WO2020107601A1 - 音箱控制方法及装置 - Google Patents

音箱控制方法及装置 Download PDF

Info

Publication number
WO2020107601A1
WO2020107601A1 PCT/CN2018/123528 CN2018123528W WO2020107601A1 WO 2020107601 A1 WO2020107601 A1 WO 2020107601A1 CN 2018123528 W CN2018123528 W CN 2018123528W WO 2020107601 A1 WO2020107601 A1 WO 2020107601A1
Authority
WO
WIPO (PCT)
Prior art keywords
external object
speaker
operation instruction
reflected
movement trajectory
Prior art date
Application number
PCT/CN2018/123528
Other languages
English (en)
French (fr)
Inventor
雷艳兵
冯瑞丰
陈维扬
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to KR1020197017515A priority Critical patent/KR20210094167A/ko
Priority to JP2019534937A priority patent/JP7203735B2/ja
Priority to RU2019133686A priority patent/RU2735852C1/ru
Publication of WO2020107601A1 publication Critical patent/WO2020107601A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S15/523Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • G01S15/526Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection by comparing echos in different sonar periods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse-modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/66Sonar tracking systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/56Arrangements for connecting several subscribers to a common circuit, i.e. affording conference facilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/342Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2642Domotique, domestic, home control, automation, smart house

