WO2020107458A1 - 一种上行信号发送方法及终端 - Google Patents

一种上行信号发送方法及终端 Download PDF

Info

Publication number
WO2020107458A1
WO2020107458A1 PCT/CN2018/118721 CN2018118721W WO2020107458A1 WO 2020107458 A1 WO2020107458 A1 WO 2020107458A1 CN 2018118721 W CN2018118721 W CN 2018118721W WO 2020107458 A1 WO2020107458 A1 WO 2020107458A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal
symbol
source cell
target cell
Prior art date
Application number
PCT/CN2018/118721
Other languages
English (en)
French (fr)
Inventor
戴喜增
王宏
张戬
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18941379.2A priority Critical patent/EP3890224B1/en
Priority to CN201880099724.2A priority patent/CN113169834B/zh
Priority to PCT/CN2018/118721 priority patent/WO2020107458A1/zh
Priority to CN202310377181.9A priority patent/CN116405174A/zh
Publication of WO2020107458A1 publication Critical patent/WO2020107458A1/zh
Priority to US17/332,559 priority patent/US11881944B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present application relates to the field of communication technology, and in particular, to an uplink signal transmission method and terminal.
  • a handover process may be triggered.
  • the terminal no longer sends uplink signals to the source cell, and the terminal also The uplink signal has not started to be sent to the target cell, thus causing the interruption of uplink signal transmission.
  • the present application provides an uplink signal sending method and terminal to solve the problem of interruption of uplink signal transmission during a handover process.
  • the present application provides an uplink signal transmission method, which is applied to a terminal switching from a source cell to a target cell, and includes: the terminal determines a symbol that needs to be punctured according to a rule for symbol deletion; Symbol to send an uplink signal to the source cell or the target cell; wherein, the rule for removing symbols is predefined by the protocol, or the rule for removing symbols is that the terminal treats the source cell It is determined after measurement with the cell reference signal of the target cell.
  • the terminal in the process of the terminal switching from the source cell to the target cell, the terminal alternately sends uplink signals to the source cell and the target cell in time division, thereby solving the problem of interruption of uplink signal transmission.
  • the uplink signals are alternately sent to the source cell and the target cell in time division, overlapping symbols may appear, that is, the terminal wants to use the symbol to send the uplink signal to the target cell and also to use the symbol to send the uplink signal to the source cell
  • the terminal can determine the symbol that needs to be eliminated, and send the uplink signal according to the symbol that needs to be eliminated, which solves the problem of overlapping symbol conflicts.
  • the rule for removing symbols is determined after the terminal measures the cell reference signals of the source cell and the target cell; then the terminal uses the rule for removing symbols To determine the symbol that needs to be eliminated, including: the terminal measuring the cell reference signal sent by the source cell to obtain a first measurement result, and measuring the cell reference signal sent by the target cell to obtain a second measurement result The terminal determines the symbol to be destroyed according to the first measurement result and the second measurement result.
  • the determining, by the terminal according to the first measurement result and the second measurement result, a symbol that needs to be dropped includes: the terminal according to the first measurement result and the second measurement result Two measurement results, it is determined that the symbol that needs to be eliminated is a symbol used to send an uplink signal to the source cell or a symbol used to send an uplink signal to the target cell, and the symbol that needs to be eliminated is used to A symbol that overlaps between a symbol that the source cell transmits an uplink signal and a symbol that is used to transmit the uplink signal to the target cell.
  • the first measurement result includes the power of the cell reference signal sent by the source cell measured by the terminal
  • the second measurement result includes the target measured by the terminal The power of the cell reference signal sent by the cell.
  • the first measurement result includes the quality of the cell reference signal sent by the source cell measured by the terminal
  • the second measurement result includes the quality of the cell reference signal sent by the target cell measured by the terminal.
  • the terminal sending the uplink signal according to the symbol that needs to be destroyed includes: if the symbol that needs to be destroyed is a symbol used to send the uplink signal to the source cell, the terminal Sending an uplink signal to the target cell on the symbol that needs to be eliminated. or,
  • the terminal sends an uplink signal to the source cell on the symbol that needs to be erased.
  • the terminal further sends a first capability indication to the source cell, where the first capability indication is used to indicate that the terminal supports alternate time division switching.
  • the terminal further receives a first enable indication from the source cell, where the first enable indication is used to indicate that the terminal is enabled to alternate time-division switching.
  • the terminal further sends a second capability indication to the source cell, where the second capability indication is used to indicate that the terminal supports eliminating overlapping symbols.
  • the terminal further receives a second enable indication from the source cell, where the second enable indication is used to indicate that the terminal is enabled to eliminate overlapping symbols.
  • the terminal further sends a first notification indication to the source cell, where the first notification indication includes a symbol indication and/or a site indication, and the symbol indication is used to instruct the terminal to determine The symbols and/or the number of symbols that need to be eliminated, the station indication is used to indicate the station to which the symbol determined to be eliminated belongs to the terminal, and the station is the target cell or the source cell.
  • the first notification indication includes a symbol indication and/or a site indication
  • the symbol indication is used to instruct the terminal to determine The symbols and/or the number of symbols that need to be eliminated
  • the station indication is used to indicate the station to which the symbol determined to be eliminated belongs to the terminal, and the station is the target cell or the source cell.
  • the terminal further receives a third enable indication from the source cell, where the third enable indication is used to indicate that the terminal is enabled to eliminate overlapping symbols.
  • the present application provides an uplink signal transmission method, which is applied to a terminal switching from a source cell to a target cell, and includes: the terminal receives from the (mk) subframe to (m+tk) subframe in the first cell.
  • the downlink signal of the first cell the terminal sends an uplink signal to the second cell in the n subframe to (n+t-1) subframe of the second cell; the terminal transmits the m+t sub in the first cell Sending uplink feedback for the downlink signal in a frame; wherein the first cell is one of the source cell and the target cell, and the second cell is the other of the source cell and the target cell ,
  • the m subframes of the first cell correspond to the n subframes of the second cell in time sequence, n is an integer greater than 1, m is an integer greater than 1, t is a positive integer, and k is a preset positive integer, The value of mk is non-negative, the value of m+tk is non-negative, and t is less than k.
  • the terminal can use the other In the subframe, multiple uplink feedbacks for the downlink signals previously received on the multiple subframes of the first cell are sent to the first cell, thereby solving the conflict problem when the terminal sends uplink signals to the first cell and the second cell.
  • the first cell is a source cell and the second cell is a target cell
  • the uplink signal sent to the second cell includes a random access preamble
  • the present application provides a communication device that has the function of implementing a terminal in the above method embodiment.
  • This function can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device includes: a processor, a memory, a bus, and a communication interface; the memory stores computer-executed instructions, the processor and the memory are connected through the bus, and when the communication device is running, the The processor executes the computer-executed instructions stored in the memory to cause the communication device to execute the uplink signal transmission method in the first aspect or any implementation manner of the first aspect, or execute the second aspect or second aspect as described above
  • the communication device may be a terminal or the like.
  • the communication device may also be a chip, such as a chip of a terminal, the chip includes a processing unit, and optionally, a storage unit, and the chip may be used to perform the first aspect or the first The uplink signal transmission method in any implementation manner of the aspect, or performing the uplink signal transmission method in the second aspect or any implementation manner of the second aspect described above.
  • the present application provides a computer storage medium that stores computer software instructions for the above-mentioned terminal, which includes programs designed to execute any of the above-mentioned aspects.
  • the present application provides a computer program product.
  • the computer program product includes computer software instructions, and the computer software instructions can be loaded by the processor to implement the process in the uplink signal transmission method in any aspect described above.
  • Figure 1(a) is an application scenario applicable to this application
  • Figure 1(b) is another application scenario applicable to this application.
  • FIG. 2 is a schematic diagram of an uplink signal sending method provided by the present application.
  • FIG. 3 is a schematic diagram of an uplink signal sending method provided by this application.
  • FIG. 5 is another example of uplink signal transmission provided by this application.
  • FIG. 6 is another example of uplink signal transmission provided by this application.
  • FIG. 7 is a schematic diagram of another uplink signal sending method provided by this application.
  • FIG. 8 is a schematic diagram of an apparatus provided by this application.
  • FIG. 9 is a schematic diagram of another device provided by the present application.
  • Mobile communication not only seeks to maximize the capacity, but also needs a wider coverage, that is, no matter where the terminal moves, there must be wireless network signal coverage.
  • the concept of cellular networking is proposed. It divides a network service area into many coverage areas with regular hexagons as basic geometric figures, called cells.
  • a lower-power transmitter serves a cell, and a considerable number of terminals are installed in a smaller area. In fact, not all terminals can complete all continuous services in a cell.
  • the communication network needs to switch the service to the neighboring cell, so as not to interrupt the communication process.
  • Handover refers to the process of switching the link carrying communication data from one cell (or base station) to another cell (or base station) in order to ensure uninterrupted communication during mobile communication.
  • the terminal Before the terminal moves, it accesses a cell of the source base station (called the source cell). Due to the movement of the terminal, the terminal switches to another cell (called a target cell), and the base station where the target cell is located (called the target base station) and the source base station are different base stations. That is, the source base station where the source cell that the UE accesses before moving is located is a different base station from the target base station where the target cell that the UE switches after moving is located.
  • the terminal communicates with the source base station and the target base station through a wireless interface.
  • the terminal Before the terminal moves, it accesses a cell of the source base station (called the source cell). Due to the movement of the terminal, the terminal switches to another cell (called a target cell), and the base station where the target cell is located (called the target base station) and the source base station are the same base station. That is, the source base station where the source cell that the UE accesses before moving is located is the same base station as the target base station where the target cell that the UE switches after moving is located.
  • the terminal communicates with the source base station (target base station) through a wireless interface.
  • the terminal is a device with wireless transceiver function.
  • the terminal can be deployed on land, including indoor or outdoor, handheld, or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as Airplanes, balloons and satellites etc.).
  • the terminal may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial control (industrial control) Wireless terminal in self-driving, wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety,
  • a base station such as a source base station or a target base station, is a device that provides wireless communication functions for terminals.
  • Base stations include, but are not limited to, 5G next-generation base stations (gNodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), and node B (node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved node B, or home node B, HNB), baseband unit (BBU) , Transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.
  • gNodeB 5G next-generation base stations
  • eNB evolved node B
  • RNC radio network controller
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved no
  • this application is directed to the "handover" scenario, which is sometimes referred to as the terminal switching from the source cell to the target cell, and sometimes referred to as the terminal switching from the source base station to the target base station.
  • the terminal receives information from the source base station/target base station (the following signal), the terminal sends information (such as an uplink signal) to the source base station/target base station, and sometimes it is called that the terminal receives from the source cell/target cell
  • the terminal sends information (such as an uplink signal) to the source cell/target cell.
  • the source base station and the source cell in the present application have the same meaning
  • the target base station and the target cell have the same meaning
  • the terminal in the process of the terminal switching from the source base station to the target base station, after receiving the handover command (handover command, HO command) from the source base station, the terminal stops sending uplink (UL) to the source base station. Instead, start searching for the target base station, and synchronize the time and frequency with the target base station. After that, the terminal initiates a random access (Random access) process to the target base station.
  • handover command handover command, HO command
  • the terminal acquires the time to send the random access preamble (Preamble) to the target base station, that is, the physical random access channel (Physical Random Access Channel, PRACH) time (occasion), and when this time comes, The terminal sends a Preamble (denoted Message1, referred to as Msg1 for short) to the target base station. Then, the terminal monitors the Random Access Radio Network Temporary Identifier (RA-RNTI) scrambled physical downlink control channel (Physical Downlink Control Channel, PDCCH), which is used to schedule the random access response (PDCCH) Random access (RAR) message (denoted as Message2, referred to as Msg2).
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • PDCCH Physical Downlink Control Channel
  • RAR Random access
  • RAR includes uplink timing (Timing Advance, TA) and uplink resource grant (UL grant).
  • TA uplink timing
  • UL grant uplink resource grant
  • the terminal uses the UL grant and TA to send a handover complete (HO complete) message (denoted as Message3, referred to as Msg3 for short) to the target base station.
  • HO complete handover complete
  • the above handover command may be Mobility Control Information, which is included in the Radio Resource Control (RRC) Connection Reconfiguration (RRC) Connection Reconfiguration message.
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • the terminal In the process of the above terminal switching from the source base station to the target base station, after receiving the handover command from the source base station, the terminal needs to process the command, and then stop sending uplink signals to the source base station and stop receiving downlink signals from the source base station. If the terminal has detected the target cell in the past and has information such as time synchronization and cell identification (cell ID) of the target cell, the terminal does not need to perform a cell synchronization search again. If the terminal does not have the above information of the target cell, or the above information possessed by the terminal is already invalid, the terminal needs to perform a cell search again. The terminal also needs to complete accurate time and frequency synchronization of the target cell, that is, fine synchronization acquisition.
  • cell ID time synchronization and cell identification
  • the terminal also needs to update the relevant configuration information of the medium access control (MAC) layer and the upper layers to prepare to receive the data of the target base station.
  • MAC medium access control
  • RACH Random Access Channel
  • the terminal After receiving the Msg3, the terminal can start sending uplink signals to the target base station and receive downlink signals from the target base station.
  • the handover command processing, cell search, fine synchronization, MAC layer/high layer parameter update, and RACH process will cause the downlink and uplink signal transmission to be interrupted, that is, the data transmission is interrupted during the cell handover process. That is, the terminal no longer sends uplink signals to the source base station and does not receive downlink signals from the source base station during the period from the start of the handover to the completion of the handover, and the terminal does not send uplink signals to the target base station or receive them from the target base station Downlink signal.
  • the data transmission interruption includes uplink signal transmission interruption and downlink signal transmission interruption.
  • the prior art provides a time-division alternate switching method, which requires the terminal to alternately transmit uplink signals to the source cell (source base station) and the target cell (target base station) in time-division, namely Send an uplink signal to the source cell in the time period, send an uplink signal to the target cell in the T2 time period after the end of the T1 time period, and then send an uplink signal to the source cell in the T3 time period after the end of the T2 time period, and so on.
