WO2020103866A1 - 智能充电桩系统及其运行方法 - Google Patents

智能充电桩系统及其运行方法

Info

Publication number
WO2020103866A1
WO2020103866A1 PCT/CN2019/119705 CN2019119705W WO2020103866A1 WO 2020103866 A1 WO2020103866 A1 WO 2020103866A1 CN 2019119705 W CN2019119705 W CN 2019119705W WO 2020103866 A1 WO2020103866 A1 WO 2020103866A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
circuit
charging
detection information
detection device
Prior art date
Application number
PCT/CN2019/119705
Other languages
English (en)
French (fr)
Inventor
刘哲
王悦翔
尹慧昕
曹抒阳
Original Assignee
锥能机器人(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 锥能机器人(上海)有限公司 filed Critical 锥能机器人(上海)有限公司
Publication of WO2020103866A1 publication Critical patent/WO2020103866A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits

Definitions

  • the invention relates to a charging protection technology, in particular to an intelligent charging pile system and its operating method.
  • the small high-voltage DC charging technology used in AGV (Automatic Guided Vehicle) and other mobile logistics equipment is composed of a single part of the charging pile.
  • the charging pile is connected to a common commercial power supply ( ⁇ 220v or ⁇ 380V), and is in a working state for a long time, and the output end of the charging pile always has a high voltage output.
  • the charging pile is immediately output to charge the battery.
  • the inventor of the present invention found that there is a certain danger in this charging method, so there is an urgent need for a safer charging method.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, and to provide a high-safety charging system.
  • the present application provides an operation method of an intelligent charging pile system.
  • the intelligent charging pile system includes a charging pile and a robot.
  • the charging pile includes a first controller
  • the robot includes a second controller.
  • At least one of the robots includes a detection device.
  • the above operation method includes the following steps: When the robot needs to be charged, the detection device detects the charging circuit of the charging pile and the battery circuit of the robot and sends the detection information to the first controller and / or The second controller; the first controller and / or the second controller determine whether the charging circuit and the battery circuit are abnormal according to the detection information; if it is confirmed that the charging circuit or the battery circuit is abnormal, the first controller and / or the second controller The control robot is not electrically connected to the charging pile. If it is confirmed that there is no abnormality in the charging circuit and the battery circuit, the first controller and / or the second controller controls the robot to electrically connect the charging pile for charging.
  • the detection device includes a first detection device and a second detection device, the detection information includes the first detection information and the second detection information, the charging pile includes the first detection device, and the robot includes the second detection device.
  • the first detecting device detects the charging circuit of the charging pile and Send the first detection information to the first controller
  • the second detection device detects the battery circuit of the robot and sends the second detection information to the second controller; in the first controller and / or the second controller
  • the first controller determines whether the charging circuit is abnormal according to the first detection information
  • the second controller determines whether the battery circuit is abnormal according to the second detection information.
  • the detection device is a first detection device, the detection information includes first detection information and second detection information, and only the charging pile includes the first detection device.
  • the steps of the detection device detecting the charging circuit of the charging pile and the battery circuit of the robot and sending the detection information to the first controller and / or the second controller include the following steps: the first detection device detects the charging circuit and A detection information is sent to the first controller; and, when the charging circuit is closed, the second controller controls the input terminal of the battery circuit to be connected to the output terminal of the charging circuit, the first detection device detects the battery circuit and sends the second detection information to First controller.
  • the first controller determines whether the charging circuit is abnormal according to the first detection information, and according to the second detection information Determine whether the battery circuit is abnormal; if it is confirmed that the charging circuit and the battery circuit are not abnormal, in the step of the first controller and / or the second controller controlling the robot to electrically connect the charging pile for charging, the first controller starts charging Circuit.
  • the detection device is a second detection device, and the detection information includes the first detection information and the second detection information, and only the robot includes the second detection device.
  • the step of performing the detection and sending the detection information to the first controller and / or the second controller includes the following steps: the second detection device detects the battery circuit and sends the second detection information to the second controller; and, the second The controller controls the input end of the battery circuit to be connected to the output end of the charging circuit when the battery circuit is closed, and the second detection device detects the charging circuit and sends the first detection information to the second controller.
  • the second controller determines whether the battery circuit is abnormal according to the second detection information, and based on the first detection information Determine whether the charging circuit is abnormal; if it is confirmed that there is no abnormality in the battery circuit and the charging circuit, in the step that the first controller and / or the second controller controls the robot to be electrically connected to the charging pile for charging, the second controller turns on the battery Circuit.
  • the charging circuit includes an AC-DC converter
  • the charging pile includes a first switch between the output of the charging circuit and the AC-DC converter
  • the robot includes a second switch at the input of the battery circuit;
  • the first controller controls the first switch to open and the second controller controls the second switch to open.
  • the charging pile further includes a third switch between the input end of the charging circuit and the AC-DC converter; in the step of controlling the robot not to be electrically connected to the charging pile by the first controller and / or the second controller , The first controller also controls the third switch to open.
  • the charging pile and the robot communicate via WIFI or near field communication.
  • the charging pile includes a first communication device, and the robot includes a second communication device; the step of controlling the robot and the charging pile to be electrically connected to the charging pile for charging by the first controller and / or the second controller includes the following steps:
  • the second controller controls the input terminal of the battery circuit to be connected to the output terminal of the charging circuit
  • the second communication device sends a square wave signal to the first communication device
  • the first communication device receives the square wave signal and sends the square wave signal to the first controller
  • the first controller determines whether the square wave signal is a preset square wave signal
  • the first controller turns on the charging circuit and / or the second controller turns on the battery circuit.
  • the detection information may be one or a combination of voltage, current, temperature, and smoke density.
  • the above detection information is a voltage; in the step of the first controller and / or the second controller judging whether the charging circuit and the battery circuit are abnormal according to the detection information, the first controller and / or the second control Determine whether the first voltage of the charging circuit is within the first predetermined range and the second voltage of the battery circuit is within the second predetermined range; if the first voltage exceeds the first predetermined range or the second voltage exceeds the second predetermined range, The first controller and / or the second controller controls the robot not to be electrically connected to the charging pile, if the first voltage is within the first predetermined range and the second voltage is within the second predetermined range, the first controller and / or the second The controller controls the robot to be electrically connected to the charging pile for charging.
  • the first controller and / or the second controller determines whether the corresponding detection information is within a preset range.
  • the detection information is a combination of multiple of voltage, current, temperature, and smoke concentration, and weights are assigned to multiple parameters for combination judgment according to actual experience.
  • the first controller and / or the second controller uses the low voltage signal to determine whether the charging circuit and the battery circuit are abnormal.
  • the charging pile is provided with a contact switch on the outside, which opens the charging circuit when the contact switch is pressed; the first controller and / or the second controller controls the robot to be electrically connected to the charging pile for charging In the step, the second controller controls the robot to approach the charging pile, so that a part of the robot presses the contact switch to turn on the charging circuit.
  • the robot is an automatic guided vehicle.
  • the present application provides an intelligent charging pile system including a charging pile and a robot, the charging pile includes a first controller, and the robot includes a second controller, at least one of the charging pile and the robot Including a detection device, wherein: the detection device is used to detect the charging circuit of the charging pile and the battery circuit of the robot when the robot needs to be charged and send the detection information to the first controller and / or the second controller; the first controller And / or the second controller is used to determine whether the charging circuit and the battery circuit are abnormal according to the detection information sent by the detection device.
  • the robot When the first controller and / or the second controller confirms that the charging circuit or the battery circuit is abnormal, the robot is not controlled It is electrically connected to the charging pile, and when it is confirmed that there is no abnormality in the charging circuit and the battery circuit, the robot is controlled to be electrically connected to the charging pile for charging.
  • the detection device includes a first detection device and a second detection device, the detection information includes the first detection information and the second detection information, the charging pile includes the first detection device, and the robot includes the second detection device.
  • the first detection device is used to detect the charging circuit of the charging pile and send the first detection information to the first controller
  • the second detection device is used to detect the battery circuit of the robot and send the second detection information to the second Controller
  • the first controller is used to determine whether the charging circuit is abnormal according to the first detection information sent by the first detection device
  • the second controller is used to determine whether the battery circuit is abnormal according to the second detection information sent by the second detection device.
  • the detection device is a first detection device.
  • the detection information includes first detection information and second detection information. Only the charging pile includes the first detection device.
  • the first detection device is used to detect the charging circuit and A detection information is sent to the first controller, and after the input terminal of the second controller controlling the battery circuit is connected to the output terminal of the charging circuit, the battery circuit is detected and the second detection information is sent to the first controller; the second control After the first detection device sends the first detection information to the first controller, the input terminal of the battery circuit is connected to the output terminal of the charging circuit when the charging circuit is closed; the first controller is used to send according to the first detection device The first detection information determines whether the charging circuit is abnormal, according to the second detection information sent by the first detection device to determine whether the battery circuit is abnormal, and when it is confirmed that the charging circuit and the battery circuit are not abnormal, the charging circuit is turned on.
  • the detection device is a second detection device.
  • the detection information includes first detection information and second detection information. Only the robot includes a second detection device.
  • the second detection device is used to detect the battery circuit and the second The detection information is sent to the second controller, and after the input of the second controller controlling the battery circuit is connected to the output of the charging circuit, the charging circuit is detected and the first detection information is sent to the second controller; the second controller uses After the second detection device sends the second detection information to the second controller, when the battery circuit is closed, the input end of the battery circuit is controlled to be connected to the output end of the charging circuit, and according to the second detection information sent by the second detection device Determine whether the battery circuit is abnormal, and determine whether the charging circuit is abnormal according to the first detection information sent by the second detection device. When the second controller confirms that the charging circuit and the battery circuit are not abnormal, the battery circuit is turned on.
  • the charging circuit includes an AC-DC converter
  • the charging pile is provided with a first switch between the output end of the charging circuit and the AC-DC converter
  • the robot is provided with a second switch at the input end of the battery circuit
  • a controller is used to control the opening of the first switch when confirming that the charging circuit or the battery circuit is abnormal
  • a second controller is used to control the opening of the second switch when confirming that the charging circuit or the battery circuit is abnormal.
  • the charging pile further includes a third switch between the input end of the charging circuit and the AC-DC converter; the first controller is also used to control the third switch to open when it is confirmed that the charging circuit or the battery circuit is abnormal .
  • the charging pile and the robot communicate via WIFI or near field communication.
  • the charging pile includes a first communication device
  • the robot includes a second communication device
  • the second controller is used to confirm that the charging circuit and the battery circuit are not abnormal, when the charging circuit is closed and / or when the battery circuit is closed
  • the input end of the control battery circuit is connected to the output end of the charging circuit
  • the second communication device is used to send a square wave signal to the first communication device after the input end of the battery circuit is connected to the output end of the charging circuit
  • the first controller is used to determine whether the square wave signal sent by the first communication device is a preset square wave signal, and determine After the square wave signal is the preset square wave signal, the first controller turns on the charging circuit and / or the second controller turns on the battery circuit.
  • the detection information may be one or a combination of voltage, current, temperature, and smoke density.
  • the above detection information is a voltage; the first controller and / or the second controller is used to determine whether the first voltage of the charging circuit is within a first predetermined range, and whether the second voltage of the battery circuit is within the second Within a predetermined range, when the first controller and / or the second controller confirms that the first voltage exceeds the first predetermined range or the second voltage exceeds the second predetermined range, the robot is controlled not to be electrically connected to the charging pile and confirms the first The voltage is within the first predetermined range and the second voltage is within the second predetermined range, and the control robot is electrically connected to the charging pile for charging.
  • the first controller and / or the second controller is used to determine whether the corresponding detection information is within a preset range.
  • the detection information is a combination of a plurality of voltage, current, temperature, and smoke concentration, and weights are assigned to a plurality of parameters according to actual experience for combination judgment.
  • the first controller and / or the second controller uses the low voltage signal to determine whether the charging circuit and the battery circuit are abnormal.
  • the charging pile is provided with a contact switch on the outside, the contact switch is used to open the charging circuit when being pressed, and the second controller is used to control the robot to close the charging when it is confirmed that the charging circuit and the battery circuit are not abnormal. Pile so that a part of the robot presses the touch switch to turn on the charging circuit.
  • the robot is an automatic guided vehicle.
  • the beneficial effect of this application is that before the robot needs to be charged through the charging pile, the charging circuit of the charging pile and the battery circuit of the robot are tested, and the electrical connection is made after confirming that the charging circuit and the battery circuit are in a normal operating state, providing Safer charging system.