Definitions

  • the present disclosure relates to the field of terminal control technology, and in particular, to a speaker control method and device.
  • smart speakers smart lights, smart refrigerators, smart water heaters, smart TVs, etc.
  • smart speaker is gradually favored by the majority of users because it can be connected to multiple smart home devices and can recognize the user's voice commands to achieve voice control of the multiple smart home devices.
  • the embodiments of the present disclosure provide a speaker control method and device.
  • the technical solution is as follows:
  • a speaker control method including:
  • the speaker When the speaker is in the standby state, it sends out ultrasonic signals and receives the reflected ultrasonic signals reflected by external objects;
  • a target operation instruction to be executed is determined.
  • the speaker can recognize the movement trajectory of an external object through reflected ultrasonic signals, and then determine that the target operation instruction needs to be executed according to the movement trajectory, so that the user does not need an external active remote control Under the circumstances, the speaker can be controlled only by physical movement, which improves the convenience of the user to control the speaker.
  • the sending of ultrasonic signals when the speaker is in a standby state and receiving the reflected ultrasonic signals reflected by external objects include:
  • the speaker of the sound box is controlled to emit an ultrasonic signal
  • the microphone of the sound box is controlled to receive the reflected ultrasonic signal reflected by an external object.
  • the acquiring the movement trajectory of the external object according to the reflected ultrasonic signal includes:
  • the determining the movement trend of the external object currently moving according to the matrix of two adjacent moments includes:
  • the determining the target operation instruction to be executed according to the movement trajectory of the external object includes:
  • the operation instruction corresponding to the movement trajectory of the external object is acquired as the target operation instruction.
  • the method further includes:
  • the setting instruction includes a correspondence between a reference motion track and a reference operation instruction
  • the determining the target operation instruction to be executed according to the movement trajectory of the external object includes:
  • the determining the target operation instruction to be executed according to the current position of the external object includes:
  • the determining the target operation instruction to be executed according to the movement trajectory of the external object includes:
  • a speaker control device including:
  • the control module is used to send an ultrasonic signal when the speaker is in the standby state, and receive the reflected ultrasonic signal reflected by the external object;
  • a first obtaining module configured to obtain the movement track of the external object according to the reflected ultrasonic signal
  • the second acquisition module is used to determine the target operation instruction to be executed according to the movement trajectory of the external object.
  • control module includes:
  • the control sub-module is used to control the speaker of the sound box to send out ultrasonic signals when the sound box is in a standby state, and control the microphone of the sound box to receive the reflected ultrasonic signal reflected by external objects.
  • the first acquisition module includes:
  • the receiving sub-module is used to receive multiple reflected ultrasonic signals that are reflected by multiple external objects at each moment in multiple different moments;
  • Transformation sub-module which is used to transform multiple reflected ultrasonic signals received at each moment into a matrix through a linear transformation algorithm
  • the first determining sub-module is used to determine the movement trend of the external object currently moving according to the matrix of two adjacent moments
  • the first obtaining submodule is configured to obtain the movement trajectory of the external object according to the movement trend of the external object at the multiple different moments.
  • the second determining submodule includes:
  • the first determining unit is configured to determine if the frequency of the reflected ultrasonic wave formed by the reflection of the external object currently moving is greater than the frequency of the ultrasonic wave emitted by the speaker according to the matrix of two adjacent moments External objects move in a direction close to the speaker;
  • the second determining unit is configured to determine that the frequency of the reflected ultrasonic wave formed by the reflection of the external object currently moving is less than the frequency of the ultrasonic wave emitted by the speaker according to the matrix of two adjacent moments. External objects move away from the sound box;
  • a first acquiring unit configured to acquire the moving speed of the external object according to the frequency of the reflected ultrasonic wave formed by the reflection of the external object currently moving and the frequency of the ultrasonic wave emitted by the sound box;
  • the second obtaining unit is configured to obtain the moving tendency of the external object according to the moving direction and the moving speed of the external object.
  • the second acquisition module includes:
  • the second obtaining submodule is configured to obtain an operation instruction corresponding to the movement trajectory of the external object as the target operation instruction according to a preset correspondence between the movement trajectory and the operation instruction.
  • the device further includes:
  • a third obtaining module configured to obtain a setting instruction, where the setting instruction includes a correspondence between a reference motion track and a reference operation instruction;
  • the updating module is configured to update the correspondence between the motion trajectory and the operation instruction according to the correspondence between the reference motion trajectory and the reference operation instruction included in the setting instruction, so that the correspondence between the motion trajectory and the operation instruction
  • the operation instruction corresponding to the reference motion trajectory is a reference operation instruction.
  • the second acquisition module includes:
  • a third obtaining submodule configured to obtain the current position of the external object according to the movement trajectory of the external object
  • the fourth obtaining submodule is used to obtain the target operation instruction to be executed according to the current position of the external object.
  • the fourth obtaining submodule includes:
  • a third obtaining unit configured to obtain the current distance between the outside object and the speaker according to the current position of the outside object
  • the fourth obtaining unit is configured to obtain the target operation instruction to be executed according to the current distance between the external object and the sound box.
  • the second acquisition module includes:
  • a second determination submodule configured to determine whether the displacement of the external object is greater than or equal to a preset threshold according to the movement trajectory of the external object
  • the fifth obtaining submodule is configured to obtain the target operation instruction to be executed according to the movement trajectory of the external object if the displacement of the external object is greater than or equal to a preset threshold.
  • a speaker control device including:
  • Memory for storing processor executable instructions
  • the processor is configured to:
  • the speaker When the speaker is in the standby state, it sends out ultrasonic signals and receives the reflected ultrasonic signals reflected by external objects;
  • a target operation instruction to be executed is determined.
  • a computer-readable storage medium on which computer instructions are stored, which when executed by a processor implements the steps of the method described in any embodiment of the first aspect.
  • Fig. 1a is a flowchart of a method for controlling a sound box according to an exemplary embodiment.
  • Fig. 1b is a flowchart of a method for controlling a sound box according to an exemplary embodiment.
  • Fig. 2 is a flowchart of a method for controlling a sound box according to an exemplary embodiment.
  • Fig. 3a is a schematic structural diagram of a speaker control device according to an exemplary embodiment.
  • Fig. 3b is a schematic structural diagram of a speaker control device according to an exemplary embodiment.
  • Fig. 3c is a schematic structural diagram of a speaker control device according to an exemplary embodiment.
  • Fig. 3d is a schematic structural diagram of a speaker control device according to an exemplary embodiment.
  • Fig. 3e is a schematic structural diagram of a speaker control device according to an exemplary embodiment.
  • Fig. 3f is a schematic structural diagram of a speaker control device according to an exemplary embodiment.
  • Fig. 3g is a schematic structural diagram of a speaker control device according to an exemplary embodiment.
  • Fig. 3h is a schematic structural diagram of a speaker control device according to an exemplary embodiment.
  • Fig. 3i is a schematic structural diagram of a speaker control device according to an exemplary embodiment.
  • Fig. 4 is a structural block diagram of a sound box according to an exemplary embodiment.
  • the technical solution provided by the embodiment of the present disclosure relates to a smart speaker, which is provided with a speaker and a microphone.
  • smart speakers can only be controlled by voice or external source remote control, and the control method is relatively simple, which is not suitable for people who are blind or have sound disabilities, and the user experience is poor.
  • the sound box can recognize the movement trajectory of the external object through the reflected ultrasonic signal, and then determine that the target operation instruction needs to be executed according to the movement trajectory, so that the user can only use the external active remote control
  • the speaker can be controlled through limb movements, which improves the convenience and flexibility of the user to control the speaker, thereby increasing the applicable crowd of speakers.
  • the speaker can send ultrasonic waves through the built-in speaker, and receive the reflected ultrasonic signal reflected by external objects through the built-in microphone, that is, the user does not need to add additional equipment to the speaker to control the speaker, which reduces the cost of speaker control .
  • Fig. 1a is a flowchart of a speaker control method according to an exemplary embodiment. The method is applied to a speaker. As shown in Fig. 1a, the speaker control method includes the following steps 101 to 103:
  • step 101 when the speaker is in a standby state, an ultrasonic signal is sent out, and a reflected ultrasonic signal reflected by an external object is received.
  • the speaker is provided with a speaker and a microphone, wherein the speaker is used to play audio signals, and the microphone is used to receive audio signals.
  • the speaker is turned off, the microphone is in the monitoring state, and the surrounding environmental sound is acquired in real time, and the speaker determines whether the environmental sound acquired by the microphone includes voice commands.
  • the speaker of the sound box when the sound box is in a standby state, can be controlled to emit an ultrasonic signal, and the microphone of the sound box can be controlled to receive the reflected ultrasonic signal reflected by an external object. Further, when the speaker is in a standby state, the speaker can control the speaker to continuously emit an ultrasonic signal to the outside world, the ultrasonic signal is reflected by the foreign objects of the speaker during the propagation process, and the reflected ultrasonic signal after reflection can be propagated to the vicinity of the speaker And received by the microphone of the speaker.
  • the speaker of this speaker can emit an audio signal of 20 Hz (hertz) to 40 KHz (kilohertz), in which the human ear can hear audio signals with a frequency of 20 Hz (hertz) to 20 KHz (kilohertz), but the human ear cannot
  • the audio signal from 20KHz (KHz) to 40KHz (KHz) is the ultrasonic signal.
  • the speaker when the speaker is in the standby state, the speaker can be controlled to continuously emit ultrasonic signals of the same frequency.
  • the speaker can control the speaker to continuously emit ultrasonic signals of 30KHz (kilohertz) and control the microphone to continuously receive objects passing outside The reflected ultrasonic signal after reflection.
  • step 102 according to the reflected ultrasonic signal, the movement trajectory of the external object is obtained.
  • the speaker instructs the speaker to emit an ultrasonic signal in 360 degrees in all directions.
  • the ultrasonic signal is transmitted by the current environment.
  • Multiple external objects reflect to form multiple reflected ultrasonic signals, which can be received by the microphone of the speaker when they are transmitted to the vicinity of the speaker. Since the plurality of external objects and the sound box are relatively still, the frequency of the plurality of reflected ultrasonic signals received by the microphone is the same as the frequency of the ultrasonic signals emitted by the speaker.
  • the sound box can determine the position of the external object corresponding to each reflected ultrasound signal and the distance between it and the sound box according to the reception angle, the received time and the magnitude of the energy of each reflected ultrasound signal in the plurality of reflected ultrasound signals
  • the distance further depicts the layout of the multiple external objects in the current environment.
  • the external object may be furniture or ornaments displayed in the current environment, or may be a user existing in the current environment or a limb such as an arm, hand, or leg of the user, which is not limited in the embodiments of the present disclosure.
  • the frequency of the reflected ultrasonic signal formed by it will be related to the ultrasonic signal emitted by the speaker due to the Doppler effect
  • the frequency is different.
  • the movement speed of the first external object is v
  • the propagation speed of the sound wave in the air medium is v0
  • the frequency of the ultrasonic signal sent by the speaker is F0
  • the microphone received at the first moment when the first external object appears to move
  • the frequency F of the reflected ultrasonic signal formed by the reflection of the first external object can refer to the following formula (1) and formula (2):
  • the speaker can estimate the moving direction of the first external object at the first moment according to the difference between the frequency F and F0 of the received reflected ultrasonic signal. For example, if the frequency F of the reflected ultrasonic signal is equal to If the difference between F0 is greater than 0, it means that the first external object moves closer to the speaker; if the difference between the frequency F and F0 of the reflected ultrasonic signal is less than 0, it means that the first external object is far away from the speaker Direction of movement.
  • the moving speed v of the first external object at the first moment can be estimated, for example, if the frequencies F and F0 of the reflected ultrasonic signal If the difference between them is greater than 0, you can refer to formula (1) to estimate the moving speed v of the first external object at the first moment; if the difference between the frequencies F and F0 of the reflected ultrasonic signal is less than 0, then The movement speed v of the first external object at the first moment can be calculated with reference to formula (2).
  • the speaker box After acquiring the moving speed v and the moving direction of the first external object at the first moment, the speaker box can estimate the moving trend of the first external object, and according to the moving trend, the first external object can be guessed at the next moment, that is, the second The angle at which the reflected ultrasonic signal may appear at the moment.
  • the sound box can instruct the microphone to monitor the angle first, and determine whether the reflected ultrasonic signal matching the movement trend is received at the angle at the second moment. If there is, it indicates that the first external object moves along the estimated movement trend, and the movement trend of the first external object at the second moment is continuously estimated according to the same method.
  • the speaker may first obtain the reflected ultrasonic signal reflected by the first external object from the multiple reflected ultrasonic signals received at the second time, and then according to the reflection formed by the first external object at the second time
  • the ultrasonic signal predicts the movement trend of the first external object at the second moment.
  • the speaker can obtain the movement trend of the first external object at various times, and the movement trajectory of the first external object can be depicted according to the movement trend of the first external object at various times.
  • the speaker can receive multiple reflected ultrasonic signals reflected by multiple external objects at each moment in multiple different moments, and each moment is received by the linear transformation algorithm
  • the reflection of multiple external objects to form multiple reflected ultrasonic signals is transformed into a matrix, and then by comparing the matrix of two adjacent moments, the movement trend of the currently moving external object is determined, and then according to the external object at multiple times To obtain the movement trajectory of the external object.
  • the speaker receives the reflection of multiple external objects in the current environment to form multiple reflected ultrasonic signals, and transforms the multiple reflected ultrasonic signals into an initial matrix using the linear transformation algorithm, and the initial matrix can reflect the initial The layout of the multiple external objects in the current environment at the moment.
  • the speaker can receive a plurality of reflected ultrasonic signals reflected by multiple external objects at the first moment, and convert the multiple reflected ultrasonic signals to the linear transformation algorithm using the linear transformation algorithm The first-time matrix, and then compare the first-time matrix with the initial matrix. Due to the Doppler effect, the frequency of the reflected ultrasonic signal formed by the reflection of the first external object at the first moment has changed.
  • the sound box can receive a plurality of external objects to reflect at the second time to form a plurality of reflected ultrasonic signals, and use the linear transformation algorithm to transform the multiple reflected ultrasonic signals into a second time matrix, and then the second time matrix and the The matrix is compared at the first moment.
  • the frequency of the reflected ultrasonic signal reflected by the first external object at the second moment also changes under the influence of the Doppler effect, if the second moment If the movement speed and movement direction of the first external object have not changed, then the second moment matrix is approximately the same as the first moment matrix, that is, the movement tendency of the first outside object at the second moment is the same as the first outside object at the first moment Of mobile trends are the same. If the movement speed and direction of the first external object change at the second moment, there is a difference between the elements included in the second moment matrix and the first moment matrix, and the first outside object can be determined according to the difference The mobile trend at the second moment.
  • the speaker can obtain the movement trends of the first external object at multiple different times, and then obtain the movement trajectory of the first external object according to the movement trends of the first external object at multiple different times.
  • step 102 can be implemented as:
  • Step 1 Receive multiple reflected ultrasonic signals reflected by multiple external objects at each moment at multiple different moments;
  • Step 2 Transform the multiple reflected ultrasonic signals received at each moment into a matrix through a linear transformation algorithm
  • Step 3 Determine the movement trend of the external objects currently moving according to the matrix of two adjacent moments
  • Step 4 Obtain the movement trajectory of the external object according to the movement trend of the external object at the multiple different moments.
  • step three can be implemented as:
  • Step 31 If it is determined that the frequency of the reflected ultrasonic wave formed by the external objects currently moving is greater than the frequency of the ultrasonic waves emitted by the speaker according to the matrix of two adjacent moments, then the external object is determined to move closer to the speaker;
  • Step 32 If it is determined that the frequency of the reflected ultrasonic wave formed by the external objects currently moving is less than the frequency of the ultrasonic waves emitted by the speaker according to the matrix of two adjacent moments, then the external object is determined to move away from the speaker;
  • Step 33 Obtain the moving speed of the external object according to the frequency of the reflected ultrasonic wave formed by the reflection of the external object currently moving and the frequency of the ultrasonic wave emitted by the speaker;
  • Steps 3 and 4 Obtain the movement trend of the external object according to the moving direction and moving speed of the external object.
  • step 103 the target operation instruction to be executed is determined according to the movement trajectory of the external object.
  • the speaker box may pre-store the correspondence between the position of the external object and the operation instruction, and different positions correspond to different operation instructions.
  • the speaker can obtain the movement trajectory of the moving external object in the current environment in real time.
  • the embodiment of the present disclosure takes the first external object as an example.
  • the speaker can obtain the movement trajectory of the first external object, and then according to the first
  • the trajectory of the external object determines the current position of the first external object, and then queries the correspondence between the preset position and the operation instruction according to the current position of the first external object, and determines the operation instruction corresponding to the current position as needed Execute the target operation instruction and execute it.
  • the speaker can determine the initial position of the first external object according to the initial matrix and obtain the movement trajectory of the first external object when the first external object moves, the speaker can track the The current position of an external object, and then the corresponding relationship between the preset position and the operation instruction can be queried in real time according to the current position of the first external object, and the operation instruction corresponding to the current position can be determined as the target operation to be performed in real time Instruct and execute.
  • the correspondence between the position and the operation instruction describes different monitoring operation instructions corresponding to different positions, and the different monitoring operation instructions instruct the microphone to monitor audio signals in different positions with priority.
  • the speaker determines that there is a moving first external object in the current environment, since the first external object is continuously moving, the first external object is likely to be a user, and the speaker can obtain the user's movement trajectory in real time, Then, the current position of the user is determined in real time, and by querying the correspondence between the position and the operation instruction, the monitoring operation instruction indicating that the audio signal of the user's current position is preferentially monitored is determined as the target operation instruction to be executed and executed.
  • the speaker can be more accurately obtained due to the priority monitoring of the speaker, thereby improving the effectiveness of the user's voice operation on the speaker.
  • the priority monitoring of the speaker can be realized by a beamforming algorithm. Assuming that the speaker currently needs to monitor the first position of the user first, the sound information received by the microphone at the receiving angle where the first position is located can be enhanced by the beamforming algorithm. That is, increasing the sound intensity of the sound information received at the receiving angle ensures that even if the user sends a voice command with a lower volume at the first position, the voice command can be recognized and executed by the speaker.
  • the speaker box may pre-store the correspondence between the distance of external objects and operation instructions, and different distances correspond to different operation instructions.
  • the speaker can obtain the movement trajectory of the moving external objects in the current environment in real time.
  • the embodiment of the present disclosure takes the first external object as an example.
  • the speaker can obtain the movement trajectory of the first external object according to the first external environment