  • the above time division alternate switching method mainly has the following two problems:
  • overlapping may occur at the junction of the subframes when alternating, that is, at the overlap, both the uplink signal to the source cell and the The uplink signal is sent to the target cell, but in fact at the same moment, the time at the overlap can only be used to send the uplink signal to the source cell or to the target cell, which will affect the transmission of the uplink signal. Therefore, how to deal with the overlapping phenomenon is a problem to be solved.
  • the time-division alternate switching method will affect the transmission of the uplink feedback of the downlink signal.
  • the uplink subframes of the source cell or the target cell are unavailable at certain times. For example, if an uplink subframe is used to send uplink signals to the source cell, the uplink subframe cannot be used to send uplink signals to the target cell.
  • the uplink subframe cannot be used to send an uplink signal to the source cell (uplink feedback of the following signal). Therefore, how to design the uplink feedback of the time-division alternate switching method is a problem to be solved.
  • the uplink signal includes but is not limited to: uplink data, uplink signaling, uplink message, and uplink feedback for the downlink signal.
  • Downlink signals include but are not limited to: downlink data, downlink signaling, downlink messages, and downlink feedback for uplink signals.
  • the present application provides an uplink signal transmission method.
  • the method includes the following steps:
  • Step 201 The terminal determines the symbol that needs to be punctured according to the rule for symbol deletion.
  • the rule for eliminating symbols is predefined by the protocol.
  • the protocol pre-defines the symbols that need to be eliminated to be N symbols of the source cell, and the N symbols are symbols where the source cell and the target cell overlap.
  • the protocol pre-defines the symbols that need to be eliminated are N symbols of the target cell, and the N symbols are symbols where the source cell and the target cell overlap.
  • the symbols to be eliminated are specified as N symbols of the first cell, and the N The symbol is a symbol where the first cell overlaps with the second cell.
  • the protocol predefines the symbols that need to be eliminated are N symbols of the second cell, the The N symbols are symbols where the first cell overlaps with the second cell, and so on.
  • the rule for removing symbols is determined after the terminal measures the cell reference signals of the source cell and the target cell.
  • the terminal can determine the symbol to be destroyed according to the following method steps:
  • Step A The terminal measures the cell reference signal sent by the source cell to obtain a first measurement result, and measures the cell reference signal sent by the target cell to obtain a second measurement result.
  • the first measurement result may be recorded as Ms
  • the second measurement result may be recorded as Mt.
  • the first measurement result includes the power of the cell reference signal sent by the source cell measured by the terminal
  • the second measurement result includes the power of the cell reference signal sent by the target cell measured by the terminal. That is, the terminal measures the cell reference signals of the source cell and the target cell separately to obtain the measured power.
  • the "power” here may be, for example, reference signal received power (Reference Signal Receiving Power, RSRP).
  • the first measurement result includes the quality of the cell reference signal sent by the source cell measured by the terminal
  • the second measurement result includes the quality of the cell reference signal sent by the target cell measured by the terminal. That is, the terminal measures the cell reference signals of the source cell and the target cell separately to obtain the measurement quality.
  • the "quality” here may be, for example, reference signal reception quality (Reference Signal Receiving Quality, RSRQ), or channel quality indicator (Channel Quality Indicator, CQI), or signal to interference plus noise ratio (Signal to Interference plus Noise Ratio, SINR) , Or Signal to Noise Ratio (SNR).
  • Step B The terminal determines the symbol that needs to be eliminated according to the first measurement result and the second measurement result.
  • the terminal determines that the symbol that needs to be removed is a symbol used to send an uplink signal to the source cell or a symbol used to send an uplink signal to the target cell, and the symbol that needs to be removed is used to The symbol of the overlap between the symbol for sending the uplink signal to the source cell and the symbol for sending the uplink signal to the target cell.
  • the terminal determines that the symbol that needs to be destroyed is a symbol used to send an uplink signal to the source cell, otherwise, the terminal determines that the symbol that needs to be destroyed is used to send to the target cell.
  • the symbol of the uplink signal, and the symbol that needs to be eliminated is a symbol that overlaps between the symbol used to send the uplink signal to the source cell and the symbol used to send the uplink signal to the target cell.
  • the preset threshold (Threshold 1) may be a positive number, a negative number, or zero.
  • the terminal determines that the symbol that needs to be eliminated is a symbol used to send an uplink signal to the target cell, otherwise, the terminal determines that the symbol that needs to be destroyed is used to send to the source cell.
  • the symbol for sending the uplink signal, and the symbol that needs to be eliminated is a symbol that overlaps between the symbol for sending the uplink signal to the source cell and the symbol for sending the uplink signal to the target cell.
  • the preset threshold (Threshold 2) may be a positive number, a negative number, or zero.
  • the terminal determines that the symbol that needs to be eliminated is a symbol used to send an uplink signal to the source cell, otherwise, the terminal determines that the symbol that needs to be eliminated is used to target the cell
  • the symbol for sending the uplink signal, and the symbol that needs to be eliminated is a symbol that overlaps between the symbol for sending the uplink signal to the source cell and the symbol for sending the uplink signal to the target cell.
  • the preset threshold (Threshold 3) can be a positive number, a negative number, or zero.
  • the terminal determines that the symbol that needs to be eliminated is the symbol used to send the uplink signal to the target cell, otherwise, the terminal determines that the symbol that needs to be eliminated is used to send the source
  • the symbol for sending the uplink signal, and the symbol that needs to be eliminated is a symbol that overlaps between the symbol for sending the uplink signal to the source cell and the symbol for sending the uplink signal to the target cell.
  • the preset threshold may be a positive number, a negative number, or zero.
  • the terminal may also send a first capability indication to the source cell, where the first capability indication is used to indicate that the terminal supports alternate time division switching. Therefore, the source base station learns that the terminal supports time-division alternate switching.
  • supporting time-division alternate handover refers to supporting time-division alternate handover to alternately send uplink signals to the source cell or the target cell.
  • the source cell may also send a first enable indication to the terminal, where the first enable indication is used to instruct to enable time-division alternate switching of the terminal. Therefore, according to the first enabling instruction, the terminal may enable the function of alternate time division switching.
  • the terminal may also send a second capability indication to the source cell, where the second capability indication is used to indicate that the terminal supports the removal of overlapping symbols.
  • the source base station learns that the terminal supports the removal of overlapping symbols.
  • the source cell may also send a second enable indication to the terminal, where the second enable indication is used to instruct the enable terminal to eliminate overlapping symbols. Therefore, according to the second enabling instruction, the terminal may enable the function of eliminating overlapping symbols.
  • the terminal may also send a first notification indication to the source cell, where the first notification indication includes a symbol indication and/or a site indication, where the symbol indication is used to indicate a symbol and/or symbol determined by the terminal that needs to be dropped
  • the station indication is used to indicate the station to which the symbol determined by the terminal needs to be removed belongs, and the station is a target cell or a source cell. Therefore, the source cell can learn that the symbol determined by the terminal that needs to be eliminated is the symbol used to send the uplink signal to the target cell, and the symbol of which site needs to be eliminated.
  • the source cell may also send a third enable indication to the terminal, where the third enable indication is used to instruct the terminal to disable the overlap symbol. It should be noted that only one of the third enable instruction and the second enable instruction needs to be sent. The difference between the third enable instruction and the second enable instruction is that the third enable instruction can be Triggered by the first notification instruction.
  • the source cell may also send a second notification indication to the target cell.
  • the second notification indication is used to Indicate the symbol determined by the terminal that needs to be eliminated, and the symbol used to send the uplink signal to the target cell needs to be eliminated.
  • Step 202 The terminal sends an uplink signal to the source cell or the target cell according to the determined symbol that needs to be dropped.
  • sending an uplink signal means that the terminal sends an uplink signal to the target cell on the symbol that is dropped, that is, the symbol that is dropped is not used to send an uplink signal to the source cell.
  • sending an uplink signal means that the terminal sends an uplink signal to the source cell on the symbol that is dropped, that is, the symbol that is dropped is not used to send an uplink signal to the target cell.
  • the terminal in the process of the terminal switching from the source cell to the target cell, the terminal alternately sends uplink signals to the source cell and the target cell in time division, thereby solving the problem of interruption of uplink signal transmission.
  • overlapping symbols may appear, that is, the terminal wants to use the symbol to send the uplink signal to the target cell and also to use the symbol to send the uplink signal to the source cell
  • the terminal can determine the symbol that needs to be eliminated, and send the uplink signal according to the symbol that needs to be eliminated, which solves the problem of overlapping symbol conflicts.
  • the terminal may also notify the source cell and/or the target cell of the symbol that needs to be dropped, so that the source cell or the target cell improves decoding of the uplink signal sent by the terminal according to the notification instruction.
  • the present application provides an uplink signal transmission method, which includes the following steps:
  • step 301 the terminal receives the downlink signal from the first cell on the (m-k) to (m+t-k) subframes of the first cell.
  • Step 302 The terminal sends an uplink signal to the second cell in the n subframe to (n+t-1) subframe of the second cell.
  • Step 303 The terminal sends uplink feedback for the downlink signal in the m+t subframe of the first cell.
  • the first cell is a source cell
  • the second cell is a target cell
  • the first cell is the target cell
  • the second cell is the source cell
  • the m subframes of the first cell correspond to the n subframes of the second cell in time sequence
  • the "correspondence" here means that the m subframes of the first cell are aligned with the n subframe boundaries of the second cell, or Slightly staggered, for example, the staggered duration is less than 0.5ms.
  • uplink feedback refers to feedback on the received downlink signal sent on the uplink symbol.
  • it may be HARQ-ACK or hybrid automatic repeat request denial (Hybrid automatic repeat request-NACK, HARQ-NACK).
  • n and m are integers greater than 1
  • t is a positive integer
  • k is a preset positive integer
  • the values of m-k and m+t-k are non-negative, and t is less than k.
  • k the terminal receives the downlink signal of the cell (such as the source cell or the target cell) in a certain subframe (such as the p subframe), and after a period of processing, sends it to the cell in the p+k subframe
  • k can be understood as the time required for the terminal to process the downlink signal.
  • the terminal receives the downlink signal of the first cell in the (m-k) subframe to (m+t-k) subframe of the first cell. Therefore, according to normal processing, the terminal should send uplink feedback to the first cell on the m subframe of the first cell to the downlink signal received in the mk subframe, and the m+1 sub in the first cell Send uplink feedback to the first cell on the frame to the first cell in the m+1-k subframe, and receive the downlink signal from the first cell on the m+1-k subframe... The downlink signal of the first cell is received in the m+tk subframe.
  • the terminal sends the uplink signal to the first cell on the n subframe of the first cell, it cannot send the uplink signal to the second cell on the m subframe of the second cell.
  • the terminal sends the uplink signal to the second cell If uplink signals are sent to the second cell, the uplink signals cannot be sent to the first cell in n subframes of the first cell. The same is true for n+1 subframes and m+1 subframes, n+2 subframes and m+2 subframes, n+3 subframes and m+3 subframes, and so on.
  • step 302 the terminal sends an uplink signal from the n subframe to (n+t-1) subframe of the second cell, the terminal cannot use the m subframe of the first cell to (m+t-1) ) The subframes respectively send uplink feedback to the first cell.
  • the terminal sends uplink feedback for the downlink signal received from the first cell to the first cell in the m+t subframe of the first cell.
  • the downlink signal here refers to the downlink signal of the first cell received by the terminal in the (m-k) subframe to (m+t-k) subframe of the first cell.
  • the uplink feedback here includes: uplink feedback for the downlink signal received in the mk subframe of the first cell, uplink feedback for the downlink signal received in the m+1-k subframe of the first cell,... , For the uplink feedback of the downlink signal received in the m+tk subframe of the first cell.
  • the terminal receives the downlink signal on the m-4 subframe and m-3 subframe of the first cell. According to the normal processing method, the terminal should send the m-4 subframe to the first cell on the m subframe of the first cell In the uplink feedback of the received downlink signal, the uplink feedback for the downlink signal received in the m-3 subframe is sent to the first cell on the m+1 subframe of the first cell.
  • the terminal Since the terminal sends the uplink signal to the second cell on the n subframe of the second cell, the m subframe of the first cell cannot be used to send uplink feedback to the first cell, that is, the received m-4 subframe The upstream feedback of the downstream signal will not be sent on m subframes.
  • uplink feedback for the downlink signal received in the m-4 subframe and uplink feedback for the downlink signal received in the m-3 subframe are sent on the m+1 subframe.
  • the m+1 subframe feeds back HARQ-ACK.
  • the HARQ-NACK is fed back in the m+1 subframe.
  • the terminal can use the other subframes after the subframe to send the first cell Multiple uplink feedback of the downlink signals received on multiple subframes of the cell, thereby solving the problem of conflicts when the terminal sends uplink signals to the first cell and the second cell.
  • the uplink signal transmission method shown in FIG. 3 will be described below with reference to the specific examples shown in FIGS. 4-6.
  • the value of k is 4, the value of t is 1, the first cell is the source cell, the second cell is the target cell, and the uplink signal sent by the terminal on the n subframe of the target cell is a random access preamble ( Preamble) as an example.
  • Preamble random access preamble
  • the terminal synchronizes to the n-subframe of the target cell at the time when it synchronizes to the m-subframe of the source cell, where the m-subframe of the source cell and the n-subframe of the target cell may be aligned at a boundary, or may be slightly offset.
  • Step A1 the terminal acquires downlink synchronization and random access opportunities of the target cell before n subframes, and sends a Preamble to the target cell in n subframes.
  • Step A2 the terminal sends the HARQ-ACK/NACK of the downlink signal feedback to the source cell in the m+1 subframe.
  • the feedback is the result of a logical AND operation of HARQ-ACK/NACK for the downlink signals received in the m-4 subframe and the m-3 subframe, that is, only when the feedback for both subframes is HARQ-ACK , Only HARQ-ACK is fed back, otherwise HARQ-NACK is fed back.
  • the uplink signal here may include uplink feedback for the downlink signal sent by the source cell, such as HARQ-ACK or HARQ-NACK.
  • the terminal After the terminal receives the downlink signal, it takes a certain amount of time to process it.
  • the uplink feedback of sending the downlink signal at 4 subframe intervals is used as an example. For example, if the terminal receives the downlink signal in the m-4 subframe of the source cell, the terminal will send the uplink feedback of the downlink signal to the source cell in the m subframe. For another example, if the terminal receives the downlink signal in the m-3 subframe of the source cell, the terminal will send the uplink feedback of the downlink signal to the source cell in the m+1 subframe.
  • the terminal since the terminal cannot send the uplink feedback of the downlink signal received in the m-4 subframe in the m subframe of the source cell, the terminal can send the uplink feedback of the downlink signal in the m+1 subframe on the one hand.
  • the uplink feedback of the downlink signal received in the m-3 subframe on the other hand, the uplink feedback of the downlink signal received in the m-4 subframe can also be sent, that is, the uplink feedback sent in the m+1 subframe includes the m-4 subframe Uplink feedback of the downlink signal received by the frame and uplink feedback of the downlink signal received by the m-3 subframe.
  • the m+1 subframe feeds back HARQ-ACK.
  • the HARQ-NACK is fed back in the m+1 subframe.
  • Step A3 the terminal starts to monitor the PDCCH of the target cell in the n+3 subframe of the target cell.
