WO2020103580A1 - 空调室内机和空调器 - Google Patents

空调室内机和空调器

Info

Publication number
WO2020103580A1
WO2020103580A1 PCT/CN2019/109147 CN2019109147W WO2020103580A1 WO 2020103580 A1 WO2020103580 A1 WO 2020103580A1 CN 2019109147 W CN2019109147 W CN 2019109147W WO 2020103580 A1 WO2020103580 A1 WO 2020103580A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
evaporation section
indoor unit
wind wheel
conditioner indoor
Prior art date
Application number
PCT/CN2019/109147
Other languages
English (en)
French (fr)
Inventor
刘乾坤
王锡栋
凌敬
覃强
邹奎芳
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2020103580A1 publication Critical patent/WO2020103580A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioning, in particular to an air conditioner indoor unit and an air conditioner.
  • the air duct of the indoor unit of the air conditioner is provided with a wind wheel and an evaporator. Under the drive of the wind wheel, the outside air enters the interior of the air duct and exchanges heat with the evaporator, and then sends the heat-treated air to the indoor environment. To improve the temperature of indoor air.
  • condensate water is often generated on the evaporator.
  • the evaporator condenses water droplets into the inside of the cross-flow wind wheel or air duct and is blown out of the air outlet.
  • the main purpose of the present application is to provide an air conditioner indoor unit, which aims to make the evaporator of the air conditioner indoor unit have high heat exchange efficiency and good drainage performance.
  • the air-conditioning indoor unit proposed by the present application includes a housing, the housing includes a chassis assembly and a face frame assembly, the chassis assembly is connected to the face frame assembly and surrounds to form an air duct ,
  • the face frame assembly is provided with an air inlet and an air outlet that communicate with the air duct, an air wheel is provided in the air duct, and an evaporator surrounding the outside of the air wheel;
  • the evaporator includes a post-evaporation section, which is disposed on a side close to the chassis assembly, and the post-evaporation section forms an included angle ⁇ in the up-down direction, and the included angle ⁇ is at least 25 ° and does not exceed 50 °.
  • the included angle ⁇ is 25 °, 30 °, 40 ° or 50 °.
  • the side of the rear evaporation section near the air inlet is inclined toward the direction away from the chassis assembly.
  • the chassis assembly includes a chassis and a rear volute, one end of the rear volute is connected to the chassis at the air outlet and the other end extends toward the area between the rear evaporation section and the wind wheel.
  • the outer wall surface of the rear volute near the rear evaporation section forms an angle ⁇ with the up-down direction, and the angle ⁇ is at least 25 ° and not more than 50 °.
  • the included angle ⁇ is 25 °, 30 °, 40 ° or 50 °.
  • a line connecting the center of the wind wheel to the closest point of the rear volute and a line connecting the center of the wind wheel to the free end of the rear volute is ⁇ , which is at least 10 ° and not more than 30 °.
  • the included angle ⁇ is 10 °, 20 ° or 30 °.
  • the outer diameter of the wind wheel is defined as d, and the minimum distance between the wind wheel and the rear volute is ⁇ , and ⁇ is at least 0.035d and does not exceed 0.065d.
  • the ⁇ value is 0.035d, 0.04d, 0.045d, 0.05d, 0.06d, or 0.065d.
  • the angle formed by the line connecting the center of the wind wheel to the closest point of the rear volute and the horizontal plane is ⁇ , and ⁇ is at least 20 ° and not more than 55 °.
  • the included angle ⁇ is 20 °, 30 °, 40 °, 50 ° or 55 °.
  • the angle formed by the line from the center of the wind wheel to the closest point of the rear volute tongue and the horizontal plane is ⁇
  • the line from the center of the wind wheel to the closest point of the rear volute tongue is The angle formed by the line connecting the center of the wind wheel to the free end of the rear volute is ⁇ , and ⁇ is greater than ⁇ .
  • the evaporator further includes a middle evaporation section and a front evaporation section, one end of the rear evaporation section and the middle evaporation section are connected above the wind wheel, and the rear evaporation section faces away from the middle One end of the evaporation section extends toward the rear side of the wind wheel, and one end of the middle evaporation section facing away from the rear evaporation section extends toward the front side of the wind wheel, and the front evaporation section is connected to the middle evaporation section An end facing away from the rear evaporation section and located on the front side of the wind wheel.
  • the front evaporation section is arranged along the up and down direction.
  • the middle evaporation section is located between the rear evaporation section and the front evaporation section in the front-rear direction, and forms an angle with the up-down direction.
  • the face frame assembly includes a face frame and a front panel connected to the face frame, the front panel covers the chassis assembly, and the air inlet is opened above the evaporator, the The front panel is disposed opposite to the chassis.
  • an electric auxiliary heat is also provided between the evaporator and the wind wheel.
  • This application also proposes an air conditioner, including an outdoor air conditioner and the indoor air conditioner;
  • the air conditioner indoor unit includes a housing, the rear side of the housing faces the mounting carrier after the installation is completed, the housing is provided with an air inlet and an air outlet, and an air duct connecting the air inlet and the air outlet is formed ,
  • the wind channel is provided with a wind wheel, and an evaporator surrounding the outside of the wind wheel;
  • the evaporator includes a post-evaporation section, which is disposed on a side close to the chassis assembly, and the post-evaporation section forms an angle ⁇ in the up-down direction, ⁇ is at least 25 ° and not more than 50 °.
  • the outside air is driven into the air duct by the air inlet under the drive of the wind wheel, and exchanges heat with the evaporator in the air duct, and then blows out through the wind wheel and the air outlet.
  • the post-evaporator evaporates
  • the position of the section is particularly important. The larger the angle ⁇ of the post-evaporation section in the up and down direction, the larger the windward area of the post-evaporation section and the higher the heat transfer efficiency; The smaller, the higher the removal efficiency of the condensate formed on the evaporator.
