WO2018045538A1 - 无人机及其避障方法和避障系统 - Google Patents

无人机及其避障方法和避障系统 Download PDF

Info

Publication number
WO2018045538A1
WO2018045538A1 PCT/CN2016/098472 CN2016098472W WO2018045538A1 WO 2018045538 A1 WO2018045538 A1 WO 2018045538A1 CN 2016098472 W CN2016098472 W CN 2016098472W WO 2018045538 A1 WO2018045538 A1 WO 2018045538A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
dimensional map
obstacle avoidance
relative position
position information
Prior art date
Application number
PCT/CN2016/098472
Other languages
English (en)
French (fr)
Inventor
顾磊
Original Assignee
顾磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 顾磊 filed Critical 顾磊
Priority to PCT/CN2016/098472 priority Critical patent/WO2018045538A1/zh
Publication of WO2018045538A1 publication Critical patent/WO2018045538A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones

Definitions

  • the invention relates to a drone and its obstacle avoidance method and obstacle avoidance system.
  • drones have been increasingly used in surveying, search and rescue, real estate and agriculture, and are widely popular among consumers in aerial photography or entertainment.
  • the popularity of drones is premised on their ability to fly safely and reliably in a variety of environments. Then increase its safety and improve the environmental adaptability, so that the drone can identify the surrounding environment information and effectively avoid obstacles such as trees and buildings. It is the focus of UAV technology research, and it is also a technical difficulty that needs to be overcome.
  • the obstacle avoidance system of the drone is mainly based on ranging devices such as laser and vision, combined with inertial sensors, GPS (Global Positioning System), etc. for data fusion to construct a three-dimensional map of the surrounding environment. Its performance is often subject to factors such as ambient light, texture information and sensor calibration quality, which makes it impossible for the prior art to accurately acquire and construct a three-dimensional map of the environment around the drone, so that the drone cannot accurately avoid obstacles.
  • the technical problem to be solved by the present invention is to overcome the defects of the prior art UAVs that are often subject to environmental light, texture information, and sensor calibration quality, so that the defects cannot be accurately avoided, and an unmanned person is provided.
  • Machine and its obstacle avoidance method and obstacle avoidance system are often subject to environmental light, texture information, and sensor calibration quality, so that the defects cannot be accurately avoided, and an unmanned person is provided.
  • An obstacle avoidance method for a drone characterized in that the obstacle avoidance method comprises the following steps:
  • the UAV acquiring a first three-dimensional map of the location of the first three-dimensional map information including flight environmental parameter, the environmental parameter information includes a flight distance of the obstacle in three-dimensional map of the first non- Real-time relative position information of man-machine;
  • step S 3 further comprising:
  • step S 3 in accordance with the actual relative position relative to the real-time position information and correction information generating flight path to avoid the obstacle.
  • step 21 S ultrasonic sensors, infrared sensors, radar range sensor, a laser range finder, visible and visual ranging unit structured light vision ranging unit or more of the non-acquired The actual relative position information of the obstacle from the drone when the human machine is flying.
  • step 21 S by SLAM (simultaneous localization and map Construction) The method of constructing the second three-dimensional map.
  • the real-time relative position information includes a first relative distance and a first relative direction
  • the actual relative position information includes a second relative distance and a second relative direction
  • Step S 22 comprises:
  • step S. 1 the first three-dimensional map pre-stored in a memory board, said memory board provided in the UAV, then in step S 2, from the on-board memory Obtaining the first three-dimensional map;
  • step S. 1 the first three-dimensional map stored in advance in the cloud server, then in step S 2, the first three-dimensional map acquired from the cloud server.
  • the UAV's location obtaining three-dimensional map of the first step further comprising: obtaining a position of the UAV is located by the GPS;
  • the flight environment parameter information includes a topographical feature and a surface object feature
  • the onboard memory includes one of an SD (Mobile Phone Memory Card) card, a NAND (Computer Flash Memory) memory, a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • SD Mobile Phone Memory Card
  • NAND Computer Flash Memory
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the invention also includes an obstacle avoidance system for a drone, characterized in that the obstacle avoidance system comprises:
  • a storage module configured to pre-store the first three-dimensional map
  • An acquiring module configured to acquire, from the storage module, a first three-dimensional map of a location of the drone, the first three-dimensional map includes flight environment parameter information, where the flight environment parameter information includes the first three-dimensional map The obstacle is located in real time relative position information of the drone;
  • a path generating module configured to generate a flight path avoiding the obstacle according to the real-time relative position information.
  • the obstacle avoidance system further comprises:
  • a distance measuring device configured to acquire actual relative position information of the obstacle from the drone when the drone is flying, and construct a second three-dimensional map according to the actual relative position information
  • a comparison module configured to compare the real-time relative position information and the actual relative position information and generate position difference information
  • a position correction module configured to correct the actual relative position information and the second three-dimensional map according to the position difference information
  • the path generation module generates a flight path avoiding the obstacle according to the real-time relative position information and the corrected actual relative position information.
