WO2020107454A1 - 障碍物的精准确定方法、设备及计算机可读存储介质 - Google Patents

障碍物的精准确定方法、设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2020107454A1
WO2020107454A1 PCT/CN2018/118711 CN2018118711W WO2020107454A1 WO 2020107454 A1 WO2020107454 A1 WO 2020107454A1 CN 2018118711 W CN2018118711 W CN 2018118711W WO 2020107454 A1 WO2020107454 A1 WO 2020107454A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
drone
obstacle avoidance
flight
control terminal
Prior art date
Application number
PCT/CN2018/118711
Other languages
English (en)
French (fr)
Inventor
李劲松
钟和立
于云
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880041622.5A priority Critical patent/CN110869872A/zh
Priority to PCT/CN2018/118711 priority patent/WO2020107454A1/zh
Publication of WO2020107454A1 publication Critical patent/WO2020107454A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the embodiments of the present invention relate to the field of unmanned aerial vehicles, and in particular to a method, equipment and computer-readable storage medium for accurately determining obstacles.
  • Mobile devices include but are not limited to drones, unmanned vehicles, etc.
  • the fan-shaped obstacle map is generally used to display the position information of the obstacle.
  • the rough position information of the obstacle is obtained by analyzing the image data collected by the image acquisition device, and the orientation of the obstacle is displayed in a fan-shaped area in the obstacle map, and the fan-shaped area is set according to the distance of the obstacle from the movable device
  • Different colors for example, you can set any one of the red, yellow, and green colors for the fan-shaped area according to the distance between the obstacle and the mobile device, where green indicates that the obstacle is far away from the mobile device, and yellow indicates Obstacles are closer to the mobile device, red indicates that the obstacles are too close to the mobile device, and there is a security risk. Therefore, the user can adjust the current operation route according to different colors.
  • Embodiments of the present invention provide an accurate method, device, and computer-readable storage medium for determining obstacles to solve the existing fan-shaped obstacle maps, which can only determine the approximate orientation and distance of the obstacles, so that the user cannot know the obstacles.
  • a first aspect of the embodiments of the present invention is to provide a method for accurately determining an obstacle, which is applied to a drone, the drone is provided with a detection device, and the detection device is used to detect an obstacle.
  • the method includes:
  • the unmanned aerial vehicle determines the obstacle information according to the detection data, and the obstacle information includes the orientation and contour of the obstacle;
  • a second aspect of the embodiments of the present invention is to provide a method for accurately determining an obstacle, which is applied to a control terminal.
  • the method includes:
  • the obstacle information including the orientation and outline of the obstacle
  • a third aspect of the embodiments of the present invention is to provide a method for accurately determining obstacles, which is applied to a drone system.
  • the drone system includes a drone and a control terminal that controls the drone.
  • a detection device is provided on the man-machine. The detection device is used to detect obstacles.
  • the control terminal has a display interface. The method includes:
  • the unmanned aerial vehicle determines the obstacle information according to the detection data, and the obstacle information includes the orientation and contour of the obstacle;
  • a fourth aspect of the embodiments of the present invention is to provide a drone, including:
  • a power system installed on the fuselage, is used to provide flight power
  • the processor is used for:
  • the unmanned aerial vehicle determines the obstacle information according to the detection data, and the obstacle information includes the orientation and contour of the obstacle;
  • the determined obstacle information is sent to the corresponding control terminal of the drone in real time through the communication interface, so as to present the obstacle information to the user.
  • a fifth aspect of the embodiments of the present invention is to provide a control terminal, including: a memory, a processor, and a communication interface;
  • the memory is used to store program codes
  • the processor calls the program code, and when the program code is executed, it is used to perform the following operations:
  • the obstacle information including the orientation and outline of the obstacle
  • a sixth aspect of the embodiments of the present invention is to provide a drone system.
  • the drone system includes a drone and a control terminal that controls the drone.
  • the drone is provided with a detection device.
  • the detection device is used to detect obstacles, the control end has a display interface, and the system is specifically used to:
  • the unmanned aerial vehicle determines the obstacle information according to the detection data, and the obstacle information includes the orientation and contour of the obstacle;
  • a seventh aspect of the embodiments of the present invention is to provide a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the method of the first aspect.
  • An eighth aspect of an embodiment of the present invention is to provide a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the method of the second aspect.
  • the method, device and computer-readable storage medium for accurately determining obstacles obtained in this embodiment obtain the detection data output by the detection device in real time during the flight of the drone according to the current operation route;
  • the man-machine determines the obstacle information according to the detection data, and the obstacle information includes the orientation and contour of the obstacle; the determined obstacle information is sent to the corresponding control terminal of the drone in real time
  • Embodiment 1 is a flowchart of a method for accurately determining an obstacle provided by Embodiment 1 of the present invention
  • Embodiment 2 is a flowchart of a method for accurately determining an obstacle provided by Embodiment 2 of the present invention
  • Embodiment 3 is a flowchart of a method for accurately determining an obstacle provided by Embodiment 3 of the present invention
  • Embodiment 4 is a flowchart of a method for accurately determining an obstacle provided by Embodiment 4 of the present invention.
  • FIG. 5 is a diagram of a display interface provided by an embodiment of the present invention.
  • Embodiment 6 is a schematic flowchart of a method for accurately determining an obstacle provided by Embodiment 5 of the present invention.
  • FIG. 8 is a schematic flowchart of a method for accurately determining an obstacle according to Embodiment 6 of the present invention.
  • FIG. 9 is a schematic flowchart of a method for accurately determining an obstacle according to Embodiment 7 of the present invention.
  • FIG. 10 is a schematic flowchart of a method for accurately determining an obstacle according to Embodiment 8 of the present invention.
  • FIG. 11 is a schematic flowchart of a method for accurately determining an obstacle according to Embodiment 9 of the present invention.
  • Embodiment 12 is a schematic structural diagram of a drone provided by Embodiment 10 of the present invention.
  • FIG. 13 is a schematic structural diagram of a control terminal according to Embodiment 11 of the present invention.
  • Embodiment 14 is a schematic structural diagram of an unmanned aerial vehicle system provided by Embodiment 11 of the present invention.
  • control end 121: control end; 122: memory; 123: processor;
  • a component when a component is said to be “fixed” to another component, it can be directly on another component or it can also exist in a centered component. When a component is considered to be “connected” to another component, it can be directly connected to another component or there can be centered components at the same time.
  • FIG. 1 is a flowchart of a method for accurately determining an obstacle according to Embodiment 1 of the present invention.
  • the method for accurately determining the obstacle provided in this embodiment is applied to a drone, and the drone is provided with a detection device, and the detection device is used to detect an obstacle.
  • the method in this embodiment may include:
  • Step S101 During the flight of the drone according to the current operation route, obtain the detection data output by the detection device in real time.
  • the execution subject of the method in this embodiment may be a flight control device, and the flight control device may be a control device that performs flight control on the drone, and specifically, may be a flight controller of the drone.
  • the drone can determine the current operation route and fly according to the operation route.
  • the drone is provided with a detection device that can detect obstacles in the current drone operation route. And output probe data.
  • the detection data output by the detection device in real time can be obtained.
  • Step S102 The unmanned aerial vehicle determines the obstacle information according to the detection data, and the obstacle information includes the orientation and contour of the obstacle.
  • the detection data output by the detection device in real time may include any one or more of the distance and direction of the obstacle relative to the drone. Therefore, the current distance from the obstacle to the drone location information. Since the UAV continuously moves relative to the obstacle, the detection equipment can collect the detection data of different orientations and angles of the obstacle as the UAV moves continuously. Obstacle information is determined according to the detection data output by the detection device at least one moment. Among them, the obstacle information specifically includes the orientation and outline of the obstacle.
  • multiple obstacle position points may be formed according to the detection data output at different times of the detection device, and the outline of the obstacle may be described according to the set of multiple obstacle position points.
  • Step S103 Send the determined obstacle information to the control terminal corresponding to the drone in real time, so as to present the obstacle information to the user.
  • the determined obstacle information may be sent to the corresponding control end of the drone in real time to control
  • the terminal can present the obstacle information to the user, and then the user can timely understand the obstacle information, and can perform operations such as bypassing and avoiding obstacles based on the obstacle information.
  • agricultural drones can spray pesticides according to a pre-planned operation route.
  • the detection data output by the detection equipment provided in the UAV in real time, and the obstacle information is determined according to the detection data.
  • the obstacle information specifically includes the position and contour of the obstacle from the agricultural drone.
  • the determined obstacle information can be sent to the corresponding control end of the agricultural drone, so that the control end displays the obstacle information, Furthermore, the user can perform operations such as autonomous obstacle avoidance bypass based on the obstacle information.
  • the method for accurately determining the obstacle obtained by this embodiment obtains the detection data output by the detection device in real time during the flight of the drone according to the current operation route; the drone according to the detection data, Determine the obstacle information, the obstacle information including the position and outline of the obstacle; send the determined obstacle information to the corresponding control end of the drone in real time, so as to send the obstacle information Present to the user. Therefore, the user can more intuitively understand the precise position and contour of the obstacle, and thus can perform better obstacle avoidance and bypass operations, and improve the operational safety of the drone.
  • the detection data includes at least one of the following:
  • the distance and direction of the obstacle relative to the drone are the distance and direction of the obstacle relative to the drone.
  • the detection data specifically includes at least one of the distance and direction of the obstacle relative to the drone, so that the specific distance and direction of the obstacle from the drone can be determined according to the detection data, and thus According to the detection data, the obstacle information is more accurately determined.
  • the detection device includes at least one of the following:
  • Millimeter wave radar Ultrasonic detection equipment, TOF ranging detection equipment, lidar.
  • the detection device includes at least one of the following: millimeter wave radar, ultrasonic detection device, TOF ranging detection device, and laser radar.
  • millimeter wave radar ultrasonic detection device
  • TOF ranging detection device and laser radar.
  • the above detection device can accurately determine the distance and direction of the obstacle relative to the drone, so that According to the detection data, the man-machine can determine the obstacle information more accurately.
  • Embodiment 2 is a flowchart of a method for accurately determining an obstacle provided by Embodiment 2 of the present invention. Based on any of the foregoing embodiments, as shown in FIG. 2, the method in this embodiment may include:
  • Step S201 When it is determined that there is an obstacle in the current operation route, determine an obstacle avoidance path according to the current operation route and the detection data;
  • Step S202 Control the drone to bypass the obstacle avoidance path according to the obstacle avoidance path.
  • the current obstacle avoidance path can be jointly determined according to the current operation route and the detection data
  • the man-machine can not deviate from the current operation route on the basis of obstacle avoidance. For example, if it is determined that there is an obstacle in the current operation route, a bypass avoidance path can be planned according to the obstacle, and after bypassing the obstacle, return to the current operation route to continue the operation.
  • the drone can be controlled to bypass the obstacle avoidance path according to the obstacle avoidance path.
  • the method for accurately determining the obstacle determines the obstacle avoidance path according to the current operation route and the detection data when it is determined that there is an obstacle in the current operation route; Detour obstacle avoidance path. Therefore, the UAV can avoid obstacles without deviating from the current operation route.
  • the method further includes:
  • an obstacle avoidance path is determined according to the current operation route and the detection data
  • the obstacle avoidance path is adjusted in time according to the detection data acquired in real time.
  • the detection device can collect the detection data of the obstacle in different directions and angles as the drone moves continuously. Therefore, in order to further ensure that For flight safety of man-machine, after determining the obstacle avoidance path based on the detection data and controlling the UAV to bypass obstacle avoidance according to the obstacle avoidance path, the current obstacle avoidance path can be adjusted in time according to the detection data received in real time. Taking practical applications as an example, if the current obstacle is a wall, the detection device currently collects only half of the detection data of the wall. Therefore, the current obstacle avoidance path is also planned based on half of the detection data of the wall As the drone is flying, the detection equipment can detect all the detection data of this wall. Therefore, in order to ensure the flight safety of the drone, the current obstacle avoidance path needs to be timely based on all the detection data of this wall. Adjustment.
