WO2020105641A1 - 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム - Google Patents

摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム

Info

Publication number
WO2020105641A1
WO2020105641A1 PCT/JP2019/045295 JP2019045295W WO2020105641A1 WO 2020105641 A1 WO2020105641 A1 WO 2020105641A1 JP 2019045295 W JP2019045295 W JP 2019045295W WO 2020105641 A1 WO2020105641 A1 WO 2020105641A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
wear amount
tire
wear
amount prediction
Prior art date
Application number
PCT/JP2019/045295
Other languages
English (en)
French (fr)
Inventor
優和 坂本
昇司 老田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US17/293,270 priority Critical patent/US11807047B2/en
Priority to JP2020557562A priority patent/JP7299239B2/ja
Priority to CN201980076174.7A priority patent/CN113165449B/zh
Priority to EP19886250.0A priority patent/EP3885166B1/en
Publication of WO2020105641A1 publication Critical patent/WO2020105641A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/24Wear-indicating arrangements
    • B60C11/246Tread wear monitoring systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0479Communicating with external units being not part of the vehicle, e.g. tools for diagnostic, mobile phones, electronic keys or service stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0488Movement sensor, e.g. for sensing angular speed, acceleration or centripetal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0489Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors for detecting the actual angular position of the monitoring device while the wheel is turning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/40Transportation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y20/00Information sensed or collected by the things
    • G16Y20/20Information sensed or collected by the things relating to the thing itself
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/20Analytics; Diagnosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/02Tyres specially adapted for particular applications for aircrafts