  • the ranging device comprises one or more of an ultrasonic sensor, an infrared sensor, a radar ranging sensor, a laser range finder, a visible light vision ranging unit, and a structured light vision ranging unit.
  • the ranging device constructs the second three-dimensional map by a SLAM method.
  • the real-time relative position information includes a first relative distance and a first relative direction
  • the actual relative position information includes a second relative distance and a second relative direction
  • the comparison module includes a calculation module, configured to perform a difference calculation between the first relative distance and the second relative distance, the first relative direction, and the second relative direction to obtain the position difference information.
  • the storage module comprises an onboard memory or a cloud server; the onboard memory is disposed in the drone.
  • the acquiring module is further configured to acquire, by using a GPS, a location where the drone is located;
  • the obstacle avoidance system further includes a flight platform for controlling the drone flight according to the flight path.
  • the flight environment parameter information includes a topographical feature and a surface object feature
  • the onboard memory includes one of an SD card, a NAND memory, a ROM, and a RAM.
  • the present invention also includes a drone characterized in that the drone includes an obstacle avoidance system of the drone as described above.
  • the positive progress of the present invention is that the present invention realizes the use of the pre-stored three-dimensional map to generate a flight path avoiding obstacles. Therefore, the drone of the present invention is dim in ambient light, complex obstacle texture information, and ranging device failure. In the case of the situation, the 3D map information can still be used for safe flight, and the obstacles can be avoided accurately, so that the stability and safety of the drone can be improved.
  • Embodiment 1 is a flow chart showing an obstacle avoidance method of a drone according to Embodiment 1 of the present invention.
  • Embodiment 2 is a flow chart of a method for avoiding obstacles of a drone according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a first application scenario of an obstacle avoidance method of a drone according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a second application scenario of an obstacle avoidance method for a drone according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of an obstacle avoidance system of a drone according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural view of an obstacle avoidance system of a drone according to Embodiment 4 of the present invention.
  • the obstacle avoidance method of the unmanned aerial vehicle of this embodiment includes the following steps:
  • Step 110 Pre-store the first three-dimensional map.
  • the first three-dimensional map may be pre-stored in the onboard memory, and the onboard memory is disposed in the unmanned aerial vehicle. Then, in step 120, the first three-dimensional map is acquired from the onboard memory.
  • the onboard memory may be one of an SD card, a NAND memory, a ROM, and a RAM.
  • the advantage of the storage method is that the synchronous three-dimensional map can be updated in real time without additional wireless communication equipment, and stored in the onboard memory. The obstacle avoidance method can be better realized when the three-dimensional map covers the spatial extent of the location of the drone.
  • the first three-dimensional map may be pre-stored in the cloud server. Then, in step 120, the first three-dimensional map is acquired from the cloud server, and the first three-dimensional map is acquired synchronously through the wireless network.
  • Step 120 Obtain a first three-dimensional map of a location where the drone is located.
  • the first three-dimensional map includes flight environment parameter information
  • the flight environment parameter information includes real-time relative position information of the obstacle in the first three-dimensional map from the drone
  • the flight environment parameter information further includes the topographical feature and the surface object feature, such as Three-dimensional size information of objects such as trees, bridges, or buildings.
  • the method before the step of acquiring the first three-dimensional map of the location of the drone, the method further includes: acquiring the location of the drone by using the GPS, and ensuring the obtained first three-dimensional map and the drone The location is kept in sync.
  • Step 130 Generate a flight path avoiding the obstacle according to the real-time relative position information.
  • Step 140 Control the drone flight according to the flight path.
  • the flight path avoiding the obstacle is generated by the pre-stored three-dimensional map, so that the drone can still use the three-dimensional map information to safely fly under the condition that the ambient light is dim, the obstacle texture information is complex, and the ranging device fails.
  • the obstacle avoidance method is avoided, so that the obstacle avoidance method of the embodiment improves the stability and safety of the drone.
  • the method before step 130, the method further includes:
  • Step 121 Obtain actual relative position information of the obstacle from the UAV during flight, and construct a second three-dimensional map according to the actual relative position information.
  • the unmanned aerial vehicle may be acquired by one or more of an ultrasonic sensor, an infrared sensor, a radar ranging sensor, a laser range finder, a visible light vision ranging unit, and a structured light vision ranging unit.
  • the actual relative position information of the object from the drone, including static obstacles and dynamic obstacles, and the second three-dimensional map can be constructed according to the actual relative position information and by the SLAM method.
  • Step 122 Compare real-time relative position information with actual relative position information and generate position difference information.
  • the real-time relative position information includes a first relative distance and a first relative direction
  • the actual relative position information includes a second relative distance and a second relative direction
  • the generating the position difference information in step 122 includes calculating a difference between the first relative distance and the second relative distance, the first relative direction, and the second relative direction to obtain position difference information.