  • the method for accurately determining the obstacle provided by this embodiment adjusts the obstacle avoidance path in time according to the detection data acquired in real time during the flight of the drone, so that the current position of the obstacle can be accurately determined And on the basis of the outline, to further ensure the safety of the drone.
  • the method further includes:
  • an obstacle avoidance path is determined according to the current operation route and the detection data
  • the obstacle avoidance path is transmitted to the control terminal in real time to present the obstacle avoidance path to the user in real time.
  • the The control end sends the obstacle avoidance path, so that the control end can display the obstacle avoidance path to the user in real time, and then the user can adjust the obstacle avoidance path according to current actual needs.
  • the method for accurately determining the obstacle provided by this embodiment transmits the obstacle avoidance path to the control terminal in real time to present the obstacle avoidance path to the user in real time, thereby enabling the user to change the current obstacle avoidance path Intuitive understanding.
  • the method further includes:
  • the unmanned aerial vehicle determines the obstacle information according to the detection data, and the obstacle information includes the orientation and contour of the obstacle;
  • an obstacle avoidance operation instruction sent by the control terminal is received, and the obstacle avoidance operation instruction is used to control the drone to bypass obstacle avoidance.
  • the control terminal after acquiring the detection data output by the detection device, and determining the obstacle information according to the detection data, and sending the obstacle information to the control terminal, the control terminal can display the obstacle information, so that the user can control the Obstacle information displayed on the terminal can timely understand the current flight status of the drone, and perform autonomous obstacle avoidance when necessary.
  • the control terminal can obtain the obstacle avoidance operation instruction, and send the obstacle avoidance operation instruction to the drone.
  • the drone can receive the obstacle avoidance operation instruction sent by the control end, and perform bypassing according to the obstacle avoidance operation instruction. To avoid obstacles.
  • the method for accurately determining an obstacle provided in this embodiment, by receiving an obstacle avoidance operation instruction sent by the control terminal when it is determined that an obstacle exists in the current operation route segment, the obstacle avoidance operation instruction is used to control the obstacle
  • the UAV performs bypass obstacle avoidance, which can further ensure the safety of the UAV on the basis of determining the precise position and contour of the current obstacle.
  • FIG. 3 is a flowchart of a method for accurately determining an obstacle provided by Embodiment 3 of the present invention. Based on any of the foregoing embodiments, as shown in FIG. 3, the method in this embodiment may include:
  • Step S301 During the flight of the drone according to the current operation route, obtain the detection data output by the detection device in real time;
  • Step S302 The UAV determines the obstacle information according to the detection data, and the obstacle information includes the orientation and contour of the obstacle;
  • Step S303 Encrypt the obstacle information through a preset encryption algorithm to obtain encrypted obstacle information
  • Step S304 Send the encrypted obstacle information to the control terminal corresponding to the drone.
  • the preset encryption algorithm may be used to encrypt the obstacle information to obtain the encrypted obstacle information.
  • any kind of encryption algorithm may be used to encrypt the obstacle information, and the invention is not limited herein.
  • the encrypted obstacle information can be sent to the corresponding control end of the drone.
  • the method for accurately determining obstacles provided in this embodiment encrypts the obstacle information by using a preset encryption algorithm to obtain encrypted obstacle information, and sends the encrypted obstacle information to the unmanned person
  • the control terminal corresponding to the computer thereby ensuring the safety of the detection data and improving the transmission efficiency of the detection data.
  • FIG. 4 is a flowchart of a method for accurately determining an obstacle provided by Embodiment 4 of the present invention
  • FIG. 5 is a display interface diagram provided by an embodiment of the present invention.
  • the method for accurately determining the obstacle provided by this embodiment can be applied to the control end. As shown in FIG. 4, the method in this embodiment may include:
  • Step S401 Receive obstacle information sent during the flight of the drone, where the obstacle information includes the orientation and outline of the obstacle;
  • Step S402 When the distance between the obstacle and the drone is less than a preset threshold, display a radar chart on the display interface of the control terminal, and display the obstacle sign and no one on the radar chart Machine identification to display the orientation and outline of the obstacle and the relative orientation of the drone and the obstacle in the radar chart.
  • the execution subject of this embodiment may be a control terminal corresponding to the drone, and the control terminal may specifically be a smart phone, a tablet computer, or a remote control device with a display interface.
  • the control terminal can receive obstacle information sent by the drone during flight, where the obstacle information specifically includes the position and contour of the obstacle from the drone.
  • the obstacle information is determined according to the detection data collected by the detection device provided in the UAV. Different from the analysis of the image data collected by the image acquisition device in the prior art to obtain the rough position information of the obstacle, the detection device can accurately determine the distance and direction of the obstacle relative to the drone, so that no one can be unmanned Based on the detection data, the aircraft can determine the obstacle information more accurately.
  • the control terminal can display the obstacle information on the display interface, so that the user can timely understand the current flight status of the drone, and can perform autonomous obstacle avoidance operations based on the obstacle information.
  • the display interface of the control terminal generally displays the image information and control interface currently collected by the drone, in order not to affect the control interface and image information, the obstacle sent by the drone is received. After the information, you can first determine whether the distance between the obstacle and the drone is less than the preset threshold. If so, it means that the obstacle is closer to the drone. At this time, the user needs to understand the obstacle information in a timely manner. Therefore, the radar chart can be displayed on the display interface of the control terminal, and the obstacle sign and the drone sign can be displayed on the radar chart to display the position and contour of the obstacle and the relative position of the drone and the obstacle in the radar chart. .
  • the method for accurately determining the obstacle by receiving obstacle information sent during the flight of the drone, the obstacle information includes the orientation and outline of the obstacle; when the obstacle and the none When the distance between the man and the machine is less than the preset threshold, display the radar chart on the display interface of the control terminal, and display the obstacle sign and the drone sign on the radar chart to display the The orientation and outline of the obstacle and the relative orientation of the drone and the obstacle. Therefore, the user can more intuitively understand the precise position and contour of the obstacle, and thus can perform better obstacle avoidance and bypass operations, and improve the operational safety of the drone.
  • the method further includes:
  • the logo of the drone is displayed on the display interface at a real-time position corresponding to the drone.
  • the logo of the drone in order to enable the user to accurately determine the current position of the drone, can be displayed on the display interface at the real-time position of the drone, so that the user can determine The current position information and flight status of the drone.
  • the method for accurately determining the obstacle provided by this embodiment displays the UAV logo on the display interface at the real-time position corresponding to the UAV, so that the user can determine the current position information and flight status of the UAV .
  • FIG. 6 is a schematic flowchart of a method for accurately determining an obstacle provided by Embodiment 5 of the present invention
  • FIG. 7 is a radar chart provided by an embodiment of the present invention. Based on any of the foregoing embodiments, the method further includes:
  • Step S501 Receive obstacle information sent during the flight of the drone, where the obstacle information includes the orientation and outline of the obstacle;
  • Step S502 When the distance between the obstacle and the drone is less than a preset threshold, display a radar chart on the display interface of the control terminal, and display the obstacle sign and no one on the radar chart Machine identification to display the orientation and outline of the obstacle and the relative orientation of the drone and the obstacle in the radar chart;
  • Step S503 Obtain an obstacle avoidance operation instruction and send the obstacle avoidance operation instruction to the drone to control the drone to bypass obstacle avoidance;
  • Step S504 Generate an obstacle avoidance path according to the obstacle avoidance operation instruction, and display the obstacle avoidance path in the radar chart.
  • the user after receiving the obstacle information sent by the drone, and displaying the obstacle information when the distance between the obstacle and the drone is less than a preset threshold, the user can display the obstacle on the display interface. Check the information, and you can voluntarily avoid obstacles based on the obstacle information.
  • the control terminal may obtain the obstacle avoidance operation instruction and send the obstacle avoidance operation instruction to the drone, so that the drone performs bypass obstacle avoidance according to the obstacle avoidance operation instruction.
  • control terminal can be wired and/or wirelessly connected to the remote control device with a joystick, so that the control terminal can receive the obstacle avoidance operation command input by the user through the remote control device; alternatively, the control terminal can also be integrated with the remote control device Together, it can receive the obstacle avoidance operation instruction sent by the user through the control terminal; alternatively, the control end can also be a remote control device with a display interface, so that it can directly receive the obstacle avoidance operation instruction input by the user through the remote control device. Further, the control terminal may generate a corresponding obstacle avoidance path according to the obstacle avoidance operation instruction, and display the obstacle avoidance path in a radar chart, so that the user can timely understand the current flight path.
  • the method for accurately determining obstacles provided in this embodiment, by obtaining an obstacle avoidance operation instruction, sending the obstacle avoidance operation instruction to a drone to control the drone to bypass obstacle avoidance, according to the obstacle avoidance operation instruction Generate an obstacle avoidance path, and display the obstacle avoidance path in the radar chart. Therefore, on the basis of the user's more intuitive understanding of the precise position and contour of the obstacle, a better obstacle avoidance bypass operation can be performed according to the user's obstacle avoidance operation instruction, and the operational safety of the drone can be improved.
  • the method further includes:
  • the obstacle avoidance path is displayed on the radar chart.
  • the control terminal can obtain the obstacle avoidance path determined by the drone according to the obstacle information, and display the obstacle avoidance path on the radar chart.
  • the method for accurately determining obstacles displayed on the radar chart by acquiring the obstacle avoidance path determined by the drone according to the obstacle information. Therefore, on the basis of achieving safe driving of the drone, the user can understand the current flight path of the drone.
  • the method includes:
  • the UAV logo is displayed at the center position; and in the radar chart, the flight path of the drone is displayed.
  • the flight path includes a sailed part and a sailing part. At least some of them are obstacle avoidance paths.
  • the logo of the drone can be displayed at the center of the radar chart.
  • the radar chart also shows the current flight path of the drone.
  • the flight route includes a sailed part and a sailing part.
  • the sailed part indicates that the drone is currently flying through the part of the path, and the sailing part indicates that the drone has not flown to the part of the path. It can be understood that if the path to be driven by the drone is an obstacle avoidance path planned based on the obstacle information, at least part of the upcoming navigation part is the obstacle avoidance path. If the current path of the UAV is an obstacle avoidance path planned based on obstacle information, at least part of the sailed part is the obstacle avoidance path.
  • the drone logo is displayed at the center position; and the radar chart shows the flight path of the drone, and the flight path It includes the sailed part and the sailing part, at least part of which is the obstacle avoidance path.
  • the method includes:
  • the orientation of the logo of the drone is adjusted.
  • a fixed direction or a rotatable direction can be set for the radar chart.
  • the radar chart direction is a rotatable direction, it can be changed according to the flying direction of the drone during the flight of the drone Turn the direction of the radar chart; when the direction of the radar chart is a fixed direction, you can adjust the direction of the UAV logo in the radar chart according to the change of the flight direction of the drone during the flight of the drone. Therefore, the current flying direction of the drone can be more accurately characterized.
  • the method for accurately determining the obstacle is to rotate the direction of the radar chart as the flight direction of the drone changes during the flight of the drone; or in the unmanned During the flight of the aircraft, as the flight direction of the drone changes, the orientation of the drone logo is adjusted, so that the current flight direction of the drone can be more accurately characterized, and thus the user experience can be improved.
  • the method includes:
  • the drone logo is displayed on the flight route, and during the flight of the drone, the flight route continuously moves through the drone logo, and the shape of the route is adjusted in real time.
  • the logo of the drone is fixedly displayed at the center of the radar chart, as the drone flies, the flight path always moves backward relative to the drone. Specifically, in the radar chart, the drone logo is displayed above the flight route. During the flight of the drone, the flight route continuously moves through the drone logo, and the shape of the route is adjusted in real time.
