WO2020107388A1 - 弯折角度值测量机构、壳体、电子装置及测量方法 - Google Patents

弯折角度值测量机构、壳体、电子装置及测量方法 Download PDF

Info

Publication number
WO2020107388A1
WO2020107388A1 PCT/CN2018/118496 CN2018118496W WO2020107388A1 WO 2020107388 A1 WO2020107388 A1 WO 2020107388A1 CN 2018118496 W CN2018118496 W CN 2018118496W WO 2020107388 A1 WO2020107388 A1 WO 2020107388A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound wave
wave receiver
acoustic wave
receiver
bending angle
Prior art date
Application number
PCT/CN2018/118496
Other languages
English (en)
French (fr)
Inventor
徐家进
张慧雯
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to CN201880096041.1A priority Critical patent/CN112740142A/zh
Priority to PCT/CN2018/118496 priority patent/WO2020107388A1/zh
Publication of WO2020107388A1 publication Critical patent/WO2020107388A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present application relates to the field of bending angle value measurement, in particular to a bending angle value measuring mechanism of a flexible display screen, a casing provided with the bending angle value measuring mechanism, an electronic device provided with the casing, and The measuring method of the bending angle value measuring mechanism.
  • the present application provides a bending angle value measuring mechanism with a simple structure and capable of accurately measuring the bending angle value of a flexible display screen, a casing provided with the bending angle value measuring mechanism, and the casing Electronic device, and the measuring method of the bending angle value measuring mechanism.
  • a bending angle value measuring mechanism provided by the present application is used to measure the bending angle value of a display screen of an electronic device.
  • the display screen includes two rotating screens, and the two rotating screens can be bent along a rotating axis.
  • the bending angle value measuring mechanism includes a first acoustic wave receiver and a second acoustic wave receiver respectively provided on each of the rotating screens, and an acoustic wave transmitter provided on one of the two rotating screens.
  • the first sound wave receiver, the second sound wave receiver and the sound wave transmitter are electrically connected to the processor of the electronic device, and the processor passes the first sound wave receiver, the second sound wave receiver and the sound wave transmitter.
  • the present application also provides a housing, which includes a first frame body, a second frame body, a display screen provided on the first frame body and the second frame body, and a bending angle value measuring mechanism, the first A frame body and a second frame body are connected by rotation through a rotating shaft, the display screen is bent along the rotating shaft, and the bending angle value measuring mechanism includes first sound waves respectively provided on each of the rotating screens A receiver and a second acoustic wave receiver, and an acoustic wave transmitter provided on one of the two rotating screens, and the first acoustic wave receiver and the second acoustic wave receiver of the bending angle value measuring mechanism are respectively provided at On the first frame body and the second frame body, the sound wave transmitter is disposed on the first frame body or the second frame body at intervals between the first sound wave receiver or the second sound wave receiver, and the first sound wave receives
  • the receiver, the second sound wave receiver and the sound wave transmitter are electrically connected to the processor of the electronic device, and the processor can calculate the display screen through the first sound
  • the present application also provides an electronic device, which includes a housing, a circuit board is disposed in the housing, the first housing, a second housing, and the first and second housings are provided Display screen and bending angle value measuring mechanism, the first frame body and the second frame body are connected by rotation through a rotating shaft, the display screen is bent along the rotating shaft, and the bending angle value measuring mechanism includes A first acoustic wave receiver and a second acoustic wave receiver respectively provided on each of the rotating screens, and an acoustic wave transmitter provided on one of the two rotating screens, the bending angle value measuring mechanism
  • the first sound wave receiver and the second sound wave receiver are respectively disposed on the first frame body and the second frame body, and the sound wave transmitter is disposed on the first frame at intervals between the first sound wave receiver or the second sound wave receiver
  • the first sound wave receiver, the second sound wave receiver, and the sound wave transmitter are electrically connected to the processor of the electronic device, and the processor passes the first sound wave receiver, The second sound wave receiver and the sound wave
  • the present application also provides a method for measuring a bending angle value, which is applied to the above-mentioned electronic device, and is characterized in that it includes:
  • the angle between the vertical line from the first sound wave receiver to the rotating shaft and the vertical line from the second sound wave receiver to the rotating shaft is calculated by the inverse cosine formula in the trigonometric function, and the included angle is the first rotating screen of the display screen Bending angle value with the second rotating screen.
  • the bending angle value measuring mechanism of the electronic device of the present application includes a first acoustic wave receiver, a second acoustic wave receiver, and an acoustic wave transmitter; the acoustic wave transmitter and the first acoustic wave receiver or the second acoustic wave receiver Interval setting; the processor can obtain the bending angle value between the two rotating screens of the display screen through the first acoustic wave receiver, the second acoustic wave receiver and the acoustic wave transmitter, and control according to the bending angle value
  • the display screen displays the corresponding user interface, so that the display device of the electronic device displays the corresponding user interface at different bending angles. Since the bending angle value measuring mechanism of the present application includes only two acoustic wave receivers and one acoustic wave transmitter, the bending angle value measuring mechanism has a simple structure, high measurement accuracy, and can improve user experience.
  • FIG. 1 is a schematic perspective view of the electronic device in the first embodiment of the present application.
  • FIG. 2 is a schematic diagram of the connection between the first acoustic wave receiver, the second acoustic wave receiver, the wave transmitter, and the axis of the rotating shaft of the electronic device in FIG. 1.
  • FIG. 3 is a schematic perspective view of the electronic device in the second embodiment of the present application.
  • FIG. 4 is a schematic diagram of the connection between the first acoustic wave receiver, the second acoustic wave receiver, the wave transmitter, and the axis of the rotating shaft of the electronic device in FIG. 3.
  • FIG. 5 is a schematic perspective view of the electronic device in the third embodiment of the present application.
  • FIG. 6 is a flowchart of a measuring method of a bending angle value measuring mechanism of the present application.
  • FIG. 1 is a schematic perspective view of the electronic device in the first embodiment of the present application
  • FIG. 2 is a first acoustic wave receiver and a second acoustic wave receiver of the electronic device in FIG. , The wave transmitter, and the connection between the axis of the shaft.
  • the electronic device 100 in the first embodiment of the present application includes a housing 20, a display screen 30 disposed on the front of the housing 20, a motherboard 50 disposed in the housing 20, and electrical A bending angle value measuring mechanism 60 connected to the main board 50.
  • the housing 20 includes a first frame 21, a second frame 23, and a rotating shaft 25 connected between the first frame 21 and the second frame 23.
  • the first frame 21 and the second frame The bodies 23 rotate with each other through a rotating shaft 25.
  • the display screen 30 is disposed on the front surfaces of the first frame body 21 and the second frame body 23.
  • the display screen 30 includes a first rotating screen 31 on the front surface of the first frame body 21 and a second rotating screen 31
  • the second rotating screen 33 on the front surface of the frame body 23, the first rotating screen 31 and the second rotating screen 33 are bent along the rotation axis 25 along with the first frame body 21 and the second frame body 23.
  • the main board 50 is provided with a processor 52, and the processor 52 calls the corresponding user interface according to the angle value of the bend between the first rotating screen 31 and the second rotating screen 33 and displays The user interface is displayed above to meet different interaction requirements.
  • the bending angle value measuring mechanism 60 is used to measure the bending angle value between the first rotating screen 31 and the second rotating screen 33 of the display screen 30.
  • the bending angle value measuring mechanism 60 includes a first acoustic wave receiver 61, a second acoustic wave receiver 63 and an acoustic wave transmitter 65; the first acoustic wave receiver 61 and the second acoustic wave receiver 63 may Respectively disposed on the first rotating screen 31 and the second rotating screen 33 of the display screen 30, or on the first frame 21 and the second frame 23 of the housing 20; the acoustic wave emitter 65 is spaced apart from The first sound wave receiver 61 or the second sound wave receiver 63 is disposed on the display screen 30 or the housing 20.
  • the first sound wave receiver 61, the second sound wave receiver 63 and the sound wave transmitter 65 are all electrically connected to the processor 52, and the processor 52 passes through the first sound wave receiver 61 and the second sound wave receiver 63 And the acoustic wave emitter 65 can obtain the bending angle value between the first rotating screen 31 and the second rotating screen 33 of the display screen 30, and the processor 52 then controls the display screen 30 to display different values according to the bending angle value User interface to meet different interaction requirements.
  • the first sound wave receiver 61 and/or the second sound wave receiver 63 in this application are earpieces, and the sound wave transmitter 65 is a speaker.
  • the display screen 30 is a flexible display screen, and the bending area of the flexible display screen can be bent along the rotation axis 25 along with the first frame body 21 and the second frame body 23.
  • the rotating shaft 25 in the present application is a solid shaft, and the rotating shaft 25 is not limited to a solid shaft, and may also be a non-solid shaft, as long as the first rotating screen 31 and the second rotating screen 33 can be bent around the axis It is considered to be a rotating shaft; the front side of the housing 20 faces the light-emitting side of the display screen 30, and the back side refers to the side facing away from the light-emitting surface of the display screen 30. It can be understood that, when the first rotating screen 31 and the second rotating screen 33 are bent, the light exiting surface of the first rotating screen 31 and the light exiting surface of the second rotating screen are adjacent to each other.
  • the electronic device 100 is a mobile phone. It can be understood that in other embodiments, the electronic device 100 may be, but not limited to, a PDA of a radiotelephone, pager, web browser, memo pad, calendar, and/or global positioning system (GPS) receiver.
  • a PDA of a radiotelephone pager
  • web browser web browser
  • memo pad memo pad
  • calendar calendar
  • GPS global positioning system