Definitions

  • the present invention relates to a wear amount prediction method, a wear amount prediction device, and a wear amount prediction program.
  • Patent Document 1 a technique for predicting the wear amount of aircraft tires has been known (Patent Document 1).
  • the method according to Patent Document 1 acquires a plurality of wear energies corresponding to a plurality of traveling states (for example, a touchdown traveling state, a deceleration traveling state after touchdown, a taxi traveling state, etc.) classified according to usage conditions. , Predict the amount of wear of aircraft tires based on the acquired wear energy.
  • traveling states for example, a touchdown traveling state, a deceleration traveling state after touchdown, a taxi traveling state, etc.
  • each aircraft tire is installed on an aircraft.
  • the wear amount of each aircraft tire is different in the touchdown traveling state.
  • the states (shear force, slip ratio, etc.) of the aircraft tires are not uniform because the loads applied to the aircraft tires are different.
  • the method according to Patent Document 1 does not consider the state of each aircraft tire in the touchdown traveling state, it is difficult to accurately predict the wear amount of each aircraft tire in the touchdown traveling state. ..
  • the present invention has been made in view of such a situation, a wear amount prediction method capable of accurately predicting the wear amount of each aircraft tire in the touchdown traveling state, a wear amount prediction device, And to provide a wear amount prediction program.
  • the wear amount prediction method calculates the shearing force of each rib based on the average ground contact pressure of each rib (ribs 50 to 53) of an aircraft tire (aircraft tire 31), and based on the shearing force.
  • the wear energy of the aircraft tire is calculated, and the wear amount of the aircraft tire is predicted based on the wear energy and the wear resistance indicating the relationship between a predetermined wear amount.
  • the information about the aircraft includes the internal pressure of the aircraft tire.
  • the average ground pressure of each rib is calculated based on the internal pressure and the wheel load applied to the aircraft tire.
  • FIG. 1A is a schematic diagram showing the relationship between a wear amount prediction device, a network, and an airline company.
  • FIG. 1B is a schematic configuration diagram of a wear amount prediction device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating an operation example of the wear amount prediction device according to the embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating an operation example of the wear amount prediction device according to the embodiment of the present invention.
  • FIG. 4 is a graph showing the relationship between pitch angle and altitude.
  • FIG. 5 is a graph showing the relationship between the evaluation time and the descent rate.
  • FIG. 6 is a rear view illustrating circumferential grooves and ribs formed in an aircraft tire.
  • FIG. 7 is a graph illustrating an example of a slip ratio calculation method.
  • the wear amount prediction system 1 includes a wear amount prediction device 10, a network 20, and an airline company 30.
  • the wear amount prediction device 10 performs two-way communication with the airline company 30 via the network 20. Specifically, the wear amount prediction device 10 acquires information from the airline company 30 via the network 20 and individually predicts the wear amounts of the plurality of aircraft tires 31 mounted on the aircraft. Where the aircraft tire 31 is used in multiple scenes, the wear amount prediction device 10 according to the present embodiment predicts the wear amount of the aircraft tire 31 in the touchdown running state. Details of the touchdown traveling state will be described later. Information that the wear amount prediction device 10 acquires from the airline company 30 will also be described later. In the following, an aircraft may be simply referred to as an airframe.
  • the network 20 is a communication network capable of transmitting and receiving various information.
  • the network 20 includes various communication lines such as a leased line, a public switched telephone network, a satellite communication line, and a mobile communication line installed by a telecommunications carrier.
  • the wear amount prediction device 10 is, for example, a general-purpose computer and includes a CPU, a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the CPU (controller) reads the program stored in the ROM or the like into the RAM and executes the program.
  • the wear amount prediction device 10 may be a stationary terminal device or a portable terminal device (for example, a smartphone) that is easy to carry.
  • the wear amount prediction device 10 may be a server. As shown in FIG. 1B, the wear amount prediction device 10 includes a communication unit 11, a calculation unit 12, and a prediction unit 13.
  • the communication unit 11 is an interface that connects to the network 20 and transmits / receives data to / from the airline company 30.
  • the calculating unit 12 calculates the wear energy of each aircraft tire 31 mounted on the aircraft.
  • the prediction unit 13 predicts the wear amount of the aircraft tire 31 based on the wear energy calculated by the calculation unit 12.
  • the communication unit 11, the calculation unit 12, and the prediction unit 13 can be implemented by one or a plurality of processing circuits.
  • the processing circuit includes a programmed processing device, such as a processing device that includes an electrical circuit.
  • Processing circuitry includes devices such as application specific integrated circuits (ASICs) and circuit components that are arranged to perform the functions described.
  • the plurality of aircraft tires include an aircraft tire mounted on the main gear and an aircraft tire mounted on the nose gear. Further, a plurality of (for example, six) aircraft tires are mounted on the main gear. Also, a plurality of (for example, two) aircraft tires are mounted on the nose gear. However, one aircraft tire may be attached to the nose gear depending on the size of the aircraft.
  • the main gear may also be called a main landing gear.
  • the nose gear is sometimes called a nose landing gear.
  • the main gear and the nose gear are so-called landing gears, and include a shock absorber, a pedestal, and the like that absorb an impact load at the time of landing, in addition to aircraft tires.
  • the aircraft tires mean the respective tires mounted on the airframe.
  • the tire for aircrafts is only called a tire.
  • the gears include a main landing gear and a nose landing gear unless otherwise specified.
  • FIG. 2 is a flowchart illustrating an operation example of the wear amount prediction device 10.
  • the wear amount prediction device 10 acquires information about the aircraft from the airline company 30. Specifically, the wear amount prediction device 10 determines the speed of the airframe (including the descending speed), the acceleration of the airframe, the current position of the airframe, the altitude of the airframe, the direction of the nose of the airframe, the total weight of the airframe, and the airframe. The internal pressure of the mounted tire, the position of the rib of the tire, the rotation speed of the tire, the pitch angle of the machine (including the pitch rate), the roll angle of the machine (including the roll rate), the gear structure of the machine, and the like are acquired. The wear amount prediction device 10 also acquires the time when these pieces of information were acquired.
  • the rotation speed of the tire and the like may be obtained from an RFID tag attached to the inner surface of the tire. That is, not all of the information used to predict the wear amount may be acquired from the airline company 30.
  • the internal pressure of the tire acquired from the airline company 30 will be described as a measured value, but the present invention is not limited to this.
  • the tire internal pressure may be a predicted value.
  • step S103 the wear amount prediction device 10 estimates the touchdown time of the tire.
  • Touchdown time is the time when the tire touches down (eles).
  • the touchdown time may be different between the tire mounted on the main gear and the tire mounted on the nose gear. Even if the tires are mounted on the same main gear, the touchdown time may differ depending on the mounted shaft position.
  • the wear amount prediction device 10 determines whether or not the altitude of the machine body is less than or equal to a first threshold value.
  • the first threshold value is not particularly limited, but is 10 m, for example. If the altitude of the aircraft is less than or equal to the first threshold, that is, if the aircraft approaches the ground, the process proceeds to step S203. The reason for comparing the altitude with the first threshold value is to avoid erroneous touchdown determination.
  • the pitch angle of the aircraft gradually increases as the altitude decreases.
  • the direction in which the nose is directed upward is defined as positive.
  • the wear amount prediction device 10 determines that the tire has touched the ground when the pitch angle becomes maximum.
  • the tire mounted on the main gear comes into contact with the ground first, and then the tire mounted on the nose gear comes into contact with the ground. Further, even the tires mounted on the same main gear may have different ground contact timings.
  • the wear amount prediction device 10 may determine that the tire mounted on the main gear is in contact with the ground when the pitch angle is maximum. As shown in FIG. 4, when the tire comes into contact with the ground, a large acceleration is generated in the vertical direction of the machine due to the impact. Therefore, the wear amount prediction device 10 may determine that the tire mounted on the main gear is in contact with the ground when the pitch angle is maximum and a large acceleration occurs in the vertical direction of the machine body.
  • the process proceeds to step S205, and the wear amount prediction device 10 determines that the tire mounted on the nose gear is in contact with the ground when the pitch angle is less than or equal to the second threshold value.
  • the second threshold value is not particularly limited, but is 0 degrees, for example.
  • the ground contact time (touchdown time) of the tire mounted on the nose gear is slightly deviated from the position where the pitch angle is 0 degrees, because the vertical acceleration of the machine body is taken into consideration. ..
  • the wear amount prediction device 10 may determine that the tire mounted on the nose gear has touched the ground when the pitch angle is 0 degree.
  • the evaluation time is a time for predicting the amount of wear, and specifically, it is the time from when the tire comes into contact with the ground to when the distance traveled by the tire and the distance traveled by the machine body become equal.
