerant and the lubricating oil fall into the first liquid storage space 61, as the liquid refrigerant and the lubrication
  • the liquid level in the first liquid storage space 61 rises, and after returning to a certain height, a return oil pressure difference is generated to the oil return hole 310, so that the lubricating oil passes through the oil return hole 310 to reach the extension section, so that it can enter the compressor Inside, the gaseous refrigerant directly enters the extension section 31 after passing through the separator 4.
  • the diameter of the sleeve 32 is reduced relative to the diameter of the housing 1, so the liquid surface in the first liquid storage space 61 rises faster, and the pressure difference of the oil return hole 310 can be made even when the amount of liquid refrigerant is small Reach the proper level and keep the oil return smooth.
  • liquid refrigerant can also enter the extension section through the oil return hole 310, but because the diameter of the oil return hole 310 is small, only a small amount of liquid refrigerant passes through the oil return hole 310 and enters the rear part of the extension section The liquid refrigerant volatilizes into a gaseous refrigerant, which partially enters the compressor but does not cause liquid shock to the compressor.
  • the liquid storage tank applied to the compressor of the present disclosure is provided with a sleeve 32 outside the extending section 31 of the air outlet pipe 3, so that the liquid refrigerant first falls into the first liquid storage space between the sleeve 32 and the air outlet pipe 3 In 61, a certain pressure difference is quickly generated to the oil return hole 310, so that the lubricating oil flows smoothly through the oil return hole 310. In this way, whether it is in a high-temperature working condition with less refrigerant or a low-temperature working condition with more refrigerant, it can meet the flow power of the liquid refrigerant and lubricating oil mixture, keep the oil return amount stable, and meet the requirements of the wide-ring temperature operation heat pump system. demand.
  • the air intake pipe 2 and the air outlet pipe 3 have the same pipe diameter.
  • the diameter of the intake pipe 2 is 6 mm to 13 mm.
  • the diameter of the intake pipe 2 is 6.35 mm, 7.94 mm, 9.52 mm, or 12.7 mm.
  • Fig. 2 is a schematic structural diagram of a sleeve according to an exemplary embodiment.
  • the sleeve 32 includes a body portion 320 and a collection portion 321 configured to collect liquid refrigerant.
  • the body portion 320 extends along the length direction of the extension section 31, and the collection portion 321 is disposed on the body portion 320 Near the end of the separator 4, the cross-sectional area of the collecting portion 321 is larger than the cross-sectional area of the main body portion 320.
  • the material of the sleeve 32 may be stainless steel. In this way, the sleeve 32 can be prevented from being corroded by the liquid refrigerant.
  • the material of the separator 4 is polished stainless steel. In this way, the flow resistance of the refrigerant can be reduced.
  • the collecting part 321 collects the liquid refrigerant so that the liquid refrigerant converges in the first liquid storage space 61.
  • the cross-sectional area of the collecting part 321 is larger than that of the main body part 320, which is advantageous for collecting the liquid refrigerant.
  • the liquid storage tank can keep the oil return smooth.
  • the collecting part 321 includes a platform 3210 and a first side wall 3211.
  • the platform 3210 is configured to receive liquid refrigerant
  • the center of the platform 3210 is connected to the main body 320
  • the first side wall 3211 is connected to
  • the edges of the platform 3210 are connected and arranged vertically, and the first side wall 3211 is configured to block the outflow of liquid refrigerant from the edges of the platform 3210.