  • the first sound wave receiver 61 and the second sound wave receiver 63 of the bending angle value measuring mechanism 60 of the electronic device 100 of the present application may be respectively disposed on the first rotating screen 31 and the second rotating screen 33 of the display screen 30 , Or on the first frame 21 and the second frame 23 of the housing 20; the acoustic wave transmitter 65 of the bending angle value measuring mechanism 60 is spaced apart from the first acoustic wave receiver 61 or the second acoustic wave receiver 63 is provided on the display screen 30 or the housing 20; the processor 52 can obtain the first of the display screen 30 through the first sound wave receiver 61, the second sound wave receiver 63 and the sound wave transmitter 65 The bending angle value between the rotating screen 31 and the second rotating screen 33, and the display screen 30 is controlled to display different user interfaces according to the bending angle value. Since the bending angle value measuring mechanism 60 of the present application only includes two acoustic wave receivers and one acoustic wave emitter 65, the bending angle value measuring mechanism 60 has a simple structure and high
  • the acoustic wave transmitter 65 and the first acoustic wave receiver 61 or the second acoustic wave receiver 63 are arranged on the same rotating screen of the display screen 30 at intervals, that is, the acoustic wave transmitter 65 and the first
  • the sound wave receiver 61 is provided on the first rotating screen 31 or the second rotating screen 33 of the display screen 30 at intervals
  • the second sound wave receiver 63 is provided on the second rotating screen 33 or the first rotating screen 31 of the display screen 30;
  • the acoustic wave emitter 65 is disposed on the first rotating screen 31 or the second rotating screen 33 of the display screen 30 at intervals from the second acoustic wave receiver 63
  • the first acoustic wave receiver 61 is disposed on the second of the display screen 30
  • the acoustic wave emitter 65 and the first acoustic wave receiver 61 or the second acoustic wave receiver 63 may be located on the same end face or side face
  • the acoustic wave transmitter 65 and the first acoustic wave receiver 61 or the second acoustic wave receiver 63 may also be arranged at intervals on the first frame body 21 or the second frame body 23 of the housing 20, that is, the The acoustic wave transmitter 65 is disposed on the first frame 21 or the second frame 23 at a distance from the first acoustic wave receiver 61, and the second acoustic wave receiver 63 is disposed on the second frame 23 or the second frame 23 of the housing 20.
  • a frame 21; or the sound wave transmitter 65 and the second sound wave receiver 63 are arranged on the first frame body 21 or the second frame body 23 at intervals, and the first sound wave receiver 61 is arranged on the housing 20 ⁇ second frame 23 or the first frame 21.
  • the acoustic wave transmitter 65 and the first acoustic wave receiver 61 or the second acoustic wave receiver 63 are located on the same end face or side face of the first frame body 21 or the second frame body 23.
  • the first acoustic wave receiver 61 or the second acoustic wave receiver 63 located on the same end surface or the same side surface as the acoustic wave transmitter 65 is used to calibrate the acoustic wave delay parameter of the bending angle value measuring mechanism 60.
  • the acoustic wave transmitter 65 and the second acoustic wave receiver 63 are located on the same end surface of the second frame 23, and the first acoustic wave receiver 61 is located on the end surface of the first frame 21 away from the second frame 23 on.
  • the first frame 21 includes a front surface 212, an end surface 213, and two opposite side surfaces 215, the first rotating screen 31 is disposed on the front surface 212, and the end surface 213 is away from the second frame body twenty three.
  • the first acoustic wave receiver 61 is disposed on the end surface 213.
  • the first acoustic wave receiver 61 is located at the position A on the end surface 213.
  • the position A may be any position on the end surface 213.
  • the vertical line OA from the first sound wave receiver 61 to the axis L of the rotating shaft 25 is a fixed value, that is, the length from the position A of the end surface 213 to the vertical point O is fixed.
  • the fixed value is determined by the The width of a frame 21 is determined.
  • the second frame body 23 includes a front surface 232, an end surface 233, and two opposite side surfaces 235.
  • the second rotating screen 33 is disposed on the front surface 232, and the end surface 233 is away from the first frame body 21.
  • the second sound wave receiver 63 is disposed on the end surface 233 corresponding to the first sound wave receiver 61, the second sound wave receiver 63 is located at the position C of the end surface 233, and the second sound wave receiver 63 reaches the rotating shaft
  • the vertical line OC of the axis line 25 of 25 is on the same plane as the vertical line OA of the axis line L of the first acoustic wave receiver 61 to the rotating shaft 25, that is, the vertical line OC intersects the vertical line OA, therefore, the vertical The plane where the line OC and the vertical line BO are perpendicular to the axis L.
  • the vertical line OC from the second acoustic wave receiver 63 to the axis L of the rotating shaft 25 is a fixed value, that is, the length from the position C of the end surface 233 to the vertical point O is fixed, and the fixed value is determined by the second The width of the frame 23 is determined.
  • connection line AC between the first acoustic wave receiver 61 and the second acoustic wave receiver 63, the vertical line OA from the first acoustic wave receiver 61 to the axis L of the rotating shaft 25, and A vertical line OC from the second acoustic wave receiver 63 to the axis line L of the rotating shaft 25 encloses a triangle ⁇ AOC, the axis line L of the rotating shaft 25 is perpendicular to the triangle ⁇ AOC, the vertical line OA is The angle between the vertical lines OC is the angle between the first rotating screen 31 and the second rotating screen 33.
  • the acoustic wave transmitter 65 is disposed on the end surface 233 of the second frame 23, and there is a gap between the acoustic wave transmitter 65 and the second acoustic wave receiver 63.
  • the acoustic wave transmitter 65 is located at any position B on the end surface 233 that does not coincide with the second acoustic wave receiver 63, and the line BC between the acoustic wave transmitter 65 and the second acoustic wave receiver 63 is parallel to
  • the axis line L of the rotating shaft 25, and the length of the connecting line BC is a fixed value, which is determined by the size of the interval between the acoustic wave transmitter 65 and the second acoustic wave receiver 63.
  • both the first sound wave receiver 61 and the second sound wave receiver 63 can receive sound waves.
  • the length of the vertical line L from the first acoustic wave receiver 61 to the axis line of the rotating shaft 25 is equal to the vertical line from the second acoustic wave receiver 63 to the axis line of the rotating shaft 25
  • the length of L; the sound waves emitted by the sound wave transmitter 65 are sound waves with amplitude modulation characteristics.
  • connection AC between the second acoustic wave receivers 63 forms a triangle ⁇ ACB, and the triangle ⁇ ACB is a right triangle for the following reasons:
  • connection line BC between the acoustic wave transmitter 65 and the second acoustic wave receiver 63 is parallel to the axis line L of the rotating shaft 25, and the axis line L is perpendicular to the plane where the vertical line OA and the vertical line OC are located, Therefore, the connection line BC between the sound wave transmitter 65 and the second sound wave receiver 63 is also perpendicular to the plane where the vertical line OA and the vertical line OC are located; in addition, the first sound wave receiver 61 and the second sound wave receiver 63
  • the connection line AC is located on the plane where the vertical line OA and the vertical line OC are located.
  • connection line BC between the sound wave transmitter 65 and the second sound wave receiver 63 is perpendicular to the first sound wave receiver 61 and the second sound wave
  • the connection AC between the receiver 63 that is, the connection AB between the sound wave transmitter 65 and the first sound wave receiver 61, and the connection BC between the sound wave transmitter 65 and the second sound wave receiver 63, And the connection AC between the first sound wave receiver 61 and the second sound wave receiver 63 forms a right triangle.
  • the processor 52 calculates the delay parameter ⁇ t of the bending angle value measuring mechanism 60, as follows:
  • the sound wave transmitter 65 transmits sound waves, the time required for the second sound wave receiver 63 to receive the sound waves is T1, the propagation speed of the sound waves is V, and the speed V is a constant 340 m/sec.
  • the delay parameter ⁇ t is obtained; the delay parameter ⁇ t is the time difference between the instruction issued by the processor to the sound wave transmitter 65 and the sound wave signal sent by the sound wave generator 65.
  • the length of the connection line AB between the first acoustic wave receiver 61 and the acoustic wave transmitter 65 is calculated by the processor 52, as follows:
  • the sound wave transmitter 65 transmits sound waves
  • the time required for the first sound wave receiver 61 to receive the sound waves is T2
  • the propagation speed of the sound waves is V
  • the processor 52 obtains the length of the connection AC between the first sound wave receiver 61 and the second sound wave receiver 63 through the triangle Pythagorean law, as follows:
  • connection line BC between the sound wave transmitter 65 and the second sound wave receiver 63 is a fixed value, and the sound wave transmitter
  • the line AC between 63 forms a right triangle, so the fifth formula is adopted: Obtain the length of the connection AC between the first sound wave receiver 61 and the second sound wave receiver 63;
  • the processor 52 obtains the vertical line OA of the first acoustic wave receiver 61 to the axis line L of the rotating shaft 25 and the axial line L of the second acoustic wave receiver 63 to the axis 25 through the inverse cosine in the trigonometric function
  • the angle ⁇ between the vertical lines OC is as follows:
  • the fifth formula is substituted into the sixth formula to obtain the seventh formula:
  • substitute the fourth formula into the seventh formula to get the eighth formula:
  • the vertical line OA, the vertical line OC, and the connection line BC between the acoustic wave transmitter 65 and the second acoustic wave receiver 63 are all fixed values, and T1 and T2 are respectively the second acoustic wave receiver 63
  • the time required for receiving and receiving sound waves and the time required for receiving and receiving sound waves by the first sound receiver 61, and V is the propagation speed of sound waves, is a constant.
  • the processor 52 calls the corresponding user interface according to the angle ⁇ value to meet different interaction requirements.
  • the calculation process of the angle ⁇ between the first rotating screen 31 and the second rotating screen 33 is completed by the processor 52, therefore, the processing speed is fast and the accuracy is high, and the structure of the bending angle value measuring mechanism 60 simple.
  • the vertical line OA and the vertical line OC have the same length. In other embodiments, the length of the vertical line OA and the vertical line OC may be different.
  • the delay parameter ⁇ t of the bending angle value measuring mechanism 60 is negligible, therefore, the processor 65 can pass the first acoustic wave receiver 61 and the second acoustic wave receiver 63 and the acoustic wave transmitter
  • the sound wave transmission between 65 results in the distance AB between the sound wave transmitter 65 and the first sound wave receiver 61 and the connection line between the sound wave transmitter 65 and the second sound wave receiver 63
  • the distance of BC that is, the length of the connection AB between the first sound wave receiver 61 and the sound wave transmitter 65 is equal to the product of the propagation speed of the sound wave and the time the first sound wave receiver 61 receives the sound wave;