  • the evaluation time is the time during which the above-mentioned touchdown traveling state continues. That is, the touchdown traveling state in the present embodiment refers to a state in which the distance that the tire rotates and the distance that the aircraft travels become substantially equal after the tire touches the ground. However, as will be described later, during touchdown, the aircraft receives various forces. In some cases, it may be difficult to accurately calculate the evaluation time with the above definition.
  • the wear amount prediction device 10 calculates the evaluation time Tg based on the descent speed of the machine body.
  • FIG. 5 is a graph showing the relationship between the evaluation time Tg and the descent rate.
  • the duration of the touchdown traveling state is 1 second or less, and is about 1 second at the longest.
  • Tire rotation is affected by descent speed.
  • the evaluation time Tg becomes longer.
  • the wear amount prediction device 10 calculates the evaluation time Tg based on the descending speed.
  • the descent speed is not constant in the touchdown running state. As shown in FIG. 4, the descent speed when the tire mounted on the main gear touches the ground and the descent speed when the tire mounted on the nose gear touches the ground are different. Therefore, the evaluation time Tg is different between the tire mounted on the main gear and the tire mounted on the nose gear. For each tire, the wear amount prediction device 10 predicts the wear amount of each tire from the time the tire touches the ground until the evaluation time Tg based on the descent rate at the time of touching passes.
  • the evaluation time Tg may be defined as the time from when the tire touches the ground until the aircraft transitions to the taxi running state.
  • the taxi running state is a state in which the machine body travels on the runway by using the power of the machine body.
  • step S107 the wear amount prediction device 10 calculates the load applied to the tire. For example, when there is one tire that is in contact with the road surface at the moment of touchdown, that one tire bears the entire load of the machine body.
  • the load is determined by subtracting the lift force from the total weight of the airframe.
  • the lift is obtained by a known method.
  • the wear amount prediction device 10 calculates the wheel load applied to the tire.
  • the wheel load is the weight that the tire bears, which is the same as the load described above, but the wheel load is a parameter that takes into consideration the characteristics and behavior of the airframe with respect to the load described above.
  • the characteristics of the airframe are, for example, gear arrangement and gear structure.
  • the gear arrangement relates to the position where the main gear and the nose gear are attached to the airframe.
  • Gear structure relates to the axial position where the tire is mounted. The position of each gear or the load that the tire bears on each axis changes. The changed load is defined as the wheel load.
  • the behavior of the aircraft is lift, roll angle, roll rate, pitch angle, pitch rate, etc.
  • the behavior of the machine body includes an impact load generated by the rotation of the gear structure and the bouncing of the machine body and the tire.
  • the load carried by the tire changes depending on the behavior of the airframe.
  • the changed load is defined as the wheel load.
  • the behavior of the machine body acquired by the wear amount prediction device 10 is in the touchdown traveling state.
  • the aircraft receives various forces in the touchdown driving state. And such force changes according to the characteristics and behavior of the airframe. For example, the force acting on the upper and lower sides of the machine body causes deformation of the gear. Thereby, the wheel load of the tire is calculated depending on the position of the gear to be mounted.
  • fs is defined as a coefficient determined by the position of the gear to be mounted
  • the wheel load is expressed by Equation 1.
  • the wear amount prediction device 10 calculates the wheel load by using the above expression 3.
  • step S111 the wear amount prediction device 10 calculates the shearing force of the tire.
  • a plurality of circumferential grooves 60 (three in FIG. 6) extending in the tire circumferential direction are formed on the tread surface, and a plurality of ribs defined by the circumferential grooves 60 are formed.
  • 50 to 53 (four in FIG. 6) are formed.
  • the ribs 50 to 53 are formed in the order of the ribs 50, 51, 52, 53 from the center side of the machine body toward the outside.
  • the shearing force varies depending on the position of the rib.
  • the wear amount prediction device 10 calculates the shear force of each rib by multiplying the average ground pressure of each rib by the dynamic friction coefficient ⁇ . Thereby, the wear amount prediction device 10 can accurately calculate the shearing force of each rib.
  • the average ground pressure of each rib is calculated based on each wheel weight and each internal pressure of each rib.
  • the wheel weight and the internal pressure of each rib are calculated, for example, by dividing the wheel weight and the internal pressure of the tire by the number of ribs. In the present embodiment, it is assumed that the average ground pressure of each rib is calculated in advance.
  • the average ground pressure of each rib may be calculated based on the FEM model (Finite Element Method) of the tire.
  • the road surface condition at each airport differs depending on the airport.
  • the dynamic friction coefficient ⁇ of the road surface at each airport is assumed to be acquired in advance.
  • the process proceeds to step S113, and the wear amount prediction device 10 calculates the slip ratio in the tire rotation direction.
  • the wear amount prediction device 10 calculates the slip ratio using the rotation speed of the tire.
  • the wear amount prediction device 10 may acquire the rotational speed of the tire from the airline company 30.
  • the rotation speed of a tire is measured by a sensor attached to the tire (or airframe). It is also possible that the rotation speed of the tire cannot be acquired.
  • the wear amount prediction device 10 may calculate the slip ratio based on the indoor test result.
  • the indoor test is, for example, a test in which the tire is subjected to the same conditions as when the aircraft landed.
  • the rotation speed information and the wheel load information are acquired by the indoor test.
  • step S115 the wear amount prediction device 10 multiplies the slip ratio by the shear force to calculate the instantaneous wear energy in a minute time. Then, the wear amount prediction device 10 integrates the instantaneous wear energy at the evaluation time Tg to calculate the wear energy. Then, the wear amount prediction device 10 predicts the wear amount based on the wear energy and the wear resistance indicating the relationship between the predetermined wear amount.
  • the wear resistance is calculated, for example, by using the wear energy per flight calculated from the behavior of the body of an average flight (between the airport and the airport) and the wear amount per flight.
  • the abrasion resistance described above is usually used in a taxi running state. Since the impact is large in the touchdown traveling state, a wear resistance smaller than the above-mentioned wear resistance may be used. In other words, in the touchdown traveling state, a wear resistance smaller than that used in the taxi traveling state may be used.
  • the wear amount prediction device 10 acquires information about the airframe from the airline company 30 and predicts the wear amount of the tire in the touchdown running state. Specifically, the wear amount prediction device 10 calculates the shearing force of each rib by multiplying the average ground pressure of each rib of each tire by the dynamic friction coefficient ⁇ .
  • the information regarding the airframe includes the internal pressure of the tire. The average ground contact pressure of each rib is calculated based on the internal pressure and the wheel load applied to the tire. The wear amount prediction device 10 calculates the wear energy of the tire based on the shearing force.
  • the wear amount prediction device 10 predicts the wear amount of the tire based on the wear energy and the wear resistance indicating the relationship between the wear amount and the predetermined wear amount. Accordingly, the wear amount prediction device 10 can accurately predict the wear amount of each tire in the touchdown traveling state.
  • the information on the airframe includes the structure of the landing gear of the airframe, the total weight of the airframe, and the information on the behavior of the airframe in the touchdown running state.
  • the wear amount prediction device 10 calculates the wheel load by using the above expression 3. Accordingly, the wear amount prediction device 10 can calculate the wheel load in consideration of the characteristics and behavior of the machine body. Since the wheel load calculated in this way has high accuracy, the wear amount prediction device 10 can accurately predict the wear amount of each tire in the touchdown traveling state.
  • the wear amount prediction device 10 calculates the slip ratio in the tire rotation direction based on the tire rotation speed.
  • the wear amount prediction device 10 can accurately calculate the slip ratio by using the actual rotation speed.
  • the wear amount prediction device 10 estimates the time during which the touchdown traveling state continues based on the descending speed. As described above, if the vehicle body descends slowly, the rotation speed of the tires slowly rises, so the evaluation time Tg becomes longer. On the other hand, if the descending speed is fast, the rotation speed of the tire also rises quickly, so that the evaluation time Tg becomes short. The wear amount prediction device 10 can accurately estimate the time during which the touchdown traveling state continues by using the descending speed.
  • the wear amount prediction device 10 estimates the time when the touchdown occurs based on the pitch angle. As in the above-described example, the wear amount prediction device 10 determines that the tire mounted on the main gear is in contact with the ground when the altitude is equal to or less than the first threshold and the pitch angle is maximum. Further, the wear amount prediction device 10 determines that the tire mounted on the nose gear is in contact with the ground when the altitude is less than or equal to the first threshold value and the pitch angle is 0 degree. Accordingly, the wear amount prediction device 10 can accurately estimate the time when the touchdown occurs for each tire. Further, the wear amount prediction device 10 predicts the wear amount from the time when the touchdown occurs until the touchdown traveling state continues. As a result, the touchdown running state is accurately classified from the other running states (for example, the taxi running state), so that the wear amount prediction device 10 accurately predicts the wear amount of each tire in the touchdown running state. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Operations Research (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Tires In General (AREA)