  • the method for accurately determining the obstacle provided in this embodiment is displayed on the flight route by the drone logo, and during the flight of the drone, the flight route continuously passes through the drone logo While moving, the shape of the route is adjusted in real time. Therefore, the current flight status of the drone can be more accurately characterized, and the user experience can be improved.
  • the method includes:
  • Controls that the unmanned aerial vehicle's sailed part and sailing part in the flight route are displayed in different colors.
  • the sailed part and the sailing part of the flight route may be marked in different ways. Specifically, different colors can be used to mark the sailed part and the sailing part. In addition, you can also mark the sailed part and the sailing part by different curve types. For example, you can use a solid line to mark the sailed part and a dotted line to mark the sailing part. It is also possible to use any other way to realize the distinguishing between the sailed part and the sailing part, and the invention is not limited herein.
  • the method for accurately determining the obstacles provided by this embodiment can control the drone in the flight path to display the sailed part and the sailing part in different colors, so as to be able to more intuitively characterize the current UAV
  • the flight process allows users to accurately determine the current flight status of the drone.
  • the radar chart further includes concentric circles marked with scales.
  • the radar chart in order to characterize the distance between the obstacle and the drone, the radar chart also includes concentric circles marked with scales, where each concentric circle scale represents a different distance
  • the method for accurately determining the obstacle also includes a concentric circle with a scale through the radar chart, which can accurately display the distance between the drone and the obstacle.
  • the distance between obstacles for autonomous obstacle avoidance also includes a concentric circle with a scale through the radar chart, which can accurately display the distance between the drone and the obstacle.
  • the method further includes:
  • a scale adjustment instruction can also be received, and the scale of the concentric circles can be adjusted according to the scale adjustment instruction, so that radar charts with different ratios can be displayed on the display interface, allowing More intuitive understanding of the flight status and obstacle information.
  • the method for accurately determining obstacles provided in this embodiment, by receiving a scale adjustment instruction, adjusting the scale of the concentric circles according to the scale adjustment instruction, so that radar charts of different scales can be displayed on the display interface, allowing Learn more about flight status and obstacle information.
  • the obstacle information is encrypted and sent by the drone through a preset encryption algorithm As shown in FIG. 8, the method for receiving obstacle information sent during the flight of the drone includes:
  • Step S601 Receive the encrypted obstacle information
  • Step S602 Decrypt the encrypted obstacle information to obtain the obstacle information, where the obstacle information includes the orientation and outline of the obstacle;
  • Step S603 When the distance between the obstacle and the drone is less than a preset threshold, display a radar chart on the display interface of the control terminal, and display the obstacle sign and no one on the radar chart Machine identification to display the orientation and outline of the obstacle and the relative orientation of the drone and the obstacle in the radar chart.
  • the UAV may encrypt the obstacle information with a preset encryption algorithm to obtain the encrypted obstacle information.
  • the control terminal can receive the encrypted obstacle information, and decrypt the encrypted obstacle information to obtain obstacle information, where the obstacle information includes the orientation and contour of the obstacle.
  • the method for accurately determining obstacles decrypts the encrypted obstacle information by receiving the encrypted obstacle information, thereby ensuring the safety of the detection data and improving the transmission efficiency of the detection data.
  • FIG. 9 is a schematic flowchart of a method for accurately determining an obstacle provided in Embodiment 7 of the present invention.
  • the method for accurately determining an obstacle provided in this embodiment is applied to a drone system, and the drone system includes a drone and a control
  • the control terminal of the UAV, the UAV is provided with a detection device, the detection device is used to detect obstacles, the control terminal has a display interface, as shown in FIG. 9, the method further includes:
  • Step S701 During the flight of the drone according to the current working route, obtain the detection data output by the detection device in real time;
  • Step S702 The unmanned aerial vehicle determines the obstacle information according to the detection data, and the obstacle information includes the orientation and contour of the obstacle;
  • Step S703 Send the determined obstacle information to the control terminal corresponding to the drone in real time;
  • Step S704 When the distance between the obstacle and the drone is less than a preset threshold, display a radar chart on the display interface of the control terminal, and display the obstacle sign and no one on the radar chart Machine identification to display the orientation and outline of the obstacle and the relative orientation of the drone and the obstacle in the radar chart.
  • the UAV can determine the current operating route and fly according to the operating route.
  • the UAV is provided with a detection device that can detect obstacles in the current UAV operating route. And output probe data.
  • the detection data output by the detection device in real time can be obtained.
  • the detection data output by the detection device in real time may include any one or more of the distance and direction of the obstacle relative to the drone. Therefore, the current position information of the obstacle from the drone can be determined according to the detection data.
  • the obstacle information specifically includes the orientation and outline of the obstacle. The determined obstacle information can be sent to the corresponding control end of the drone in real time.
  • the control terminal can first determine whether the distance between the obstacle and the drone is less than a preset threshold, if so, it indicates that the obstacle is closer to the drone At this time, the user needs to understand the obstacle information in a timely manner. Therefore, the radar chart can be displayed on the display interface of the control terminal, and the obstacle sign and the drone sign can be displayed on the radar chart to display the obstacle in the radar chart. The orientation and contour of objects and the relative orientation of the drone and obstacles.
  • the method for accurately determining the obstacle obtains the detection data output by the detection device in real time during the flight of the drone according to the current operation route; the drone according to the detection data, Determine the obstacle information, the obstacle information including the orientation and outline of the obstacle; send the determined obstacle information to the corresponding control end of the drone in real time; when the obstacle and the obstacle
  • a radar chart is displayed on the display interface of the control terminal, and an obstacle sign and a drone sign are displayed on the radar chart to display the radar chart.
  • the orientation and outline of the obstacle and the relative orientation of the drone and the obstacle are displayed. Therefore, the user can more intuitively understand the precise position and contour of the obstacle, and thus can perform better obstacle avoidance and bypass operations, and improve the operational safety of the drone.
  • FIG. 10 is a schematic flowchart of a method for accurately determining an obstacle according to Embodiment 8 of the present invention. Based on any of the foregoing embodiments, as shown in FIG. 10, the method further includes:
  • Step S801 The drone determines an obstacle avoidance path according to the current operation route and the detection data
  • Step S802 Control the drone to bypass the obstacle avoidance path and send the obstacle avoidance path to the control end;
  • Step S803 The control terminal displays the obstacle avoidance path in the radar chart.
  • the drone after acquiring the detection data output by the detection device in real time at the drone side, in order to achieve safe flight of the drone, it is necessary to plan obstacle avoidance paths based on the detection data. Specifically, in order to ensure the current operation efficiency on the basis of achieving obstacle avoidance, when it is determined that there are obstacles in the current operation route, the current obstacle avoidance path can be jointly determined according to the current operation route and the detection data The man-machine can not deviate from the current operation route on the basis of obstacle avoidance. Further, the drone can send the obstacle avoidance path to the control end, so that the control end can display the obstacle avoidance path on the radar chart, and then the user can intuitively determine the current drone flight route and obstacles through the radar chart ⁇ Material information.
  • the UAV determines an obstacle avoidance path according to the current operation route and the detection data, and controls the UAV to bypass and avoid the obstacle avoidance path And send the obstacle avoidance path to the control terminal, and the control terminal displays the obstacle avoidance path in the radar chart. Therefore, on the basis of accurately determining the obstacle information, the user can timely understand the current flight route.
  • FIG. 11 is a schematic flowchart of a method for accurately determining an obstacle according to Embodiment 9 of the present invention. Based on any of the foregoing embodiments, as shown in FIG. 11, the method further includes:
  • Step S901 The control terminal obtains an obstacle avoidance operation instruction, and sends the obstacle avoidance operation instruction to the drone;
  • Step S902 the drone performs bypass obstacle avoidance according to the obstacle avoidance operation instruction
  • Step S903 The control terminal generates an obstacle avoidance path according to the obstacle avoidance operation instruction, and displays the obstacle avoidance path in the radar chart.
  • the control terminal receives the obstacle information sent by the drone, and displays the obstacle information when the distance between the obstacle and the drone is less than a preset threshold, the user can Obstacle information can be viewed, and autonomous obstacle avoidance can be performed based on the obstacle information.
  • the control terminal may obtain the obstacle avoidance operation instruction and send the obstacle avoidance operation instruction to the drone, so that the drone performs bypass obstacle avoidance according to the obstacle avoidance operation instruction.
  • the control terminal can also generate an obstacle avoidance path according to the obstacle avoidance operation instruction, and display the obstacle avoidance path on a radar chart.
  • the method for accurately determining obstacles obtained in this embodiment obtains an obstacle avoidance operation instruction through the control terminal, sends the obstacle avoidance operation instruction to the drone, and the drone performs bypass obstacle avoidance according to the obstacle avoidance operation instruction ,
  • the control terminal generates an obstacle avoidance path according to the obstacle avoidance operation instruction, and displays the obstacle avoidance path on the radar chart. Therefore, on the basis of accurately determining the obstacle information, the user can timely understand the current flight route.
  • FIG. 12 is a schematic structural diagram of a drone according to Embodiment 10 of the present invention. As shown in FIG. 12, the drone 111 includes:
  • the power system 113 is installed on the fuselage 112 to provide flight power
  • the detection device 114 is used to detect obstacles
  • the processor 115 is used to:
  • the drone 111 determines the obstacle information according to the detection data, and the obstacle information includes the orientation and outline of the obstacle;
  • the determined obstacle information is sent to the corresponding control terminal of the drone in real time through the communication interface 116, so as to present the obstacle information to the user.
  • the obstacles are accurately determined by the UAV by acquiring the detection data output by the detection device in real time during the flight of the UAV according to the current operation route; Data to determine the obstacle information, the obstacle information including the orientation and outline of the obstacle; sending the determined obstacle information to the corresponding control end of the drone in real time in order to remove the obstacle
  • the object information is presented to the user. Therefore, the user can more intuitively understand the precise position and contour of the obstacle, and thus can perform better obstacle avoidance and bypass operations, and improve the operational safety of the drone.
  • the detection data includes at least one of the following:
  • the distance and direction of the obstacle relative to the drone are the distance and direction of the obstacle relative to the drone.
  • the processor is also used to perform the following operations:
  • an obstacle avoidance path is determined according to the current operation route and the detection data
  • the processor controls the drone to bypass obstacle avoidance according to the obstacle avoidance path, it is also used to:
  • the obstacle avoidance path is adjusted in time according to the detection data acquired in real time.
  • the processor is also used to:
  • the obstacle avoidance path is transmitted to the control terminal in real time through the communication interface to present the obstacle avoidance path to the user in real time.
  • the processor sends the determined obstacle information to the corresponding control end of the drone in real time, it is specifically used to:
  • an obstacle avoidance operation instruction sent by the control terminal is received, and the obstacle avoidance operation instruction is used to control the drone to bypass obstacle avoidance.
  • the processor when the processor sends the determined obstacle information to the control terminal corresponding to the drone in real time, it is specifically used to:
  • the detection device includes at least one of the following:
  • Millimeter wave radar Ultrasonic detection equipment, TOF ranging detection equipment, lidar.
  • control terminal 121 is a schematic structural diagram of a control terminal according to Embodiment 11 of the present invention. As shown in FIG. 13, the control terminal 121 includes: a memory 122, a processor 123, and a communication interface 124;
  • the memory 122 is used to store program codes
  • the processor 123 calls the program code, and when the program code is executed, it is used to perform the following operations:
  • the obstacle information including the orientation and outline of the obstacle
  • the control terminal receives obstacle information sent during the flight of the drone, and the obstacle information includes the orientation and contour of the obstacle; when the obstacle is between the obstacle and the drone When the distance is less than the preset threshold, display the radar chart on the display interface of the control terminal, and display the obstacle sign and the drone sign on the radar chart to display the obstacle’s Orientation and contour and relative orientation of the UAV and the obstacle. Therefore, the user can more intuitively understand the precise position and contour of the obstacle, and thus can perform better obstacle avoidance and bypass operations, and improve the operational safety of the drone.