  • the range of the angle ⁇ between the post-evaporation section of the evaporator and the vertical direction is limited to: ⁇ is at least 25 ° and not more than 50 °, so that the heat exchange efficiency of the evaporator and the reliability of drainage can be improved, which can be effective Avoid blowing water in the air conditioner.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of an air-conditioning indoor unit of the present application
  • FIG. 2 is a partially enlarged view at A in FIG. 1;
  • FIG. 3 is a schematic diagram of the flow field in the air duct in FIG. 1.
  • first, second, etc. are for descriptive purposes only, and cannot be understood as indicating or implying their relative importance or implicitly indicating the number of technical features indicated.
  • the features defined with “first” and “second” may include at least one of the features either explicitly or implicitly.
  • the technical solutions between the various embodiments can be combined with each other, but they must be based on the ability of those skilled in the art to realize. When the combination of technical solutions contradicts or cannot be realized, it should be considered that the combination of such technical solutions does not exist , Nor within the scope of protection required by this application.
  • the present application proposes an air conditioner indoor unit 100 including a housing 10, the housing 10 includes a chassis assembly 11 and a face frame assembly 13, the chassis assembly 11 is connected to the face frame assembly 13 and surrounds to form an air duct, and the face frame assembly 13 is provided with a connection The air inlet 131 and the air outlet 133 of the air duct, the air wheel is provided with a wind wheel 17, and the evaporator 15 is surrounded on the outside of the wind wheel 17;
  • the evaporator 15 includes a rear evaporation section 155, which is disposed on the side close to the chassis assembly 11, that is, near the rear side of the housing 10, and the rear evaporation section 155 forms an included angle ⁇ in the vertical direction, and ⁇ is at least It is 25 ° and does not exceed 50 °.
  • the air conditioner indoor unit 100 in the embodiment of the present application is mainly a wall-mounted air conditioner indoor unit, and the wind wheel 17 may be a cross flow wind wheel 17.
  • the wall-mounted air conditioner indoor unit 100 has a use state when installation is completed. In this use state, the rear side of the cabinet 10 is mounted on a mounting carrier through a mounting plate, and the mounting carrier is usually a wall.
  • the direction perpendicular to the mounting surface is defined as the front-rear direction
  • the direction perpendicular to the front-rear direction in the same horizontal plane is defined as the left-right direction
  • the direction perpendicular to the horizontal plane is defined as the up-down direction.
  • the wall-mounted air conditioner indoor unit is The size in the left-right direction is the largest. It can be understood that when the wall-mounted air conditioner indoor unit 100 is in a non-use state, the front-back direction, the up-down direction, and the left-right direction are defined accordingly according to the use state.
  • the outside air is driven into the air duct from the air inlet 1311 under the drive of the wind wheel 17, and performs heat exchange in the evaporator 15 in the air duct, and then blows out through the wind wheel 17 and the air outlet 1313.
  • the position of the post-evaporation section 155 of the evaporator 15 is particularly important. The greater the angle ⁇ of the post-evaporation section 155 in the up and down direction, the larger the windward area of the post-evaporation section 155 and the higher the heat transfer efficiency; The smaller the angle ⁇ of the section 155 in the up-down direction, the higher the removal efficiency of the condensate formed on the evaporator 15.
  • the range of the angle ⁇ between the post-evaporation section 155 of the evaporator 15 and the up and down direction is limited to: ⁇ is at least 25 ° and not more than 50 °, and the specific value can be 25 °, 30 °, 40 ° or 50 °, or any value between 25 ° and 50 °, which can improve the heat exchange efficiency of the evaporator 15 and the reliability of drainage, and can effectively avoid the phenomenon of water blowing in the air conditioner.
  • is less than 25 °, the windward area at the rear evaporation section 155 is too small, and the heat transfer efficiency is too low; if the value of ⁇ is less than 50 °, the condensate generated on the rear evaporation section 155 is not easy to discharge, thus It makes bacteria grow on the evaporator, which is not conducive to the user's health.
  • the rear evaporation section 155 is close to the chassis assembly 11.
  • the rear evaporation section 155 of the evaporator 15 is disposed near the chassis assembly 11, so that the air heat exchange efficiency of the evaporator 15 near the chassis assembly 11 can be improved, and the condensed water generated by the evaporator 15 near the chassis assembly 11 can be efficiently removed.
  • the side of the rear evaporation section 155 near the air inlet 131 is inclined toward the direction away from the chassis assembly 11.
  • the post-evaporation section 155 has a good drainage effect, a large frontal area, and high heat exchange efficiency.
  • the chassis assembly 11 includes a chassis 111 and a rear volute 113.
  • One end of the rear volute 113 is connected to the chassis 111 at the air outlet 133 and the other end extends toward the area between the rear evaporation section 155 and the wind wheel 17, the rear volute
  • the outer wall surface of the tongue 113 close to the rear evaporation section 155 forms an angle ⁇ with the up-down direction, ⁇ is at least 25 ° and not more than 50 °.
  • the air enters the air duct from the air inlet 1311. There is a certain resistance during the flow through the evaporator 15.
  • the evaporator 15 is equivalent to a rectification of the air flow. After the air flows through the evaporator 15, the speed and direction have changed.
  • the air flowing through the evaporator 15 after the evaporation section 155 is not only affected by the position of the rear evaporation section 155 but also the rear scroll 113.
  • the angle ⁇ between the rear evaporation section 155 and the vertical direction and the rear scroll 113 are close to the rear
  • the value of the angle ⁇ formed between the outer wall surface of the evaporation section 155 and the up and down direction plays a decisive role in the angle and velocity of the airflow in the vicinity of the rear volute 113 when it first passes through the blades of the wind turbine 17, see FIG. 3,
