WO2020103414A1 - 一种煤储层可压裂性评价方法 - Google Patents

一种煤储层可压裂性评价方法

Info

Publication number
WO2020103414A1
WO2020103414A1 PCT/CN2019/087895 CN2019087895W WO2020103414A1 WO 2020103414 A1 WO2020103414 A1 WO 2020103414A1 CN 2019087895 W CN2019087895 W CN 2019087895W WO 2020103414 A1 WO2020103414 A1 WO 2020103414A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
evaluated
reservoir
normalized
fracturability
Prior art date
Application number
PCT/CN2019/087895
Other languages
English (en)
French (fr)
Inventor
吴财芳
蒋秀明
王博
房孝杰
张二超
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to ZA2020/00093A priority Critical patent/ZA202000093B/en
Publication of WO2020103414A1 publication Critical patent/WO2020103414A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/006Measuring wall stresses in the borehole

Definitions

  • the invention relates to the technical field of coal bed methane development, in particular to a method for evaluating the fracturability of coal reservoirs.
  • the evaluation methods mainly focus on the optimization of coal reservoir gas resource factors and permeability and other physical parameters of coal reservoirs. Evaluate the pros and cons of coal reservoir fracturability. This not only causes blind zones in coal reservoir gas selection areas and well placement, but also reduces the credibility of the evaluation results.
  • the requirements for fracturing technology are also very demanding.
  • the present invention provides a method for evaluating the fracturability of coal reservoirs.
  • the technical scheme adopted by the present invention is: a method for evaluating the fracturability of coal reservoirs, including the following steps: Step 1: Obtaining the coal reservoir brittleness index BI to be evaluated;
  • Step 2 Determine the fracture toughness K C of coal reservoir under confining pressure
  • Step 3 Obtain the coal seam thickness E h of the coal seam to be evaluated
  • Step 4 Find the difference between the elastic modulus of the coal seam and surrounding rock E k ';
  • Step 5 Find the net pressure coefficient ⁇ n of the coal seam to be evaluated
  • Step 6 Calculate the moisture content M ad of coal rock
  • Step 7 Calculate the fracturability evaluation score F rac of coal reservoir
  • Step 8 Classify the fracturability of the coal seam.
  • the elastic modulus and Poisson's ratio of the coal reservoir are obtained, and the elastic modulus and Poisson's ratio are normalized to obtain the coal reservoir brittleness index BI to be evaluated:
  • E BI ' is the normalized elastic modulus of the coal seam to be evaluated, E BImax and E BImin are the maximum and minimum elastic modulus of the coal reservoir, respectively, in GPa;
  • step 2.1 the compressive strength ⁇ c of the coal reservoir is obtained
  • V sh is the mud content of coal reservoir
  • V sh (GR-GR min ) / (GR max -GR min ) (5)
  • E Kc is the dynamic elastic modulus of coal reservoir
  • Step 2.2 then obtain the uniaxial tensile strength S t of the coal reservoir
  • V sh is the mud content of the coal seam to be evaluated; in formula (5), GR is the measured value of the gamma log of the coal seam to be evaluated, the unit is API, and GR min is the measured sandstone thickness of the interval Natural gamma value, unit is API, GR max is the measured natural gamma value of the mudstone layer in the interval, unit is API; (6) In the formula, E Kc is the dynamic elastic modulus of the coal layer to be evaluated, the unit is GPa , V p is the longitudinal wave velocity of the coal seam to be evaluated, unit is km / s, v s is the transverse wave velocity of the coal seam to be evaluated, unit is km / s; ⁇ is the rock density, unit is g / cm 3 ; (7) , A is a constant;
  • Step 2.3 the fracture toughness K C of the rock under confining pressure
  • the confining pressure pw in (8) is replaced by the minimum horizontal principal stress
  • Step 2.4 Normalize and normalize the fracture toughness of the coal seam to be evaluated:
  • Kc ' (Kc ij -Kc jmin ) / (Kc jmax- Kc jmin ) (9)
  • Kc ' is the normalized fracture toughness
  • K cij is the fracture toughness of the coal seam to be evaluated
  • K cjmin is the minimum fracture toughness of all coal seams to be evaluated
  • K cjmax is the maximum fracture toughness of all coal seams to be evaluated
  • Kc is the normalized and normalized fracture toughness
  • Kc ′ is the normalized fracture toughness
  • ⁇ Kc is the average fracture toughness of the coal seam to be evaluated
  • ⁇ Kc is the coal seam to be evaluated Standard deviation of fracture toughness after chemical treatment.