  • the liquid refrigerant falls on the platform 3210 and flows from the center of the platform 3210 to between the body portion 320 and the extension section 31, so that the liquid level in the first liquid storage space 61 rises when the extension section 31 and the body section 320 are
  • the first side wall 3211 enables the collection portion 321 to store a small amount of liquid refrigerant.
  • the liquid storage tank further includes a deflector 7, the deflector 7 is disposed between the separator 4 and the extension section 31, and the deflector 7 faces the sleeve 32 Tilt so that liquid refrigerant flows into the first liquid storage space 61.
  • the end of the first side wall 3211 near the separator 4 is located between the deflector 7 and the platform 3210. In this way, it is possible to prevent the liquid refrigerant from flowing down from the baffle plate 7 and detaching from the collecting portion 321, so that the liquid refrigerant preferentially falls into the first liquid storage space 61.
  • the end of the extending section 31 near the separator 4 is located between the separator 4 and the first side wall 3211. In this way, it is possible to prevent liquid refrigerant from entering the extension section 31.
  • the height of the first side wall 3211 is 5 mm to 15 mm.
  • the first side wall 3211 is configured to prevent the liquid refrigerant falling on the collecting part 321 from flowing out from the edge of the platform, but when the first liquid storage space 61 is full, the liquid refrigerant needs to overflow from the first side wall 3211, so the height It should not be too high or too low, which is more suitable within the scope of this embodiment.
  • Fig. 3 is a schematic structural diagram of a sleeve according to another exemplary embodiment.
  • the collecting portion 321 includes an inverted tapered second side wall 3212 whose center is connected to the main body 320.
  • the angle between the second side wall 3212 and the horizontal direction is 30°-45°. In this way, the falling liquid refrigerant is facilitated to slide between the main body 320 and the extending section 31.
  • Fig. 4 is a schematic structural diagram of a sleeve according to another exemplary embodiment.
  • the collecting part 321 includes: a platform 3210 and an inverted tapered second side wall 3212, the center of the platform 3210 is connected to the main body 320, the center of the second side wall 3212 is provided with an opening, and an edge of the opening Connected to the edge of the platform 3210, the second side wall 3212 is configured to block the outflow of liquid refrigerant from the edge of the platform 3210.
  • the second side wall 3212 enables the collection portion 321 to store A small amount of liquid refrigerant.
  • a second liquid storage space 62 is formed between the sleeve 32 and the housing 1, and the second liquid storage space 62 and the first liquid storage space 61 communicate between the sleeve 32 and the separator 4 .
  • the volume of the second liquid storage space 62 is larger than that of the first liquid storage space 61. It can accommodate more liquid refrigerant.
  • the liquid refrigerant When the first liquid storage space 61 is filled with liquid refrigerant, the liquid refrigerant continues to increase and overflows from the collecting part 321 and enters the second liquid storage space 62 for storage.
  • the trachea 3 flows out.
  • the liquid refrigerant first enters the first liquid storage space 61 to ensure smooth oil return, and then the second liquid storage space 62 plays a main liquid storage function, thereby satisfying the liquid storage capacity of the liquid storage tank.
  • the oil return hole 310 is provided on the end of the extending section 31 away from the separator 4.