  • the processor is also used to:
  • the logo of the drone is displayed on the display interface at a real-time position corresponding to the drone.
  • the processor is also used to:
  • the obstacle avoidance path is displayed on the radar chart.
  • the processor displays a radar chart on the display interface of the control end when the distance between the obstacle and the drone is less than a preset threshold After that, it is specifically used for:
  • the obstacle avoidance path is generated according to the obstacle avoidance operation instruction, and the obstacle avoidance path is displayed on the radar chart.
  • the UAV logo is displayed at the center position in the radar chart.
  • the radar chart shows a flight path of the drone, and the flight path includes a sailed part and an upcoming part, at least part of which is an obstacle avoidance path.
  • the radar chart includes a direction indicator
  • the processor is further used to:
  • the orientation of the logo of the drone is adjusted.
  • the drone logo is displayed on the flight path, and during the flight of the drone, the flight path continuously passes through the unmanned The machine logo moves, and the shape of the route is adjusted in real time.
  • the processor is also used to:
  • Controls that the unmanned aerial vehicle's sailed part and sailing part in the flight route are displayed in different colors.
  • the radar chart further includes concentric circles marked with scales.
  • the processor is also used to:
  • the obstacle information is sent after the drone is encrypted by a preset encryption algorithm, and the processor receives the obstacle sent during the flight of the drone When it is information, it is used to:
  • FIG. 14 is a schematic structural diagram of a drone system according to Embodiment 11 of the present invention.
  • the drone system includes a drone 131 and a control terminal 132 that controls the drone 131
  • the drone 131 is provided with a detection device 133, the detection device 133 is used to detect obstacles, and the control terminal 132 has a display interface, characterized in that the system is specifically used to:
  • the detection data output by the detection device 133 in real time is acquired;
  • the UAV 131 determines the obstacle information according to the detection data, and the obstacle information includes the orientation and contour of the obstacle;
  • a radar chart is displayed on the display interface of the control terminal 132, and the obstacle sign and no one are displayed on the radar chart Machine identification to display the orientation and outline of the obstacle and the relative orientation of the drone and the obstacle in the radar chart.
  • the drone system obtained in this embodiment obtains the detection data output by the detection device in real time during the flight of the drone according to the current operating route; the drone determines the location based on the detection data The obstacle information, the obstacle information including the orientation and outline of the obstacle; sending the determined obstacle information to the corresponding control end of the drone in real time; when the obstacle and the no When the distance between the man and the machine is less than the preset threshold, display the radar chart on the display interface of the control terminal, and display the obstacle sign and the drone sign on the radar chart to display the The orientation and outline of the obstacle and the relative orientation of the drone and the obstacle. Therefore, the user can more intuitively understand the precise position and contour of the obstacle, and thus can perform better obstacle avoidance and bypass operations, and improve the operational safety of the drone.
  • the UAV system is also used to:
  • the UAV determines an obstacle avoidance path according to the current operation route and the detection data
  • the control terminal displays the obstacle avoidance path in the radar chart.
  • the UAV system further includes:
  • the control terminal obtains the obstacle avoidance operation instruction and sends the obstacle avoidance operation instruction to the drone;
  • the UAV performs bypass obstacle avoidance according to the obstacle avoidance operation instruction
  • the control terminal generates an obstacle avoidance path according to the obstacle avoidance operation instruction, and displays the obstacle avoidance path in the radar chart.
  • Yet another embodiment of the present invention provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the method for accurately determining an obstacle as described in any of the above embodiments.
  • Yet another embodiment of the present invention provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the method for accurately determining an obstacle as described in any of the above embodiments.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the above integrated unit implemented in the form of a software functional unit may be stored in a computer-readable storage medium.
  • the above software functional units are stored in a storage medium, and include several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) or processor to execute the method described in each embodiment of the present invention Partial steps.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

提供了一种障碍物的精准确定方法、设备及计算机可读存储介质,其中该方法包括:在无人机(111,131)按照当前作业路线飞行的过程中,获取探测设备(114,133)实时输出的探测数据(S101);无人机(111,131)根据探测数据,确定障碍物信息,该障碍物信息包括障碍物的方位及轮廓(S102);将确定的障碍物信息实时发送给无人机(111,131)对应的控制端(121,132),以便将障碍物信息呈现给用户(S103),从而能够使用户更加直观地了解障碍物的精确方位以及轮廓,进而能够进行更好地避障绕行操作,提高无人机作业安全性。

Description

障碍物的精准确定方法、设备及计算机可读存储介质 技术领域
本发明实施例涉及无人机领域,尤其涉及一种障碍物的精准确定方法、设备及计算机可读存储介质。
背景技术
为了实现可移动设备的安全行驶,一般情况下都需要根据可移动设备中设置的各种感官器件进行障碍物信息的探测,以使可移动设备可以根据该障碍物信息进行避障,具体地,可移动设备包括但不限于无人机、无人车等。
为了使用户能够对可移动设备周围的障碍物信息进行了解,现有技术中一般通过扇形障碍物图对障碍物的位置信息进行显示。具体地,通过图像采集设备采集到的图像数据分析获得障碍物的大致位置信息,在障碍物图中以扇形区域显示障碍物的方位,并根据障碍物距离可移动设备的距离为该扇形区域设置不同的颜色,举例来说,可以根据障碍物与可移动设备之间的距离为扇形区域设置红、黄、绿中任意一种颜色,其中,绿色表征障碍物距离可移动设备较远,黄色表征障碍物距离可移动设备较近,红色表征障碍物距离可移动设备过近,存在安全风险。从而用户可以根据不同的颜色对当前的作业航线进行调整。
但是,采用上述方式进行障碍物提醒时,只能确定障碍物的大致方位以及大致距离,从而用户无法获知障碍物的精准方位及障碍物与可移动设备之间的精准距离。
发明内容
本发明实施例提供一种障碍物的精准确定方法、设备及计算机可读存储介质,以解决现有的扇形障碍物图只能确定障碍物的大致方位以及大致距离,从而用户无法获知障碍物的精准方位及障碍物与可移动设备之间的精准距离的技术问题。
本发明实施例的第一方面是提供一种障碍物的精准确定方法,应用于无人机,所述无人机设置有探测设备,所述探测设备用于探测障碍物,所述方法包括:
在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;
所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
将所述确定的障碍物信息实时发送给所述无人机对应的控制端,以便将所述障碍物信息呈现给用户。
本发明实施例的第二方面是提供一种障碍物的精准确定方法,应用于控制端,所述方法包括:
接收无人机飞行过程中发送的障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。
本发明实施例的第三方面是提供一种障碍物的精准确定方法,应用于无人机系统,所述无人机系统包括无人机以及控制所述无人机的控制端,所述无人机上设置有探测设备,所述探测设备用于探测障碍物,所述控制端具有显示界面,所述方法包括:
在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;
所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
将所述确定的障碍物信息实时发送给所述无人机对应的控制端;
当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。
本发明实施例的第四方面是提供一种无人机,包括:
机身;
动力系统,安装在所述机身,用于提供飞行动力;
探测设备,用于探测障碍物;
处理器;以及通讯接口;
所述处理器用于:
在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;
所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
通过所述通讯接口将所述确定的障碍物信息实时发送给所述无人机对应的控制端,以便将所述障碍物信息呈现给用户。
本发明实施例的第五方面是提供一种控制端,包括:存储器、处理器和通讯接口;
所述存储器用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
通过所述通讯接口接收无人机飞行过程中发送的障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。
本发明实施例的第六方面是提供一种无人机系统,所述无人机系统包括无人机以及控制所述无人机的控制端,所述无人机上设置有探测设备,所述探测设备用于探测障碍物,所述控制端具有显示界面,所述系统具体用于:
在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;
所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信 息包括所述障碍物的方位及轮廓;
将所述确定的障碍物信息实时发送给所述无人机对应的控制端;
当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。
本发明实施例的第七方面是提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现第一方面所述的方法。
本发明实施例的第八方面是提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现第二方面所述的方法。
本实施例提供的障碍物的精准确定方法、设备及计算机可读存储介质,通过在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;将所述确定的障碍物信息实时发送给所述无人机对应的控制端,以便将所述障碍物信息呈现给用户。从而能够使用户更加直观地了解障碍物的精确方位以及轮廓,进而能够进行更好地避障绕行操作,提高无人机作业安全性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的障碍物的精准确定方法的流程图;
图2为本发明实施例二提供的障碍物的精准确定方法的流程图;
图3为本发明实施例三提供的障碍物的精准确定方法的流程图;
图4为本发明实施例四提供的障碍物的精准确定方法的流程图;
图5为本发明实施例提供的显示界面图;
图6为本发明实施例五提供的障碍物的精准确定方法的流程示意图;
图7为本发明实施例提供的雷达图;
图8为本发明实施例六提供的障碍物的精准确定方法的流程示意图;
图9为本发明实施例七提供的障碍物的精准确定方法的流程示意图;
图10为本发明实施例八提供的障碍物的精准确定方法的流程示意图;
图11为本发明实施例九提供的障碍物的精准确定方法的流程示意图;
图12为本发明实施例十提供的无人机的结构示意图;
图13为本发明实施例十一提供的控制端的结构示意图;
图14为本发明实施例十一提供的无人机系统的结构示意图。
附图标记:
111:无人机;       112:机身;       113:动力系统;
114:探测设备;     115:处理器;     116:通讯接口;
121:控制端;       122:存储器;     123:处理器;
124:通讯接口;     131:无人机;     132:控制端;
133:探测设备。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种障碍物的精准确定方法。图1为本发明实施例一提供的障碍物的精准确定方法的流程图。本实施例提供的障碍物的精准确定方法应用于无人机,所述无人机设置有探测设备,所述探测设备用于探测障碍物。如图1所示,本实施例中的方法,可以包括:
步骤S101、在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据。
本实施例方法的执行主体可以是飞行控制设备,该飞行控制设备可以是对无人机进行飞行控制的控制设备,具体地,可以是无人机的飞行控制器。在本实施方式中,无人机可以确定当前的作业路线,并按照该作业路线进行飞行,无人机中设置有探测设备,该探测设备能够对当前无人机作业路线中的障碍物进行探测,并输出探测数据。相应地,在无人机按照当前作业路线飞行过程中,可以获取探测设备实时输出的探测数据。
步骤S102、所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓。
在本实施方式中,探测设备实时输出的探测数据可以包括障碍物相对于无人机的距离、方向中的任意一种或多种,因此,可以根据探测数据确定障碍物距离无人机当前的位置信息。由于无人机相对于障碍物不断地移动,因此,随着无人机不断移动,探测设备能够采集到障碍物不同方位、角度的探测数据,故而接收到探测设备实时输出的探测数据之后,可以根据探测设备至少一个时刻输出的探测数据确定障碍物信息。其中,障碍物信息具体包括障碍物的方位与轮廓。
具体地,接收到探测设备实时输出的探测数据之后,可以根据探测设备不同时刻输出的探测数据形成多个障碍物位置点,根据多个障碍物位置点的集合实现对障碍物轮廓的描述。
步骤S103、将所述确定的障碍物信息实时发送给所述无人机对应的控制端,以便将所述障碍物信息呈现给用户。
在本实施方式中,在根据探测数据确定障碍物信息之后,为了使用户能够对障碍物信息进行更加直观的了解,可以将确定的障碍物信息实时发送给无人机对应的控制端,从而控制端可以将该障碍物信息呈现给用户,进而用户可以对该障碍物信息进行及时了解,并且能够根据该障碍物信息 进行绕行避障等操作。
以农业无人机举例来说,农业无人机可以根据预先规划的作业路线进行喷洒农药工作。作业场景中可能存在障碍物,包括但不限于电线杆、房屋、树木等,因此,为了保证农业无人机能够安全飞行,在农业无人机根据预先规划的作业路线飞行过程中,可以获取农业无人机中设置的探测设备实时输出的探测数据,并根据该探测数据确定障碍物信息,障碍物信息具体包括障碍物距离农业无人机的方位以及轮廓。为了使用户能够对农业无人机当前作业场景中的障碍物进行及时了解,可以将确定的障碍物信息发送至于该农业无人机对应的控制端,从而以使控制端显示该障碍物信息,进而用户能够根据该障碍物信息进行自主避障绕行等操作。
本实施例提供的障碍物的精准确定方法,通过在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;将所述确定的障碍物信息实时发送给所述无人机对应的控制端,以便将所述障碍物信息呈现给用户。从而能够使用户更加直观地了解障碍物的精确方位以及轮廓,进而能够进行更好地避障绕行操作,提高无人机作业安全性。
进一步地,在上述任一实施例的基础上,所述探测数据包括如下至少一种:
所述障碍物相对于所述无人机的距离、方向。
在本实施例中,探测数据具体包括障碍物相对于所述无人机的距离、方向中的至少一种,从而能够根据该探测数据确定障碍物距离无人机的具体距离以及方向,进而能够根据该探测数据对障碍物信息进行更加精准的确定。
进一步地,在上述任一实施例的基础上,所述探测设备包括如下至少一种:
毫米波雷达、超声波探测设备、TOF测距探测设备、激光雷达。
在本实施例中,探测设备包括如下至少一种:毫米波雷达、超声波探测设备、TOF测距探测设备、激光雷达。区别于现有技术中通过图像采集设备采集到的图像数据分析获得障碍物的大致位置信息,通过上述探测设 备能够精准地确定障碍物相对于所述无人机的距离、方向,从而能够使无人机根据该探测数据对障碍物信息进行更加精准的确定。
图2为本发明实施例二提供的障碍物的精准确定方法的流程图。在上述任一实施例的基础上,如图2所示,本实施例中的方法,可以包括:
步骤S201、当确定所述当前作业路线中存在障碍物时,根据所述当前作业路线以及所述探测数据确定避障路径;
步骤S202、控制所述无人机按照所述避障路径进行绕行避障。
在本实施例中,获取所述探测设备实时输出的探测数据之后,为了实现无人机的安全飞行,需要根据该探测数据进行避障路径的规划。具体地,为了在实现避障的基础上,保证当前的作业效率,因此,当确定当前作业路线中存在障碍物时,可以根据当前作业路线以及探测数据共同确定当前的避障路径,以使无人机能够在避障的基础上,不偏离当前作业路线。举例来说,若确定当前作业路线中存在障碍物时,可以根据该障碍物规划绕行的避障路径,并在绕过该障碍物后回归至当前作业路线中继续作业。相应地,根据探测数据以及当前作业路线确定避障路径之后,可以控制无人机按照该避障路径进行绕行避障。
本实施例提供的障碍物的精准确定方法,通过当确定所述当前作业路线中存在障碍物时,根据所述当前作业路线以及所述探测数据确定避障路径;控制所述无人机按照所述避障路径进行绕行避障。从而能够使无人机能够在避障的基础上,不偏离当前作业路线。
进一步地,在上述任一实施例的基础上,所述方法还包括:
当确定所述当前作业路线中存在障碍物时,根据所述当前作业路线以及所述探测数据确定避障路径;
控制所述无人机按照所述避障路径进行绕行避障;
在所述无人机飞行过程中,根据实时获取的所述探测数据,及时调整所述避障路径。
在本实施例中,由于无人机相对于障碍物不断地移动,因此,随着无人机不断移动,探测设备能够采集到障碍物不同方位、角度的探测数据,因此,为了进一步地保障无人机的飞行安全,在根据探测数据确定避障路径并控制无人机按照该避障路径进行绕行避障之后,可以根据实时接收到 的探测数据对当前的避障路径进行及时调整。以实际应用举例来说,若当前障碍物为一堵墙,探测设备当前仅采集到这堵墙的一半的探测数据,因此,当前避障路径也是根据这堵墙的一半的探测数据进行规划的,随着无人机的飞行,探测设备能够探测到这堵墙的全部探测数据,因此,为了保证无人机的飞行安全,需要根据这堵墙的全部探测数据对当前的避障路径进行及时调整。
本实施例提供的障碍物的精准确定方法,通过在所述无人机飞行过程中,根据实时获取的所述探测数据,及时调整所述避障路径,从而能够在确定当前障碍物的精准位置以及轮廓的基础上,进一步地保证无人机的安全。
进一步地,在上述任一实施例的基础上,所述方法还包括:
当确定所述当前作业路线中存在障碍物时,根据所述当前作业路线以及所述探测数据确定避障路径;
控制所述无人机按照所述避障路径进行绕行避障;
向所述控制端实时传输所述避障路径,以实时呈现所述避障路径给用户。
在本实施例中,为了使用户能够对当前的避障路径有更直观的了解,在根据探测数据确定避障路径并控制无人机按照该避障路径进行绕行避障之后,可以实时向控制端发送该避障路径,从而控制端能够实时将该避障路径显示给用户,进而用户可以根据当前实际需求对该避障路径进行调节等操作。
本实施例提供的障碍物的精准确定方法,通过向所述控制端实时传输所述避障路径,以实时呈现所述避障路径给用户,从而能够使用户能够对当前的避障路径有更直观的了解。
进一步地,树任一实施例的基础上,所述方法还包括:
在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;
所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
将所述确定的障碍物信息实时发送给所述无人机对应的控制端,以便 将所述障碍物信息呈现给用户;
当确定所述当前作业航线段中存在障碍物时,接收所述控制端发送的避障操作指令,所述避障操作指令用于控制所述无人机进行绕行避障。
在本实施例中,在获取到探测设备输出的探测数据,并根据该探测数据确定障碍物信息,将障碍物信息发送至控制端之后,控制端可以显示该障碍物信息,从而用户可以根据控制端显示的障碍物信息对无人机当前的飞行状况进行及时了解,并在必要时刻进行自主避障。具体地,控制端可以获取避障操作指令,并将避障操作指令发送至无人机,相应地,无人机可以接收控制端发送的避障操作指令,并根据该避障操作指令进行绕行避障。
本实施例提供的障碍物的精准确定方法,通过当确定所述当前作业航线段中存在障碍物时,接收所述控制端发送的避障操作指令,所述避障操作指令用于控制所述无人机进行绕行避障,从而能够在确定当前障碍物的精准位置以及轮廓的基础上,进一步地保证无人机的安全。
图3为本发明实施例三提供的障碍物的精准确定方法的流程图。在上述任一实施例的基础上,如图3所示,本实施例中的方法,可以包括:
步骤S301、在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;
步骤S302、所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
步骤S303、通过预设的加密算法对所述障碍物信息进行加密,得到加密后的障碍物信息;
步骤S304、将所述加密后的障碍物信息发送给所述无人机对应的控制端。
在本实施例中,为了保证探测数据的安全性以及提高探测数据的发送效率,可以对预设的加密算法对障碍物信息进行加密,获得加密后的障碍物信息。具体地,可以采用任意一种加密算法对障碍物信息进行加密,本发明在此不做限制。相应地,可以将加密后的障碍物信息发送至无人机对应的控制端。
本实施例提供的障碍物的精准确定方法,通过预设的加密算法对所述 障碍物信息进行加密,得到加密后的障碍物信息,将所述加密后的障碍物信息发送给所述无人机对应的控制端,从而保证探测数据的安全性以及提高探测数据的发送效率。
图4为本发明实施例四提供的障碍物的精准确定方法的流程图;图5为本发明实施例提供的显示界面图。本实施例提供的障碍物的精准确定方法可以应用于控制端。如图4所示,本实施例中的方法,可以包括:
步骤S401、接收无人机飞行过程中发送的障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
步骤S402、当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。
本实施例的执行主体可以为与无人机对应的控制端,该控制端具体可以为智能手机、平板电脑或者带有显示界面的遥控设备。控制端可以接收无人机在飞行过程中发送的障碍物信息,其中,障碍物信息中具体包括障碍物距离无人机的方位以及轮廓。该障碍物信息是根据无人机中设置的探测装置采集到的探测数据确定的。区别于现有技术中通过图像采集设备采集到的图像数据分析获得障碍物的大致位置信息,通过探测设备能够精准地确定障碍物相对于所述无人机的距离、方向,从而能够使无人机根据该探测数据对障碍物信息进行更加精准的确定。相应地,控制端可以在显示界面上显示该障碍物信息,从而使用户对无人机当前的飞行状况进行及时了解,并可以根据障碍物信息进行自主避障操作。
进一步地,由于控制端的显示界面上一般情况下都显示有无人机当前采集到的影像信息以及操控界面,因此,为了不对操控界面以及影像信息产生影响,在接收到无人机发送的障碍物信息之后,可以首先判断障碍物与无人机之间的距离是否小于预设的阈值,若是,则表征障碍物距离无人机较近,此时,用户需要对障碍物信息进行及时的了解,因此,可以在控制端的显示界面上显示雷达图,并在雷达图中显示障碍物标识以及无人机标识,以在雷达图中显示障碍物的方位和轮廓以及无人机与障碍物的相对方位。
