WO2020107236A1 - 光准直器及其形成方法、指纹传感器模组 - Google Patents

光准直器及其形成方法、指纹传感器模组 Download PDF

Info

Publication number
WO2020107236A1
WO2020107236A1 PCT/CN2018/117783 CN2018117783W WO2020107236A1 WO 2020107236 A1 WO2020107236 A1 WO 2020107236A1 CN 2018117783 W CN2018117783 W CN 2018117783W WO 2020107236 A1 WO2020107236 A1 WO 2020107236A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
transmitting
flexible
optical
Prior art date
Application number
PCT/CN2018/117783
Other languages
English (en)
French (fr)
Inventor
陆震生
朱虹
Original Assignee
上海箩箕技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海箩箕技术有限公司 filed Critical 上海箩箕技术有限公司
Priority to PCT/CN2018/117783 priority Critical patent/WO2020107236A1/zh
Publication of WO2020107236A1 publication Critical patent/WO2020107236A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the invention relates to the field of optical fingerprint recognition, and in particular to an optical collimator, a forming method thereof, and a fingerprint sensor module.
  • Fingerprint imaging recognition technology is to collect the fingerprint image of the human body through the optical fingerprint sensor, and then compare with the existing fingerprint imaging information in the system to judge whether it is correct or not, and then realize the identification technology. Due to the convenience of its use and the uniqueness of human fingerprints, fingerprint imaging recognition technology has been widely used in various fields. For example, public security bureaus and customs and other security fields, building access control systems, and consumer products such as personal computers and mobile phones and so on. Fingerprint imaging recognition technology can be implemented in various technologies such as optical imaging, capacitive imaging, and ultrasound imaging. Relatively speaking, the imaging effect of optical fingerprint imaging recognition technology is relatively good, and the equipment cost is relatively low.
  • the problem solved by the present invention is to provide an optical collimator, a forming method thereof, and a fingerprint sensor module to improve the performance of the optical collimator.
  • the present invention provides an optical collimator, which includes: a multilayer laminated flexible non-translucent layer, each of the flexible non-translucent layers has a sub-layer optical channel penetrating the flexible non-translucent layer, for The sub-layer optical channels in the flexible non-light-transmitting layers of adjacent layers, the sub-layer optical channels of the upper layer are located above the sub-layer optical channels of the next layer; the channel flexible light-transmitting layers located in each sub-layer optical channel.
  • it further includes: an interlayer flexible light-transmitting layer between the flexible non-light-transmitting layers of adjacent layers and between the flexible light-transmitting layers of adjacent channels;
  • the channel flexible light-transmitting layer is in contact with the flexible non-light-transmitting layer.
  • the material of the interlayer flexible transparent layer is the same as the material of the channel flexible transparent layer; or, the material of the interlayer flexible transparent layer is different from the material of the channel flexible transparent layer.
  • the material of the interlayer flexible light-transmitting layer includes acrylate, epoxy resin, polycarbonate, polystyrene, polyethylene terephthalate or polyimide.
  • each flexible non-light-transmitting layer is 50nm-20um.
  • the ratio of the thickness of the flexible light-transmitting layer between each layer to the thickness of each flexible non-light-transmitting layer is 1:1 to 10:1.
  • the thickness of the flexible light-transmitting layer between each layer is 50 nanometers to 200 micrometers.
  • the flexible non-light-transmitting layers of adjacent layers are in contact, and the channels of the adjacent layers are in contact with the flexible light-transmitting layers.
  • each flexible non-light-transmitting layer is 50nm-20um.
  • the aspect ratio of each sub-layer optical channel is 1:50 to 10:1.
  • the material of the flexible non-translucent layer is acrylate doped with non-translucent particles, epoxy resin doped with non-translucent particles, polycarbonate doped with non-translucent particles, doped non-translucent Light particle polystyrene, polyethylene terephthalate doped with non-light-transmitting particles, or polyimide doped with non-light-transmitting particles.
  • the non-light-transmissive particles include iron oxide powder, black dye powder or carbon powder.
  • the material of the channel flexible light-transmitting layer is acrylate, epoxy resin, polycarbonate, polystyrene, polyethylene terephthalate or polyimide.
  • each sub-layer optical channel is circular, rectangular or polygonal.
  • the total thickness of the optical collimator is 500 nm to 0.5 mm; the optical collimator has an optical channel, and the total depth-width ratio of the optical channel is 5:1 to 30:1.
  • the invention also provides a method for forming an optical collimator, which comprises: sequentially forming a multi-layer laminated flexible non-light-transmitting layer, each of the flexible non-light-transmitting layers has sub-layer optical channels penetrating the flexible non-light-transmitting layer, For the sub-layer optical channels in the flexible non-transparent layers of adjacent layers, the sub-layer optical channels of the upper layer are located above the sub-layer optical channels of the next layer; A channel flexible light-transmitting layer is formed in the sub-layer light channel of the non-light-transmitting layer.
  • the optical collimator further includes: an interlayer flexible light-transmitting layer between the flexible non-light-transmitting layers of adjacent layers and between the flexible light-transmitting layers of adjacent channels; the interlayer flexibility The light-transmitting layer is respectively in contact with the channel flexible light-transmitting layer and the flexible non-light-transmitting layer; the method of forming the optical collimator further includes: forming an interlayer flexible light-transmitting process during the process of forming the channel flexible light-transmitting layer Floor.
  • the process of forming the interlayer flexible light-transmitting layer and the channel flexible light-transmitting layer includes a spin coating process.
  • the invention also provides a fingerprint sensor module, including: an optical fingerprint sensor; a self-luminous display panel located above the optical fingerprint sensor; the optical collimator according to any one of the above, the optical collimator is located in the Between the optical fingerprint sensor and the self-luminous display panel.
  • the invention also provides a fingerprint sensor module, comprising: a self-luminous display panel; the optical collimator according to any one of the above, the optical collimator is located on the back of the self-luminous display panel.
  • the invention also provides a fingerprint sensor module, comprising: an optical fingerprint sensor; the optical collimator according to any one of the above, the optical collimator being located on the surface of the optical fingerprint sensor.
  • the present invention also provides a fingerprint sensor module, including: a substrate including a first area and a second area adjacent to the first area, the substrate includes an OLED driving circuit layer on the surface of the first area, and a The fingerprint sensing circuit layer on the surface of the second area; the RGB light emitting layer on the surface of the OLED driving circuit layer; the light collimator according to any one of the above, the light collimator on the surface of the fingerprint sensing circuit layer ; Cover protection layer covering the RGB light-emitting layer and the light collimator.
  • the present invention also provides a fingerprint sensor module, including: a substrate including a first area and a second area adjacent to the first area, the substrate includes a driving circuit layer on the surface of the first area, and a A fingerprint sensing circuit layer on the surface of the second area; a filter substrate opposite to the substrate, the filter substrate includes a filter pixel area and a light leakage area, the filter pixel area faces the driving circuit layer, and the light leakage area faces Fingerprint sensing circuit layer; the optical collimator according to any one of the above, the optical collimator being located between the fingerprint sensing circuit layer and the light leakage area.
  • the driving circuit layer is an OLED driving circuit layer
  • the fingerprint sensor module further includes: a light-emitting layer, the light-emitting layer is located between the filter pixel area and the drive circuit layer, the light emitting The layer is electrically connected to the driving circuit layer, and the light-emitting layer is adapted to emit white light.
  • liquid crystal molecules are suitable for filling between the filter pixel area and the driving circuit layer;
  • the driving circuit layer is a TFT driving circuit layer, and the driving circuit layer is suitable for driving liquid crystal molecules to turn.
  • the present invention also provides a fingerprint sensor module, including: a substrate including a first area and a second area adjacent to the first area, the substrate includes a driving circuit layer on the surface of the first area, and a The fingerprint sensing circuit layer on the surface of the second area; the optical collimator according to any one of the above, the optical collimator being located on the surface of the fingerprint sensing circuit layer.
  • the driving circuit layer is an OLED driving circuit layer; or, the driving circuit layer is a TFT driving circuit layer, and the driving circuit layer is suitable for driving liquid crystal molecules to turn.
  • the present invention also provides a fingerprint sensor module, including: a filter substrate, the filter substrate includes a filter pixel area and a light leakage area; the light collimator according to any one of the above, the light collimator is located The surface of the light leakage area of the filter substrate.
  • the optical collimator provided by the technical solution of the present invention includes a multi-layer laminated non-light-transmissive layer.
  • the sub-layer optical channel of the upper layer is located below Above the sub-layer optical channels of one layer; the channel flexible light-transmitting layer in each sub-layer optical channel.
  • the flexible non-light-transmitting layer around the sub-layer optical channel is used to block the passage of light.
  • the area of the sub-layer light channel is the area through which light passes, and is used to make the light passing through the light collimator more collimated.
  • each flexible non-light-transmitting layer can be very thin and light, which reduces the total thickness of the light collimator and makes it lighter and thinner.
  • the optical collimator based on this characteristic easily realizes the requirement of a large area.
  • the flexible non-light-transmitting layers of each layer can be thinner, so that the side wall of the sub-layer optical channel has a better shape.
  • Figure 1 is a schematic structural diagram of a fingerprint sensor module
  • FIGS. 2 to 9 are structural schematic diagrams of the forming process of the optical collimator in an embodiment of the invention.
  • 10 to 16 are schematic structural diagrams of the process of forming the optical collimator in another embodiment of the present invention.
  • 17 to 26 are fingerprint sensor modules provided by the present invention.
  • a fingerprint sensor module includes: an optical fingerprint sensor 100; a self-luminous display panel 130 located above the optical fingerprint sensor 100; and light collimation between the optical fingerprint sensor 100 and the self-luminous display panel 130 ⁇ 120.
  • the function of the light collimator 120 includes: making the light passing through the light collimator 120 more collimated.
  • the formation of the optical collimator 120 depends on a base material, and the base material is silicon wafer or glass.
  • the optical channel in the optical collimator 120 needs to have a certain aspect ratio, such as 5:1 to 30:1.
  • the thickness of the hard light collimator 120 is generally thick, which is about 0.1 mm to 0.7 mm.
  • the rigid optical collimator 120 is limited by the process and cannot be made thin in thickness.
  • the weight of the hard light collimator 120 increases, resulting in an increase in the weight of the fingerprint sensor module, which brings inconvenience to the use of the fingerprint sensor module; second, light The ability of the collimator 120 to withstand electric shock is reduced.
  • the self-luminous display panel 130 is an OLED panel
  • the purpose is to reduce the total thickness of the fingerprint sensor module and make it thinner, but the use of a large-area hard light collimator 120 results in the thickness and weight of the fingerprint sensor module no advantage.
  • the present invention provides an optical collimator, which includes: a multilayer laminated flexible non-transmissive layer, each of the flexible non-transparent layers has a sub-layer optical channel penetrating the flexible non-transparent layer, for The sub-layer optical channels in the flexible non-light-transmitting layers of adjacent layers, the sub-layer optical channels of the upper layer are located above the sub-layer optical channels of the next layer; the channel flexible light-transmitting layers located in each sub-layer optical channel.
  • the performance of the optical collimator is improved.
  • FIGS. 2 to 9 are structural schematic diagrams of the forming process of the optical collimator in an embodiment of the invention.
  • a base layer 200 is provided.
  • the material of the base layer 200 is a hard glass substrate or a hard plastic substrate.
  • a multi-layer laminated flexible non-light transmitting layer and a channel flexible light transmitting layer are formed on the base layer 200.
  • the base layer 200 is an optical fingerprint sensor or a self-luminous display panel.
  • the base layer 200 is an optical fingerprint sensor, a multilayer laminated flexible non-light-transmitting layer and a channel flexible light-transmitting layer are formed on the surface of the optical fingerprint sensor; when the base layer 200 is a light-emitting display panel, A multilayer laminated flexible non-light-transmitting layer and a channel flexible light-transmitting layer are formed on the back of the self-luminous display panel. In this case, there is no need to separate the base layer 200 and the optical collimator.
  • the multi-layer laminated flexible non-light-transmitting layer includes a first flexible non-light-transmitting layer to an Nth flexible non-light-transmitting layer, and each sub-layer optical channel is a first sub-layer optical channel to an N-th sub-layer optical channel, respectively
  • the channel flexible light-transmitting layers of the layers are respectively the first channel flexible light-transmitting layer to the Nth channel flexible light-transmitting layer.
  • N is an integer greater than or equal to 1 and less than or equal to 2. In this embodiment, N is equal to 4 as an example for description. In other embodiments, N can also take other integers.
  • a first flexible non-transparent layer 210 is formed on the surface of the base layer 200.
  • the first flexible non-transparent layer 210 has a first sub-layer optical channel 211 penetrating the first flexible non-transparent layer 210.
  • the method for forming the first flexible non-light-transmitting layer 210 includes: forming a first flexible non-light-transmitting film on the surface of the base layer 200; patterning the first flexible non-light-transmitting film to make the first flexible non-light-transmitting film form the first flexible Non-transmissive layer 210.
  • the material of the first flexible non-translucent film is acrylate doped with non-translucent particles, epoxy resin doped with non-translucent particles, polycarbonate doped with non-translucent particles, polymerized with doped non-translucent particles Styrene, polyethylene terephthalate doped with opaque particles, or polyimide doped with opaque particles.
  • the non-light-transmissive particles include iron oxide powder, black dye powder or carbon powder.
  • the method of forming the first flexible non-light-transmitting film includes a spin coating process.
  • the thickness of the first flexible non-light-transmitting layer 210 is 50nm-20um. If the thickness of the first flexible non-light-transmitting layer 210 is less than 50 nm, the first flexible non-light-transmitting layer 210 has less absorption and blocking effect on the light in the first sub-layer optical channel 211; if the first flexible non-light-transmitting layer 210 If the thickness is greater than 20um, the verticality of the sidewall of the first sub-layer optical channel 211 is poor.
  • the side wall of the first sub-layer light channel 211 is perpendicular to the top surface of the first flexible non-transmissive layer 210.
  • the aspect ratio of the first sub-layer optical channel 211 is 1:50 to 10:1.
  • the process of patterning the first flexible non-light-transmitting film to form the first flexible non-light-transmitting layer 210 is an etching process.
  • the aspect ratio of the first sub-layer optical channel 211 is 1:50 to 1:2.
  • the process of patterning the first flexible non-light-transmissive film to form the first flexible non-light-transmissive layer 210 is a nanoimprint process.
  • the aspect ratio of the first sub-layer optical channel 211 is less than or equal to 10:1, for example, 1:50 to 1:2, 1:2 to 10:1.
  • the specific process of the nano-imprinting process includes: embossing the nano-pattern with a nano-pattern on a silicon substrate coated with a polymer material with equal proportions under the conditions of high temperature and high pressure, and copying the nano-pattern with mechanical force.
  • the processing resolution of the nanoimprint process is only related to the size of the stencil pattern, and is not physically limited by the shortest exposure wavelength of optical lithography.
  • a first channel flexible light-transmitting layer 212 is formed in the first sub-layer optical channel 211 (refer to FIG. 2 ).
  • the method for forming the first channel flexible light-transmitting layer 212 includes: forming a first channel flexible light-transmitting film in the first sub-layer light channel 211 and the top surface of the first flexible non-light-transmitting layer 210; planarizing the first channel flexibility The light-transmitting film until the top surface of the first flexible non-light-transmitting layer 210 is exposed, so that the first channel flexible light-transmitting film forms the first channel flexible light-transmitting layer 212.
  • the material of the first channel flexible light-transmitting film is acrylate, epoxy resin, polycarbonate, polystyrene, polyethylene terephthalate or polyimide.
  • the method of forming the first channel flexible light-transmitting film includes a spin coating process.
  • a second flexible non-light-transmitting layer 220 is formed on the first flexible non-light-transmitting layer 210.
  • the second sub-layer optical channel 221 of the transparent layer 220 is located above the first sub-layer optical channel 211.
  • the side wall of the second sub-layer optical channel 221 is connected and aligned with the side wall of the first sub-layer optical channel 211.
  • the second flexible non-light-transmitting layer 220 is in contact with the first flexible non-light-transmitting layer 210.
  • the method for forming the second flexible non-light-transmitting layer 220 includes: forming a second flexible non-light-transmitting film on the first flexible non-light-transmitting layer 210 and the first channel flexible light-transmitting layer 212; The light film, specifically, removes the second flexible non-light-transmitting film on the first channel flexible light-transmitting layer, so that the second flexible non-light-transmitting film forms the second flexible non-light-transmitting layer 220.
  • the material and forming process of the second flexible non-light-transmitting film refer to the material and forming process of the first flexible non-light-transmitting film.
  • the thickness of the second flexible non-light-transmitting layer 220 is 50 nm to 20 um. If the thickness of the second flexible non-light-transmitting layer 220 is less than 50 nm, the second flexible non-light-transmitting layer 220 absorbs light in the second sub-layer optical channel 221 And the blocking effect is small; if the thickness of the second flexible non-transmissive layer 220 is greater than 20um, it results in poor verticality of the side wall of the second sub-layer optical channel 221.
  • the side wall of the second sub-layer light channel 221 is perpendicular to the top surface of the second flexible non-transmissive layer 220.
  • the aspect ratio of the second sub-layer optical channel 221 is 1:50 to 10:1.
  • the process of patterning the second flexible non-light-transmitting film to form the second flexible non-light-transmitting layer 220 is an etching process.
  • the second flexible non-light-transmitting layer having a thickness of 50 nm to 20 um The layer 220 and the second sub-layer optical channel 221 have an aspect ratio of 1:50 to 1:2.
  • the process cost is relatively small.
  • the process of patterning the second flexible non-light-transmissive film to form the second flexible non-light-transmissive layer 220 is a nano-imprint process.
  • the second flexible non-light-transmissive layer with a thickness of 50 nm to 20 um The aspect ratio of the light-transmitting layer 220 and the second sub-layer optical channel 221 is less than or equal to 10:1, such as 1:50 to 1:2, 1:2 to 10:1.
  • a second channel flexible light-transmitting layer 222 is formed in the second sub-layer optical channel 221 (refer to FIG. 4 ).
  • the second channel flexible transparent layer 222 is located above the first channel flexible transparent layer 212, and the second channel flexible transparent layer 222 is in contact with the first channel flexible transparent layer 212.
  • the method for forming the second channel flexible light-transmitting layer 222 includes: forming a second channel flexible light-transmitting film in the second sub-layer light channel 221 and the top surface of the second flexible non-light-transmitting layer 220; planarizing the second channel flexibility The light-transmitting film until the top surface of the second flexible non-light-transmitting layer 220 is exposed, so that the second channel flexible light-transmitting film forms the second channel flexible light-transmitting layer 222.
  • the material and forming process of the second channel flexible light-transmitting film refer to the material and forming process of the first channel flexible light-transmitting film.