Abstract

摩耗量予測方法は、航空機用タイヤ(31)の各リブ(50~53)の平均接地圧に基づいて、各リブ(50~53)のせん断力を算出し、せん断力に基づいて航空機用タイヤ(31)の摩耗エネルギーを算出し、摩耗エネルギーと、所定の摩耗量との関係を示す摩耗抵抗とに基づいて、航空機用タイヤ(31)の摩耗量を予測する。航空機に関する情報は、航空機用タイヤ(31)の内圧を含む。各リブ(50~53)の平均接地圧は、内圧と、航空機用タイヤ(31)にかかる輪重とに基づいて算出される。

Description

摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム
 本発明は、摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラムに関する。
 従来より、航空機用タイヤの摩耗量を予測する技術が知られている(特許文献1)。特許文献1に係る方法は、使用条件に応じて区分けされた複数の走行状態(例えば、タッチダウン走行状態、タッチダウン後減速走行状態、タキシー走行状態など)に対応する複数の摩耗エネルギーを取得し、取得した摩耗エネルギーに基づいて航空機用タイヤの摩耗量を予測する。
特許第5778560号
 通常、航空機には、複数の航空機用タイヤが装着される。タッチダウン走行状態において、それぞれの航空機用タイヤの摩耗量は異なる。例えば、タッチダウン走行状態において、それぞれの航空機用タイヤの状態(せん断力、スリップ率など)は、航空機用タイヤにかかる荷重が異なるため、一様ではない。しかしながら、特許文献1に係る方法は、タッチダウン走行状態におけるそれぞれの航空機用タイヤの状態を考慮していないため、タッチダウン走行状態におけるそれぞれの航空機用タイヤの摩耗量を精度よく予測することは難しい。
 そこで、本発明は、このような状況に鑑みてなされたものであり、タッチダウン走行状態におけるそれぞれの航空機用タイヤの摩耗量を精度よく予測することができる摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラムの提供を目的とする。
 本発明に係る摩耗量予測方法は、航空機用タイヤ(航空機用タイヤ31)の各リブ(リブ50~53)の平均接地圧に基づいて、各リブのせん断力を算出し、せん断力に基づいて航空機用タイヤの摩耗エネルギーを算出し、摩耗エネルギーと、所定の摩耗量との関係を示す摩耗抵抗とに基づいて、航空機用タイヤの摩耗量を予測する。航空機に関する情報は、航空機用タイヤの内圧を含む。各リブの平均接地圧は、内圧と、航空機用タイヤにかかる輪重とに基づいて算出される。
 本発明によれば、タッチダウン走行状態におけるそれぞれの航空機用タイヤの摩耗量を精度よく予測することができる。
図1Aは、摩耗量予測装置とネットワークと航空会社との関係を示す概略図である。 図1Bは、本発明の実施形態に係る摩耗量予測装置の概略構成図である。 図2は、本発明の実施形態に係る摩耗量予測装置の一動作例を説明するフローチャートである。 図3は、本発明の実施形態に係る摩耗量予測装置の一動作例を説明するフローチャートである。 図4は、ピッチ角と高度との関係を示すグラフである。 図5は、評価時間と降下速度との関係を示すグラフである。 図6は、航空機用タイヤに形成される周方向溝とリブについて説明する背面図である。 図7は、スリップ率の算出方法の一例を説明するグラフである。
 以下、本発明の実施形態について、図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。
(1)摩耗量予測システムの構成例
 図1Aを参照して、摩耗量予測システム1の構成の一例について説明する。図1Aに示すように、摩耗量予測システム1は、摩耗量予測装置10と、ネットワーク20と、航空会社30とを含む。
 摩耗量予測装置10は、ネットワーク20を介して航空会社30と双方向通信を行う。具体的には、摩耗量予測装置10は、ネットワーク20を介して、航空会社30から情報を取得し、航空機に装着された複数の航空機用タイヤ31の摩耗量を個別に予測する。航空機用タイヤ31が使用されるシーンには複数の走行状態が含まれるところ、本実施形態に係る摩耗量予測装置10は、タッチダウン走行状態における航空機用タイヤ31の摩耗量を予測する。タッチダウン走行状態の詳細は後述する。また、摩耗量予測装置10が航空会社30から取得する情報についても、後述する。なお、以下では、航空機を単に機体とよぶ場合がある。ネットワーク20は、各種情報を送受信可能な通信網である。例えば、ネットワーク20は、電気通信事業者により設置された専用線、公衆交換電話網、衛星通信回線、移動体通信回線等の各種通信回線で構成される。
 摩耗量予測装置10は、例えば、汎用のコンピュータであり、CPU、ROM(Read Only Memory)及びRAM(Random Access Memory)を備える。CPU(コントローラ)は、ROMなどに記憶されたプログラムを、RAMに読み出して実行する。なお、摩耗量予測装置10は、設置型の端末装置でもよく、持ち運びが容易な携帯型の端末装置(例えば、スマートフォン)でもよい。また、摩耗量予測装置10は、サーバでもよい。摩耗量予測装置10は、図1Bに示すように、通信部11と、算出部12と、予測部13を、を備える。通信部11は、ネットワーク20に接続して航空会社30との間でデータを送受信するインタフェースである。算出部12は、航空機に装着されたそれぞれの航空機用タイヤ31の摩耗エネルギーを算出する。予測部13は、算出部12によって算出された摩耗エネルギーに基づいて航空機用タイヤ31の摩耗量を予測する。通信部11、算出部12、及び予測部13は、1または複数の処理回路により実装され得る。処理回路は、電気回路を含む処理装置等のプログラムされた処理装置を含む。処理回路は、記載された機能を実行するようにアレンジされた特定用途向け集積回路(ASIC)や回路部品等の装置を含む。
 本実施形態において、複数の航空機用タイヤには、メインギアに装着された航空機用タイヤ、ノーズギアに装着された航空機用タイヤが含まれる。さらに、メインギアには、複数(例えば6本)の航空機用タイヤが装着される。また、ノーズギアにも複数(例えば2本)の航空機用タイヤが装着される。ただし、機体の大きさによっては、ノーズギアに1本の航空機用タイヤが装着される場合がある。なお、メインギアは、メインランディングギアと呼ばれる場合もある。ノーズギアは、ノーズランディングギアと呼ばれる場合もある。また、メインギア及びノーズギアは、いわゆる着陸装置であり、航空機用タイヤの他に着陸時の衝撃荷重を吸収する緩衝装置、脚柱などを含む。以下では、特に断らない限り、航空機用タイヤは、機体に装着されたそれぞれのタイヤを意味する。また、以下では、航空機用タイヤを単にタイヤと称する。また、以下では、特に断らない限り、ギヤはメインランディングギア及びノーズランディングギアを含む。
(2)摩耗量予測方法
 次に、図2~図7を参照して、摩耗量の予測方法の一例について説明する。図2は、摩耗量予測装置10の一動作例を説明するフローチャートである。