  • the length of the connection BC between the receiver 63 and the sound wave transmitter 65 is equal to the product of the propagation speed of the sound wave and the time when the second sound wave receiver 63 receives the sound wave; then the first sound wave receiver is obtained by the Pythagorean theorem of the triangle
  • the angle between the vertical line OA and the vertical line OC is obtained by the inverse cosine formula in the trigonometric function, thereby obtaining the first rotating screen 31 and the third
  • the processor 52 calls the corresponding user interface according to the angle value to meet different interaction requirements.
  • FIG. 3 is a three-dimensional schematic diagram of the electronic device in the second embodiment of the present application
  • FIG. 4 is a first sound wave receiver, a second sound wave receiver, a wave A schematic diagram of the connection between the transmitter and the axis of the rotating shaft.
  • the structure of the second embodiment of the electronic device of the present application is similar to the structure of the first embodiment, except that the acoustic wave transmitter 65 and the first acoustic wave receiver 61 in the second embodiment are arranged at the first interval On the end surface 213 of the frame 21.
  • the bending angle value measuring mechanism 60 also includes a first acoustic wave receiver 61, a second acoustic wave receiver 63, and an acoustic wave transmitter 65.
  • the first acoustic wave receiver 61 is disposed on the first On the end surface 213 of the frame 21, the first sound wave receiver 61 can be located at any position on the end surface 213; the sound wave transmitter 65 is located on the end surface 213, and the sound wave transmitter 65 and the first sound There is a gap between the wave receivers 61, and the connection line AB between the sound wave transmitter 65 and the first sound wave receiver 61 is parallel to the axis line L of the rotating shaft 25.
  • the second acoustic wave receiver 63 is disposed on the second end surface 233 of the second frame 23 corresponding to the first acoustic wave receiver 61.
  • the vertical line OA from the first acoustic wave receiver 61 to the axis L of the rotating shaft 25 is The vertical line OC of the second acoustic wave receiver 63 is connected to the axis L of the rotating shaft 25.
  • the triangular plane formed by the vertical line OA, the vertical line OC, and the connection AC of the first acoustic wave receiver 61 and the second acoustic wave receiver 63 is perpendicular to the axis line of the rotation axis 25, that is, the acoustic wave transmitter 65 and the first
  • the connection AB between an acoustic wave receiver 61 is perpendicular to the triangular plane.
  • the connection AB between the acoustic wave transmitter 65 and the first acoustic wave receiver 61 is perpendicular to the first acoustic wave receiver
  • the connection AC between 61 and the second sound wave receiver 63 makes the connection AB, connection AC and connection BC form a right triangle ⁇ BAC.
  • the method of calculating the included angle by the bending angle value measuring mechanism 60 in this embodiment is the same as the method in the first embodiment, that is, the first sound wave receiver 61 and the second sound wave receiver are obtained by the triangular Pythagorean law
  • the length of the line AC of 63; the vertical line OA of the axis line L of the first acoustic wave receiver 61 to the rotating shaft 25 and the axis of the second acoustic wave receiver 63 to the rotating shaft 25 are obtained by the inverse cosine formula in the trigonometric function
  • the value of the angle between the vertical lines OC of the center line L to obtain the value of the angle between the first rotating screen 31 and the second rotating screen 33, and the processor 52 calls the corresponding user interface according to the value of the included angle, To meet different interaction needs.
  • the processor 52 may first calculate the delay parameter of the sound wave of the bending angle value measuring mechanism 60.
  • the sound wave transmitter 65 emits the sound wave, the first sound wave
  • the time required for the receiver 61 to receive and receive the sound wave is T1
  • the propagation speed of the sound wave is V
  • the speed V is a constant 340 m/sec
  • the position A of the first sound wave receiver 63 to the position B of the sound wave transmitter 65 The length n of the connection line AB is a fixed value
  • the acoustic wave transmitter 65 transmits the acoustic wave
  • the time required for the second acoustic wave receiver 63 to receive the acoustic wave is T2
  • the propagation speed of the acoustic wave is V.
  • FIG. 5 is a three-dimensional schematic diagram of the electronic device in the third embodiment of the present application.
  • the structure of the third embodiment of the electronic device of the present application is similar to the structure of the first embodiment, except that the acoustic wave transmitter 65 and the second acoustic wave receiver 63 in the third embodiment are arranged in the second frame at intervals
  • the front surface 232 of the body 23 is away from one end of the rotating shaft 25.
  • the first sound wave receiver 61 is disposed at the end of the front face 212 of the first frame 21 away from the rotating shaft 25, and the first sound wave receiver 61 may be located on the front face 212 Any position; the second acoustic wave receiver 63 corresponds to the first acoustic wave receiver 61 is disposed on the front surface 232 of the second frame 23 at an end away from the rotating shaft 25, the first acoustic wave receiver 61 to the axis line L of the rotating shaft 25
  • the vertical line OA is connected to the vertical line OC from the second acoustic wave receiver 63 to the axis line L of the rotating shaft 25.
  • the triangular plane formed by the vertical line OA, the vertical line OC, and the connection line AC of the first acoustic wave receiver 61 and the second acoustic wave receiver 63 is perpendicular to the axis L of the rotation axis 25.
  • the acoustic wave transmitter 65 is located at the end of the front surface 232 of the second frame 23 away from the rotating shaft 25, and there is a gap between the acoustic wave transmitter 65 and the second acoustic wave receiver 66.
  • the connecting line BC between 63 is parallel to the axis line L of the rotating shaft 25, that is, the connecting line BC between the acoustic wave transmitter 65 and the second acoustic wave receiver 63 is perpendicular to the triangular plane.
  • the acoustic wave The connection BC between the transmitter 65 and the second sound wave receiver 63 is perpendicular to the connection AC of the first sound wave receiver 61 and the second sound wave receiver 63, so that the connection AB, the connection AC, and the connection BC form a right angle
  • the triangle; the vertical line OA, the vertical line OC, and the connection AC of the first sound wave receiver 61 and the second sound wave receiver 63 form a triangle.
  • the method for calculating the included angle by the bending angle value measuring mechanism 60 in this embodiment is the same as the method in the first embodiment, and will not be repeated here.
  • the first acoustic wave receiver 61 and the acoustic wave transmitter 65 may be disposed at an end of the front surface 212 of the first frame 21 away from the rotating shaft 25 at intervals, and the second acoustic wave receiver 63 is disposed on the second frame 23 The front side 232 is away from the end of the shaft 25.
  • the first acoustic wave receiver 61 and the acoustic wave transmitter 65 may be respectively disposed on two opposite sides 215 of the first frame 21.
  • the first acoustic wave receiver 61 and the acoustic wave transmitter 65 are connected to each other.
  • the line is parallel to the axis line of the rotating shaft 25;
  • the second acoustic wave receiver 63 is disposed on the side surface 235 of the second frame 23 so that the first acoustic wave receiver 61, the acoustic wave transmitter 65, and the second acoustic wave receiver 63
  • the connecting line is a right triangle.
  • the second sound wave receiver 63 and the sound wave transmitter 65 may be respectively disposed on two opposite sides 235 of the second frame 23, and the connection line between the second sound wave receiver 63 and the sound wave transmitter 65 is parallel On the axis line of the rotating shaft 25; the first sound wave receiver 61 is disposed on the side surface 215 of the first frame 21, so that the first sound wave receiver 61, the sound wave transmitter 65 and the second sound wave receiver 63
  • the connecting line is a right triangle.
  • FIG. 6 is a flowchart of a measurement method of a bending angle value measuring mechanism of the present application. It is applied to a bendable electronic device having a bending angle measuring mechanism 60 and includes the following steps:
  • step 101 the distance between the first acoustic wave receiver 61, the second acoustic wave receiver 63 and the acoustic wave transmitter 65 is calculated.
  • the first time and the second time when the first sound wave receiver 61 and the second sound wave receiver 63 receive the sound wave emitted by the sound wave transmitter 65 are obtained, and according to the first time and the second time And the transmission speed of the sound wave is used to calculate the distance between the first sound wave receiver 61, the second sound wave receiver 63 and the sound wave transmitter 65.
  • step 103 the delay parameter ⁇ t of the sound wave of the bending angle measuring mechanism 60 is measured.
  • the distance of the connection line calculates the delay parameter ⁇ t of the sound wave of the bending angle measuring mechanism 60; or,
  • the delay parameter ⁇ t is the time difference between the instruction issued by the processor to the sound wave emitter and the sound wave generator.
  • the sound wave transmitter 65 transmits sound waves, the time required for the first sound wave receiver 61 or the second sound wave receiver 63 to receive the sound wave is T, the propagation speed of the sound wave is V, and the sound wave transmitter 65 reaches the first sound
  • Step 105 Calculate the length of the connection between the first sonic receiver 61 and the second sonic receiver 63 through the triangular Pythagorean law.
  • connection between the first sound wave receiver 61 and the second sound wave receiver 63 due to the connection between the first sound wave receiver 61 and the second sound wave receiver 63, the connection between the sound wave transmitter 65 and the first sound wave receiver 61, and the sound wave transmitter 65 and the second The connection between the sound wave receiver 63 forms a right triangle, the length of the connection between the sound wave transmitter 65 and the first sound wave receiver 61 and the connection between the sound wave transmitter 65 and the second sound wave receiver 63 The lengths of are all fixed values, and the length of the connection between the first sound wave receiver 61 and the second sound wave receiver 63 is obtained by the triangular Pythagorean law;
  • Step 107 the angle between the vertical line from the first acoustic wave receiver 61 to the rotating shaft 25 and the vertical line from the second acoustic wave receiver 61 to the rotating shaft 25 is calculated by the inverse cosine formula in the trigonometric function, and the included angle is The bending angle value between the first rotating screen 31 and the second rotating screen 33 of the display screen 30.
  • the first The length of the connection between the first sound wave receiver 61 and the second sound wave receiver 63 has been obtained in step 103, therefore, the inverse cosine formula in the trigonometric function is used to obtain the first sound wave receiver 61 to the rotation axis 25 The angle between the vertical line and the vertical line from the second sound wave receiver 63 to the rotating shaft 25, so as to obtain the angle value between the first rotating screen 31 and the second rotating screen 33;
  • step 108 the processor calls the corresponding user interface according to the included angle value between the first rotating screen 31 and the second rotating screen 33 and displays the called user interface on the display screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Telephone Function (AREA)