  • Some lubricating oils are denser than liquid refrigerants.
  • the oil return hole 310 is provided in the extension section
  • the end of 31 that is far from the separator 4 is advantageous for the lubricating oil to enter the oil return hole 310 preferentially.
  • the inner diameter of the sleeve 32 is 1.2 to 1.5 times the outer diameter of the extending section 31. In this way, after the liquid refrigerant and the lubricating oil enter the first liquid storage space 61, the liquid level can be quickly raised to meet the need to generate a proper hydraulic pressure at the oil return hole 310, which facilitates the passage of the lubricating oil through the oil return hole 310.
  • the height of the projecting section 31 is greater than the height of the sleeve 32.
  • the liquid refrigerant collected by the sleeve 32 is prevented from entering the extension section 31. In this way, the liquid refrigerant falls directly into the sleeve 32.
  • the gas refrigerant carries the liquid refrigerant and moves toward the extension section 31, the liquid refrigerant impacts and adheres to the outer side wall of the extension section 31, leaving only the gaseous refrigeration The agent enters the extension section 31.
  • the separator 4 includes a baffle 40, and the surface of the baffle 40 includes an annular area, and the annular area is provided with through holes 41, and the number of the through holes 41 is plural.
  • the separator 4 is arranged to separate liquid refrigerant.
  • the annular area is convex toward the side of the air outlet tube 3.
  • the baffle 40 is connected to the inner wall of the housing 1.
  • the baffle 40 prevents the mixture of liquid refrigerant and lubricating oil from entering the liquid storage tank through the intake pipe 2 and is directly absorbed by the intake end of the extension section 31 back into the cylinder of the compressor, resulting in the phenomenon of liquid suction.
  • the mixture of the liquid refrigerant and the lubricating oil can be guided to fall directly to the first liquid storage space 61, and the effect of preventing the suction from carrying liquid is better.
  • the diameter of the through hole 41 is 2-4 mm. In this way, the liquid refrigerant can be separated and the gas refrigerant can pass through.
  • the inner diameter of the annular area is larger than the inner diameter of the projecting section 31.
  • the annular region avoids the top end of the projecting section 31, causing the through hole 41 to deviate from the projecting section 31, preventing liquid refrigerant from passing through the through hole 41 and falling into the projecting section 31.
  • the ring-shaped area is located above the collecting portion 321. In this way, the liquid refrigerant falling from the annular area can be collected by the collecting part 321.
  • the maximum cross-sectional area of the collecting portion 321 in the axial direction is larger than the cross-sectional area of the annular area. It is beneficial to collect as much liquid refrigerant as possible.
  • the liquid storage tank further includes a deflector 7, the deflector 7 is disposed between the separator 4 and the extension section 31, and the deflector 7 faces the sleeve 32 Tilt so that liquid refrigerant flows into the first liquid storage space 61.
  • the end of the deflector 7 near the separator 4 is fixedly connected to the inner wall of the housing 1, and the end away from the separator 4 extends toward the central axis of the sleeve 32.
  • the angle between the deflector 7 and the horizontal direction is 40-50°.
  • the angle between the deflector 7 and the horizontal direction is 45°. It is advantageous to guide the liquid refrigerant into the sleeve 32 and prevent it from entering the second liquid storage space 62 first.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