  • the movement trajectory of the object determines the current position of the first external object, and determines the distance between the first external object and the speaker according to the current position of the first external object, and then queries the correspondence between the distance and the operation instruction
  • the operation instruction corresponding to the distance between the first external object and the sound box is determined as a target operation instruction to be executed and executed.
  • the correspondence between the distance and the operation instruction describes that the corresponding operation instruction when the distance is less than the preset distance threshold is a lighting instruction, and the lighting instruction instructs the speaker to light the screen; when the distance is greater than or equal to the preset distance threshold
  • the corresponding operation instruction is an extinguishing instruction, which instructs the speaker to extinguish the screen.
  • the speaker determines the lighting instruction as the target operation instruction and executes it. In this way, when the user moves to a position close to the speaker, the screen of the speaker can automatically light up, which is convenient for the user The operation improves the user experience; if the distance is greater than or equal to the preset distance threshold, the speaker determines the extinguishing instruction as the target operation instruction and executes it. In this way, when the user moves farther away from the speaker, The screen of the speaker can be automatically turned off, which reduces the power consumption of the speaker.
  • the speaker can detect the movement trajectory of external objects. If the speaker obtains the movement trajectory every time, the target operation instruction to be executed is determined according to the movement trajectory, which may cause the power consumption of the speaker to be large. After the movement trajectory of the external object is reached, the displacement of the external object can be obtained according to the movement trajectory of the external object.
  • the speaker can determine whether the displacement of the external object is greater than or equal to a preset threshold. If the displacement of the external object is greater than or equal to the preset threshold value, it means that the user may be using a limb motion to operate the speaker at this time, so the speaker can determine the target operation instruction that the speaker needs to execute according to the movement trajectory. If the displacement of the external object is less than the preset threshold value, it may indicate that the user's daily actions or the movement of the external object due to external force may occur at this time, so the speaker can ignore the movement trajectory of the external object and continue to monitor by the ultrasonic signal.
  • the sound box can recognize the movement trajectory of the external object through the reflected ultrasonic signal, and then determine that the target operation instruction needs to be executed according to the movement trajectory, so that the user can only
  • the sound box can be controlled through limb movements, which improves the convenience of the user to control the sound box.
  • the speaker can send ultrasonic waves through the built-in speaker, and receive the reflected ultrasonic signal reflected by external objects through the built-in microphone, that is, the user does not need to add additional equipment to the speaker to control the speaker, which reduces the cost of speaker control .
  • step 103 determining the target operation instruction to be performed by the speaker according to the movement trajectory of the external object can be achieved through step 1031:
  • step 1031 according to the preset correspondence between the movement trajectory and the operation instruction, the operation instruction corresponding to the movement trajectory of the external object is acquired as the target operation instruction to be executed.
  • the speaker box may pre-store the correspondence between the motion trajectory and the operation instructions, and the correspondence describes that different motion trajectories correspond to different operation instructions.
  • the speaker can obtain the movement trajectory of the moving external object in the current environment in real time.
  • the embodiment of the present disclosure takes the first external object as an example.
  • the speaker can obtain the movement trajectory of the first external object, and then according to the first
  • the motion trajectory of the external object queries the corresponding relationship between the motion trajectory and the operation instruction, and determines and executes the operation instruction corresponding to the motion trajectory of the first external object as the target operation instruction to be executed.
  • the correspondence between the motion trajectory and the operation instructions describes that moving from the same position twice in the first preset direction corresponds to the operation instruction being a pause instruction; starting from the same position in the opposite direction of the first preset direction.
  • the operation instruction corresponding to the second time is a playback instruction; the operation instruction corresponding to continuous movement in the second preset direction is a volume increase instruction; the operation instruction corresponding to continuous movement in the reverse direction of the second preset direction is a volume decrease instruction. If the user needs the speaker to pause playing the current music, the hand can be waved twice from the same position in the first preset direction continuously.
  • the speaker can obtain the movement track of the user's hand from the same position to the first
  • the preset direction moves twice, and by querying the corresponding relationship between the motion trajectory and the operation instructions, the speaker box can determine and execute the pause instruction as the target operation instruction to be executed.
  • the speaker box can determine and execute the pause instruction as the target operation instruction to be executed.
  • the user can control the speaker to pause audio playback through physical movements, which improves the diversity and flexibility of the speaker control, thereby improving the user experience.
  • the user can also customize the operation instructions corresponding to the body movements.
  • the user can input a setting instruction to the speaker.
  • the setting instruction includes the correspondence between the reference motion trajectory and the reference operation instruction.
  • the speaker can according to the reference motion trajectory and the reference operation instruction included in the setting instruction Correspondence, update the correspondence between the motion trajectory and the operation instruction, so that the operation instruction corresponding to the reference motion trajectory in the correspondence between the motion trajectory and the operation instruction is the reference operation instruction.
  • the sound box is provided with an ultrasonic control interface, and the interface is provided with a limb motion input button, multiple operation instruction options and a confirmation button.
  • the speaker can play the first prompt message, and at the same time instruct the speaker to send an ultrasonic signal and instruct the microphone to receive the reflected ultrasonic signal.
  • the user can stand directly in front of the speaker, and make the action that needs to be set, such as raising the hand up twice, at this time the speaker can receive the user's hand formed by the microphone during the movement process
  • the reflected ultrasonic signal of the user recognizes the movement trajectory of the user's hand and records it as a reference movement trajectory, and then the speaker can play second prompt information, which is used to prompt the user to select an operation instruction corresponding to the reference movement trajectory.
  • the user can click to select the desired operation instruction among the multiple operation instruction options set on the ultrasonic control interface, and click the confirmation button after the selection is completed.
  • the speaker box saves the operation instruction selected by the user as a reference operation instruction corresponding to the reference motion track, and confirms that the setting instruction is obtained.
  • the speaker can update the correspondence between the motion trajectory and the operation instruction according to the setting instruction, that is, add the reference motion trajectory and the reference operation instruction corresponding to the reference motion trajectory to the correspondence between the motion trajectory and the operation instruction, or in When there is a reference motion trajectory in the correspondence between the motion trajectory and the operation instruction, the operation instruction currently corresponding to the reference motion trajectory is replaced with a reference operation instruction.
  • the speaker after the speaker obtains the movement trajectory, it can determine that the target operation instruction needs to be executed according to the correspondence between the preset movement trajectory and the operation instruction, which improves the efficiency and accuracy of acquiring the target operation instruction , which in turn improves the user experience.
  • the speaker can send ultrasonic waves through the built-in speaker, and receive the reflected ultrasonic signal reflected by external objects through the built-in microphone, that is, the user does not need to add additional equipment to the speaker to control the speaker, which reduces the cost of speaker control .
  • Fig. 2 is a flow chart of a method for controlling a sound box according to an exemplary embodiment.
  • the execution subject is a sound box.
  • the method includes the following steps 201 to 208:
  • step 201 when the speaker is in a standby state, the speaker is controlled to emit an ultrasonic signal.
  • step 202 the microphone of the sound box is controlled to receive the reflected ultrasonic signal reflected by the external object.
  • step 203 based on the reflected ultrasonic signal reflected by the external object, the movement trend of the external object is estimated.
  • step 204 the movement trajectory of the external object is determined according to the movement trend of the external object at various times.
  • step 205 according to the movement trajectory of the external object, the corresponding relationship between the preset movement trajectory and the operation instruction is queried, and the operation instruction corresponding to the movement trajectory of the outside object is determined as the target operation instruction to be executed by the speaker.
  • step 206 the target operation instruction is executed.
  • step 207 a setting instruction is obtained, and the setting instruction includes a correspondence between the reference motion track and the reference operation instruction.
  • step 208 the correspondence between the motion trajectory and the operation instruction is updated according to the correspondence between the reference motion trajectory and the reference operation instruction included in the setting instruction, so that the correspondence between the motion trajectory and the operation instruction corresponds to the reference motion trajectory
  • the operation instructions are reference operation instructions.
  • An embodiment of the present disclosure provides a speaker control method, which can recognize the movement trajectory of an external object by reflecting ultrasonic signals, and then determine that a target operation instruction needs to be executed according to the movement trajectory, so that the user does not need an external active remote control
  • the speaker can be controlled only by physical movements, which improves the convenience of the user to control the speaker.
  • the speaker can send ultrasonic waves through the built-in speaker, and receive the reflected ultrasonic signal reflected by external objects through the built-in microphone, that is, the user does not need to add additional equipment to the speaker to control the speaker, which reduces the cost of speaker control .
  • Fig. 3a is a schematic structural diagram of a speaker control device 30 according to an exemplary embodiment.
  • the device 30 may be implemented as part or all of an electronic device through software, hardware, or a combination of the two.
  • the speaker control device 30 includes a control module 301, a first acquisition module 302, and a second acquisition module 303.
  • control module 301 is used to send an ultrasonic signal when the speaker is in a standby state and receive a reflected ultrasonic signal reflected by an external object.
  • the first acquiring module 302 is configured to acquire the movement track of the external object according to the reflected ultrasonic signal.
  • the second obtaining module 303 is configured to determine a target operation instruction to be executed according to the movement trajectory of the external object.
  • the control module 301 includes a control sub-module 3011.
  • the control sub-module 3011 is configured to control the speaker of the speaker to emit ultrasonic signals when the speaker is in a standby state, and The microphone of the sound box is controlled to receive the reflected ultrasonic signal reflected by the external object.
  • the first obtaining module 302 includes a receiving submodule 3021, a transforming submodule 3022, a first determining submodule 3023, and a first obtaining submodule 3024.
  • the receiving sub-module 3021 is configured to receive multiple reflected ultrasonic signals that are reflected by multiple external objects at each instant at multiple different times.
  • the transform submodule 3022 is used to transform a plurality of reflected ultrasonic signals received at each moment into a matrix through a linear transform algorithm.
  • the first determining submodule 3023 is used to determine the movement trend of the external object currently moving according to the matrix of two adjacent moments.
  • the first obtaining submodule 3024 is configured to obtain the movement trajectory of the external object according to the movement trend of the external object at the multiple different moments.
  • the first determination submodule 3023 includes a first determination unit 3023a, a second determination unit 3023b, a first acquisition unit 3023c, and a second acquisition unit 3023d.
  • the first determining unit 3023a is configured to determine that the frequency of the reflected ultrasonic wave reflected by the external object currently moving is greater than the frequency of the ultrasonic wave emitted by the speaker according to the matrix of two adjacent moments, then It is determined that the external object moves toward the speaker.
  • the second determining unit 3023b is used to determine if the frequency of the reflected ultrasonic wave formed by the external object currently moving is less than the frequency of the ultrasonic wave emitted by the speaker according to the matrix of two adjacent moments. The external object moves away from the sound box.
  • the first acquiring unit 3023c is configured to acquire the moving speed of the external object according to the frequency of the reflected ultrasonic wave formed by the reflection of the external object currently moving and the frequency of the ultrasonic wave emitted by the sound box.
  • the second obtaining unit 3023d is configured to obtain the moving trend of the external object according to the moving direction and the moving speed of the external object.
  • the second obtaining module 303 includes a second obtaining sub-module 3031, and the second obtaining sub-module 3031 is configured to correspond to a preset motion track and an operation instruction To obtain an operation instruction corresponding to the movement trajectory of the external object as the target operation instruction.
  • the device 30 further includes a third acquisition module 304 and an update module 305.
  • the third obtaining module 304 is configured to obtain a setting instruction, where the setting instruction includes the correspondence between the reference motion track and the reference operation instruction.
  • the update module 305 is configured to update the correspondence between the motion trajectory and the operation instruction according to the correspondence between the reference motion trajectory and the reference operation instruction included in the setting instruction, so that the correspondence between the motion trajectory and the operation instruction
  • the operation instruction corresponding to the reference motion track in the relationship is a reference operation instruction.
  • the second acquisition module 303 includes a third acquisition submodule 3032 and a fourth acquisition submodule 3033.
  • the third obtaining submodule 3032 is used to obtain the current position of the external object according to the movement trajectory of the external object.
  • the fourth obtaining submodule 3033 is configured to obtain the target operation instruction to be executed according to the current position of the external object.
  • the fourth acquisition submodule 3033 includes a third acquisition unit 3033a and a fourth acquisition unit 3033b.
  • the third obtaining unit 3033a is configured to obtain the current distance between the outside object and the speaker according to the current position of the outside object.
  • the fourth obtaining unit 3033b is configured to obtain the target operation instruction to be executed according to the current distance between the external object and the sound box.
  • the second acquisition module 303 includes a second determination submodule 3036 and a fifth acquisition submodule 3037.
  • the second determination submodule 3036 is configured to determine whether the displacement of the external object is greater than or equal to a preset threshold according to the movement trajectory of the external object.
  • the fifth obtaining submodule 3037 is configured to obtain the target operation instruction to be executed according to the movement trajectory of the external object if the displacement of the external object is greater than or equal to a preset threshold.
  • An embodiment of the present disclosure provides a speaker control device that can recognize the movement trajectory of an external object by reflecting ultrasonic signals, and then determine that the speaker needs to execute a target operation instruction according to the movement trajectory, so that the user does not need an external active remote control.
  • the speaker can be controlled only by physical movement, which improves the user's convenience in controlling the speaker.
  • the speaker can send ultrasonic waves through the built-in speaker, and receive the reflected ultrasonic signal reflected by external objects through the built-in microphone, that is, the user does not need to add additional equipment to the speaker to control the speaker, which reduces the cost of speaker control .
  • An embodiment of the present disclosure provides a speaker control device.
  • the speaker control device includes:
  • Memory for storing processor executable instructions
  • the processor is configured as:
  • the speaker When the speaker is in the standby state, it sends out ultrasonic signals and receives the reflected ultrasonic signals reflected by external objects;
  • a target operation instruction to be executed is determined.
  • the processor may be further configured to: when the speaker is in a standby state, control the speaker of the speaker to emit an ultrasonic signal, and control the microphone of the speaker to receive the reflected ultrasonic signal reflected by an external object.
  • the above processor may be further configured to: receive multiple reflected ultrasonic signals reflected by multiple external objects at each moment in multiple different moments; and receive multiple Transform the reflected ultrasonic signal into a matrix; determine the movement trend of the external object currently moving according to the matrix of two adjacent moments; obtain the movement of the external object according to the movement trend of the external object at the multiple different moments Track.
  • the above processor may be further configured to: if it is determined according to the matrix of two adjacent moments that the frequency of the reflected ultrasonic wave reflected by the external object currently moving is greater than the The frequency of the ultrasonic wave determines that the external object moves closer to the speaker; if the matrix of two adjacent moments determines that the frequency of the reflected ultrasonic wave formed by the external object currently moving is less than that of the speaker The frequency of the ultrasonic wave emitted, it is determined that the external object moves away from the speaker; according to the frequency of the reflected ultrasonic wave formed by the reflection of the external object currently moving and the ultrasonic wave emitted by the speaker Frequency, obtaining the moving speed of the external object; according to the moving direction of the external object and the moving speed, obtaining the moving trend of the external object.
  • the above processor may be further configured to: according to the preset correspondence between the movement trajectory and the operation instruction, acquire the operation instruction corresponding to the movement trajectory of the external object as the target operation instruction.
  • the above processor may be further configured to: obtain a setting instruction, the setting instruction including a correspondence between a reference motion track and a reference operation instruction; and according to the reference motion track included in the setting instruction and the The correspondence relationship between the motion trajectory and the operation instruction is updated with reference to the correspondence relationship of the operation instruction, so that the operation instruction corresponding to the reference motion trajectory in the correspondence relationship between the motion trajectory and the operation instruction is a reference operation instruction.
  • the above processor may be further configured to: obtain the current position of the external object according to the movement trajectory of the external object; and obtain the target operation to be performed according to the current position of the external object instruction.
  • the processor may be further configured to: according to the current position of the external object, obtain the current distance between the external object and the speaker; according to the current external object and the speaker To obtain the target operation instruction to be executed.
  • the processor may be further configured to: according to the movement trajectory of the external object, determine whether the displacement of the external object is greater than or equal to a preset threshold; if the displacement of the external object is greater than or equal to the Set a threshold and obtain the target operation instruction to be executed according to the movement trajectory of the external object.
  • An embodiment of the present disclosure provides a speaker control device that can recognize the movement trajectory of an external object by reflecting ultrasonic signals, and then determine that the speaker needs to execute a target operation instruction according to the movement trajectory, so that the user does not need an external active remote control.
  • the speaker can be controlled only by physical movement, which improves the user's convenience in controlling the speaker.
  • the speaker can send ultrasonic waves through the built-in speaker, and receive the reflected ultrasonic signal reflected by external objects through the built-in microphone, that is, the user does not need to add additional equipment to the speaker to control the speaker, which reduces the cost of speaker control .
  • Fig. 4 is a structural block diagram of a sound box 40 according to an exemplary embodiment.
  • the sound box 40 includes a speaker 401, a microphone 402, a power amplifier 403 connected to the speaker 401 and the microphone 402, a processor 404, and a power supply system 405, respectively ⁇ Wireless communication module 406 and storage module 407.
  • the speaker 401 is used to play audio signals
  • the microphone 402 is used to receive audio signals
  • the power amplifier 403 is used to amplify the audio signals played by the speaker 401 or received by the microphone 402
  • the power system 405 is used to supply power to the speaker 40
  • the storage module 407 is used To store various control programs of the sound box 40
  • the processor 404 is used to control the overall operation of the sound box 40.
  • the control program stored in the storage module 407 can be executed.
  • An embodiment of the present disclosure provides a non-transitory computer-readable storage medium.
  • the instructions in the storage medium are executed by the processor 404 of the device 40, the device 40 can execute the above speaker control method.
  • the method includes:
  • the speaker When the speaker is in the standby state, it sends out ultrasonic signals and receives the reflected ultrasonic signals reflected by external objects;
  • a target operation instruction to be executed is determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Automation & Control Theory (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本公开是关于一种音箱控制方法及装置。该方法包括:在音箱处于待机状态时,发出超声波信号,并接收经过外界物体反射后的反射超声波信号;根据反射超声波信号,获取外界物体的运动轨迹;根据外界物体的运动轨迹,确定需要执行的目标操作指令。该技术方案中,音箱可以使得用户在不需要外部有源遥控器的情况下仅通过肢体动作即可实现对音箱的控制,提高了用户控制音箱的便捷性。同时音箱可以通过自带的扬声器发送超声波,并通过自带的麦克风接收经外界物体反射后的反射超声波信号,即用户对音箱的控制不需要在音箱上加入额外的设备,降低了音箱控制的成本。