  • the charging technology in this application has a very safe opening method, such as remote control opening, square wave communication opening, voltage detection opening, and touch switch opening. It is not only safe, but also meets the requirements of large-scale management planning. demand.
  • the charging pile in a normal standby state, maintains ultra-low power consumption in milliwatts (mW).
  • FIG. 1 is a schematic flowchart of an operation method of a smart charging pile system according to an exemplary embodiment of the present application.
  • FIG. 2 is a schematic flowchart of an operation method of a smart charging pile system according to an exemplary embodiment of the present application.
  • FIG. 3 is a schematic flowchart of an operation method of a smart charging pile system according to an exemplary embodiment of the present application.
  • FIG. 4 is a schematic flowchart of an operation method of a smart charging pile system according to an exemplary embodiment of the present application.
  • FIG. 5 is a schematic flowchart of an operation method of a smart charging pile system according to an exemplary embodiment of the present application.
  • FIG. 6 is a schematic flow chart of electrically connecting a robot and a charging pile in an operation method of an intelligent charging pile system according to an exemplary embodiment of the present application.
  • FIG. 7 is a structural block diagram of an intelligent charging pile system according to an exemplary embodiment of the present application.
  • FIG. 8 is a structural block diagram of an intelligent charging pile system according to an exemplary embodiment of the present application.
  • FIG. 9 is a structural block diagram of an intelligent charging pile system according to an exemplary embodiment of the present application.
  • FIG. 10 is a structural block diagram of an intelligent charging pile system according to an exemplary embodiment of the present application.
  • 11A is a structural block diagram of a charging circuit in an intelligent charging pile system according to an exemplary embodiment of the present application.
  • 11B is a structural block diagram of a battery circuit in an intelligent charging pile system according to an exemplary embodiment of the present application.
  • FIG. 12 is a structural block diagram of a charging circuit in an intelligent charging pile system according to another exemplary embodiment of the present application.
  • FIG. 1 shows an operation method of a smart charging pile system according to an example embodiment.
  • the above intelligent charging pile system includes a charging pile and a robot, the charging pile includes a first controller, the robot includes a second controller, and at least one of the charging pile and the robot includes a detection device.
  • the operation method includes the following steps:
  • the detection device detects the charging circuit of the charging pile and the battery circuit of the robot and sends the detection information to the first controller and / or the second controller.
  • the robot directly issues a charging request to the charging pile when charging is required.
  • the robot sends a charging request to the dispatch system when charging is required, and the dispatch system notifies the charging pile.
  • the robot may notify the charging pile in any known manner when charging is required.
  • the detection device can detect the charging circuit and the battery circuit in any known manner.
  • the detection device may send the detection information to the monitoring system for judgment.
  • step 102 is entered, and the first controller and / or the second controller determine whether the charging circuit and the battery circuit are abnormal according to the detection information.
  • the detection information may be one or a combination of voltage, current, temperature, and smoke concentration. When the charging circuit or the battery circuit is abnormal, the above detection information will deviate from the preset range. In other embodiments, other parameters may also be used for detection, as long as it can determine whether the charging circuit and the battery circuit are abnormal.
  • step 103 If it is confirmed that there is an abnormality in the charging circuit or the battery circuit, proceed to step 103; if it is confirmed that neither the charging circuit nor the battery circuit is abnormal, proceed to step 104.
  • the first controller and / or the second controller controls the robot not to be electrically connected to the charging pile.
  • the battery circuit of the robot and the charging circuit of the charging pile may be kept off or in a sleep state, and / or the robot may be directly tuned away from the charging pile, and so on.
  • step 104 the first controller and / or the second controller controls the robot to be electrically connected to the charging pile for charging.
  • the robot is an automated guided vehicle (AGV).
  • AGV automated guided vehicle
  • the above-mentioned robot may be any robot that needs to be charged using a charging pile.
  • the charging circuit of the charging pile and the battery circuit of the robot are tested, and the electrical connection is made after confirming that the charging circuit and the battery circuit are in a normal operating state, which provides Safer charging system.
  • detection devices may be provided in the charging pile and the robot as needed.
  • the detection device includes a first detection device and a second detection device, and the detection information includes the first detection information and the second detection information, wherein the charging pile includes the first detection device, and the robot includes the second detection device. That is, detection devices are provided on both sides of the charging pile and the robot.
  • the first detection information is detection information about the charging circuit
  • the second detection information is detection information about the battery circuit.
  • the first detection device detects the charging circuit of the charging pile and sends the first detection information to the first controller and the second detection device Detect the battery circuit of the robot and send the second detection information to the second controller. That is, the first detection device and the second detection device respectively detect the charging circuit of the charging pile and the battery circuit of the robot, and send the first detection information and the second detection information to the first controller and the second controller, respectively.
  • the first controller determines whether the charging circuit is abnormal according to the first detection information
  • the second controller determines whether the battery circuit is abnormal according to the second detection information. Detection devices are provided on both sides of the charging pile and the robot, and the charging circuit and the battery circuit can be simultaneously detected without contact.
  • FIG. 2-5 illustrate an operation method of a smart charging pile system including a detection device on only one side according to an exemplary embodiment of the present application.
  • Fig. 2-3 shows the operation method of the intelligent charging pile system in which only the charging pile includes the first detection device.
  • 4-5 illustrate the operation method of the intelligent charging pile system in which only the robot includes the second detection device.
  • the operation methods of these intelligent charging pile systems since it is only necessary to provide a detection device on one side of the charging pile and the robot, it can be used when the detection device on one side fails.
  • the detection information includes first detection information and second detection information, which are detection information about the charging circuit and the battery circuit, respectively.
  • the operation method may include the following steps:
  • step 201 the first detection device detects the charging circuit and sends the first detection information to the first controller.
  • step 202 the second controller controls the input terminal of the battery circuit to be connected to the output terminal of the charging circuit when the charging circuit is closed (ie, the charging circuit has no electrical output, for example, the charging circuit is in a sleep state), and the first detection device detects the battery circuit And send the second detection information to the first controller.
  • the first detection device may be provided near the output terminal of the charging circuit, and the battery circuit is detected when the input terminal of the battery circuit is connected to the output terminal of the charging circuit.
  • the first detection device may be provided at the output end of the charging circuit to detect the output end of the charging circuit, and then connect the charging circuit to the battery circuit in a closed state, then the first detection device The input of the battery circuit is tested.
  • the first detection device may also be provided at another position of the charging circuit, as long as the battery circuit can detect the charging circuit after it is close to the charging pile.
  • Step 201 and step 202 correspond to step 101 described above.
  • step 203 (corresponding to step 102 above) is entered.
  • the first controller determines whether the charging circuit is abnormal according to the first detection information, and determines whether the battery circuit is abnormal according to the second detection information. If it is confirmed that the charging circuit or the battery circuit is abnormal, go to step 204; if it is confirmed that neither the charging circuit nor the battery circuit is abnormal, go to step 205.
  • step 204 similar to step 103, the first controller and / or the second controller controls the robot not to be electrically connected to the charging pile, for example, the first controller continues to keep the charging circuit in a closed state, and / or the second control The robot controls the robot to move away from the charging pile to disconnect the input terminal of the battery circuit from the output terminal of the charging circuit and so on.
  • step 205 the first controller turns on the charging circuit so that the robot is electrically connected to the charging pile.
  • Turning on the charging circuit means stopping the off state or the dormant state of the charging pile.
  • first detection devices in the charging pile, respectively detecting different parameters of the charging circuit or different positions of the circuit, such as the upstream circuit and the downstream circuit of the charging circuit.
  • the first detection device is located upstream of the charging circuit and detects the AC power from the external network.
  • the first detection device is located downstream of the charging circuit, and detects the DC current charging the robot.
  • the first detection device may also be located at another location, for example, in the middle of the charging circuit, so as to detect the charging circuit.
  • the detection information includes first detection information and second detection information.
  • the operation method may include the following steps:
  • step 301 the first detection device detects the charging circuit and sends the first detection information to the first controller.
  • step 302 is entered, and the first controller determines whether the charging circuit is abnormal according to the first detection information. If it is confirmed that the charging circuit is abnormal, go to step 305; if it is confirmed that the charging circuit is not abnormal, go to step 303.
  • step 303 the second controller controls the input terminal of the battery circuit to be connected to the output terminal of the charging circuit when the charging circuit is closed, and the first detection device detects the battery circuit and sends the second detection information to the first controller.
  • step 304 is entered, and the first controller determines whether the battery circuit is abnormal according to the second detection information. If it is confirmed that the battery circuit is abnormal, go to step 305; if it is confirmed that the battery circuit is not abnormal, go to step 306.
  • step 305 similar to step 103, the first controller and / or the second controller controls the robot not to be electrically connected to the charging pile, for example, the first controller continues to keep the charging circuit in the off state, and / or the second control The robot controls the robot to move away from the charging pile to disconnect the input end of the battery circuit from the output end of the charging circuit.
  • step 306 the first controller turns on the charging circuit so that the robot is electrically connected to the charging pile.
  • the detection information includes first detection information and second detection information, which are detection information about the charging circuit and the battery circuit, respectively.
  • the operation method may include the following steps:
  • step 401 the second detection device detects the battery circuit and sends the second detection information to the second controller.
  • step 402 the second controller controls the input terminal of the battery circuit to be connected to the output terminal of the charging circuit when the battery circuit is closed (ie, the battery circuit does not receive electrical input, for example, the battery circuit is in a sleep state), and the second detection device detects charging The circuit sends the first detection information to the second controller.
  • the second detection device may be disposed near the input terminal of the battery circuit, and the charging circuit is detected when the input terminal of the battery circuit is connected to the output terminal of the charging circuit.
  • the second detection device may be provided at the input end of the battery circuit to detect the input end of the battery circuit, and then connect the battery circuit to the charging circuit in the off state, then the second detection device is charged The output of the circuit is tested.
  • the second detection device may also be provided at another position of the battery circuit, as long as the charging circuit can be detected after the battery circuit is close to the charging pile. Step 401 and step 402 correspond to step 101 described above.
  • step 403 (corresponding to step 102 above) is entered, and the second controller determines whether the battery circuit is abnormal according to the second detection information, and determines whether the charging circuit is abnormal according to the first detection information.
  • step 404 If it is confirmed that the battery circuit or the charging circuit is abnormal, go to step 404; if it is confirmed that neither the charging circuit nor the battery circuit is abnormal, go to step 405.
  • step 404 similar to step 103, the first controller and / or the second controller controls the robot not to be electrically connected to the charging pile, for example, the first controller controls the charging circuit to be off, and / or the second controller Continue to keep the battery circuit in a closed state, and / or the second controller controls the robot to move away from the charging pile to disconnect the input terminal of the battery circuit from the output terminal of the charging circuit, and so on.
  • step 405 the second controller turns on the battery circuit so that the robot is electrically connected to the charging pile.
  • detection can be performed more comprehensively.
  • the detection information includes first detection information and second detection information.
  • the operation method may include the following steps:
  • step 501 the second detection device detects the battery circuit and sends the second detection information to the second controller.
  • step 502 is entered, and the second controller determines whether the battery circuit is abnormal according to the second detection information. If it is confirmed that the battery circuit is abnormal, go to step 505; if it is confirmed that the battery circuit is not abnormal, go to step 503.
  • step 503 the second controller controls the input terminal of the battery circuit to be connected to the output terminal of the charging circuit when the battery circuit is closed, and the second detection device detects the charging circuit and sends the first detection information to the second controller.
  • step 504 is entered, and the second controller determines whether the charging circuit is abnormal according to the first detection information. If it is confirmed that the charging circuit is abnormal, go to step 505; if it is confirmed that the charging circuit is not abnormal, go to step 506.
  • step 505 similar to step 103, the first controller and / or the second controller controls the robot not to be electrically connected to the charging pile, for example, the second controller continues to keep the battery circuit in the off state, and / or the second control
  • the robot controls the robot to move away from the charging pile to disconnect the input end of the battery circuit from the output end of the charging circuit.
  • step 506 the second controller turns on the battery circuit so that the robot is electrically connected to the charging pile.
  • the battery circuit is detected and abnormally judged, and the charging pile is only detected when there is no abnormality in the battery circuit, saving time.
  • switches may be provided in both the charging circuit and the battery circuit, and when one of the charging circuit and the battery circuit is abnormal, the switches on both sides are simultaneously turned off to ensure safety.
  • the charging circuit includes an AC-DC converter, and a first switch is provided between the output end of the charging circuit and the AC-DC converter to turn on or off the output of the charging circuit; A second switch is included at the input of the circuit to turn on or off the input of the battery circuit.
  • the first controller controls the first switch to turn off and the second controller controls the second switch to turn off, so that the robot is not electrically connected to the charging pile.
  • a third switch may be included between the input terminal of the charging circuit and the AC-DC converter to turn on or off the input of the charging circuit. Then, when there is an abnormality in the charging circuit or the battery circuit, that is, in step 103, the first controller may control the third switch to be turned off, so that the robot is not electrically connected to the charging pile.
  • switches may be provided at other positions of the charging circuit and the battery circuit, as long as they can be turned on or off, or the battery circuit and the charging circuit may be kept off or dormant in other ways.