  • the terminal can configure or activate or enable the bearer, security, etc. corresponding to the target cell to prepare for receiving the target The downlink signal of the cell.
  • the terminal can configure the bearer, security, etc. corresponding to the target cell, and is ready to receive the downlink signal of the target cell.
  • the target cell starts to send a downlink signal to the terminal in the n+4 subframe.
  • the RAR is received in the n+4 subframe as an example for illustration. In practice, the RAR may also be received in the n+5 subframe.
  • Step A4 After the terminal receives the downlink signal of the target cell after receiving the RAR, the terminal uses the timing advance (TA) carried in the RAR to send uplink feedback of the downlink signal on the activated PUCCH.
  • TA timing advance
  • the terminal uses the timing advance (TA) carried in the RAR to send the uplink feedback of the downlink signal on the activated PUCCH.
  • TA timing advance
  • the terminal when the terminal receives the downlink signal of the target cell in the n+4 subframe, it starts to send uplink feedback in the n+8 subframe, and from this subframe, the terminal stops sending the uplink signal to the source cell, that is, cancels the source signal. Uplink feedback of the downlink signal received by the cell.
  • the feedback problem of the downlink signal of the source cell and the feedback signal of the target cell can be solved.
  • This embodiment bundles and sends uplink feedback of multiple downlink signals of the source cell (as shown in FIG. 4, the uplink feedback sent by the m+1 subframe is the uplink feedback of the downlink signal of the m-3 subframe and the m-4 subframe
  • the uplink feedback of the downlink signal of the frame and activate the uplink feedback of the downlink signal of the target cell in advance (as shown in FIG. 4, before Msg3, start the uplink feedback of the downlink signal to the target cell).
  • the terminal synchronizes to the n-subframe of the target cell at the time when it synchronizes to the m-subframe of the source cell, where the m-subframe of the source cell and the n-subframe of the target cell may be aligned at a boundary, or may be slightly offset.
  • Steps B1 to B2 are the same as steps A1 to A2 of the embodiment shown in FIG. 4, and refer to the foregoing description.
  • Step B3 the terminal starts monitoring the PDCCH of the target cell in the n+3 subframe of the target cell.
  • the terminal can configure or activate or enable the bearer, security, etc. corresponding to the target cell to prepare for receiving the target The downlink signal of the cell.
  • the terminal can configure the bearer, security, etc. corresponding to the target cell, and is ready to receive the downlink signal of the target cell.
  • the target cell starts to send a downlink signal to the terminal in the n+6 subframe.
  • the RAR is received in the n+4 subframe as an example for illustration. In practice, the RAR may also be received in the n+5 subframe.
  • Step B4 After receiving the RAR, the terminal sends the uplink feedback of the downlink signal on the activated PUCCH using the timing advance (TA) carried in the RAR if the terminal receives the downlink signal of the target cell.
  • TA timing advance
  • the terminal uses the timing advance (TA) carried in the RAR to send the uplink feedback of the downlink signal on the activated PUCCH.
  • TA timing advance
  • the uplink feedback of the downlink signal of the target cell is sent on the subframe where Msg3 is located and subsequent subframes.
  • the terminal receives the downlink signal of the target cell in the n+6 subframe, it starts to send feedback information in the n+10 subframe. Starting from this subframe, the terminal stops sending uplink signals to the source cell, that is, cancels the uplink feedback of the downlink signal received from the source cell.
  • the time when the target cell starts sending downlink signals to the terminal is slightly later than the time when the target cell starts sending downlink signals to the terminal in the embodiment shown in FIG. 4 above, and the n+8 subframe and Interruption of PUSCH transmission in n+9 subframes.
  • the terminal's transmission on the source cell continues until the previous subframe of the subframe where Msg3 is located.
  • the terminal synchronizes to the n-subframe of the target cell at the time when it synchronizes to the m-subframe of the source cell, where the m-subframe of the source cell and the n-subframe of the target cell may be border aligned or may be slightly offset.
  • Steps C1 to C2 are the same as steps A1 to A2 of the embodiment shown in FIG. 4, and reference may be made to the foregoing description.
  • Step C3 the terminal starts monitoring the PDCCH of the target cell in the n+3 subframe of the target cell.
  • the target cell starts to send a downlink signal to the terminal in the n+11 subframe after receiving Msg3, and starts scheduling the uplink of the terminal.
  • the RAR is received in the n+4 subframe as an example for illustration. In practice, the RAR may also be received in the n+5 subframe.
  • Step C4 after the target cell sends Msg3, the terminal sends an uplink signal to the source cell.
  • the specific implementation process can refer to the process of sending uplink feedback in m+1 subframes.
  • the terminal After sending the Msg3, the terminal monitors the PDCCH of the target cell at the same time. If the uplink scheduling of the target cell is monitored, the terminal stops sending uplink signals to the source cell and starts sending uplink signals to the target cell.
  • the terminal when the terminal receives the downlink signal and uplink scheduling of the target cell in the n+11 subframe of the target cell, it starts to send the uplink feedback of the downlink signal and other uplink signals in the n+15 subframe. From this subframe, the terminal stops Send an uplink signal to the source cell, that is, cancel the uplink feedback of the downlink signal received from the source cell.
  • the target cell only schedules the terminal to start sending uplink signals to the target cell after receiving Msg3, which helps avoid waste caused by blind scheduling. That is, after the terminal sends the Msg3, it continues to send the uplink signal to the source cell until it detects the uplink transmission scheduled by the target cell, and then the terminal starts to send the uplink signal to the target cell.
  • this application provides yet another uplink signal transmission method, which is applied to the process of the terminal switching from the source cell to the target cell.
  • the method includes the following steps:
  • step 701 the terminal simultaneously receives the downlink signals of the source cell and the target cell.
  • Step 702 the terminal transmits an uplink signal based on a predefined time-division alternate switching mode or based on uplink scheduling indicated by downlink control information (Downlink control information, DCI) of the source cell and the target cell.
  • downlink control information Downlink control information, DCI
  • the time-division alternate switching mode includes the time point of uplink transmission.
  • step 703 the terminal determines to stop receiving signals from the source cell, and sends an instruction to stop receiving signals to the source cell.
  • the indication may be carried in a radio resource control (Radio Resource Control, RRC) message, a medium access control control unit (medium access control element, MAC), or a physical layer message.
  • RRC Radio Resource Control
  • MAC medium access control control unit
  • the condition that the terminal determines to stop receiving the source cell signal includes but is not limited to: timeout based on the configured timer (Timer), or the downlink cell measurement result (such as power or quality) of the source cell is below a certain threshold Value (the threshold value may be based on the configuration of the source base station).
  • the terminal may also send an instruction to the target cell to stop receiving signals from the source cell, and then the target cell forwards the instruction to the source cell.
  • Step 704 after receiving the indication, the source cell stops the transmission of the downlink signal.
  • the source cell can immediately stop the transmission of the downlink signal.
  • the source cell may wait for a period of time and stop the transmission of the downlink signal.
  • the source cell determines that the set conditions are met, and then stops the transmission of the downlink signal.
  • the terminal can implement the uplink scheduling to transmit the uplink signal based on the predefined time-division alternate switching mode or based on the DCI indication of the source cell and the target cell, and can also notify the source cell to stop sending the downlink signal.
  • the method implemented by the terminal may also be implemented by components (such as chips or circuits) that can be used for the terminal, which is not limited in the embodiments of the present application.
  • FIG. 8 shows a possible exemplary block diagram of the device involved in the embodiment of the present invention.
  • the device 800 may exist in the form of software or hardware.
  • the device 800 may include a processing unit 802 and a communication unit 803.
  • the communication unit 803 may include a receiving unit and a sending unit.
  • the processing unit 802 is used to control and manage the operation of the device 800.
  • the communication unit 803 is used to support communication between the device 800 and other network entities.
  • the device 800 may further include a storage unit 801 for storing the program code and data of the device 800.
  • the processing unit 802 may be a processor or a controller, such as a general-purpose central processing unit (CPU), a general-purpose processor, digital signal processing (DSP), application-specific integrated circuit (application-specific integrated) circuits, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, DSP and microprocessor combinations, and so on.
  • the communication unit 803 may be a communication interface, a transceiver, or a transceiver circuit, etc., where the communication interface is collectively referred to, and in a specific implementation, the communication interface may include multiple interfaces.
  • the storage unit 801 may be a memory.
  • the device 800 may be a terminal or a chip in the terminal.
  • the terminal can be used to implement the operations performed by the terminal in the foregoing embodiments. Specifically, taking the communication unit 803 including a sending unit and a receiving unit as an example.
  • the processing unit is used to determine the symbol that needs to be punctured according to the rules for symbol removal; the transmission unit is used to send the source cell or the target cell according to the determined symbol that needs to be punctured Uplink signal; wherein, the rule for removing symbols is predefined by the protocol, or the rule for removing symbols is determined after the terminal measures the cell reference signals of the source cell and the target cell .
  • the rule for removing symbols is determined after the terminal measures the cell reference signals of the source cell and the target cell; the processing unit is specifically used for Measuring the cell reference signal sent by the source cell to obtain a first measurement result, and measuring the cell reference signal sent by the target cell to obtain a second measurement result; based on the first measurement result and the second measurement result To determine the symbol that needs to be destroyed.
  • the processing unit is specifically configured to determine, according to the first measurement result and the second measurement result, a symbol that needs to be dropped to be used for sending an uplink signal to the source cell Symbol or a symbol used to send an uplink signal to the target cell, and the symbol that needs to be eliminated is between a symbol used to send an uplink signal to the source cell and a symbol used to send an uplink signal to the target cell Overlapping symbols.
  • the first measurement result includes the power of the cell reference signal sent by the source cell measured by the terminal
  • the second measurement result includes the target measured by the terminal The power of the cell reference signal sent by the cell
  • the first measurement result includes the quality of the cell reference signal sent by the source cell measured by the terminal
  • the second measurement result includes the measured value of the terminal measured by the terminal The quality of the cell reference signal sent by the target cell.
  • the sending unit is specifically configured to send a symbol to the source cell on the symbol that needs to be deleted if the symbol that needs to be deleted is a symbol used to send an uplink signal to the source cell.
  • the target cell sends an uplink signal; or, if the symbol that needs to be eliminated is a symbol used to send an uplink signal to the target cell, then an uplink signal is sent to the source cell on the symbol that needs to be eliminated.
  • the sending unit is further configured to send a first capability indication to the source cell, where the first capability indication is used to indicate that the terminal supports alternate time division switching.
  • the receiving unit is configured to receive a first enable indication from the source cell, where the first enable indication is used to indicate that the terminal is enabled to alternate time-division switching.
  • the sending unit is further configured to send a second capability indication to the source cell, where the second capability indication is used to indicate that the terminal supports eliminating overlapping symbols.
  • the receiving unit is configured to receive a second enable indication from the source cell, where the second enable indication is used to indicate that the terminal is enabled to eliminate overlapping symbols.
  • the sending unit is further configured to send a first notification indication to the source cell, where the first notification indication includes a symbol indication and/or a site indication, and the symbol indication is used to indicate the The symbol and/or the number of symbols determined by the terminal that need to be eliminated, the station indication is used to indicate the station to which the symbol determined to be eliminated by the terminal belongs, and the station is the target cell or the source cell.
  • the receiving unit is configured to receive a third enable indication from the source cell, where the third enable indication is used to indicate that the terminal is enabled to eliminate overlapping symbols.
  • the receiving unit is configured to receive downlink signals from the first cell on the (mk) to (m+tk) subframes of the first cell; and the transmitting unit is used to Sending an uplink signal to the second cell from n subframes to (n+t-1) subframes of the second cell; and sending the downlink signal on the m+t subframe of the first cell Uplink feedback; wherein, the first cell is one of the source cell and the target cell, the second cell is the other of the source cell and the target cell, and m of the first cell
  • the subframes correspond to the n subframes of the second cell in time sequence, n is an integer greater than 1, m is an integer greater than 1, t is a positive integer, k is a preset positive integer, and the value of mk is non-negative, m+ The value of tk is non-negative, and t is less than k.
  • the first cell is a source cell and the second cell is a target cell
  • the uplink signal sent to the second cell includes a random access preamble
  • the units in the embodiments of the present application may also be referred to as modules.
  • the above units or modules can exist independently or can be integrated together.
  • the device may be the terminal in the embodiment of the present application, or may be a component that can be used for the terminal.
  • the device 900 includes a processor 902, a communication interface 903, and a memory 901.
  • the device 900 may further include a bus 904.
  • the communication interface 903, the processor 902, and the memory 901 may be connected to each other through a communication line 904;
  • the communication line 904 may be a peripheral component interconnection standard (PCI) bus or an extended industry standard architecture (extended industry standard architecture) , Referred to as EISA) bus.
  • PCI peripheral component interconnection standard
  • EISA extended industry standard architecture
  • the communication line 904 can be divided into an address bus, a data bus, and a control bus. For ease of representation, only a thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • the processor 902 may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of the program of the present application.
  • the communication interface 903 can be a device that uses any transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN) ), wired access network, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • wired access network etc.
  • the memory 901 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM), or other types of information and instructions that can be stored
  • the dynamic storage device can also be charged erasable programmable read-only memory (electrically erasable programmable-read-only memory (EEPROM), read-only compact disc (compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Access to any other media, but not limited to this.
  • the memory may exist independently and be connected to the processor through the communication line 904. The memory can also be integrated with the processor.
  • the memory 901 is used to store computer execution instructions for executing the solution of the present application, and the processor 902 controls execution.
  • the processor 902 is used to execute computer-executed instructions stored in the memory 901, so as to implement the uplink signal sending method provided by the foregoing embodiments of the present application.
  • the computer execution instructions in the embodiments of the present application may also be called application program codes, which are not specifically limited in the embodiments of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transferred from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available media integrated servers, data centers, and the like.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)), or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (SSD)
  • the various illustrative logic units and circuits described in the embodiments of the present application may be implemented by a general-purpose processor, a digital signal processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic devices. Discrete gate or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of both.
  • the software unit may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium may be provided in the ASIC, and the ASIC may be provided in the terminal.
  • the processor and the storage medium may also be provided in different components in the terminal.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种上行信号发送方法及终端。该方法包括:在终端从源小区切换至目标小区的过程中,终端是时分交替着向源小区和目标小区发送上行信号,从而解决了上行信号传输中断的问题。并且,在时分交替着向源小区和目标小区发送上行信号时,可能会出现重叠的符号,即终端既想要使用该符号向目标小区发送上行信号,也想要使用该符号向源小区发送上行信号,针对该问题,本方案中终端可以确定需要打掉的符号,并根据需要打掉的符号发送上行信号,解决了重叠符号冲突使用的问题。进一步地,终端还可以将需要打掉的符号通知给源小区和/或目标小区,以便于源小区或目标小区根据通知指示改善解码终端发送的上行信号。