Description

音箱控制方法及装置
本申请基于申请号为201811418401.3、申请日为2018年11月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及终端控制技术领域,尤其涉及一种音箱控制方法及装置。
背景技术
随着智能家居技术的不断完善,智能家居的使用率也越来越高,例如,智能音箱、智能电灯、智能冰箱、智能热水器、智能电视等,均给人们的生活带来了巨大的便利性。其中,智能音箱由于其可以连接多个智能家居设备,并能够识别用户的语音指令实现对该多个智能家居设备的语音控制,逐渐受到广大用户的青睐。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种音箱控制方法及装置。所述技术方案如下:
根据本公开实施例的第一方面,提供一种音箱控制方法,包括:
在音箱处于待机状态时,发出超声波信号,并接收经过外界物体反射后的反射超声波信号;
根据所述反射超声波信号,获取所述外界物体的运动轨迹;
根据所述外界物体的运动轨迹,确定需要执行的目标操作指令。
本公开的实施例提供的技术方案可以包括以下有益效果:音箱可以通过反射超声波信号识别外界物体的运动轨迹,进而根据该运动轨迹确定需要执行目标操作指令,使得用户在不需要外部有源遥控器的情况下仅通过肢体动作即可实现对音箱的控制,提高了用户控制音箱的便捷性。
在一个实施例中,所述在音箱处于待机状态时,发出超声波信号,并接收经过外界物体反射后的反射超声波信号包括:
在音箱处于待机状态时,控制所述音箱的扬声器发出超声波信号,并控制所述音箱的麦克风接收经过外界物体反射后的反射超声波信号。
在一个实施例中,所述根据所述反射超声波信号,获取所述外界物体的运动轨迹包括:
接收多个不同时刻中每个时刻由多个外界物体反射形成多个反射超声波信号;
通过线性变换算法将每一时刻接收到的多个反射超声波信号变换成矩阵;
根据相邻两个时刻的矩阵,确定当前正在移动的外界物体的移动趋势;
根据所述外界物体在所述多个不同时刻的移动趋势,获取所述外界物体的运动轨迹。
在一个实施例中,所述根据相邻两个时刻的矩阵,确定当前正在移动的外界物体的移动趋势包括:
若根据相邻两个时刻的矩阵,确定由当前正在移动的所述外界物体反射形成的反射超声波的频率大于所述音箱发出的所述超声波的频率,则确定所述外界物体向靠近所述音箱的方向移动;
若根据相邻两个时刻的矩阵,确定由当前正在移动的所述外界物体反射形成的反射超声波的频率小于所述音箱发出的所述超声波的频率,则确定所述外界物体向远离所述音箱的方向移动;
根据由当前正在移动的所述外界物体反射形成的反射超声波的频率和所述音箱发出的所述超声波的频率,获取所述外界物体的移动速度;
根据所述外界物体的移动方向和所述移动速度,获取所述外界物体的移动趋势。
在一个实施例中,所述根据所述外界物体的运动轨迹,确定需要执行的目标操作指令包括:
根据预设的运动轨迹与操作指令的对应关系,获取与所述外界物体的运动轨迹对应的操作指令作为所述目标操作指令。
在一个实施例中,所述方法还包括:
获取设置指令,所述设置指令包括参考运动轨迹与参考操作指令的对应关系;
根据所述设置指令包括的所述参考运动轨迹与所述参考操作指令的对应关系,更新所述运动轨迹与操作指令的对应关系,使得所述运动轨迹与操作指令的对应关系中与所述参考运动轨迹对应的操作指令为参考操作指令。
在一个实施例中,所述根据所述外界物体的运动轨迹,确定需要执行的目标操作指令包括:
根据所述外界物体的运动轨迹,获取所述外界物体的当前位置;
根据所述外界物体的当前位置,获取需要执行的所述目标操作指令。
在一个实施例中,所述根据所述外界物体的当前位置,确定需要执行的目标操作指令包括:
根据所述外界物体的当前位置,获取当前所述外界物体与所述音箱之间的距离;
根据当前所述外界物体与所述音箱之间的距离,获取需要执行的所述目标操作指令。
在一个实施例中,所述根据所述外界物体的运动轨迹,确定需要执行的目标操作指令包括:
根据所述外界物体的运动轨迹,确定所述外界物体的位移是否大于或等于预设阈值;
若所述外界物体的位移大于或等于预设阈值,根据所述外界物体的运动轨迹,获取需要执行的所述目标操作指令。
根据本公开实施例的第二方面,提供一种音箱控制装置,包括:
控制模块,用于在音箱处于待机状态时,发出超声波信号,并接收经过外界物体反射后的反射超声波信号;
第一获取模块,用于根据所述反射超声波信号,获取所述外界物体的运动轨迹;
第二获取模块,用于根据所述外界物体的运动轨迹,确定需要执行的目标操作指令。
在一个实施例中,所述控制模块包括:
控制子模块,用于在音箱处于待机状态时,控制所述音箱的扬声器发出超声波信号,并控制所述音箱的麦克风接收经过外界物体反射后的反射超声波信号。
在一个实施例中,所述第一获取模块包括:
接收子模块,用于接收多个不同时刻中每个时刻由多个外界物体反射形成多个反射超声波信号;
变换子模块,用于通过线性变换算法将每一时刻接收到的多个反射超声波信号变换成矩阵;
第一确定子模块,用于根据相邻两个时刻的矩阵,确定当前正在移动的外界物体的移动趋势;
第一获取子模块,用于根据所述外界物体在所述多个不同时刻的移动趋势,获取所述外界物体的运动轨迹。
在一个实施例中,所述第二确定子模块包括:
第一确定单元,用于若根据相邻两个时刻的矩阵,确定由当前正在移动的所述外界物体反射形成的反射超声波的频率大于所述音箱发出的所述超声波的频率,则确定所述外界物体向靠近所述音箱的方向移动;
第二确定单元,用于若根据相邻两个时刻的矩阵,确定由当前正在移动的所述外界物体反射形成的反射超声波的频率小于所述音箱发出的所述超声波的频率,则确定所述外界物体向远离所述音箱的方向移动;
第一获取单元,用于根据由当前正在移动的所述外界物体反射形成的反射超声波的频率和所述音箱发出的所述超声波的频率,获取所述外界物体的移动速度;
第二获取单元,用于根据所述外界物体的移动方向和所述移动速度,获取所述外界物体的移动趋势。
在一个实施例中,所述第二获取模块包括:
第二获取子模块,用于根据预设的运动轨迹与操作指令的对应关系,获取与所述外界物体的运动轨迹对应的操作指令作为所述目标操作指令。
在一个实施例中,所述装置还包括:
第三获取模块,用于获取设置指令,所述设置指令包括参考运动轨迹与参考操作指令的对应关系;
更新模块,用于根据所述设置指令包括的所述参考运动轨迹与所述参考操作指令的对应关系,更新所述运动轨迹与操作指令的对应关系,使得所述运动轨迹与操作指令的对应关系中与所述参考运动轨迹对应的操作指令为参考操作指令。
在一个实施例中,所述第二获取模块包括:
第三获取子模块,用于根据所述外界物体的运动轨迹,获取所述外界物体的当前位置;
第四获取子模块,用于根据所述外界物体的当前位置,获取需要执行的所述目标操作指令。
在一个实施例中,所述第四获取子模块包括:
第三获取单元,用于根据所述外界物体的当前位置,获取当前所述外界物体与所述音箱之间的距离;
第四获取单元,用于根据当前所述外界物体与所述音箱之间的距离,获取需要执行的所述目标操作指令。
在一个实施例中,所述第二获取模块包括:
第二确定子模块,用于根据所述外界物体的运动轨迹,确定所述外界物体的位移是否大于或等于预设阈值;
第五获取子模块,用于若所述外界物体的位移大于或等于预设阈值,根据所述外界物体的运动轨迹,获取需要执行的所述目标操作指令。
根据本公开实施例的第三方面,提供一种音箱控制装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在音箱处于待机状态时,发出超声波信号,并接收经过外界物体反射后的反射超声波信号;
根据所述反射超声波信号,获取所述外界物体的运动轨迹;
根据所述外界物体的运动轨迹,确定需要执行的目标操作指令。
根据本公开实施例的第四方面,提供一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现第一方面任一实施例所述方法的步骤。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1a是根据一示例性实施例示出的音箱控制方法的流程图。
图1b是根据一示例性实施例示出的音箱控制方法的流程图。
图2是根据一示例性实施例示出的音箱控制方法的流程图。
图3a是根据一示例性实施例示出的音箱控制装置的结构示意图。
图3b是根据一示例性实施例示出的音箱控制装置的结构示意图。
图3c是根据一示例性实施例示出的音箱控制装置的结构示意图。
图3d是根据一示例性实施例示出的音箱控制装置的结构示意图。
图3e是根据一示例性实施例示出的音箱控制装置的结构示意图。
图3f是根据一示例性实施例示出的音箱控制装置的结构示意图。
图3g是根据一示例性实施例示出的音箱控制装置的结构示意图。
图3h是根据一示例性实施例示出的音箱控制装置的结构示意图。
图3i是根据一示例性实施例示出的音箱控制装置的结构示意图。
图4是根据一示例性实施例示出的音箱的结构框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例提供的技术方案,涉及智能音箱,该智能音箱设置有扬声器和麦克风。相关技术中,智能音箱仅能通过语音或者外源遥控器进行控制,控制方式较为单一,不适合眼盲或者声音残疾的人群使用,用户体验不佳。本公开的实施例提供的技术方案中,音箱可以通过反射超声波信号识别外界物体的运动轨迹,进而根据该运动轨迹确定需要执行目标操作指令,使得用户在不需要外部有源遥控器的情况下仅通过肢体动作即可实现对音箱的控制,提高了用户控制音箱的便捷性和灵活性,进而增加了音箱的适用人群。同时音箱可以通过自带的扬声器发送超声波,并通过自带的麦克风接收经外界物体反射后的反射超声波信号,即用户对音箱的控制不需要在音箱上加入额外的设备,降低了音箱控制的成本。
图1a是根据一示例性实施例示出的一种音箱控制方法的流程图,该方法应用于音箱,如图1a所示,该音箱控制方法包括以下步骤101至步骤103:
在步骤101中,在音箱处于待机状态时,发出超声波信号,并接收经过外界物体反射后的反射超声波信号。
示例的,该音箱设置有扬声器和麦克风,其中扬声器用于播放音频信号,麦克风用于接收音频信号。通常情况下,当音箱处于待机状态时,扬声器关闭,麦克风处于监听状态,实时获取周围的环境声音,并由音箱确定该麦克风获取到的环境声音中是否包括语音指令。
本公开实施例中,在音箱处于待机状态时,可以控制音箱的扬声器发出超声波信号,并控制音箱的麦克风接收经过外界物体反射后的反射超声波信号。进一步地,当音箱处于待机状态时,该音箱可以控制扬声器持续向外界发射超声波信号,该超声波信号在传播的过程中被音箱的外界物体反射,反射后的反射超声波信号可以重新传播至音箱附近,并被音箱的麦克风接收。
实际应用中,该音箱的扬声器可以发出20Hz(赫兹)至40KHz(千赫兹)的音频信号,其中人耳能够听到频率为20Hz(赫兹)至20KHz(千赫兹)的音频信号,人耳听不到的20KHz(千赫兹)至40KHz(千赫兹)的音频信号即为超声波信号。
示例的,在音箱处于待机状态时,可以控制扬声器持续性的发射同一频率的超声波信号,例如,音箱可以控制扬声器持续性的发射30KHz(千赫兹)的超声波信号,并控制麦克风持 续接收经过外界物体反射之后的反射超声波信号。
在步骤102中,根据反射超声波信号,获取外界物体的运动轨迹。
初始化时,假设音箱所处的当前环境中存在的多个外界物体与音箱之间保持相对静止,此时音箱指示扬声器360度全方位发射超声波信号,该超声波信号在传输时,被当前环境中的多个外界物体反射形成多个反射超声波信号,该多个反射超声波信号传输至音箱附近时可以被音箱的麦克风接收。由于该多个外界物体与音箱之间相对静止,因此麦克风接收到的该多个反射超声波信号的频率与扬声器发出的超声波信号的频率相同。此时音箱可以根据该多个反射超声波信号中每个反射超声波信号的接收角度、接收到的时间以及其能量的大小,确定每个反射超声波信号对应的外界物体的位置以及其与音箱之间的距离,进而描绘出当前环境中该多个外界物体的布局。具体的,该外界物体可以为当前环境内陈设的家具或装饰品,也可以为当前环境中存在的用户或者该用户的胳膊、手部或者腿部等肢体,本公开实施例对此不作限定。