  • the airflow In the area I near the rear volute 113, the airflow first flows through the area II of the blade 17 of the wind turbine, and the airflow flows through the area III of the blade 17 of the wind turbine for the second time.
  • the angle ⁇ between the post-evaporation section 155 and the up-down direction is limited to the range of 25 ° ⁇ 50 °, and the specific value can be 25 °, 30 °, 40 °, or 50 °, or 25 ° ⁇ 50 Any value between °.
  • the angle ⁇ between the outer wall surface of the rear volute 113 close to the evaporator 15 and the vertical direction needs to match the position of the rear evaporation section. If ⁇ is less than 25 ° or greater than 50 °, the heat transfer efficiency of the rear evaporation section will be reduced. The air flow resistance increases.
  • the angle ⁇ between the outer wall surface of the rear volute 113 close to the evaporator 15 and the up and down direction is limited to the range of 25 ° to 50 °, so that the layout angle of the rear volute 113 and the rear evaporation section 155 is matched, so that the flow through The resistance of the airflow in the rear evaporation section 155 is relatively small, and can better tend to the wind wheel 17.
  • the angle formed by the line from the center of the wind wheel 17 to the closest point of the rear volute 113 and the line from the center of the wind wheel 17 to the free end of the rear volute 113 is ⁇ , ⁇ is at least 10 ° and not more than 30 °.
  • the point where the rear volute 113 is closest to the wind wheel 17 is defined as point A
  • the end point of the free end of the rear volute 113 is defined as point B
  • the center of the wind wheel 17 is defined as point O
  • ⁇ AOB is ⁇ .
  • plays a leading role in the stability of the airflow entering the wind wheel 17 near the rear volute 113.
  • is limited to 10 ° ⁇ 30 °, specifically, it can be any value between 10 °, 20 °, 30 °, or 10 ° ⁇ 30 °. Within this value range, the posterior snail The airflow entering the wind wheel 17 near the tongue 113 is more stable, and the wind output effect is better. If the value of ⁇ is too large or too small, the efficiency of the wind wheel will be reduced.
  • the outer diameter of the wind wheel 17 is defined as d, and the minimum distance between the wind wheel 17 and the rear volute 113 is ⁇ , and ⁇ is at least 0.035d and does not exceed 0.065d.
  • the distance from point A to the wind wheel 17 is ⁇ , and the value of ⁇ may be 0.035d, 0.04d, 0.045d, 0.05d, 0.06d, 0.065d.
  • the minimum distance between the rear volute 113 and the wind wheel 17 is ⁇ , and ⁇ within this value range can ensure the flow efficiency of the airflow near the rear volute 113 when it first passes through the blades of the wind wheel 17, The size and intensity of the vortex zone are reduced to ensure high efficiency and low noise when the airflow passes through the wind wheel 17.
  • the angle formed by the line connecting the center of the wind wheel 17 to the closest point of the rear volute 113 and the horizontal plane is ⁇ , and ⁇ is at least 20 ° and not more than 55 °.
  • the intersection between the horizontal plane passing through the center point O of the wind wheel 17 and the chassis 111 is the point D
  • ⁇ DOA is ⁇
  • the values of ⁇ are 20 °, 30 °, 40 °, 50 °, 55 °.
  • ⁇ and the value of ⁇ together ensure the circulation efficiency of the airflow in the vicinity of the rear volute 113 when it first passes through the blades of the wind turbine 17, and further reduce the size and strength of the vortex zone, thereby ensuring the cross-flow air duct High efficiency and low noise.
  • is less than 20 ° or greater than 55 °, it will cause adverse effects such as increased vortex area and increased strength.
  • is greater than ⁇ .
  • the angle ⁇ between the rear evaporation section 155 and the up and down direction can improve the angle and speed of the airflow passing through the blades for the first time in the area near the rear volute 113, improve the efficiency of the airflow between the blades, and improve the wind
  • the working efficiency of the blades of the wheel 17 on the airflow reduces the airflow loss, improves the efficiency of the air duct and reduces the noise.
  • the evaporator 15 further includes a middle evaporation section 153 and a front evaporation section 151, one ends of the rear evaporation section 155 and the middle evaporation section 153 are connected above the wind wheel 17, and the rear evaporation section 155 faces away One end of the middle evaporation section 153 extends toward the rear side of the wind wheel 17, and one end of the middle evaporation section 153 facing away from the rear evaporation section 155 extends toward the front side of the wind wheel 17, and the front evaporation section 151 connects to the middle evaporation section 153 facing away One end of the evaporation section 155 is located on the front side of the wind wheel 17.
  • the evaporator 15 composed of the front evaporation section 151, the middle evaporation section 153, and the rear evaporation section 155 surrounds the wind wheel 17, and the front evaporation section 151 is arranged in the up-down direction to make the front evaporation section 151 drainage efficiency
  • the high and middle evaporation section 153 is located between the rear evaporation section 155 and the front evaporation section 151 in the front-rear direction, and forms an angle with the vertical direction, so that the overall heat exchange efficiency of the evaporator 15 is high and the drainage efficiency is good.
  • the face frame assembly 13 includes a face frame 131 and a front panel 133, the front frame 131 covers the chassis assembly 11, and an air inlet 1311 is opened above the evaporator 15, the front panel 133 is connected to the face frame 131, and is located in the housing
  • the front side of 10 is opposite to the chassis assembly 11.
  • an electric auxiliary heat is also provided between the evaporator 15 and the wind wheel 17. During the heating process of the air conditioner using the air conditioner indoor unit 100, the electric auxiliary heat is turned on, which can further improve the air conditioner Thermal efficiency.
  • the present application also proposes an air conditioner including an outdoor air conditioner and an indoor air conditioner 100.
  • the specific structure of the indoor air conditioner 100 refers to the above embodiments. Since the air conditioner adopts all technical solutions of all the above embodiments, Therefore, it has at least all the effects brought by the technical solutions of the above embodiments, which will not be repeated here.