本实施例提供的障碍物的精准确定方法,通过接收无人机飞行过程中发送的障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。从而能够使用户更加直观地了解障碍物的精确方位以及轮廓,进而能够进行更好地避障绕行操作,提高无人机作业安全性。
进一步地,在上述任一实施例的基础上,所述方法还包括:
在显示界面中对应所述无人机的实时位置处显示所述无人机的标识。
在本实施例中,如图5所示,为了使用户能够精准地确定当前无人机的位置,可以在显示界面中对应无人机的实时位置处显示无人机的标识,从而用户能够确定无人机当前的位置信息以及飞行状态。
本实施例提供的障碍物的精准确定方法,通过在显示界面中对应所述无人机的实时位置处显示所述无人机的标识,从而用户能够确定无人机当前的位置信息以及飞行状态。
图6为本发明实施例五提供的障碍物的精准确定方法的流程示意图;图7为本发明实施例提供的雷达图,在上述任一实施例的基础上,所述方法还包括:
步骤S501、接收无人机飞行过程中发送的障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
步骤S502、当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位;
步骤S503、获取避障操作指令,发送所述避障操作指令至无人机以控制所述无人机进行绕行避障;
步骤S504、根据所述避障操作指令生成避障路径,并将所述避障路径显示于所述雷达图中。
在本实施例中,接收无人机发送的障碍物信息,并在障碍物与无人机之间距离小于预设的阈值时显示该障碍物信息之后,用户可以通过显示界 面上对该障碍物信息进行查看,并且可以根据该障碍物信息进行自主避障。具体地,控制端可以获取避障操作指令,并将该避障操作指令发送至无人机,从而使无人机按照该避障操作指令进行绕行避障。具体地,控制端可以与带有摇杆的遥控设备有线和/或无线连接,从而控制端可以接收用户通过遥控设备输入的避障操作指令;可选地,控制端也可以与遥控设备集成在一起,从而可以接收用户通过控制端发送的避障操作指令;可选地,控制端还可以为带有显示界面的遥控设备,从而可以直接接收用户通过遥控设备输入的避障操作指令。进一步地,控制端可以根据该避障操作指令生成对应的避障路径,并在雷达图中显示该避障路径,从而使用户对当前的飞行路径进行及时了解。
本实施例提供的障碍物的精准确定方法,通过获取避障操作指令,发送所述避障操作指令至无人机以控制所述无人机进行绕行避障,根据所述避障操作指令生成避障路径,并将所述避障路径显示于所述雷达图中。从而能够在用户更加直观地了解障碍物的精确方位以及轮廓的基础上,根据用户的避障操作指令进行更好地避障绕行操作,提高无人机作业安全性。
进一步地,在上述任一实施例的基础上,所述方法还包括:
获取所述无人机根据所述障碍物信息确定的避障路径;
将所述避障路径显示于所述雷达图中。
在本实施例中,无人机获取到探测设备采集的探测数据,并根据探测数据确定障碍物信息之后,可以自行根据该障碍物信息进行避障路径的规划。相应地,为了使用户能够对无人机当前的飞行路径进行了解,控制端可以获取无人机根据障碍物信息确定的避障路径,并将该避障路径显示在雷达图中。
本实施例提供的障碍物的精准确定方法,通过获取所述无人机根据所述障碍物信息确定的避障路径,将所述避障路径显示于所述雷达图中。从而能够在实现无人机安全行驶的基础上,使用户对无人机当前的飞行路径进行了解。
进一步地,在上述任一实施例的基础上,所述方法包括:
所述雷达图中,所述无人机标识显示于中心位置;且所述雷达图中显示所述无人机的飞行路线,所述飞行路线包括已航行部分和即将航行部分, 所述即将航行部分中至少部分为避障路径。
在本实施例中,如图7所示,为了使用户更直观地对无人机当前的飞行状况进行了解,可以将无人机的标识显示在雷达图的中心位置。此外,雷达图中还显示有无人机当前的飞行路线。具体地,飞行路线中包括已航行部分和即将航行部分,已航行部分表征无人机当前已飞行经过该部分路径,即将航行部分表征无人机尚未飞行至该部分路径。可以理解的是,若无人机即将行驶的路径为根据障碍物信息规划的避障路径,则即将航行部分中至少部分为避障路径。若无人机当前形式的路径为根据障碍物信息规划的避障路径,则已航行部分中至少部分为该避障路径。
本实施例提供的障碍物的精准确定方法,通过所述雷达图中,所述无人机标识显示于中心位置;且所述雷达图中显示所述无人机的飞行路线,所述飞行路线包括已航行部分和即将航行部分,所述即将航行部分中至少部分为避障路径。从而能够使用户对无人机当前的飞行状态进行更直观地了解。
进一步地,在上述任一实施例的基础上,所述方法包括:
在所述无人机飞行过程中,随着所述无人机的飞行方向的改变,转动所述雷达图的方向;或者
在所述无人机飞行过程中,随着所述无人机的飞行方向的改变,调整所述无人机标识的朝向。
在本实施例中,可以为雷达图设置固定的方向或可转动的方向,具体地,当雷达图方向为可转动方向时,可以在无人机飞行过程中,根据无人机飞行方向的改变转动雷达图的方向;当雷达图方向为固定方向时,可以在无人机飞行过程中,根据无人机飞行方向的改变对雷达图中无人机标识的方向进行调整。从而能够更加精准地表征无人机当前的飞行方向。
本实施例提供的障碍物的精准确定方法,通过在所述无人机飞行过程中,随着所述无人机的飞行方向的改变,转动所述雷达图的方向;或者在所述无人机飞行过程中,随着所述无人机的飞行方向的改变,调整所述无人机标识的朝向,从而能够更加精准地表征无人机当前的飞行方向,进而能够提高用户体验。
进一步地,在上述任一实施例的基础上,所述方法包括:
所述无人机标识显示于所述飞行路线之上,且在所述无人机飞行过程中,所述飞行路线不断穿过所述无人机标识而移动,所述路线的形状实时调整。
在本实施例中,由于无人机的标识固定显示在雷达图的中心位置,因此,随着无人机的飞行,飞行路线一直相对于无人机向后移动。具体地,在雷达图中,无人机标识显示在飞行路线之上,在无人机飞行过程中,该飞行路线不断穿过无人机标识而移动,且该路线的形状实时调整。
本实施例提供的障碍物的精准确定方法,通过无人机标识显示于所述飞行路线之上,且在所述无人机飞行过程中,所述飞行路线不断穿过所述无人机标识而移动,所述路线的形状实时调整。从而能够更加精准地表征无人机当前的飞行状况,进而能够提高用户体验。
进一步地,在上述任一实施例的基础上,所述方法包括:
控制所述无人机在所述飞行路线中的已航行部分和即将航行部分以不同的颜色显示。
在本实施例中,为了更加精确地表征无人机当前的飞行进程,可以飞行路线中的已航行部分与即将航行部分采用不同的方式进行标注。具体地,可以采用不同的颜色对已航行部分和即将航行部分进行标注。此外,还可以通过不同的曲线类型对已航行部分和即将航行部分进行标注,举例来说,可以采用实线标识已航行部分,采用虚线标注即将航行部分。还可以采用其他任意一种方式实现对已航行部分和即将航行部分的区别标注,本发明在此不做限制。
本实施例提供的障碍物的精准确定方法,通过控制所述无人机在所述飞行路线中的已航行部分和即将航行部分以不同的颜色显示,从而能够更加直观地表征无人机当前的飞行进程,使用户能够精准地确定无人机当前的飞行状况。
进一步地,在上述任一实施例的基础上,所述雷达图还包括标识有刻度的同心圆。
在本实施例中,如图7所示,为了表征障碍物与无人机之间的距离,雷达图中还包括标识有刻度的同心圆,其中,各同心圆刻度表征不同的距离
本实施例提供的障碍物的精准确定方法,通过雷达图还包括标识有刻度的同心圆,从而能够精准地显示无人机与障碍物之间的距离,已使用户能够根据该无人机与障碍物之间的距离进行自主避障。
进一步地,在上述任一实施例的基础上,所述方法还包括:
接收比例调整指令,根据所述比例调整指令调整所述同心圆的刻度。
在本实施例中,在显示界面上显示雷达图之后,还可以接收比例调整指令,根据该比例调整指令调整同心圆的刻度,从而能够在显示界面上显示不同比例的雷达图,使用户对当前的飞行状况以及障碍物信息进行更直观的了解。
本实施例提供的障碍物的精准确定方法,通过接收比例调整指令,根据所述比例调整指令调整所述同心圆的刻度,从而能够在显示界面上显示不同比例的雷达图,使用户对当前的飞行状况以及障碍物信息进行更直观的了解。
图8为本发明实施例六提供的障碍物的精准确定方法的流程示意图,在上述任一实施例的基础上,所述障碍物信息是所述无人机通过预设的加密算法加密后发送的,所述接收无人机飞行过程中发送的障碍物信息,如图8所示,所述方法还包括:
步骤S601、接收加密后的障碍物信息;
步骤S602、对所述加密后的障碍物信息进行解密,获得所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
步骤S603、当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。
在本实施例中,为了保证探测数据的安全性以及提高探测数据的发送效率,无人机可以对预设的加密算法对障碍物信息进行加密,获得加密后的障碍物信息。相应地,控制端可以接收该加密后的障碍物信息,并对加密后的障碍物信息进行解密,获得障碍物信息,其中,该障碍物信息包括障碍物的方位及轮廓。
本实施例提供的障碍物的精准确定方法,通过接收加密后的障碍物信 息,对所述加密后的障碍物信息进行解密,从而保证探测数据的安全性以及提高探测数据的发送效率。
图9为本发明实施例七提供的障碍物的精准确定方法的流程示意图,本实施例提供的障碍物的精准确定方法应用于无人机系统,所述无人机系统包括无人机以及控制所述无人机的控制端,所述无人机上设置有探测设备,所述探测设备用于探测障碍物,所述控制端具有显示界面,如图9所示,所述方法还包括:
步骤S701、在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;
步骤S702、所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
步骤S703、将所述确定的障碍物信息实时发送给所述无人机对应的控制端;
步骤S704、当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。
在本实施例中,无人机可以确定当前的作业路线,并按照该作业路线进行飞行,无人机中设置有探测设备,该探测设备能够对当前无人机作业路线中的障碍物进行探测,并输出探测数据。相应地,在无人机按照当前作业路线飞行过程中,可以获取探测设备实时输出的探测数据。探测设备实时输出的探测数据可以包括障碍物相对于无人机的距离、方向中的任意一种或多种,因此,可以根据探测数据确定障碍物距离无人机当前的位置信息。其中,障碍物信息具体包括障碍物的方位与轮廓。可以将确定的障碍物信息实时发送给无人机对应的控制端。相应地,控制端在接收到无人机发送的障碍物信息之后,可以首先判断障碍物与无人机之间的距离是否小于预设的阈值,若是,则表征障碍物距离无人机较近,此时,用户需要对障碍物信息进行及时的了解,因此,可以在控制端的显示界面上显示雷达图,并在雷达图中显示障碍物标识以及无人机标识,以在雷达图中显示障碍物的方位和轮廓以及无人机与障碍物的相对方位。
本实施例提供的障碍物的精准确定方法,通过在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;将所述确定的障碍物信息实时发送给所述无人机对应的控制端;当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。从而能够使用户更加直观地了解障碍物的精确方位以及轮廓,进而能够进行更好地避障绕行操作,提高无人机作业安全性。
图10为本发明实施例八提供的障碍物的精准确定方法的流程示意图,在上述任一实施例的基础上,如图10所示,所述方法还包括:
步骤S801、所述无人机根据所述当前作业路线以及所述探测数据确定避障路径;
步骤S802、控制所述无人机按照所述避障路径进行绕行避障并发送所述避障路径至控制端;
步骤S803、所述控制端将所述避障路径显示于所述雷达图中。
在本实施例中,无人机端获取所述探测设备实时输出的探测数据之后,为了实现无人机的安全飞行,需要根据该探测数据进行避障路径的规划。具体地,为了在实现避障的基础上,保证当前的作业效率,因此,当确定当前作业路线中存在障碍物时,可以根据当前作业路线以及探测数据共同确定当前的避障路径,以使无人机能够在避障的基础上,不偏离当前作业路线。进一步地,无人机可以将该避障路径发送至控制端,从而控制端能够将该避障路径显示在雷达图中,进而用户能够通过雷达图直观地确定当前无人机的飞行路线以及障碍物信息。
本实施例提供的障碍物的精准确定方法,通过所述无人机根据所述当前作业路线以及所述探测数据确定避障路径,控制所述无人机按照所述避障路径进行绕行避障并发送所述避障路径至控制端,所述控制端将所述避障路径显示于所述雷达图中。从而能够精准确定障碍物信息的基础上,使用户对当前的飞行路线进行及时了解。
图11为本发明实施例九提供的障碍物的精准确定方法的流程示意图,在上述任一实施例的基础上,如图11所示,所述方法还包括:
步骤S901、所述控制端获取避障操作指令,发送所述避障操作指令至无人机;
步骤S902、所述无人机根据所述避障操作指令进行绕行避障;
步骤S903、所述控制端根据所述避障操作指令生成避障路径,并将所述避障路径显示于所述雷达图中。
在本实施例中,控制端接收无人机发送的障碍物信息,并在障碍物与无人机之间距离小于预设的阈值时显示该障碍物信息之后,用户可以通过显示界面上对该障碍物信息进行查看,并且可以根据该障碍物信息进行自主避障。具体地,控制端可以获取避障操作指令,并将该避障操作指令发送至无人机,从而使无人机按照该避障操作指令进行绕行避障。此外,控制端还可以根据该避障操作指令生成避障路径,并将该避障路径显示与雷达图中。
本实施例提供的障碍物的精准确定方法,通过所述控制端获取避障操作指令,发送所述避障操作指令至无人机,无人机根据所述避障操作指令进行绕行避障,控制端根据所述避障操作指令生成避障路径,并将所述避障路径显示于所述雷达图中。从而能够精准确定障碍物信息的基础上,使用户对当前的飞行路线进行及时了解。
图12为本发明实施例十提供的无人机的结构示意图,如图12所示,所述无人机111包括:
机身112;
动力系统113,安装在所述机身112,用于提供飞行动力;
探测设备114,用于探测障碍物;
处理器115;以及通讯接口116;
所述处理器115用于:
在所述无人机111按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;
所述无人机111根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
通过所述通讯接口116将所述确定的障碍物信息实时发送给所述无人机对应的控制端,以便将所述障碍物信息呈现给用户。
本实施例提供的障碍物的精准确定无人机,通过在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;将所述确定的障碍物信息实时发送给所述无人机对应的控制端,以便将所述障碍物信息呈现给用户。从而能够使用户更加直观地了解障碍物的精确方位以及轮廓,进而能够进行更好地避障绕行操作,提高无人机作业安全性。
进一步地,在上述任一实施例的基础上,所述探测数据包括如下至少一种:
所述障碍物相对于所述无人机的距离、方向。
进一步地,在上述任一实施例的基础上,所述处理器还用于执行以下操作:
当确定所述当前作业路线中存在障碍物时,根据所述当前作业路线以及所述探测数据确定避障路径;
控制所述无人机按照所述避障路径进行绕行避障。