  • the second controller may also control the robot to move away from the charging pile so that the robot is not electrically connected to the charging pile or in other ways.
  • the robot can be electrically connected to the charging pile through remote control activation, square wave communication activation, voltage detection activation, touch switch activation, or other activation methods.
  • the charging pile and the robot communicate through WIFI, near field communication, or other remote communication methods, so that when it is confirmed that there is no abnormality in the charging circuit and the battery circuit, the charging pile and the robot can communicate with each other to inform and make electrical connection .
  • FIG. 6 shows a schematic flow diagram of square wave communication opening according to an example embodiment, wherein the charging pile may include a first communication device, and the robot may include a second communication device.
  • the above step 104 may include the following steps:
  • step 601 when the charging circuit is turned off and / or the battery circuit is turned off, the second controller controls the input terminal of the battery circuit to be connected to the output terminal of the charging circuit.
  • step 602 is entered, and the second communication device sends a square wave signal to the first communication device.
  • step 603 the first communication device receives the square wave signal and sends the square wave signal to the first controller.
  • step 604 is entered, and the first controller determines whether the square wave signal is a preset square wave signal. If it is determined that the square wave signal is the preset square wave signal, go to step 605; otherwise, go to step 606.
  • step 605 the first controller turns on the charging circuit and / or the second controller turns on the battery circuit.
  • step 606 the charging circuit is kept disconnected from the battery circuit.
  • an alarm signal can be issued to draw attention of the operator.
  • the robot can be moved directly away from the charging pile.
  • the robot and the charging pile are charged through the square wave communication method to further ensure safety.
  • a contact switch may be provided on the outside of the charging pile or the robot, and when the contact switch is pressed, the charging circuit or the battery circuit is turned on.
  • an activation signal is sent to the first controller or the second controller, so that the first controller or the second controller interrupts the charging circuit or the battery circuit off state or the sleep state.
  • the second controller controls the robot to approach the charging pile so that a part of the robot presses the contact switch outside the charging pile to turn on the charging circuit, or a part of the charging pile presses the contact switch outside the robot To turn on the battery circuit.
  • Each method embodiment of the present application may be implemented in software, hardware, firmware, and the like. Regardless of whether the application is implemented in software, hardware, or firmware, the instruction code can be stored in any type of computer-accessible memory (eg, permanent or modifiable, volatile or nonvolatile, solid-state Or non-solid, fixed or replaceable media, etc.).
  • the instruction code can be stored in any type of computer-accessible memory (eg, permanent or modifiable, volatile or nonvolatile, solid-state Or non-solid, fixed or replaceable media, etc.).
  • the memory may be, for example, programmable array logic (Programmable Array, logic "PAL”), random access memory (Random Access Memory, "RAM”), programmable read-only memory (Programmable Read Only Memory, abbreviated “PROM” “), Read-only memory (Read-Only Memory,” ROM “for short), electrically erasable programmable read-only memory (Electrically Erasable Programmable ROM,” EEPROM “for short), magnetic disk, optical disc, digital versatile disc , Referred to as “DVD”) and so on.
  • PAL programmable array logic
  • RAM Random Access Memory
  • PROM programmable Read Only Memory
  • PROM Read Only Memory
  • Read-only memory Read-only memory
  • ROM Read-only memory
  • EEPROM Electrically erasable programmable read-only memory
  • magnetic disk optical disc
  • DVD digital versatile disc
  • FIG. 7 shows a structural block diagram of a smart charging pile system according to an example embodiment.
  • the smart charging pile system can be used to implement the operation method shown in FIG. 1.
  • the intelligent charging pile system includes a charging pile 1 and a robot 2, the charging pile 1 includes a first controller 11, the robot 2 includes a second controller 21, and at least one of the charging pile 1 and the robot 2 includes a detection Device. among them:
  • the detection device is used to detect the charging circuit 12 of the charging pile 1 and the battery circuit 22 of the robot 2 when the robot 2 needs to be charged and send the detection information to the first controller 11 and / or the second controller 21.
  • the detection information may be one or a combination of voltage, current, temperature, and smoke concentration.
  • the above detection information will deviate from the preset range.
  • other parameters may also be used for detection, as long as it can determine whether the charging circuit and the battery circuit are abnormal.
  • the first controller 11 and / or the second controller 21 are used to determine whether the charging circuit 12 and the battery circuit 22 are abnormal according to the detection information sent by the detection device. When it is confirmed that the charging circuit 12 or the battery circuit 22 is abnormal, the first The controller 11 and / or the second controller 21 controls the robot 2 not to be electrically connected to the charging pile 1, and upon confirming that the charging circuit 12 and the battery circuit 22 are not abnormal, the first controller 11 and / or the second controller 21 The control robot 2 is electrically connected to the charging pile 1 to perform charging.
  • the robot is an automated guided vehicle (AGV).
  • AGV automated guided vehicle
  • the above-mentioned robot may be any robot that needs to be charged using a charging pile.
  • the detection device detects the charging circuit of the charging pile and the battery circuit of the robot, and confirms the charging circuit and the battery circuit in the first controller and / or the second controller Electrical connection after normal operation provides a safer charging system.
  • detection devices may be provided in the charging pile and the robot as needed.
  • 8-10 show a structural block diagram of a smart charging pile system according to various example embodiments. The method shown in Figures 2-5 can be implemented using the intelligent charging pile system shown in Figures 9-10.
  • FIG. 8 shows a structural block diagram of a smart charging pile system including detection devices on both sides according to an exemplary embodiment of the present application.
  • the above detection device includes a first detection device 13 and a second detection device 23, and the detection information includes the first detection information and the second detection information, which are detection information about the charging circuit and the battery circuit, respectively.
  • the charging pile 1 includes a first detection device 13 and the robot 2 includes a second detection device 23.
  • the first detection device 13 is used to detect the charging circuit 12 of the charging pile 1 and send the first detection information to the first controller 11, and the second detection device 23 is used to detect the battery circuit 22 of the robot 2 and Two detection information is sent to the second controller 21.
  • the first controller 11 is used to determine whether the charging circuit 12 is abnormal according to the first detection information sent by the first detection device 13, and the second controller 21 is used to determine the battery circuit 22 based on the second detection information sent by the second detection device 23 Is there any abnormality?
  • FIG. 9 shows a structural block diagram of an intelligent charging system including a detection device only in a charging pile according to an exemplary embodiment of the present application.
  • the above detection device is the first detection device 13
  • the detection information includes first detection information and second detection information, which are detection information about the charging circuit and the battery circuit, respectively.
  • only the charging pile 1 includes the first detection device 13.
  • the first detection device 13 is used to detect the charging circuit 12 and send the first detection information to the first controller 11, and after the second controller 21 controls the input terminal of the battery circuit 22 to be connected to the output terminal of the charging circuit 12, the detection The battery circuit 22 sends the second detection information to the first controller 11.
  • the second controller 21 is used to control the input terminal of the battery circuit 22 to be connected to the output terminal of the charging circuit 12 when the first detecting device 13 sends the first detection information to the first controller 11 when the charging circuit 12 is turned off.
  • the first controller 11 is used to determine whether there is an abnormality in the charging circuit 12 according to the first detection information sent by the first detection device 13, and to determine whether there is an abnormality in the battery circuit 22 according to the second detection information sent by the first detection device 13, and confirm When there is no abnormality in the charging circuit 12 and the battery circuit 22, the charging circuit 12 is turned on.
  • FIG. 10 shows a structural block diagram of an intelligent charging pile system in which only a robot includes a detection device according to an exemplary embodiment of the present application.
  • the detection device is the second detection device 23, and the detection information includes first detection information and second detection information, which are detection information about the charging circuit and the battery circuit, respectively.
  • the robot 2 includes the second detection device 23.
  • the second detection device 23 is used to detect the battery circuit 22 and send the second detection information to the second controller 21, and after the second controller 21 controls the input terminal of the battery circuit 22 to be connected to the output terminal of the charging circuit 12, the detection The charging circuit 12 sends the first detection information to the second controller 21.
  • the second controller 21 is used to control the input terminal of the battery circuit 22 to be connected to the output terminal of the charging circuit 12 when the second detection device 23 sends the second detection information to the second controller 21, and the battery circuit 22 is closed. Determine whether the battery circuit 22 is abnormal according to the second detection information sent by the second detection device 23, determine whether the charging circuit 12 is abnormal according to the first detection information sent by the second detection device 23, the second controller 21 confirms the charging circuit 12 When there is no abnormality in the battery circuit 22, the battery circuit 22 is turned on.
  • switches may be provided in both the charging circuit and the battery circuit, and when one of the charging circuit and the battery circuit is abnormal, the switches on both sides are simultaneously turned off to ensure safety.
  • the charging circuit 12 includes an AC-DC converter 14, and a first switch 17 is provided between the output terminal 15 of the charging circuit 12 and the AC-DC converter 14 to turn on or off Turn on the output of the charging circuit 12; include a second switch 27 at the input terminal 26 of the battery circuit 22 to turn on or off the input of the battery circuit 22.
  • the first controller 11 is used to control the first switch 17 to open when it is confirmed that the charging circuit 12 or the battery circuit 22 is abnormal
  • the second controller 21 is used to control the second switch when it is confirmed that the charging circuit 12 or the battery circuit 22 is abnormal. 27 is disconnected, so that the robot 2 is not electrically connected to the charging pile 1.
  • a third switch 18 may be included between the input terminal 16 of the charging circuit 12 and the AC-DC converter 14 to turn on or off the input of the charging circuit 12.
  • the first controller 11 is also used to control the third switch 18 to be turned off when it is confirmed that the charging circuit 12 or the battery circuit 22 is abnormal, so that the robot 2 is not electrically connected to the charging pile 1.
  • the first controller 11 and / or the second controller 21 when they confirms that there is no abnormality in the charging circuit 12 and the battery circuit 22, they can be turned on by remote control, method communication, voltage detection, and touch.
  • the switch is turned on or other ways to make the robot electrically connected to the charging pile.
  • the charging pile 1 and the robot 2 communicate via WIFI, near field communication, or other remote communication methods, so that when it is confirmed that there is no abnormality in the charging circuit 12 and the battery circuit 22, the charging pile 1 and the robot 2 can communicate with each other. Communication informs and makes electrical connection.
  • the charging pile 1 may include a first communication device (not shown), and the robot 2 may include a second communication device (not shown).
  • the second controller 21 is used to control the input terminal 26 of the battery circuit 22 and the output of the charging circuit 12 when the charging circuit 12 is closed and / or when the battery circuit 22 is closed after confirming that there is no abnormality in the charging circuit 12 and the battery circuit 22 Terminal 15 is connected.
  • the second communication device is used to send a square wave signal to the first communication device after the input terminal 26 of the battery circuit 22 is connected to the output terminal 15 of the charging circuit 12.
  • the first communication device is used to receive the square wave signal sent by the second communication device and send the square wave signal to the first controller 11.
  • the first controller 11 is used to determine whether the square wave signal sent by the first communication device is a preset square wave signal, and after determining that the square wave signal is the preset square wave signal, the first controller 11 turns on the charging circuit 12 and / or Or the second controller 21 turns on the battery circuit 22.
  • a contact switch may be provided on the outside of the charging pile 1 or the robot 2, and the contact switch is used to turn on the charging circuit 12 or the battery circuit 22 when pressed.
  • the second controller 21 is used to control the robot 2 to approach the charging pile 1 when confirming that the charging circuit 12 and the battery circuit 22 are not abnormal, so that a part of the robot 2 presses the contact switch outside the charging pile 1 to turn on the charging circuit 12. Or, a part of the charging pile 1 presses the contact switch outside the robot 2 to turn on the battery circuit 22.
  • the operation method in each method embodiment can be operated in an intelligent charging system. All the descriptions about the operation method in the above method embodiments can be applied to each system embodiment, which will not be repeated here.
  • the units and / or modules mentioned in the system embodiments of the present application are all logical units and / or modules. Physically, one logical unit and / or module may be one physical unit and / or module , Can also be a part of a physical unit and / or module, and can also be implemented by a combination of multiple physical units and / or modules. The physical implementation of these logical units and / or modules is not the most important, these logical units The combination of the functions implemented by and / or the module is the key to solving the technical problem proposed by the present application.
  • the above system embodiments of the present application do not introduce units and / or modules that are not closely related to solving the technical problems raised by the present application. This does not mean that the above system embodiments do not There are no other units and / or modules.
  • the present application provides a charging pile system including a charging pile and a robot.
  • the robot may be an automatic navigation carrying cart.
  • the charging pile includes a first controller and a charging circuit
  • the robot includes a second controller and a battery circuit.
  • the first controller and the second controller are responsible for the control of the charging pile system, and realize the information collection and management control of other modules through digital circuits and / or analog circuits, including information exchange with mobile charging terminals, collection of detection information, and strategically Turn the charging pile on and off, etc.
  • the charging circuit is used to convert external electricity into charging current, for example, from external network alternating current to direct current, or from high voltage electricity to low voltage electricity, etc.
  • the battery circuit is used to store the converted electricity in the battery.
  • At least one of the charging pile and the robot includes a detection device for detecting the state of the charging circuit of the charging pile and the battery circuit in the robot, and feeding the information back to the first controller and / or the second controller, the first The controller and / or the second controller determine whether the charging circuit and the battery circuit are abnormal. If the charging circuit or the battery circuit is abnormal, the first controller and / or the second controller controls the robot not to be electrically connected to the charging pile, thereby Provides a more secure charging system.
  • the charging pile When the charging pile does not charge the device, ultra-low power consumption standby is realized.
  • the charging pile When no abnormal state is detected, the charging pile turns on the robot to charge the battery.
  • the status of the charging pile is continuously detected, and the charging system is automatically turned off when an abnormality occurs.
  • it detects that the battery is full or receives a signal from the communication module to turn off the charging it automatically turns off the charging.