  • Step 123 Correct the actual relative position information and the second three-dimensional map according to the position difference information.
  • step 130 is replaced by step 131.
  • Step 131 is to generate a flight path avoiding the obstacle based on the real-time relative position information and the corrected actual relative position information.
  • the obstacle avoidance method of this embodiment is applied to a specific scenario to explain the principle thereof.
  • the second three-dimensional map is obtained by using the method steps of the embodiment.
  • the second three-dimensional map includes the actual relative position information of the obstacle 11 from the drone during flight, and the second relative information is constructed according to the actual relative position information.
  • the position difference information is generated, and the second three-dimensional map is corrected based on the position difference information, that is, the position of the obstacle 11 (the position before the correction) is moved to the position of the obstacle 11' (the corrected position) in FIG.
  • the drone 10 generates a flight path avoiding the obstacle based on the actual relative position information of the unmanned aerial vehicle 10 from the corrected obstacle 11'.
  • the drone 10 generates a flight path based on the corrected actual relative position information including the height H of the drone 10 from the ground and the distance L of the corrected obstacle 11' from the drone 10. That is to say, the flight path generated in this embodiment is generated according to the real-time relative position information and the corrected actual relative position information, so that the obstacle avoidance method of the embodiment further improves the accuracy and reliability of the drone positioning. .
  • the obstacle avoidance system of the unmanned aerial vehicle of the present embodiment includes a storage module 1, an acquisition module 2, a path generation module 3, and a flight platform 4.
  • the storage module 1 is configured to pre-store the first three-dimensional map.
  • the acquisition module 2 can first acquire the location of the drone through the GPS, and then acquire the first three-dimensional map of the location of the drone from the storage module.
  • the first three-dimensional map includes flight environment parameter information, and the flight environment parameter information includes real-time relative position information of the obstacle in the first three-dimensional map from the drone, and the flight environment parameter information may further include a topographic feature and a surface object feature.
  • the path generation module 3 generates a flight path avoiding the obstacle based on the real-time relative position information.
  • the flight platform 4 can control the drone flight according to the flight path.
  • the flight platform 4 includes a fixed wing, a rotorcraft, a helicopter, or a vertical takeoff and landing fixed wing composed of a fixed wing and a rotorcraft, and a flight control system and a high performance computing platform.
  • the flight control system is used to estimate the state and attitude of the drone according to the flight path, and calculate and control the speed and position.
  • the flight control system can be directly operated in the high performance computing platform or in the microcontroller alone. run.
  • the obstacle avoidance system of the embodiment can still use the three-dimensional map information to safely fly and accurately avoid the obstacle when the ambient light is dim, the obstacle texture information is complex, and the ranging device fails, so that the obstacle avoidance method of the embodiment Improve The stability and safety of the drone.
  • Embodiment 4 is basically the same as Embodiment 3, as shown in FIG. 6, except that the obstacle avoidance system of the present embodiment further includes a distance measuring device 5, a comparison module 6, and a position correction module 7.
  • the ranging device 5 is configured to acquire real-time relative position information of the UAV from the UAV during flight, and construct a second three-dimensional map according to the actual relative position information.
  • the comparison module 6 is for comparing real-time relative position information with actual relative position information and generating position difference information.
  • the real-time relative position information includes a first relative distance and a first relative direction
  • the actual relative position information includes a second relative distance and a second relative direction
  • the computing module in the comparing module 6 sets the first relative distance and the second relative distance.
  • the first relative direction and the second relative direction are compared to obtain position difference information.
  • the position correction module 7 corrects the actual relative position information and the second three-dimensional map based on the position difference information.
  • the path generation module 3 generates a flight path avoiding the obstacle based on the real-time relative position information and the corrected actual relative position information.
  • the obstacle avoidance system of the present embodiment can further ensure the accuracy and reliability of the drone flying in a complex environment.
  • the ranging device may be one or more of an ultrasonic sensor, an infrared sensor, a radar ranging sensor, a laser range finder, a visible light vision ranging unit, and a structured light vision ranging unit.
  • the ranging device can construct a second three-dimensional map according to the actual relative position information and by the SLAM method. It should be noted that the number of ranging devices can be set according to actual needs. Two ranging devices can be set at the front end of the drone, and more ranging devices can be set around the drone. The more accurate the measured relative obstacles are from the actual relative position information of the drone, but the more complicated the image processing is at the same time, it is generally sufficient to set 8 distance measuring devices at equal intervals around the drone.
  • the storage module includes an onboard memory or a cloud server.
  • the onboard memory may in turn be one of an SD card, a NAND memory, a ROM, and a RAM, and the onboard memory is provided in the drone.
  • the embodiment further provides an unmanned aerial vehicle including the obstacle avoidance system in the embodiment.