Abstract

本申请提供一种电子装置,其包括壳体,电路板,壳体包括第一框体、第二框体、显示屏,以及弯折角度值测量机构,第一框体与第二框体之间通过转轴转动连接,显示屏沿转轴弯折,弯折角度值测量机构包括第一声波接收器、第二声波接收器,以及声波发射器,第一声波接收器及第二声波接收器分别设置于第一框体及第二框体上、声波发射器设置于第一框体或第二框体上,第一声波接收器、第二声波接收器、声波发射器及处理器均电性连接于电路板,处理器通过第一声波接收器、第二声波接收器及声波发射器能计算出显示屏的两个转动屏之间的弯折角度值。本申请还提供一种所述电子装置的壳体、弯折角度值测量机构及弯折角度值测量机构的测量方法。

Description

弯折角度值测量机构、壳体、电子装置及测量方法 技术领域
本申请涉及弯折角度值测量领域,尤其涉及一种柔性显示屏的弯折角度值测量机构、设置有所述弯折角度值测量机构的壳体、设置有所述壳体的电子装置,以及所述弯折角度值测量机构的测量方法。
背景技术
随着显示屏的发展,现有技术中已经出现了设有柔性显示屏的折叠式电子装置,现有的折叠式电子设备一般通过转轴来实现柔性显示屏的折弯。现有的柔性显示屏根据其弯折角度值来调用相应的用户界面,以满足不同的交互需求。现有的折叠式显示屏的弯折角度值一般通过卡盘结构的测量机构或多种传感器组合形成的测量机构进行折叠角度值的测量。然而,所述卡盘结构的测量机构的结构复杂,所述多种传感器组合形成的测量机构的计算复杂,弯折角度值测量不精确。
发明内容
本申请提供一种结构简单、且能精确地测量出柔性显示屏的弯折角度值的弯折角度值测量机构、设置有所述弯折角度值测量机构的壳体,设置有所述壳体的电子装置,以及所述弯折角度值测量机构的测量方法。
本申请提供的一种弯折角度值测量机构,用于测量电子装置的显示屏的弯折角度值,所述显示屏包括两个转动屏,两个所述转动屏能沿转轴弯折,所述弯折角度值测量机构包括分别设置于每一所述转动屏上的第一声波接收器及第二声波接收器,以及设置两个所述转动屏其中之一上的声波发射器,所述第 一声波接收器、第二声波接收器及声波发射器电性连接于所述电子装置的处理器,所述处理器通过第一声波接收器、第二声波接收器及声波发射器能计算出显示屏的两个转动屏之间的弯折角度值。
本申请还提供一种壳体,其包括第一框体、第二框体、设置于所述第一框体与第二框体上的显示屏,以及弯折角度值测量机构,所述第一框体与第二框体之间通过转轴转动连接,所述显示屏沿所述转轴弯折,所述弯折角度值测量机构包括分别设置于每一所述转动屏上的第一声波接收器及第二声波接收器,以及设置两个所述转动屏其中之一上的声波发射器,所述弯折角度值测量机构的第一声波接收器及第二声波接收器分别设置于所述第一框体及第二框体上、声波发射器间隔于第一声波接收器或第二声波接收器设置于第一框体或第二框体上,所述第一声波接收器、第二声波接收器及声波发射器电性连接于所述电子装置的处理器,所述处理器通过第一声波接收器、第二声波接收器及声波发射器能计算出显示屏的两个转动屏之间的弯折角度值。
本申请还提供一种电子装置,其包括壳体,所述壳体内设置有电路板,所述包括第一框体、第二框体、设置于所述第一框体与第二框体上的显示屏,以及弯折角度值测量机构,所述第一框体与第二框体之间通过转轴转动连接,所述显示屏沿所述转轴弯折,所述弯折角度值测量机构包括分别设置于每一所述转动屏上的第一声波接收器及第二声波接收器,以及设置两个所述转动屏其中之一上的声波发射器,所述弯折角度值测量机构的第一声波接收器及第二声波接收器分别设置于所述第一框体及第二框体上、声波发射器间隔于第一声波接收器或第二声波接收器设置于第一框体或第二框体上,所述第一声波接收器、第二声波接收器及声波发射器电性连接于所述电子装置的处理器,所述处理器通过第一声波接收器、第二声波接收器及声波发射器能计算出显示屏的两个转动屏之间的弯折角度值。
本申请还提供一种弯折角度值的测量方法,应用于上述的电子装置,其特 征在于,包括:
计算出第一声波接收器、第二声波接收器与所述声波发射器之间的连线的距离;
通过三角形的勾股定律计算出第一声波接收器与第二声波接收器之间的连线长度;以及
通过三角函数中的反余弦公式计算出第一声波接收器至转轴的垂直线与第二声波接收器至转轴的垂直线之间的夹角,所述夹角为显示屏的第一转动屏与第二转动屏之间的弯折角度值。
本申请电子装置的弯折角度值测量机构包括第一声波接收器、第二声波接收器及,声波发射器;所述声波发射器与所述第一声波接收器或第二声波接收器间隔设置;处理器通过第一声波接收器、第二声波接收器及声波发射器能得出显示屏的两个转动屏之间的弯折角度值,并根据所述弯折角度值值控制显示屏显示相应的用户界面,从而实现电子装置的显示屏不同的折弯角度显示相应的用户界面。由于本申请的弯折角度值测量机构仅包括两个声波接收器及一个声波发射器,因此,所述弯折角度值测量机构的结构简单,测量的精度高,且能提高用户体验。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例中的电子装置的立体结构示意图。
图2是图1中的电子装置的第一声波接收器、第二声波接收器、波发射器,以及转轴的轴心线之间的连线的示意图。
图3是本申请第二实施例中的电子装置的立体结构示意图。
图4是图3中的电子装置的第一声波接收器、第二声波接收器、波发射器,以及转轴的轴心线之间的连线的示意图。
图5是本申请第三实施例中的电子装置的立体结构示意图。
图6是本申请的弯折角度值测量机构的测量方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的描述中,需要理解的是,术语“上”、“下”“左”“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是暗示或指示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
请一并参阅图1及图2,图1是本申请第一实施例中的电子装置的立体结构示意图;图2是图1中的电子装置的第一声波接收器、第二声波接收器、波发射器,以及转轴的轴心线之间的连线的示意图。本申请的第一实施例中的电子装置100包括一壳体20、设置于所述壳体20的正面上的一显示屏30、设置于所述壳体20内的一主板50,以及电性连接于所述主板50的弯折角度值测量机构60。所述壳体20包括一第一框体21、一第二框体23及连接于第一框体21与第二框体23之间的转轴25,所述第一框体21与第二框体23通过转轴25相互转动。显示屏30设置于所述第一框体21及第二框体23正面上,所述显示屏30包括位于所述第一框体21正面上的第一转动屏31,以及位于所述第二框体23正面上的第二转动屏33,所述第一转动屏31与第二转动屏33随第一框体21及第二框体23沿转轴25弯折。所述主板50上设置有处理器 52,所述处理器52根据第一转动屏31与第二转动屏33之间的弯折的夹角值来调用相应的用户界面并在所述显示屏30上显示所述用户界面,以满足不同的交互要求。所述弯折角度值测量机构60用于测量所述显示屏30的第一转动屏31与第二转动屏33之间的弯折角度值。所述弯折角度值测量机构60包括一第一声波接收器61、一第二声波接收器63及一声波发射器65;所述第一声波接收器61及第二声波接收器63可以分别设置于所述显示屏30的第一转动屏31及第二转动屏33上,或所述壳体20的第一框体21及第二框体23上;所述声波发射器65间隔于所述第一声波接收器61或第二声波接收器63设置于所述显示屏30或所述壳体20上。所述第一声波接收器61、第二声波接收器63及声波发射器65均电性连接于处理器52,所述处理器52通过第一声波接收器61、第二声波接收器63及声波发射器65能得出显示屏30的第一转动屏31与第二转动屏33之间的弯折角度值,所述处理器52再根据所述弯折角度值控制显示屏30显示不同的用户界面,以满足不同的交互要求。
本申请中的第一声波接收器61和/或第二声波接收器63为听筒,所述声波发射器65为扬声器。所述显示屏30为柔性显示屏,所述柔性显示屏的弯折区域能随第一框体21及第二框体23沿转轴25弯折。
本申请中的转轴25为实体轴,所述转轴25并非限定是实体的轴,也可以是非实体的轴,只要第一转动屏31与第二转动屏33之间能够绕该轴弯折均可以认为是转轴;所述壳体20的正面指面朝显示屏30的出光面的一面,背面指背朝显示屏30的出光面的一面。可以理解的是,第一转动屏31与第二转动屏33弯折时,第一转动屏31的出光面与第二转动屏的出光面相互邻近。
本实施例中,所述电子装置100为手机。可以理解,在其它实施例中,电子装置100可以是但不限于无线电电话、寻呼机、Web浏览器、记事簿、日历以及/或全球定位系统(GPS)接收器的PDA。
本申请电子装置100的弯折角度值测量机构60的第一声波接收器61及第 二声波接收器63可以分别设置于所述显示屏30的第一转动屏31及第二转动屏33上,或者所述壳体20的第一框体21及第二框体23上;弯折角度值测量机构60的声波发射器65间隔于所述第一声波接收器61或第二声波接收器63设置于所述显示屏30或所述壳体20上;所述处理器52通过第一声波接收器61、第二声波接收器63及声波发射器65能得出显示屏30的第一转动屏31与第二转动屏33之间的弯折角度值,并根据所述弯折角度值值控制显示屏30显示不同的用户界面。由于本申请的弯折角度值测量机构60仅包括两个声波接收器及一个声波发射器65,因此,所述弯折角度值测量机构60的结构简单,且测量的精度高,能提高用户体验。