  • step 3 and step 3.1 the existing coal field borehole and coal reservoir gas parameter well data are used to calculate the thickness of the coal reservoir in the study area by using linear interpolation constraints of interpolation method.
  • E h unit m.
  • Step 3.2 normalize the thickness of the coal reservoir:
  • E h ' is the normalized coal reservoir thickness
  • ⁇ Eh is the average value of coal thickness to be evaluated
  • ⁇ Eh is the standard deviation of coal thickness to be evaluated.
  • step 4.1 the ratio of the elastic modulus of the surrounding rock to the coal reservoir E k is used to characterize the difference between the elastic modulus of the coal reservoir and the surrounding rock:
  • E c is the elastic modulus of the coal reservoir in GPa;
  • E t is the elastic modulus of the top plate in GPa;
  • E b is the elastic modulus of the bottom plate in GPa;
  • Step 4.2 normalize the difference in elastic modulus:
  • E k ' is the normalized elastic modulus difference
  • ⁇ Ek is the mean value of the coal seam elastic modulus difference to be evaluated
  • ⁇ Ek is the standard deviation of the coal seam elastic modulus difference to be evaluated.
  • step 5.1 the hydraulic horizontal fracturing method is used to obtain the minimum horizontal principal stress P c of the coal reservoir in MPa.
  • P f is the coal reservoir fracture pressure in MPa
  • P o is the coal reservoir pressure in MPa
  • T is the coal reservoir tensile strength in MPa.
  • Step 5.2 normalize the net pressure coefficient:
  • ⁇ n ′ is the normalized elastic modulus difference
  • ⁇ ⁇ n is the average value of the coal bed net pressure coefficient to be evaluated
  • ⁇ ⁇ n is the standard deviation of the coal bed net pressure coefficient to be evaluated.
  • step 6.1 through the analysis of the correlation between coal water content and logging parameters, the three most relevant parameters are selected for multiple regression analysis, based on which the coal rock moisture content is established Prediction equation:
  • M ad is the moisture content of coal seam to be evaluated, unit is%;
  • DEN is the density value of coal seam to be evaluated, unit is g / cm 3 ;
  • GR is the natural gamma value of coal seam to be evaluated, unit is API;
  • ⁇ s It is the apparent resistivity value of the coal seam to be evaluated, the unit is ⁇ ⁇ m.
  • Step 6.2 Normalize and normalize the moisture content of coal rock:
  • M ad is the moisture content of the normalized coal rock
  • M adij is the moisture content of the coal seam to be evaluated
  • M adjmin is the minimum value of the moisture content of all coal seams to be evaluated
  • M adjmax is the coal seam of all coal seams to be evaluated The maximum value of the moisture content.
  • M ad is the normalized and normalized coal rock moisture content
  • M ad ' is the normalized coal rock moisture content
  • ⁇ Mad is the average value of the coal rock moisture content after the coal seam to be evaluated is normalized
  • ⁇ Mad is the standard deviation of coal rock moisture content after the coal seam to be evaluated is normalized.
  • BI is the normalized brittleness index
  • K c is the normalized and normalized fracture toughness
  • E d ′ is the normalized coal reservoir thickness
  • E k ′ is the normalized surrounding rock Ratio of elastic modulus to coal reservoir
  • ⁇ n ' is the normalized coal reservoir net pressure coefficient
  • M ad is the normalized and normalized moisture content; according to the fracturability evaluation score of coal reservoir F rac Evaluate the fracturability of coal reservoirs.
  • the beneficial effect of the present invention is that the method utilizes the well test results in the study area, well logging experiment parameters, and indoor experimental data of coal samples. These experimental data are integrated and processed to select the coal reservoir brittleness index, fracture toughness, coal reservoir thickness, elastic modulus difference between coal reservoir and surrounding rock, net pressure coefficient, and moisture content. The parameters that have a significant impact on fracturability are weighted and assigned to the above parameters. Finally, the fracturability of the coal reservoir in the study area is evaluated and optimized.