Abstract

一种无人机及其避障方法和避障系统。其中,避障方法包括以下步骤:S 1、预存储第一三维地图(110);S 2、获取无人机所在位置的第一三维地图,第一三维地图包括飞行环境参数信息,飞行环境参数信息包括第一三维地图中的障碍物距离无人机的实时相对位置信息(120);S 3、根据实时相对位置信息生成避开障碍物的飞行路径(130)。无人机在环境光线昏暗、障碍物纹理信息复杂以及测距设备失效的情况下仍能利用三维地图信息安全飞行,准确的避开障碍物,使得无人机的稳定性与安全性得以全面提升。

Description

无人机及其避障方法和避障系统 技术领域
本发明涉及一种无人机及其避障方法和避障系统。
背景技术
近些年,无人机由于其灵活便携和空间机动性强等特点,逐步在测绘、搜救、房地产和农业等领域得以越来越广泛地应用,在航拍或娱乐领域更是广受消费者喜爱。而无人机的普及,需以其能够安全可靠的在各种环境下飞行为前提的。那么增加其安全性并提高环境适应能力,使无人机能够识别周围环境信息并有效地避开树木、楼房等障碍物,是无人机技术研究的重点,也是急需攻克的技术难点。
目前,无人机的避障系统主要基于激光和视觉等测距设备,结合惯性传感器、GPS(全球定位系统)等作数据融合,以构建周围环境的三维地图。其性能表现往往受制于环境光、纹理信息及传感器校准质量等因素,致使现有技术无法准确获取并构建无人机周围环境的三维地图,从而使得无人机不能准确避障。
发明内容
本发明要解决的技术问题是为了克服现有技术中的无人机的避障方式常常受制于环境光、纹理信息及传感器校准质量等因素,使得不能准确避障的缺陷,提供一种无人机及其避障方法和避障系统。
本发明是通过下述技术方案来解决上述技术问题的:
一种无人机的避障方法,其特点在于,所述避障方法包括以下步骤:
S1、预存储第一三维地图;
S2、获取所述无人机所在位置的第一三维地图,所述第一三维地图包括 飞行环境参数信息,所述飞行环境参数信息包括所述第一三维地图中的障碍物距离所述无人机的实时相对位置信息;
S3、根据所述实时相对位置信息生成避开所述障碍物的飞行路径。
较佳地,在步骤S3之前还包括:
S21、获取所述无人机在飞行时所述障碍物距离所述无人机的实际相对位置信息,并根据所述实际相对位置信息构建第二三维地图;
S22、比较所述实时相对位置信息和所述实际相对位置信息并生成位置差别信息;
S23、根据所述位置差别信息修正所述实际相对位置信息及所述第二三维地图;
在步骤S3中,根据所述实时相对位置信息及修正后的实际相对位置信息生成避开所述障碍物的飞行路径。
较佳地,在步骤S21中,通过超声波传感器、红外传感器、雷达测距传感器、激光测距仪、可见光视觉测距单元和结构光视觉测距单元中的一种或多种获取所述无人机在飞行时所述障碍物距离所述无人机的实际相对位置信息。
较佳地,在步骤S21中,通过SLAM(即时定位与地图构建)方法构建所述第二三维地图。
较佳地,所述实时相对位置信息包括第一相对距离和第一相对方向,所述实际相对位置信息包括第二相对距离和第二相对方向;
步骤S22包括:
将所述第一相对距离和所述第二相对距离、所述第一相对方向和所述第二相对方向做差值计算,得到所述位置差别信息。
较佳地,在步骤S1中,将第一三维地图预存储于板载存储器中,所述板载存储器设于所述无人机中,则在步骤S2中,从所述板载存储器中获取所述第一三维地图;
或,在步骤S1中,将第一三维地图预存储于云端服务器中,则在步骤S2中,从所述云端服务器获取所述第一三维地图。
较佳地,在步骤S2中,获取所述无人机所在位置的第一三维地图的步骤之前,还包括:通过GPS获取所述无人机所在的位置;
和/或,步骤S3之后还包括:S7、根据所述飞行路径控制所述无人机飞行。
较佳地,所述飞行环境参数信息包括地形地貌特征和地表物体特征;
和/或,所述板载存储器包括SD(手机存储卡)卡、NAND(计算机闪存设备)存储器、ROM(只读存储器)和RAM(随机存取存储器)中的一种。
本发明还包括一种无人机的避障系统,其特点在于,所述避障系统包括:
存储模块,用于预存储第一三维地图;
获取模块,用于从所述存储模块获取所述无人机所在位置的第一三维地图,所述第一三维地图包括飞行环境参数信息,所述飞行环境参数信息包括所述第一三维地图中的障碍物距离所述无人机的实时相对位置信息;
路径生成模块,用于根据所述实时相对位置信息生成避开所述障碍物的飞行路径。
较佳地,所述避障系统还包括:
测距设备,用于获取所述无人机在飞行时所述障碍物距离所述无人机的实际相对位置信息,并根据所述实际相对位置信息构建第二三维地图;
比较模块,用于比较所述实时相对位置信息和所述实际相对位置信息并生成位置差别信息;
位置修正模块,用于根据所述位置差别信息修正所述实际相对位置信息及所述第二三维地图;
所述路径生成模块根据所述实时相对位置信息及修正后的实际相对位置信息生成避开所述障碍物的飞行路径。
较佳地,所述测距设备包括超声波传感器、红外传感器、雷达测距传感器、激光测距仪、可见光视觉测距单元和结构光视觉测距单元中的一种或多种。
较佳地,所述测距设备通过SLAM方法构建所述第二三维地图。
较佳地,所述实时相对位置信息包括第一相对距离和第一相对方向,所述实际相对位置信息包括第二相对距离和第二相对方向;
所述比较模块包括计算模块,用于将所述第一相对距离和所述第二相对距离、所述第一相对方向和所述第二相对方向做差值计算,得到所述位置差别信息。
较佳地,所述存储模块包括板载存储器或云端服务器;所述板载存储器设于所述无人机中。
较佳地,所述获取模块还用于通过GPS获取所述无人机所在的位置;
和/或,所述避障系统还包括飞行平台,用于根据所述飞行路径控制所述无人机飞行。
较佳地,所述飞行环境参数信息包括地形地貌特征和地表物体特征;
和/或,所述板载存储器包括SD卡、NAND存储器、ROM和RAM中的一种。
本发明还包括一种无人机,其特点在于,所述无人机包括如上所述的无人机的避障系统。
本发明的积极进步效果在于:本发明实现了利用预存储的三维地图生成避开障碍物的飞行路径,因此,本发明的无人机在环境光线昏暗、障碍物纹理信息复杂以及测距设备失效的情况下仍能利用三维地图信息安全飞行,准确的避开障碍物,使得无人机的稳定性与安全性得以全面提升。
附图说明
图1为本发明实施例1的无人机的避障方法的流程图。
图2为本发明实施例2的无人机的避障方法的流程图。
图3为本发明实施例2的无人机的避障方法的第一应用场景示意图。
图4为本发明实施例2的无人机的避障方法的第二应用场景示意图。
图5为本发明实施例3的无人机的避障系统的结构示意图。
图6为本发明实施例4的无人机的避障系统的结构示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