Abstract

本申请涉及一种智能充电桩系统及其运行方法。在本申请中,在机器人需要通过充电桩进行充电前,先对充电桩的充电电路和机器人的电池电路进行检测,在确认充电电路和电池电路处于正常运行状态后再进行电连接,提供了安全性更高的充电系统。

Description

智能充电桩系统及其运行方法 技术领域
本发明涉及一种充电保护技术,特别涉及一种智能充电桩系统及其运行方法。
背景技术
目前,应用于AGV(Automatic Guided Vehicle,自动导引车)等移动式物流设备的小型高压直流充电技术是由单一部分充电桩组成。充电桩接通常用市电(~220v或者~380V),长时间处于工作状态,并且充电桩的输出端一直带有高电压输出。当另一端接上电池时,充电桩立即输出给电池充电。但是,本发明的发明人发现,这种充电方式存在一定的危险性,因此亟需一种更加安全的充电方式。
发明内容
本发明的目的是克服现有技术的不足,提供一种安全型高的充电系统。
为了达到上述目的,本申请提供了一种智能充电桩系统的运行方法,该智能充电桩系统包括充电桩和机器人,该充电桩包括第一控制器,该机器人包括第二控制器,充电桩和机器人中的至少一个包括检测装置,上述运行方法包括以下步骤:当机器人需要充电时,检测装置对充电桩的充电电路和机器人的电池电路进行检测并将检测信息发送给第一控制器和/或第二控制器;第一控制器和/或第二控制器根据检测信息判断充电电路和电池电路是否存在异常;如果确认充电电路或电池电路存在异常,第一控制器和/或第二控制器控制机器人不 与充电桩电连接,如果确认充电电路和电池电路不存在异常,第一控制器和/或第二控制器控制机器人与充电桩电连接以进行充电。
在一实施例中,检测装置包括第一检测装置和第二检测装置,检测信息包括第一检测信息和第二检测信息,充电桩包括该第一检测装置,机器人包括该第二检测装置。在检测装置对充电桩的充电电路和机器人的电池电路进行检测并将检测信息发送给第一控制器和/或第二控制器的步骤中,第一检测装置对充电桩的充电电路进行检测并将第一检测信息发送给第一控制器,第二检测装置对机器人的电池电路进行检测并将第二检测信息发送给第二控制器;在第一控制器和/或所述第二控制器根据检测信息判断充电电路和电池电路是否存在异常的步骤中,第一控制器根据第一检测信息判断充电电路是否存在异常,第二控制器根据第二检测信息判断电池电路是否存在异常。
在另一实施例中,检测装置为第一检测装置,检测信息包括第一检测信息和第二检测信息,仅充电桩包括第一检测装置。在检测装置对充电桩的充电电路和机器人的电池电路进行检测并将检测信息发送给第一控制器和/或第二控制器的步骤中包括以下步骤:第一检测装置检测充电电路并将第一检测信息发送给第一控制器;以及,第二控制器在充电电路关闭时控制电池电路的输入端与充电电路的输出端连接,第一检测装置检测电池电路并将第二检测信息发送给第一控制器。在第一控制器和/或第二控制器根据检测信息判断充电电路和电池电路是否存在异常的步骤中,第一控制器根据第一检测信息判断充电电路是否存在异常,并根据第二检测信息判断电池电路是否存在异常;如果确认充电电路和电池电路不存在异常,在第一控制器和/或第二控制器控制机器人与充电桩电连接以进行充电的步骤中,第一控制器开启充电电路。
在另一实施例中,检测装置为第二检测装置,检测信息包括第一检测信息和第二检测信息,仅机器人包括第二检测装置,在检测装置对充电桩的充电电路和机器人的电池电路进行检测并将检测信息发送给第一控制器和/或第二控制器的步骤中包括以下步骤:第二检测装置检测电池电路并将第二检测信息发送给第二控制器;以及,第二控制器在电池电路关闭时控制电池电路的输入端与充电电路的输出端连接,第二检测装置检测充电电路并将第一检测信息发送给第二控制器。在第一控制器和/或第二控制器根据检测信息判断充电电路和电池电路是否存在异常的步骤中,第二控制器根据第二检测信息判断电池电路是否存在异常,并根据第一检测信息判断充电电路是否存在异常;如果确认电池电路和充电电路不存在异常,在第一控制器和/或第二控制器控制机器人与充电桩电连接以进行充电的步骤中,第二控制器开启电池电路。
在一实施例中,充电电路包括交流直流转换器,充电桩在充电电路的输出端与交流直流转换器之间包括第一开关,机器人在电池电路的输入端处包括第二开关;在第一控制器和/或第二控制器控制机器人不与充电桩电连接的步骤中,第一控制器控制第一开关断开并且第二控制器控制第二开关断开。
在一实施例中,充电桩在充电电路的输入端与交流直流转换器之间还包括第三开关;在第一控制器和/或第二控制器控制机器人不与充电桩电连接的步骤中,第一控制器还控制第三开关断开。
在一实施例中,充电桩与机器人通过WIFI或近场通信进行通信。
在一实施例中,充电桩包括第一通讯装置,机器人包括第二通讯装置;在第一控制器和/或第二控制器控制机器人与充电桩电连接以进行充电的步骤中包括以下步骤:
当充电电路关闭时和/或电池电路关闭时,第二控制器控制电池电路的输入端与充电电路的输出端连接;
第二通讯装置向第一通讯装置发送方波信号;
第一通讯装置接收方波信号并将方波信号发送给第一控制器;以及
第一控制器判断方波信号是否为预设方波信号,
如果确定方波信号为预设方波信号,第一控制器开启充电电路和/或第二控制器开启电池电路。
在一实施例中,上述检测信息可以是电压、电流、温度和烟雾浓度中的一个或其组合。
在一实施例中,上述检测信息为电压;在第一控制器和/或第二控制器根据检测信息判断充电电路和电池电路是否存在异常的步骤中,第一控制器和/或第二控制器判断充电电路的第一电压是否在第一预定范围内,并且电池电路的第二电压是否在第二预定范围内;如果第一电压超出第一预定范围或第二电压超出第二预定范围,第一控制器和/或第二控制器控制机器人不与充电桩电连接,如果第一电压在第一预定范围内并且第二电压在第二预定范围内,第一控制器和/或第二控制器控制机器人与充电桩电连接以进行充电。
在其他实施例中,当检测信息为电流、温度和烟雾浓度中的一个时,则第一控制器和/或第二控制器判断相应检测信息是否在预设范围内。在另一个实施例中,检测信息为电压、电流、温度和烟雾浓度中多个的组合,并根据实际经验给多个参数分配权值进行组合判断。
在一实施例中,第一控制器和/或第二控制器采用低电压信号判断充电电路和电池电路是否存在异常。
在一实施例中,充电桩在外侧设置有接触式开关,该接触式开关被按压时开启充电电路;在第一控制器和/或第二控制器控制机器人与充电桩电连接以进行充电的步骤中,第二控制器控制机器人靠近充电桩,从而机器人的一部分按压该接触式开关以开启该充电电路。
在一实施例中,上述机器人为自动导引车。
在另一方面,本申请提供了一种智能充电桩系统,该智能充电桩系统包括充电桩和机器人,充电桩包括第一控制器,机器人包括第二控制器,充电桩和机器人中的至少一个包括检测装置,其中:检测装置用于当机器人需要充电时对充电桩的充电电路和机器人的电池电路进行检测并将检测信息发送给第一控制器和/或第二控制器;第一控制器和/或第二控制器用于根据检测装置发送的检测信息判断充电电路和电池电路是否存在异常,第一控制器和/或第二控制器在确认充电电路或电池电路存在异常时,控制机器人不与充电桩电连接,并在确认充电电路和电池电路不存在异常时,控制机器人与充电桩电连接以进行充电。
在一实施例中,检测装置包括第一检测装置和第二检测装置,检测信息包括第一检测信息和第二检测信息,充电桩包括第一检测装置,机器人包括第二检测装置。第一检测装置用于对充电桩的充电电路进行检测并将第一检测信息发送给第一控制器,第二检测装置用于对机器人的电池电路进行检测并将第二检测信息发送给第二控制器;第一控制器用于根据第一检测装置发送的第一检测信息判断充电电路是否存在异常,第二控制器用于根据第二检测装置发送的第二检测信息判断电池电路是否存在异常。
在一实施例中,上述检测装置为第一检测装置,上述检测信息包括第一检测信息和第二检测信息,仅充电桩包括第一检测装置,第一 检测装置用于检测充电电路并将第一检测信息发送给第一控制器,并在第二控制器控制电池电路的输入端与充电电路的输出端连接后,检测电池电路并将第二检测信息发送给第一控制器;第二控制器用于在第一检测装置将第一检测信息发送给第一控制器后,在充电电路关闭时控制电池电路的输入端与充电电路的输出端连接;第一控制器用于根据第一检测装置发送的第一检测信息判断充电电路是否存在异常,根据第一检测装置发送的第二检测信息判断电池电路是否存在异常,并在确认充电电路和电池电路不存在异常时,开启充电电路。
在一实施例中,上述检测装置为第二检测装置,上述检测信息包括第一检测信息和第二检测信息,仅机器人包括第二检测装置,第二检测装置用于检测电池电路并将第二检测信息发送给第二控制器,并在第二控制器控制电池电路的输入端与充电电路的输出端连接后,检测充电电路并将第一检测信息发送给第二控制器;第二控制器用于在第二检测装置将第二检测信息发送给第二控制器后,在电池电路关闭时控制电池电路的输入端与充电电路的输出端连接,并根据第二检测装置发送的第二检测信息判断电池电路是否存在异常,根据第二检测装置发送的第一检测信息判断充电电路是否存在异常,第二控制器在确认充电电路和电池电路不存在异常时,开启电池电路。
在一实施例中,充电电路包括交流直流转换器,充电桩在充电电路的输出端与交流直流转换器之间设置有第一开关,机器人在电池电路的输入端处设置有第二开关;第一控制器用于在确认充电电路或电池电路存在异常时控制第一开关断开,第二控制器用于在确认充电电路或电池电路存在异常时控制第二开关断开。
在一实施例中,充电桩在充电电路的输入端与交流直流转换器之间还包括第三开关;第一控制器还用于在确认充电电路或电池电路存在异常时控制第三开关断开。
在一实施例中,充电桩与机器人通过WIFI或近场通信进行通信。
在一实施例中,充电桩包括第一通讯装置,机器人包括第二通讯装置;第二控制器用于在确认充电电路和电池电路不存在异常后,在充电电路关闭时和/或电池电路关闭时控制电池电路的输入端与充电电路的输出端连接;第二通讯装置用于在电池电路的输入端与充电电路的输出端连接后,向第一通讯装置发送方波信号;第一通讯装置用于接收第二通讯装置发送的方波信号并将该方波信号发送给第一控制器;第一控制器用于判断第一通讯装置发送的方波信号是否为预设方波信号,并在确定方波信号为预设方波信号后,第一控制器开启充电电路和/或第二控制器开启电池电路。
在一实施例中,上述检测信息可以是电压、电流、温度和烟雾浓度中的一个或其组合。
在一实施例中,上述检测信息为电压;第一控制器和/或第二控制器用于判断充电电路的第一电压是否在第一预定范围内,并且电池电路的第二电压是否在第二预定范围内,第一控制器和/或第二控制器在确认第一电压超出第一预定范围或第二电压超出第二预定范围时,控制机器人不与充电桩电连接,并在确认第一电压在第一预定范围内并且第二电压在第二预定范围内,控制机器人与充电桩电连接以进行充电。
在其他实施例中,当检测信息为电流、温度和烟雾浓度中的一个时,则第一控制器和/或第二控制器用于判断相应检测信息是否在预设范围内。在另一个实施例中,检测信息为电压、电流、温度和烟雾 浓度中多个的组合,并根据实际经验给多个参数分配权值进行组合判断。
在一实施例中,第一控制器和/或第二控制器采用低电压信号判断充电电路和电池电路是否存在异常。
在一实施例中,充电桩在外侧设置有接触式开关,该接触式开关用于被按压时开启充电电路,第二控制器用于在确认充电电路和电池电路不存在异常时,控制机器人靠近充电桩,从而机器人的一部分按压接触式开关以开启充电电路。
在一实施例中,机器人为自动导引车。
本申请的有益效果是在机器人需要通过充电桩进行充电前,先对充电桩的充电电路和机器人的电池电路进行检测,在确认充电电路和电池电路处于正常运行状态后再进行电连接,提供了安全性更高的充电系统。