一种应用于压缩机的储液罐,包括具有进气管(2)和出气管(3)的壳体(1),出气管(3)包括伸入段(31),伸入段(31)延伸至壳体(1)内部,还包括:用于分离出液态制冷剂的分离器(4)和套筒(32),分离器(4)设置于进气管(2)与伸入段(31)之间,套筒(32)套置于伸入段(31)外部,套筒(32)远离分离器(4)的一端封闭,靠近分离器(4)的一端用于接收分离器(4)分离得到的液态制冷剂,套筒(32)与伸入段(31)之间形成第一储液空间(61),伸入段(31)的管壁上设置回油孔(310),回油孔(310)与第一储液空间(61)连通。这种应用于压缩机的储液罐无论是在制冷剂较少的高温工况还是制冷剂较多的低温工况,都能保证液态制冷剂及润滑油混合物流动动力,使回油量保持稳定,满足宽环温运行热泵系统的需求。

Description

一种应用于压缩机的储液罐
本申请基于申请号为201811455679.8、申请日为2018.11.30的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及压缩机配件技术领域,例如涉及一种应用于压缩机的储液罐。
背景技术
目前,空调系统在低温工况下极易因蒸发换热不足出现压缩机吸气带液现象,严重时甚至会发生液击。通常通过在压缩机吸气端增设储液罐以分离气液冷媒,气态冷媒通过出气管从储液罐中进入压缩机中,液态冷媒和润滑油则积聚在储液罐底部。在储液罐的出气管侧壁上设置回液孔,少量的液态冷媒和润滑油的混合物可通过回液孔进入出气管,然后再进入压缩机。适量的液态冷媒和润滑油混合物进入压缩机气缸中,可以确保压缩机的回油顺畅,减缓压缩机的磨损。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
现有的储液罐在空调器高温工况和低温工况下,回油效果不同,不能始终保持回油顺畅。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种应用于压缩机的储液罐。
在一些实施例中,上述应用于压缩机的储液罐,包括:具有进气管和出气管的壳体,所述出气管包括伸入段,所述伸入段延伸至所述壳体内部,还包括:被设置为分离出液态制冷剂的分离器和套筒,所述分离器设置于 所述进气管与所述伸入段之间,所述套筒套置于所述伸入段外部,所述套筒远离所述分离器的一端封闭,靠近所述分离器的一端被设置为接收所述分离器分离得到的液态制冷剂,所述套筒与所述伸入段之间形成第一储液空间,所述伸入段的管壁上设置回油孔,所述回油孔与所述第一储液空间连通。
本公开实施例提供的一些技术方案可以实现以下技术效果:
本公开的应用于压缩机的储液罐,通过在出气管的伸入段外侧设置套筒,并使套筒接收液态制冷剂,使液态制冷剂先落入套筒与出气管之间的第一储液空间内,对位于第一储液空间的回油孔产生一定的压差,使润滑油顺畅流过回油孔。这样无论是在制冷剂较少的高温工况还是制冷剂较多的低温工况,都能满足液态制冷剂及润滑油混合物流动动力,使回油量保持稳定,满足宽环温运行热泵系统的需求。本公开的压缩机储液罐既满足了压缩机的回油顺畅,又避免了压缩机吸气带液现象的产生。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一种应用于压缩机的储液罐的纵向剖视图;
图2是本公开实施例提供的套筒的结构示意图;
图3是本公开实施例提供的套筒的结构示意图;
图4是本公开实施例提供的套筒的结构示意图。
图5是本公开实施例提供的分离器的结构示意图。
附图标记:
1、壳体;2、进气管;3、出气管;31、伸入段;32、套筒;320、主体部;321、收集部;3210、平台;3211、第一侧壁;3212、第二侧壁;310、回油孔;4、分离器;40、挡板;41、通孔;61、第一储液空间;62、第二储液空间;7、导流板。
具体实施方式