如图1所示,本实施例的无人机的避障方法包括以下步骤:
步骤110、预存储第一三维地图。
具体的,可将第一三维地图预存储于板载存储器中,板载存储器设于无人机中,则在步骤120中,从板载存储器中获取第一三维地图。具体的,板载存储器可以是SD卡、NAND存储器、ROM和RAM中的一种,该存储方式的好处在于,不需要额外的无线通信设备即可实时更新同步三维地图,当板载存储器中存储的三维地图覆盖了无人机所在位置的空间范围时该避障方法可以更好的实现。当然,也可将第一三维地图预存储于云端服务器中,则在步骤120中,从云端服务器获取第一三维地图,此时需通过无线网络实现第一三维地图的同步获取。
步骤120、获取无人机所在位置的第一三维地图。其中,第一三维地图包括飞行环境参数信息,飞行环境参数信息包括第一三维地图中的障碍物距离无人机的实时相对位置信息,飞行环境参数信息还包括地形地貌特征和地表物体特征,如树木、桥梁或建筑物等物体的三维尺寸信息。
本实施例中,获取无人机所在位置的第一三维地图的步骤之前,还包括:通过GPS获取无人机所在的位置,则可确保获得的第一三维地图与无人机 的所在位置保持同步。
步骤130、根据实时相对位置信息生成避开障碍物的飞行路径。
步骤140、根据飞行路径控制无人机飞行。
本实施例通过预存储的三维地图生成避开障碍物的飞行路径,使得无人机在环境光线昏暗、障碍物纹理信息复杂以及测距设备失效的情况下仍能利用三维地图信息安全飞行,准确地避开障碍物,从而本实施例的避障方法提高了无人机的稳定性与安全性。
实施例2
如图2所示,本实施例中,在步骤130之前还包括:
步骤121、获取无人机在飞行时障碍物距离无人机的实际相对位置信息,并根据实际相对位置信息构建第二三维地图。
本实施例中,可通过超声波传感器、红外传感器、雷达测距传感器、激光测距仪、可见光视觉测距单元和结构光视觉测距单元中的一种或多种获取无人机在飞行时障碍物距离该无人机的实际相对位置信息,其中包括静态障碍物和动态障碍物,同时可根据实际相对位置信息并通过SLAM方法构建第二三维地图。
步骤122、比较实时相对位置信息和实际相对位置信息并生成位置差别信息。
其中,实时相对位置信息包括第一相对距离和第一相对方向,实际相对位置信息包括第二相对距离和第二相对方向。步骤122中生成位置差别信息包括将第一相对距离和第二相对距离、第一相对方向和第二相对方向做差值计算,以得到位置差别信息。
步骤123、根据位置差别信息修正实际相对位置信息及第二三维地图。
本实施例中,将步骤130用步骤131替换,步骤131、根据实时相对位置信息及修正后的实际相对位置信息生成避开障碍物的飞行路径。
下面将本实施例的避障方法应用于具体场景说明其原理,参见图3,首 先,利用本实施例的方法步骤获取第二三维地图,第二三维地图中包括无人机10在飞行时障碍物11距离无人机的实际相对位置信息,并根据实际相对位置信息构建第二三维地图。其次,生成位置差别信息,并根据该位置差别信息修正第二三维地图,也即图3中将障碍物11的位置(修正前的位置)移至障碍物11’的位置(修正后的位置),无人机10则根据修正后的障碍物11’距离无人机10的实际相对位置信息生成避开障碍物的飞行路径。最后,参见图4,无人机10根据修正后的实际相对位置信息(包括无人机10距离地面的高度H和修正后的障碍物11’距离无人机10的距离L)生成飞行路径。也就是说,本实施例中生成的飞行路径是依据实时相对位置信息及修正后的实际相对位置信息生成的,从而本实施例的避障方法进一步提升了无人机定位的精确度和可靠性。
实施例3
如图5所示,本实施例的无人机的避障系统包括存储模块1、获取模块2、路径生成模块3和飞行平台4。存储模块1用于预存储第一三维地图。获取模块2可先通过GPS获取无人机所在的位置,再从存储模块获取无人机所在位置的第一三维地图。其中,第一三维地图包括飞行环境参数信息,飞行环境参数信息包括第一三维地图中的障碍物距离无人机的实时相对位置信息,飞行环境参数信息还可包括地形地貌特征和地表物体特征。路径生成模块3则根据实时相对位置信息生成避开障碍物的飞行路径。飞行平台4则可根据飞行路径控制无人机飞行。具体的,飞行平台4包括固定翼、旋翼机、直升机或者由固定翼和旋翼机组成的垂直起降固定翼以及飞行控制系统和高性能计算平台。飞行控制系统用于根据飞行路径对无人机的状态与姿态进行估计,并对速度与位置进行计算和控制,飞行控制系统可以直接在高性能计算平台中运行,也可以单独在微控制器中运行。从而本实施例的避障系统在环境光线昏暗、障碍物纹理信息复杂以及测距设备失效的情况下仍能利用三维地图信息安全飞行,准确地避开障碍物,从而本实施例的避障方法提高 了无人机的稳定性与安全性。
实施例4
实施例4与实施例3基本相同,如图6所示,不同之处在于,本实施例的避障系统还包括测距设备5、比较模块6和位置修正模块7。测距设备5用于实时获取无人机在飞行时障碍物距离无人机的实际相对位置信息,并根据实际相对位置信息构建第二三维地图。比较模块6用于比较实时相对位置信息和实际相对位置信息并生成位置差别信息。具体的,实时相对位置信息包括第一相对距离和第一相对方向,实际相对位置信息包括第二相对距离和第二相对方向,比较模块6中的计算模块将第一相对距离和第二相对距离、第一相对方向和第二相对方向做差值计算,以得到位置差别信息。位置修正模块7则根据位置差别信息修正实际相对位置信息及第二三维地图。此时,路径生成模块3根据实时相对位置信息及修正后的实际相对位置信息生成避开障碍物的飞行路径。从而,本实施例的避障系统可进一步确保无人机在复杂环境中飞行的精确度和可靠性。
本实施例中,测距设备可以是超声波传感器、红外传感器、雷达测距传感器、激光测距仪、可见光视觉测距单元和结构光视觉测距单元中的一种或多种。测距设备可根据实际相对位置信息并通过SLAM方法构建第二三维地图。需要说明的是,测距设备的数量可根据实际需求自行设置,可在无人机的前端设置2个测距设备,也可在无人机的四周设置更多测距设备,测距设备越多测得的障碍物距离无人机的实际相对位置信息越精确,但是同时图像处理则越复杂,一般在无人机的四周等间距的设置8个测距设备已足够。
本实施例中,存储模块包括板载存储器或云端服务器。板载存储器又可以是SD卡、NAND存储器、ROM和RAM中的一种,且板载存储器设于无人机中。
本实施例还提供一种无人机,该无人机包括本实施例中的避障系统。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理 解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (17)