此外,本申请中充电技术具有安全性非常高的开启方式,如远程遥控开启、方波通讯开启、电压检测开启和触碰开关开启等方式,不仅安全性高,还可以满足大规模管理规划的需求。
在一实施例中,在正常待机状态时,充电桩保持毫瓦(mW)级超低功耗。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施方式)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
为了更清楚地说明本申请实施例,下面将对实施例中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。其中:
图1是根据本申请一示例实施例的智能充电桩系统的运行方法的流程示意图。
图2是根据本申请一示例实施例的智能充电桩系统的运行方法的流程示意图。
图3是根据本申请一示例实施例的智能充电桩系统的运行方法的流程示意图。
图4是根据本申请一示例实施例的智能充电桩系统的运行方法的流程示意图。
图5是根据本申请一示例实施例的智能充电桩系统的运行方法的流程示意图。
图6是根据本申请一示例实施例的智能充电桩系统的运行方法中电连接机器人与充电桩的流程示意图。
图7是根据本申请一示例实施例的智能充电桩系统的结构框图。
图8是根据本申请一示例实施例的智能充电桩系统的结构框图。
图9是根据本申请一示例实施例的智能充电桩系统的结构框图。
图10是根据本申请一示例实施例的智能充电桩系统的结构框图。
图11A是根据本申请一示例实施例的智能充电桩系统中充电电路的结构框图。
图11B是根据本申请一示例实施例的智能充电桩系统中电池电路的结构框图。
图12是根据本申请另一示例实施例的智能充电桩系统中充电电路的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前,充电桩以及搬运车的充电方式存在一定的危险性,比如充电桩和待充电设备接头长期通电暴露,当输出线或者电池充电线被意外短路时,会导致充电桩或者电池瞬间大电流输出,损毁充电桩或者电池,严重时可能引发火灾等严重事故。同时,当人不小心接触到暴露的接口时,有可能被电击,对人体造成伤害。针对上述问题,本申请提供了一种安全性更高的充电系统。
图1示出了根据一示例实施例的智能充电桩系统的运行方法。上述智能充电桩系统包括充电桩和机器人,该充电桩包括第一控制器,该机器人包括第二控制器,充电桩和机器人中的至少一个包括检测装置。如图1所示,该运行方法包括以下步骤:
在步骤101中,当机器人需要充电时,检测装置对充电桩的充电电路和机器人的电池电路进行检测并将检测信息发送给第一控制器和/或第二控制器。在一个实施例中,机器人在需要充电时直接向充电桩发出充电请求。在另一个实施例中,机器人在需要充电时向调度系统发出充电请求,再由调度系统通知充电桩。在其他实施例中,机器人在需要充电时可以以任何已知的方式来告知充电桩。检测装置可以以任何已知的方式对充电电路和电池电路进行检测。在一个实施例中,检测装置可以将检测信息发送给监控系统进行判断。
此后进入步骤102,第一控制器和/或第二控制器根据检测信息判断充电电路和电池电路是否存在异常。在一个实施例中,上述检测信 息可以是电压、电流、温度和烟雾浓度中的一个或其组合。当充电电路或电池电路存在异常时,上述检测信息将偏离预设范围。在其他实施例中,也可以采用其他参数来进行检测,只要能够判断充电电路和电池电路是否存在异常即可。
如果确认充电电路或电池电路存在异常,则进入步骤103;如果确认充电电路和电池电路都不存在异常,则进入步骤104。
在步骤103中,第一控制器和/或第二控制器控制机器人不与充电桩电连接。例如可以保持机器人的电池电路与充电桩的充电电路中的至少一个保持关闭或休眠状态,和/或直接将机器人调离充电桩等等。
在步骤104中,第一控制器和/或第二控制器控制机器人与充电桩电连接以进行充电。
在一实施例中,上述机器人为自动导引车(AGV)。在另一实施例中,上述机器人可以是任何需要使用充电桩进行充电的机器人。
在本实施例中,在机器人需要通过充电桩进行充电前,先对充电桩的充电电路和机器人的电池电路进行检测,在确认充电电路和电池电路处于正常运行状态后再进行电连接,提供了安全性更高的充电系统。
在各个实施例中,可以根据需要在充电桩和机器人中设置检测装置。
在一实施例中,检测装置包括第一检测装置和第二检测装置,检测信息包括第一检测信息和第二检测信息,其中充电桩包括第一检测装置,机器人包括第二检测装置。即在充电桩和机器人两侧都设置检测装置,第一检测信息是关于充电电路的检测信息,第二检测信息是关于电池电路的检测信息。
在充电桩和机器人两侧都包括检测装置的实施例中,在步骤101中,第一检测装置对充电桩的充电电路进行检测并将第一检测信息发送给第一控制器,第二检测装置对机器人的电池电路进行检测并将第二检测信息发送给第二控制器。即第一检测装置和第二检测装置分别对充电桩的充电电路和机器人的电池电路进行检测,并将第一检测信息和第二检测信息分别发送给第一控制器和第二控制器。在步骤102中,第一控制器根据第一检测信息判断充电电路是否存在异常,第二控制器根据第二检测信息判断电池电路是否存在异常。在充电桩和机器人两侧都设置检测装置,可以在不接触的情况下同时对充电电路和电池电路进行检测。
图2-5示出了根据本申请示例实施例的仅一侧包括检测装置的智能充电桩系统的运行方法。图2-3示出了仅充电桩包括第一检测装置的智能充电桩系统的运行方法。图4-5示出了仅机器人包括第二检测装置的智能充电桩系统的运行方法。在这些智能充电桩系统的运行方法中,由于只需要在充电桩和机器人中的一侧设置检测装置,可以在一侧检测装置发生故障时使用。
如图2所示,在仅充电桩包括第一检测装置的实施例中,检测信息包括第一检测信息和第二检测信息,分别是关于充电电路和电池电路的检测信息。该运行方法可以包括以下步骤:
在步骤201中,第一检测装置检测充电电路并将第一检测信息发送给第一控制器。
此后进入步骤202,第二控制器在充电电路关闭(即充电电路没有电输出,例如充电电路处于休眠状态)时控制电池电路的输入端与充电电路的输出端连接,第一检测装置检测电池电路并将第二检测信息发送给第一控制器。在该情况下,第一检测装置可以设置在充电电 路的输出端附近,当电池电路的输入端与充电电路的输出端连接时即对电池电路进行检测。在一个实施例中,第一检测装置可以设置在充电电路的输出端处,对充电电路的输出端进行检测,然后使充电电路在处于关闭状态下与电池电路连接,则第一检测装置即对电池电路的输入端进行检测。在另一个实施例中,第一检测装置也可以设置在充电电路的其他位置,只要在电池电路靠近充电桩后能够对其进行检测即可。步骤201和步骤202对应于上述步骤101。
此后进入步骤203(对应于上述步骤102),第一控制器根据第一检测信息判断充电电路是否存在异常,并根据第二检测信息判断电池电路是否存在异常。如果确认充电电路或电池电路存在异常,进入步骤204;如果确认充电电路和电池电路都不存在异常,进入步骤205。
在步骤204中,与步骤103类似地,第一控制器和/或第二控制器控制机器人不与充电桩电连接,例如第一控制器继续保持充电电路处于关闭状态,和/或第二控制器控制机器人移离充电桩以断开电池电路的输入端与充电电路的输出端的连接等等。
在步骤205中,第一控制器开启充电电路,以使得机器人与充电桩进行电连接。开启充电电路意味着停止充电桩的关闭状态或休眠状态。
在一个实施例中,在充电桩中的第一检测装置可为多个,分别检测充电电路的不同参数或电路的不同位置,例如充电电路的上游电路和下游电路。在一个实施例中,第一检测装置位于充电电路上游,检测来自外网的交流电情况。在另一个实施例中,第一检测装置位于充电电路下游,检测给机器人充电的直流电情况。在其他实施例中,第一检测装置也可以位于其他位置,例如充电电路中游,以对充电电路进行检测。通过设置多个第一检测装置,可以更全面地进行检测。
如图3所示,在仅充电桩包括第一检测装置的另一实施例中,检测信息包括第一检测信息和第二检测信息。该运行方法可以包括以下步骤:
在步骤301中,第一检测装置检测充电电路并将第一检测信息发送给第一控制器。
此后进入步骤302,第一控制器根据第一检测信息判断充电电路是否存在异常。如果确认充电电路存在异常,进入步骤305;如果确认充电电路不存在异常,进入步骤303。
在步骤303中,第二控制器在充电电路关闭时控制电池电路的输入端与充电电路的输出端连接,第一检测装置检测电池电路并将第二检测信息发送给第一控制器。
此后进入步骤304,第一控制器根据第二检测信息判断电池电路是否存在异常。如果确认电池电路存在异常,进入步骤305;如果确认电池电路不存在异常,进入步骤306。
在步骤305中,与步骤103类似地,第一控制器和/或第二控制器控制机器人不与充电桩电连接,例如第一控制器继续保持充电电路处于关闭状态,和/或第二控制器控制机器人移离充电桩以断开电池电路的输入端与充电电路的输出端的连接。
在步骤306中,第一控制器开启充电电路,以使得机器人与充电桩进行电连接。
先对充电电路进行检测和异常判断,仅在充电电路不存在异常时才对机器人进行检测,节省时间。
如图4所示,在仅机器人包括第二检测装置的实施例中,检测信息包括第一检测信息和第二检测信息,分别为关于充电电路和电池电路的检测信息。该运行方法可以包括以下步骤:
在步骤401中,第二检测装置检测电池电路并将第二检测信息发送给第二控制器。
此后进入步骤402,第二控制器在电池电路关闭(即电池电路不接收电输入,例如电池电路处于休眠状态)时控制电池电路的输入端与充电电路的输出端连接,第二检测装置检测充电电路并将第一检测信息发送给第二控制器。与上述类似,第二检测装置可以设置在电池电路的输入端附近,当电池电路的输入端与充电电路的输出端连接时即对充电电路进行检测。在一个实施例中,第二检测装置可以设置在电池电路的输入端处,对电池电路的输入端进行检测,然后使电池电路在关闭状态下与充电电路连接,则第二检测装置即对充电电路的输出端进行检测。在另一个实施例中,第二检测装置也可以设置在电池电路的其他位置,只要在电池电路靠近充电桩后能够对充电电路进行检测即可。步骤401和步骤402对应于上述步骤101。
此后进入步骤403(对应于上述步骤102),第二控制器根据第二检测信息判断电池电路是否存在异常,并根据第一检测信息判断充电电路是否存在异常。
如果确认电池电路或充电电路存在异常,进入步骤404;如果确认充电电路和电池电路都不存在异常,进入步骤405。
在步骤404中,与步骤103类似地,第一控制器和/或第二控制器控制机器人不与充电桩电连接,例如第一控制器控制充电电路处于关闭状态,和/或第二控制器继续保持电池电路处于关闭状态,和/或第二控制器控制机器人移离充电桩以断开电池电路的输入端与充电电路的输出端的连接等等。
在步骤405中,第二控制器开启电池电路,以使得机器人与充电桩进行电连接。
在一个实施例中,在机器人中的第二检测装置可为多个,分别检测电池电路的不同参数或电路的不同位置,例如电池电路的上游或下游。通过设置多个第二检测装置,可以更为全面地进行检测。
如图5所示,在仅机器人包括第二检测装置的另一实施例中,检测信息包括第一检测信息和第二检测信息。该运行方法可以包括以下步骤:
在步骤501中,第二检测装置检测电池电路并将第二检测信息发送给第二控制器。
此后进入步骤502,第二控制器根据第二检测信息判断电池电路是否存在异常。如果确认电池电路存在异常,进入步骤505;如果确认电池电路不存在异常,进入步骤503。
在步骤503中,第二控制器在电池电路关闭时控制电池电路的输入端与充电电路的输出端连接,第二检测装置检测充电电路并将第一检测信息发送给第二控制器。