以第一外界物体为例进行说明,若该多个外界物体中的第一外界物体相对音箱发生移动,则其形成的反射超声波信号的频率会由于多普勒效应而与扬声器发出的超声波信号的频率不同。假设第一外界物体的移动速度为v,声波在空气介质中的传播速度为v0,扬声器发送的超声波信号的频率为F0,麦克风在该第一外界物体出现移动的第一时刻接收到的由该第一外界物体反射形成的反射超声波信号的频率F可以参考下述公式(1)和公式(2):
F=F0*(v+v0)/v  (1)
F=F0*(v-v0)/v  (2)
由上述公式可知,音箱可以根据接收到的反射超声波信号的频率F与F0之间的差值推算该第一外界物体在该第一时刻的移动方向,例如,若该反射超声波信号的频率F与F0之间的差值大于0,则说明第一外界物体向靠近音箱的方向移动;若该反射超声波信号的频率F与F0之间的差值小于0,则说明第一外界物体向远离音箱的方向移动。根据该反射超声波信号的频率F的具体数值结合公式(1)或者公式(2)可以推算该第一外界物体在该第一时刻的移动速度v,例如,若该反射超声波信号的频率F与F0之间的差值大于0,则可以参考公式(1)推算该第一外界物体在该第一时刻的移动速度v;若该反射超声波信号的频率F与F0之间的差值小于0,则可以参考公式(2)推算该第一外界物体在该第一时刻的移动速度v。获取到第一外界物体在该第一时刻的移动速度v和移动方向之后,音箱即可推测第一外界物体的移动趋势,并根据该移动趋势推测该第一外界物体在下一个时刻,即第二时刻的反射超声波信号可能会出现的角度。此时音箱可以指示麦克风优先监听该角度,确定该第二时刻在该角度是否接收到与该移动趋势匹配的反射超声波信号。若存在,说明该第一外界物体沿推测的移动趋势进行移动,按照同样的方法继续推测第一外界物体在第二时刻的移动趋势。若不存在,音箱可以首先在该第二时刻接收到的多个反射超声波信号中获取该第一外界物体反射形成的反射超声波信号,进而根据该第一外界物体在该第二时刻反射形成的反射超声波信号推测该第一外界物体在第二时刻的移动趋势。以此类推,音箱可以获取到该第一外界物体 在各个时刻的移动趋势,根据该第一外界物体在各个时刻的移动趋势即可刻画出该第一外界物体的运动轨迹。
以音箱采用线性变换算法获取外界物体的运动轨迹为例,音箱可以接收多个不同时刻中每个时刻由多个外界物体反射形成多个反射超声波信号,通过该线性变换算法将每一时刻接收到的由多个外界物体反射形成多个反射超声波信号变换成矩阵,然后通过对相邻两个时刻的矩阵的对比,确定当前正在移动的外界物体的移动趋势,进而根据该外界物体在多个时刻的移动趋势,获取该外界物体的运动轨迹。
具体的,音箱在初始时刻接收当前环境中的多个外界物体反射形成多个反射超声波信号,并将该多个反射超声波信号采用该线性变换算法变换成初始矩阵,该初始矩阵即可反应该初始时刻当前环境中该多个外界物体的布局。假设从第一时刻开始第一外界物体开始进行移动,则音箱可以在第一时刻接收由多个外界物体反射形成多个反射超声波信号,并将该多个反射超声波信号采用该线性变换算法变换成第一时刻矩阵,然后将该第一时刻矩阵与该初始矩阵进行对比。由于第一时刻由第一外界物体反射形成的反射超声波信号在多普勒效应的影响下其频率发生了改变,因此该第一时刻矩阵与初始矩阵的元素存在差别,根据该差别,即可确定在第一时刻时第一外界物体的移动趋势。接着,音箱可以接收多个外界物体在第二时刻反射形成多个反射超声波信号,并将该多个反射超声波信号采用该线性变换算法变换成第二时刻矩阵,然后将该第二时刻矩阵与该第一时刻矩阵进行对比。由于第二时刻时该第一外界物体仍然在运动中,因此第二时刻由第一外界物体反射形成的反射超声波信号在多普勒效应的影响下其频率也发生了改变,若该第二时刻第一外界物体的运动速度和运动方向没有发生变化,则该第二时刻矩阵与该第一时刻矩阵大致相同,即该第二时刻第一外界物体的移动趋势与第一时刻时第一外界物体的移动趋势相同。若该第二时刻第一外界物体的运动速度和运动方向发生了变化,则该第二时刻矩阵与该第一时刻矩阵包括的元素之间存在差别,根据该差别即可确定该第一外界物体在第二时刻的移动趋势。依次类推,音箱可以获取到多个不同时刻该第一外界物体的移动趋势,进而根据该第一外界物体在多个不同时刻的移动趋势,获取该第一外界物体的运动轨迹。
综合上述,步骤102可以实施为:
步骤一、接收多个不同时刻中每个时刻由多个外界物体反射形成多个反射超声波信号;
步骤二、通过线性变换算法将每一时刻接收到的多个反射超声波信号变换成矩阵;
步骤三、根据相邻两个时刻的矩阵,确定当前正在移动的外界物体的移动趋势;
步骤四、根据外界物体在所述多个不同时刻的移动趋势,获取该外界物体的运动轨迹。
其中,步骤三又可以实施为:
步骤三一、若根据相邻两个时刻的矩阵,确定由当前正在移动的外界物体反射形成的反射超声波的频率大于音箱发出的超声波的频率,则确定外界物体向靠近音箱的方向移动;
步骤三二、若根据相邻两个时刻的矩阵,确定由当前正在移动的外界物体反射形成的反射超声波的频率小于音箱发出的超声波的频率,则确定外界物体向远离音箱的方向移动;
步骤三三、根据由当前正在移动的外界物体反射形成的反射超声波的频率和音箱发出的超声波的频率,获取外界物体的移动速度;
步骤三四、根据外界物体的移动方向和移动速度,获取外界物体的移动趋势。
在步骤103中,根据外界物体的运动轨迹,确定需要执行的目标操作指令。
示例的,音箱可以预存外界物体的位置与操作指令之间的对应关系,不同的位置对应不同的操作指令。在待机过程中,音箱可以实时获取当前环境中出现移动的外界物体的运动轨迹,本公开实施例以第一外界物体为例,音箱可以获取该第一外界物体的运动轨迹,然后根据该第一外界物体的运动轨迹确定该第一外界物体的当前位置,进而根据该第一外界物体的当前位置查询预设的位置与操作指令之间的对应关系,将该当前位置对应的操作指令确定为需要执行的目标操作指令并进行执行。具体的,由于音箱可以根据初始矩阵确定该第一外界物体的初始位置,并在该第一外界物体进行移动时获取该第一外界物体的运动轨迹,因此音箱可以根据该运动轨迹实时跟踪该第一外界物体的当前位置,进而可以实时根据该第一外界物体的当前位置查询预设的位置与操作指令之间的对应关系,并实时将该当前位置对应的操作指令确定为需要执行的目标操作指令并进行执行。
例如,假设该位置与操作指令之间的对应关系描述了不同位置对应的不同监听操作指令,该不同监听操作指令指示麦克风优先监听不同位置的音频信号。音箱在确定当前环境中存在移动中的第一外界物体时,由于该第一外界物体在进行持续移动,因此该第一外界物体很有可能为用户,则音箱可以实时获取该用户的运动轨迹,然后实时确定该用户的当前位置,并通过查询位置与操作指令之间的对应关系,将指示优先监听该用户的当前位置的音频信号的监听操作指令确定为需要执行的目标操作指令并进行执行。这样一来,用户在当前位置需要使用语音指令控制音箱时,由于音箱的优先监听,可以使得音箱更加精确的获取到该语音指令,提高了用户语音操作音箱的有效性。具体的,音箱的优先监听可以通过波束成形算法实现,假设音箱当前需要优先监听用户所在的第一位置,则可以通过波束成形算法增强麦克风在该第一位置所在的接收角度接收到的声音信息,即增大该接收角度接收到的声音信息的声强,确保了即便用户在该第一位置采用较小的音量发送语音指令,该语音指令也能够被音箱识别并执行。
示例的,音箱可以预存外界物体的距离与操作指令之间的对应关系,不同的距离对应不同的操作指令。在待机过程中,音箱可以实时获取当前环境中出现移动的外界物体的运动轨迹,本公开实施例以第一外界物体为例,音箱可以获取该第一外界物体的运动轨迹,根据该第一外界物体的运动轨迹确定该第一外界物体的当前位置,并根据该第一外界物体的当前位置确定第一外界物体与音箱之间的距离,然后查询距离与操作指令之间的对应关系,将与该第一外界物体与音箱之间的距离对应的操作指令确定为需要执行的目标操作指令并进行执行。例如,假设该距离与操作指令之间的对应关系描述了距离小于预设距离阈值时对应的操作指令为点亮指令,该点亮指令指示音箱点亮屏幕;距离大于或等于预设距离阈值时对应的操作指令为熄灭指令,该熄灭指令指示音箱熄灭屏幕。音箱在确定当前环境中存在移动中的 第一外界物体时,由于该第一外界物体在进行持续移动,因此该第一外界物体很有可能为用户,则音箱可以实时获取该用户的运动轨迹,然后实时确定该用户的当前位置,并根据该用户的当前位置实时确定该用户与音箱之间的距离。若该距离小于预设距离阈值,则音箱将点亮指令确定为目标操作指令并进行执行,这样一来,用户在移动至靠近该音箱的位置时,该音箱的屏幕可以自动点亮,便于用户进行操作,提高了用户体验;若该距离大于或等于预设距离阈值,则音箱将熄灭指令确定为目标操作指令并进行执行,这样一来,用户在移动至与该音箱的距离较远时,该音箱的屏幕可以自动熄灭,降低了音箱的功耗。
实际应用中,用户在音箱周围活动时,可能会出现一些日常动作,例如看书时翻动书页、喝水、或者睡觉时的翻身,同时有些外界物体也有可能会由于外力的影响出现移动,例如,书页在风力的作用下翻动、窗帘在风力的作用下飘动等。在上述情况下音箱均能检测到外界物体的运动轨迹,若每次音箱获取到运动轨迹则根据该运动轨迹确定需要执行的目标操作指令,可能会造成音箱的功耗较大,因此音箱在获取到外界物体的运动轨迹之后,可以首先根据该外界物体的运动轨迹,获取该外界物体的位移。由于用户的日常动作或者外界物体由于外力产生的移动的位移较小,而用户在通过肢体动作控制音箱时的位移较大,因此音箱可以确定该外界物体的位移是否大于或等于预设阈值。若该外界物体的位移大于或等于预设阈值,说明此时可能是用户在使用肢体动作操作音箱,因此音箱可以根据该运动轨迹,确定音箱需要执行的目标操作指令。若该外界物体的位移小于预设阈值,说明此时可能用户的日常动作或者外界物体由于外力产生的移动,因此音箱可以忽略该外界物体的运动轨迹,继续通过超声波信号进行监测。
本公开的实施例提供的技术方案中,音箱可以通过反射超声波信号识别外界物体的运动轨迹,进而根据该运动轨迹确定需要执行目标操作指令,使得用户在不需要外部有源遥控器的情况下仅通过肢体动作即可实现对音箱的控制,提高了用户控制音箱的便捷性。同时音箱可以通过自带的扬声器发送超声波,并通过自带的麦克风接收经外界物体反射后的反射超声波信号,即用户对音箱的控制不需要在音箱上加入额外的设备,降低了音箱控制的成本。
在一个实施例中,如图1b所示,在步骤103中,根据外界物体的运动轨迹,确定音箱需要执行的目标操作指令,可以通过步骤1031实现:
在步骤1031中,根据预设的运动轨迹与操作指令的对应关系,获取与外界物体的运动轨迹对应的操作指令作为需要执行的目标操作指令。
示例的,音箱可以预存运动轨迹与操作指令的对应关系,该对应关系描述了不同的运动轨迹对应不同的操作指令。在待机过程中,音箱可以实时获取当前环境中出现移动的外界物体的运动轨迹,本公开实施例以第一外界物体为例,音箱可以获取该第一外界物体的运动轨迹,然后根据该第一外界物体的运动轨迹查询运动轨迹与操作指令的对应关系,将与该第一外界物体的运动轨迹对应的操作指令确定为需要执行的目标操作指令并进行执行。例如,假设该运动轨迹与操作指令的对应关系描述了从同一位置开始向第一预设方向移动两次对应的操作指令为暂停指令;从同一位置开始向第一预设方向的反方向移动两次对应的操作指令为 播放指令;沿第二预设方向持续移动对应的操作指令为音量增大指令;沿第二预设方向的反方向持续移动对应的操作指令为音量减小指令。若用户需要音箱暂停播放当前的音乐,可以让手部从同一位置开始向第一预设方向连续挥动两次,此时音箱可以获取到该用户手部的运动轨迹为从同一位置开始向第一预设方向移动两次,通过查询该运动轨迹与操作指令的对应关系,音箱可以将暂停指令确定为需要执行的目标操作指令并进行执行。其他的肢体控制可以参考上述过程,本公开实施例在此不做赘述。这样一来,用户可以通过肢体动作来控制音箱暂停播放音频,提高了音箱控制的多样性和灵活性,进而提高了用户体验。