Abstract

一种空调室内机和空调器,其中,空调室内机包括壳体(10),所述壳体的后侧于安装完成后朝向安装载体,所述壳体开设有进风口(131)和出风口(133),且形成有连通所述进风口(131)和出风口(133)的风道,所述风道内设有风轮(17),以及围设于所述风轮(17)外侧的蒸发器(15);所述蒸发器(15)包括后蒸发段(155),所述后蒸发段(155)靠近所述壳体(10)的后侧,所述后蒸发段(155)与上下方向形成夹角γ,25°≤γ≤50°。该空调室内机的蒸发器换热效率高,且排水性能好。

Description

空调室内机和空调器
相关申请
本申请要求2018年11月19日申请的,申请号为201811380196.6,名称为“空调室内机和空调器”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及空调技术领域,特别涉及一种空调室内机和空调器。
背景技术
空调室内机的风道中设置有风轮以及蒸发器,在风轮的驱动下外界空气进入风道内部,并与蒸发器进行热交换,接着将经热交换处理过的空气送出至室内环境中,以改善室内空气的温度。在空调室内机运行制冷的过程中,蒸发器上往往会产生冷凝水,现有的空调室内机中,由于设计上存在不足,容易导致蒸发器上形成的冷凝水排除不顺畅,还有可能导致蒸发器冷凝水滴入贯流风轮或者风道内部,被吹出出风口。
申请内容
本申请的主要目的是提供一种空调室内机,旨在使得空调室内机的蒸发器换热效率高,且排水性能好。
为实现上述目的,本申请提出的空调室内机,所述空调室内机包括壳体,所述壳体包括底盘组件和面框组件,所述底盘组件连接所述面框组件并围合形成风道,所述面框组件开设有连通所述风道的进风口和出风口,所述风道内设有风轮,以及围设于所述风轮外侧的蒸发器;
所述蒸发器包括后蒸发段,所述后蒸发段设置在靠近所述底盘组件的一侧,所述后蒸发段于上下方向形成夹角γ,所述夹角γ至少是25°且不超过50°。
可选地,所述夹角γ为25°、30°、40°或50°。
可选地,所述后蒸发段靠近所述进风口的一侧朝向远离所述底盘组件方向倾斜设置。
可选地,所述底盘组件包括底盘和后蜗舌,所述后蜗舌一端于所述出风口处连接所述底盘并另一端朝向所述后蒸发段和风轮之间的区域延伸。
可选地,所述后蜗舌靠近所述后蒸发段的外壁面与上下方向形成夹角θ,所述夹角θ至少是25°且不超过50°。
可选地,所述夹角θ为25°、30°、40°或50°。
可选地,在所述空调室内机的横截面上,所述风轮的中心至所述后蜗舌最近点的连线与所述风轮的中心至所述后蜗舌的自由端的连线形成的夹角为β,β至少是10°且不超过30°。
可选地,所述夹角β为10°、20°或30°。
可选地,定义所述风轮的外径为d,所述风轮与所述后蜗舌的最小间距为δ,δ至少是0.035d,且不超过0.065d。
可选地,所述δ值为0.035d、0.04d、0.045d、0.05d、0.06d或0.065d。
可选地,所述风轮的中心至所述后蜗舌最近点的连线与水平面所形成的夹角为α,α至少是20°,且不超过55°。
可选地,所述夹角α为20°、30°、40°、50°或55°。
可选地,所述风轮的中心至所述后蜗舌最近点的连线与水平面所形成的夹角为α,所述风轮的中心至所述后蜗舌最近点的连线与所述风轮的中心至所述后蜗舌的自由端的连线形成的夹角为β,α大于β。
可选地,所述蒸发器还包括中蒸发段和前蒸发段,所述后蒸发段和所述中蒸发段的一端于所述风轮的上方相连接,所述后蒸发段背离所述中蒸发段的一端朝向所述风轮的后侧方向延伸,所述中蒸发段背离所述后蒸发段的一端朝向所述风轮的前侧方向延伸,所述前蒸发段连接所述中蒸发段背离所述后蒸发段的一端,并位于所述风轮的前侧。
可选地,所述前蒸发段沿上下方向设置。
可选地,所述中蒸发段在前后方向上位于所述后蒸发段与所述前蒸发段之间,并与上下方向形成夹角。
可选地,所述面框组件包括面框和连接所述面框的前面板,所述前面板罩盖于所述底盘组件,并于所述蒸发器的上方开设所述进风口,所述前面板与所述底盘相对设置。
可选地,所述蒸发器与所述风轮之间还设有电辅热。
本申请还提出一种空调器,包括空调室外机和所述的空调室内机;
所述空调室内机包括壳体,所述壳体的后侧于安装完成后朝向安装载体,所述壳体开设有进风口和出风口,且形成有连通所述进风口和出风口的风道,所述风道内设有风轮,以及围设于所述风轮外侧的蒸发器;
所述蒸发器包括后蒸发段,所述后蒸发段设置在靠近所述底盘组件的一侧,所述后蒸发段于上下方向形成夹角γ,γ至少是25°且不超过50°。