进一步地,在上述任一实施例的基础上,所述处理器在控制所述无人机按照所述避障路径进行绕行避障之后,还用于:
在所述无人机飞行过程中,根据实时获取的所述探测数据,及时调整所述避障路径。
进一步地,在上述任一实施例的基础上,所述处理器还用于:
通过所述通讯接口向所述控制端实时传输所述避障路径,以实时呈现所述避障路径给用户。
进一步地,在上述任一实施例的基础上,所述处理器在将所述确定的障碍物信息实时发送给所述无人机对应的控制端之后,具体用于:
当确定所述当前作业航线段中存在障碍物时,接收所述控制端发送的避障操作指令,所述避障操作指令用于控制所述无人机进行绕行避障。
进一步地,在上述任一实施例的基础上,所述处理器在将所述确定的障碍物信息实时发送给所述无人机对应的控制端时,具体用于:
通过预设的加密算法对所述障碍物信息进行加密,得到加密后的障碍物信息;
将所述加密后的障碍物信息发送给所述无人机对应的控制端。
进一步地,在上述任一实施例的基础上,所述探测设备包括如下至少一种:
毫米波雷达、超声波探测设备、TOF测距探测设备、激光雷达。
图13为本发明实施例十一提供的控制端的结构示意图,如图13所示,所述控制端121包括:存储器122、处理器123和通讯接口124;
所述存储器122用于存储程序代码;
所述处理器123,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
通过所述通讯接口124接收无人机飞行过程中发送的障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。
本实施例提供的控制端,通过接收无人机飞行过程中发送的障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。从而能够使用户更加直观地了解障碍物的精确方位以及轮廓,进而能够进行更好地避障绕行操作,提高无人机作业安全性。
进一步地,在上述任一实施例的基础上,所述处理器还用于:
在显示界面中对应所述无人机的实时位置处显示所述无人机的标识。
进一步地,在上述任一实施例的基础上,所述处理器还用于:
获取所述无人机根据所述障碍物信息确定的避障路径;
将所述避障路径显示于所述雷达图中。
进一步地,在上述任一实施例的基础上,所述处理器在当所述障碍物 与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图之后,具体用于:
获取避障操作指令,发送所述避障操作指令至无人机以控制所述无人机进行绕行避障;
根据所述避障操作指令生成避障路径,并将所述避障路径显示于所述雷达图中。
进一步地,在上述任一实施例的基础上,所述雷达图中,所述无人机标识显示于中心位置;且
所述雷达图中显示所述无人机的飞行路线,所述飞行路线包括已航行部分和即将航行部分,所述即将航行部分中至少部分为避障路径。
进一步地,在上述任一实施例的基础上,所述雷达图包括方向标识,所述处理器还用于:
在所述无人机飞行过程中,随着所述无人机的飞行方向的改变,转动所述雷达图的方向;或者
在所述无人机飞行过程中,随着所述无人机的飞行方向的改变,调整所述无人机标识的朝向。
进一步地,在上述任一实施例的基础上,所述无人机标识显示于所述飞行路线之上,且在所述无人机飞行过程中,所述飞行路线不断穿过所述无人机标识而移动,所述路线的形状实时调整。
进一步地,在上述任一实施例的基础上,所述处理器还用于:
控制所述无人机在所述飞行路线中的已航行部分和即将航行部分以不同的颜色显示。
进一步地,在上述任一实施例的基础上,所述雷达图还包括标识有刻度的同心圆。
进一步地,在上述任一实施例的基础上,所述处理器还用于:
接收比例调整指令,根据所述比例调整指令调整所述同心圆的刻度。
进一步地,在上述任一实施例的基础上,所述障碍物信息是所述无人机通过预设的加密算法加密后发送的,所述处理器在接收无人机飞行过程中发送的障碍物信息时,具体用于:
接收加密后的障碍物信息;
对所述加密后的障碍物信息进行解密,获得所述障碍物信息。
图14为本发明实施例十一提供的无人机系统的结构示意图,如图14所示,所述无人机系统包括无人机131以及控制所述无人机131的控制端132,所述无人机131上设置有探测设备133,所述探测设备133用于探测障碍物,所述控制端132具有显示界面,其特征在于,所述系统具体用于:
在所述无人机131按照当前作业路线飞行的过程中,获取所述探测设备133实时输出的探测数据;
所述无人机131根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
将所述确定的障碍物信息实时发送给所述无人机131对应的控制端132;
当所述障碍物与所述无人机131之间的距离小于预设阈值时,在所述控制端132的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。
本实施例提供的无人机系统,通过在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;将所述确定的障碍物信息实时发送给所述无人机对应的控制端;当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。从而能够使用户更加直观地了解障碍物的精确方位以及轮廓,进而能够进行更好地避障绕行操作,提高无人机作业安全性。
进一步地,在上述任一实施例的基础上,所述无人机系统还用于:
所述无人机根据所述当前作业路线以及所述探测数据确定避障路径;
控制所述无人机按照所述避障路径进行绕行避障并发送所述避障路径至控制端;
所述控制端将所述避障路径显示于所述雷达图中。
进一步地,在上述任一实施例的基础上,所述无人机系统还包括:
所述控制端获取避障操作指令,发送所述避障操作指令至无人机;
所述无人机根据所述避障操作指令进行绕行避障;
所述控制端根据所述避障操作指令生成避障路径,并将所述避障路径显示于所述雷达图中。
本发明又一实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现如上述任一实施例所述的障碍物的精准确定方法。
本发明又一实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现如上述任一实施例所述的障碍物的精准确定方法。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only  Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (46)

  1. 一种障碍物的精准确定方法,应用于无人机,所述无人机设置有探测设备,所述探测设备用于探测障碍物,其特征在于,所述方法包括:
    在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;
    所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
    将所述确定的障碍物信息实时发送给所述无人机对应的控制端,以便将所述障碍物信息呈现给用户。
  2. 根据权利要求1所述的方法,其特征在于,所述探测数据包括如下至少一种:
    所述障碍物相对于所述无人机的距离、方向。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当确定所述当前作业路线中存在障碍物时,根据所述当前作业路线以及所述探测数据确定避障路径;
    控制所述无人机按照所述避障路径进行绕行避障。
  4. 根据权利要求3所述的方法,其特征在于,所述控制所述无人机按照所述避障路径进行绕行避障之后,还包括:
    在所述无人机飞行过程中,根据实时获取的所述探测数据,及时调整所述避障路径。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    向所述控制端实时传输所述避障路径,以实时呈现所述避障路径给用户。
  6. 根据权利要求1所述的方法,其特征在于,所述将所述确定的障碍物信息实时发送给所述无人机对应的控制端之后,还包括:
    当确定所述当前作业航线段中存在障碍物时,接收所述控制端发送的避障操作指令,所述避障操作指令用于控制所述无人机进行绕行避障。
  7. 根据权利要求1所述的方法,其特征在于,所述将所述确定的障碍物信息实时发送给所述无人机对应的控制端,包括:
    通过预设的加密算法对所述障碍物信息进行加密,得到加密后的障碍 物信息;
    将所述加密后的障碍物信息发送给所述无人机对应的控制端。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述探测设备包括如下至少一种:
    毫米波雷达、超声波探测设备、TOF测距探测设备、激光雷达。
  9. 一种障碍物的精准确定方法,应用于控制端,其特征在于,所述方法包括:
    接收无人机飞行过程中发送的障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
    当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    在显示界面中对应所述无人机的实时位置处显示所述无人机的标识。
  11. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    获取所述无人机根据所述障碍物信息确定的避障路径;
    将所述避障路径显示于所述雷达图中。
  12. 根据权利要求9所述的方法,其特征在于,所述当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图之后,还包括:
    获取避障操作指令,发送所述避障操作指令至无人机以控制所述无人机进行绕行避障;
    根据所述避障操作指令生成避障路径,并将所述避障路径显示于所述雷达图中。
  13. 根据权利要求11或12所述的方法,其特征在于,所述雷达图中,所述无人机标识显示于中心位置;且
    所述雷达图中显示所述无人机的飞行路线,所述飞行路线包括已航行部分和即将航行部分,所述即将航行部分中至少部分为避障路径。
  14. 根据权利要求13所述的方法,其特征在于,所述雷达图包括方 向标识,所述方法还包括:
    在所述无人机飞行过程中,随着所述无人机的飞行方向的改变,转动所述雷达图的方向;或者
    在所述无人机飞行过程中,随着所述无人机的飞行方向的改变,调整所述无人机标识的朝向。
  15. 根据权利要求13所述的方法,其特征在于,所述无人机标识显示于所述飞行路线之上,且在所述无人机飞行过程中,所述飞行路线不断穿过所述无人机标识而移动,所述路线的形状实时调整。
  16. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    控制所述无人机在所述飞行路线中的已航行部分和即将航行部分以不同的颜色显示。
  17. 根据权利要求9所述的方法,其特征在于,所述雷达图还包括标识有刻度的同心圆。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    接收比例调整指令,根据所述比例调整指令调整所述同心圆的刻度。
  19. 根据权利要求9-18任一项所述的方法,其特征在于,所述障碍物信息是所述无人机通过预设的加密算法加密后发送的,所述接收无人机飞行过程中发送的障碍物信息,包括:
    接收加密后的障碍物信息;
    对所述加密后的障碍物信息进行解密,获得所述障碍物信息。
  20. 一种障碍物的精准确定方法,应用于无人机系统,所述无人机系统包括无人机以及控制所述无人机的控制端,所述无人机上设置有探测设备,所述探测设备用于探测障碍物,所述控制端具有显示界面,其特征在于,所述方法包括:
    在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;
    所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
    将所述确定的障碍物信息实时发送给所述无人机对应的控制端;
    当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制 端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述无人机根据所述当前作业路线以及所述探测数据确定避障路径;
    控制所述无人机按照所述避障路径进行绕行避障并发送所述避障路径至控制端;
    所述控制端将所述避障路径显示于所述雷达图中。
  22. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述控制端获取避障操作指令,发送所述避障操作指令至无人机;
    所述无人机根据所述避障操作指令进行绕行避障;
    所述控制端根据所述避障操作指令生成避障路径,并将所述避障路径显示于所述雷达图中。
  23. 一种无人机,其特征在于,包括:
    机身;
    动力系统,安装在所述机身,用于提供飞行动力;
    探测设备,用于探测障碍物;
    处理器;以及通讯接口;
    所述处理器用于:
    在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;
    所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
    通过所述通讯接口将所述确定的障碍物信息实时发送给所述无人机对应的控制端,以便将所述障碍物信息呈现给用户。
  24. 根据权利要求23所述的无人机,其特征在于,所述探测数据包括如下至少一种:
    所述障碍物相对于所述无人机的距离、方向。
  25. 根据权利要求23所述的无人机,其特征在于,所述处理器还用于执行以下操作:
    当确定所述当前作业路线中存在障碍物时,根据所述当前作业路线以及所述探测数据确定避障路径;
    控制所述无人机按照所述避障路径进行绕行避障。
  26. 根据权利要求25所述的无人机,其特征在于,所述处理器在控制所述无人机按照所述避障路径进行绕行避障之后,还用于:
    在所述无人机飞行过程中,根据实时获取的所述探测数据,及时调整所述避障路径。
  27. 根据权利要求26所述的无人机,其特征在于,所述处理器还用于:
    通过所述通讯接口向所述控制端实时传输所述避障路径,以实时呈现所述避障路径给用户。
  28. 根据权利要求23所述的无人机,其特征在于,所述处理器在将所述确定的障碍物信息实时发送给所述无人机对应的控制端之后,具体用于:
    当确定所述当前作业航线段中存在障碍物时,接收所述控制端发送的避障操作指令,所述避障操作指令用于控制所述无人机进行绕行避障。
  29. 根据权利要求23所述的无人机,其特征在于,所述处理器在将所述确定的障碍物信息实时发送给所述无人机对应的控制端时,具体用于:
    通过预设的加密算法对所述障碍物信息进行加密,得到加密后的障碍物信息;
    将所述加密后的障碍物信息发送给所述无人机对应的控制端。
  30. 根据权利要求23-29任一项所述的无人机,其特征在于,所述探测设备包括如下至少一种:
    毫米波雷达、超声波探测设备、TOF测距探测设备、激光雷达。
  31. 一种控制端,其特征在于,包括:存储器、处理器和通讯接口;
    所述存储器用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    通过所述通讯接口接收无人机飞行过程中发送的障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