  • a third flexible non-light-transmitting layer 230 is formed on the second flexible non-light-transmitting layer 220.
  • the third sub-layer optical channel 231 of the transparent layer 230 is located above the second sub-layer optical channel 221.
  • the side walls of the third sub-layer optical channel 231 are connected and aligned with the side walls of the second sub-layer optical channel 221.
  • the third flexible non-light transmitting layer 230 and the second flexible non-light transmitting layer 220 are in contact.
  • the method of forming the third flexible non-light-transmitting layer 230 includes: forming a third flexible non-light-transmitting film on the second flexible non-light-transmitting layer 220 and the second channel flexible light-transmitting layer 222; patterning the third flexible non-light-transmitting layer The optical film, specifically, removes the third flexible non-light-transmitting film on the second channel flexible light-transmitting layer 222, so that the third flexible non-light-transmitting film forms the third flexible non-light-transmitting layer 230.
  • the material and forming process of the third flexible non-light-transmitting film refer to the material and forming process of the second flexible non-light-transmitting film.
  • the thickness of the third flexible non-light-transmitting layer 230 is 50 nm to 20 um. If the thickness of the third flexible non-light-transmitting layer 230 is less than 50 nm, the third flexible non-light-transmitting layer 230 absorbs the light in the third sub-layer optical channel 231 And the blocking effect is small; if the thickness of the third flexible non-light-transmitting layer 230 is greater than 20um, the verticality of the side wall of the third sub-layer optical channel 231 is poor.
  • the side wall of the third sub-layer light channel 231 is perpendicular to the top surface of the third flexible non-transmissive layer 230.
  • the aspect ratio of the third sub-layer optical channel 231 is 1:50 to 10:1.
  • the process of patterning the third flexible non-light-transmitting film to form the third flexible non-light-transmitting layer 230 is an etching process.
  • the process of patterning the third flexible non-light-transmitting film to form the third flexible non-light-transmitting layer 230 is an etching process, the process cost is relatively small.
  • the process of patterning the third flexible non-light-transmissive film to form the third flexible non-light-transmissive layer 230 is a nano-imprint process.
  • the third flexible non-light-transmissive layer with a thickness of 50 nm to 20 um The aspect ratio of the light-transmitting layer 230 and the third sub-layer optical channel 231 is less than or equal to 10:1, such as 1:50 to 1:2, 1:2 to 10:1.
  • a third channel flexible light-transmitting layer 232 is formed in the third sub-layer optical channel 231.
  • the third channel flexible transparent layer 232 is located above the second channel flexible transparent layer 222, and the third channel flexible transparent layer 232 is in contact with the second channel flexible transparent layer 222.
  • the method for forming the third channel flexible light-transmitting layer 232 includes: forming a third channel flexible light-transmitting film in the third sub-layer light channel 231 and the top surface of the third flexible non-light-transmitting layer 230; planarizing the third channel flexibility The light-transmitting film until the top surface of the third flexible non-light-transmitting layer 230 is exposed, so that the third channel flexible light-transmitting film forms the third channel flexible light-transmitting layer 232.
  • the material and forming process of the third channel flexible light-transmitting film refer to the material and forming process of the second channel flexible light-transmitting film.
  • a fourth flexible non-light-transmitting layer 240 is formed on the third flexible non-light-transmitting layer 230.
  • the fourth sub-layer optical channel 241 of the transparent layer 240 is located above the third sub-layer optical channel 231.
  • the side walls of the fourth sub-layer optical channel 241 are connected and aligned with the side walls of the third sub-layer optical channel 231.
  • the fourth flexible non-transparent layer 240 and the third flexible non-transparent layer 230 are in contact.
  • the method for forming the fourth flexible non-light-transmitting layer 240 includes: forming a fourth flexible non-light-transmitting film on the third flexible non-light-transmitting layer 230 and the third channel flexible light-transmitting layer 232; patterning the fourth flexible non-light-transmitting layer The optical film, specifically, removes the fourth flexible non-light-transmitting film on the third channel flexible light-transmitting layer 232, so that the fourth flexible non-light-transmitting film forms the fourth flexible non-light-transmitting layer 240.
  • the material and forming process of the fourth flexible non-light-transmitting film refer to the material and forming process of the third flexible non-light-transmitting film.
  • the thickness of the fourth flexible non-light-transmitting layer 240 is 50 nm to 20 ⁇ m. If the thickness of the fourth flexible non-light-transmitting layer 240 is less than 50 nm, the fourth flexible non-light-transmitting layer 240 absorbs light in the fourth sub-layer optical channel 241 And the blocking effect is small; if the thickness of the fourth flexible non-light-transmitting layer 240 is greater than 20um, the verticality of the side wall of the fourth sub-layer optical channel 241 is poor.
  • the side wall of the fourth sub-layer light channel 241 is perpendicular to the top surface of the fourth flexible non-transmissive layer 240.
  • the aspect ratio of the fourth sub-layer optical channel 241 is 1:50 to 10:1.
  • the process of patterning the fourth flexible non-light-transmitting film to form the fourth flexible non-light-transmitting layer 240 is an etching process.
  • the fourth flexible non-light-transmitting layer having a thickness of 50 nm to 20 um The layer 240 and the fourth sub-layer optical channel 241 have an aspect ratio of 1:50 to 1:2.
  • the process cost is relatively small.
  • the process of patterning the fourth flexible non-light-transmitting film to form the fourth flexible non-light-transmitting layer 240 is a nano-imprint process.
  • the fourth flexible non-light-transmitting film with a thickness of 50 nm to 20 um The aspect ratio of the light-transmitting layer 240 and the fourth sub-layer optical channel 241 is less than or equal to 10:1, such as 1:50 to 1:2, 1:2 to 10:1.
  • the fourth channel flexible light-transmitting layer 242 is formed in the fourth sub-layer optical channel 241 (refer to FIG. 8 ).
  • the fourth channel flexible transparent layer 242 is located above the third channel flexible transparent layer 232, and the fourth channel flexible transparent layer 242 is in contact with the third channel flexible transparent layer 232.
  • the method of forming the fourth channel flexible light-transmitting layer 242 includes: forming a fourth channel flexible light-transmitting film in the fourth sub-layer light channel 241 and the top surface of the fourth flexible non-light-transmitting layer 240; planarizing the fourth channel flexibility The light-transmitting film until the top surface of the fourth flexible non-light-transmitting layer 240 is exposed, so that the fourth channel flexible light-transmitting film forms the fourth channel flexible light-transmitting layer 242.
  • the material and forming process of the fourth channel flexible light-transmitting film refer to the material and forming process of the third channel flexible light-transmitting film.
  • the flexible non-light-transmitting layer around the sub-layer optical channel is used to block the passage of light.
  • the area of the sub-layer optical channel is an area through which light passes, and is used to achieve more collimation of light passing through the light collimator. Since the material of the flexible non-light-transmitting layer is a flexible material, the thickness of each flexible non-light-transmitting layer can be very thin and light, which reduces the total thickness of the light collimator and makes it lighter and thinner. The optical collimator based on this characteristic easily realizes the requirement of a large area.
  • the flexible non-light-transmitting layers of each layer can be thinner, so that the side wall of the sub-layer optical channel has a better shape.
  • This embodiment further includes: forming a flexible light-transmitting protective layer, the flexible light-transmitting protective layer is located on the top flexible non-light-transmitting layer and the top channel flexible light-transmitting layer, specifically, the channel flexible light-transmitting layer forming the top layer
  • the process of forming a flexible light-transmitting protective layer refers to the material of the channel flexible light-transmitting layer.
  • a flexible light-transmitting protective layer is formed in the process of forming the fourth channel flexible light-transmitting layer 242.
  • the functions of the flexible light-transmitting protection include: protecting the flexible non-light-transmitting layer of the top layer and the channel flexible light-transmitting layer of the top layer, and avoiding damage to the flexible non-light-transmitting layer of the top layer.
  • each sub-layer optical channel is circular, rectangular or polygonal.
  • the edge shape of the first sub-layer optical channel 211 is circular, rectangular or polygonal
  • the edge shape of the second sub-layer optical channel 221 The edge shape is circular, rectangular or polygonal
  • the edge shape of the third sublayer light channel 231 is circular, rectangular or polygonal
  • the edge shape of the fourth sublayer light channel 241 is circular, rectangular or polygonal.
  • the material of the base layer 200 when the material of the base layer 200 is a hard glass substrate or a hard plastic substrate, it further includes: separating the base layer 200 and the optical collimator on the base layer 200.
  • this embodiment also provides an optical collimator, please refer to FIG. 9, which includes: a multi-layer laminated non-light-transmissive layer, each of the non-light-transmissive layers has sub-components penetrating the non-light-transmissive layer Layer optical channels, for the sub-layer optical channels in the flexible non-transparent layers of adjacent layers, the sub-layer optical channels of the upper layer are located above the sub-layer optical channels of the next layer; the channels in each sub-layer optical channel Flexible light-transmitting layer.
  • the multi-layer laminated flexible non-light-transmitting layer includes a first flexible non-light-transmitting layer to an Nth flexible non-light-transmitting layer, and each sub-layer optical channel is respectively a first sub-layer optical channel to an N-th sub-layer optical Channels, the channel flexible light-transmitting layers of each layer are respectively the first channel flexible light-transmitting layer to the Nth channel flexible light-transmitting layer.
  • N is an integer greater than or equal to 1 and less than or equal to 2. In this embodiment, N is equal to 4 as an example for description.
  • the flexible non-light transmitting layers of adjacent layers are in contact, specifically, the second flexible non-light transmitting layer 220 is in contact with the first flexible non-light transmitting layer 210, and the third flexible non-light transmitting layer 230 is in contact with the second flexible
  • the non-light-transmitting layer 220 is in contact, and the fourth flexible non-light-transmitting layer 240 and the third flexible non-light-transmitting layer 230 are in contact.
  • the second channel flexible transparent layer 222 is located above the first channel flexible transparent layer 212, and the second channel flexible transparent layer 222 is in contact with the first channel flexible transparent layer 212.
  • the third channel flexible transparent layer 232 is located above the second channel flexible transparent layer 222, and the third channel flexible transparent layer 232 is in contact with the second channel flexible transparent layer 222.
  • the fourth channel flexible transparent layer 242 is located above the third channel flexible transparent layer 232, and the fourth channel flexible transparent layer 242 is in contact with the third channel flexible transparent layer 232.
  • each flexible non-light-transmitting layer is 50 nm to 20 um.
  • the thickness of the first flexible non-translucent layer 210 is 50nm-20um
  • the thickness of the second flexible non-translucent layer 220 is 50nm-20um
  • the thickness of the third flexible non-translucent layer 230 is 50nm-20um.
  • the thickness of the fourth flexible non-light-transmitting layer 240 is 50 nm to 20 um.
  • the aspect ratio of each sub-layer optical channel is 1:50 to 10:1.
  • the material of the flexible non-translucent layer is acrylate doped with non-translucent particles, epoxy resin doped with non-translucent particles, polycarbonate doped with non-translucent particles, polymerized with doped non-translucent particles Styrene, polyethylene terephthalate doped with opaque particles, or polyimide doped with opaque particles.
  • the non-light-transmissive particles include iron oxide powder, black dye powder or carbon powder.
  • the material of the channel flexible light-transmitting layer is acrylate, epoxy resin, polycarbonate, polystyrene, polyethylene terephthalate or polyimide.
  • each sub-layer optical channel is circular, rectangular or polygonal.
  • the total thickness of the optical collimator is 500 nm to 0.5 mm.
  • the optical collimator has an optical channel, and the total depth to width ratio of the optical channel is 5:1 to 30:1.
  • the optical channel includes: a first sub-layer optical channel to an N-th sub-layer optical channel.
  • the significance of the total depth-to-width ratio of the optical channel from 5:1 to 30:1 is that if the total depth-to-width ratio of the optical channel is greater than 30:1, the luminous flux is small.
  • the light passing through the optical channel can be used in the optical fingerprint sensor
  • the generated graphic signal is small; if the total depth-to-width ratio of the optical channel is less than 5:1, it is difficult for the optical collimator to play a collimating role.
  • Another embodiment of the present invention also provides a method for forming an optical collimator.
  • the method for forming an optical collimator further includes: In the process, an interlayer flexible light-transmitting layer is formed.
  • the optical collimator further includes: an interlayer flexible light-transmitting layer between the flexible non-light-transmitting layers of adjacent layers and a flexible light-transmitting layer of the adjacent layer channels; the interlayer flexible light-transmitting layers are respectively It is in contact with the channel flexible light-transmitting layer and the flexible non-light-transmitting layer.
  • 10 to 16 are structural schematic diagrams of the forming process of the optical collimator in another embodiment of the present invention.
  • FIG. 10 is a schematic diagram based on FIG. 2, a first channel flexible light-transmitting layer 312 is formed in the first sub-layer light channel 211, and a first channel is formed in the process of forming the first channel flexible light-transmitting layer 312 ⁇ Between the flexible light-transmitting layer 310.
  • the method of forming the first interlayer flexible light-transmitting layer 310 and the first channel flexible light-transmitting layer 312 includes a spin coating process. Forming the first interlayer flexible light-transmitting layer 310 and the first channel flexible light-transmitting layer 312 in a spin coating process simplifies the process steps.
  • the material of the first interlayer flexible light-transmitting layer 310 is the same as the material of the first channel flexible light-transmitting layer 312. In other embodiments, the material of the first interlayer flexible transparent layer is different from the material of the first channel flexible transparent layer.
  • the material of the first interlayer flexible light-transmitting layer 310 includes acrylate, epoxy, polycarbonate, polystyrene, polyethylene terephthalate, or polyimide.
  • the ratio of the thickness of the first interlayer flexible light-transmitting layer 310 to the thickness of the first flexible non-light-transmitting layer is 1:1 to 10:1.
  • the thickness of the first interlayer flexible light-transmitting layer 310 is 50 nm to 200 ⁇ m. If the thickness of the first interlayer flexible light-transmitting layer 310 is too large, more light easily passes through the first interlayer flexible light-transmitting layer 310 laterally, and there is more stray light, which is not conducive to the collimation of the optical collimator; if If the thickness of the first interlayer flexible light-transmitting layer 310 is too small, it is not conducive to reducing the number of flexible non-light-transmitting layers.
  • a second flexible non-light-transmitting layer 320 is formed on the first interlayer flexible light-transmitting layer 310, and the second flexible non-light-transmitting layer 320 has a second sub-layer light penetrating through the second flexible non-light-transmitting layer 320.
  • the channel 321, and the second sub-layer optical channel 321 is located above the first sub-layer optical channel.
  • a second channel flexible light-transmitting layer 322 is formed in the second sub-layer light channel 321, and a second channel is formed in the process of forming the second channel flexible light-transmitting layer 322 ⁇ Between the flexible light-transmitting layer 330.
  • the top surface of the first interlayer flexible transparent layer 310 is in contact with the second flexible non-transparent layer 320 and the second channel flexible transparent layer 322, and the bottom surface of the first interlayer flexible transparent layer 310 is in contact with The first flexible non-light transmitting layer 210 is in contact with the first channel flexible light transmitting layer 312.
  • the method of forming the second interlayer flexible light-transmitting layer 330 and the second channel flexible light-transmitting layer 322 includes a spin coating process. Forming the second interlayer flexible light-transmitting layer 330 and the second channel flexible light-transmitting layer 322 in a spin coating process simplifies the process steps.
  • the material of the second interlayer flexible light-transmitting layer 330 refers to the material of the first interlayer flexible light-transmitting layer 310.
  • the ratio of the thickness of the second interlayer flexible light-transmitting layer 330 to the thickness of the second flexible non-light-transmitting layer 320 is 1:1 to 10:1.
  • the thickness of the second interlayer flexible light-transmitting layer 330 is 50 nm to 200 ⁇ m. If the thickness of the second interlayer flexible light-transmitting layer 330 is too large, more light easily passes through the second interlayer flexible light-transmitting layer 330 laterally, and there is more stray light, which is not conducive to the collimation of the optical collimator; If the thickness of the second interlayer flexible light-transmitting layer 330 is too small, it is not conducive to reducing the number of flexible non-light-transmitting layers.
  • a third flexible non-light-transmitting layer 340 is formed on the second interlayer flexible light-transmitting layer 330, and the third flexible non-light-transmitting layer 340 has a third sub-layer light penetrating through the third flexible non-light-transmitting layer 340.
  • Channel 341, and the third sub-layer optical channel 341 is located above the second sub-layer optical channel.
  • a third channel flexible light-transmitting layer 342 is formed in the third sub-layer optical channel 341, and a third channel is formed in the process of forming the third channel flexible light-transmitting layer 342 ⁇ Between the flexible light-transmitting layer 350.
  • the top surface of the second interlayer flexible transparent layer 330 is in contact with the third flexible non-transparent layer 340 and the third channel flexible transparent layer 342, and the bottom surface of the second interlayer flexible transparent layer 330 is in contact with The second flexible non-light-transmitting layer 320 is in contact with the second channel flexible light-transmitting layer 322.
  • the method for forming the third interlayer flexible light-transmitting layer 350 and the third channel flexible light-transmitting layer 342 includes a spin coating process, and the third interlayer flexible light-transmitting layer 350 and the third channel flexible light-transmitting layer are formed in a spin coating process 342, the process steps are simplified.
  • the material of the third interlayer flexible light-transmitting layer 350 refers to the material of the first interlayer flexible light-transmitting layer 310.
  • the ratio of the thickness of the third interlayer flexible light-transmitting layer 350 to the thickness of the third flexible non-light-transmitting layer 340 is 1:1 to 10:1.
  • the thickness of the third interlayer flexible light-transmitting layer 350 is 50 nm to 200 ⁇ m. If the thickness of the third interlayer flexible light-transmitting layer 350 is too large, more light easily passes through the third interlayer flexible light-transmitting layer 350 laterally, and there is more stray light, which is not conducive to the collimation of the optical collimator; if If the thickness of the third interlayer flexible light-transmitting layer 350 is too small, it is not conducive to reducing the number of flexible non-light-transmitting layers.
  • a fourth flexible non-light-transmitting layer 360 is formed on the third interlayer flexible light-transmitting layer 350, and the fourth flexible non-light-transmitting layer 360 has a fourth sub-layer light penetrating through the fourth flexible non-light-transmitting layer 360.
  • Channel 361, and the fourth sub-layer optical channel 361 is located above the third sub-layer optical channel.
  • a fourth channel flexible light-transmitting layer 362 is formed in the fourth sub-layer light channel 361.
  • the top surface of the third interlayer flexible transparent layer 350 is in contact with the fourth flexible non-translucent layer 360 and the fourth channel flexible transparent layer 362, and the bottom surface of the third interlayer flexible transparent layer 350 is in contact with The third flexible non-light-transmitting layer 340 is in contact with the third channel flexible light-transmitting layer 342.