以下描述和附图充分地示出本文的具体实施方案,以使本领域的技术人员能够实践它们。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本文的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。本文中,术语“第一”、“第二”等仅被用来将一个元素与另一个元素区分开来,而不要求或者暗示这些元素之间存在任何实际的关系或者顺序。实际上第一元素也能够被称为第二元素,反之亦然。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的结构、装置或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种结构、装置或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的结构、装置或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中的术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本文和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。在本文的描述中,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
本文中,除非另有说明,术语“多个”表示两个或两个以上。
本文中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
本文中,术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
图1是根据一示例性实施例示出的一种应用于压缩机的储液罐的纵向剖视图。
如图1所示,一种应用于压缩机的储液罐,包括具有进气管2和出气管3的壳体1,出气管3包括伸入段31,伸入段31延伸至壳体1内部,储液罐还包括:被设置为分离出液态制冷剂的分离器4和套筒32,分离器4设置于进气管2与伸入段31之间,套筒32套置于伸入段31外部,套筒32的远离分离器4的一端封闭,靠近分离器4的一端被设置为接收分离器4分离得到的液态制冷剂,套筒32与伸入段31之间形成第一储液空间61,伸入段31的管壁上设置回油孔310,回油孔310与第一储液空间61连通。
可选地,回油孔310的孔径为0.8mm~1.5mm。如果回油孔310的孔径大于1.5mm,将导致较多的液态制冷剂进入伸入段31,通过出气管进入压缩机将使压缩机过湿运转;如果回油孔310的孔径小于0.8mm,回油会不顺畅,使润滑油滞留在第一储液空间61内。
当制冷剂通过进气管2进入壳体1时,分离器4将其中的液态制冷剂、润滑油分离,液态制冷剂和润滑油落入第一储液空间61中,随着液态制冷剂与润滑油的汇集,第一储液空间61内的液面上升,达到一定高度后对回油孔310产生回油压差,使润滑油穿过回油孔310到达伸入段,从而能够进入压缩机内,气态制冷剂穿过分离器4后直接进入伸入段31。套筒32的直径相对于壳体1的直径有所减小,故第一储液空间61内液面上升速度加快,即使在液态制冷剂量较少时,也能使回油孔310的压差达到合适的程度,保持回油顺畅。该过程中,液态制冷剂也能通过回油孔310进入伸入段,但由于回油孔310的孔径较小,故只有极少量的液态制冷剂通过回油孔310,进入伸入段后部分液态制冷剂挥发成气态制冷剂,部分进入压缩机但不会对压缩机造成液击。
本公开的应用于压缩机的储液罐,通过在出气管3的伸入段31外侧设置套筒32,使液态制冷剂先落入套筒32与出气管3之间的第一储液空间61内,快速对回油孔310产生一定的压差,使润滑油顺畅流过回油孔310。这样无论是在制冷剂较少的高温工况还是制冷剂较多的低温工况,都能满足液态制冷剂及润滑油混合物流动动力,使回油量保持稳定,满足宽环温运行热泵系统的需求。
可选地,进气管2和出气管3的管径相同。可选地,进气管2的管径为6mm~13mm。具体地,进气管2的管径为6.35mm、7.94mm、9.52mm或12.7mm。
图2是根据一示例性实施例示出的套筒的结构示意图。
作为示例,如图2所示,套筒32包括:主体部320和被设置为收集液态制冷剂的收集部321,主体部320沿伸入段31长度方向延伸,收集部321设置于主体部320靠近分离器4的一端,收集部321的横截面面积大于主体部320的横截面面积。
可以理解的是,套筒32的材质可以是不锈钢。如此,能够防止套筒32被液态制冷剂腐蚀。可选地,分离器4的材质为抛光不锈钢。这样,可以降低制冷剂的流动阻力。