本申请技术方案中,在风轮的驱动下外界空气由进风口进入风道内,并于风道内的蒸发器进行热交换,接着经过经风轮和出风口吹出,该过程中蒸发器的后蒸发段设置的位置尤为重要,该后蒸发段于上下方向的夹角γ越大,则后蒸发段的迎风面积越大,换热效率越高;另外,后蒸发段于上下方向的夹角γ越小,蒸发器上形成的冷凝水的排除效率越高。因此,将蒸发器的后蒸发段与上下方向的夹角γ取值范围限定于:γ至少是25°且不超过50°,从而能提高蒸发器的换热效率以及排水的可靠性,能有效避免空调器产生吹水现象。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请空调室内机一实施例的截面示意图;
图2为图1中A处的局部放大图;
图3为图1中风道内的流场示意图。
附图标号说明:
标号 名称 标号 名称
100 空调室内机 1311 进风口
10 壳体 1313 出风口
11 底盘组件 133 前面板
111 底盘 15 蒸发器
113 后蜗舌 151 前蒸发段
13 面框组件 153 中蒸发段
14 电辅热 155 后蒸发段
131 面框 17 风轮
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种空调室内机100,包括壳体10,壳体10包括底盘组件11和面框组件13,底盘组件11连接面框组件13并围合形成风道,面框组件13开设有连通风道的进风口131和出风口133,风道内设有风轮17,以及围设于风轮17外侧的蒸发器15;
蒸发器15包括后蒸发段155,后蒸发段155设置在靠近所述底盘组件11的一侧,即设置在靠近壳体10的后侧,后蒸发段155于上下方向形成夹角γ,γ至少是25°且不超过50°。
本申请实施例中的空调室内机100主要为壁挂式空调室内机,风轮17可选为贯流风轮17。该壁挂式空调室内机100于安装完成时即具有使用状态,该使用状态下,机壳10的后侧通过安装板安装于安装载体,该安装载体通常为墙壁。定义垂直于该安装表面的方向为前后方向,并定义在同一水平面内与该前后方向相垂直的方向为左右方向,垂直于水平面的方向定义为上下方向,通常情况下,壁挂式空调室内机于该左右方向上的尺寸最大。可以理解地,在该壁挂式空调室内机100具有非使用状态时,前后方向、上下方向以及左右方向对其进行的限定均根据使用状态进行相应的调整。
本申请技术方案中,在风轮17的驱动下外界空气由进风口1311进入风道内,并于风道内的蒸发器15进行热交换,接着经过经风轮17和出风口1313吹出,该过程中蒸发器15的后蒸发段155设置的位置尤为重要,该后蒸发段155于上下方向的夹角γ越大,则后蒸发段155的迎风面积越大,换热效率越高;另外,后蒸发段155于上下方向的夹角γ越小,蒸发器15上形成的冷凝水的排除效率越高。因此,将蒸发器15的后蒸发段155与上下方向的夹角γ取值范围限定于:γ至少是25°且不超过50°,具体可以取值为25°、30°、40°或50°,或者25°~50°之间的任意值,从而能提高蒸发器15的换热效率以及排水的可靠性,能有效避免空调器产生吹水现象。
若γ的取值小于25°时,该后蒸发段155处迎风面积过小,换热效率太低;若γ的取值小于50°时,后蒸发段155上产生的冷凝水不易排出,从而使得蒸发器上细菌滋生,不利于使用者的身体健康。
进一步参见图1,后蒸发段155靠近底盘组件11。
蒸发器15的后蒸发段155靠近底盘组件11设置,从而能提高蒸发器15靠近底盘组件11处的空气换热效率,且使得蒸发器15靠近底盘组件11处产生的冷凝水排除效率高。
本申请实施例中,后蒸发段155靠近进风口131的一侧朝向远离底盘组件11方向倾斜设置。该后蒸发段155在排水效果好的同时迎风面积大、换热效率高。
本申请实施例中,底盘组件11包括底盘111和后蜗舌113,后蜗舌113一端于出风口133处连接底盘111并且另一端朝向后蒸发段155和风轮17之间的区域延伸,后蜗舌113靠近后蒸发段155的外壁面与上下方向形成夹角θ,θ至少是25°且不超过50°。
空气由进风口1311进入风道内,在流经蒸发器15的过程中存在一定的阻力,蒸发器15相当于对气流做了一次整流,空气流经蒸发器15后速度和方向都发生了改变,而流经蒸发器15后蒸发段155的空气不仅受到后蒸发段155位置的影响还受到后蜗舌113的影响,因此,后蒸发段155与上下方向的夹角γ以及后蜗舌113靠近后蒸发段155的外壁面与上下方向形成夹角θ的取值,对后蜗舌113附近区域气流第一次流经风轮17叶片时的角度和速度起到决定性的作用,参见附图3,后蜗舌113附近区域Ⅰ,气流第一次流经风轮17叶片的区域Ⅱ,气流第二次流经风轮17叶片的区域Ⅲ。该实施例中,后蒸发段155与上下方向的夹角γ限定在25°~50°的范围之内,具体可以取值为25°、30°、40°或50°,或者25°~50°之间的任意值。后蜗舌113靠近蒸发器15的外壁面与上下方向的夹角θ需要与后蒸发段的位置相匹配,若θ小于25°或大于50°均会使得后蒸发段的换热效率降低,对空气流动阻力增大。将后蜗舌113靠近蒸发器15的外壁面与上下方向的夹角θ限定在25°~50°的范围之内,使后蜗舌113与后蒸发段155布局角度相匹配,从而使得流经后蒸发段155的气流受到的阻力较小,并能更好的趋向于风轮17。