可选的,用户在使用音箱的过程中,还可以自定义肢体动作对应的操作指令。用户在需要定义新的控制指令时,可以向音箱输入设置指令,该设置指令包括参考运动轨迹与参考操作指令的对应关系,此时音箱可以根据该设置指令包括的参考运动轨迹与参考操作指令的对应关系,更新运动轨迹与操作指令的对应关系,使得运动轨迹与操作指令的对应关系中与参考运动轨迹对应的操作指令为参考操作指令。例如,音箱设置有超声波控制界面,该界面上设置有肢体动作输入按钮、多个操作指令的选项和确认按钮。用户在需要定义新的操作指令时,可以点击该超声波控制界面上的肢体动作输入按钮,此时音箱可以播放第一提示信息,同时指示扬声器发送超声波信号,指示麦克风接收反射超声波信号。用户在听到第一提示信息之后,可以站立在音箱的正前方,并做出需要设置的动作,例如向上抬手两次,此时音箱可以通过麦克风接收到的用户手部在移动过程中形成的反射超声波信号识别该用户手部的运动轨迹,并记录为参考运动轨迹,然后音箱可以播放第二提示信息,该第二提示信息用于提示用户选择该参考运动轨迹对应的操作指令。用户在听到第二提示信息之后,可以在该超声波控制界面上设置的多个操作指令的选项中点击选择所需的操作指令,并在选择完成后点击确认按钮。音箱在确定确认按钮被点击时,将用户选择的操作指令保存为与该参考运动轨迹对应的参考操作指令,同时确认获取到设置指令。此时音箱即可根据该设置指令,更新运动轨迹与操作指令的对应关系,即在该运动轨迹与操作指令的对应关系中添加参考运动轨迹和与该参考运动轨迹对应的参考操作指令,或者在该运动轨迹与操作指令的对应关系存在参考运动轨迹时,将该参考运动轨迹当前对应的操作指令替换为参考操作指令。
本公开的实施例提供的技术方案中,音箱在获取到运动轨迹之后,可以根据预设的运动轨迹与操作指令的对应关系确定需要执行目标操作指令,提高了获取目标操作指令的效率和精确性,进而提高了用户体验。同时音箱可以通过自带的扬声器发送超声波,并通过自带的麦克风接收经外界物体反射后的反射超声波信号,即用户对音箱的控制不需要在音箱上加入额外的设备,降低了音箱控制的成本。
下面通过几个实施例详细介绍实现过程。
图2是根据一示例性实施例示出的一种音箱控制方法的流程图,执行主体为音箱,如图2所示,包括以下步骤201至步骤208:
在步骤201中,在音箱处于待机状态时,控制扬声器发出超声波信号。
在步骤202中,控制该音箱的麦克风接收经过外界物体反射后的反射超声波信号。
在步骤203中,根据经过外界物体反射后的反射超声波信号,推测该外界物体的运动趋势。
在步骤204中,根据该外界物体在各个时刻的运动趋势,确定该外界物体的运动轨迹。
在步骤205中,根据该外界物体的运动轨迹,查询预设的运动轨迹与操作指令的对应关系,将与该外界物体的运动轨迹对应的操作指令确定为该音箱需要执行的目标操作指令。
在步骤206中,执行该目标操作指令。
在步骤207中,获取设置指令,该设置指令包括参考运动轨迹与参考操作指令的对应关系。
在步骤208中,根据该设置指令包括的参考运动轨迹与参考操作指令的对应关系,更新该运动轨迹与操作指令的对应关系,使得该运动轨迹与操作指令的对应关系中与该参考运动轨迹对应的操作指令为参考操作指令。
本公开的实施例提供一种音箱控制方法,该音箱可以通过反射超声波信号识别外界物体的运动轨迹,进而根据该运动轨迹确定需要执行目标操作指令,使得用户在不需要外部有源遥控器的情况下仅通过肢体动作即可实现对音箱的控制,提高了用户控制音箱的便捷性。同时音箱可以通过自带的扬声器发送超声波,并通过自带的麦克风接收经外界物体反射后的反射超声波信号,即用户对音箱的控制不需要在音箱上加入额外的设备,降低了音箱控制的成本。
下述为本公开装置实施例,可以用于执行本公开方法实施例。
图3a是根据一示例性实施例示出的一种音箱控制装置30的结构示意图,该装置30可以通过软件、硬件或者两者的结合实现成为电子设备的部分或者全部。如图3a所示,该音箱控制装置30包括控制模块301,第一获取模块302和第二获取模块303。
其中,控制模块301,用于在音箱处于待机状态时,发出超声波信号,并接收经过外界物体反射后的反射超声波信号。
第一获取模块302,用于根据所述反射超声波信号,获取所述外界物体的运动轨迹。
第二获取模块303,用于根据所述外界物体的运动轨迹,确定需要执行的目标操作指令。
在一个实施例中,如图3b所示,所述控制模块301包括控制子模块3011,所述控制子模块3011,用于在音箱处于待机状态时,控制所述音箱的扬声器发出超声波信号,并控制所述音箱的麦克风接收经过外界物体反射后的反射超声波信号。
在一个实施例中,如图3c所示,所述第一获取模块302包括接收子模块3021,变换子模块3022,第一确定子模块3023和第一获取子模块3024。
其中,接收子模块3021,用于接收多个不同时刻中每个时刻由多个外界物体反射形成多个反射超声波信号。
变换子模块3022,用于通过线性变换算法将每一时刻接收到的多个反射超声波信号变换 成矩阵。
第一确定子模块3023,用于根据相邻两个时刻的矩阵,确定当前正在移动的外界物体的移动趋势。
第一获取子模块3024,用于根据所述外界物体在所述多个不同时刻的移动趋势,获取所述外界物体的运动轨迹。
在一个实施例中,如图3d所示,所述第一确定子模块3023包括第一确定单元3023a,第二确定单元3023b,第一获取单元3023c和第二获取单元3023d。
其中,第一确定单元3023a,用于若根据相邻两个时刻的矩阵,确定由当前正在移动的所述外界物体反射形成的反射超声波的频率大于所述音箱发出的所述超声波的频率,则确定所述外界物体向靠近所述音箱的方向移动。
第二确定单元3023b,用于若根据相邻两个时刻的矩阵,确定由当前正在移动的所述外界物体反射形成的反射超声波的频率小于所述音箱发出的所述超声波的频率,则确定所述外界物体向远离所述音箱的方向移动。
第一获取单元3023c,用于根据由当前正在移动的所述外界物体反射形成的反射超声波的频率和所述音箱发出的所述超声波的频率,获取所述外界物体的移动速度。
第二获取单元3023d,用于根据所述外界物体的移动方向和所述移动速度,获取所述外界物体的移动趋势。
在一个实施例中,如图3e所示,所述第二获取模块303包括第二获取子模块3031,所述第二获取子模块3031,用于根据预设的运动轨迹与操作指令的对应关系,获取与所述外界物体的运动轨迹对应的操作指令作为所述目标操作指令。
在一个实施例中,如图3f所示,所述装置30还包括第三获取模块304和更新模块305。
其中,第三获取模块304,用于获取设置指令,所述设置指令包括参考运动轨迹与参考操作指令的对应关系。
更新模块305,用于根据所述设置指令包括的所述参考运动轨迹与所述参考操作指令的对应关系,更新所述运动轨迹与操作指令的对应关系,使得所述运动轨迹与操作指令的对应关系中与所述参考运动轨迹对应的操作指令为参考操作指令。
在一个实施例中,如图3g所示,所述第二获取模块303包括第三获取子模块3032和第四获取子模块3033。
其中,第三获取子模块3032,用于根据所述外界物体的运动轨迹,获取所述外界物体的当前位置。
第四获取子模块3033,用于根据所述外界物体的当前位置,获取需要执行的所述目标操作指令。
在一个实施例中,如图3h所示,所述第四获取子模块3033包括第三获取单元3033a和第四获取单元3033b。
其中,第三获取单元3033a,用于根据所述外界物体的当前位置,获取当前所述外界物 体与所述音箱之间的距离。
第四获取单元3033b,用于根据当前所述外界物体与所述音箱之间的距离,获取需要执行的所述目标操作指令。
在一个实施例中,如图3i所示,所述第二获取模块303包括第二确定子模块3036和第五获取子模块3037。
其中,第二确定子模块3036,用于根据所述外界物体的运动轨迹,确定所述外界物体的位移是否大于或等于预设阈值。
第五获取子模块3037,用于若所述外界物体的位移大于或等于预设阈值,根据所述外界物体的运动轨迹,获取需要执行的所述目标操作指令。
本公开的实施例提供一种音箱控制装置,该装置可以通过反射超声波信号识别外界物体的运动轨迹,进而根据该运动轨迹确定音箱需要执行目标操作指令,使得用户在不需要外部有源遥控器的情况下仅通过肢体动作即可实现对音箱的控制,提高了用户控制音箱的便捷性。同时音箱可以通过自带的扬声器发送超声波,并通过自带的麦克风接收经外界物体反射后的反射超声波信号,即用户对音箱的控制不需要在音箱上加入额外的设备,降低了音箱控制的成本。
本公开实施例提供一种音箱控制装置,该音箱控制装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
在音箱处于待机状态时,发出超声波信号,并接收经过外界物体反射后的反射超声波信号;
根据所述反射超声波信号,获取所述外界物体的运动轨迹;
根据所述外界物体的运动轨迹,确定需要执行的目标操作指令。
在一个实施例中,上述处理器还可被配置为:在音箱处于待机状态时,控制所述音箱的扬声器发出超声波信号,并控制所述音箱的麦克风接收经过外界物体反射后的反射超声波信号。
在一个实施例中,上述处理器还可被配置为:接收多个不同时刻中每个时刻由多个外界物体反射形成多个反射超声波信号;通过线性变换算法将每一时刻接收到的多个反射超声波信号变换成矩阵;根据相邻两个时刻的矩阵,确定当前正在移动的外界物体的移动趋势;根据所述外界物体在所述多个不同时刻的移动趋势,获取所述外界物体的运动轨迹。
在一个实施例中,上述处理器还可被配置为:若根据相邻两个时刻的矩阵,确定由当前正在移动的所述外界物体反射形成的反射超声波的频率大于所述音箱发出的所述超声波的频率,则确定所述外界物体向靠近所述音箱的方向移动;若根据相邻两个时刻的矩阵,确定由当前正在移动的所述外界物体反射形成的反射超声波的频率小于所述音箱发出的所述超声波 的频率,则确定所述外界物体向远离所述音箱的方向移动;根据由当前正在移动的所述外界物体反射形成的反射超声波的频率和所述音箱发出的所述超声波的频率,获取所述外界物体的移动速度;根据所述外界物体的移动方向和所述移动速度,获取所述外界物体的移动趋势。
在一个实施例中,上述处理器还可被配置为:根据预设的运动轨迹与操作指令的对应关系,获取与所述外界物体的运动轨迹对应的操作指令作为所述目标操作指令。
在一个实施例中,上述处理器还可被配置为:获取设置指令,所述设置指令包括参考运动轨迹与参考操作指令的对应关系;根据所述设置指令包括的所述参考运动轨迹与所述参考操作指令的对应关系,更新所述运动轨迹与操作指令的对应关系,使得所述运动轨迹与操作指令的对应关系中与所述参考运动轨迹对应的操作指令为参考操作指令。
在一个实施例中,上述处理器还可被配置为:根据所述外界物体的运动轨迹,获取所述外界物体的当前位置;根据所述外界物体的当前位置,获取需要执行的所述目标操作指令。
在一个实施例中,上述处理器还可被配置为:根据所述外界物体的当前位置,获取当前所述外界物体与所述音箱之间的距离;根据当前所述外界物体与所述音箱之间的距离,获取需要执行的所述目标操作指令。
在一个实施例中,上述处理器还可被配置为:根据所述外界物体的运动轨迹,确定所述外界物体的位移是否大于或等于预设阈值;若所述外界物体的位移大于或等于预设阈值,根据所述外界物体的运动轨迹,获取需要执行的所述目标操作指令。
本公开的实施例提供一种音箱控制装置,该装置可以通过反射超声波信号识别外界物体的运动轨迹,进而根据该运动轨迹确定音箱需要执行目标操作指令,使得用户在不需要外部有源遥控器的情况下仅通过肢体动作即可实现对音箱的控制,提高了用户控制音箱的便捷性。同时音箱可以通过自带的扬声器发送超声波,并通过自带的麦克风接收经外界物体反射后的反射超声波信号,即用户对音箱的控制不需要在音箱上加入额外的设备,降低了音箱控制的成本。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图4是根据一示例性实施例示出的一种音箱40的结构框图,该音箱40包括扬声器401、麦克风402、分别与该扬声器401和麦克风402连接的功率放大器403、处理器404、电源系统405、无线通信模块406和存储模块407。其中,扬声器401用于播放音频信号;麦克风402用于接收音频信号;功率放大器403用于放大扬声器401播放的或者麦克风402接收的音频信号;电源系统405用于为音箱40供电;存储模块407用于存储该音箱40的各种控制程序;处理器404用于控制音箱40的整体操作,具体的,可以执行该存储模块407中存储的控制程序。
本公开实施例提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由装置40的处理器404执行时,使得装置40能够执行上述音箱控制方法,所述方法包括:
在音箱处于待机状态时,发出超声波信号,并接收经过外界物体反射后的反射超声波信 号;
根据所述反射超声波信号,获取所述外界物体的运动轨迹;
根据所述外界物体的运动轨迹,确定需要执行的目标操作指令。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (20)