  • the method further includes: forming a flexible light-transmitting protective layer in the process of forming the top channel flexible light-transmitting layer, the flexible light-transmitting protective layer being located on the top flexible non-light-transmitting layer and the top layer channel flexible light-transmitting layer on.
  • the material of the flexible light-transmitting protective layer refer to the material of the first interlayer flexible light-transmitting layer 310.
  • the formation process of the interlayer flexible light-transmitting layer of each layer does not need to be additionally performed, and since the interlayer flexible light-transmitting layer is formed, the flexible non-transmissive layer can be reduced when the total thickness of the optical collimator is constant.
  • the number of layers of the optical layer, and correspondingly, the number of etching processes to form the optical channels of the sub-layers is also reduced, which simplifies the process steps and reduces costs.
  • this embodiment also provides an optical collimator, please refer to FIG. 16, which includes: a multi-layer laminated flexible non-light-transmitting layer, each of the flexible non-light-transmitting layers has a component penetrating the flexible non-light-transmitting layer Layer optical channels, for the sub-layer optical channels in the flexible non-transparent layers of adjacent layers, the sub-layer optical channels of the upper layer are located above the sub-layer optical channels of the next layer; the channels in each sub-layer optical channel A flexible light-transmitting layer; an interlayer flexible light-transmitting layer between the flexible non-light-transmitting layers of adjacent layers and the flexible light-transmitting layers of adjacent channels; the interlayer flexible light-transmitting layers are respectively connected to the channels The flexible light-transmitting layer is in contact with the flexible non-light-transmitting layer.
  • the multi-layer laminated flexible non-light-transmitting layer includes a first flexible non-light-transmitting layer to an Nth flexible non-light-transmitting layer, and each sub-layer optical channel is a first sub-layer optical channel to an N-th sub-layer optical channel, respectively
  • the channel flexible light-transmitting layers of the layers are respectively the first channel flexible light-transmitting layer to the Nth channel flexible light-transmitting layer.
  • N is an integer greater than or equal to 1 and less than or equal to 2.
  • the material of the interlayer flexible transparent layer is the same as the material of the channel flexible transparent layer; or, the material of the interlayer flexible transparent layer is different from the material of the channel flexible transparent layer.
  • the material of the interlayer flexible light-transmitting layer includes acrylate, epoxy resin, polycarbonate, polystyrene, polyethylene terephthalate or polyimide.
  • each flexible non-light-transmitting layer is 50 nm to 20 um.
  • the ratio of the thickness of the flexible light-transmitting layer between each layer to the thickness of each flexible non-light-transmitting layer is 1:1 to 10:1.
  • the thickness of the flexible light-transmitting layer between each layer is 50 nm to 200 ⁇ m.
  • the total thickness of the optical collimator is 500 nm to 0.5 mm.
  • the optical collimator has an optical channel, and the total depth to width ratio of the optical channel is 5:1 to 30:1.
  • the optical channel includes a first sub-layer optical channel to an N-th sub-layer optical channel, and a part of the interlayer flexible light-transmitting layer between adjacent sub-layer optical channels.
  • FIG. 17 another embodiment of the present invention also provides a fingerprint sensor module, please refer to FIG. 17, including: an optical fingerprint sensor 400; a self-luminous display panel 410 located above the optical fingerprint sensor 400; and a light collimator 420 The light collimator 420 is located between the optical fingerprint sensor 400 and the self-luminous display panel 410.
  • optical collimator 420 The structure of the optical collimator 420 refers to the foregoing embodiment and will not be described in detail.
  • the optical fingerprint sensor 400 includes a light-transmitting substrate and a fingerprint sensing circuit layer on the surface of the light-transmitting substrate.
  • the light-transmitting substrate is a glass substrate or a PI substrate.
  • the fingerprint sensing circuit layer is located between the optical collimator 420 and the transparent substrate.
  • the formation process of the fingerprint sensor module includes: providing an optical fingerprint sensor 400 and a self-luminous display panel 410; forming an optical collimator 420 on the surface of the optical fingerprint sensor 400; and forming an optical fingerprint sensor 400 on the surface After the light collimator 420 is formed on the surface, the self-luminous display panel 410 and the light collimator 420 are bonded together.
  • optical collimator 420 is formed on the surface of the optical fingerprint sensor 400 and the optical fingerprint sensor 400 and the optical collimator 420 are in contact, there is no need to use an adhesive layer to bond the optical fingerprint sensor 400 and the optical collimator 420 to avoid the optical fingerprint sensor 400 and light
  • a gap layer and a glue layer are formed between the collimator 420, which can prevent light from being reflected between the optical fingerprint sensor 400 and the optical collimator 420, thereby improving light utilization efficiency and image clarity.
  • the formation process of the fingerprint sensor module includes: providing an optical fingerprint sensor 400 and a self-luminous display panel 410; forming a light collimator 420 on the back of the self-luminous display panel 410; and forming a self-luminous display panel 410 After the optical collimator 420 is formed on the back of the camera, the optical fingerprint sensor 400 and the optical collimator 420 are attached together.
  • the light collimator 420 is formed on the back of the self-luminous display panel 410 and the back of the self-luminous display panel 410 is in contact with the light collimator 420, there is no need to use an adhesive layer to bond the self-luminous display panel 410 and the light collimator 420 to avoid
  • the gap layer and the glue layer formed between the self-luminous display panel 410 and the light collimator 420 can prevent light from being reflected between the self-luminous display panel 410 and the light collimator 420, thereby improving light utilization efficiency and image Clarity.
  • the formation process of the fingerprint sensor module includes: providing an optical fingerprint sensor 400 and a self-luminous display panel 410; providing a light collimator 420; and comparing the light collimator 420 with the self-luminous display panel 410 respectively
  • the back surface is attached to the optical fingerprint sensor 400.
  • FIG. 18 Another embodiment of the present invention also provides a fingerprint sensor module, please refer to FIG. 18, including: a self-luminous display panel 500; a light collimator 510, the light collimator 510 is located in the self-luminous display panel 500 back.
  • the light collimator 510 is in contact with the back of the self-luminous display panel 500.
  • optical collimator 510 The structure of the optical collimator 510 refers to the foregoing embodiment and will not be described in detail.
  • the light collimator 510 is located on the entire back surface or part of the back surface of the self-luminous display panel 500. In FIG. 18, the light collimator 510 is located on the entire back surface of the self-luminous display panel 500 as an example for description.
  • the method for forming the above-mentioned fingerprint sensor module includes: providing a self-luminous display panel 500; forming a light collimator 510 on the back of the self-luminous display panel 500.
  • the method of forming the optical collimator 510 refers to the content of the foregoing embodiment, and will not be described in detail.
  • FIG. 19 Another embodiment of the present invention further provides a fingerprint sensor module. Please refer to FIG. 19, which includes: an optical fingerprint sensor 600; an optical collimator 610 located on the surface of the optical fingerprint sensor 600.
  • the optical collimator 610 is in contact with the surface of the optical fingerprint sensor 600.
  • optical collimator 610 The structure of the optical collimator 610 refers to the foregoing embodiment and will not be described in detail.
  • the method for forming the above-mentioned fingerprint sensor module includes: providing an optical fingerprint sensor 600; and forming a light collimator 610 on the surface of the optical fingerprint sensor 600.
  • the method of forming the optical collimator 610 refers to the content of the foregoing embodiment, and will not be described in detail.
  • a substrate 700 the substrate 700 includes a first area A1 and a second area B1 adjacent to the first area A1, the substrate 700 includes A driving circuit layer 701 on the surface of the first area A1, and a fingerprint sensing circuit layer 702 on the surface of the second area B1; a filter substrate 720 opposite to the substrate 700, the filter substrate 720 includes a filter pixel area A2 and a light leakage area B2, the filtered pixel area A2 faces the driving circuit layer 701, the light leakage area B2 faces the fingerprint sensing circuit layer 702; an optical collimator 710, the optical collimator 710 is located on the fingerprint sensor Between the test circuit layer 702 and the light leakage area B2.
  • the driving circuit layer 701 and the fingerprint sensing circuit layer 702 are located on the same side of the substrate 700.
  • the driving circuit layer 701 is an OLED driving circuit layer; the fingerprint sensor module further includes: a light emitting layer 730, the light emitting layer 730 is located in the filter pixel area A2 and the driving circuit layer 701 Between them, the light emitting layer 730 and the driving circuit layer 701 are electrically connected.
  • the driving circuit layer 701 is suitable for driving the light emitting layer 730 to emit light.
  • the light-emitting layer 730 is suitable for emitting white light.
  • the functions of the light collimator 710 include: collimating light; blocking light emitted by the light emitting layer 730 from directly entering the fingerprint sensing circuit layer 702; and playing a supporting role.
  • the filter pixel area A2 includes red filter pixels, blue filter pixels, and green filter pixels.
  • the light leakage area B2 is transparent white, and the light leakage area B2 has no filtering effect on light.
  • it further includes: a light-transmitting fill layer 750 between the light-emitting layer 730 and the filter pixel area A2.
  • the light-transmitting fill layer 750 and the light collimator 710 are formed in a set of processes, specifically In the process of forming the flexible light-transmitting layer of each channel, the light-transmitting filling layer 750 is formed.
  • the light-emitting layer 730 When the finger contacts the filter substrate 720, the light-emitting layer 730 emits light to the interface between the finger and the filter substrate 720, reflects it, enters the light collimator 710, and then enters the fingerprint sensing circuit layer 702.
  • the interface between the transparent filling layer 750 and the filter pixel area A2 is flush with the interface between the optical collimator 710 and the light leakage area B2.
  • the fingerprint sensor module does not include a light-transmitting filling layer.
  • the fingerprint sensing circuit layer 702 is fabricated in the substrate with the driving circuit layer 701, so that there is no need to separately manufacture an optical fingerprint sensor, and the thickness of the fingerprint sensor module can be reduced.
  • a method for forming the above-mentioned fingerprint sensor module includes: providing a substrate 700 including a first area A1 and a second area B1 adjacent to the first area A1, the substrate 700 including the first area A1 A driver circuit layer 701 on the surface of A1, and a fingerprint sensing circuit layer 702 on the surface of the second region B1; a light emitting layer 730 is formed on the surface of the driver circuit layer 701; after the light emitting layer 730 is formed, on the surface of the fingerprint sensing circuit layer 702 Forming a light collimator 710a; providing a filter substrate 720, the filter substrate 720 includes a filter pixel area A2 and a light leakage area B2; after forming the light collimator 710a, the filter substrate 720 and the substrate 700 are bonded Together, the light collimator 710a is located between the fingerprint sensing circuit layer 702 and the light leakage area B2, and the filtered pixel area A2 faces the driving circuit layer 701.
  • the fingerprint sensor module further includes a light-transmitting filling layer
  • a light-transmitting filling layer is formed on the surface of the light-emitting layer 730 during the process of forming the light collimator 710a on the surface of the fingerprint sensing circuit layer 702.
  • Another method of forming the above-mentioned fingerprint sensor module includes: providing a substrate 700 including a first area A1 and a second area B1 adjacent to the first area A1, the substrate 700 including a surface located on the first area A1 The driving circuit layer 701 and the fingerprint sensing circuit layer 702 on the surface of the second region B1; forming a light emitting layer 730 on the surface of the driving circuit layer 701; providing a filter substrate 720 including the filter pixel area A2 And the light leakage area B2; forming a light collimator 710b on the surface of the light leakage area B2 of the filter substrate 720; after that, the filter substrate 720 and the substrate 700 are bonded together, the light collimator 710b is located in the fingerprint sensing Between the circuit layer 702 and the light leakage region B2, the filtered pixel region A2 faces the driving circuit layer 701.
  • a light-transmitting fill layer is formed on the surface of the filter pixel area A2 of the filter substrate 720 during the process of forming the light collimator 710b on the surface of the light leakage area B2 of the filter substrate 720.
  • a substrate 700 the substrate 700 includes a first area A1 and a second area B1 adjacent to the first area A1, the The substrate 700 includes a driving circuit layer 701 on the surface of the first area A1, and a fingerprint sensing circuit layer 702 on the surface of the second area B1; an optical collimator 710a, the optical collimator 710a is located on the fingerprint sensing circuit layer 702 s surface.
  • the driving circuit layer 701 is an OLED driving circuit layer.
  • the fingerprint sensor module further includes: a light-emitting layer 730 on the surface of the driving circuit layer 701; and a light-transmitting filling layer 750a on the surface of the light-emitting layer 730.
  • a filter substrate 720 the filter substrate 720 includes a filter pixel area A2 and a light leakage area B2; light collimator 710b The light collimator 710b is located on the surface of the light leakage area B2 of the filter substrate 720.
  • the fingerprint sensor module further includes: a light-transmitting filling layer 750b on the surface of the filter pixel area A2 of the filter substrate 720.
  • FIG. 23 Another embodiment of the present invention also provides a fingerprint sensor module.
  • the functions of the light collimator 810 include: collimating the light; blocking the light transmitted by the liquid crystal molecules to directly illuminate the fingerprint sensing circuit layer 802; playing a supporting role.
  • the finger touches the filter substrate 820, and the light transmitted by the liquid crystal molecules irradiates the interface between the finger and the filter substrate 720, enters the optical collimator 710 after being reflected at the interface between the finger and the filter substrate 720, and then enters the fingerprint sensing circuit layer 702 .
  • it further includes: a light-transmitting filling layer 850 located between the filter pixel area C2 and the driving circuit layer 801, the light-transmitting filling layer 850 and the optical collimator 810 are formed in a set of manufacturing processes, Specifically, in the process of forming the flexible light-transmitting layer of each channel in the optical collimator, the light-transmitting filling layer 850 is formed.
  • the fingerprint sensor module does not include a light-transmitting filling layer.
  • a method of forming the above-mentioned fingerprint sensor module includes: providing a substrate 800 including a first area C1 and a second area D1 adjacent to the first area C1, the substrate 800 including a surface located on the surface of the first area C1 A driving circuit layer 801 and a fingerprint sensing circuit layer 802 on the surface of the second region D1; forming a light collimator 810a on the surface of the fingerprint sensing circuit layer 802; providing a filter substrate 820, the filter substrate 820 includes Filter pixel area C2 and light leakage area D2; after forming the light collimator 810a, the filter substrate 820 and the substrate 800 are bonded together, the light collimator 810a is located on the fingerprint sensing circuit layer 802 and Between the light leakage regions D2, the filter pixel region C2 faces the driving circuit layer 801.
  • the fingerprint sensor module further includes a light-transmitting filling layer
  • a light-transmitting filling layer is formed on the surface of the driving circuit layer 801 during the process of forming the optical collimator 810a on the surface of the fingerprint sensing circuit layer 702.
  • Another method for forming the above-mentioned fingerprint sensor module includes: providing a substrate 800 including a first area C1 and a second area D1 adjacent to the first area C1, the substrate 800 including a surface located on the first area C1
  • a light collimator 810b is formed on the surface of the light leakage region D2; after that, the filter substrate 820 and the substrate 800 are bonded together, the light collimator 810b is located between the fingerprint sensing circuit layer 802 and the light leakage region D2
  • the filter pixel area C2 faces the driving circuit layer 801.
  • a light-transmitting fill layer is formed on the surface of the filter pixel area C2 of the filter substrate 820 during the process of forming the light collimator 810b on the surface of the light-leakage area D2 of the filter substrate 820.
  • a substrate 800 the substrate 800 includes a first area C1 and a second area D1 adjacent to the first area C1, the The substrate 800 includes a driving circuit layer 801 on the surface of the first region C1 and a fingerprint sensing circuit layer 802 on the surface of the second region D1.
  • the driving circuit layer 801 is a TFT driving circuit layer, and the driving circuit layer is suitable for driving The liquid crystal molecules turn; the light collimator 810a is located on the surface of the fingerprint sensing circuit layer 802.
  • the fingerprint sensor module further includes: a transparent filling layer 850a on the surface of the driving circuit layer 801. Or, the fingerprint sensor module does not include a light-transmitting filling layer.
  • a filter substrate 820 the filter substrate 820 includes a filter pixel area C2 and a light leakage area D2; a light collimator 810b The light collimator 810b is located on the surface of the light leakage region D2 of the filter substrate 820.
  • the fingerprint sensor module further includes: a transparent filling layer 850b on the surface of the filter pixel area C2 of the filter substrate 820. Or, the fingerprint sensor module does not include a light-transmitting filling layer.
  • FIG. 26 includes: a substrate 900 including a first area E1 and a second area F1 adjacent to the first area E1, the substrate 900 includes an OLED driving circuit layer 901 on the surface of the first region E1, and a fingerprint sensing circuit layer 902 on the surface of the second region F1; an RGB light emitting layer 930 on the surface of the OLED driving circuit layer 901; and a light collimator 910.
  • the light collimator 910 is located on the surface of the fingerprint sensing circuit layer 902; a cover plate protection layer 940 covering the RGB light emitting layer 930 and the light collimator 910.
  • the RGB light emitting layer 930 is located between the cover plate protection layer 940 and the OLED driving circuit layer 901, and the light collimator 910 is located between the cover plate protection layer 940 and the fingerprint sensing circuit layer 902.
  • the OLED driving circuit layer 901 and the fingerprint sensing circuit layer 902 are located on the same side of the substrate 900.
  • the RGB light emitting layer 930 and the OLED driving circuit layer 901 are electrically connected.
  • the OLED driving circuit layer 901 is suitable for driving the RGB light emitting layer 930 to emit light.
  • the functions of the light collimator 910 include: collimating light; blocking light emitted by the RGB light emitting layer 930 from directly entering the fingerprint sensing circuit layer 902; and playing a supporting role.
  • the RGB light emitting layer 930 emits light to the interface between the finger and the cover plate protection layer 940, and then enters the light collimator 910, and then enters the fingerprint sensing circuit layer 902.
  • it further includes: a light-transmitting filling layer 950 between the RGB light-emitting layer 930 and the cover plate protection layer 940, the light-transmitting filling layer 950 and the light collimator 910 are formed in a set of processes, specifically In the process of forming the flexible light-transmitting layer of each channel, the light-transmitting filling layer 950 is formed.
  • the fingerprint sensor module does not include a light-transmitting filling layer.
  • a method of forming the above-mentioned fingerprint sensor module includes: providing a substrate 900 including a first area E1 and a second area F1 adjacent to the first area E1, the substrate 900 including the first area E1
  • a light collimator 910 is formed on the surface of the circuit layer 902; thereafter, a cover plate protective layer is formed on the light collimator 910 and the RGB light emitting layer 930.
  • the fingerprint sensor module further includes a light-transmitting filling layer, in the process of forming the light collimator 910 on the surface of the fingerprint sensing circuit layer 902, a light-transmitting filling layer 950 is formed on the surface of the RGB light-emitting layer 930; a cover plate protection layer 940 is also located on the light-transmissive filling layer 950.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种光准直器及其形成方法、指纹传感器模组,光准直器包括:多层层叠的柔性非透光层,各层柔性非透光层中均具有贯穿柔性非透光层的子层光通道,对于相邻层的柔性非透光层中的子层光通道,上一层的子层光通道位于下一层的子层光通道的上方;位于各子层光通道中的通道柔性透光层。所述光准直器的性能得到提高。