在本实施例中,收集部321将液态制冷剂收集起来,使液态制冷剂在第一储液空间61汇聚,收集部321横截面面积比主体部320大,有利于收集液态制冷剂。通过该实施例,储液罐能够保持回油顺畅。
作为示例,如图2所示,收集部321包括:平台3210和第一侧壁3211,平台3210被设置为盛接液态制冷剂,平台3210的中央与主体部320连接,第一侧壁3211与平台3210的边缘连接且竖直设置,第一侧壁3211被设置为阻挡液态制冷剂从平台3210的边缘流出。液态制冷剂落至平台3210上,从平台3210的中央流至主体部320与伸入段31之间,使第一储液空间61内液面上升当伸入段31与主体部320之间被液态制冷剂充满时,第一侧壁3211使收集部321也能够储存少量的液态制冷剂。
在本公开的一个实施例中,如图1所示,储液罐还包括导流板7,导流板7设置于分离器4与伸入段31之间,导流板7朝向套筒32倾斜以使液态制冷剂流入第一储液空间61。
可选地,第一侧壁3211的靠近分离器4的一端位于导流板7与平台3210之间。如此,可以防止液态制冷剂从导流板7流下后脱离收集部321,使液态制冷剂优先落入第一储液空间61。
可选地,伸入段31靠近分离器4的一端位于分离器4与第一侧壁3211之间。如此,能够防止液态制冷剂进入伸入段31。
可选地,第一侧壁3211的高度为5mm~15mm。第一侧壁3211被设置 为防止落于收集部321的液态制冷剂从平台边缘流出,但当第一储液空间61被充满时,需要让液态制冷剂从第一侧壁3211溢出,因此高度不能太高和太低,在本实施例的范围内较合适。
图3是根据另一示例性实施例示出的套筒的结构示意图。
作为示例,如图3所示,收集部321包括倒锥形的第二侧壁3212,第二侧壁3212的中央与主体部320连接。可选地,第二侧壁3212与水平方向的夹角为30°~45°。如此,便于落下的液态制冷剂滑入主体部320与伸入段31之间。
图4是根据另一示例性实施例示出的套筒的结构示意图。
作为示例,如图4所示,收集部321包括:平台3210和倒锥形的第二侧壁3212,平台3210的中央与主体部320连接,第二侧壁3212的中央设置开口,开口的边缘与平台3210的边缘连接,第二侧壁3212被设置为阻挡液态制冷剂从平台3210的边缘流出。如此,一方面便于液态制冷剂进入第一储液空间61内,另一方面,在主体部320与伸入段31之间充满液态制冷剂后,第二侧壁3212使收集部321也能够储存少量的液态制冷剂。
在本公开的一个实施例中,套筒32与壳体1之间形成第二储液空间62,第二储液空间62与第一储液空间61在套筒32与分离器4之间连通。可选地,第二储液空间62的体积大于第一储液空间61。从而能够容纳更多的液态制冷剂。
当第一储液空间61被液态制冷剂充满时,液态制冷剂继续增多则从收集部321溢出,进入第二储液空间62储存,液态制冷剂经过一定时间后挥发,成为气态制冷剂从出气管3流出。该实施例使液态制冷剂先进入第一储液空间61,满足回油顺畅,然后由第二储液空间62发挥主要储液功能,从而满足了储液罐的储液量。
可选地,回油孔310设置于伸入段31上远离分离器4的一端。有的润滑油密度大于液态制冷剂,当储液罐竖直放置时,润滑油聚集于第一储液空间61的底部,即远离分离器的方向,故将回油孔310设置于伸入段31上远离分离器4的一端,有利于润滑油优先进入回油孔310。
可选地,套筒32的内径为伸入段31外径的1.2~1.5倍。这样,液态制冷剂、润滑油进入第一储液空间61后,液面能够快速升高,满足在回油孔 310处产生合适的液压,有利于润滑油通过回油孔310。
可选地,伸入段31的高度大于套筒32的高度。避免套筒32汇集的液态制冷剂进入伸入段31中。这样,使液态制冷剂直接落至套筒32内,当气态制冷剂夹带液态制冷剂向伸入段31移动时,液态制冷剂冲击并附着在伸入段31的外侧壁上,只剩气态制冷剂进入伸入段31中。
如图5所示,分离器4包括挡板40,挡板40的表面包括环形区域,环形区域设置通孔41,通孔41的数量为多个。
分离器4被设置为对液态制冷剂进行分离。可选地,环形区域朝向出气管3一侧凸起。当制冷剂流至挡板40处,由于挡板40具有向出气管3一侧凸起的环形区域,制冷剂先冲击在挡板40的中央和四周,然后集中流向环形区域,在挡板40的中央和四周附着有冲击时留下的部分液态制冷剂,其余制冷剂从环形区域通过时,部分液态制冷剂附着在环形区域的侧壁上,附着的液态制冷剂最终从通孔41中流出落下,穿过通孔41后的液态制冷剂由于重力作用,主要向下方运动。该实施例能够使液态制冷剂从环形区域落下。