  1. 一种音箱控制方法,其特征在于,包括:
    在音箱处于待机状态时,发出超声波信号,并接收经过外界物体反射后的反射超声波信号;
    根据所述反射超声波信号,获取所述外界物体的运动轨迹;
    根据所述外界物体的运动轨迹,确定需要执行的目标操作指令。
  2. 根据权利要求1所述的方法,其特征在于,所述在音箱处于待机状态时,发出超声波信号,并接收经过外界物体反射后的反射超声波信号包括:
    在音箱处于待机状态时,控制所述音箱的扬声器发出超声波信号,并控制所述音箱的麦克风接收经过外界物体反射后的反射超声波信号。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述反射超声波信号,获取所述外界物体的运动轨迹包括:
    接收多个不同时刻中每个时刻由多个外界物体反射形成多个反射超声波信号;
    通过线性变换算法将每一时刻接收到的多个反射超声波信号变换成矩阵;
    根据相邻两个时刻的矩阵,确定当前正在移动的外界物体的移动趋势;
    根据所述外界物体在所述多个不同时刻的移动趋势,获取所述外界物体的运动轨迹。
  4. 根据权利要求3所述的方法,其特征在于,所述根据相邻两个时刻的矩阵,确定当前正在移动的外界物体的移动趋势包括:
    若根据相邻两个时刻的矩阵,确定由当前正在移动的所述外界物体反射形成的反射超声波的频率大于所述音箱发出的所述超声波的频率,则确定所述外界物体向靠近所述音箱的方向移动;
    若根据相邻两个时刻的矩阵,确定由当前正在移动的所述外界物体反射形成的反射超声波的频率小于所述音箱发出的所述超声波的频率,则确定所述外界物体向远离所述音箱的方向移动;
    根据由当前正在移动的所述外界物体反射形成的反射超声波的频率和所述音箱发出的所述超声波的频率,获取所述外界物体的移动速度;
    根据所述外界物体的移动方向和所述移动速度,获取所述外界物体的移动趋势。
  5. 根据权利要求1至4任意一项权利要求所述的方法,其特征在于,所述根据所述外界物体的运动轨迹,确定需要执行的目标操作指令包括:
    根据预设的运动轨迹与操作指令的对应关系,获取与所述外界物体的运动轨迹对应的操作指令作为所述目标操作指令。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    获取设置指令,所述设置指令包括参考运动轨迹与参考操作指令的对应关系;
    根据所述设置指令包括的所述参考运动轨迹与所述参考操作指令的对应关系,更新所述运动轨迹与操作指令的对应关系,使得所述运动轨迹与操作指令的对应关系中与所述参考运动轨迹对应的操作指令为参考操作指令。
  7. 根据权利要求1至4任意一项权利要求所述的方法,其特征在于,所述根据所述外界物体的运动轨迹,确定需要执行的目标操作指令包括:
    根据所述外界物体的运动轨迹,获取所述外界物体的当前位置;
    根据所述外界物体的当前位置,获取需要执行的所述目标操作指令。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述外界物体的当前位置,确定需要执行的目标操作指令包括:
    根据所述外界物体的当前位置,获取当前所述外界物体与所述音箱之间的距离;
    根据当前所述外界物体与所述音箱之间的距离,获取需要执行的所述目标操作指令。
  9. 根据权利要求1至4任意一项权利要求所述的方法,其特征在于,所述根据所述外界物体的运动轨迹,确定需要执行的目标操作指令包括:
    根据所述外界物体的运动轨迹,确定所述外界物体的位移是否大于或等于预设阈值;
    若所述外界物体的位移大于或等于预设阈值,根据所述外界物体的运动轨迹,获取需要执行的所述目标操作指令。
  10. 一种音箱控制装置,其特征在于,包括:
    控制模块,用于在音箱处于待机状态时,发出超声波信号,并接收经过外界物体反射后的反射超声波信号;
    第一获取模块,用于根据所述反射超声波信号,获取所述外界物体的运动轨迹;
    第二获取模块,用于根据所述外界物体的运动轨迹,确定需要执行的目标操作指令。
  11. 根据权利要求7所述的装置,其特征在于,所述控制模块包括:
    控制子模块,用于在音箱处于待机状态时,控制所述音箱的扬声器发出超声波信号,并控制所述音箱的麦克风接收经过外界物体反射后的反射超声波信号。
  12. 根据权利要求7所述的装置,其特征在于,所述第一获取模块包括:
    接收子模块,用于接收多个不同时刻中每个时刻由多个外界物体反射形成多个反射超声波信号;
    变换子模块,用于通过线性变换算法将每一时刻接收到的多个反射超声波信号变换成矩阵;
    第一确定子模块,用于根据相邻两个时刻的矩阵,确定当前正在移动的外界物体的移动趋势;
    第一获取子模块,用于根据所述外界物体在所述多个不同时刻的移动趋势,获取所述外界物体的运动轨迹。
  13. 根据权利要求12所述的装置,其特征在于,所述第二确定子模块包括:
    第一确定单元,用于若根据相邻两个时刻的矩阵,确定由当前正在移动的所述外界物体反射形成的反射超声波的频率大于所述音箱发出的所述超声波的频率,则确定所述外界物体向靠近所述音箱的方向移动;
    第二确定单元,用于若根据相邻两个时刻的矩阵,确定由当前正在移动的所述外界物体反射形成的反射超声波的频率小于所述音箱发出的所述超声波的频率,则确定所述外界物体向远离所述音箱的方向移动;
    第一获取单元,用于根据由当前正在移动的所述外界物体反射形成的反射超声波的频率和所述音箱发出的所述超声波的频率,获取所述外界物体的移动速度;
    第二获取单元,用于根据所述外界物体的移动方向和所述移动速度,获取所述外界物体的移动趋势。
  14. 根据权利要求10至13任意一项权利要求所述的装置,其特征在于,所述第二获取模块包括:
    第二获取子模块,用于根据预设的运动轨迹与操作指令的对应关系,获取与所述外界物体的运动轨迹对应的操作指令作为所述目标操作指令。
  15. 根据权利要求14所述的装置,其特征在于,所述装置还包括:
    第三获取模块,用于获取设置指令,所述设置指令包括参考运动轨迹与参考操作指令的对应关系;
    更新模块,用于根据所述设置指令包括的所述参考运动轨迹与所述参考操作指令的对应关系,更新所述运动轨迹与操作指令的对应关系,使得所述运动轨迹与操作指令的对应关系中与所述参考运动轨迹对应的操作指令为参考操作指令。
  16. 根据权利要求10至13任意一项权利要求所述的装置,其特征在于,所述第二获取模块包括:
    第三获取子模块,用于根据所述外界物体的运动轨迹,获取所述外界物体的当前位置;
    第四获取子模块,用于根据所述外界物体的当前位置,获取需要执行的所述目标操作指令。
  17. 根据权利要求16所述的装置,其特征在于,所述第四获取子模块包括:
    第三获取单元,用于根据所述外界物体的当前位置,获取当前所述外界物体与所述音箱之间的距离;
    第四获取单元,用于根据当前所述外界物体与所述音箱之间的距离,获取需要执行的所述目标操作指令。
  18. 根据权利要求10至13任意一项权利要求所述的装置,其特征在于,所述第二获取模块包括:
    第二确定子模块,用于根据所述外界物体的运动轨迹,确定所述外界物体的位移是否大于或等于预设阈值;
    第五获取子模块,用于若所述外界物体的位移大于或等于预设阈值,根据所述外界物体 的运动轨迹,获取需要执行的所述目标操作指令。
  19. 一种音箱控制装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    在音箱处于待机状态时,发出超声波信号,并接收经过外界物体反射后的反射超声波信号;
    根据所述反射超声波信号,获取所述外界物体的运动轨迹;
    根据所述外界物体的运动轨迹,确定需要执行的目标操作指令。
  20. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求1至9任意一项权利要求所述方法的步骤。
PCT/CN2018/123528 2018-11-26 2018-12-25 音箱控制方法及装置 WO2020107601A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197017515A KR20210094167A (ko) 2018-11-26 2018-12-25 스피커 제어 방법 및 장치
JP2019534937A JP7203735B2 (ja) 2018-11-26 2018-12-25 スピーカ制御方法及びスピーカ制御装置
RU2019133686A RU2735852C1 (ru) 2018-11-26 2018-12-25 Способ и устройство управления системой звуковой сигнализации