Description

光准直器及其形成方法、指纹传感器模组 技术领域
本发明涉及光学指纹识别领域,尤其涉及一种光准直器及其形成方法、指纹传感器模组。
背景技术
指纹成像识别技术,是通过光学指纹传感器采集到人体的指纹图像,然后与系统里的已有指纹成像信息进行比对,来判断正确与否,进而实现身份识别的技术。由于其使用的方便性,以及人体指纹的唯一性,指纹成像识别技术已经大量应用于各个领域。比如公安局和海关等安检领域、楼宇的门禁系统、以及个人电脑和手机等消费品领域等等。指纹成像识别技术的实现方式有光学成像、电容成像、超声成像等多种技术。相对来说,光学指纹成像识别技术成像效果相对较好,设备成本相对较低。
然而,现有的指纹传感器模组的性能较差。
发明内容
本发明解决的问题是提供一种光准直器及其形成方法、指纹传感器模组,以提高光准直器的性能。
为解决上述问题,本发明提供一种光准直器,包括:多层层叠的柔性非透光层,各层柔性非透光层中均具有贯穿柔性非透光层的子层光通道,对于相邻层的柔性非透光层中的子层光通道,上一层的子层光通道位于下一层的子层光通道的上方;位于各子层光通道中的通道柔性透光层。
可选的,还包括:位于相邻层的柔性非透光层之间、以及相邻层通道柔性透光层之间的层间柔性透光层;所述层间柔性透光层分别与所述通道柔性透光层和所述柔性非透光层接触。
可选的,所述层间柔性透光层的材料与所述通道柔性透光层的材料相同;或者,所述层间柔性透光层的材料与所述通道柔性透光层的材料不同。
可选的,所述层间柔性透光层的材料包括丙烯酸酯、环氧树脂、聚碳酸酯、聚苯乙烯、聚对苯二甲酸乙二酯或聚酰亚胺。
可选的,各层柔性非透光层的厚度为50nm~20um。
可选的,各层间柔性透光层的厚度与各柔性非透光层的厚度之比为1:1~10:1。
可选的,各层间柔性透光层的厚度为50纳米~200微米。
可选的,相邻层的柔性非透光层接触,相邻层的通道柔性透光层接触。
可选的,各层柔性非透光层的厚度为50nm~20um。
可选的,各子层光通道的深宽比为1:50~10:1。
可选的,所述柔性非透光层的材料为掺杂非透光粒子的丙烯酸酯、掺杂非透光粒子的环氧树脂、掺杂非透光粒子的聚碳酸酯、掺杂非透光粒子的聚苯乙烯、掺杂非透光粒子的聚对苯二甲酸乙二酯、或者掺杂非透光粒子的聚酰亚胺。
可选的,所述非透光粒子包括氧化铁粉、黑色染料粉或碳粉。
可选的,所述通道柔性透光层的材料为丙烯酸酯、环氧树脂、聚碳酸酯、聚苯乙烯、聚对苯二甲酸乙二酯或聚酰亚胺。
可选的,各子层光通道的边缘形状为圆形、矩形或多边形。
可选的,所述光准直器的总厚度为500纳米至0.5毫米;所述光准直器中具有光通道,光通道的总深宽比为5:1~30:1。
本发明还提供一种光准直器的形成方法,包括:依次形成多层层叠的柔性非透光层,各层柔性非透光层中均具有贯穿柔性非透光层的 子层光通道,对于相邻层的柔性非透光层中的子层光通道,上一层的子层光通道位于下一层的子层光通道的上方;在每层柔性非透光层形成之后,在柔性非透光层的子层光通道中形成通道柔性透光层。
可选的,所述光准直器还包括:位于相邻层的柔性非透光层之间、以及相邻层通道柔性透光层之间的层间柔性透光层;所述层间柔性透光层分别与所述通道柔性透光层和所述柔性非透光层接触;所述光准直器的形成方法还包括:在形成通道柔性透光层的过程中形成层间柔性透光层。
可选的,形成层间柔性透光层和通道柔性透光层的工艺包括旋涂工艺。
本发明还提供一种指纹传感器模组,包括:光学指纹传感器;位于所述光学指纹传感器上方的自发光显示面板;上述任意一项所述的光准直器,所述光准直器位于所述光学指纹传感器和所述自发光显示面板之间。
本发明还提供一种指纹传感器模组,包括:自发光显示面板;上述任意一项所述的光准直器,所述光准直器位于所述自发光显示面板的背面。
本发明还提供一种指纹传感器模组,包括:光学指纹传感器;上述任意一项所述的光准直器,所述光准直器位于所述光学指纹传感器的表面。
本发明还提供一种指纹传感器模组,包括:基板,所述基板包括第一区和与第一区邻接的第二区,所述基板包括位于第一区表面的OLED驱动电路层、以及位于第二区表面的指纹感测电路层;位于OLED驱动电路层表面的RGB发光层;上述任意一项所述的光准直器,所述光准直器位于所述指纹感测电路层的表面;覆盖RGB发光层和光准直器的盖板保护层。
本发明还提供一种指纹传感器模组,包括:基板,所述基板包括 第一区和与第一区邻接的第二区,所述基板包括位于第一区表面的驱动电路层、以及位于第二区表面的指纹感测电路层;与所述基板相对的滤光基板,所述滤光基板包括滤光像素区和漏光区,所述滤光像素区朝向驱动电路层,所述漏光区朝向指纹感测电路层;上述任意一项所述的光准直器,所述光准直器位于所述指纹感测电路层和所述漏光区之间。
可选的,所述驱动电路层为OLED驱动电路层;所述指纹传感器模组还包括:发光层,所述发光层位于所述滤光像素区和所述驱动电路层之间,所述发光层和所述驱动电路层电学连接,所述发光层适于发出白光。
可选的,所述滤光像素区和所述驱动电路层之间适于填充液晶分子;所述驱动电路层为TFT驱动电路层,所述驱动电路层适于驱动液晶分子转向。
本发明还提供一种指纹传感器模组,包括:基板,所述基板包括第一区和与第一区邻接的第二区,所述基板包括位于第一区表面的驱动电路层、以及位于第二区表面的指纹感测电路层;上述任意一项所述的光准直器,所述光准直器位于所述指纹感测电路层的表面。
可选的,所述驱动电路层为OLED驱动电路层;或者,所述驱动电路层为TFT驱动电路层,所述驱动电路层适于驱动液晶分子转向。
本发明还提供一种指纹传感器模组,包括:滤光基板,所述滤光基板包括滤光像素区和漏光区;上述任意一项所述的光准直器,所述光准直器位于所述滤光基板的漏光区的表面。
与现有技术相比,本发明的技术方案具有以下优点:
本发明技术方案提供的光准直器中,包括多层层叠的柔性非透光层,对于相邻层的柔性非透光层中的子层光通道,上一层的子层光通道位于下一层的子层光通道的上方;位于各子层光通道中的通道柔性透光层。子层光通道周围的柔性非透光层用于阻挡光线穿过。子层光 通道的区域为使光线穿过的区域,用于实现使透过光准直器的光线更加准直。由于柔性非透光层的材料为柔性材料,因此各层柔性非透光层的厚度能做到很薄且轻,这样使光准直器总厚度降低,且更轻薄。基于该特性的光准直器容易实现大面积的需求。
由于采用多层层叠的柔性非透光层,因此各层的柔性非透光层能够采用厚度较薄,这样使得子层光通道的侧壁形貌较好。
附图说明
图1是一种指纹传感器模组的结构示意图;
图2至图9是本发明一实施例中光准直器形成过程的结构示意图;
图10至图16是本发明另一实施例中光准直器形成过程的结构示意图;
图17至图26为是本发明提供的指纹传感器模组。
具体实施方式
正如背景技术所述,现有技术的光准直器的性能较差。
一种指纹传感器模组,参考图1,包括:光学指纹传感器100;位于所述光学指纹传感器100上方的自发光显示面板130;位于光学指纹传感器100和自发光显示面板130之间的光准直器120。
所述光准直器120的作用包括:使透过光准直器120的光线更加准直。
所述光准直器120的形成依赖基体材料,所述基体材料为硅片或玻璃。
光准直器120中的光通道需要具有一定的深宽比,如5:1~30:1。为了满足一定的深宽比的要求,所述硬质的光准直器120的厚度通常较厚,大约为0.1毫米至0.7毫米。硬质的光准直器120受到工艺的 限制,无法在厚度上做到很薄。
随着对屏下指纹的面积需要越来越大,硬质的光准直器120的重量增大,导致指纹传感器模组的重量增加,给指纹传感器模组的使用带来不便;其次,光准直器120的抗电击耐久的能力降低。
当自发光显示面板130为OLED面板时,目的是使得指纹传感器模组的总厚度降低且更轻薄,但是,大面积的硬质光准直器120的使用,导致指纹传感器模组的厚度和重量没有优势。
综上,需要形成一种更为轻薄的光准直器。
在此基础上,本发明提供一种光准直器,包括:多层层叠的柔性非透光层,各层柔性非透光层中均具有贯穿柔性非透光层的子层光通道,对于相邻层的柔性非透光层中的子层光通道,上一层的子层光通道位于下一层的子层光通道的上方;位于各子层光通道中的通道柔性透光层。所述光准直器的性能得到提高。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图2至图9是本发明一实施例中光准直器形成过程的结构示意图。
参考图2,提供基底层200。
本实施例中,所述基底层200的材料为硬质玻璃基板或硬质塑料基板,在基底层200上完成形成光准直器的各道工艺后,会将基底层200和形成的光准直器分离。
本实施例中,在基底层200上形成多层层叠的柔性非透光层以及通道柔性透光层。
在其它实施例中,所述基底层200为光学指纹传感器或自发光显示面板。相应的,当所述基底层200为光学指纹传感器时,在光学指纹传感器的表面形成多层层叠的柔性非透光层以及通道柔性透光层; 当所述基底层200为发光显示面板时,在自发光显示面板的背面形成多层层叠的柔性非透光层以及通道柔性透光层。在此情况下,无需将基底层200和光准直器分离。
所述多层层叠的柔性非透光层包括第一柔性非透光层至第N柔性非透光层,各子层光通道分别为第一子层光通道至第N子层光通道,各层的通道柔性透光层分别为第一通道柔性透光层至第N通道柔性透光层。其中N为大于等于1且小于等于2的整数。本实施例中,以N等于4为示例进行说明。在其他实施例中,N还可以取其它整数。
请继续参考图2,在基底层200的表面形成第一柔性非透光层210,第一柔性非透光层210中具有贯穿第一柔性非透光层210的第一子层光通道211。
形成第一柔性非透光层210的方法包括:在基底层200的表面形成第一柔性非透光膜;图形化第一柔性非透光膜,使第一柔性非透光膜形成第一柔性非透光层210。
第一柔性非透光膜的材料为掺杂非透光粒子的丙烯酸酯、掺杂非透光粒子的环氧树脂、掺杂非透光粒子的聚碳酸酯、掺杂非透光粒子的聚苯乙烯、掺杂非透光粒子的聚对苯二甲酸乙二酯、或者掺杂非透光粒子的聚酰亚胺。所述非透光粒子包括氧化铁粉、黑色染料粉或碳粉。
形成第一柔性非透光膜的方法包括旋涂工艺。
第一柔性非透光层210的厚度为50nm~20um。若第一柔性非透光层210的厚度小于50nm,则第一柔性非透光层210对第一子层光通道211中光线的吸收和阻挡作用较小;若第一柔性非透光层210的厚度大于20um,则导致第一子层光通道211的侧壁垂直性较差。
在一个实施例中,第一子层光通道211的侧壁与第一柔性非透光层210的顶部表面垂直。
在第一柔性非透光层210的厚度为50nm~20um的情况下,第一子层光通道211的深宽比为1:50~10:1。
在一个实施例中,图形化第一柔性非透光膜以形成第一柔性非透光层210的工艺为刻蚀工艺,在此情况下,对于厚度为50nm~20um的第一柔性非透光层210,第一子层光通道211的深宽比为1:50~1:2。图形化第一柔性非透光膜以形成第一柔性非透光层210的工艺为刻蚀工艺时,工艺成本较小。
在另一实施例中,图形化第一柔性非透光膜以形成第一柔性非透光层210的工艺为纳米压印工艺,在此情况下,对于厚度为50nm~20um的第一柔性非透光层210,第一子层光通道211的深宽比小于等于10:1,如1:50~1:2、1:2~10:1。
纳米压印工艺的具体过程包括:将具有纳米图案的模版在高温高压的条件下,以机械力在涂有高分子材料的硅基板上等比例压印复制纳米图案。纳米压印工艺的加工分辨力只与模版图案的尺寸有关,而不受光学光刻的最短曝光波长的物理限制。
参考图3,在第一子层光通道211(参考图2)中形成第一通道柔性透光层212。
形成第一通道柔性透光层212的方法包括:在第一子层光通道211中、以及第一柔性非透光层210的顶部表面形成第一通道柔性透光膜;平坦化第一通道柔性透光膜直至暴露出第一柔性非透光层210的顶部表面,使第一通道柔性透光膜形成第一通道柔性透光层212。
第一通道柔性透光膜的材料为丙烯酸酯、环氧树脂、聚碳酸酯、聚苯乙烯、聚对苯二甲酸乙二酯或聚酰亚胺。形成第一通道柔性透光膜的方法包括旋涂工艺。
参考图4,形成第一通道柔性透光层212后,在第一柔性非透光层210上形成第二柔性非透光层220,第二柔性非透光层220中具有贯穿第二柔性非透光层220的第二子层光通道221,且第二子层光通 道221位于第一子层光通道211的上方。
第二子层光通道221的侧壁与第一子层光通道211的侧壁连接且对齐。
本实施例中,第二柔性非透光层220和第一柔性非透光层210接触。
形成第二柔性非透光层220的方法包括:在第一柔性非透光层210和第一通道柔性透光层212上形成第二柔性非透光膜;图形化所述第二柔性非透光膜,具体的,去除第一通道柔性透光层上的第二柔性非透光膜,使第二柔性非透光膜形成第二柔性非透光层220。
第二柔性非透光膜的材料和形成工艺参考第一柔性非透光膜的材料和形成工艺。
第二柔性非透光层220的厚度为50nm~20um,若第二柔性非透光层220的厚度小于50nm,则第二柔性非透光层220对第二子层光通道221中光线的吸收和阻挡作用较小;若第二柔性非透光层220的厚度大于20um,则导致第二子层光通道221的侧壁垂直性较差。
在一个实施例中,第二子层光通道221的侧壁与第二柔性非透光层220的顶部表面垂直。
在第二柔性非透光层220的厚度为50nm~20um的情况下,第二子层光通道221的深宽比为1:50~10:1。
在一个实施例中,图形化第二柔性非透光膜以形成第二柔性非透光层220的工艺为刻蚀工艺,在此情况下,对于厚度为50nm~20um的第二柔性非透光层220,第二子层光通道221的深宽比为1:50~1:2。图形化第二柔性非透光膜以形成第二柔性非透光层220的工艺为刻蚀工艺时,工艺成本较小。
在另一实施例中,图形化第二柔性非透光膜以形成第二柔性非透光层220的工艺为纳米压印工艺,在此情况下,对于厚度为 50nm~20um的第二柔性非透光层220,第二子层光通道221的深宽比小于等于10:1,如1:50~1:2、1:2~10:1。
参考图5,形成第二柔性非透光层220后,在第二子层光通道221(参考图4)中形成第二通道柔性透光层222。
本实施例中,第二通道柔性透光层222位于第一通道柔性透光层212的上方,且第二通道柔性透光层222与第一通道柔性透光层212接触。
形成第二通道柔性透光层222的方法包括:在第二子层光通道221中、以及第二柔性非透光层220的顶部表面形成第二通道柔性透光膜;平坦化第二通道柔性透光膜直至暴露出第二柔性非透光层220的顶部表面,使第二通道柔性透光膜形成第二通道柔性透光层222。
第二通道柔性透光膜的材料和形成工艺参照第一通道柔性透光膜的材料和形成工艺。
参考图6,形成第二通道柔性透光层222后,在第二柔性非透光层220上形成第三柔性非透光层230,第三柔性非透光层230中具有贯穿第三柔性非透光层230的第三子层光通道231,且第三子层光通道231位于第二子层光通道221的上方。
第三子层光通道231的侧壁与第二子层光通道221的侧壁连接且对齐。