  1. 一种无人机的避障方法,其特征在于,所述避障方法包括以下步骤:
    S1、预存储第一三维地图;
    S2、获取所述无人机所在位置的第一三维地图,所述第一三维地图包括飞行环境参数信息,所述飞行环境参数信息包括所述第一三维地图中的障碍物距离所述无人机的实时相对位置信息;
    S3、根据所述实时相对位置信息生成避开所述障碍物的飞行路径。
  2. 如权利要求1所述的无人机的避障方法,其特征在于,在步骤S3之前还包括:
    S21、获取所述无人机在飞行时所述障碍物距离所述无人机的实际相对位置信息,并根据所述实际相对位置信息构建第二三维地图;
    S22、比较所述实时相对位置信息和所述实际相对位置信息并生成位置差别信息;
    S23、根据所述位置差别信息修正所述实际相对位置信息及所述第二三维地图;
    在步骤S3中,根据所述实时相对位置信息及修正后的实际相对位置信息生成避开所述障碍物的飞行路径。
  3. 如权利要求2所述的无人机的避障方法,其特征在于,在步骤S21中,通过超声波传感器、红外传感器、雷达测距传感器、激光测距仪、可见光视觉测距单元和结构光视觉测距单元中的一种或多种获取所述无人机在飞行时所述障碍物距离所述无人机的实际相对位置信息。
  4. 如权利要求2所述的无人机的避障方法,其特征在于,在步骤S21中,通过SLAM方法构建所述第二三维地图。
  5. 如权利要求2所述的无人机的避障方法,其特征在于,所述实时相对位置信息包括第一相对距离和第一相对方向,所述实际相对位置信息包括第二相对距离和第二相对方向;
    步骤S22包括:
    将所述第一相对距离和所述第二相对距离、所述第一相对方向和所述第二相对方向做差值计算,得到所述位置差别信息。
  6. 如权利要求1所述的无人机的避障方法,其特征在于,在步骤S1中,将第一三维地图预存储于板载存储器中,所述板载存储器设于所述无人机中,则在步骤S2中,从所述板载存储器中获取所述第一三维地图;
    或,在步骤S1中,将第一三维地图预存储于云端服务器中,则在步骤S2中,从所述云端服务器获取所述第一三维地图。
  7. 如权利要求1所述的无人机的避障方法,其特征在于,在步骤S2中,获取所述无人机所在位置的第一三维地图的步骤之前,还包括:通过GPS获取所述无人机所在的位置;
    和/或,步骤S3之后还包括:S7、根据所述飞行路径控制所述无人机飞行。
  8. 如权利要求6所述的无人机的避障方法,其特征在于,所述飞行环境参数信息包括地形地貌特征和地表物体特征;
    和/或,所述板载存储器包括SD卡、NAND存储器、ROM和RAM中的一种。
  9. 一种无人机的避障系统,其特征在于,所述避障系统包括:
    存储模块,用于预存储第一三维地图;
    获取模块,用于从所述存储模块获取所述无人机所在位置的第一三维地图,所述第一三维地图包括飞行环境参数信息,所述飞行环境参数信息包括所述第一三维地图中的障碍物距离所述无人机的实时相对位置信息;
    路径生成模块,用于根据所述实时相对位置信息生成避开所述障碍物的飞行路径。
  10. 如权利要求9所述的无人机的避障系统,其特征在于,所述避障系统还包括:
    测距设备,用于获取所述无人机在飞行时所述障碍物距离所述无人机的实际相对位置信息,并根据所述实际相对位置信息构建第二三维地图;
    比较模块,用于比较所述实时相对位置信息和所述实际相对位置信息并生成位置差别信息;
    位置修正模块,用于根据所述位置差别信息修正所述实际相对位置信息及所述第二三维地图;
    所述路径生成模块根据所述实时相对位置信息及修正后的实际相对位置信息生成避开所述障碍物的飞行路径。
  11. 如权利要求10所述的无人机的避障系统,其特征在于,所述测距设备包括超声波传感器、红外传感器、雷达测距传感器、激光测距仪、可见光视觉测距单元和结构光视觉测距单元中的一种或多种。
  12. 如权利要求10所述的无人机的避障系统,其特征在于,所述测距设备通过SLAM方法构建所述第二三维地图。
  13. 如权利要求10所述的无人机的避障系统,其特征在于,所述实时相对位置信息包括第一相对距离和第一相对方向,所述实际相对位置信息包括第二相对距离和第二相对方向;
    所述比较模块包括计算模块,用于将所述第一相对距离和所述第二相对距离、所述第一相对方向和所述第二相对方向做差值计算,得到所述位置差别信息。
  14. 如权利要求9所述的无人机的避障系统,其特征在于,所述存储模块包括板载存储器或云端服务器;所述板载存储器设于所述无人机中。
  15. 如权利要求9所述的无人机的避障系统,其特征在于,所述获取模块还用于通过GPS获取所述无人机所在的位置;
    和/或,所述避障系统还包括飞行平台,用于根据所述飞行路径控制所述无人机飞行。
  16. 如权利要求14所述的无人机的避障系统,其特征在于,所述飞行 环境参数信息包括地形地貌特征和地表物体特征;
    和/或,所述板载存储器包括SD卡、NAND存储器、ROM和RAM中的一种。
  17. 一种无人机,其特征在于,所述无人机包括如权利要求9-16中任意一项所述的无人机的避障系统。
PCT/CN2016/098472 2016-09-08 2016-09-08 无人机及其避障方法和避障系统 WO2018045538A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/098472 WO2018045538A1 (zh) 2016-09-08 2016-09-08 无人机及其避障方法和避障系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/098472 WO2018045538A1 (zh) 2016-09-08 2016-09-08 无人机及其避障方法和避障系统