结合图2,在空调室内机100的横截面上,风轮17的中心至后蜗舌113最近点的连线与风轮17的中心至后蜗舌113的自由端的连线形成的夹角为β,β至少是10°且不超过30°。
具体地,定义后蜗舌113距离风轮17最近的点为A点,定义后蜗舌113的自由端的端点为B点,定义风轮17的中心为O点,∠AOB为β。
经实验数据表明,β的取值大小对后蜗舌113附近进入风轮17气流的稳定性起主导作用。该实施例中,将β限定在10°~30°之间,具体可以为10°、20°、30°,或者10°~30°之间的任意取值,该取值范围内,后蜗舌113附近进入风轮17的气流更加稳定,出风效果更好。该β值取值过大或过小,均会造成风轮出风效率降低。
定义风轮17的外径为d,风轮17与后蜗舌113的最小间距为δ,δ至少是0.035d,且不超过0.065d。参见图2,A点至风轮17的距离为δ,δ值可以为0.035d、0.04d、0.045d、0.05d、0.06d、0.065d。当δ值超过0.065d时,因风轮17与后蜗舌113之间的间隙过大会使得气流泄露严重,导致风量衰减。当δ值小于0.035d时,因风轮15与后蜗舌113之间的间隙过小而导致噪音值偏高,严重时会产生啸叫声。本实施例中,后蜗舌113距风轮17的最小距离为δ,δ在该取值范围内,能够确保后蜗舌113附近区域气流第一次流经风轮17叶片时的流通效率,减小涡流区的大小和强度,从而确保气流经过风轮17时的高效率和低噪声。
本申请实施例中,风轮17的中心至后蜗舌113最近点的连线与水平面所形成的夹角为α,α至少是20°,且不超过55°。在上述定义的横截面上,定义过风轮17中心点O点的水平面与底盘111的交点为D点,∠DOA为α,α的取值为20°、30°、40°、50°、55°。该δ的取值以及α的取值,共同确保后蜗舌113附近区域气流第一次流经风轮17叶片时的流通效率,更进一步减小涡流区的大小和强度,从而确保贯流风道的高效率和低噪声。α小于20°或大于55°时,会造成涡流区增大,强度升高等不良影响。
进一步地,α大于β。参见图2,该实施例中,定义A点和D点之间的一点C点,∠AOB=∠AOC,定义B点至C点部分为后蜗舌113部分。
本申请实施例中,后蒸发段155与上下方向的夹角γ,能改善后蜗舌113附近区域气流第一次穿越叶片时的角度和速度,提升气流在叶片间的流通效率,从而改善风轮17叶片对气流的做功效率,降低气流损失,提升风道效率,降低噪声。
参见图1,本申请实施例中,蒸发器15还包括中蒸发段153和前蒸发段151,后蒸发段155和中蒸发段153的一端于风轮17的上方相连接,后蒸发段155背离所述中蒸发段153的一端朝向风轮17的后侧方向延伸,中蒸发段153背离后蒸发段155的一端朝向风轮17的前侧方向延伸,前蒸发段151连接中蒸发段153背离后蒸发段155的一端,并位于风轮17的前侧。
该实施例中,前蒸发段151、中蒸发段153和后蒸发段155共同组成的蒸发器15围设于风轮17,前蒸发段151沿上下方向设置,以使得该前蒸发段151排水效率高,中蒸发段153在前后方向上位于后蒸发段155与前蒸发段151之间,并与上下方向形成夹角,使得蒸发器15整体换热效率高,且排水效率好。
进一步地,面框组件13包括面框131和前面板133,前面框131罩盖与底盘组件11,并于蒸发器15的上方开设进风口1311,前面板133连接面框131,并位于壳体10的前侧,与底盘组件11相对设置。该实施例中,蒸发器15与风轮17之间还设有电辅热,在应用该空调室内机100的空调器进行制热过程中,将电辅热开启,能够进一步提高空调器的制热效率。
本申请还提出一种空调器,该空调器包括空调室外机和空调室内机100,该空调室内机100的具体结构参照上述实施例,由于本空调器采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有效果,在此不再一一赘述。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (19)