 図2に示すステップS101において、摩耗量予測装置10は、航空会社30から、機体に関する情報を取得する。具体的には、摩耗量予測装置10は、機体の速度(降下速度も含む)、機体の加速度、機体の現在の位置、機体の高度、機体の機首の方向、機体の総重量、機体に装着されたタイヤの内圧、タイヤのリブの位置、タイヤの回転速度、機体のピッチ角(ピッチレートを含む)、機体のロール角(ロールレートを含む)、機体のギア構造などを取得する。また、摩耗量予測装置10は、これらの情報を取得した際の時刻も取得する。なお、タイヤの回転速度などは、タイヤの内面に取り付けられたRFIDタグから取得されてもよい。つまり、摩耗量の予測に使用される情報の全てが航空会社30から取得されるものでなくてもよい。本実施形態において、航空会社30から取得するタイヤの内圧は実測値として説明するが、これに限定されない。タイヤの内圧は予測値でもよい。
 処理は、ステップS103に進み、摩耗量予測装置10は、タイヤのタッチダウン時刻を推定する。タッチダウン時刻とは、タイヤが接地した(着陸した)瞬間の時刻をいう。メインギアに装着されたタイヤと、ノーズギアに装着されたタイヤとでは、タッチダウン時刻が異なる場合がある。また、同じメインギアに装着されたタイヤでも、装着された軸位置に応じてタッチダウン時刻が異なる場合がある。
 タッチダウン時刻の推定方法について、図3及び図4を参照して説明する。まず図3に示すステップS201において、摩耗量予測装置10は、機体の高度が第1閾値以下か否かを判定する。第1閾値は、特に限定されないが、例えば10mである。機体の高度が第1閾値以下の場合、つまり、機体が地面に近づいた場合に処理はステップS203に進む。高度と第1閾値とを比較する理由は、タッチダウンの誤判定を回避するためである。
 通常、機体が着陸するとき、機体のピッチ角は、高度が下がるにつれて、徐々に大きくなる。ピッチ角の正負について本実施形態では、機首が上向く方向を正と定義する。通常、機体が着陸した瞬間、ピッチ角は最大となり、その後ピッチ角は減少する(図4参照)。よって、ステップS203において、摩耗量予測装置10は、ピッチ角が最大となった場合に、タイヤが接地したと判定する。ただし、通常、全てのタイヤは同時には接地しない。通常、メインギアに装着されたタイヤが先に接地し、その後、ノーズギアに装着されたタイヤが接地する。また、同じメインギアに装着されたタイヤでも、接地タイミングが異なる場合がある。例えば、メインギアが1~3軸で構成される場合、3軸に装着されたタイヤが先に接地し、その後、1~2軸に装着されたタイヤが接地する場合がある(図4参照)。ただし、図4に示すように、メインギア間(例えば、1~2軸と3軸)における接地時間差は非常に小さく、通常は無視してもよい。したがって、摩耗量予測装置10は、ピッチ角が最大のときに、メインギアに装着されたタイヤが接地したと判定してもよい。なお、図4に示すように、タイヤが接地したとき、その衝撃によって機体の上下方向に大きな加速度が発生する。よって、摩耗量予測装置10は、ピッチ角が最大であり、かつ、機体の上下方向に大きな加速度が発生したときにメインギアに装着されたタイヤが接地したと判定してもよい。
 処理はステップS205に進み、摩耗量予測装置10は、ピッチ角が第2閾値以下の場合に、ノーズギアに装着されたタイヤが接地したと判定する。第2閾値は、特に限定されないが、例えば0度である。図4に示す例において、ピッチ角が0度の位置とノーズギアに装着されたタイヤの接地時刻(タッチダウン時刻)が少しずれているが、これは機体の上下方向の加速度が考慮されたからである。摩耗量予測装置10は、ピッチ角が0度のときにノーズギアに装着されたタイヤが接地したと判定してもよい。
 タッチダウン時刻を推定した後、処理は図2に示すステップS105に進み、摩耗量予測装置10は、評価時間を算出する。評価時間とは、摩耗量を予測する時間であり、具体的には、タイヤが接地してから、タイヤが回転して進む距離と、機体が進む距離が等しくなるまでの時間をいう。評価時間は、上述したタッチダウン走行状態が継続する時間である。つまり、本実施形態におけるタッチダウン走行状態とは、タイヤが接地してから、タイヤが回転する距離と、機体が進む距離がほぼ等しくなるまでの状態をいう。ただし、後述するようにタッチダウン時において、機体は様々な力を受ける。上述した定義で評価時間を正確に算出することが困難な場合もある。
 そこで、本実施形態に係る摩耗量予測装置10は、機体の降下速度に基づいて、評価時間Tgを算出する。評価時間Tgの算出方法の一例について図5を参照して説明する。図5は、評価時間Tgと降下速度との関係を示すグラフである。タッチダウン走行状態において、路面との接地により白煙を伴う猛烈なせん断力が発生し、せん断力がトルクとなって回転が始まる。図5に示すように、タッチダウン走行状態の継続時間は、1秒以下であり、長くても1秒程度である。タイヤの回転は、降下速度の影響を受ける。図5に示すように、機体がゆっくり降下すればタイヤの回転速度がゆっくりと上昇するため、評価時間Tgは長くなる。一方、降下速度が早ければ、タイヤの回転速度も早く上昇するため、評価時間Tgは短くなる。このように摩耗量予測装置10は、降下速度に基づいて評価時間Tgを算出する。
 また、降下速度は、タッチダウン走行状態において一定ではない。図4に示すように、メインギアに装着されたタイヤが接地したときの降下速度と、ノーズギアに装着されたタイヤが接地したときの降下速度は、異なる。したがって、メインギアに装着されたタイヤと、ノーズギアに装着されたタイヤでは、評価時間Tgは異なる。それぞれのタイヤにおいて、タイヤが接地してから、接地時の降下速度に基づく評価時間Tgが経過するまでの間、摩耗量予測装置10は、それぞれのタイヤの摩耗量を予測する。
 なお、評価時間Tgは、タイヤが接地してから、機体がタキシー走行状態に移行するまでの時間と定義されてもよい。タキシー走行状態とは、機体が、機体の動力を用いて滑走路を走行する状態をいう。
 処理はステップS107に進み、摩耗量予測装置10は、タイヤにかかる荷重を算出する。例えば、タッチダウンの瞬間、路面に接地しているタイヤが1本の場合、その1本のタイヤが機体の全荷重を負担することになる。荷重は、機体の総重量から揚力を減算することによって求められる。なお、揚力は周知の方法によって求められる。
 処理はステップS109に進み、摩耗量予測装置10は、タイヤにかかる輪重を算出する。本実施形態において輪重とは、タイヤが負担する重さであることは上述した荷重と同じであるが、上述した荷重に対し機体の特性、挙動などを考慮したパラメータが輪重である。
 機体の特性とは、例えば、ギア配置、ギア構造などである。ギア配置は、メインギア及びノーズギアが機体に取り付けられる位置に関する。ギア構造は、タイヤが取り付けられる軸位置に関する。各ギアの位置、または各軸においてタイヤが負担する荷重は変化する。変化後の荷重が、輪重と定義される。
 機体の挙動とは、揚力、ロール角、ロールレート、ピッチ角、ピッチレートなどである。また、機体の挙動には、ギア構造が回転したり、機体及びタイヤがバウンドしたりすることによって発生する衝撃荷重も含まれる。このような機体の挙動によってタイヤが負担する荷重は変化する。変化後の荷重が、輪重と定義される。なお、摩耗量予測装置10が取得する機体の挙動は、タッチダウン走行状態におけるものである。
 タッチダウン走行状態において、機体は様々な力を受ける。そしてこのような力は機体の特性、挙動によって変化する。例えば、機体の上下に働く力によってギアに変形が生じる。これにより、ギアのどの位置に装着されるかによって、タイヤの輪重は計算される。ギアのどの位置に装着されるかによって定まる係数をfsと定義した場合、輪重は、式1で表される。
[数1]
輪重=fs×(総重量-揚力)・・・(1)
 なお、静的には揚力はゼロである。