Description

一种上行信号发送方法及终端 技术领域
本申请涉及通信技术领域,尤其涉及一种上行信号发送方法及终端。
背景技术
当终端从一个小区(源小区)移动至另一个小区(目标小区)时,可能会触发切换流程,终端在切换开始到切换完成的时间段内,不再向源小区发送上行信号,并且终端也没有开始向目标小区发送上行信号,从而造成上行信号传输的中断。
但目前随着业务类型的增加,业务数据量猛增,加之终端移动速度的增加,对切换过程中的业务中断时间及可靠性要求越来越苛刻。例如,移动办公、移动视频业务、汽车无线控制、列车无线控制等,要求业务传输零中断或接近零中断。
因此,切换过程中的上行信号传输中断的问题,是目前亟需解决的。
发明内容
本申请提供一种上行信号发送方法及终端,用以解决切换过程中的上行信号传输中断的问题。
第一方面,本申请提供一种上行信号发送方法,应用于终端从源小区切换至目标小区,包括:终端根据打掉符号的规则,确定需要打掉puncture的符号;终端根据确定的需要打掉的符号,向所述源小区或所述目标小区发送上行信号;其中,所述打掉符号的规则是协议预定义的,或者,所述打掉符号的规则是所述终端对所述源小区和所述目标小区的小区参考信号进行测量后确定的。
基于上述方案,在终端从源小区切换至目标小区的过程中,终端是时分交替着向源小区和目标小区发送上行信号,从而解决了上行信号传输中断的问题。并且,在时分交替着向源小区和目标小区发送上行信号时,可能会出现重叠的符号,即终端既想要使用该符号向目标小区发送上行信号,也想要使用该符号向源小区发送上行信号,针对该问题,本方案中终端可以确定需要打掉的符号,并根据需要打掉的符号发送上行信号,解决了重叠符号冲突使用的问题。
在一种可能的实现方法中,所述打掉符号的规则是所述终端对所述源小区和所述目标小区的小区参考信号进行测量后确定的;则所述终端根据打掉符号的规则,确定需要打掉的符号,包括:所述终端对所述源小区发送的小区参考信号进行测量得到第一测量结果,以及,对所述目标小区发送的小区参考信号进行测量得到第二测量结果;所述终端根据所述第一测量结果和所述第二测量结果,确定所述需要打掉的符号。
在一种可能的实现方法中,所述终端根据所述第一测量结果和所述第二测量结果,确定需要打掉的符号,包括:所述终端根据所述第一测量结果和所述第二测量结果,确定需要打掉的符号为用于向所述源小区发送上行信号的符号或用于向所述目标小区发送上行信号的符号,且所述需要打掉的符号为用于向所述源小区发送上行信号的符号与用于向所述目标小区发送上行信号的符号之间的重叠的符号。
在一种可能的实现方法中,所述第一测量结果包括所述终端测量到的所述源小区 发送的小区参考信号的功率,所述第二测量结果包括所述终端测量到的所述目标小区发送的小区参考信号的功率。或者,
所述第一测量结果包括所述终端测量到的所述源小区发送的小区参考信号的质量,所述第二测量结果包括所述终端测量到的所述目标小区发送的小区参考信号的质量。
在一种可能的实现方法中,所述终端根据需要打掉的符号,发送上行信号,包括:若需要打掉的符号为用于向所述源小区发送上行信号的符号,则所述终端在所述需要打掉的符号上,向所述目标小区发送上行信号。或者,
若需要打掉的符号为用于向所述目标小区发送上行信号的符号,则所述终端在所述需要打掉的符号上,向所述源小区发送上行信号。
在一种可能的实现方法中,所述终端还向所述源小区发送第一能力指示,所述第一能力指示用于指示所述终端支持时分交替切换。
在一种可能的实现方法中,所述终端还接收来自所述源小区的第一使能指示,所述第一使能指示用于指示使能所述终端的时分交替切换。
在一种可能的实现方法中,所述终端还向所述源小区发送第二能力指示,所述第二能力指示用于指示所述终端支持打掉重叠的符号。
在一种可能的实现方法中,所述终端还接收来自所述源小区的第二使能指示,所述第二使能指示用于指示使能所述终端打掉重叠的符号。
在一种可能的实现方法中,所述终端还向所述源小区发送第一通知指示,所述第一通知指示包括符号指示和/或站点指示,所述符号指示用于指示所述终端确定的需要打掉的符号和/或符号数,所述站点指示用于指示所述终端确定的需要打掉的符号所属的站点,所述站点为所述目标小区或所述源小区。
在一种可能的实现方法中,所述终端还接收来自所述源小区的第三使能指示,所述第三使能指示用于指示使能所述终端打掉重叠的符号。
第二方面,本申请提供一种上行信号发送方法,应用于终端从源小区切换至目标小区,包括:终端在第一小区的(m-k)子帧至(m+t-k)子帧上接收来自所述第一小区的下行信号;终端在第二小区的n子帧至(n+t-1)子帧上向所述第二小区发送上行信号;终端在所述第一小区的m+t子帧上发送针对所述下行信号的上行反馈;其中,所述第一小区为所述源小区和所述目标小区的一个,所述第二小区为所述源小区和所述目标小区的另一个,所述第一小区的m子帧与第二小区的n子帧在时序上对应,n为大于1的整数,m为大于1的整数,t为正整数,k为预设的正整数,m-k的值非负,m+t-k的值非负,t小于k。
基于上述方案,在终端从源小区切换至目标小区的过程中,当第一小区的一个子帧不能用于发送之前接收到的下行信号的上行反馈时,则终端可以使用该子帧后的其他子帧,向第一小区发送针对之前在第一小区的多个子帧上接收到的下行信号的多个上行反馈,从而解决了终端向第一小区和第二小区发送上行信号时的冲突问题。
在一种可能的实现方法中,所述第一小区为源小区、所述第二小区为目标小区,向所述第二小区发送的上行信号包括随机接入前导码preamble。
第三方面,本申请提供一种通信装置,该通信装置具有实现上述方法实施例中终端的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或者模块。
在一种可能的设计中,该通信装置包括:处理器、存储器、总线和通信接口;该存储器存储有计算机执行指令,该处理器与该存储器通过该总线连接,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第一方面或第一方面的任一实现方式中的上行信号发送方法、或执行如上述第二方面或第二方面的任一实现方式中的上行信号发送方法。例如,该通信装置可以是终端等。
在另一种可能的设计中,该通信装置还可以是芯片,如终端的芯片,该芯片包括处理单元,可选地,还包括存储单元,该芯片可用于执行如上述第一方面或第一方面的任一实现方式中的上行信号发送方法、或执行如上述第二方面或第二方面的任一实现方式中的上行信号发送方法。
第四方面,本申请提供了一种计算机存储介质,储存有为上述终端所用的计算机软件指令,其包括用于为执行上述任意方面所设计的程序。
第五方面,本申请提供了一种计算机程序产品。该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现上述任意方面的上行信号发送方法中的流程。
附图说明
图1(a)为本申请所适用的一种应用场景;
图1(b)为本申请所适用的又一种应用场景;
图2为本申请提供一种上行信号发送方法示意图;
图3为本申请提供的一种上行信号发送方法示意图;
图4为本申请提供的一种上行信号发送示例图;
图5为本申请提供的又一种上行信号发送示例图;
图6为本申请提供的又一种上行信号发送示例图;
图7为本申请提供的又一种上行信号发送方法示意图;
图8为本申请提供的一种装置示意图;
图9为本申请提供的又一种装置示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
移动通信不仅追求容量的最大化,而且需要更广阔的覆盖范围,即无论终端移动到哪里,都要有无线网络信号覆盖。为了解决频率资源限制的问题,并增大系统容量,同时扩展网络覆盖范围,提出了蜂窝组网概念。它将一个网络服务区划分成许多以正六边形为基本几何图形的覆盖区域,称为蜂窝小区。一个较低功率的发射机服务一个蜂窝小区,在较小的区域内设置相当数量的终端。事实上,不是所有的终端都能在一个蜂窝小区内完成全部连续业务的。为了保证业务的连续性,当正在接受服务的终端进入相邻小区时,通信网络需要将业务切换到相邻小区,从而不中断通信过程。
切换是指在移动通信的过程中,为保证通信不中断,把承载通信数据的链路由一个小区(或基站)切换到另一个小区(或基站)的过程。
如图1(a)所示,为本申请所适用的一种应用场景。终端移动之前,接入到源基站的一个小区(称为源小区)。由于终端的移动,终端切换至另一个小区(称为目标小区),且该目标小区所在的基站(称为目标基站)与源基站是不同的基站。即,UE移动前接入的源小区所在的源基站,与UE移动后切换的目标小区所在的目标基站是不同的基站。该终端通过无线接口与源基站、目标基站通信。
如图1(b)所示,为本申请所适用的又一种应用场景。终端移动之前,接入到源基站的一个小区(称为源小区)。由于终端的移动,终端切换至另一个小区(称为目标小区),且该目标小区所在的基站(称为目标基站)与源基站是同一个基站。即,UE移动前接入的源小区所在的源基站,与UE移动后切换的目标小区所在的目标基站是同一个基站。该终端通过无线接口与源基站(目标基站)通信。
本申请中,终端是一种具有无线收发功能的设备,终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端,以及还可以包括用户设备(user equipment,UE)等。
本申请中,基站,如源基站或目标基站,是一种为终端提供无线通信功能的设备。基站例如包括但不限于:5G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
需要说明的是,本申请针对“切换”的场景,有时称为终端从源小区切换至目标小区,有时称为终端从源基站切换至目标基站,二者具有相同的含义,本申请中会交替使用,这里统一说明。以及,本申请中,有时称为终端从源基站/目标基站接收信息(如下行信号),终端向源基站/目标基站发送信息(如上行信号),有时称为终端从源小区/目标小区接收信息(如下行信号),终端向源小区/目标小区发送信息(如上行信号),二者具有相同的含义,本申请中会交替使用,这里统一说明。
也即,本申请中的源基站与源小区具有相同的含义,目标基站与目标小区具有相同的含义。
随着业务类型的增加,业务数据量猛增,加之终端移动速度的增加,对切换过程中的业务中断时间及可靠性要求越来越苛刻。例如,移动办公、移动视频业务、汽车无线控制、列车无线控制等,要求业务传输零中断。
现有技术中,终端由源基站切换到目标基站的流程中,终端在从源基站接收到切 换命令(handover command,HO command)后,停止向源基站的上行链路(uplink,UL)发送,转而开始搜索目标基站,并和目标基站进行时间和频率的同步。之后,终端向目标基站发起随机接入(Random access)过程。在随机接入过程中,首先终端获取向目标基站发送随机接入前导码(Preamble)的时刻,即物理随机接入信道(Physical Random Access Channel,PRACH)时刻(occasion),在该时刻到来时,终端向目标基站发送Preamble(记作Message1,简称Msg1)。然后,终端监听随机接入无线网络临时标识(Random Access Cell Radio Network Temporary Identifier,RA-RNTI)加扰的物理下行控制信道(Physical Downlink Control Channel,PDCCH),该PDCCH用于调度随机接入响应(Random access response,RAR)消息(记作Message2,简称Msg2)。RAR中包括上行定时(Timing Advance,TA)和上行资源授权(UL grant)。最后,终端使用该UL grant和TA向目标基站发送切换完成(handover complete,HO complete)消息(记作Message3,简称Msg3)。其中,上述切换命令可以为移动控制信息(Mobility Control Information),其包含于无线资源控制(Radio Resource Control,RRC)连接重配置(RRC Connection Reconfiguration)消息。上述切换完成消息可以为RRC连接重配置完成(RRC Connection Reconfiguration Complete)消息。
在上述终端从源基站切换至目标基站的过程中,终端从源基站接收到切换命令后,需要处理该命令,随即停止向源基站发送上行信号,以及停止从源基站接收下行信号。如果终端过去检测过目标小区,具有目标小区的时间同步、小区标识(cell ID)等信息,则终端不需要重新进行小区同步搜索。如果终端没有目标小区的上述信息,或者终端具备的上述信息已经无效,则终端需要重新进行小区搜索。终端还需要完成对目标小区的精确时间和频率同步,即精同步获取。此外,终端还需要更新媒体接入控制(medium access control,MAC)层、高层的相关配置信息,准备好接收目标基站的数据。对于需要做随机接入信道(Random Access Channel,RACH)流程的场景,终端发起RACH过程。终端在接收到Msg3之后,可以开始向目标基站发送上行信号,以及从目标基站接收下行信号。
在以上过程中,切换命令的处理、小区搜索、精同步、MAC层/高层参数更新,以及RACH过程,都会造成下行、上行信号传输中断,即小区切换过程中的数据传输中断。也即,终端在切换开始到切换完成的时间段内,不再向源基站发送上行信号,也不从源基站接收下行信号,并且,终端没有向目标基站发送上行信号,也没有从目标基站接收下行信号。其中,数据传输中断包括上行信号传输中断和下行信号传输中断。
针对上述上行信号传输中断的问题,现有技术给出了一种时分交替切换方法,该方法要求终端时分交替地向源小区(源基站)和目标小区(目标基站)发送上行信号,即在T1时间段内向源小区发送上行信号,在T1时间段结束后的T2时间段内向目标小区发送上行信号,然后在T2时间段结束后的T3时间段内向源小区发送上行信号,依此类推。
上述时分交替切换方法,主要存在以下两个问题:
第一,由于终端向两个小区发送上行信号的定时不同,因此在交替时,子帧交界处可能会出现重叠现象(overlapping),即在重叠处既想要向源小区发送上行信号,也想要向目标小区发送上行信号,但实际上同一时刻,该重叠处的时间只能用于向源 小区发送上行信号,或用于向目标小区发送上行信号,从而会影响上行信号的发送。因此,对于重叠现象如何进行处理,是有待解决的问题。