    当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。
  32. 根据权利要求31所述的控制端,其特征在于,所述处理器还用于:
    在显示界面中对应所述无人机的实时位置处显示所述无人机的标识。
  33. 根据权利要求31所述的控制端,其特征在于,所述处理器还用于:
    获取所述无人机根据所述障碍物信息确定的避障路径;
    将所述避障路径显示于所述雷达图中。
  34. 根据权利要求31所述的控制端,其特征在于,所述处理器在当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图之后,具体用于:
    获取避障操作指令,发送所述避障操作指令至无人机以控制所述无人机进行绕行避障;
    根据所述避障操作指令生成避障路径,并将所述避障路径显示于所述雷达图中。
  35. 根据权利要求33或34所述的控制端,其特征在于,所述雷达图中,所述无人机标识显示于中心位置;且
    所述雷达图中显示所述无人机的飞行路线,所述飞行路线包括已航行部分和即将航行部分,所述即将航行部分中至少部分为避障路径。
  36. 根据权利要求35所述的控制端,其特征在于,所述雷达图包括方向标识,所述处理器还用于:
    在所述无人机飞行过程中,随着所述无人机的飞行方向的改变,转动所述雷达图的方向;或者
    在所述无人机飞行过程中,随着所述无人机的飞行方向的改变,调整所述无人机标识的朝向。
  37. 根据权利要求35所述的控制端,其特征在于,所述无人机标识显示于所述飞行路线之上,且在所述无人机飞行过程中,所述飞行路线不 断穿过所述无人机标识而移动,所述路线的形状实时调整。
  38. 根据权利要求35所述的控制端,其特征在于,所述处理器还用于:
    控制所述无人机在所述飞行路线中的已航行部分和即将航行部分以不同的颜色显示。
  39. 根据权利要求31所述的控制端,其特征在于,所述雷达图还包括标识有刻度的同心圆。
  40. 根据权利要求39所述的控制端,其特征在于,所述处理器还用于:
    接收比例调整指令,根据所述比例调整指令调整所述同心圆的刻度。
  41. 根据权利要求31-40任一项所述的控制端,其特征在于,所述障碍物信息是所述无人机通过预设的加密算法加密后发送的,所述处理器在接收无人机飞行过程中发送的障碍物信息时,具体用于:
    接收加密后的障碍物信息;
    对所述加密后的障碍物信息进行解密,获得所述障碍物信息。
  42. 一种无人机系统,所述无人机系统包括无人机以及控制所述无人机的控制端,所述无人机上设置有探测设备,所述探测设备用于探测障碍物,所述控制端具有显示界面,其特征在于,所述系统具体用于:
    在所述无人机按照当前作业路线飞行的过程中,获取所述探测设备实时输出的探测数据;
    所述无人机根据所述探测数据,确定所述障碍物信息,所述障碍物信息包括所述障碍物的方位及轮廓;
    将所述确定的障碍物信息实时发送给所述无人机对应的控制端;
    当所述障碍物与所述无人机之间的距离小于预设阈值时,在所述控制端的显示界面上显示雷达图,并在所述雷达图中显示障碍物标识以及无人机标识,以在所述雷达图中显示所述障碍物的方位和轮廓以及所述无人机与所述障碍物的相对方位。
  43. 根据权利要求42所述的无人机系统,其特征在于,所述无人机系统还用于:
    所述无人机根据所述当前作业路线以及所述探测数据确定避障路径;
    控制所述无人机按照所述避障路径进行绕行避障并发送所述避障路径至控制端;
    所述控制端将所述避障路径显示于所述雷达图中。
  44. 根据权利要求42所述的无人机系统,其特征在于,所述无人机系统还包括:
    所述控制端获取避障操作指令,发送所述避障操作指令至无人机;
    所述无人机根据所述避障操作指令进行绕行避障;
    所述控制端根据所述避障操作指令生成避障路径,并将所述避障路径显示于所述雷达图中。
  45. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被处理器执行以实现如权利要求1-8任一项所述的障碍物的精准确定方法。
  46. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被处理器执行以实现如权利要求9-22任一项所述的障碍物的精准确定方法。
PCT/CN2018/118711 2018-11-30 2018-11-30 障碍物的精准确定方法、设备及计算机可读存储介质 WO2020107454A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880041622.5A CN110869872A (zh) 2018-11-30 2018-11-30 障碍物的精准确定方法、设备及计算机可读存储介质
PCT/CN2018/118711 WO2020107454A1 (zh) 2018-11-30 2018-11-30 障碍物的精准确定方法、设备及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/118711 WO2020107454A1 (zh) 2018-11-30 2018-11-30 障碍物的精准确定方法、设备及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020107454A1 true WO2020107454A1 (zh) 2020-06-04

Family

ID=69651674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118711 WO2020107454A1 (zh) 2018-11-30 2018-11-30 障碍物的精准确定方法、设备及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN110869872A (zh)
WO (1) WO2020107454A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021212519A1 (zh) * 2020-04-24 2021-10-28 深圳市大疆创新科技有限公司 飞行指引方法、装置、系统、遥控终端及可读存储介质
CN112357100B (zh) * 2020-10-27 2022-06-28 苏州臻迪智能科技有限公司 一种显示障碍物信息的方法、装置和计算机可读存储介质
CN114047788B (zh) * 2022-01-11 2022-04-15 南京南机智农农机科技研究院有限公司 一种自动避障的系留无人机跟车系统
CN115616578A (zh) * 2022-12-05 2023-01-17 成都航空职业技术学院 一种用于无人飞行器的雷达探测方法及装置
CN116841315A (zh) * 2023-07-03 2023-10-03 黑龙江开源科技有限公司 基于大数据的雷达信息分析管理系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782646A (zh) * 2009-01-19 2010-07-21 财团法人工业技术研究院 全周环境感测系统及方法
CN104071333A (zh) * 2014-06-27 2014-10-01 梧州学院 一种基于北斗及4g的无人机
CN106527468A (zh) * 2016-12-26 2017-03-22 德阳科蚁科技有限责任公司 一种无人机避障控制方法、系统及无人机
CN206057974U (zh) * 2016-08-25 2017-03-29 大连楼兰科技股份有限公司 一种应用在旋翼无人机上的避障系统
CN206388067U (zh) * 2017-01-19 2017-08-08 武汉盛帆电子股份有限公司 无人机及航拍系统
CN107077145A (zh) * 2016-09-09 2017-08-18 深圳市大疆创新科技有限公司 显示无人飞行器的障碍检测的方法和系统
CN107783106A (zh) * 2016-08-25 2018-03-09 大连楼兰科技股份有限公司 无人机与障碍物之间的数据融合方法
CN107831777A (zh) * 2017-09-26 2018-03-23 中国科学院长春光学精密机械与物理研究所 一种飞行器自主避障系统、方法及飞行器
CN108319982A (zh) * 2018-02-06 2018-07-24 贵州电网有限责任公司 一种电力巡线无人机多传感器数据融合障碍物检测方法
CN108521807A (zh) * 2017-04-27 2018-09-11 深圳市大疆创新科技有限公司 无人机的控制方法、设备及障碍物的提示方法、设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045538A1 (zh) * 2016-09-08 2018-03-15 顾磊 无人机及其避障方法和避障系统
WO2018094661A1 (zh) * 2016-11-24 2018-05-31 深圳市大疆创新科技有限公司 农业无人飞行器的航线规划方法及地面控制端
CN108594849B (zh) * 2018-04-10 2022-05-13 深圳市易飞行科技有限公司 一种基于毫米波雷达的无人机避障方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782646A (zh) * 2009-01-19 2010-07-21 财团法人工业技术研究院 全周环境感测系统及方法
CN104071333A (zh) * 2014-06-27 2014-10-01 梧州学院 一种基于北斗及4g的无人机
CN206057974U (zh) * 2016-08-25 2017-03-29 大连楼兰科技股份有限公司 一种应用在旋翼无人机上的避障系统
CN107783106A (zh) * 2016-08-25 2018-03-09 大连楼兰科技股份有限公司 无人机与障碍物之间的数据融合方法
CN107077145A (zh) * 2016-09-09 2017-08-18 深圳市大疆创新科技有限公司 显示无人飞行器的障碍检测的方法和系统
CN106527468A (zh) * 2016-12-26 2017-03-22 德阳科蚁科技有限责任公司 一种无人机避障控制方法、系统及无人机
CN206388067U (zh) * 2017-01-19 2017-08-08 武汉盛帆电子股份有限公司 无人机及航拍系统
CN108521807A (zh) * 2017-04-27 2018-09-11 深圳市大疆创新科技有限公司 无人机的控制方法、设备及障碍物的提示方法、设备
CN107831777A (zh) * 2017-09-26 2018-03-23 中国科学院长春光学精密机械与物理研究所 一种飞行器自主避障系统、方法及飞行器
CN108319982A (zh) * 2018-02-06 2018-07-24 贵州电网有限责任公司 一种电力巡线无人机多传感器数据融合障碍物检测方法

Also Published As

Publication number Publication date
CN110869872A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
WO2020107454A1 (zh) 障碍物的精准确定方法、设备及计算机可读存储介质
US11858628B2 (en) Image space motion planning of an autonomous vehicle
US20220234733A1 (en) Aerial Vehicle Smart Landing
CN104808675B (zh) 基于智能终端的体感飞行操控系统及终端设备
EP3783454B1 (en) Systems and methods for adjusting uav trajectory
US20200244729A1 (en) Apparatus and method for network based operation of an unmanned aerial vehicle
US20140018979A1 (en) Autonomous airspace flight planning and virtual airspace containment system
WO2018090208A1 (zh) 基于三维地图的导航方法和设备
WO2017206179A1 (en) Simple multi-sensor calibration
US11353891B2 (en) Target tracking method and apparatus
US20240086862A1 (en) System, devices and methods for tele-operated robotics
CA3057695C (en) Aircraft flight information system and method
US20210278834A1 (en) Method for Exploration and Mapping Using an Aerial Vehicle
US20200169666A1 (en) Target observation method, related device and system
Butzke et al. The University of Pennsylvania MAGIC 2010 multi‐robot unmanned vehicle system
WO2021199449A1 (ja) 位置算出方法及び情報処理システム
WO2022095067A1 (zh) 路径规划方法、路径规划装置、路径规划系统和介质
CN110785355A (zh) 一种无人机测试方法、设备及存储介质
EP3731053B1 (en) Management device, management system, moving body and program
Pearce et al. Designing a spatially aware, automated quadcopter using an Android control system
CN113574487A (zh) 无人机控制方法、装置及无人机
Suh et al. A study on operational ability comparing drone-centric and user-centric control in external piloting
EP4141841A1 (en) Systems and methods for providing obstacle information to aircraft operator displays
US20240053746A1 (en) Display system, communications system, display control method, and program
WO2023178495A1 (zh) 无人机、控制终端、服务器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941174

Country of ref document: EP

Kind code of ref document: A1