可选地,挡板40与壳体1的内壁连接。挡板40防止液态制冷剂和润滑油的混合物经过进气管2进入储液罐内后,直接由伸入段31的进气端吸收回压缩机的气缸内,导致吸气带液现象的产生,且能够引导液态制冷剂和润滑油的混合物直接落至第一储液空间61,防止吸气带液的效果更好。
可选地,通孔41的孔径为2~4mm。如此,能够分离液态制冷剂并使气态制冷剂通过。
可选地,环形区域的内径大于伸入段31的内径。环形区域避开了伸入段31的顶端,使通孔41偏离伸入段31,防止液态制冷剂穿过通孔41后落进伸入段31。
可选地,环形区域位于收集部321的上方。这样,从环形区域落下的液态制冷剂可被收集部321收集。
可选地,收集部321沿轴向的最大横截面积大于环形区域的横截面积。有利于尽可能多的收集液态制冷剂。
在本公开的一个实施例中,如图1所示,储液罐还包括导流板7,导流板7设置于分离器4与伸入段31之间,导流板7朝向套筒32倾斜以使液 态制冷剂流入第一储液空间61。
可选地,导流板7的靠近分离器4的一端与壳体1的内壁固定连接,远离分离器4的一端向套筒32的中轴延伸。
可选地,导流板7与水平方向的夹角为40~50°。可选地,导流板7与水平方向的夹角为45°。有利于将液态制冷剂导流至套筒32内,防止其先进入第二储液空间62。
本公开并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种应用于压缩机的储液罐,包括具有进气管和出气管的壳体,所述出气管包括伸入段,所述伸入段延伸至所述壳体内部,其特征在于,还包括:被设置为分离出液态制冷剂的分离器和套筒,所述分离器设置于所述进气管与所述伸入段之间,所述套筒套置于所述伸入段外部,所述套筒远离所述分离器的一端封闭,靠近所述分离器的一端被设置为接收所述分离器分离得到的液态制冷剂,所述套筒与所述伸入段之间形成第一储液空间,所述伸入段的管壁上设置回油孔,所述回油孔与所述第一储液空间连通。
  2. 根据权利要求1所述的应用于压缩机的储液罐,其特征在于,所述套筒包括:主体部和被设置为收集液态制冷剂的收集部,所述主体部沿伸入段长度方向延伸,收集部设置于主体部靠近分离器的一端,收集部的横截面面积大于主体部的横截面面积。
  3. 根据权利要求1所述的应用于压缩机的储液罐,其特征在于,所述套筒的内径为所述伸入段外径的1.2~1.5倍。
  4. 根据权利要求1所述的应用于压缩机的储液罐,其特征在于,所述回油孔设置于所述伸入段上远离所述分离器的位置。
  5. 根据权利要求1所述的应用于压缩机的储液罐,其特征在于,所述套筒与所述壳体之间形成第二储液空间,所述第二储液空间与所述第一储液空间在所述套筒与所述分离器之间连通。
  6. 根据权利要求1所述的应用于压缩机的储液罐,其特征在于,所述伸入段的高度大于所述套筒的高度。
  7. 根据权利要求1所述的应用于压缩机的储液罐,其特征在于,所述分离器包括挡板,所述挡板的表面包括环形区域,所述环形区域设置通孔,所述通孔的数量为多个。
  8. 根据权利要求7所述的应用于压缩机的储液罐,其特征在于,所述环形区域朝向所述出气管一侧凸起。
  9. 根据权利要求1所述的应用于压缩机的储液罐,其特征在于,还包括导流板,所述导流板设置于所述分离器与所述伸入段之间,所述导流板朝向所述套筒倾斜以使液态制冷剂流入所述第一储液空间。
  10. 根据权利要求9所述的应用于压缩机的储液罐,其特征在于,所述导流板的靠近所述分离器的一端与所述壳体的内壁固定连接,远离所述分离器的一端向所述套筒的中轴延伸。
PCT/CN2019/084512 2018-11-30 2019-04-26 一种应用于压缩机的储液罐 WO2020107798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811455679.8 2018-11-30
CN201811455679.8A CN109631431A (zh) 2018-11-30 2018-11-30 一种应用于压缩机的储液罐