所述声波发射器65与所述第一声波接收器61或第二声波接收器63间隔地设置于所述显示屏30的同一转动屏上,即所述声波发射器65与所述第一声波接收器61间隔地设置于显示屏30的第一转动屏31或第二转动屏33上,第二声波接收器63设置于显示屏30的第二转动屏33或第一转动屏31;或声波发射器65与所述第二声波接收器63间隔地设置于显示屏30的第一转动屏31或第二转动屏33上,第一声波接收器61设置于显示屏30的第二转动屏33或第一转动屏31。进一步的,声波发射器65与所述第一声波接收器61或第二声波接收器63可以位于同一第一转动屏31或第二转动屏33的端面或侧面上。
所述声波发射器65与所述第一声波接收器61或第二声波接收器63也可以间隔地设置于所述壳体20的第一框体21或第二框体23,即所述声波发射器65与所述第一声波接收器61间隔地设置于第一框体21或第二框体23上,第二声波接收器63设置于壳体20的第二框体23或第一框体21;或者所述声波发射器65与所述第二声波接收器63间隔地设置于第一框体21或第二框体23上,第一声波接收器61设置于壳体20的第二框体23或第一框体21。进一步的,所述声波发射器65与所述第一声波接收器61或第二声波接收器63位 于同一第一框体21或第二框体23的端面或侧面上。
与所述声波发射器65位于同一端面或同一侧面上的第一声波接收器61或第二声波接收器63用于校准出所述弯折角度值测量机构60的声波的延时参数。本实施例中,声波发射器65与第二声波接收器63位于第二框体23的同一端面上,第一声波接收器61位于第一框体21远离所述第二框体23的端面上。
本实施例中,所述第一框体21包括一正面212、端面213及相对的两侧面215,所述第一转动屏31设置于正面212上,所述端面213远离所述第二框体23。所述第一声波接收器61设置于端面213上,所述第一声波接收器61位于端面213上的A位置,所述A位置可以是所述端面213上的任一位置。所述第一声波接收器61至所述转轴25的轴心线L的垂直线OA为固定值,即端面213的A位置至垂直点O的长度是固定的,所述固定值是由第一框体21的宽度来确定。
所述第二框体23包括一正面232、端面233及相对的两侧面235,所述第二转动屏33设置于正面232上,所述端面233远离所述第一框体21。所述第二声波接收器63对应第一声波接收器61设置于端面233上,所述第二声波接收器63位于端面233的C位置上,所述第二声波接收器63至所述转轴25的轴心线L的垂直线OC与第一声波接收器61至所述转轴25的轴心线L的垂直线OA位于同一平面上,即垂直线OC与垂直线OA相交,因此,垂直线OC及垂直线BO所在的平面垂直于轴心线L。所述第二声波接收器63至所述转轴25的轴心线L的垂直线OC为固定值,即端面233的C位置至垂直点O的长度是固定的,所述固定值是由第二框体23的宽度来确定。所述第一声波接收器61与所述第二声波接收器63之间的连线AC、所述第一声波接收器61至所述转轴25的轴心线L的垂直线OA,以及所述第二声波接收器63至所述转轴25的轴心线L的垂直线OC围成一个三角形ΔAOC,所述转轴25的轴心 线L垂直于所述三角形ΔAOC,所述垂直线OA与垂直线OC之间的夹角即为第一转动屏31与第二转动屏33之间的夹角。
本实施例中,所述声波发射器65设置于第二框体23的端面233上,所述声波发射器65与所述第二声波接收器63之间有间隔。所述声波发射器65位于所述端面233上的不与第二声波接收器63重合的任意位置B,所述声波发射器65与所述第二声波接收器63之间的连线BC平行于转轴25的轴心线L,且连线BC的长度为固定值,所述固定值通过声波发射器65与第二声波接收器63之间的间隔大小确定。当所述声波发射器65发射出声波时,所述第一声波接收器61及第二声波接收器63均能接收到声波。本实施例中,所述第一声波接收器61至所述转轴25的轴心线的垂直线L的长度等于所述第二声波接收器63至所述转轴25的轴心线的垂直线的L的长度;所述声波发射器65发射出的声波为具有调幅特性的声波。
所述声波发射器65与第一声波接收器61之间的连线AB、所述声波发射器65与第二声波接收器63之间的连线BC,以及第一声波接收器61与第二声波接收器63之间的连线AC围成一个三角形ΔACB,所述三角形ΔACB为直角三角形,理由如下:
由于声波发射器65与所述第二声波接收器63之间的连线BC平行于转轴25的轴心线L,且所述轴心线L垂直于垂直线OA及垂直线OC所在的平面,因此,声波发射器65与第二声波接收器63之间的连线BC也垂直于垂直线OA及垂直线OC所在的平面;另外,第一声波接收器61与第二声波接收器63之间的连线AC位于垂直线OA及垂直线OC所在的平面上,因此,声波发射器65与第二声波接收器63之间的连线BC垂直于第一声波接收器61与第二声波接收器63之间的连线AC,即声波发射器65与第一声波接收器61之间的连线AB、所述声波发射器65与第二声波接收器63之间的连线BC,以及第一声波接收器61与第二声波接收器63之间的连线AC围成直角三角形。
使用所述弯折角度值测量机构60测量第一转动屏31与第二转动屏33之间的夹角时,第一框体21与第二框体23之间通过转轴25转动到任意一角度;开启弯折角度值测量机构60,首先处理器52计算出弯折角度值测量机构60的延时参数Δt,具体如下:
所述声波发射器65发射声波,第二声波接收器63收接到所述声波所需时间为T1,声波的传播速度为V,所述速度V为一常数340米/秒,第二声波接收器63的位置C至声波发射器65的位置B的长度n为固定值,通过第一公式:n=v×(T 1-Δt)可以得出延时参数Δt,即由第一公式转换成第二公式:
Figure PCTCN2018118496-appb-000001
得到延时参数Δt;所述延时参数Δt是处理器发出指令给声波发射器65至声波发生器65发出声波信号之间的时间差。
再通过处理器52计算出第一声波接收器61与声波发射器65之间的连线AB的长度,具体如下:
在声波发射器65发射声波时,第一声波接收器61收接到声波所需时间为T2,声波的传播速度为V,延时参数Δt,因此,通过第三公式:AB=v×(T 2-Δt),再将第二公式代入至所述第三公式中,得出第四公式AB=v×(T 2-T 1+BC/v)从而得到第一声波接收器61与声波发射器65的连线AB的长度;
再由处理器52通过三角形勾股定律得出第一声波接收器61与第二声波接收器63之间的连线AC的长度,具体如下:
由于第一声波接收器61与声波发射器65之间的连线AB的长度已得出,声波发射器65与第二声波接收器63之间的连线BC为固定值,且声波发射器65与第一声波接收器61之间的连线AB、所述声波发射器65与第二声波接收器63之间的连线BC,以及第一声波接收器61与第二声波接收器63之间的连线AC围成直角三角形,因此通过第五公式:
Figure PCTCN2018118496-appb-000002
得出第一声波接收器61与第二声波接收器63之间的连线AC的长度;
再经处理器52通过三角函数中的反余弦得出所述第一声波接收器61至转轴25的轴心线L的垂直线OA与第二声波接收器63至转轴25的轴心线L的垂直线OC之间的夹角Υ,具体如下:
由于第一声波接收器61与第二声波接收器63之间的连线AC的长度已得出,垂直线OA及OC均为固定值,通过第六公式(反余弦公式):
Figure PCTCN2018118496-appb-000003
计算夹角Υ的值,在计算的过程中,将第五公式代入第六公式中,得出第七公式:
Figure PCTCN2018118496-appb-000004
再将第四公式代入第七公式中得出第八公式:
Figure PCTCN2018118496-appb-000005
在第八公式中,垂直线OA、垂直线OC,及声波发射器65与所述第二声波接收器63之间的连线BC均为固定值、T1和T2分别为第二声波接收器63收接到声波所需时间和第一声波接收器61收接到声波所需时间,以及V为声波的传播速度,是一常数,因此,通过第八公式能得出垂直线OA与垂直线OC之间的夹角Υ,从而得出第一转动屏31与第二转动屏33之间的夹角Υ。
处理器52根据所述夹角Υ值调用相应的用户界面,以满足不同的交互需求。
上述第一转动屏31与第二转动屏33之间的夹角Υ的计算过程均通过处理器52处理完成,因此,处理速度快,精度高,且所述弯折角度值测量机构60的结构简单。
本实施例中,垂直线OA与垂直线OC的长度相同。在其他实施例中,所述垂直线OA与垂直线OC的长度可以不同。