本实施例中,第三柔性非透光层230和第二柔性非透光层220接触。
形成第三柔性非透光层230的方法包括:在第二柔性非透光层220和第二通道柔性透光层222上形成第三柔性非透光膜;图形化所述第三柔性非透光膜,具体的,去除第二通道柔性透光层222上的第三柔性非透光膜,使第三柔性非透光膜形成第三柔性非透光层230。
第三柔性非透光膜的材料和形成工艺参考第二柔性非透光膜的 材料和形成工艺。
第三柔性非透光层230的厚度为50nm~20um,若第三柔性非透光层230的厚度小于50nm,则第三柔性非透光层230对第三子层光通道231中光线的吸收和阻挡作用较小;若第三柔性非透光层230的厚度大于20um,则导致第三子层光通道231的侧壁垂直性较差。
在一个实施例中,第三子层光通道231的侧壁与第三柔性非透光层230的顶部表面垂直。
在第三柔性非透光层230的厚度为50nm~20um的情况下,第三子层光通道231的深宽比为1:50~10:1。
在一个实施例中,图形化第三柔性非透光膜以形成第三柔性非透光层230的工艺为刻蚀工艺,在此情况下,对于厚度为50nm~20um的第三柔性非透光层230,第三子层光通道231的深宽比为1:50~1:2。图形化第三柔性非透光膜以形成第三柔性非透光层230的工艺为刻蚀工艺时,工艺成本较小。
在另一实施例中,图形化第三柔性非透光膜以形成第三柔性非透光层230的工艺为纳米压印工艺,在此情况下,对于厚度为50nm~20um的第三柔性非透光层230,第三子层光通道231的深宽比小于等于10:1,如1:50~1:2、1:2~10:1。
参考图7,形成第三柔性非透光层230后,在第三子层光通道231中形成第三通道柔性透光层232。
本实施例中,第三通道柔性透光层232位于第二通道柔性透光层222的上方,且第三通道柔性透光层232与第二通道柔性透光层222接触。
形成第三通道柔性透光层232的方法包括:在第三子层光通道231中、以及第三柔性非透光层230的顶部表面形成第三通道柔性透光膜;平坦化第三通道柔性透光膜直至暴露出第三柔性非透光层230的顶部表面,使第三通道柔性透光膜形成第三通道柔性透光层232。
第三通道柔性透光膜的材料和形成工艺参照第二通道柔性透光膜的材料和形成工艺。
参考图8,形成第三通道柔性透光层232后,在第三柔性非透光层230上形成第四柔性非透光层240,第四柔性非透光层240中具有贯穿第四柔性非透光层240的第四子层光通道241,且第四子层光通道241位于第三子层光通道231的上方。
第四子层光通道241的侧壁与第三子层光通道231的侧壁连接且对齐。
本实施例中,第四柔性非透光层240和第三柔性非透光层230接触。
形成第四柔性非透光层240的方法包括:在第三柔性非透光层230和第三通道柔性透光层232上形成第四柔性非透光膜;图形化所述第四柔性非透光膜,具体的,去除第三通道柔性透光层232上的第四柔性非透光膜,使第四柔性非透光膜形成第四柔性非透光层240。
第四柔性非透光膜的材料和形成工艺参考第三柔性非透光膜的材料和形成工艺。
第四柔性非透光层240的厚度为50nm~20um,若第四柔性非透光层240的厚度小于50nm,则第四柔性非透光层240对第四子层光通道241中光线的吸收和阻挡作用较小;若第四柔性非透光层240的厚度大于20um,则导致第四子层光通道241的侧壁垂直性较差。
在一个实施例中,第四子层光通道241的侧壁与第四柔性非透光层240的顶部表面垂直。
在第四柔性非透光层240的厚度为50nm~20um的情况下,第四子层光通道241的深宽比为1:50~10:1。
在一个实施例中,图形化第四柔性非透光膜以形成第四柔性非透光层240的工艺为刻蚀工艺,在此情况下,对于厚度为50nm~20um 的第四柔性非透光层240,第四子层光通道241的深宽比为1:50~1:2。图形化第四柔性非透光膜以形成第四柔性非透光层240的工艺为刻蚀工艺时,工艺成本较小。
在另一实施例中,图形化第四柔性非透光膜以形成第四柔性非透光层240的工艺为纳米压印工艺,在此情况下,对于厚度为50nm~20um的第四柔性非透光层240,第四子层光通道241的深宽比小于等于10:1,如1:50~1:2、1:2~10:1。
参考图9,形成第四柔性非透光层240后,在第四子层光通道241(参考图8)中形成第四通道柔性透光层242。
本实施例中,第四通道柔性透光层242位于第三通道柔性透光层232的上方,且第四通道柔性透光层242与第三通道柔性透光层232接触。
形成第四通道柔性透光层242的方法包括:在第四子层光通道241中、以及第四柔性非透光层240的顶部表面形成第四通道柔性透光膜;平坦化第四通道柔性透光膜直至暴露出第四柔性非透光层240的顶部表面,使第四通道柔性透光膜形成第四通道柔性透光层242。
第四通道柔性透光膜的材料和形成工艺参照第三通道柔性透光膜的材料和形成工艺。
本实施例中,子层光通道周围的柔性非透光层用于阻挡光线穿过。子层光通道的区域为使光线穿过的区域,用于实现使透过光准直器的光线更加准直。由于柔性非透光层的材料为柔性材料,因此各层柔性非透光层的厚度能做到很薄且轻,这样使光准直器总厚度降低,且更轻薄。基于该特性的光准直器容易实现大面积的需求。
由于采用多层层叠的柔性非透光层,因此各层的柔性非透光层能够采用厚度较薄,这样使得子层光通道的侧壁形貌较好。
本实施例中,还包括:形成柔性透光保护层,柔性透光保护层位于顶层的柔性非透光层和顶层的通道柔性透光层上,具体的,在形成 顶层的通道柔性透光层的过程中形成柔性透光保护层。所述柔性透光保护层的材料参照通道柔性透光层的材料。具体的,本实施例中,在形成第四通道柔性透光层242的过程中形成柔性透光保护层。
所述柔性透光保护的作用包括:保护顶层的柔性非透光层和顶层的通道柔性透光层,避免顶层的柔性非透光层受到损伤。
各子层光通道的边缘形状为圆形、矩形或多边形,具体的,本实施例中,第一子层光通道211的边缘形状为圆形、矩形或多边形,第二子层光通道221的边缘形状为圆形、矩形或多边形,第三子层光通道231的边缘形状为圆形、矩形或多边形,第四子层光通道241的边缘形状为圆形、矩形或多边形。
本实施例中,当所述基底层200的材料为硬质玻璃基板或硬质塑料基板时,还包括:将基底层200和基底层200上的光准直器分离。
相应的,本实施例还提供一种光准直器,请参考图9,包括:多层层叠的柔性非透光层,各层柔性非透光层中均具有贯穿柔性非透光层的子层光通道,对于相邻层的柔性非透光层中的子层光通道,上一层的子层光通道位于下一层的子层光通道的上方;位于各子层光通道中的通道柔性透光层。
本实施例中,多层层叠的柔性非透光层包括第一柔性非透光层至第N柔性非透光层,各子层光通道分别为第一子层光通道至第N子层光通道,各层的通道柔性透光层分别为第一通道柔性透光层至第N通道柔性透光层。其中N为大于等于1且小于等于2的整数。本实施例中,以N等于4为示例进行说明。
本实施例中,相邻层的柔性非透光层接触,具体的,第二柔性非透光层220和第一柔性非透光层210接触,第三柔性非透光层230和第二柔性非透光层220接触,第四柔性非透光层240和第三柔性非透光层230接触。
本实施例中,第二通道柔性透光层222位于第一通道柔性透光层 212的上方,且第二通道柔性透光层222与第一通道柔性透光层212接触。第三通道柔性透光层232位于第二通道柔性透光层222的上方,且第三通道柔性透光层232与第二通道柔性透光层222接触。第四通道柔性透光层242位于第三通道柔性透光层232的上方,且第四通道柔性透光层242与第三通道柔性透光层232接触。
各层柔性非透光层的厚度为50nm~20um。本实施例中,第一柔性非透光层210的厚度为50nm~20um,第二柔性非透光层220的厚度为50nm~20um,第三柔性非透光层230的厚度为50nm~20um,第四柔性非透光层240的厚度为50nm~20um。
各子层光通道的深宽比为1:50~10:1。
所述柔性非透光层的材料为掺杂非透光粒子的丙烯酸酯、掺杂非透光粒子的环氧树脂、掺杂非透光粒子的聚碳酸酯、掺杂非透光粒子的聚苯乙烯、掺杂非透光粒子的聚对苯二甲酸乙二酯、或者掺杂非透光粒子的聚酰亚胺。所述非透光粒子包括氧化铁粉、黑色染料粉或碳粉。
所述通道柔性透光层的材料为丙烯酸酯、环氧树脂、聚碳酸酯、聚苯乙烯、聚对苯二甲酸乙二酯或聚酰亚胺。
各子层光通道的边缘形状为圆形、矩形或多边形。
本实施例中,所述光准直器的总厚度为500纳米至0.5毫米。
本实施例中,所述光准直器中具有光通道,光通道的总深宽比为5:1~30:1。
本实施例中,所述光通道包括:第一子层光通道至第N子层光通道。
光通道的总深宽比为5:1~30:1的意义在于:若光通道的总深宽比大于30:1,则光通量较小,例如,通过光通道的光在光学指纹传感器中能够产生的图形信号较小;若光通道的总深宽比小于5:1,则光准 直器难以起到准直作用。
本发明另一实施例还提供一种光准直器的形成方法,本实施例与前一实施例的区别在于:所述光准直器的形成方法还包括:在形成通道柔性透光层的过程中形成层间柔性透光层。所述光准直器还包括:位于相邻层的柔性非透光层之间、以及相邻层通道柔性透光层之间的层间柔性透光层;所述层间柔性透光层分别与所述通道柔性透光层和所述柔性非透光层接触。关于本实施例与前一实施例中相同的内容,不再详述。
图10至图16是本发明另一实施例中光准直器形成过程的结构示意图。
参考图10,图10为在图2基础上的示意图,在第一子层光通道211中形成第一通道柔性透光层312,在形成第一通道柔性透光层312的过程中形成第一层间柔性透光层310。
形成第一层间柔性透光层310和第一通道柔性透光层312的方法包括旋涂工艺。在一道旋涂工艺中形成第一层间柔性透光层310和第一通道柔性透光层312,简化了工艺步骤。
本实施例中,第一层间柔性透光层310的材料与第一通道柔性透光层312的材料相同。在其它实施例中,第一层间柔性透光层的材料与第一通道柔性透光层的材料不同。
第一层间柔性透光层310的材料包括丙烯酸酯、环氧树脂、聚碳酸酯、聚苯乙烯、聚对苯二甲酸乙二酯或聚酰亚胺。
第一层间柔性透光层310的厚度与第一柔性非透光层的厚度之比为1:1~10:1。
第一层间柔性透光层310的厚度为50纳米~200微米。若第一层间柔性透光层310的厚度过大,则较多光线容易横向穿过第一层间柔性透光层310,杂散光较多,不利于光准直器的准直性;若第一层间柔性透光层310的厚度过小,则不利于柔性非透光层层数的减少。
参考图11,在第一层间柔性透光层310上形成第二柔性非透光层320,第二柔性非透光层320中具有贯穿第二柔性非透光层320的第二子层光通道321,且第二子层光通道321位于第一子层光通道的上方。
参考图12,形成第二柔性非透光层320后,在第二子层光通道321中形成第二通道柔性透光层322,在形成第二通道柔性透光层322的过程中形成第二层间柔性透光层330。
本实施例中,第一层间柔性透光层310的顶部表面与第二柔性非透光层320和第二通道柔性透光层322接触,第一层间柔性透光层310的底部表面与第一柔性非透光层210和第一通道柔性透光层312接触。
形成第二层间柔性透光层330和第二通道柔性透光层322的方法包括旋涂工艺。在一道旋涂工艺中形成第二层间柔性透光层330和第二通道柔性透光层322,简化了工艺步骤。
第二层间柔性透光层330的材料参照第一层间柔性透光层310的材料。
第二层间柔性透光层330的厚度与第二柔性非透光层320的厚度之比为1:1~10:1。
第二层间柔性透光层330的厚度为50纳米~200微米。若第二层间柔性透光层330的厚度过大,则较多光线容易横向穿过第二层间柔性透光层330,杂散光较多,不利于光准直器的准直性;若第二层间柔性透光层330的厚度过小,则不利于柔性非透光层层数的减少。
参考图13,在第二层间柔性透光层330上形成第三柔性非透光层340,第三柔性非透光层340中具有贯穿第三柔性非透光层340的第三子层光通道341,且第三子层光通道341位于第二子层光通道的上方。
参考图14,形成第三柔性非透光层340后,在第三子层光通道 341中形成第三通道柔性透光层342,在形成第三通道柔性透光层342的过程中形成第三层间柔性透光层350。
本实施例中,第二层间柔性透光层330的顶部表面与第三柔性非透光层340和第三通道柔性透光层342接触,第二层间柔性透光层330的底部表面与第二柔性非透光层320和第二通道柔性透光层322接触。
形成第三层间柔性透光层350和第三通道柔性透光层342的方法包括旋涂工艺,在一道旋涂工艺中形成第三层间柔性透光层350和第三通道柔性透光层342,简化了工艺步骤。
第三层间柔性透光层350的材料参照第一层间柔性透光层310的材料。
第三层间柔性透光层350的厚度与第三柔性非透光层340的厚度之比为1:1~10:1。
第三层间柔性透光层350的厚度为50纳米~200微米。若第三层间柔性透光层350的厚度过大,则较多光线容易横向穿过第三层间柔性透光层350,杂散光较多,不利于光准直器的准直性;若第三层间柔性透光层350的厚度过小,则不利于柔性非透光层层数的减少。
参考图15,在第三层间柔性透光层350上形成第四柔性非透光层360,第四柔性非透光层360中具有贯穿第四柔性非透光层360的第四子层光通道361,且第四子层光通道361位于第三子层光通道的上方。
参考图16,形成第四柔性非透光层360后,在第四子层光通道361中形成第四通道柔性透光层362。
本实施例中,第三层间柔性透光层350的顶部表面与第四柔性非透光层360和第四通道柔性透光层362接触,第三层间柔性透光层350的底部表面与第三柔性非透光层340和第三通道柔性透光层342接触。
在其它实施例中,还包括:在形成顶层的通道柔性透光层的过程中,形成柔性透光保护层,柔性透光保护层位于顶层的柔性非透光层和顶层的通道柔性透光层上。在一道旋涂工艺中形成顶层的通道柔性透光层和柔性透光保护层,简化了工艺步骤。
柔性透光保护层的材料参照第一层间柔性透光层310的材料。
本实施例中,各层的层间柔性透光层的形成工艺无需额外进行,且由于形成了层间柔性透光层,因此在光准直器总厚度一定的情况下,能够减少柔性非透光层的层数,相应的,刻蚀形成子层光通道的工艺次数也减少,这样简化了工艺步骤,且降低了成本。
相应的,本实施例还提供一种光准直器,请参考图16,包括:多层层叠的柔性非透光层,各层柔性非透光层中均具有贯穿柔性非透光层的子层光通道,对于相邻层的柔性非透光层中的子层光通道,上一层的子层光通道位于下一层的子层光通道的上方;位于各子层光通道中的通道柔性透光层;位于相邻层的柔性非透光层之间、以及相邻层通道柔性透光层之间的层间柔性透光层;所述层间柔性透光层分别与所述通道柔性透光层和所述柔性非透光层接触。
所述多层层叠的柔性非透光层包括第一柔性非透光层至第N柔性非透光层,各子层光通道分别为第一子层光通道至第N子层光通道,各层的通道柔性透光层分别为第一通道柔性透光层至第N通道柔性透光层。其中N为大于等于1且小于等于2的整数。