此后进入步骤504,第二控制器根据第一检测信息判断充电电路是否存在异常。如果确认充电电路存在异常,进入步骤505;如果确认充电电路不存在异常,进入步骤506。
在步骤505中,与步骤103类似地,第一控制器和/或第二控制器控制机器人不与充电桩电连接,例如第二控制器继续保持电池电路处于关闭状态,和/或第二控制器控制机器人移离充电桩以断开电池电路的输入端与充电电路的输出端的连接。
在步骤506中,第二控制器开启电池电路,以使得机器人与充电桩进行电连接。
先对电池电路进行检测和异常判断,仅在电池电路不存在异常时才对充电桩进行检测,节省时间。
在某些实施例中,可以在充电电路和电池电路中都设置开关,并在充电电路和电池电路中的一个发生异常时同时断开两侧开关,以确保安全性。在一实施例中,如图11A所示,充电电路包括交流直流转换器,在充电电路的输出端与交流直流转换器之间设置第一开关以导通或断开充电电路的输出;在电池电路的输入端处包括第二开关以导通或断开电池电路的输入。当充电电路或电池电路存在异常时,即在步骤103中,第一控制器控制第一开关断开并且第二控制器控制第二开关断开,从而使得机器人不与充电桩电连接。
在另一实施例中,在充电电路的输入端与交流直流转换器之间还可以包括第三开关以导通或断开充电电路的输入。则当充电电路或电池电路存在异常时,即在步骤103中,第一控制器可以控制第三开关断开,从而使得机器人不与充电桩电连接。
在其他实施例中,也可以在充电电路和电池电路的其他位置上设置开关,只要能进行通断即可,或是采用其他方式使电池电路和充电电路保持关闭或休眠状态。在其他实施例中,第二控制器也可以控制机器人移离充电桩,以使机器人不与充电桩电连接或其他方式。
当确认充电电路和电池电路不存在异常时,即在步骤104中,可以通过远程遥控开启、方波通讯开启、电压检测开启、触碰开关开启或其他开启方式来使机器人与充电桩电连接。
在一实施例中,充电桩与机器人通过WIFI、近场通信或其他远程通信方式进行通信,从而在确认充电电路和电池电路都不存在异常时,充电桩与机器人能够相互通信告知并进行电连接。
图6示出了根据一示例实施例的方波通讯开启的流程示意图,其中充电桩可以包括第一通讯装置,机器人可以包括第二通讯装置。如图6所示,上述步骤104可以包括以下步骤:
在步骤601中,当充电电路关闭时和/或电池电路关闭时,第二控制器控制电池电路的输入端与充电电路的输出端连接。
此后进入步骤602,第二通讯装置向第一通讯装置发送方波信号。
此后进入步骤603,第一通讯装置接收方波信号并将方波信号发送给第一控制器。
此后进入步骤604,第一控制器判断方波信号是否为预设方波信号。如果确定方波信号为预设方波信号,进入步骤605;否则进入步骤606。
在步骤605中,第一控制器开启充电电路和/或第二控制器开启电池电路。
在步骤606中,保持充电电路与电池电路断开状态。在一实施例中,可以发出报警信号以引起操作人员注意。在另一个实施例中,可以使机器人直接移离该充电桩。
在确认电池电路和充电电路不存在异常后,通过方波通讯方式来启动机器人与充电桩进行充电,可以进一步确保安全性。
在另一实施例中,可以在充电桩或机器人的外侧设置接触式开关,该接触式开关被按压时开启充电电路或电池电路。例如当该接触式开关被按压时,向第一控制器或第二控制器发送启动信号,从而第一控制器或第二控制器中断充电电路或电池电路关闭状态或休眠状态。则在步骤104中,第二控制器控制机器人靠近充电桩,以使得机器人的一部分按压该充电桩外侧的接触式开关以开启该充电电路,或使得充电桩的一部分按压该机器人外侧的接触式开关以开启该电池电路。
本申请的各方法实施例均可以以软件、硬件、固件等方式实现。不管本申请是以软件、硬件、还是固件方式实现,指令代码都可以存储在任何类型的计算机可访问的存储器中(例如永久的或者可修改的, 易失性的或者非易失性的,固态的或者非固态的,固定的或者可更换的介质等等)。同样,存储器可以例如是可编程阵列逻辑(Programmable Array Logic,简称“PAL”)、随机存取存储器(Random Access Memory,简称“RAM”)、可编程只读存储器(Programmable Read Only Memory,简称“PROM”)、只读存储器(Read-Only Memory,简称“ROM”)、电可擦除可编程只读存储器(Electrically Erasable Programmable ROM,简称“EEPROM”)、磁盘、光盘、数字通用光盘(Digital Versatile Disc,简称“DVD”)等等。
图7示出了根据一示例实施例的智能充电桩系统的结构框图。可以用该智能充电桩系统来实施图1所示的运行方法。如图7所示,该智能充电桩系统包括充电桩1和机器人2,充电桩1包括第一控制器11,机器人2包括第二控制器21,充电桩1和机器人2中的至少一个包括检测装置。其中:
该检测装置用于当机器人2需要充电时对充电桩1的充电电路12和机器人2的电池电路22进行检测并将检测信息发送给第一控制器11和/或第二控制器21。在一个实施例中,上述检测信息可以是电压、电流、温度和烟雾浓度中的一个或其组合。当充电电路或电池电路存在异常时,上述检测信息将偏离预设范围。在其他实施例中,也可以采用其他参数来进行检测,只要能够判断充电电路和电池电路是否存在异常即可。
第一控制器11和/或第二控制器21用于根据上述检测装置发送的检测信息判断充电电路12和电池电路22是否存在异常,在确认充电电路12或电池电路22存在异常时,第一控制器11和/或第二控制器21控制机器人2不与充电桩1电连接,并在确认充电电路12和电 池电路22不存在异常时,第一控制器11和/或第二控制器21控制机器人2与充电桩1电连接以进行充电。
在一实施例中,上述机器人为自动导引车(AGV)。在另一实施例中,上述机器人可以是任何需要使用充电桩进行充电的机器人。
在本实施例中,在机器人需要通过充电桩进行充电前,检测装置对充电桩的充电电路和机器人的电池电路进行检测,在第一控制器和/或第二控制器确认充电电路和电池电路处于正常运行状态后进行电连接,提供了安全性更高的充电系统。
在各个实施例中,可以根据需要在充电桩和机器人中设置检测装置。图8-10示出了根据各示例实施例的智能充电桩系统的结构框图。可以采用图9-10所示的智能充电桩系统来实施图2-5所示的方法。
图8示出了根据本申请一示例实施例的在两侧均包括检测装置的智能充电桩系统的结构框图。在该实施例中,上述检测装置包括第一检测装置13和第二检测装置23,检测信息包括第一检测信息和第二检测信息,分别是关于充电电路和电池电路的检测信息。如图8所示,充电桩1包括第一检测装置13,机器人2包括第二检测装置23。
第一检测装置13用于对充电桩1的充电电路12进行检测并将第一检测信息发送给第一控制器11,第二检测装置23用于对机器人2的电池电路22进行检测并将第二检测信息发送给第二控制器21。
第一控制器11用于根据第一检测装置13发送的第一检测信息判断充电电路12是否存在异常,第二控制器21用于根据第二检测装置23发送的第二检测信息判断电池电路22是否存在异常。
图9示出了根据本申请一示例实施例的仅充电桩包括检测装置的智能充电系统的结构框图。在该实施例中,上述检测装置为第一检测装置13,检测信息包括第一检测信息和第二检测信息,分别是关于 充电电路和电池电路的检测信息。如图9所示,仅充电桩1包括该第一检测装置13。
第一检测装置13用于检测充电电路12并将第一检测信息发送给第一控制器11,并在第二控制器21控制电池电路22的输入端与充电电路12的输出端连接后,检测电池电路22并将第二检测信息发送给第一控制器11。
第二控制器21用于在第一检测装置13将第一检测信息发送给第一控制器11后,在充电电路12关闭时控制电池电路22的输入端与充电电路12的输出端连接。
第一控制器11用于根据第一检测装置13发送的第一检测信息判断充电电路12是否存在异常,根据第一检测装置13发送的第二检测信息判断电池电路22是否存在异常,并在确认充电电路12和电池电路22不存在异常时,开启充电电路12。
图10示出了根据本申请一示例实施例的仅机器人包括检测装置的智能充电桩系统的结构框图。在该实施例中,上述检测装置为第二检测装置23,检测信息包括第一检测信息和第二检测信息,分别是关于充电电路和电池电路的检测信息。如图10所示,仅机器人2包括第二检测装置23。
第二检测装置23用于检测电池电路22并将第二检测信息发送给第二控制器21,并在第二控制器21控制电池电路22的输入端与充电电路12的输出端连接后,检测充电电路12并将第一检测信息发送给第二控制器21。
第二控制器21用于在第二检测装置23将第二检测信息发送给第二控制器21后,在电池电路22关闭时控制电池电路22的输入端与充电电路12的输出端连接,并根据第二检测装置23发送的第二检 测信息判断电池电路22是否存在异常,根据第二检测装置23发送的第一检测信息判断充电电路12是否存在异常,第二控制器21在确认充电电路12和电池电路22不存在异常时,开启电池电路22。
在某些实施例中,可以在充电电路和电池电路中都设置开关,并在充电电路和电池电路中的一个发生异常时同时断开两侧开关,以确保安全性。在一实施例中,如图11A和11B所示,充电电路12包括交流直流转换器14,在充电电路12的输出端15与交流直流转换器14之间设置第一开关17以导通或断开充电电路12的输出;在电池电路22的输入端26处包括第二开关27以导通或断开电池电路22的输入。第一控制器11用于在确认充电电路12或电池电路22存在异常时控制第一开关17断开,第二控制器21用于在确认充电电路12或电池电路22存在异常时控制第二开关27断开,从而机器人2不与充电桩1电连接。
在另一实施例中,如图12所示,在充电电路12的输入端16与交流直流转换器14之间还可以包括第三开关18以导通或断开充电电路12的输入。第一控制器11还用于在确认充电电路12或电池电路22存在异常时控制第三开关18断开,从而机器人2不与充电桩1电连接。
在某些实施例中,当第一控制器11和/或第二控制器21确认充电电路12和电池电路22不存在异常时,可以通过远程遥控开启、方法通讯开启、电压检测开启、触碰开关开启或其他开启方式来使机器人与充电桩电连接。
在一实施例中,充电桩1与机器人2通过WIFI、近场通信或其他远程通信方式进行通信,从而在确认充电电路12和电池电路22都 不存在异常时,充电桩1与机器人2能够相互通信告知并进行电连接。
在另一实施例中,充电桩1可以包括第一通讯装置(未示出),机器人2可以包括第二通讯装置(未示出)。第二控制器21用于在确认充电电路12和电池电路22不存在异常后,在充电电路12关闭时和/或在电池电路22关闭时控制电池电路22的输入端26与充电电路12的输出端15连接。
第二通讯装置用于在电池电路22的输入端26与充电电路12的输出端15连接后,向第一通讯装置发送方波信号。第一通讯装置用于接收第二通讯装置发送的方波信号并将该方波信号发送给第一控制器11。
第一控制器11用于判断第一通讯装置发送的方波信号是否为预设方波信号,并在确定方波信号为预设方波信号后,第一控制器11开启充电电路12和/或第二控制器21开启电池电路22。
在又一实施例中,可以在充电桩1或机器人2的外侧设置接触式开关,该接触式开关用于被按压时开启充电电路12或电池电路22。第二控制器21用于在确认充电电路12和电池电路22不存在异常时,控制机器人2靠近充电桩1,以使得机器人2的一部分按压该充电桩1外侧的接触式开关以开启该充电电路12,或使得充电桩1的一部分按压该机器人2外侧的接触式开关以开启该电池电路22。