在其他实施例中,弯折角度值测量机构60的延时参数Δt可以忽略,因此,所述处理器65可以通过第一声波接收器61及第二声波接收器63与所述声波发射器65之间的声波传输得出所述声波发射器65与第一声波接收器61之间的连线AB的距离,以及所述声波发射器65与第二声波接收器63之间的连线 BC的距离,即第一声波接收器61与声波发射器65之间的连线AB的长度等于声波的传播速度与第一声波接收器61接收到声波的时间之积;第二声波接收器63与声波发射器65之间的连线BC的长度等于声波的传播速度与第二声波接收器63接收到声波的时间之积;再通过三角形的勾股定理得出第一声波接收器61及第二声波接收器63之间的连线AC的长度;由于第一声波接收器61至转轴25的轴心线L的垂直线OA的长度及第二声波接收器63至转轴25的轴心线L的垂直线OC的长度均为固定值,因此,通过三角函数中的反余弦公式得出垂直线OA与垂直线OC之间的夹角,从而得出第一转动屏31与第二转动屏33之间的夹角值,处理器52根据所述夹角值调用相应的用户界面,以满足不同的交互需求。
请参阅图3及图4,图3是本申请第二实施例中的电子装置的立体结构示意图;图4是图3中的电子装置的第一声波接收器、第二声波接收器、波发射器,以及转轴的轴心线之间的连线的示意图。本申请的电子装置的第二实施例的结构与第一实施例的结构相似,不同之处在于:第二实施例中的声波发射器65与第一声波接收器61间隔地设置于第一框体21的端面213上。具体的,在第二实施例中,弯折角度值测量机构60也包括第一声波接收器61、第二声波接收器63及声波发射器65,第一声波接收器61设置于第一框体21的端面213上,所述第一声波接收器61可以位于所述端面213上的任意位置;所述声波发射器65位于端面213上,且所述声波发射器65与第一声波接收器61之间有间隔,声波发射器65与第一声波接收器61之间的连线AB平行于转轴25的轴心线L。第二声波接收器63对应第一声波接收器61设置于第二框体23的第二端面233上,第一声波接收器61至所述转轴25的轴心线L的垂直线OA与第二声波接收器63至所述转轴25的轴心线L的垂直线OC相连接。因此,垂直线OA、垂直线OC及第一声波接收器61与第二声波接收器63的连线AC构成的三角平面垂直于转轴25的轴心线,即所述声波发射器65与第 一声波接收器61之间的连线AB垂直于所述三角平面,进一步的,所述声波发射器65与第一声波接收器61之间的连线AB垂直于第一声波接收器61与第二声波接收器63的连线AC,使连线AB、连线AC及连接BC构成直角三角形ΔBAC。
本实施例中的弯折角度值测量机构60计算夹角的方法与第一实施例中的方法相同,即先通过三角形的勾股定律得出第一声波接收器61与第二声波接收器63的连线AC的长度;再通过三角函数中的反余弦公式得出第一声波接收器61至转轴25的轴心线L的垂直线OA与第二声波接收器63至转轴25的轴心线L的垂直线OC之间的夹角值,从而得出第一转动屏31与第二转动屏33之间的夹角值,处理器52根据所述夹角值调用相应的用户界面,以满足不同的交互需求。
在本实施例中如存在延时参数,也可以先通过处理器52计算出弯折角度值测量机构60的声波的延时参数,具体的,所述声波发射器65发射声波,第一声波接收器61收接到声波所需时间为T1,声波的传播速度为V,所述速度V为一常数340米/秒,第一声波接收器63的位置A至声波发射器65的位置B的连线AB的长度n为固定值,通过公式n=V*(T1-Δt)得出Δt=T1-AB/V,从而可以得到延时参数Δt的值;再得出第二声波接收器63与声波发射器65之间的连线BC的长度,具体的,在声波发射器65发射声波时,第二声波接收器63收接到声波所需时间为T2,声波的传播速度为V,延时参数Δt,因此,通过公式BC=V*(T2-Δt)能得到连线BC的长度;再通过三角形的勾股定律及反余弦公式能得到第一转动屏31与第二转动屏33之间的夹角值。
请参阅图5,图5是本申请第三实施例中的电子装置的立体结构示意图。本申请的电子装置的第三实施例的结构与第一实施例的结构相似,不同之处在于:第三实施例中的声波发射器65与第二声波接收器63间隔地设置于第二框体23的正面232远离转轴25的一端。具体的,在第三实施例中,第一声波接 收器61设置于第一框体21的正面212远离转轴25的一端,所述第一声波接收器61可以位于所述正面212上的任意位置;第二声波接收器63对应第一声波接收器61设置于第二框体23的正面232远离转轴25的一端,第一声波接收器61至所述转轴25的轴心线L的垂直线OA与第二声波接收器63至所述转轴25的轴心线L的垂直线OC相连接。因此,垂直线OA、垂直线OC及第一声波接收器61与第二声波接收器63的连线AC构成的三角平面垂直于转轴25的轴心线L。所述声波发射器65位于第二框体23的正面232远离转轴25的一端,且所述声波发射器65与第二声波接收器66之间有间隔,声波发射器65与第二声波接收器63之间的连线BC平行于转轴25的轴心线L,即所述声波发射器65与第二声波接收器63之间的连线BC垂直于所述三角平面,进一步的,所述声波发射器65与第二声波接收器63之间的连线BC垂直于第一声波接收器61与第二声波接收器63的连线AC,使连线AB、连线AC及连接BC构成直角三角形;垂直线OA、垂直线OC及第一声波接收器61与第二声波接收器63的连线AC构成三角形。
本实施例中的弯折角度值测量机构60计算夹角的方法与第一实施例中的方法相同,在此不再赘述。
在其他实施例中,第一声波接收器61与声波发射器65可以间隔地设置于第一框体21的正面212远离转轴25的一端,第二声波接收器63设置于第二框体23的正面232远离转轴25的一端。
在其他实施例中,第一声波接收器61与声波发射器65可以分别设置于所述第一框体21相对的两侧面215上,第一声波接收器61与声波发射器65的连线平行于转轴25的轴心线;第二声波接收器63设置于第二框体23的侧面235上,使第一声波接收器61、声波发射器65及第二声波接收器63三者之间的连线为直角三角形。
在其他实施例中,第二声波接收器63与声波发射器65可以分别设置于所 述第二框体23相对的两侧面235上,第二声波接收器63与声波发射器65的连线平行于转轴25的轴心线;第一声波接收器61设置于第一框体21的侧面215上,使第一声波接收器61、声波发射器65及第二声波接收器63三者之间的连线为直角三角形。
请参阅图6,图6是本申请的弯折角度值测量机构的测量方法的流程图,应用于具有弯折角度测理机构60的可弯折的电子装置,包括以下步骤:
步骤101,计算出第一声波接收器61、第二声波接收器63与所述声波发射器65之间的连线的距离。
具体的,获取第一声波接收器61和第二声波接收器63接收到所述声波发射器65所发出的声波的第一时间和第二时间,并根据所述第一时间和第二时间以及声波的传输速度计算出第一声波接收器61、第二声波接收器63与所述声波发射器65之间的连线的距离。
步骤103,测量出所述弯折角度测理机构60的声波的延时参数Δt。
当所述第一声波接收器61与所述声波发射器65设置于同一框体上时,根据所述第一时间及所述第一声波接收器61与所述声波发射器65之间连线的距离计算出所述弯折角度测量机构60的声波的延时参数Δt;或者,
当所述第二声波接收器63与所述声波发射器65设置于同一框体上时,根据所述第二时间及所述第二声波接收器63与所述声波发射器65之间连线的距离计算出所述弯折角度测量机构60的声波的延时参数Δt,其中,所述延时参数Δt为处理器发出指令给声波发射器至声波发生器发出声波信号之间的时间差。
即,声波发射器65发射声波,第一声波接收器61或第二声波接收器63收接到声波所需时间为T,声波的传播速度为V,所述声波发射器65至第一声波接收器61或第二声波接收器63的位置的长度n为固定值,通过公式n=V*(T-Δt)得出Δt=T-n/V,以得到延时参数Δt的值。
步骤105,通过三角形的勾股定律计算出第一声波接收器61与第二声波接收器63之间的连线长度。
具体的,由于第一声波接收器61与第二声波接收器63之间的连线、声波发射器65与第一声波接收器61之间的连线,以及声波发射器65与第二声波接收器63之间的连线围成直角三角形,声波发射器65与第一声波接收器61之间的连线的长度及声波发射器65与第二声波接收器63之间的连线的长度均为固定值,通过三角形的勾股定律得出第一声波接收器61与第二声波接收器63之间的连线的长度;
步骤107,通过三角函数中的反余弦公式计算出第一声波接收器61至转轴25的垂直线与第二声波接收器61至转轴25的垂直线之间的夹角,所述夹角为显示屏30的第一转动屏31与第二转动屏33之间的弯折角度值。
具体的,由于第一声波接收器61至转轴25的轴心线L的垂直线的长度及第二声波接收器63至转轴25的轴心线L的垂直线的长度均为固定值,第一声波接收器61与第二声波接收器63之间的连线的长度已经在步骤103得出,因此,通过三角函数中的反余弦公式得出第一声波接收器61至转轴25的垂直线与第二声波接收器63至转轴25的垂直线之间的夹角,从而得出第一转动屏31与第二转动屏33之间的夹角值;
步骤108,根据第一转动屏31与第二转动屏33之间的夹角值处理器调用相应的用户界面并在显示屏上显示所调用的用户界面。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (21)