  • the technical scheme adopted by the present invention is: a method for evaluating the fracturability of coal reservoirs, which includes the following steps:
  • Step 1 Obtain the coal reservoir brittleness index BI to be evaluated
  • Step 2 Determine the fracture toughness K C of coal reservoir under confining pressure
  • Step 3 Obtain the coal seam thickness E h of the coal seam to be evaluated
  • Step 4 Find the difference between the elastic modulus of the coal seam and surrounding rock E k ';
  • Step 5 Find the net pressure coefficient ⁇ n of the coal seam to be evaluated
  • Step 6 Calculate the moisture content M ad of coal rock
  • Step 7 Calculate the fracturability evaluation score F rac of coal reservoir
  • Step 8 Classify the fracturability of the coal seam.
  • step 1 the elastic modulus and Poisson's ratio of the coal reservoir are obtained, and the elastic modulus and Poisson's ratio are normalized to obtain the coal reservoir brittleness index BI to be evaluated:
  • E BI ' is the normalized elastic modulus of the coal seam to be evaluated
  • E BImax and E BImin are the maximum and minimum elastic modulus of the coal reservoir, respectively, in GPa
  • ⁇ BImax and ⁇ BImin are the maximum and minimum Poisson's ratio of the coal reservoir, respectively, dimensionless.
  • step 2.1 the compressive strength ⁇ c of the coal reservoir is obtained
  • V sh is the mud content of coal reservoir
  • V sh (GR-GR min ) / (GR max -GR min ) (5)
  • E Kc is the dynamic elastic modulus of coal reservoir
  • Step 2.2 then obtain the uniaxial tensile strength S t of the coal reservoir
  • V sh is the mud content of the coal seam to be evaluated; in formula (5), GR is the measured value of the gamma log of the coal seam to be evaluated, the unit is API, and GR min is the measured sandstone thickness Natural gamma value, unit is API, GR max is the measured natural gamma value of the mudstone layer in the interval, unit is API; (6)
  • E Kc is the dynamic elastic modulus of the coal layer to be evaluated, the unit is GPa
  • V p is the longitudinal wave velocity of the coal seam to be evaluated, unit is km / s, v s is the transverse wave velocity of the coal seam to be evaluated, unit is km / s; ⁇ is the rock density, unit is g / cm 3 ; (7) , A is a constant of 30.
  • Step 2.3 the fracture toughness K C of the rock under confining pressure
  • the confining pressure p w in (8) is replaced by the minimum horizontal principal stress.
  • Step 2.4 Normalize and normalize the fracture toughness of the coal seam to be evaluated:
  • Kc ' (Kc ij -Kc jmin ) / (Kc jmax- Kc jmin ) (9)
  • Kc ' is the normalized fracture toughness
  • K cij is the fracture toughness of the coal seam to be evaluated
  • K cjmin is the minimum fracture toughness of all coal seams to be evaluated
  • K cjmax is the maximum fracture toughness of all coal seams to be evaluated.
  • Kc is the normalized and normalized fracture toughness
  • Kc ′ is the normalized fracture toughness
  • ⁇ Kc is the average fracture toughness of the coal seam to be evaluated after normalization
  • ⁇ Kc is the coal seam to be evaluated Standard deviation of fracture toughness after chemical treatment.
  • step 3.1 using the existing coal field borehole and coal reservoir gas parameter well data, the interpolation method is used to linearly fit the constraint to calculate the thickness of the coal reservoir in the study area, the thickness of the coal reservoir is E h , Unit m.
  • Step 3.2 normalize the thickness of the coal reservoir:
  • E h ' is the normalized coal reservoir thickness
  • ⁇ Eh is the average value of coal thickness to be evaluated
  • ⁇ Eh is the standard deviation of coal thickness to be evaluated.
  • step 4.1 the difference between the elastic modulus of the surrounding rock and coal reservoir E k is used to characterize the difference between the elastic modulus of the coal reservoir and surrounding rock:
  • E c is the elastic modulus of the coal reservoir in GPa;
  • E t is the elastic modulus of the top plate in GPa;
  • E b is the elastic modulus of the bottom plate in GPa;
  • Step 4.2 normalize the difference in elastic modulus:
  • E k ' is the normalized elastic modulus difference
  • ⁇ Ek is the mean value of the coal seam elastic modulus difference to be evaluated
  • ⁇ Ek is the standard deviation of the coal seam elastic modulus difference to be evaluated.
  • step 5.1 the hydraulic fracturing method is used to obtain the minimum horizontal principal stress P c of the coal reservoir in MPa.
  • P f is the coal reservoir fracture pressure in MPa
  • P o is the coal reservoir pressure in MPa
  • T is the coal reservoir tensile strength in MPa.