Publications (1)

Publication Number Publication Date
WO2018045538A1 true WO2018045538A1 (zh) 2018-03-15

Family

ID=61561683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098472 WO2018045538A1 (zh) 2016-09-08 2016-09-08 无人机及其避障方法和避障系统

Country Status (1)

Country Link
WO (1) WO2018045538A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108829134A (zh) * 2018-07-03 2018-11-16 中国船舶重工集团公司第七〇九研究所 一种深海机器人实时自主避障方法
CN109532361A (zh) * 2019-01-07 2019-03-29 深圳墨菲航空科技有限公司 载人陆空两栖飞行器及其群控系统
CN110658840A (zh) * 2019-10-28 2020-01-07 郑州航空工业管理学院 一种用于多旋翼无人机的自主导航避障方法及装置
CN110869872A (zh) * 2018-11-30 2020-03-06 深圳市大疆创新科技有限公司 障碍物的精准确定方法、设备及计算机可读存储介质
CN111443723A (zh) * 2020-04-07 2020-07-24 中国航空无线电电子研究所 一种无人机第三视角视景生成和显示程序
CN111813142A (zh) * 2019-07-18 2020-10-23 中国石油化工股份有限公司 用于原油管线巡检的无人机自主避障控制方法
CN111966128A (zh) * 2020-08-29 2020-11-20 茂莱(南京)仪器有限公司 一种多光谱航空测绘模组
CN112132929A (zh) * 2020-09-01 2020-12-25 北京布科思科技有限公司 一种基于深度视觉和单线激光雷达的栅格地图标记方法
CN112684806A (zh) * 2019-10-18 2021-04-20 天津工业大学 一种基于双重避障和智能识别的电力巡检无人机系统
CN113467504A (zh) * 2021-07-26 2021-10-01 广东电网有限责任公司 一种飞行器飞行稳定控制方法、系统、设备及存储介质
CN114167890A (zh) * 2021-11-29 2022-03-11 西安羚控电子科技有限公司 一种无人飞行装置智能避障方法
CN117193382A (zh) * 2023-11-07 2023-12-08 北京申立通科技服务有限公司 一种无人机飞行路径确定方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375058A (en) * 1991-12-20 1994-12-20 University Of Central Florida Surface detection system for airports
CN103885443A (zh) * 2012-12-20 2014-06-25 联想(北京)有限公司 用于即时定位与地图构建单元的设备、系统和方法
CN105159297A (zh) * 2015-09-11 2015-12-16 南方电网科学研究院有限责任公司 输电线路无人机巡检避障系统与方法
CN105571588A (zh) * 2016-03-10 2016-05-11 赛度科技(北京)有限责任公司 一种无人机三维空中航路地图构建及其航路显示方法
CN105786019A (zh) * 2016-04-27 2016-07-20 广州极飞电子科技有限公司 一种载机飞行控制方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375058A (en) * 1991-12-20 1994-12-20 University Of Central Florida Surface detection system for airports
CN103885443A (zh) * 2012-12-20 2014-06-25 联想(北京)有限公司 用于即时定位与地图构建单元的设备、系统和方法
CN105159297A (zh) * 2015-09-11 2015-12-16 南方电网科学研究院有限责任公司 输电线路无人机巡检避障系统与方法
CN105571588A (zh) * 2016-03-10 2016-05-11 赛度科技(北京)有限责任公司 一种无人机三维空中航路地图构建及其航路显示方法
CN105786019A (zh) * 2016-04-27 2016-07-20 广州极飞电子科技有限公司 一种载机飞行控制方法和系统