各方法实施例中的运行方法可于智能充电系统中运行,上述各方法实施例中所有关于运行方法的描述均可应用于各系统实施例中,在此不再赘述。
需要说明的是,本申请各系统实施例中提到的各单元和/或模块都是逻辑单元和/或模块,在物理上,一个逻辑单元和/或模块可以是 一个物理单元和/或模块,也可以是一个物理单元和/或模块的一部分,还可以以多个物理单元和/或模块的组合实现,这些逻辑单元和/或模块本身的物理实现方式并不是最重要的,这些逻辑单元和/或模块所实现的功能的组合才是解决本申请所提出的技术问题的关键。此外,为了突出本申请的创新部分,本申请上述各系统实施例并没有将与解决本申请所提出的技术问题关系不太密切的单元和/或模块引入,这并不表明上述系统实施例并不存在其它的单元和/或模块。
在整个说明书中对“一个实施例”或“一实施例”的提及表示结合实施例所描述的特定特点、结构或特征包括于至少一个实施例中。因此,在整个说明书的各个位置“在一个实施例中”或“在一实施例”中的出现无需全都指相同实施例。另外,特定特点、结构或特征可在一个或多个实施例中以任何方式组合。
需要说明的是,在本申请的权利要求和说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
综上,本申请提供了一种充电桩系统包括充电桩和机器人,机器人可以为自动导航搬运小车,充电桩包括第一控制器和充电电路,机器人包括第二控制器和电池电路。第一控制器和第二控制器负责充电 桩系统的控制,通过数字电路和/或模拟电路实现对其他模块的信息采集和管理控制,包括与移动充电端的信息交流、收集检测信息、策略性地开启和关闭充电桩等等。充电电路用于将外电转换为充电电流,例如由外网交流电转化为直流电,或者由高电压电转换为低电压电等。电池电路用于将转化后的电储存在电池中。充电桩和机器人中有至少一个包括检测装置,检测装置用于检测充电桩的充电电路和机器人中的电池电路的状态,并将信息反馈给第一控制器和/或第二控制器,第一控制器和/或第二控制器判断充电电路和电池电路是否存在异常,若充电电路或电池电路存在异常,则第一控制器和/或第二控制器控制机器人不与充电桩电连接,从而提供了安全性更高的充电系统。
当充电桩没有为设备充电时,实现超低功耗待机。当检测到无异常状态时,充电桩接通机器人为电池充电。充电过程中持续检测充电桩状态,出现异常时自动关闭充电系统。同时检测到电池电量充满或者接收到通讯模块传来关闭充电信号时,自动关闭充电。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种智能充电桩系统的运行方法,其特征在于,所述智能充电桩系统包括充电桩和机器人,所述充电桩包括第一控制器,所述机器人包括第二控制器,所述充电桩和所述机器人中的至少一个包括检测装置,所述运行方法包括以下步骤:
    当所述机器人需要充电时,所述检测装置对所述充电桩的充电电路和所述机器人的电池电路进行检测并将检测信息发送给所述第一控制器和/或所述第二控制器;
    所述第一控制器和/或所述第二控制器根据所述检测信息判断所述充电电路和所述电池电路是否存在异常;
    如果确认所述充电电路或所述电池电路存在异常,所述第一控制器和/或所述第二控制器控制所述机器人不与所述充电桩电连接,
    如果确认所述充电电路和所述电池电路不存在异常,所述第一控制器和/或所述第二控制器控制所述机器人与所述充电桩电连接以进行充电。
  2. 根据权利要求1所述的运行方法,其特征在于,所述检测装置包括第一检测装置和第二检测装置,所述检测信息包括第一检测信息和第二检测信息,所述充电桩包括所述第一检测装置,所述机器人包括所述第二检测装置;
    在所述检测装置对所述充电桩的充电电路和所述机器人的电池电路进行检测并将检测信息发送给所述第一控制器和/或所述第二控制器的步骤中,所述第一检测装置对所述充电桩的充电电路进行检测并将所述第一检测信息发送给所述第一控制器,所述第二检测装置对所述机器人的电池电路进行检测并将所述第二检测信息发送给所述第二控制器;
    在所述第一控制器和/或所述第二控制器根据所述检测信息判断所述充电电路和所述电池电路是否存在异常的步骤中,所述第一控制器根据所述第一检测信息判断所述充电电路是否存在异常,所述第二控制器根据所述第二检测信息判断所述电池电路是否存在异常。
  3. 根据权利要求1所述的运行方法,其特征在于,所述检测装置为第一检测装置,所述检测信息包括第一检测信息和第二检测信息,仅所述充电桩包括所述第一检测装置;
    在所述检测装置对所述充电桩的充电电路和所述机器人的电池电路进行检测并将检测信息发送给所述第一控制器和/或所述第二控制器的步骤中包括以下步骤:
    所述第一检测装置检测所述充电电路并将所述第一检测信息发送给所述第一控制器;以及
    所述第二控制器在所述充电电路关闭时控制所述电池电路的输入端与所述充电电路的输出端连接,所述第一检测装置检测所述电池电路并将所述第二检测信息发送给所述第一控制器;
    在所述第一控制器和/或所述第二控制器根据所述检测信息判断所述充电电路和所述电池电路是否存在异常的步骤中,所述第一控制器根据所述第一检测信息判断所述充电电路是否存在异常,并根据所述第二检测信息判断所述电池电路是否存在异常;
    如果确认所述充电电路和所述电池电路不存在异常,在所述第一控制器和/或所述第二控制器控制所述机器人与所述充电桩电连接以进行充电的步骤中,所述第一控制器开启所述充电电路。
  4. 根据权利要求1所述的运行方法,其特征在于,所述检测装置为第二检测装置,所述检测信息包括第一检测信息和第二检测信息,仅所述机器人包括所述第二检测装置;
    在所述检测装置对所述充电桩的充电电路和所述机器人的电池电路进行检测并将检测信息发送给所述第一控制器和/或所述第二控制器的步骤中包括以下步骤:
    所述第二检测装置检测所述电池电路并将所述第二检测信息发送给所述第二控制器;以及
    所述第二控制器在所述电池电路关闭时控制所述电池电路的输入端与所述充电电路的输出端连接,所述第二检测装置检测所述充电电路并将所述第一检测信息发送给所述第二控制器;
    在所述第一控制器和/或所述第二控制器根据所述检测信息判断所述充电电路和所述电池电路是否存在异常的步骤中,所述第二控制器根据所述第二检测信息判断所述电池电路是否存在异常,并根据所述第一检测信息判断所述充电电路是否存在异常;
    如果确认所述电池电路和所述充电电路不存在异常,在所述第一控制器和/或所述第二控制器控制所述机器人与所述充电桩电连接以进行充电的步骤中,所述第二控制器开启所述电池电路。
  5. 根据权利要求1所述的运行方法,其特征在于,所述充电电路包括交流直流转换器,所述充电桩在所述充电电路的输出端与所述交流直流转换器之间包括第一开关,所述机器人在所述电池电路的输入端处包括第二开关;
    在所述第一控制器和/或所述第二控制器控制所述机器人不与所述充电桩电连接的步骤中,所述第一控制器控制所述第一开关断开并且所述第二控制器控制所述第二开关断开。
  6. 一种智能充电桩系统,其特征在于,所述智能充电桩系统包括充电桩和机器人,所述充电桩包括第一控制器,所述机器人包括第二控制器,所述充电桩和所述机器人中的至少一个包括检测装置,其中:
    所述检测装置用于当所述机器人需要充电时对所述充电桩的充电电路和所述机器人的电池电路进行检测并将检测信息发送给所述第一控制器和/或所述第二控制器;
    所述第一控制器和/或所述第二控制器用于根据所述检测装置发送的所述检测信息判断所述充电电路和所述电池电路是否存在异常,所述第一控制器和/或所述第二控制器在确认所述充电电路或所述电池电路存在异常时,控制所述机器人不与所述充电桩电连接,并在确认所述充电电路和所述电池电路不存在异常时,控制所述机器人与所述充电桩电连接以进行充电。
  7. 根据权利要求6所述的智能充电桩系统,其特征在于,所述检测装置包括第一检测装置和第二检测装置,所述检测信息包括第一检测信息和第二检测信息,所述充电桩包括所述第一检测装置,所述机器人包括所述第二检测装置;
    所述第一检测装置用于对所述充电桩的充电电路进行检测并将所述第一检测信息发送给所述第一控制器,所述第二检测装置用于对所述机器人的电池电路进行检测并将所述第二检测信息发送给所述第二控制器;
    所述第一控制器用于根据所述第一检测装置发送的所述第一检测信息判断所述充电电路是否存在异常,所述第二控制器用于根据所述第二检测装置发送的所述第二检测信息判断所述电池电路是否存在异常。
  8. 根据权利要求6所述的智能充电桩系统,其特征在于,所述检测装置为第一检测装置,所述检测信息包括第一检测信息和第二检测信息,仅所述充电桩包括所述第一检测装置;
    所述第一检测装置用于检测所述充电电路并将所述第一检测信息发送给所述第一控制器,并在所述第二控制器控制所述电池电路的输入端与所述充电电路的输出端连接后,检测所述电池电路并将所述第二检测信息发送给所述第一控制器;
    所述第二控制器用于在所述第一检测装置将所述第一检测信息发送给所述第一控制器后,在所述充电电路关闭时控制所述电池电路的输入端与所述充电电路的输出端连接;
    所述第一控制器用于根据所述第一检测装置发送的所述第一检测信息判断所述充电电路是否存在异常,根据所述第一检测装置发送的所述第二检测信息判断所述电池电路是否存在异常,并在确认所述充电电路和所述电池电路不存在异常时,开启所述充电电路。
  9. 根据权利要求6所述的智能充电桩系统,其特征在于,所述检测装置为第二检测装置,所述检测信息包括第一检测信息和第二检测信息,仅所述机器人包括所述第二检测装置;
    所述第二检测装置用于检测所述电池电路并将所述第二检测信息发送给所述第二控制器,并在所述第二控制器控制所述电池电路的输入端与所述充电电路的输出端连接后,检测所述充电电路并将所述第一检测信息发送给所述第二控制器;
    所述第二控制器用于在所述第二检测装置将所述第二检测信息发送给所述第二控制器后,在所述电池电路关闭时控制所述电池电路的输入端与所述充电电路的输出端连接,并根据所述第二检测装置发送的所述第二检测信息判断所述电池电路是否存在异常,根据所述第二检测装置发送的所述第一检测信息判断所述充电电路是否存在异常,所述第二控制器在确认所述充电电路和所述电池电路不存在异常时,开启所述电池电路。
  10. 根据权利要求6至9中任一项所述的智能充电桩系统,其特征在于,所述充电桩包括第一通讯装置,所述机器人包括第二通讯装置;
    所述第二控制器用于在确认所述充电电路和所述电池电路不存在异常后,在所述充电电路关闭时和/或所述电池电路关闭时,控制所述电池电路的输入端与所述充电电路的输出端连接;
    所述第二通讯装置用于在所述电池电路的输入端与所述充电电路的输出端连接后,向所述第一通讯装置发送方波信号;
    所述第一通讯装置用于接收所述第二通讯装置发送的所述方波信号并将所述方波信号发送给所述第一控制器;
    所述第一控制器用于判断所述第一通讯装置发送的所述方波信号是否为预设方波信号,并在确定所述方波信号为所述预设方波信号后,所述第一控制器开启所述充电电路和/或所述第二控制器开启所述电池电路。
PCT/CN2019/119705 2018-11-21 2019-11-20 智能充电桩系统及其运行方法 WO2020103866A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811393085.9 2018-11-21
CN201811393085.9A CN111211589A (zh) 2018-11-21 2018-11-21 智能充电桩系统及其运行方法