第二,时分交替切换方法会影响下行信号的上行反馈的发送。一般地,在每个上行子帧上都有上行反馈的发送,但由于上行信号的交替发送,使得某些时刻,源小区或目标小区的上行子帧不可用。比如,某上行子帧若用于向源小区发送上行信号,则该上行子帧将不能用于向目标小区发送上行信号。再比如,某上行子帧若用于向目标小区发送上行信号(如下行信号的上行反馈),则该上行子帧将不能用于向源小区发送上行信号(如下行信号的上行反馈)。因此,该时分交替切换方法的上行反馈具体需要如何设计,是有待解决的问题。
需要说明的是,本申请中,上行信号包括但不限于:上行数据、上行信令、上行消息、针对下行信号的上行反馈。下行信号包括但不限于:下行数据、下行信令、下行消息、针对上行信号的下行反馈。
为解决上述第一个问题,如图2所示,本申请提供一种上行信号发送方法。该方法包括以下步骤:
步骤201,终端根据打掉符号的规则,确定需要打掉(puncture)的符号。
在一种实现方法中,所述打掉符号的规则是协议预定义的。比如,终端的上行信号的发送从源小区转换到目标小区,则协议预定义需要打掉的符号为源小区的N个符号,该N个符号为源小区与目标小区重叠的符号。再比如,终端的上行信号的发送从源小区转换到目标小区,则协议预定义需要打掉的符号为目标小区的N个符号,该N个符号为源小区与目标小区重叠的符号。再比如,终端的上行信号的发送无论是从第一小区转换到第二小区,还是从第二小区转换到第一小区,规定需要打掉的符号为第一小区的N个符号,该N个符号为第一小区与第二小区重叠的符号。再比如,终端的上行信号的发送无论是从第一小区转换到第二小区,还是从第二小区转换到第一小区,协议预定义需要打掉的符号为第二小区的N个符号,该N个符号为第一小区与第二小区重叠的符号,等等。
在又一种实现方法中,所述打掉符号的规则是所述终端对所述源小区和所述目标小区的小区参考信号进行测量后确定的。比如,终端可以根据以下方法步骤确定需要打掉的符号:
步骤A,终端对源小区发送的小区参考信号进行测量得到第一测量结果,以及,对目标小区发送的小区参考信号进行测量得到第二测量结果。
其中,第一测量结果可以记为Ms,第二测量结果可以记为Mt。
作为一种实现方式,第一测量结果包括终端测量到的源小区发送的小区参考信号的功率,第二测量结果包括终端测量到的目标小区发送的小区参考信号的功率。即终端对源小区和目标小区的小区参考信号分别进行测量,得到测量的功率。这里的“功率”,例如可以是参考信号接收功率(Reference Signal Receiving Power,RSRP)。
作为又一种实现方式,第一测量结果包括终端测量到的源小区发送的小区参考信号的质量,第二测量结果包括终端测量到的目标小区发送的小区参考信号的质量。即终端对源小区和目标小区的小区参考信号分别进行测量,得到测量的质量。这里的“质量”例如可以是参考信号接收质量(Reference Signal Receiving Quality,RSRQ)、或信道质量指示(Channel Quality Indicator,CQI)、或信号与干扰加噪声比(Signal to  Interference plus Noise Ratio,SINR)、或信噪比(Signal Noise Ratio,SNR)。
步骤B,终端根据第一测量结果和第二测量结果,确定需要打掉的符号。
终端根据第一测量结果和第二测量结果,确定需要打掉的符号为用于向源小区发送上行信号的符号或用于向目标小区发送上行信号的符号,且需要打掉的符号为用于向源小区发送上行信号的符号与用于向目标小区发送上行信号的符号之间的重叠的符号。
作为一种实现方法,若Ms-Mt≥Threshold 1,则终端确定需要打掉的符号为用于向源小区发送上行信号的符号,否则,终端确定需要打掉的符号为用于向目标小区发送上行信号的符号,且需要打掉的符号为用于向源小区发送上行信号的符号与用于向目标小区发送上行信号的符号之间的重叠的符号。其中,预设的阈值(Threshold 1)可以为正数,也可以为负数,也可以为零。
作为又一种实现方法,若Ms-Mt≥Threshold 2,则终端确定需要打掉的符号为用于向目标小区发送上行信号的符号,否则,终端确定需要打掉的符号为用于向源小区发送上行信号的符号,且需要打掉的符号为用于向源小区发送上行信号的符号与用于向目标小区发送上行信号的符号之间的重叠的符号。其中,预设的阈值(Threshold 2)可以为正数,也可以为负数,也可以为零。
作为又一种实现方法,若Mt-Ms≥Threshold 3,则终端确定需要打掉的符号为用于向源小区发送上行信号的符号,否则,终端确定需要打掉的符号为用于向目标小区发送上行信号的符号,且需要打掉的符号为用于向源小区发送上行信号的符号与用于向目标小区发送上行信号的符号之间的重叠的符号。其中,预设的阈值(Threshold 3)可以为正数,也可以为负数,也可以为零。
作为又一种实现方法,若Mt-Ms≥Threshold 4,则终端确定需要打掉的符号为用于向目标小区发送上行信号的符号,否则,终端确定需要打掉的符号为用于向源小区发送上行信号的符号,且需要打掉的符号为用于向源小区发送上行信号的符号与用于向目标小区发送上行信号的符号之间的重叠的符号。其中,预设的阈值(Threshold 4)可以为正数,也可以为负数,也可以为零。
通过上述步骤A-步骤B,实现了为终端确定需要打掉的符号。
可选地,终端还可以向源小区发送第一能力指示,所述第一能力指示用于指示终端支持时分交替切换。从而,源基站获知该终端支持时分交替切换。其中,支持时分交替切换指的是支持使用时分交替切换的方式交替地向源小区或目标小区发送上行信号。
可选地,源小区还可以向终端发送第一使能指示,所述第一使能指示用于指示使能终端的时分交替切换。从而,终端可以根据该第一使能指示,开启时分交替切换的功能。
可选地,终端还可以向源小区发送第二能力指示,所述第二能力指示用于指示终端支持打掉重叠(overlap)的符号。从而,源基站获知该终端支持打掉重叠的符号。
可选地,源小区还可以向终端发送第二使能指示,所述第二使能指示用于指示使能终端打掉重叠的符号。从而,终端可以根据该第二使能指示,开启打掉重叠的符号的功能。
可选地,终端还可以向源小区发送第一通知指示,所述第一通知指示包括符号指 示和/或站点指示,所述符号指示用于指示终端确定的需要打掉的符号和/或符号数,所述站点指示用于指示终端确定的需要打掉的符号所属的站点,该站点为目标小区或源小区。从而,源小区可以获知终端确定的需要打掉的符号为用于向目标小区发送上行信号的符号,以及需要打掉哪个站点的符号。
可选地,若源小区接收到上述第一通知指示,则源小区还可以向终端发送的第三使能指示,第三使能指示用于指示使能终端打掉overlap的符号。需要说明的是,该第三使能指示与上述第二使能指示只需要发送一个即可,该第三使能指示与上述第二使能指示的区别在于:该第三使能指示可以是由上述第一通知指示触发发送的。
可选地,若源小区根据第一通知指示获知需要打掉的符号为用于向目标小区发送上行信号的符号,则源小区还可以向目标小区发送第二通知指示,第二通知指示用于指示终端确定的需要打掉的符号,且需要打掉用于向目标小区发送上行信号的符号。
步骤202,终端根据确定的需要打掉的符号,向源小区或目标小区发送上行信号。
比如,若需要打掉的符号为用于向源小区发送上行信号的符号,且需要打掉的符号为用于向源小区发送上行信号的符号与用于向目标小区发送上行信号的符号之间的重叠的符号,则发送上行信号是指:终端在该打掉的符号上,向目标小区发送上行信号,即该打掉的符号不用于向源小区发送上行信号。
再比如,若需要打掉的符号为用于向目标小区发送上行信号的符号,且需要打掉的符号为用于向源小区发送上行信号的符号与用于向目标小区发送上行信号的符号之间的重叠的符号,则发送上行信号是指:终端在该打掉的符号上,向源小区发送上行信号,即该打掉的符号不用于向目标小区发送上行信号。
通过上述方法,在终端从源小区切换至目标小区的过程中,终端是时分交替着向源小区和目标小区发送上行信号,从而解决了上行信号传输中断的问题。并且,在时分交替着向源小区和目标小区发送上行信号时,可能会出现重叠的符号,即终端既想要使用该符号向目标小区发送上行信号,也想要使用该符号向源小区发送上行信号,针对该问题,本方案中终端可以确定需要打掉的符号,并根据需要打掉的符号发送上行信号,解决了重叠符号冲突使用的问题。进一步地,终端还可以将需要打掉的符号通知给源小区和/或目标小区,以便于源小区或目标小区根据通知指示改善解码终端发送的上行信号。
为解决现有技术中存在的上述第二个问题,如图3所示,本申请提供一种上行信号发送方法,该方法包括以下步骤:
步骤301,终端在第一小区的(m-k)子帧至(m+t-k)子帧上接收来自第一小区的下行信号。
步骤302,终端在第二小区的n子帧至(n+t-1)子帧上向第二小区发送上行信号。
步骤303,终端在第一小区的m+t子帧上发送针对所述下行信号的上行反馈。
其中,第一小区为源小区,第二小区为目标小区。或者,第一小区为目标小区,第二小区为源小区。并且,第一小区的m子帧与第二小区的n子帧在时序上对应,这里的“对应”指的是:第一小区的m子帧与第二小区的n子帧边界对齐,或略有错开,例如错开时长小于0.5ms等。
这里的“上行反馈”指的是在上行符号上发送的针对接收到的下行信号的反馈。 例如可以是HARQ-ACK或混合自动重传请求否认(Hybrid automatic repeat request-NACK,HARQ-NACK)。
上述步骤中的n,m为大于1的整数,t为正整数,k为预设的正整数,且m-k,m+t-k的值均非负,t小于k。
这里的k的含义是:终端在某个子帧(比如p子帧)上接收到小区(如源小区或目标小区)的下行信号,处理一段时间后,在p+k子帧上向该小区发送针对该下行信号的上行反馈,因此,该k可以理解为终端处理下行信号所需要的时间。
下面对上述步骤进行解释说明。
上述步骤301中,终端在第一小区的(m-k)子帧至(m+t-k)子帧上接收第一小区的下行信号。因此,按照正常处理,则终端应该在第一小区的m子帧上向第一小区发送针对在m-k子帧上接收到第一小区的下行信号的上行反馈,在第一小区的m+1子帧上向第一小区发送针对在m+1-k子帧上接收到第一小区的下行信号的上行反馈,……,在第一小区的m+t子帧上向第一小区发送针对在m+t-k子帧上接收到第一小区的下行信号。
由于第一小区的子帧n,n+1,n+2,n+3,……分别与第二小区的子帧m,m+1,m+2,m+3……对应,因此,终端若在第一小区的n子帧上向第一小区发送上行信号,则不能在第二小区的m子帧上向第二小区发送上行信号,反之,终端若在第二小区的m子帧上向第二小区发送上行信号,则不能在第一小区的n子帧上向第一小区发送上行信号。对于n+1子帧和m+1子帧,n+2子帧和m+2子帧,n+3子帧和m+3子帧等等,也是同样的道理。
由于上述步骤302中,终端在第二小区的n子帧至(n+t-1)子帧上发送上行信号,因此,终端将不能使用第一小区的m子帧至(m+t-1)子帧分别向第一小区发送上行反馈。
因此,终端在上述步骤303中,在第一小区的m+t子帧上向第一小区发送针对上述从第一小区接收到的下行信号的上行反馈。这里的下行信号指的是终端在第一小区的(m-k)子帧至(m+t-k)子帧上接收到的第一小区的下行信号。这里的上行反馈包括:针对在第一小区的m-k子帧上接收到的下行信号的上行反馈,针对在第一小区的m+1-k子帧上接收到的下行信号的上行反馈,……,针对在第一小区的m+t-k子帧接收到的下行信号的上行反馈。
下面结合具体示例说明。以上述k取值为4,t取值为1为例。
终端在第一小区的m-4子帧,m-3子帧上接收到下行信号,按照正常处理方法,终端应该在第一小区的m子帧上向第一小区发送针对m-4子帧上接收到的下行信号的上行反馈,在第一小区的m+1子帧上向第一小区发送针对m-3子帧上接收到的下行信号的上行反馈。
由于终端在第二小区的n子帧上向第二小区发送上行信号,因此第一小区的m子帧将不能用于向第一小区发送上行反馈,即上述m-4子帧上接收到的下行信号的上行反馈将不能在m子帧上发送。
因此,本申请中,在m+1子帧上发送针对m-4子帧上接收到的下行信号的上行反馈和针对m-3子帧上接收到的下行信号的上行反馈。比如,若m-4子帧需要反馈HARQ-ACK,m-3子帧需要反馈HARQ-ACK,则在m+1子帧反馈HARQ-ACK。再比如,若m-4子帧和m-3子帧有至少一个子帧需要反馈HARQ-NACK,则在m+1子帧 反馈HARQ-NACK。
通过上述方法,当第一小区的一个子帧不能用于发送之前接收到的下行信号的上行反馈时,则终端可以使用该子帧后的其他子帧,向第一小区发送针对之前在第一小区的多个子帧上接收到的下行信号的多个上行反馈,从而解决了终端向第一小区和第二小区发送上行信号时的冲突问题。
下面结合图4-图6所示的具体示例,对图3所示的上行信号发送方法进行说明。并且,是以k取值为4,t取值为1,第一小区为源小区,第二小区为目标小区,终端在目标小区的n子帧上发送的上行信号为随机接入前导码(Preamble)为例进行说明。
如图4所示,为本申请提供的一种上行信号发送的示例图。其中,终端在同步到源小区m子帧的时刻,同步到目标小区的n子帧,其中,源小区m子帧与目标小区的n子帧可能边界对齐,也可能略有错开。
步骤A1,终端在n子帧之前获取目标小区的下行同步以及随机接入机会,在n子帧向目标小区发送Preamble。
步骤A2,终端在m+1子帧向源小区发送下行信号的反馈HARQ-ACK/NACK。
例如该反馈为针对m-4子帧和m-3子帧接收的下行信号的HARQ-ACK/NACK的逻辑“与”操作的结果,即只有当针对两个子帧的反馈全为HARQ-ACK时,才反馈HARQ-ACK,否则反馈HARQ-NACK。
该步骤A2中,由于目标小区的n子帧用于向目标小区发送Preamble,因此源小区的m子帧不能用于发送上行信号,进而终端可以在m+1子帧向源小区发送上行信号,这里的上行信号可以包括针对源小区发送的下行信号的上行反馈,如HARQ-ACK或HARQ-NACK。
由于终端接收到下行信号之后,需要一定的时间进行处理,这里,以间隔4个子帧再发送下行信号的上行反馈为例。比如,终端在源小区的m-4子帧接收下行信号,则终端将会在m子帧向源小区发送该下行信号的上行反馈。再比如,终端在源小区的m-3子帧接收下行信号,则终端将会在m+1子帧向源小区发送该下行信号的上行反馈。