  • Step 5.2 normalize the net pressure coefficient:
  • ⁇ n ′ is the normalized elastic modulus difference
  • ⁇ ⁇ n is the average value of the coal bed net pressure coefficient to be evaluated
  • ⁇ ⁇ n is the standard deviation of the coal bed net pressure coefficient to be evaluated.
  • step 6.1 through the analysis of the correlation between coal water content and logging parameters, the three most relevant parameters are selected for multivariate regression analysis, and the prediction equation of coal rock moisture content is established accordingly:
  • M ad is the moisture content of coal seam to be evaluated, unit is%;
  • DEN is the density value of coal seam to be evaluated, unit is g / cm 3 ;
  • GR is the natural gamma value of coal seam to be evaluated, unit is API;
  • ⁇ s It is the apparent resistivity value of coal seam to be evaluated, the unit is ⁇ ⁇ m
  • Step 6.2 Normalize and normalize the moisture content of coal rock:
  • M ad is the moisture content of the normalized coal rock
  • M adij is the moisture content of the coal seam to be evaluated
  • M adjmin is the minimum value of the moisture content of all coal seams to be evaluated
  • M adjmax is the coal seam of all coal seams to be evaluated The maximum value of the moisture content.
  • M ad is the normalized and normalized coal rock moisture content
  • M ad ' is the normalized coal rock moisture content
  • ⁇ Mad is the average value of the coal rock moisture content after the coal seam to be evaluated is normalized
  • ⁇ Mad is the standard deviation of coal rock moisture content after the coal seam to be evaluated is normalized.
  • step 7 above the evaluation score F rac of the fracturability of the coal reservoir is calculated:
  • BI is the normalized brittleness index
  • K c is the normalized and normalized fracture toughness
  • E d ′ is the normalized coal reservoir thickness
  • E k ′ is the normalized surrounding rock Ratio of elastic modulus to coal reservoir
  • ⁇ n ' is the normalized coal reservoir net pressure coefficient
  • M ad is the normalized and normalized moisture content; according to the fracturability evaluation score of coal reservoir F rac Evaluate the fracturability of coal reservoirs.