Publications (1)

Publication Number Publication Date
WO2020103866A1 true WO2020103866A1 (zh) 2020-05-28

Family

ID=70774292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119705 WO2020103866A1 (zh) 2018-11-21 2019-11-20 智能充电桩系统及其运行方法

Country Status (2)

Country Link
CN (1) CN111211589A (zh)
WO (1) WO2020103866A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113799638A (zh) * 2020-06-15 2021-12-17 锥能机器人嘉兴有限公司 控制自动运输单元的充电的方法、设备和存储介质
CN112319295A (zh) * 2020-10-29 2021-02-05 怀化智信能源科技有限公司 一种智能充电桩充电方法及系统
CN112636410A (zh) * 2020-12-10 2021-04-09 广州高新兴机器人有限公司 一种充电方法、移动机器人和充电桩
CN112600278A (zh) * 2020-12-22 2021-04-02 上海有个机器人有限公司 一种安全及感知机器人充电状态的充电系统、方法和服务器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016083A (ja) * 2010-06-29 2012-01-19 Honda Motor Co Ltd 移動体の充電装置及びその制御方法
CN104617643A (zh) * 2015-03-09 2015-05-13 广东欧珀移动通信有限公司 充电方法、待充电设备、供电设备及充电系统
CN106253362A (zh) * 2016-04-06 2016-12-21 北京小米移动软件有限公司 电路控制系统及方法、自主清洁设备
CN108521149A (zh) * 2018-04-17 2018-09-11 武汉斌果科技有限公司 基于摄像头的与机器人低耦合的智能充电桩系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3319063B2 (ja) * 1993-08-24 2002-08-26 松下電器産業株式会社 移動ロボット
KR100488524B1 (ko) * 2003-04-09 2005-05-11 삼성전자주식회사 로봇충전장치
CN104242411B (zh) * 2014-10-14 2018-01-19 中智科创机器人有限公司 一种智能化充电方法、系统、巡逻机器人及充电电源
CN106786872A (zh) * 2016-12-19 2017-05-31 钦州市晶通科技有限公司 具有智能充电装置的电子设备
CN107240949B (zh) * 2017-08-07 2020-02-11 浙江孚宝智能科技有限公司 一种机器人充电方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016083A (ja) * 2010-06-29 2012-01-19 Honda Motor Co Ltd 移動体の充電装置及びその制御方法
CN104617643A (zh) * 2015-03-09 2015-05-13 广东欧珀移动通信有限公司 充电方法、待充电设备、供电设备及充电系统
CN106253362A (zh) * 2016-04-06 2016-12-21 北京小米移动软件有限公司 电路控制系统及方法、自主清洁设备
CN108521149A (zh) * 2018-04-17 2018-09-11 武汉斌果科技有限公司 基于摄像头的与机器人低耦合的智能充电桩系统及方法

Also Published As

Publication number Publication date
CN111211589A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
WO2020103866A1 (zh) 智能充电桩系统及其运行方法
CN203859339U (zh) 一种智能插座控制终端
KR101986679B1 (ko) 쾌속 충전 방법, 전원 어댑터 및 모바일 단말기
WO2018113270A1 (zh) 自动导引运输车的电池模组管理方法、装置
CN103217955A (zh) 一种用于无线充电远程控制的系统及其远程控制方法
US20230142500A1 (en) Battery modules with anti-arcing, hot swapping, and/or self-disabling features
CN110303933B (zh) 一种自动导引车的电池自动充电方法
CN107168087A (zh) 一种检测断电的智能家居参数保存及恢复的插座控制系统
CN105514526A (zh) 电池模组的加热控制系统和方法
CN210109280U (zh) 一种电力直流电源蓄电池远方核容系统
WO2021093518A1 (zh) 一种充电底座及充电系统
CN104052112B (zh) 电池组监控方法及系统
CN203561875U (zh) 一种远程控制的电热水器故障诊断系统
CN202268715U (zh) 具有过充检测保护功能的充电装置
CN105762906B (zh) 一种阀厅作业平台车智能充电装置及方法
CN206379772U (zh) 一种ups远程管理装置
CN115425729A (zh) 一种适配光伏的bms充电方法、设备、装置、控制器及存储介质
CN110379115A (zh) 一种配电柜气体检测报警系统
CN114301171A (zh) 一种宿舍安全用电管控方法及系统
CN103574907A (zh) 用于热泵热水器的电加热功能的控制装置及其控制方法
CN107195961A (zh) 电动叉车用锂离子电池系统
CN110138086A (zh) 远动母联开关装置、控制系统及控制方法
CN203406685U (zh) 一种直流系统的远程控制装置
CN112798970A (zh) 一种变电站蓄电池远程核容系统
KR20210044026A (ko) 쌍안정릴레이를 이용한 병렬 전지팩 제어시스템 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19888080

Country of ref document: EP

Kind code of ref document: A1