该实施例中,由于终端不能在源小区的m子帧发送m-4子帧接收的下行信号的上行反馈,因此,终端在m+1子帧发送下行信号的上行反馈时,一方面可以发送m-3子帧接收的下行信号的上行反馈,另一方面还可以发送m-4子帧接收的下行信号的上行反馈,即在m+1子帧上发送的上行反馈包括了m-4子帧接收的下行信号的上行反馈和m-3子帧接收的下行信号的上行反馈。比如,若m-4子帧需要反馈HARQ-ACK,m-3子帧需要反馈HARQ-ACK,则在m+1子帧反馈HARQ-ACK。再比如,若m-4子帧和m-3子帧有至少一个子帧需要反馈HARQ-NACK,则在m+1子帧反馈HARQ-NACK。
步骤A3,终端在目标小区的n+3子帧开始监听目标小区的PDCCH,在目标小区接收到RAR时,终端可以配置或激活或使能与目标小区对应的承载、安全等,以准备接收目标小区的下行信号。
例如,假设在目标小区的n+4子帧接收到RAR,此时终端可以配置与目标小区对应的承载、安全等,准备好接收目标小区的下行信号。
作为示例,目标小区在n+4子帧开始向该终端发送下行信号。
需要说明的是,这里是以在n+4子帧接收到RAR为例进行说明,实际上也可能在 n+5子帧接收到RAR。
步骤A4,终端在接收到RAR之后,若接收到目标小区的下行信号,则终端使用RAR中所携带的定时提前(TA),在激活的PUCCH上发送该下行信号的上行反馈。
例如,终端在n+4子帧之后,若接收到目标小区的下行信号,则终端使用RAR中所携带的定时提前(TA),在激活的PUCCH上发送该下行信号的上行反馈。
例如,终端在n+4子帧接收到目标小区的下行信号,则在n+8子帧开始发送上行反馈,并且,从该子帧开始,终端停止向源小区发送上行信号,即取消从源小区接收到的下行信号的上行反馈。
基于该实施例,可以解决源小区下行信号的反馈问题和目标小区下行信号的反馈问题。该实施例对源小区的多个下行信号的上行反馈进行捆绑发送(如图4所示,m+1子帧发送的上行反馈是m-3子帧的下行信号的上行反馈和m-4子帧的下行信号的上行反馈),以及,提前激活对目标小区的下行信号的上行反馈(如图4所示,在Msg3之前,开始向目标小区发送下行信号的上行反馈)。
如图5所示,为本申请提供的又一种上行信号发送的示例图。其中,终端在同步到源小区m子帧的时刻,同步到目标小区的n子帧,其中,源小区m子帧与目标小区的n子帧可能边界对齐,也可能略有错开。
步骤B1-步骤B2,与图4所示的实施例的步骤A1-A2相同,可参考前述描述。
步骤B3,终端在目标小区的n+3子帧开始监听目标小区的PDCCH,在目标小区接收到RAR时,终端可以配置或激活或使能与目标小区对应的承载、安全等,以准备接收目标小区的下行信号。
例如,假设在目标小区的n+4子帧接收到RAR,此时终端可以配置与目标小区对应的承载、安全等,准备好接收目标小区的下行信号。
作为示例,目标小区在n+6子帧开始向该终端发送下行信号。
需要说明的是,这里是以在n+4子帧接收到RAR为例进行说明,实际上也可能在n+5子帧接收到RAR。
步骤B4,终端在接收到RAR之后,若接收到目标小区的下行信号,则终端使用RAR中所携带的定时提前(TA),在激活的PUCCH上发送该下行信号的上行反馈。
例如,终端在n+6子帧之后,若接收到目标小区的下行信号,则终端使用RAR中所携带定时提前(TA),在激活的PUCCH上发送该下行信号的上行反馈。
该示例中,目标小区的下行信号的上行反馈是在Msg3所在的子帧及之后的子帧上发送。例如,终端在n+6子帧接收到目标小区的下行信号,则在n+10子帧开始发送反馈信息。从该子帧开始,终端停止向源小区发送上行信号,即取消从源小区接收到的下行信号的上行反馈。
基于该实施例,目标小区开始向终端发送下行信号的时刻,要稍晚于上述图4所示的实施例中目标小区开始向终端发送下行信号的时刻,并且,减少了n+8子帧和n+9子帧的PUSCH发送的中断。终端在源小区上的发送一直持续到Msg3所在的子帧的前一个子帧。
如图6所示,为本申请提供的一种上行信号发送的示例图。其中,终端在同步到 源小区m子帧的时刻,同步到目标小区的n子帧,其中,源小区m子帧与目标小区的n子帧可能边界对齐,也可能略有错开。
步骤C1-步骤C2,与图4所示的实施例的步骤A1-A2相同,可参考前述描述。
步骤C3,终端在目标小区的n+3子帧开始监听目标小区的PDCCH。
例如,假设在目标小区的n+4子帧接收到RAR。
作为示例,目标小区在接收到Msg3后的n+11子帧开始向终端发送下行信号,并开始调度终端的上行。
需要说明的是,这里是以在n+4子帧接收到RAR为例进行说明,实际上也可能在n+5子帧接收到RAR。
步骤C4,终端在目标小区发送完Msg3后,向源小区发送上行信号。
其中,由于m+10子帧用于传输目标小区的Msg3,因此m+10子帧不能用于传输m+6子帧的上行反馈,则可以在m+11子帧,同时发送m+6子帧和m+7子帧的上行反馈,具体实现过程可参考m+1子帧发送上行反馈的处理过程。
终端在发送完Msg3后,同时监听目标小区的PDCCH,若监听到目标小区的上行调度,则终端停止向源小区发送上行信号,开始向目标小区发送上行信号。
例如,终端在目标小区的n+11子帧接收到目标小区的下行信号和上行调度,则在n+15子帧开始发送下行信号的上行反馈以及其他上行信号,从该子帧开始,终端停止向源小区发送上行信号,即取消从源小区接收到的下行信号的上行反馈。
基于该实施例,相较于图4、图5所示的实施例,目标小区在接收到Msg3后,才调度终端开始向目标小区发送上行信号,有助于避免盲目调度带来的浪费。即终端发送完Msg3后,继续向源小区发送上行信号,直到监听到目标小区调度的上行发送,则终端才开始向目标小区发送上行信号。
为解决现有技术中存在的上述第二个问题,如图7所示,本申请提供又一种上行信号发送方法,应用于终端从源小区切换至目标小区的过程中。
该方法包括以下步骤:
步骤701,终端同时接收源小区和目标小区的下行信号。
步骤702,终端基于预定义的时分交替切换模式或者基于源小区和目标小区的下行控制信息(Downlink control information,DCI)指示的上行调度,传输上行信号。
可选的,时分交替切换模式包括上行发送的时间点。
步骤703,终端确定停止从源小区接收信号,并向源小区发送停止接收信号的指示。
可选的,该指示可以携带于无线资源控制(Radio Resource Control,RRC)消息、或者媒体接入控制控制单元(medium access control control element,MAC CE)、或者物理层消息。
可选的,终端判断停止接收源小区信号的条件包括但不限于:基于配置的定时器(Timer)的超时,或者是源小区的下行信号测量结果(如功率或质量)低于某个门限值(该门限值可以是基于源基站的配置)。
作为该步骤703的一种可替代实现方法,终端也可以向目标小区发送停止从源小区接收信号的指示,然后目标小区将该指示转发给源小区。
步骤704,源小区接收到该指示后,停止下行信号的传输。
比如,源小区接收到该指示后,可以立即停止下行信号的传输。
再比如,源小区接收到该指示后,可以等待一段时间后,停止下行信号的传输。
再比如,源小区接收到该指示后,确定满足设定的条件后,停止下行信号的传输。
基于上述方法,可以实现终端基于预定义的时分交替切换模式或者基于源小区和目标小区的DCI指示的上行调度传输上行信号,并且还可以通知源小区停止发送下行信号。
需要说明的是,本申请中的“第一”、“第二”、“第三”仅仅是为了区分不同的名词,其本本身不构成对名词的含义的限制。
可以理解的是,上述方法实施例中,由终端实现的方法,也可以由可用于终端的部件(例如芯片或者电路)实现,本申请实施例对此不作限定。
图8示出了本发明实施例中所涉及的装置的一种可能的示例性框图,该装置800可以以软件或硬件的形式存在。装置800可以包括:处理单元802和通信单元803。作为一种实现方式,该通信单元803可以包括接收单元和发送单元。处理单元802用于对装置800的动作进行控制管理。通信单元803用于支持装置800与其他网络实体的通信。装置800还可以包括存储单元801,用于存储装置800的程序代码和数据。
其中,处理单元802可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框、模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合、DSP和微处理器的组合等等。通信单元803可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口。存储单元801可以是存储器。
在一个实施例中,该装置800可以为终端,还可以为终端中的芯片。该终端可用于实现上述各实施例中由终端执行的操作。具体地,以通信单元803包括发送单元和接收单元为例。
在一个示例中,处理单元,用于根据打掉符号的规则,确定需要打掉puncture的符号;发送单元,用于根据确定的需要打掉的符号,向所述源小区或所述目标小区发送上行信号;其中,所述打掉符号的规则是协议预定义的,或者,所述打掉符号的规则是所述终端对所述源小区和所述目标小区的小区参考信号进行测量后确定的。
在一种可能的实现方法中,所述打掉符号的规则是所述终端对所述源小区和所述目标小区的小区参考信号进行测量后确定的;所述处理单元,具体用于对所述源小区发送的小区参考信号进行测量得到第一测量结果,以及,对所述目标小区发送的小区参考信号进行测量得到第二测量结果;根据所述第一测量结果和所述第二测量结果,确定所述需要打掉的符号。
在一种可能的实现方法中,所述处理单元,具体用于根据所述第一测量结果和所述第二测量结果,确定需要打掉的符号为用于向所述源小区发送上行信号的符号或用 于向所述目标小区发送上行信号的符号,且所述需要打掉的符号为用于向所述源小区发送上行信号与用于向所述目标小区发送上行信号的符号之间的重叠的符号。
在一种可能的实现方法中,所述第一测量结果包括所述终端测量到的所述源小区发送的小区参考信号的功率,所述第二测量结果包括所述终端测量到的所述目标小区发送的小区参考信号的功率;或者,所述第一测量结果包括所述终端测量到的所述源小区发送的小区参考信号的质量,所述第二测量结果包括所述终端测量到的所述目标小区发送的小区参考信号的质量。
在一种可能的实现方法中,所述发送单元,具体用于若需要打掉的符号为用于向所述源小区发送上行信号的符号,则在所述需要打掉的符号上,向所述目标小区发送上行信号;或者,若需要打掉的符号为用于向所述目标小区发送上行信号的符号,则在所述需要打掉的符号上,向所述源小区发送上行信号。
在一种可能的实现方法中,发送单元,还用于向所述源小区发送第一能力指示,所述第一能力指示用于指示所述终端支持时分交替切换。
在一种可能的实现方法中,接收单元,用于接收来自所述源小区的第一使能指示,所述第一使能指示用于指示使能所述终端的时分交替切换。
在一种可能的实现方法中,发送单元,还用于向所述源小区发送第二能力指示,所述第二能力指示用于指示所述终端支持打掉重叠的符号。
在一种可能的实现方法中,接收单元,用于接收来自所述源小区的第二使能指示,所述第二使能指示用于指示使能所述终端打掉重叠的符号。
在一种可能的实现方法中,发送单元,还用于向所述源小区发送第一通知指示,所述第一通知指示包括符号指示和/或站点指示,所述符号指示用于指示所述终端确定的需要打掉的符号和/或符号数,所述站点指示用于指示所述终端确定的需要打掉的符号所属的站点,所述站点为所述目标小区或所述源小区。
在一种可能的实现方法中,接收单元,用于接收来自所述源小区的第三使能指示,所述第三使能指示用于指示使能所述终端打掉重叠的符号。
在又一个示例中,所述接收单元,用于在第一小区的(m-k)子帧至(m+t-k)子帧上接收来自所述第一小区的下行信号;所述发送单元,用于在第二小区的n子帧至(n+t-1)子帧上向所述第二小区发送上行信号;以及,在所述第一小区的m+t子帧上发送针对所述下行信号的上行反馈;其中,所述第一小区为所述源小区和所述目标小区的一个,所述第二小区为所述源小区和所述目标小区的另一个,所述第一小区的m子帧与第二小区的n子帧在时序上对应,n为大于1的整数,m为大于1的整数,t为正整数,k为预设的正整数,m-k的值非负,m+t-k的值非负,t小于k。
在一种可能的实现方法中,所述第一小区为源小区、所述第二小区为目标小区,向所述第二小区发送的上行信号包括随机接入前导码preamble。
图8所示的装置为终端时,所用于执行的上行信号发送方法的具体有益效果,可参考前述方法实施例中的相关描述,这里不再赘述。可以理解的是,本申请实施例中的单元也可以称为模块。上述单元或者模块可以独立存在,也可以集成在一起。
参阅图9所示,为本申请提供的一种装置示意图,该装置可以是本申请实施例中的终端,也可以是可用于终端的部件。该装置900包括:处理器902、通信接口903、 存储器901。可选的,装置900还可以包括总线904。其中,通信接口903、处理器902以及存储器901可以通过通信线路904相互连接;通信线路904可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路904可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器902可以是一个CPU,微处理器,ASIC,或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口903,可以是使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器901可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是带电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路904与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器901用于存储执行本申请方案的计算机执行指令,并由处理器902来控制执行。处理器902用于执行存储器901中存储的计算机执行指令,从而实现本申请上述实施例提供的上行信号发送方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程 逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端中。可选地,处理器和存储媒介也可以设置于终端中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (24)