 機体には様々な種類(大きさ、形状)が存在し、機体ごとに上述した特性は異なる。どの機体に装着されるかによって定まる係数をfdと定義した場合、輪重は、式2で表される。
[数2]
輪重=fs×fd×(総重量-揚力)・・・(2)
 統計的に左右のロール変化は中央値がゼロであると仮定される。このような機体の挙動(機体の左右のロール変化)によって定まる係数をfrと定義した場合、輪重は、式3で表される。
[数3]
輪重=fs×fd×fr×(総重量-揚力)・・・(3)
 本実施形態において、摩耗量予測装置10は、上記の式3を用いて輪重を算出する。
 処理はステップS111に進み、摩耗量予測装置10は、タイヤのせん断力を算出する。図6に示すように、タイヤ31には、トレッド踏面において、タイヤ周方向に延びる複数の周方向溝60(図6では、3つ)が形成され、周方向溝60によって区画される複数のリブ50~53(図6では、4つ)が形成される。リブ50~53は、リブ50、51、52、53の順番で、機体の中心側から外側に向かって形成される。せん断力は、リブの位置に応じて異なる。上述した従来技術では、各リブが一様圧力で接地していると仮定しているが、実際には接地圧分布が生じている。したがって、本実施形態では、摩耗量予測装置10は、各リブの平均接地圧に動摩擦係数μを乗算することによって各リブのせん断力を算出する。これにより、摩耗量予測装置10は、各リブのせん断力を精度よく算出できる。なお、各リブの平均接地圧は、各リブの各輪重及び各内圧に基づいて算出される。各リブの各輪重及び各内圧は、一例として、タイヤの輪重及び内圧をリブ数で除算して算出される。本実施形態において、各リブの平均接地圧は予め算出されているものとする。なお、各リブの平均接地圧は、タイヤのFEMモデル(Finite Element Method)に基づいて算出されてもよい。各空港の路面状態は、各空港によって異なる。各空港の路面の動摩擦係数μは、予め取得されているものとする。
 処理はステップS113に進み、摩耗量予測装置10は、タイヤの回転方向のスリップ率を算出する。具体的には、摩耗量予測装置10は、タイヤの回転速度を用いてスリップ率を算出する。タイヤの回転速度について、摩耗量予測装置10は、航空会社30から取得すればよい。タイヤの回転速度は、タイヤ(または機体)に取り付けたセンサによって計測される。なお、タイヤの回転速度が取得できない場合も考えられる。タイヤの回転速度が取得できない場合は、摩耗量予測装置10は、室内試験結果に基づいてスリップ率を算出すればよい。室内試験とは例えば機体の着陸時と同等程度の条件をタイヤに付与する試験である。室内試験によって、回転速度情報と、輪重情報が取得される。図7は、室内試験結果の一例である。図7に示すように、室内試験によって取得された輪重及び回転速度を、タイヤが接地した瞬間(T=0)から評価時間Tgまでの区間にて正規化し、正規化した関数によってスリップ率が算出されてもよい。なお、単調増加関数により輪重及び回転速度の変化を模擬し、接地した瞬間(T=0)から評価時間Tgまでの区間にて正規化した関数によってスリップ率が算出されてもよい。
 なお、図7に示す例は、時刻Tgにおいて輪重が100%に達すると限定するものではない。同様に、時刻Tgにおいてスリップ率が0%まで低下すると限定するものではない。
 処理はステップS115に進み、摩耗量予測装置10は、スリップ率にせん断力を乗算して、微小時間における瞬間摩耗エネルギーを算出する。そして、摩耗量予測装置10は、評価時間Tgで瞬間摩耗エネルギーを積分して、摩耗エネルギーを算出する。そして、摩耗量予測装置10は、摩耗エネルギーと、所定の摩耗量との関係を示す摩耗抵抗とに基づいて、摩耗量を予測する。摩耗抵抗は、例えば、平均的なフライト(空港~空港間)の機体の挙動から算出される1フライトあたりの摩耗エネルギーと、1フライトあたり摩耗量とを用いて算出される。なお、上述した摩耗抵抗は、通常、タキシー走行状態において用いられる。タッチダウン走行状態においては衝撃が大きいため、上述した摩耗抵抗より小さい摩耗抵抗が用いられてもよい。換言すれば、タッチダウン走行状態においては、タキシー走行状態において用いられる摩耗抵抗より小さい摩耗抵抗が用いられてもよい。
(3)作用効果
 以上説明したように、本実施形態に係る摩耗量予測装置10は、航空会社30から機体に関する情報を取得し、タッチダウン走行状態におけるタイヤの摩耗量を予測する。具体的には、摩耗量予測装置10は、それぞれのタイヤの各リブの平均接地圧に動摩擦係数μを乗算することによって各リブのせん断力を算出する。機体に関する情報は、タイヤの内圧を含む。各リブの平均接地圧は、内圧と、タイヤにかかる輪重とに基づいて算出される。摩耗量予測装置10は、せん断力に基づいてタイヤの摩耗エネルギーを算出する。そして摩耗量予測装置10は、摩耗エネルギーと、所定の摩耗量との関係を示す摩耗抵抗とに基づいてタイヤの摩耗量を予測する。これにより、摩耗量予測装置10は、タッチダウン走行状態におけるそれぞれのタイヤの摩耗量を精度よく予測することができる。
 また、機体に関する情報は、機体の着陸装置の構造、機体の総重量、及びタッチダウン走行状態における機体の挙動に関する情報を含む。摩耗量予測装置10は、上記の式3を用いて輪重を算出する。これにより、摩耗量予測装置10は、機体の特性、挙動などを考慮して輪重を算出することができる。このようにして算出された輪重は精度が高いため、摩耗量予測装置10は、タッチダウン走行状態におけるそれぞれのタイヤの摩耗量を精度よく予測することができる。
 また、摩耗量予測装置10は、タイヤの回転速度に基づいてタイヤの回転方向におけるスリップ率を算出する。摩耗量予測装置10は、実際の回転速度を用いることによって、精度よくスリップ率を算出することができる。
 また、摩耗量予測装置10は、降下速度に基づいてタッチダウン走行状態が継続する時間を推定する。上述したように、機体がゆっくり降下すればタイヤの回転速度がゆっくりと上昇するため、評価時間Tgは長くなる。一方、降下速度が早ければ、タイヤの回転速度も早く上昇するため、評価時間Tgは短くなる。摩耗量予測装置10は、降下速度を用いることによって、タッチダウン走行状態が継続する時間を精度よく推定することができる。
 また、摩耗量予測装置10は、ピッチ角に基づいてタッチダウンが発生した時刻を推定する。上述した一例のように、摩耗量予測装置10は、高度が第1閾値以下であり、ピッチ角が最大となった場合にメインギアに装着されたタイヤが接地したと判定する。また、摩耗量予測装置10は、高度が第1閾値以下であり、ピッチ角が0度となった場合にノーズギアに装着されたタイヤが接地したと判定する。これにより、摩耗量予測装置10は、タッチダウンが発生した時刻をタイヤごとに精度よく推定することができる。また、摩耗量予測装置10は、タッチダウンが発生した時刻からタッチダウン走行状態が継続する間において摩耗量を予測する。これにより、タッチダウン走行状態が他の走行状態(例えば、タキシー走行状態)と精度よく区分けされるため、摩耗量予測装置10は、タッチダウン走行状態におけるそれぞれのタイヤの摩耗量を精度よく予測することができる。
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 日本国特許出願第2018-216320号(出願日:2018年11月19日)の全内容は、ここに援用される。
1 摩耗量予測システム
10 摩耗量予測装置
11 通信部
12 算出部
13 予測部
20 ネットワーク
30 航空会社
31 航空機用タイヤ
50~53 リブ
60 周方向溝
 