  1. 一种空调室内机,其中,包括壳体,所述壳体包括底盘组件和面框组件,所述底盘组件连接所述面框组件并围合形成风道,所述面框组件开设有连通所述风道的进风口和出风口,所述风道内设有风轮,以及围设于所述风轮外侧的蒸发器;
    所述蒸发器包括后蒸发段,所述后蒸发段设置在靠近所述底盘组件的一侧,所述后蒸发段于上下方向形成夹角γ,所述夹角γ至少是25°且不超过50°。
  2. 如权利要求1所述的空调室内机,其中,所述夹角γ为25°、30°、40°或50°。
  3. 如权利要求1所述的空调室内机,其中,所述后蒸发段靠近所述进风口的一侧朝向远离所述底盘组件方向倾斜设置。
  4. 如权利要求1所述的空调室内机,其中,所述底盘组件包括底盘和后蜗舌,所述后蜗舌一端于所述出风口处连接所述底盘并另一端朝向所述后蒸发段和风轮之间的区域延伸。
  5. 如权利要求4所述的空调室内机,其中,所述后蜗舌靠近所述后蒸发段的外壁面与上下方向形成夹角θ,所述夹角θ至少是25°且不超过50°。
  6. 如权利要求5所述的空调室内机,其中,所述夹角θ为25°、30°、40°或50°。
  7. 如权利要求4所述的空调室内机,其中,在所述空调室内机的横截面上,所述风轮的中心至所述后蜗舌最近点的连线与所述风轮的中心至所述后蜗舌的自由端的连线形成的夹角为β,β至少是10°且不超过30°。
  8. 如权利要求7所述的空调室内机,其中,所述夹角β为10°、20°或30°。
  9. 如权利要求4所述的空调室内机,其中,定义所述风轮的外径为d,所述风轮与所述后蜗舌的最小间距为δ,δ至少是0.035d,且不超过0.065d。
  10. 如权利要求9所述的空调室内机,其中,所述δ值为0.035d、0.04d、0.045d、0.05d、0.06d或0.065d。
  11. 如权利要求4所述的空调室内机,其中,所述风轮的中心至所述后蜗舌最近点的连线与水平面所形成的夹角为α,α至少是20°,且不超过55°。
  12. 如权利要求11所述的空调室内机,其中,所述夹角α为20°、30°、40°、50°或55°。
  13. 如权利要求4所述的空调室内机,其中,所述风轮的中心至所述后蜗舌最近点的连线与水平面所形成的夹角为α,所述风轮的中心至所述后蜗舌最近点的连线与所述风轮的中心至所述后蜗舌的自由端的连线形成的夹角为β,α大于β。
  14. 如权利要求1至13中任意一项所述的空调室内机,其中,所述蒸发器还包括中蒸发段和前蒸发段,所述后蒸发段和所述中蒸发段的一端于所述风轮的上方相连接,所述后蒸发段背离所述中蒸发段的一端朝向所述风轮的后侧方向延伸,所述中蒸发段背离所述后蒸发段的一端朝向所述风轮的前侧方向延伸,所述前蒸发段连接所述中蒸发段背离所述后蒸发段的一端,并位于所述风轮的前侧。
  15. 如权利要求14所述的空调室内机,其中,所述前蒸发段沿上下方向设置。
  16. 如权利要求14所述的空调室内机,其中,所述中蒸发段在前后方向上位于所述后蒸发段与所述前蒸发段之间,并与上下方向形成夹角。
  17. 如权利要求1至13中任意一项所述的空调室内机,其中,所述面框组件包括面框和连接所述面框的前面板,所述前面板罩盖于所述底盘组件,并于所述蒸发器的上方开设所述进风口,所述前面板与所述底盘相对设置。
  18. 如权利要求1至13中任意一项所述的空调室内机,其中,所述蒸发器与所述风轮之间还设有电辅热。
  19. 一种空调器,其中,包括空调室外机和如权利要求1至18中任意一项所述的空调室内机。
PCT/CN2019/109147 2018-11-19 2019-09-29 空调室内机和空调器 WO2020103580A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811380196.6 2018-11-19
CN201811380196.6A CN109307322B (zh) 2018-11-19 2018-11-19 空调室内机和空调器