  1. 一种弯折角度值测量机构,用于测量电子装置的显示屏的弯折角度值,所述显示屏包括两个转动屏,两个所述转动屏能沿转轴弯折,其特征在于,所述弯折角度值测量机构包括分别设置于每一所述转动屏上的第一声波接收器及第二声波接收器,以及设置两个所述转动屏其中之一上的声波发射器,所述第一声波接收器、第二声波接收器及声波发射器电性连接于所述电子装置的处理器,所述处理器通过第一声波接收器、第二声波接收器及声波发射器能计算出显示屏的两个转动屏之间的弯折角度值。
  2. 如权利要求1所述的弯折角度值测量机构,其特征在于,所述声波发射器与所述第一声波接收器或第二声波接收器间隔设置。
  3. 如权利要求2所述的弯折角度值测量机构,其特征在于,所述第一声波接收器与第二声波接收器之间的连线垂直于第一声波接收器与声波发射器之间的连线或第二声波接收器与声波发射器之间的连线。
  4. 如权利要求3所述的弯折角度值测量机构,其特征在于,所述处理器通过第一声波接收器及第二声波接收器与所述声波发射器之间的声波传输得出所述声波发射器与第一声波接收器之间的距离及所述声波发射器与第二声波接收器之间的距离,再通过勾股定理得出第一声波接收器及第二声波接收器之间的距离。
  5. 如权利要求4所述的弯折角度值测量机构,其特征在于,所述第一声波接收器至所述转轴的垂直线与所述第二声波接收器至所述转轴的垂直线位于同一平面上并相交,所述第一声波接收器至所述转轴的垂直线的长度及所述第二声波接收器至所述转轴的垂直线的长度为固定值,所述处理器通过三角函数得出所述第一声波接收器至所述转轴的垂直线与所述第二声波接收器至所述转轴的垂直线之间的夹角。
  6. 如权利要求5所述的弯折角度值测量机构,其特征在于,与所述声波 发射器位于同一端的第一声波接收器或第二声波接收器用于校准出所述弯折角度值测量机构的声波的延时参数。
  7. 如权利要求2所述的弯折角度值测量机构,其特征在于,所述声波发射器与第二声波接收器之间的距离为固定值,所述处理器根据声波发射器与第二声波接收器之间的距离、声波的速度及所述第二声波接收器获取信号的时间得出所述弯折角度值测量机构的声波的延时参数,所述延时参数用于准确得出第一声波接收器与声波发射器之间的距离。
  8. 如权利要求7所述的弯折角度值测量机构,其特征在于,所述处理器根据声波的速度与所述第一声波接收器获取声波信号的时间减去所述延时参数之后的乘积得出所述第一声波接收器与声波发射器之间的距离。
  9. 如权利要求8所述的弯折角度值测量机构,其特征在于,所述第一声波接收器、第二声波接收器及声波发射器三者的连线构成直角三角形。
  10. 如权利要求9所述的弯折角度值测量机构,其特征在于,所述处理器通过勾股定律计算出所述第一声波接收器与第二声波接收器之间的连线的长度。
  11. 如权利要求10所述的弯折角度值测量机构,其特征在于,所述第一声波接收器至所述转轴的轴心线的垂直线、所述第二声波接收器至所述转轴的轴心线的垂直线,以及所述第一声波接收器与第二声波接收器之间的连线围成三角形,所述第一声波接收器至所述转轴的轴心线的垂直线及所述第二声波接收器至所述转轴的轴心线的垂直线均为固定值,所述处理器通过三角函数中的反余弦得出两个转动屏之间的弯折角度值。
  12. 如权利要求6所述的弯折角度值测量机构,其特征在于,所述第一声波接收器至所述转轴的轴心线的垂直线的长度等于所述第二声波接收器至所述转轴的轴心线的垂直线的长度。
  13. 如权利要求1所述的弯折角度值测量机构,其特征在于,所述第一声 波接收器和/或第二声波接收器为听筒,所述声波发射器为扬声器。
  14. 如权利要求1所述的弯折角度值测量机构,其特征在于,所述声波发射器能发射出具有调幅特性的声波。
  15. 一种壳体,包括第一框体、第二框体、设置于所述第一框体与第二框体上的显示屏,以及根据权利要求1-14中任意一项中所述弯折角度值测量机构,所述第一框体与第二框体之间通过转轴转动连接,所述显示屏沿所述转轴弯折,所述弯折角度值测量机构的第一声波接收器及第二声波接收器分别设置于所述第一框体及第二框体上、声波发射器间隔于第一声波接收器或第二声波接收器设置于第一框体或第二框体上。
  16. 如权利要求15所述的壳体,其特征在于,所述第一框体包括远离第二框体的端面,所述第二框体包括远离第一框体的端面,第一声波接收器及第二声波接收器分别设置于所述第一框体的端面及第二框体的端面,所述声波发射器设置于所述第一框体的端面或第二框体的端面。
  17. 如权利要求16所述的壳体,其特征在于,所述第一框体及所述第二框体分别设置有正面,所述显示屏设置于所述第一框体及第二框体的正面上,所述第一声波接收器及第二声波接收器分别设置于所述第一框体及第二框体的正面,所述声波发射器设置于所述第一框体的正面或第二框体的正面。
  18. 一种电子装置,其特征在于,其包括根据权利要求15至17中的任意一项所述壳体,所述壳体内设置有电路板,第一声波接收器、第二声波接收器、声波发射器及处理器均电性连接于所述电路板。
  19. 一种弯折角度值的测量方法,应用于如权利要求18所述的电子装置,其特征在于,包括:
    计算出第一声波接收器、第二声波接收器与所述声波发射器之间的连线的距离;
    通过三角形的勾股定律计算出第一声波接收器与第二声波接收器之间的 连线长度;以及
    通过三角函数中的反余弦公式计算出第一声波接收器至转轴的垂直线与第二声波接收器至转轴的垂直线之间的夹角,所述夹角为显示屏的第一转动屏与第二转动屏之间的弯折角度值。
  20. 如权利要求19所述的测量方法,其特征在于,计算出第一声波接收器、第二声波接收器与所述声波发射器之间的连线的距离具体包括:
    获取第一声波接收器和第二声波接收器接收到所述声波发射器所发出的声波的第一时间和第二时间,并根据所述第一时间和第二时间以及声波的传输速度计算出第一声波接收器、第二声波接收器与所述声波发射器之间的连线的距离。
  21. 如权利要求20所述的测量方法,其特征在于,在所述通过三角形的勾股定律计算出第一声波接收器与第二声波接收器之间的连线长度之前,还包括步骤:当所述第一声波接收器与所述声波发射器设置于同一框体上时,根据所述第一时间及所述第一声波接收器与所述声波发射器之间连线的距离计算出所述弯折角度测量机构的声波的延时参数;或者,
    当所述第二声波接收器与所述声波发射器设置于同一框体上时,根据所述第二时间及所述第二声波接收器与所述声波发射器之间连线的距离计算出所述弯折角度测量机构的声波的延时参数,其中,所述延时参数为处理器发出指令给声波发射器至声波发生器发出声波信号之间的时间差。
PCT/CN2018/118496 2018-11-30 2018-11-30 弯折角度值测量机构、壳体、电子装置及测量方法 WO2020107388A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880096041.1A CN112740142A (zh) 2018-11-30 2018-11-30 弯折角度值测量机构、壳体、电子装置及测量方法
PCT/CN2018/118496 WO2020107388A1 (zh) 2018-11-30 2018-11-30 弯折角度值测量机构、壳体、电子装置及测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/118496 WO2020107388A1 (zh) 2018-11-30 2018-11-30 弯折角度值测量机构、壳体、电子装置及测量方法