Claims (7)

  1.  航空機に関する情報に基づいてタッチダウン走行状態における航空機用タイヤの摩耗量を予測する摩耗量予測方法であって、
     前記航空機用タイヤの各リブの平均接地圧に基づいて、前記各リブのせん断力を算出し、
     前記せん断力に基づいて前記航空機用タイヤの摩耗エネルギーを算出し、
     前記摩耗エネルギーと、所定の摩耗量との関係を示す摩耗抵抗とに基づいて、前記航空機用タイヤの摩耗量を予測し、
     前記航空機に関する情報は、前記航空機用タイヤの内圧を含み、
     前記各リブの平均接地圧は、前記内圧と、前記航空機用タイヤにかかる輪重とに基づいて算出される
    ことを特徴とする摩耗量予測方法。
  2.  前記航空機に関する情報は、前記航空機の着陸装置の構造、前記航空機の総重量、及び前記タッチダウン走行状態における前記航空機の挙動に関する情報を含み、
     前記航空機用タイヤが、前記着陸装置のどの位置に装着されるかによって定まる係数をfsとし、
     前記航空機用タイヤが装着される航空機によって定まる係数をfdとし、
     前記挙動によって定まる係数をfrとした場合、
     前記輪重は、以下の式1を用いて算出されることを特徴とする請求項1に記載の摩耗量予測方法。
    [数1]
     輪重=fs×fd×fr×(航空機の総重量-揚力)・・・(1)
  3.  前記航空機に関する情報が、前記航空機用タイヤの回転速度を含む場合は、前記回転速度に基づいて前記航空機用タイヤの回転方向におけるスリップ率を算出し、
     前記航空機に関する情報が、前記航空機用タイヤの回転速度を含まない場合は、予め実施された試験結果に基づいて前記スリップ率を算出し、
     前記スリップ率に前記せん断力を乗算して前記摩耗エネルギーを算出する
    ことを特徴とする請求項2に記載の摩耗量予測方法。
  4.  前記航空機に関する情報は、前記航空機の降下速度を含み、
     前記降下速度に基づいて、前記タッチダウン走行状態が継続する時間を推定する
    ことを特徴とする請求項1~3のいずれか1項に記載の摩耗量予測方法。
  5.  前記航空機に関する情報は、前記航空機のピッチ角を含み、
     前記ピッチ角に基づいて、タッチダウンが発生した時刻を推定し、
     前記タッチダウンが発生した時刻から前記タッチダウン走行状態が継続する間において前記摩耗量を予測する
    ことを特徴とする請求項4に記載の摩耗量予測方法。
  6.  航空機に関する情報に基づいてタッチダウン走行状態における航空機用タイヤの摩耗量を予測するコントローラを備える摩耗量予測装置であって、
     前記コントローラは、
     前記航空機用タイヤの各リブの平均接地圧に基づいて、前記各リブのせん断力を算出し、
     前記せん断力に基づいて前記航空機用タイヤの摩耗エネルギーを算出し、
     前記摩耗エネルギーと、所定の摩耗量との関係を示す摩耗抵抗とに基づいて、前記航空機用タイヤの摩耗量を予測し、
     前記航空機に関する情報は、前記航空機用タイヤの内圧を含み、
     前記各リブの平均接地圧は、前記内圧と、前記航空機用タイヤにかかる輪重とに基づいて算出される
    ことを特徴とする摩耗量予測装置。
  7.  航空機に関する情報に基づいてタッチダウン走行状態における航空機用タイヤの摩耗量を予測する摩耗量予測プログラムであって、
     端末装置のコンピュータに、
     前記航空機用タイヤの各リブの平均接地圧に基づいて、前記各リブのせん断力を算出するステップと、
     前記せん断力に基づいて前記航空機用タイヤの摩耗エネルギーを算出するステップと、
     前記摩耗エネルギーと、所定の摩耗量との関係を示す摩耗抵抗とに基づいて、前記航空機用タイヤの摩耗量を予測するステップと、を実行させ、
     前記航空機に関する情報は、前記航空機用タイヤの内圧を含み、
     前記各リブの平均接地圧は、前記内圧と、前記航空機用タイヤにかかる輪重とに基づいて算出される
    ことを特徴とする摩耗量予測プログラム。
     