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811418401.3 2018-11-26
CN201811418401.3A CN109597312B (zh) 2018-11-26 2018-11-26 音箱控制方法及装置

Publications (1)

Publication Number Publication Date
WO2020107601A1 true WO2020107601A1 (zh) 2020-06-04

Family

ID=65958906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123528 WO2020107601A1 (zh) 2018-11-26 2018-12-25 音箱控制方法及装置

Country Status (7)

Country Link
US (1) US11614540B2 (zh)
EP (1) EP3657700A1 (zh)
JP (1) JP7203735B2 (zh)
KR (1) KR20210094167A (zh)
CN (1) CN109597312B (zh)
RU (1) RU2735852C1 (zh)
WO (1) WO2020107601A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901721B (zh) * 2019-05-05 2022-06-14 阿里巴巴集团控股有限公司 检测目标对象的方法、装置和智能音箱
US11290786B2 (en) * 2019-09-13 2022-03-29 Dish Network L.L.C. Systems and methods for controlling closed captioning
CN111182408B (zh) * 2019-11-01 2021-12-21 广东小天才科技有限公司 一种信息播放方法、音箱设备及存储介质
CN113050788A (zh) * 2019-12-26 2021-06-29 华为技术有限公司 一种声音播放的控制方法及装置
CN111770233B (zh) * 2020-06-23 2021-06-11 Oppo(重庆)智能科技有限公司 一种频率补偿方法及终端设备
CN112039604A (zh) * 2020-09-07 2020-12-04 北京小米移动软件有限公司 一种基于智能家居场景的设备快速联网技术
CN113391264B (zh) * 2021-06-08 2023-01-20 上海闻泰信息技术有限公司 控制方法、存储介质、受控设备、终端设备、定位设备
CN114121002A (zh) * 2021-11-15 2022-03-01 歌尔微电子股份有限公司 电子设备、交互模块及其控制方法和控制装置
CN115390468A (zh) * 2022-08-03 2022-11-25 深圳绿米联创科技有限公司 设备控制方法、装置、电子设备及存储介质
EP4390435A1 (en) * 2022-12-22 2024-06-26 GN Audio A/S Audio device with ultrasound movement detection
CN115953874B (zh) * 2023-03-15 2023-05-16 哈尔滨学院 一种音箱智能告警方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103038725A (zh) * 2010-06-29 2013-04-10 高通股份有限公司 使用连续波超声信号的无触摸感测和手势辨识
US20140306936A1 (en) * 2013-04-10 2014-10-16 Elliptic Laboratories As Touchless interaction devices
CN104898844A (zh) * 2015-01-23 2015-09-09 瑞声光电科技(常州)有限公司 基于超声波定位的手势识别与控制装置及识别与控制方法
CN105183245A (zh) * 2015-08-31 2015-12-23 联想(北京)有限公司 一种信息处理方法及电子设备
CN105744434A (zh) * 2016-02-25 2016-07-06 深圳市广懋创新科技有限公司 一种基于手势识别的智能音箱控制方法及系统
US20160345113A1 (en) * 2015-05-22 2016-11-24 Samsung Electronics Co., Ltd. Method of recognizing surrounding environment and electronic device for the same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2264974C2 (ru) * 2003-12-25 2005-11-27 Общество с ограниченной ответственностью "Научно-производственное предприятие "Резонанс" Способ защиты грузоподъемного крана от недопустимых перемещений стрелы (его варианты) и устройство для его осуществления
CN100334513C (zh) * 2004-03-12 2007-08-29 联想(北京)有限公司 与用户进行距离信息交互的计算机及其实现方法
JP2011209773A (ja) 2010-03-26 2011-10-20 Seiko Epson Corp ジェスチャ・コマンド処理装置、ジェスチャ・コマンド処理方法、およびプログラム
CN102893175B (zh) * 2010-05-20 2014-10-29 皇家飞利浦电子股份有限公司 使用声音信号的距离估计
WO2012093345A1 (en) * 2011-01-05 2012-07-12 Koninklijke Philips Electronics N.V. An audio system and method of operation therefor
DE102011079706A1 (de) * 2011-07-25 2013-01-31 Robert Bosch Gmbh Verfahren zur Bestimmung der Größe und der Position von Objekten
JP2013069224A (ja) 2011-09-26 2013-04-18 Sony Corp 動作認識装置、動作認識方法、操作装置、電子機器、及び、プログラム
CN102937832B (zh) * 2012-10-12 2016-01-20 广东欧珀移动通信有限公司 一种移动终端的手势捕捉方法及装置
CN103226386A (zh) * 2013-03-13 2013-07-31 广东欧珀移动通信有限公司 一种基于移动终端的手势识别方法及系统
CN103543834A (zh) * 2013-11-05 2014-01-29 上海电机学院 一种手势识别装置与方法
CN103885590A (zh) * 2014-03-10 2014-06-25 可牛网络技术(北京)有限公司 获取用户指令的方法及用户设备
US20150268341A1 (en) * 2014-03-21 2015-09-24 Ford Global Technologies, Llc Object detection using ultrasonic phase arrays
US20160091308A1 (en) 2014-09-30 2016-03-31 Invensense, Inc. Microelectromechanical systems (mems) acoustic sensor-based gesture recognition
CN105992080A (zh) * 2015-04-28 2016-10-05 乐视致新电子科技(天津)有限公司 一种音箱设备的控制方法、装置及音箱设备
US9880721B2 (en) 2015-05-12 2018-01-30 Konica Minolta, Inc. Information processing device, non-transitory computer-readable recording medium storing an information processing program, and information processing method
EP3133474B1 (en) 2015-08-19 2019-03-27 Nxp B.V. Gesture detector using ultrasound
WO2018013564A1 (en) * 2016-07-12 2018-01-18 Bose Corporation Combining gesture and voice user interfaces
CN106406524A (zh) * 2016-09-05 2017-02-15 珠海格力电器股份有限公司 设备的控制方法及装置
CN106897018B (zh) * 2017-02-27 2020-07-28 努比亚技术有限公司 手势操作方法、装置和移动终端
CN106842972A (zh) * 2017-03-14 2017-06-13 上海斐讯数据通信技术有限公司 一种智能家居设备的预测控制方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103038725A (zh) * 2010-06-29 2013-04-10 高通股份有限公司 使用连续波超声信号的无触摸感测和手势辨识
US20140306936A1 (en) * 2013-04-10 2014-10-16 Elliptic Laboratories As Touchless interaction devices
CN104898844A (zh) * 2015-01-23 2015-09-09 瑞声光电科技(常州)有限公司 基于超声波定位的手势识别与控制装置及识别与控制方法
US20160345113A1 (en) * 2015-05-22 2016-11-24 Samsung Electronics Co., Ltd. Method of recognizing surrounding environment and electronic device for the same
CN105183245A (zh) * 2015-08-31 2015-12-23 联想(北京)有限公司 一种信息处理方法及电子设备
CN105744434A (zh) * 2016-02-25 2016-07-06 深圳市广懋创新科技有限公司 一种基于手势识别的智能音箱控制方法及系统

Also Published As

Publication number Publication date
CN109597312A (zh) 2019-04-09
CN109597312B (zh) 2022-03-01
RU2735852C1 (ru) 2020-11-09
US11614540B2 (en) 2023-03-28
EP3657700A1 (en) 2020-05-27
JP2021510012A (ja) 2021-04-08
JP7203735B2 (ja) 2023-01-13
US20200166639A1 (en) 2020-05-28
KR20210094167A (ko) 2021-07-29

Similar Documents

Publication Publication Date Title
WO2020107601A1 (zh) 音箱控制方法及装置
US11089402B2 (en) Conversation assistance audio device control
CN107465974B (zh) 声音信号检测器
US10129510B2 (en) Initiating human-machine interaction based on visual attention
US10993057B2 (en) Electronic device microphone listening modes
WO2018032930A1 (zh) 一种智能设备的语音交互控制方法和装置
US11399687B2 (en) Moving robot and control method thereof using artificial intelligence
US10531540B2 (en) Intelligent lamp holder and usage method applied therein
CN108966077A (zh) 一种音箱音量的控制方法及系统
TWI684116B (zh) 終端狀態判斷方法、裝置及終端
US10922044B2 (en) Wearable audio device capability demonstration
JP2017507450A (ja) スマート照明装置、並びにスマート照明制御システム及び方法
IL243513B1 (en) A system and method for voice communication
CN105652704A (zh) 一种家庭背景音乐播放控制方法
CN104506586A (zh) 一种通过手势调节音量的智能耳机系统及调节方法
CN109093627A (zh) 智能机器人
CN108307268A (zh) 一种基于多麦克风的直播方法及直播设备
US20220270601A1 (en) Multi-modal smart audio device system attentiveness expression
TWM621169U (zh) 旋轉式智慧音箱及旋轉式家電產品控制器
JP2020153642A (ja) 空気調和機、空調制御システム、制御方法及びプログラム
TWI817194B (zh) 旋轉式智慧音箱及旋轉式家電產品控制器
US20240069644A1 (en) System and method for enhancing functionality of electronic devices
CN218269291U (zh) 带足部按摩功能的取暖系统及取暖桌
US12050731B2 (en) Information processing system, information processing apparatus, recording medium, and control method
TWI847220B (zh) 可動態調整目標聆聽點並消除環境物件干擾的音響系統

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019534937

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941480

Country of ref document: EP

Kind code of ref document: A1