  1. 一种上行信号发送方法,其特征在于,应用于终端从源小区切换至目标小区,所述方法包括:
    所述终端根据打掉符号的规则,确定需要打掉puncture的符号;
    所述终端根据确定的需要打掉的符号,向所述源小区或所述目标小区发送上行信号;
    其中,所述打掉符号的规则是协议预定义的,或者,所述打掉符号的规则是所述终端对所述源小区和所述目标小区的小区参考信号进行测量后确定的。
  2. 如权利要求1所述的方法,其特征在于,所述打掉符号的规则是所述终端对所述源小区和所述目标小区的小区参考信号进行测量后确定的;
    所述终端根据打掉符号的规则,确定需要打掉的符号,包括:
    所述终端对所述源小区发送的小区参考信号进行测量得到第一测量结果,以及,对所述目标小区发送的小区参考信号进行测量得到第二测量结果;
    所述终端根据所述第一测量结果和所述第二测量结果,确定需要打掉的符号。
  3. 如权利要求2所述的方法,其特征在于,所述终端根据所述第一测量结果和所述第二测量结果,确定需要打掉的符号,包括:
    所述终端根据所述第一测量结果和所述第二测量结果,确定需要打掉的符号为用于向所述源小区发送上行信号的符号或用于向所述目标小区发送上行信号的符号,且所述需要打掉的符号为用于向所述源小区发送上行信号的符号与用于向所述目标小区发送上行信号的符号之间的重叠的符号。
  4. 如权利要求2或3所述的方法,其特征在于,所述第一测量结果包括所述终端测量到的所述源小区发送的小区参考信号的功率,所述第二测量结果包括所述终端测量到的所述目标小区发送的小区参考信号的功率;或者,
    所述第一测量结果包括所述终端测量到的所述源小区发送的小区参考信号的质量,所述第二测量结果包括所述终端测量到的所述目标小区发送的小区参考信号的质量。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述终端根据确定的需要打掉的符号,向所述源小区或所述目标小区发送上行信号,包括:
    若需要打掉的符号为用于向所述源小区发送上行信号的符号,则所述终端在所述需要打掉的符号上,向所述目标小区发送上行信号;或者,
    若需要打掉的符号为用于向所述目标小区发送上行信号的符号,则所述终端在所述需要打掉的符号上,向所述源小区发送上行信号。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述终端向所述源小区发送第一能力指示,所述第一能力指示用于指示所述终端支持时分交替切换。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端接收来自所述源小区的第一使能指示,所述第一使能指示用于指示使能所述终端的时分交替切换。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    所述终端向所述源小区发送第二能力指示,所述第二能力指示用于指示所述终端 支持打掉重叠overlapping的符号。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    所述终端接收来自所述源小区的第二使能指示,所述第二使能指示用于指示使能所述终端打掉重叠的符号。
  10. 如权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    所述终端向所述源小区发送第一通知指示,所述第一通知指示包括符号指示和/或站点指示,所述符号指示用于指示所述终端确定的需要打掉的符号和/或符号数,所述站点指示用于指示所述终端确定的需要打掉的符号所属的站点,所述站点为所述目标小区或所述源小区。
  11. 一种上行信号发送方法,其特征在于,应用于终端从源小区切换至目标小区,所述方法包括:
    所述终端在第一小区的(m-k)子帧至(m+t-k)子帧上接收来自所述第一小区的下行信号;
    所述终端在第二小区的n子帧至(n+t-1)子帧上向所述第二小区发送上行信号;
    所述终端在所述第一小区的m+t子帧上发送针对所述下行信号的上行反馈;
    其中,所述第一小区为所述源小区和所述目标小区的一个,所述第二小区为所述源小区和所述目标小区的另一个,所述第一小区的m子帧与第二小区的n子帧在时序上对应,n为大于1的整数,m为大于1的整数,t为正整数,k为预设的正整数,m-k的值非负,m+t-k的值非负,t小于k。
  12. 如权利要求11所述的方法,其特征在于,所述第一小区为源小区、所述第二小区为目标小区,向所述第二小区发送的上行信号包括随机接入前导码preamble。
  13. 一种终端,其特征在于,应用于所述终端从源小区切换至目标小区,包括:
    处理单元,用于根据打掉符号的规则,确定需要打掉puncture的符号;
    发送单元,用于根据确定的需要打掉的符号,向所述源小区或所述目标小区发送上行信号;
    其中,所述打掉符号的规则是协议预定义的,或者,所述打掉符号的规则是所述终端对所述源小区和所述目标小区的小区参考信号进行测量后确定的。
  14. 如权利要求13所述的终端,其特征在于,所述打掉符号的规则是所述终端对所述源小区和所述目标小区的小区参考信号进行测量后确定的;
    所述处理单元,具体用于:
    对所述源小区发送的小区参考信号进行测量得到第一测量结果,以及,对所述目标小区发送的小区参考信号进行测量得到第二测量结果;
    根据所述第一测量结果和所述第二测量结果,确定需要打掉的符号。
  15. 如权利要求14所述的终端,其特征在于,所述处理单元,具体用于:
    根据所述第一测量结果和所述第二测量结果,确定需要打掉的符号为用于向所述源小区发送上行信号的符号或用于向所述目标小区发送上行信号的符号,且所述需要打掉的符号为用于向所述源小区发送上行信号的符号与用于向所述目标小区发送上行信号的符号之间的重叠的符号。
  16. 如权利要求14或15所述的终端,其特征在于,所述第一测量结果包括所述终端测量到的所述源小区发送的小区参考信号的功率,所述第二测量结果包括所述终 端测量到的所述目标小区发送的小区参考信号的功率;或者,
    所述第一测量结果包括所述终端测量到的所述源小区发送的小区参考信号的质量,所述第二测量结果包括所述终端测量到的所述目标小区发送的小区参考信号的质量。
  17. 如权利要求13-16任一项所述的终端,其特征在于,所述发送单元,具体用于:
    若需要打掉的符号为用于向所述源小区发送上行信号的符号,则在所述需要打掉的符号上,向所述目标小区发送上行信号;或者,
    若需要打掉的符号为用于向所述目标小区发送上行信号的符号,则在所述需要打掉的符号上,向所述源小区发送上行信号。
  18. 如权利要求13-17任一项所述的终端,其特征在于,所述发送单元,还用于向所述源小区发送第一能力指示,所述第一能力指示用于指示所述终端支持时分交替切换。
  19. 如权利要求18所述的终端,其特征在于,所述终端还包括接收单元,用于接收来自所述源小区的第一使能指示,所述第一使能指示用于指示使能所述终端的时分交替切换。
  20. 如权利要求13-19任一项所述的终端,其特征在于,所述发送单元,还用于向所述源小区发送第二能力指示,所述第二能力指示用于指示所述终端支持打掉重叠overlapping的符号。
  21. 如权利要求20所述的终端,其特征在于,所述终端还包括接收单元,用于接收来自所述源小区的第二使能指示,所述第二使能指示用于指示使能所述终端打掉重叠的符号。
  22. 如权利要求13-19任一项所述的终端,其特征在于,所述发送单元,还用于向所述源小区发送第一通知指示,所述第一通知指示包括符号指示和/或站点指示,所述符号指示用于指示所述终端确定的需要打掉的符号和/或符号数,所述站点指示用于指示所述终端确定的需要打掉的符号所属的站点,所述站点为所述目标小区或所述源小区。
  23. 一种终端,其特征在于,应用于所述终端从源小区切换至目标小区,包括发送单元和接收单元;
    所述接收单元,用于在第一小区的(m-k)子帧至(m+t-k)子帧上接收来自所述第一小区的下行信号;
    所述发送单元,用于在第二小区的n子帧至(n+t-1)子帧上向所述第二小区发送上行信号;以及,在所述第一小区的m+t子帧上发送针对所述下行信号的上行反馈;
    其中,所述第一小区为所述源小区和所述目标小区的一个,所述第二小区为所述源小区和所述目标小区的另一个,所述第一小区的m子帧与第二小区的n子帧在时序上对应,n为大于1的整数,m为大于1的整数,t为正整数,k为预设的正整数,m-k的值非负,m+t-k的值非负,t小于k。
  24. 如权利要求23所述的终端,其特征在于,所述第一小区为源小区、所述第二小区为目标小区,向所述第二小区发送的上行信号包括随机接入前导码preamble。
PCT/CN2018/118721 2018-11-30 2018-11-30 一种上行信号发送方法及终端 WO2020107458A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18941379.2A EP3890224B1 (en) 2018-11-30 2018-11-30 Uplink signal sending method and terminal
CN201880099724.2A CN113169834B (zh) 2018-11-30 2018-11-30 一种上行信号发送方法及终端
PCT/CN2018/118721 WO2020107458A1 (zh) 2018-11-30 2018-11-30 一种上行信号发送方法及终端
CN202310377181.9A CN116405174A (zh) 2018-11-30 2018-11-30 一种上行信号发送方法及终端
US17/332,559 US11881944B2 (en) 2018-11-30 2021-05-27 Uplink signal sending method and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/118721 WO2020107458A1 (zh) 2018-11-30 2018-11-30 一种上行信号发送方法及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/332,559 Continuation US11881944B2 (en) 2018-11-30 2021-05-27 Uplink signal sending method and terminal