PCT/JP2019/045295 2018-11-19 2019-11-19 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム WO2020105641A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/293,270 US11807047B2 (en) 2018-11-19 2019-11-19 Wear amount estimation method, wear amount estimation device, and wear amount estimation program
JP2020557562A JP7299239B2 (ja) 2018-11-19 2019-11-19 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム
CN201980076174.7A CN113165449B (zh) 2018-11-19 2019-11-19 磨损量预测方法、磨损量预测装置以及计算机可读取存储介质
EP19886250.0A EP3885166B1 (en) 2018-11-19 2019-11-19 Wear-amount predicting method, wear-amount predicting device, and wear-amount predicting program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018216320 2018-11-19
JP2018-216320 2018-11-19

Publications (1)

Publication Number Publication Date
WO2020105641A1 true WO2020105641A1 (ja) 2020-05-28

Family

ID=70773794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045295 WO2020105641A1 (ja) 2018-11-19 2019-11-19 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム

Country Status (5)

Country Link
US (1) US11807047B2 (ja)
EP (1) EP3885166B1 (ja)
JP (1) JP7299239B2 (ja)
CN (1) CN113165449B (ja)
WO (1) WO2020105641A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326145A (ja) * 1998-05-08 1999-11-26 Bridgestone Corp タイヤ摩耗寿命予測方法
JP5778560B2 (ja) 2011-11-29 2015-09-16 株式会社ブリヂストン タイヤ摩耗予測方法及びタイヤ摩耗予測装置
JP2016008919A (ja) * 2014-06-25 2016-01-18 住友ゴム工業株式会社 タイヤのシミュレーション方法及びシミュレーション装置
CN206664169U (zh) * 2017-05-05 2017-11-24 肇庆市广应科通用航空研究院 飞机轮胎监测装置
WO2018115675A1 (fr) * 2016-12-20 2018-06-28 Compagnie Generale Des Etablissements Michelin Procede de determination de l'etat d'usure d'un pneumatique pour avion
JP2019105600A (ja) * 2017-12-14 2019-06-27 株式会社ブリヂストン 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348962C (zh) * 2003-05-15 2007-11-14 同济大学 轮胎接地压力及轮胎作用下路面结构内应力应变测量装置
JP4549975B2 (ja) * 2003-08-19 2010-09-22 株式会社ブリヂストン タイヤ状態推定方法
CN101183402B (zh) * 2006-11-13 2012-07-25 韩国轮胎株式会社 轮胎花纹的实际磨损预测方法
JP5534588B2 (ja) * 2010-02-24 2014-07-02 株式会社ブリヂストン タイヤのゴムインデックス算出方法、装置及びプログラム
JP5829861B2 (ja) * 2011-08-08 2015-12-09 住友ゴム工業株式会社 タイヤの摩耗エネルギーの予測方法及びタイヤの設計方法
JP6006576B2 (ja) * 2012-07-31 2016-10-12 住友ゴム工業株式会社 タイヤのシミュレーション方法
JP6076818B2 (ja) * 2013-04-23 2017-02-08 株式会社ブリヂストン 航空機用タイヤ
JP7440295B2 (ja) * 2020-02-28 2024-02-28 株式会社ブリヂストン 摩耗状態予測方法、摩耗状態予測装置、及び摩耗状態予測プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326145A (ja) * 1998-05-08 1999-11-26 Bridgestone Corp タイヤ摩耗寿命予測方法
JP5778560B2 (ja) 2011-11-29 2015-09-16 株式会社ブリヂストン タイヤ摩耗予測方法及びタイヤ摩耗予測装置
JP2016008919A (ja) * 2014-06-25 2016-01-18 住友ゴム工業株式会社 タイヤのシミュレーション方法及びシミュレーション装置
WO2018115675A1 (fr) * 2016-12-20 2018-06-28 Compagnie Generale Des Etablissements Michelin Procede de determination de l'etat d'usure d'un pneumatique pour avion
CN206664169U (zh) * 2017-05-05 2017-11-24 肇庆市广应科通用航空研究院 飞机轮胎监测装置
JP2019105600A (ja) * 2017-12-14 2019-06-27 株式会社ブリヂストン 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム

Also Published As

Publication number Publication date
CN113165449B (zh) 2023-01-03
CN113165449A (zh) 2021-07-23
EP3885166B1 (en) 2023-11-15
JPWO2020105641A1 (ja) 2021-09-30
US11807047B2 (en) 2023-11-07
EP3885166A1 (en) 2021-09-29
US20220001701A1 (en) 2022-01-06
EP3885166A4 (en) 2022-07-27
JP7299239B2 (ja) 2023-06-27

Similar Documents

Publication Publication Date Title
JP6976833B2 (ja) 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム
JP6896596B2 (ja) タイヤ溝残量管理システム
EP3296170B1 (en) Brake wear reduction apparatus
GB2470100A (en) Hard Landing Detection and Warning System for an Aircraft
CN104554742A (zh) 飞机停车性能显示和报警
US10293924B2 (en) Method and system for assisting the piloting of an aircraft in landing phase
JP5778560B2 (ja) タイヤ摩耗予測方法及びタイヤ摩耗予測装置
Pasindu et al. Computation of aircraft braking distances
CN105584627B (zh) 控制飞行器水平稳定器的方法和装置
US20150286215A1 (en) Methods and apparatus to predict landing system operating parameters
CN116101509B (zh) 一种无人机刹车能量限制下的着陆适应性分析方法
CN105000173A (zh) 飞机刹车接地保护系统及方法
CN113919597A (zh) 用于预测飞行器的着陆载荷的方法和设备
WO2020105641A1 (ja) 摩耗量予測方法、摩耗量予測装置、及び摩耗量予測プログラム
KR20190094884A (ko) 비행자료를 이용한 항공기의 수명관리 방법
US9914531B2 (en) Method for managing the braking of an aircraft with speed measurement close to the braked wheels
Pasindu et al. Analytical evaluation of beneficial effects of runway pavement grooving on aircraft braking Distance
CN107145646B (zh) 一种计算飞机尾撬支反力的方法
Zhang Improving Airport Runway Braking Analysis through Innovative Modeling
CN113032906A (zh) 一种起落架形变程度的测量方法、装置、设备及介质
Fwa Evaluation of Aircraft Landing Overrun Risk

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019886250

Country of ref document: EP

Effective date: 20210621