Publications (1)

Publication Number Publication Date
WO2020107798A1 true WO2020107798A1 (zh) 2020-06-04

Family

ID=66070498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084512 WO2020107798A1 (zh) 2018-11-30 2019-04-26 一种应用于压缩机的储液罐

Country Status (2)

Country Link
CN (1) CN109631431A (zh)
WO (1) WO2020107798A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631431A (zh) * 2018-11-30 2019-04-16 青岛海尔空调器有限总公司 一种应用于压缩机的储液罐

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347817A (en) * 1992-07-22 1994-09-20 Samsung Electronics Co., Ltd. Accumulator construction of cooling heating dual-purpose air conditioner
JP2001147058A (ja) * 1999-11-19 2001-05-29 Fujitsu General Ltd 冷凍機器用アキュムレータ
JP2002188870A (ja) * 2000-12-20 2002-07-05 Fujitsu General Ltd 圧縮機用アキュムレータ
CN1952533A (zh) * 2005-10-17 2007-04-25 乐金电子(天津)电器有限公司 空调器的气液分离器
CN203024517U (zh) * 2012-11-30 2013-06-26 安徽美芝精密制造有限公司 用于旋转式压缩机的储液器及具有它的旋转式压缩机
CN109631431A (zh) * 2018-11-30 2019-04-16 青岛海尔空调器有限总公司 一种应用于压缩机的储液罐

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202709575U (zh) * 2012-06-25 2013-01-30 河南科隆集团有限公司 一种蒸发器储液罐
CN207132602U (zh) * 2017-07-28 2018-03-23 广东美芝制冷设备有限公司 储液器和压缩机
CN108195104B (zh) * 2018-01-23 2021-03-02 珠海格力电器股份有限公司 储液罐、压缩机、空调器
CN108826769B (zh) * 2018-08-15 2024-02-20 珠海凌达压缩机有限公司 一种容积可变的储液器及空调系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347817A (en) * 1992-07-22 1994-09-20 Samsung Electronics Co., Ltd. Accumulator construction of cooling heating dual-purpose air conditioner
JP2001147058A (ja) * 1999-11-19 2001-05-29 Fujitsu General Ltd 冷凍機器用アキュムレータ
JP2002188870A (ja) * 2000-12-20 2002-07-05 Fujitsu General Ltd 圧縮機用アキュムレータ
CN1952533A (zh) * 2005-10-17 2007-04-25 乐金电子(天津)电器有限公司 空调器的气液分离器
CN203024517U (zh) * 2012-11-30 2013-06-26 安徽美芝精密制造有限公司 用于旋转式压缩机的储液器及具有它的旋转式压缩机
CN109631431A (zh) * 2018-11-30 2019-04-16 青岛海尔空调器有限总公司 一种应用于压缩机的储液罐

Also Published As

Publication number Publication date
CN109631431A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN107192182B (zh) 油分离器、压缩机及空调器
CN201748724U (zh) 气液分离器
CN108195104B (zh) 储液罐、压缩机、空调器
WO2020107798A1 (zh) 一种应用于压缩机的储液罐
JP2007178046A (ja) アキュームレータ
CN107677021A (zh) 油分离装置、冷凝器和制冷装置
CN209386644U (zh) 一种油分离器和空调机组
JP6591320B2 (ja) 蒸気排出用煙突
CN114087811A (zh) 一种气液分离装置及包括其的自复叠制冷系统
KR20230119719A (ko) 가스 쿨러
CN209459274U (zh) 一种应用于压缩机的储液器、热泵系统
CN210397031U (zh) 油气分离器及压缩机
CN101413740A (zh) 储液器
CN209588465U (zh) 一种应用于压缩机的储液器、热泵系统
CN207132604U (zh) 冷凝器壳管和制冷设备
CN108613444B (zh) 一种制冷系统中的分离器及其制冷系统
CN208518899U (zh) 油分装置及压缩机及空调器
WO2020103369A1 (zh) 一种压缩机用储液器、热泵系统
CN215337206U (zh) 一种复叠制冷机组用油分离器
CN215724325U (zh) 油分离器及制冷系统
CN113339140B (zh) 一种飞机油箱
CN107218747A (zh) 储液器和具有其的压缩机
CN212362523U (zh) 气液分离器
JPS59142364A (ja) 冷凍装置用アキユムレ−タ
CN107356029A (zh) 冷凝器壳管和制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888609

Country of ref document: EP

Kind code of ref document: A1