所述层间柔性透光层的材料与所述通道柔性透光层的材料相同;或者,所述层间柔性透光层的材料与所述通道柔性透光层的材料不同。
所述层间柔性透光层的材料包括丙烯酸酯、环氧树脂、聚碳酸酯、聚苯乙烯、聚对苯二甲酸乙二酯或聚酰亚胺。
各层柔性非透光层的厚度为50nm~20um。
各层间柔性透光层的厚度与各柔性非透光层的厚度之比为1: 1~10:1。
在一个具体的实施例中,各层间柔性透光层的厚度为50纳米~200微米。
本实施例中,所述光准直器的总厚度为500纳米至0.5毫米。
本实施例中,所述光准直器中具有光通道,光通道的总深宽比为5:1~30:1。所述光通道包括第一子层光通道至第N子层光通道,相邻的子层光通道之间的部分层间柔性透光层。
相应的,本发明另一实施例还提供一种指纹传感器模组,请参考图17,包括:光学指纹传感器400;位于所述光学指纹传感器400上方的自发光显示面板410;光准直器420,所述光准直器420位于所述光学指纹传感器400和所述自发光显示面板410之间。
所述光准直器420的结构参照前述实施例,不再详述。
光学指纹传感器400包括透光基板和位于透光基板表面的指纹感测电路层,所述透光基板为玻璃基板或PI基板。本实施例中,所述指纹感测电路层位于光准直器420和透光基板之间。
在一个实施例中,上述指纹传感器模组的形成过程包括:提供光学指纹传感器400和自发光显示面板410;在所述光学指纹传感器400表面形成光准直器420;在所述光学指纹传感器400表面形成光准直器420后,将自发光显示面板410和光准直器420贴合在一起。
所述光准直器420的形成方法参照前述实施例。
由于在光学指纹传感器400表面形成光准直器420,光学指纹传感器400和光准直器420接触,因此无需采用粘合层贴合光学指纹传感器400和光准直器420,避免在光学指纹传感器400和光准直器420之间形成空隙层和胶水层,这样能够避免光线在光学指纹传感器400和光准直器420之间反射,从而提高了光利用率,提高了图像清晰度。
在另一个实施例中,上述指纹传感器模组的形成过程包括:提供 光学指纹传感器400和自发光显示面板410;在自发光显示面板410的背面形成光准直器420;在自发光显示面板410的背面形成光准直器420后,将光学指纹传感器400和光准直器420贴合在一起。
由于在自发光显示面板410的背面形成光准直器420,自发光显示面板410的背面和光准直器420接触,因此无需采用粘合层贴合自发光显示面板410和光准直器420,避免在自发光显示面板410和光准直器420之间形成的空隙层和胶水层,这样能够避免光线在自发光显示面板410和光准直器420之间反射,从而提高了光利用率,提高了图像清晰度。
在另一个实施例中,上述指纹传感器模组的形成过程包括:提供光学指纹传感器400和自发光显示面板410;提供光准直器420;将光准直器420分别与自发光显示面板410的背面和光学指纹传感器400进行贴合。
本发明另一实施例还提供一种指纹传感器模组,请参考图18,包括:自发光显示面板500;光准直器510,所述光准直器510位于所述自发光显示面板500的背面。
所述光准直器510与自发光显示面板500的背面接触。
所述光准直器510的结构参照前述实施例,不再详述。
所述光准直器510位于所述自发光显示面板500的整个背面或者部分背面。图18中以光准直器510位于所述自发光显示面板500的整个背面为示例进行说明。
相应的,形成上述指纹传感器模组的方法包括:提供自发光显示面板500;在自发光显示面板500的背面形成光准直器510。形成光准直器510的方法参照前述实施例的内容,不再详述。
本发明另一实施例还提供一种指纹传感器模组,请参考图19,包括:光学指纹传感器600;光准直器610,所述光准直器610位于所述光学指纹传感器600的表面。
所述光准直器610与光学指纹传感器600的表面接触。
所述光准直器610的结构参照前述实施例,不再详述。
相应的,形成上述指纹传感器模组的方法包括:提供光学指纹传感器600;在光学指纹传感器600的表面形成光准直器610。形成光准直器610的方法参照前述实施例的内容,不再详述。
本发明另一实施例还提供一种指纹传感器模组,请参考图20,基板700,所述基板700包括第一区A1和与第一区A1邻接的第二区B1,所述基板700包括位于第一区A1表面的驱动电路层701、以及位于第二区B1表面的指纹感测电路层702;与所述基板700相对的滤光基板720,所述滤光基板720包括滤光像素区A2和漏光区B2,所述滤光像素区A2朝向驱动电路层701,所述漏光区B2朝向指纹感测电路层702;光准直器710,所述光准直器710位于所述指纹感测电路层702和所述漏光区B2之间。
所述驱动电路层701和指纹感测电路层702位于基板700的同一侧。
本实施例中,所述驱动电路层701为OLED驱动电路层;所述指纹传感器模组还包括:发光层730,所述发光层730位于所述滤光像素区A2和所述驱动电路层701之间,所述发光层730和所述驱动电路层701电学连接。所述驱动电路层701适于驱动发光层730进行发光。所述发光层730适于发出白光。
所述光准直器710的作用包括:对光线进行准直;阻挡发光层730发出的光直接入射至指纹感测电路层702;起到支撑作用。
所述滤光像素区A2包括红色滤光像素、蓝色滤光像素和绿色滤光像素。所述漏光区B2呈透光白色,所述漏光区B2对光线没有滤光的作用。
本实施例中,还包括:位于发光层730和所述滤光像素区A2之间的透光填充层750,所述透光填充层750和光准直器710在一套工 艺制程中形成,具体的,在形成各层通道柔性透光层的过程中,形成所述透光填充层750。
手指接触滤光基板720,发光层730发射光线至手指与滤光基板720的界面反射后进入光准直器710,进而入射至指纹感测电路层702。
透光填充层750与滤光像素区A2接触的界面与光准直器710与漏光区B2接触的界面齐平。
在其它实施例中,指纹传感器模组不包括透光填充层。
本实施例中,将指纹感测电路层702制作在具有驱动电路层701的基板中,这样无需单独制作光学指纹传感器,能使指纹传感器模组的厚度降低。
相应的,一种形成上述指纹传感器模组的方法包括:提供基板700,所述基板700包括第一区A1和与第一区A1邻接的第二区B1,所述基板700包括位于第一区A1表面的驱动电路层701、以及位于第二区B1表面的指纹感测电路层702;在驱动电路层701表面形成发光层730;形成发光层730后,在所述指纹感测电路层702表面形成光准直器710a;提供滤光基板720,所述滤光基板720包括滤光像素区A2和漏光区B2;形成光准直器710a后,将滤光基板720和所述基板700贴合在一起,所述光准直器710a位于所述指纹感测电路层702和所述漏光区B2之间,所述滤光像素区A2朝向驱动电路层701。若指纹传感器模组还包括透光填充层,在所述指纹感测电路层702表面形成光准直器710a的过程中,在发光层730的表面形成透光填充层。
另一种形成上述指纹传感器模组的方法包括:提供基板700,所述基板700包括第一区A1和与第一区A1邻接的第二区B1,所述基板700包括位于第一区A1表面的驱动电路层701、以及位于第二区B1表面的指纹感测电路层702;在驱动电路层701表面形成发光层 730;提供滤光基板720,所述滤光基板720包括滤光像素区A2和漏光区B2;在滤光基板720的漏光区B2表面形成光准直器710b;之后,将滤光基板720和基板700贴合在一起,所述光准直器710b位于所述指纹感测电路层702和所述漏光区B2之间,所述滤光像素区A2朝向驱动电路层701。若指纹传感器模组还包括透光填充层,在滤光基板720的漏光区B2表面形成光准直器710b的过程中,在滤光基板720的滤光像素区A2表面形成透光填充层。
相应的,本发明另一实施例还提供一种指纹传感器模组,请参考图21,基板700,所述基板700包括第一区A1和与第一区A1邻接的第二区B1,所述基板700包括位于第一区A1表面的驱动电路层701、以及位于第二区B1表面的指纹感测电路层702;光准直器710a,光准直器710a位于所述指纹感测电路层702的表面。
所述驱动电路层701为OLED驱动电路层。
所述指纹传感器模组还包括:位于驱动电路层701表面的发光层730;位于发光层730表面的透光填充层750a。
相应的,本发明另一实施例还提供一种指纹传感器模组,请参考图22,滤光基板720,所述滤光基板720包括滤光像素区A2和漏光区B2;光准直器710b,所述光准直器710b位于所述滤光基板720的漏光区B2的表面。
所述指纹传感器模组还包括:位于滤光基板720的滤光像素区A2表面的透光填充层750b。
本发明另一实施例还提供一种指纹传感器模组,请参考图23,包括:基板800,所述基板800包括第一区C1和与第一区C1邻接的第二区D1,所述基板800包括位于第一区C1表面的驱动电路层801、以及位于第二区D1表面的指纹感测电路层802,所述驱动电路层801为TFT驱动电路层,所述驱动电路层适于驱动液晶分子转向;与所述基板800相对的滤光基板820,所述滤光基板820包括滤光像素区 C2和漏光区D2,所述滤光像素区C2朝向驱动电路层801,所述漏光区D2朝向指纹感测电路层802;光准直器810,所述光准直器810位于所述指纹感测电路层802和所述漏光区D2之间;所述滤光像素区C2和所述驱动电路层801之间适于填充液晶分子。
所述光准直器810的作用包括:对光线进行准直;阻挡液晶分子传递的光线直接照射至指纹感测电路层802;起到支撑作用。
手指接触滤光基板820,液晶分子传递的光线照射至手指与滤光基板720的界面,在手指与滤光基板720的界面反射后进入光准直器710,进而入射至指纹感测电路层702。
本实施例中,还包括:位于滤光像素区C2和所述驱动电路层801之间的透光填充层850,所述透光填充层850和光准直器810在一套工艺制程中形成,具体的,在形成光准直器中的各层通道柔性透光层的过程中,形成所述透光填充层850。在其它实施例中,指纹传感器模组不包括透光填充层。
一种形成上述指纹传感器模组的方法包括:提供基板800,所述基板800包括第一区C1和与第一区C1邻接的第二区D1,所述基板800包括位于第一区C1表面的驱动电路层801、以及位于第二区D1表面的指纹感测电路层802;在所述指纹感测电路层802表面形成光准直器810a;提供滤光基板820,所述滤光基板820包括滤光像素区C2和漏光区D2;形成光准直器810a后,将滤光基板820和所述基板800贴合在一起,所述光准直器810a位于所述指纹感测电路层802和所述漏光区D2之间,所述滤光像素区C2朝向驱动电路层801。若指纹传感器模组还包括透光填充层,在所述指纹感测电路层702表面形成光准直器810a的过程中,在驱动电路层801的表面形成透光填充层。
另一种形成上述指纹传感器模组的方法包括:提供基板800,所述基板800包括第一区C1和与第一区C1邻接的第二区D1,所述基板800包括位于第一区C1表面的驱动电路层801、以及位于第二区 D1表面的指纹感测电路层802;提供滤光基板820,所述滤光基板820包括滤光像素区C2和漏光区D2;在滤光基板820的漏光区D2表面形成光准直器810b;之后,将滤光基板820和基板800贴合在一起,所述光准直器810b位于所述指纹感测电路层802和所述漏光区D2之间,所述滤光像素区C2朝向驱动电路层801。若指纹传感器模组还包括透光填充层,在滤光基板820的漏光区D2表面形成光准直器810b的过程中,在滤光基板820的滤光像素区C2表面形成透光填充层。
相应的,本发明另一实施例还提供一种指纹传感器模组,请参考图24,基板800,所述基板800包括第一区C1和与第一区C1邻接的第二区D1,所述基板800包括位于第一区C1表面的驱动电路层801、以及位于第二区D1表面的指纹感测电路层802,所述驱动电路层801为TFT驱动电路层,所述驱动电路层适于驱动液晶分子转向;光准直器810a,光准直器810a位于所述指纹感测电路层802的表面。
所述指纹传感器模组还包括:位于驱动电路层801表面的透光填充层850a。或者,所述指纹传感器模组不包括透光填充层。
相应的,本发明另一实施例还提供一种指纹传感器模组,请参考图25,滤光基板820,所述滤光基板820包括滤光像素区C2和漏光区D2;光准直器810b,所述光准直器810b位于所述滤光基板820的漏光区D2的表面。
所述指纹传感器模组还包括:位于滤光基板820的滤光像素区C2表面的透光填充层850b。或者,所述指纹传感器模组不包括透光填充层。
本发明另一实施例还提供一种指纹传感器模组,请参考图26,包括:基板900,所述基板900包括第一区E1和与第一区E1邻接的第二区F1,所述基板900包括位于第一区E1表面的OLED驱动电路层901、以及位于第二区F1表面的指纹感测电路层902;位于OLED驱动电路层901表面的RGB发光层930;光准直器910,所述光准直 器910位于所述指纹感测电路层902的表面;覆盖RGB发光层930和光准直器910的盖板保护层940。
RGB发光层930位于盖板保护层940和OLED驱动电路层901之间,光准直器910位于盖板保护层940和指纹感测电路层902之间。
所述OLED驱动电路层901和指纹感测电路层902位于基板900的同一侧。所述RGB发光层930和所述OLED驱动电路层901电学连接。所述OLED驱动电路层901适于驱动RGB发光层930进行发光。
所述光准直器910的作用包括:对光线进行准直;阻挡RGB发光层930发出的光直接入射至指纹感测电路层902;起到支撑作用。
手指接触盖板保护层940,RGB发光层930发射光线至手指与盖板保护层940的界面反射后进入光准直器910,进而入射至指纹感测电路层902。
本实施例中,还包括:位于RGB发光层930和盖板保护层940之间的透光填充层950,所述透光填充层950和光准直器910在一套工艺制程中形成,具体的,在形成各层通道柔性透光层的过程中,形成所述透光填充层950。
在其它实施例中,指纹传感器模组不包括透光填充层。
相应的,一种形成上述指纹传感器模组的方法包括:提供基板900,所述基板900包括第一区E1和与第一区E1邻接的第二区F1,所述基板900包括位于第一区E1表面的OLED驱动电路层901、以及位于第二区F1表面的指纹感测电路层902;在OLED驱动电路层901表面形成RGB发光层930;形成RGB发光层930后,在所述指纹感测电路层902表面形成光准直器910;之后,在光准直器910和RGB发光层930上形成盖板保护层。
若指纹传感器模组还包括透光填充层,在所述指纹感测电路层902表面形成光准直器910的过程中,在RGB发光层930的表面形 成透光填充层950;盖板保护层940还位于透光填充层950上。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (28)