Publications (1)

Publication Number Publication Date
WO2020107458A1 true WO2020107458A1 (zh) 2020-06-04

Family

ID=70854472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118721 WO2020107458A1 (zh) 2018-11-30 2018-11-30 一种上行信号发送方法及终端

Country Status (4)

Country Link
US (1) US11881944B2 (zh)
EP (1) EP3890224B1 (zh)
CN (2) CN116405174A (zh)
WO (1) WO2020107458A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200097467A (ko) * 2019-02-08 2020-08-19 삼성전자주식회사 무선통신 시스템에서 2단계 랜덤 엑세스 절차를 지시하는 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104348589A (zh) * 2013-07-23 2015-02-11 电信科学技术研究院 一种传输反馈信息的方法和装置
CN105229962A (zh) * 2012-11-09 2016-01-06 瑞典爱立信有限公司 用于与时分双工小区的载波聚合操作的方法和装置
KR20160099500A (ko) * 2015-02-12 2016-08-22 한국전자통신연구원 압축 센싱 기반의 다중 접속을 위한 방법 및 장치
CN108886457A (zh) * 2016-04-01 2018-11-23 华为技术有限公司 用于srs切换、发送和增强的系统与方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100499912C (zh) * 2006-01-19 2009-06-10 华为技术有限公司 软切换方法和终端设备
CA2724744C (en) * 2008-06-11 2014-02-04 Nokia Siemens Networks Oy Local area optimized uplink control channel
CN101931437A (zh) * 2009-06-19 2010-12-29 松下电器产业株式会社 无线通信系统中的解调参考信号设置方法及装置
KR101306404B1 (ko) * 2011-09-29 2013-09-09 엘지전자 주식회사 상향링크 전송 방법 및 이를 이용한 무선기기
CN105917719B (zh) 2014-01-28 2019-05-14 寰发股份有限公司 在多个服务小区中时分多路复用ul传输方法以及用户设备
CN107872856B (zh) * 2016-09-28 2020-10-02 中国移动通信有限公司研究院 一种降低切换时延的方法及装置
DK3528563T3 (da) 2016-11-16 2021-07-12 Guangdong Oppo Mobile Telecommunications Corp Ltd Fremgangsmåde og anordning til transmission af uplink-signal
CN108811135B (zh) * 2017-05-05 2020-02-07 电信科学技术研究院 一种数据传输方法及装置
CN110139363B (zh) * 2018-02-09 2021-11-09 维沃移动通信有限公司 发送uci的方法及用户终端
CN112956268A (zh) * 2018-08-01 2021-06-11 松下电器(美国)知识产权公司 终端及通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105229962A (zh) * 2012-11-09 2016-01-06 瑞典爱立信有限公司 用于与时分双工小区的载波聚合操作的方法和装置
CN104348589A (zh) * 2013-07-23 2015-02-11 电信科学技术研究院 一种传输反馈信息的方法和装置
KR20160099500A (ko) * 2015-02-12 2016-08-22 한국전자통신연구원 압축 센싱 기반의 다중 접속을 위한 방법 및 장치
CN108886457A (zh) * 2016-04-01 2018-11-23 华为技术有限公司 用于srs切换、发送和增强的系统与方法

Also Published As

Publication number Publication date
CN113169834A (zh) 2021-07-23
EP3890224A1 (en) 2021-10-06
US20210288753A1 (en) 2021-09-16
US11881944B2 (en) 2024-01-23
EP3890224B1 (en) 2023-11-01
CN116405174A (zh) 2023-07-07
EP3890224A4 (en) 2021-12-22
CN113169834B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
US9936394B2 (en) Method for processing data after unlicensed spectrum is released, and user equipment
JP6833724B2 (ja) 共有周波数スペクトル帯域上のサウンディング基準信号の送信を管理するための技法
JP6591552B2 (ja) 共有またはアンライセンススペクトルのための媒体アクセス
JP6542465B2 (ja) セルのアクティブ化
RU2663220C1 (ru) Беспроводное устройство, первый сетевой узел и способы в них
US11678370B2 (en) Systems and methods for controlling wireless device feedback on secondary cell activation and deactivation via the unlicensed spectrum
JP6812355B2 (ja) 高速拡張コンポーネントキャリアアクティベーション
KR101948194B1 (ko) 비허가된 라디오 주파수 스펙트럼 대역에서 비동기식 송신들을 가능하게 하기 위한 기술들
JP7486471B2 (ja) ユーザ機器、方法及び集積回路
KR20180035817A (ko) 공유 스펙트럼을 통한 lte에 대한 서비스 품질 관련 향상들
US20160242092A1 (en) Methods and Apparatus for Small Cell Change
WO2016119851A1 (en) Secondary scheduling request
JPWO2016133185A1 (ja) ユーザ端末、無線基地局及び無線通信方法
US20210289410A1 (en) Downlink signal receiving method, terminal, and source base station
WO2020107458A1 (zh) 一种上行信号发送方法及终端
CN111263441B (zh) 一种通信方法和装置
WO2017193386A1 (zh) 一种计数方法及装置
WO2022208441A1 (en) Serving cell selection for uplink feedback transmission under clear channel assessment
JP7165744B2 (ja) ユーザ装置
WO2024065462A1 (zh) 通信方法、终端设备和网络设备
WO2023239389A1 (en) Transmissions on mixed dynamic frequency selection channels during channel availability check
CN117395766A (zh) 由用户设备执行的方法及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018941379

Country of ref document: EP

Effective date: 20210630