Publications (1)

Publication Number Publication Date
WO2020107388A1 true WO2020107388A1 (zh) 2020-06-04

Family

ID=70852600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118496 WO2020107388A1 (zh) 2018-11-30 2018-11-30 弯折角度值测量机构、壳体、电子装置及测量方法

Country Status (2)

Country Link
CN (1) CN112740142A (zh)
WO (1) WO2020107388A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409148A (zh) * 2015-07-27 2017-02-15 三星显示有限公司 柔性显示装置
CN107678599A (zh) * 2017-10-19 2018-02-09 广东欧珀移动通信有限公司 录制进度的控制方法、装置、移动终端及存储介质
CN108184057A (zh) * 2017-12-28 2018-06-19 努比亚技术有限公司 柔性屏终端拍摄方法、柔性屏终端及计算机可读存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883345A (en) * 1997-12-23 1999-03-16 Otis Elevator Company Sonic position measurement system
CN107886736A (zh) * 2016-09-30 2018-04-06 比亚迪股份有限公司 速度测量方法、装置和车速测量系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409148A (zh) * 2015-07-27 2017-02-15 三星显示有限公司 柔性显示装置
CN107678599A (zh) * 2017-10-19 2018-02-09 广东欧珀移动通信有限公司 录制进度的控制方法、装置、移动终端及存储介质
CN108184057A (zh) * 2017-12-28 2018-06-19 努比亚技术有限公司 柔性屏终端拍摄方法、柔性屏终端及计算机可读存储介质

Also Published As

Publication number Publication date
CN112740142A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2020151568A1 (zh) 角度测量装置、电子设备以及角度测量方法
JP2018535410A (ja) 3次元空間検出システム、測位方法及びシステム
JP2005115870A (ja) プロジェクタ並びにプロジェクタの付属装置
US10222212B2 (en) Vibrator element, vibrator, gyro sensor, electronic apparatus, and moving object
TW201937456A (zh) 定位系統及定位方法
CN107764234A (zh) 快速测量两点间距离的装置及方法
Torras-Rosell et al. An acousto-optic beamformer
WO2020107388A1 (zh) 弯折角度值测量机构、壳体、电子装置及测量方法
Serafini Wall-pressure fluctuations and pressure-velocity correlations in a turbulent boundary layer
JP6185838B2 (ja) 送信機の3d座標の測定
JPH05288598A (ja) 三次元音響強度計測装置
CN109281664B (zh) 水平井产油量的预测方法和装置
US20160341546A1 (en) System and Method for Determination of Distance Between Two Points in 3-Dimensional Space
CN116346977A (zh) 音频播放方法、装置、电子设备及存储介质
CN110865170A (zh) 确定含砂量的方法、装置及存储介质
US10545197B2 (en) Self-calibrating system architecture for magnetic distortion compensation
JP5683397B2 (ja) ポインティングシステム
JP2015161659A (ja) 音源方向推定装置、及び、音源推定用画像の表示装置
WO2015109797A1 (zh) 移动终端、基于移动终端的测量方法及计算机存储介质
CN114265572A (zh) 一种电动车低速行人提示音设计方法、系统、终端及存储介质
CN202177699U (zh) 多功能测量仪
CN111427005A (zh) 一种旋转测向装置、系统及情报侦察设备
JP2014197400A (ja) 液晶表示装置、移動体通信端末装置及び液晶表示方法
TWI637188B (zh) Micro radar antenna and radar positioning method
GB2069697A (en) Acoustic polarimeter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941396

Country of ref document: EP

Kind code of ref document: A1