  1. 一种光准直器,其特征在于,包括:
    多层层叠的柔性非透光层,各层柔性非透光层中均具有贯穿柔性非透光层的子层光通道,对于相邻层的柔性非透光层中的子层光通道,上一层的子层光通道位于下一层的子层光通道的上方;
    位于各子层光通道中的通道柔性透光层。
  2. 根据权利要求1所述的光准直器,其特征在于,还包括:位于相邻层的柔性非透光层之间、以及相邻层通道柔性透光层之间的层间柔性透光层;所述层间柔性透光层分别与所述通道柔性透光层和所述柔性非透光层接触。
  3. 根据权利要求2所述的光准直器,其特征在于,所述层间柔性透光层的材料与所述通道柔性透光层的材料相同;或者,所述层间柔性透光层的材料与所述通道柔性透光层的材料不同。
  4. 根据权利要求2所述的光准直器,其特征在于,所述层间柔性透光层的材料包括丙烯酸酯、环氧树脂、聚碳酸酯、聚苯乙烯、聚对苯二甲酸乙二酯或聚酰亚胺。
  5. 根据权利要求2所述的光准直器,其特征在于,各层柔性非透光层的厚度为50nm~20um。
  6. 根据权利要求5所述的光准直器,其特征在于,各层间柔性透光层的厚度与各柔性非透光层的厚度之比为1:1~10:1。
  7. 根据权利要求6所述的光准直器,其特征在于,各层间柔性透光层的厚度为50纳米~200微米。
  8. 根据权利要求1所述的光准直器,其特征在于,相邻层的柔性非透光层接触,相邻层的通道柔性透光层接触。
  9. 根据权利要求8所述的光准直器,其特征在于,各层柔性非透光层的厚度为50nm~20um。
  10. 根据权利要求5或9所述的光准直器,其特征在于,各子层光通道的深宽比为1:50~10:1。
  11. 根据权利要求1所述的光准直器,其特征在于,所述柔性非透光层的材料为掺杂非透光粒子的丙烯酸酯、掺杂非透光粒子的环氧树脂、掺杂非透光粒子的聚碳酸酯、掺杂非透光粒子的聚苯乙烯、掺杂非透光粒子的聚对苯二甲酸乙二酯、或者掺杂非透光粒子的聚酰亚胺。
  12. 根据权利要求11所述的光准直器,其特征在于,所述非透光粒子包括氧化铁粉、黑色染料粉或碳粉。
  13. 根据权利要求1所述的光准直器,其特征在于,所述通道柔性透光层的材料为丙烯酸酯、环氧树脂、聚碳酸酯、聚苯乙烯、聚对苯二甲酸乙二酯或聚酰亚胺。
  14. 根据权利要求1所述的光准直器,其特征在于,各子层光通道的边缘形状为圆形、矩形或多边形。
  15. 根据权利要求1所述的光准直器,其特征在于,所述光准直器的总厚度为500纳米至0.5毫米;所述光准直器中具有光通道,光通道的总深宽比为5:1~30:1。
  16. 一种光准直器的形成方法,其特征在于,包括:
    依次形成多层层叠的柔性非透光层,各层柔性非透光层中均具有贯穿柔性非透光层的子层光通道,对于相邻层的柔性非透光层中的子层光通道,上一层的子层光通道位于下一层的子层光通道的上方;
    在每层柔性非透光层形成之后,在柔性非透光层的子层光通道中形成通道柔性透光层。
  17. 根据权利要求16所述的光准直器的形成方法,其特征在于,所述光准直器还包括:位于相邻层的柔性非透光层之间、以及相邻层通道柔性透光层之间的层间柔性透光层;所述层间柔性透光层分别与所述通道柔性透光层和所述柔性非透光层接触;
    所述光准直器的形成方法还包括:在形成通道柔性透光层的过程中形成层间柔性透光层。
  18. 根据权利要求17所述的光准直器的形成方法,其特征在 于,形成层间柔性透光层和通道柔性透光层的工艺包括旋涂工艺。
  19. 一种指纹传感器模组,其特征在于,包括:
    光学指纹传感器;
    位于所述光学指纹传感器上方的自发光显示面板;
    如权利要求1至15任意一项所述的光准直器,所述光准直器位于所述光学指纹传感器和所述自发光显示面板之间。
  20. 一种指纹传感器模组,其特征在于,包括:
    自发光显示面板;
    如权利要求1至15任意一项所述的光准直器,所述光准直器位于所述自发光显示面板的背面。
  21. 一种指纹传感器模组,其特征在于,包括:
    光学指纹传感器;
    如权利要求1至15任意一项所述的光准直器,所述光准直器位于所述光学指纹传感器的表面。
  22. 一种指纹传感器模组,其特征在于,包括:
    基板,所述基板包括第一区和与第一区邻接的第二区,所述基板包括位于第一区表面的OLED驱动电路层、以及位于第二区表面的指纹感测电路层;
    位于OLED驱动电路层表面的RGB发光层;
    如权利要求1至15任意一项所述的光准直器,所述光准直器位于所述指纹感测电路层的表面;
    覆盖RGB发光层和光准直器的盖板保护层。
  23. 一种指纹传感器模组,其特征在于,包括:
    基板,所述基板包括第一区和与第一区邻接的第二区,所述基板包括位于第一区表面的驱动电路层、以及位于第二区表面的指纹感测电路层;
    与所述基板相对的滤光基板,所述滤光基板包括滤光像素区和漏光区,所述滤光像素区朝向驱动电路层,所述漏光区朝向指纹感测电路层;
    如权利要求1至15任意一项所述的光准直器,所述光准直器位于所述指纹感测电路层和所述漏光区之间。
  24. 根据权利要求23所述的指纹传感器模组,其特征在于,所述驱动电路层为OLED驱动电路层;所述指纹传感器模组还包括:发光层,所述发光层位于所述滤光像素区和所述驱动电路层之间,所述发光层和所述驱动电路层电学连接,所述发光层适于发出白光。
  25. 根据权利要求23所述的指纹传感器模组,其特征在于,所述滤光像素区和所述驱动电路层之间适于填充液晶分子;所述驱动电路层为TFT驱动电路层,所述驱动电路层适于驱动液晶分子转向。
  26. 一种指纹传感器模组,其特征在于,包括:
    基板,所述基板包括第一区和与第一区邻接的第二区,所述基板包括位于第一区表面的驱动电路层、以及位于第二区表面的指纹感测电路层;
    如权利要求1至15任意一项所述的光准直器,所述光准直器位于所述指纹感测电路层的表面。
  27. 根据权利要求26所述的指纹传感器模组,其特征在于,所述驱动电路层为OLED驱动电路层;或者,所述驱动电路层为TFT驱动电路层,所述驱动电路层适于驱动液晶分子转向。
  28. 一种指纹传感器模组,其特征在于,包括:
    滤光基板,所述滤光基板包括滤光像素区和漏光区;
    如权利要求1至15任意一项所述的光准直器,所述光准直器位于所述滤光基板的漏光区的表面。
PCT/CN2018/117783 2018-11-28 2018-11-28 光准直器及其形成方法、指纹传感器模组 WO2020107236A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117783 WO2020107236A1 (zh) 2018-11-28 2018-11-28 光准直器及其形成方法、指纹传感器模组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117783 WO2020107236A1 (zh) 2018-11-28 2018-11-28 光准直器及其形成方法、指纹传感器模组