Publications (1)

Publication Number Publication Date
WO2020103580A1 true WO2020103580A1 (zh) 2020-05-28

Family

ID=65222126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109147 WO2020103580A1 (zh) 2018-11-19 2019-09-29 空调室内机和空调器

Country Status (2)

Country Link
CN (1) CN109307322B (zh)
WO (1) WO2020103580A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113997754A (zh) * 2021-11-29 2022-02-01 美的集团武汉暖通设备有限公司 一种车载空调器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307322B (zh) * 2018-11-19 2023-04-25 广东美的制冷设备有限公司 空调室内机和空调器
CN111271774A (zh) * 2019-12-18 2020-06-12 宁波奥克斯电气股份有限公司 一种风道底壳及空调器
CN114198327A (zh) * 2021-12-09 2022-03-18 珠海格力电器股份有限公司 风道结构及室内机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241836A (ja) * 1998-02-25 1999-09-07 Sanyo Electric Co Ltd 空気調和機
CN206094309U (zh) * 2016-09-20 2017-04-12 Tcl空调器(中山)有限公司 空调器室内机以及空调器
CN206094308U (zh) * 2016-09-20 2017-04-12 Tcl空调器(中山)有限公司 空调器室内机及空调器
CN208075292U (zh) * 2018-04-17 2018-11-09 奥克斯空调股份有限公司 一种后蒸发器安装结构及其空调器
CN208075259U (zh) * 2018-04-17 2018-11-09 奥克斯空调股份有限公司 一种多折蒸发器安装结构及其空调器
CN109307322A (zh) * 2018-11-19 2019-02-05 广东美的制冷设备有限公司 空调室内机和空调器
CN209042591U (zh) * 2018-11-19 2019-06-28 广东美的制冷设备有限公司 空调室内机和空调器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103851691A (zh) * 2012-11-28 2014-06-11 珠海格力电器股份有限公司 空调室内机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241836A (ja) * 1998-02-25 1999-09-07 Sanyo Electric Co Ltd 空気調和機
CN206094309U (zh) * 2016-09-20 2017-04-12 Tcl空调器(中山)有限公司 空调器室内机以及空调器
CN206094308U (zh) * 2016-09-20 2017-04-12 Tcl空调器(中山)有限公司 空调器室内机及空调器
CN208075292U (zh) * 2018-04-17 2018-11-09 奥克斯空调股份有限公司 一种后蒸发器安装结构及其空调器
CN208075259U (zh) * 2018-04-17 2018-11-09 奥克斯空调股份有限公司 一种多折蒸发器安装结构及其空调器
CN109307322A (zh) * 2018-11-19 2019-02-05 广东美的制冷设备有限公司 空调室内机和空调器
CN209042591U (zh) * 2018-11-19 2019-06-28 广东美的制冷设备有限公司 空调室内机和空调器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113997754A (zh) * 2021-11-29 2022-02-01 美的集团武汉暖通设备有限公司 一种车载空调器

Also Published As

Publication number Publication date
CN109307322A (zh) 2019-02-05
CN109307322B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2020103580A1 (zh) 空调室内机和空调器
WO2015058421A1 (zh) 压缩式制冷机的冷凝器散热增强装置及其控制方法
WO2018018877A1 (zh) 一种吊顶式空调室内机
WO2018129797A1 (zh) 一种一体式换新风空调器
WO2020098406A1 (zh) 空调室内机和空调器
WO2020103579A1 (zh) 空调室内机和空调器
WO2018103255A1 (zh) 空调室内机换热器和空调室内机
WO2019192086A1 (zh) 整体式空调器
WO2018036135A1 (zh) 正负离子发生器和空调器
CN110440340A (zh) 风管机及空调
CN209358427U (zh) 变频器和空调器
CN207703074U (zh) 冷却塔变径加压器
CN216016108U (zh) 一种散热效果好的陶瓷设备控制柜
US20220260260A1 (en) Integral air conditioner
CN110176331A (zh) 用于快速冷却漆包扁线的风道结构
CN210273758U (zh) 变频一体机散热机构
WO2019033701A1 (zh) 空气处理模块及空调器
CN204362482U (zh) 散热装置及电气柜
WO2018176553A1 (zh) 空调室内机和空调器
WO2018058744A1 (zh) 空调挂机
CN110440338A (zh) 风管机及空调
CN205688167U (zh) 一种工业缝纫机的电控散热结构
CN116997168B (zh) 一种变流器通风结构及其工作方法
CN210323738U (zh) 一种高散热远程诊疗仪
CN213280439U (zh) 一种内置密闭热通道的it机柜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/10/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19887068

Country of ref document: EP

Kind code of ref document: A1