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108829134A (zh) * 2018-07-03 2018-11-16 中国船舶重工集团公司第七〇九研究所 一种深海机器人实时自主避障方法
CN110869872A (zh) * 2018-11-30 2020-03-06 深圳市大疆创新科技有限公司 障碍物的精准确定方法、设备及计算机可读存储介质
CN109532361A (zh) * 2019-01-07 2019-03-29 深圳墨菲航空科技有限公司 载人陆空两栖飞行器及其群控系统
CN111813142A (zh) * 2019-07-18 2020-10-23 中国石油化工股份有限公司 用于原油管线巡检的无人机自主避障控制方法
CN112684806A (zh) * 2019-10-18 2021-04-20 天津工业大学 一种基于双重避障和智能识别的电力巡检无人机系统
CN110658840A (zh) * 2019-10-28 2020-01-07 郑州航空工业管理学院 一种用于多旋翼无人机的自主导航避障方法及装置
CN111443723A (zh) * 2020-04-07 2020-07-24 中国航空无线电电子研究所 一种无人机第三视角视景生成和显示程序
CN111443723B (zh) * 2020-04-07 2023-09-15 中国航空无线电电子研究所 一种无人机第三视角视景生成和显示程序
CN111966128A (zh) * 2020-08-29 2020-11-20 茂莱(南京)仪器有限公司 一种多光谱航空测绘模组
CN112132929A (zh) * 2020-09-01 2020-12-25 北京布科思科技有限公司 一种基于深度视觉和单线激光雷达的栅格地图标记方法
CN112132929B (zh) * 2020-09-01 2024-01-26 北京布科思科技有限公司 一种基于深度视觉和单线激光雷达的栅格地图标记方法
CN113467504A (zh) * 2021-07-26 2021-10-01 广东电网有限责任公司 一种飞行器飞行稳定控制方法、系统、设备及存储介质
CN113467504B (zh) * 2021-07-26 2023-06-02 广东电网有限责任公司 一种飞行器飞行稳定控制方法、系统、设备及存储介质
CN114167890A (zh) * 2021-11-29 2022-03-11 西安羚控电子科技有限公司 一种无人飞行装置智能避障方法
CN117193382A (zh) * 2023-11-07 2023-12-08 北京申立通科技服务有限公司 一种无人机飞行路径确定方法及系统

Similar Documents

Publication Publication Date Title
WO2018045538A1 (zh) 无人机及其避障方法和避障系统
US11550315B2 (en) Unmanned aerial vehicle inspection system
US11604479B2 (en) Methods and system for vision-based landing
CN110062919B (zh) 递送车辆的放下地点规划
US11822353B2 (en) Simple multi-sensor calibration
US10914590B2 (en) Methods and systems for determining a state of an unmanned aerial vehicle
US10565732B2 (en) Sensor fusion using inertial and image sensors
US10599149B2 (en) Salient feature based vehicle positioning
CN109596118B (zh) 一种用于获取目标对象的空间位置信息的方法与设备
US9513635B1 (en) Unmanned aerial vehicle inspection system
EP3158411B1 (en) Sensor fusion using inertial and image sensors
US20200191556A1 (en) Distance mesurement method by an unmanned aerial vehicle (uav) and uav
US10409293B1 (en) Gimbal stabilized components for remotely operated aerial vehicles
US20230215024A1 (en) Position estimation method and apparatus for tracking target, and unmanned aerial vehicle
US20180144644A1 (en) Method and system for managing flight plan for unmanned aerial vehicle
JP6138326B1 (ja) 移動体、移動体の制御方法、移動体を制御するプログラム、制御システム、及び情報処理装置
WO2021199449A1 (ja) 位置算出方法及び情報処理システム
US20210229810A1 (en) Information processing device, flight control method, and flight control system
KR20220086479A (ko) 항공기 센서 시스템 동기화
CN109163718A (zh) 一种面向建筑群的无人机自主导航方法
KR102467855B1 (ko) 자율항법지도를 설정하는 방법 및 무인비행체가 자율항법지도에 기초하여 자율 비행하는 방법 및 이를 구현하는 시스템
Lauterbach et al. Preliminary results on instantaneous UAV-based 3D mapping for rescue applications
CN107390707A (zh) 无人机控制系统
JP2021100234A (ja) 飛行体の撮像方法及び情報処理装置
Sambolek et al. Determining the Geolocation of a Person Detected in an Image Taken with a Drone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915473

Country of ref document: EP

Kind code of ref document: A1