Publications (1)

Publication Number Publication Date
WO2020107236A1 true WO2020107236A1 (zh) 2020-06-04

Family

ID=70854173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117783 WO2020107236A1 (zh) 2018-11-28 2018-11-28 光准直器及其形成方法、指纹传感器模组

Country Status (1)

Country Link
WO (1) WO2020107236A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220320222A1 (en) * 2020-09-23 2022-10-06 Boe Technology Group Co., Ltd. Organic light-emitting display panel and display apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108227230A (zh) * 2018-02-05 2018-06-29 京东方科技集团股份有限公司 一种准直结构、其制作方法及显示装置
CN108496180A (zh) * 2016-01-29 2018-09-04 辛纳普蒂克斯公司 在显示器下面的光学指纹传感器
CN108627995A (zh) * 2017-03-24 2018-10-09 敦捷光电股份有限公司 光准直元件及制造方法、生物辨识装置及制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496180A (zh) * 2016-01-29 2018-09-04 辛纳普蒂克斯公司 在显示器下面的光学指纹传感器
CN108627995A (zh) * 2017-03-24 2018-10-09 敦捷光电股份有限公司 光准直元件及制造方法、生物辨识装置及制造方法
CN108227230A (zh) * 2018-02-05 2018-06-29 京东方科技集团股份有限公司 一种准直结构、其制作方法及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220320222A1 (en) * 2020-09-23 2022-10-06 Boe Technology Group Co., Ltd. Organic light-emitting display panel and display apparatus
US11839118B2 (en) * 2020-09-23 2023-12-05 Boe Technology Group Co., Ltd. Organic light-emitting display panel and display apparatus

Similar Documents

Publication Publication Date Title
US10644083B2 (en) Input sensing unit and display device having the same
US11393244B2 (en) Flat panel display embedding optical imaging sensor
JP5525589B2 (ja) 有機発光表示装置及びその製造方法
TWI798491B (zh) 具有像素結構的顯示裝置與指紋辨識晶片
WO2017166581A1 (zh) 光学指纹传感器模组
CN111384139B (zh) 显示面板及其制作方法、防窥膜、显示装置
TWI517377B (zh) 有機發光顯示器及其製造方法
WO2019042252A1 (zh) 指纹识别装置及其制造方法、显示面板及其制造方法和指纹识别方法
CN110032918A (zh) 指纹识别装置及其制造方法、电子装置
CN108227064B (zh) 定向光学单元和显示器
CN108288681A (zh) 显示面板及其制造方法、显示装置
KR20190128010A (ko) 유기발광 표시장치
KR20180058165A (ko) 플랙서블 표시 장치
TWM511076U (zh) 觸控裝置
WO2006035811A1 (ja) 有機エレクトロルミネッセンス表示装置
CN113994253B (zh) 显示装置及其制造方法
US10929640B2 (en) Flat panel display with optical image sensor embedded therein
CN108962951B (zh) 显示装置与包含其的电子装置
CN105182697B (zh) 一种On Cell结构触摸显示屏及其制作方法、显示装置
CN211454015U (zh) 偏光片、显示模组及显示装置
WO2021082063A1 (zh) 屏下光学指纹识别的装置
WO2018010250A1 (zh) 光学指纹传感器模组
TW201837558A (zh) 反射偏光層、波長轉換層及液晶顯示裝置
CN109308431A (zh) 光学指纹传感器模组
TW201504051A (zh) 用於顯示裝置之視窗及包含其之顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941364

Country of ref document: EP

Kind code of ref document: A1