  • the embodiment of the present invention discloses a preferred embodiment, but it is not limited to this. Those of ordinary skill in the art can easily understand the spirit of the present invention and make different extensions and changes based on the above embodiments. But as long as it does not deviate from the spirit of the present invention, it is within the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种煤储层可压裂性评价方法,包含以下步骤:步骤1:求取待评价煤储层脆性指数BI;步骤2:求取在围压下煤储层断裂韧性K C;步骤3:求取待评价煤层的煤层厚度E h;步骤4:求取煤层与围岩弹性模量差异E k';步骤5:求取待评价煤层的净压力系数σ n;步骤6:计算煤岩的水分含量M ad;步骤7:计算煤储层可压裂性评价分数F rac;步骤8:将煤层的可压裂性进行分级。本发明的主要优点在于采用的参数容易获取,对于煤层压裂评价实施难度较低,同时综合考虑了影响煤层压裂的各方面影响因素,能够较为准确的评价可压性,这对于后期的煤层气开发具有重要的指示作用,可以很好地避免无效井位的施工,节约煤层气开发的成本。

Description

一种煤储层可压裂性评价方法 技术领域
本发明涉及煤层气开发技术领域,特别是涉及一种煤储层可压裂性评价方法。
背景技术
对于煤层气开采过程中重要的一个环节就是水力压裂煤储层,因此在进行煤储层气开发有利区和甜点区优选时,煤储层可压裂性是一项重要评价参数。
但目前在对于煤储层气的选区评价选定井位的过程中,评价方法主要集中在煤储层气的资源因素以及渗透率等煤储层的物性参数的优选,暂无合适方法或技术对煤储层可压裂性优劣进行评价。这不仅使得煤储层气选区及井位部署出现盲区,而且造成评价结果可信度降低。在工程技术施工的过程中,由于煤储层本身的物理性质的特殊性,对于压裂技术的要求也是十分苛刻的。
发明内容
为了克服上述现有技术的不足,本发明提供了一种煤储层可压裂性评价方法。
本发明所采用的技术方案是:一种煤储层可压裂性评价方法,包含以下步骤:步骤1:求取待评价煤储层脆性指数BI;
步骤2:求取在围压下煤储层断裂韧性K C
步骤3:求取待评价煤层的煤层厚度E h
步骤4:求取煤层与围岩弹性模量差异E k’;
步骤5:求取待评价煤层的净压力系数σ n
步骤6:计算煤岩的水分含量M ad
步骤7:计算煤储层可压裂性评价分数F rac
步骤8:将煤层的可压裂性进行分级。
进一步地,在上述步骤1中,获取煤储层弹性模量和泊松比,对弹性模量和泊松比进行归一化处理,求取待评价煤储层脆性指数BI:
Figure PCTCN2019087895-appb-000001
Figure PCTCN2019087895-appb-000002
Figure PCTCN2019087895-appb-000003
(1)式中,E BI’为待评价煤层归一化的弹性模量,E BImax和E BImin分别为煤储层最大和最小弹性模量,单位为GPa;(2)式中,μ BI’为煤储层归一化的泊松比,μ BImax和μ BImin分别为煤储层最大和最小泊松比,无量纲;
在上述步骤2中,步骤2.1,求取煤储层抗压强度σ c
σ c=(0.0045+0.0035V sh)E Kc (4)
其中,V sh是煤储层泥质含量,
V sh=(GR-GR min)/(GR max-GR min) (5)
E Kc是煤储层动态弹性模量,
Figure PCTCN2019087895-appb-000004
步骤2.2,再求取煤储层单轴抗拉强度S t
S t=σ c/A (7)
(4)式中,V sh为待评价煤层泥质含量;(5)式中,GR为待评价煤层的伽马测井实测值,单位为API,GR min为测得的井段砂岩层的自然伽马值,单位为API,GR max为测得的井段泥岩层的自然伽马值,单位为API;(6)式中,E Kc为待评价煤层的动态弹性模量,单位为GPa,v p为待评价煤层的纵波速度,单位为km/s,v s为待评价煤层的横波速度,单位为km/s;ρ为岩石密度,单位为g/cm 3;(7)式中,A为常数;
步骤2.3,在围压下岩石的断裂韧性K C
K C=0.0956p w+0.1383S t-0.0820 (8)
为简化计算,(8)式中围压p w用最小水平主应力代替;
步骤2.4,对待评价煤层的断裂韧性进行正向化、归一化处理:
对KC进行正向化、归一化:
Kc’=(Kc ij-Kc jmin)/(Kc jmax-Kc jmin) (9)
式中,Kc’是正向化的断裂韧性,K cij是待评价煤层的断裂韧性,K cjmin是所有评价煤层的断裂韧性最小值,K cjmax是所有待评价煤层断裂韧性的最大值;
Figure PCTCN2019087895-appb-000005
式中,Kc”为正向化、归一化的断裂韧性;Kc’为正向化的断裂韧性;μ Kc为待评价煤层正向化后断裂韧性的均值,σ Kc为待评价煤层正向化后断裂韧性的标准差。
进一步地,在上述步骤3中,步骤3.1,利用已有的煤田钻孔以及煤储层气参数井资料,采用内插法线性拟合约束计算研究区域的煤储层厚度,煤储层厚度为E h,单位m。
步骤3.2,对煤储层厚度进行归一化:
Figure PCTCN2019087895-appb-000006
式中,E h’为归一化的煤储层厚度,μ Eh为待评价煤层煤厚的均值,σ Eh为待评价煤层煤厚的标准差。
进一步地,在上述步骤4中,步骤4.1,利用围岩与煤储层弹性模量的比值E k表征煤储层与围岩的弹性模量差异:
Figure PCTCN2019087895-appb-000007
式中,E c为煤储层弹性模量,单位为GPa;E t为顶板弹性模量,单位为GPa;E b为底板弹性模量,单位为GPa;
步骤4.2,对弹性模量差异进行归一化:
Figure PCTCN2019087895-appb-000008
式中,E k’为归一化的弹性模量差异,μ Ek为待评价煤层弹性模量差异的均值,σ Ek为待评价煤层弹性模量差异标准差。
进一步地,在上述步骤5中,步骤5.1,采用水压致裂法获得煤储层最小水平主应力P c,单位为MPa。
煤储层最大水平主应力σ H
σ H=3P c-P f-P o+T (14)
式中,P f为煤储层破裂压力,单位为MPa;P o为煤储层压力,单位为MPa;T为煤储层抗拉强度,单位为MPa。
则煤储层净压力系数σ n
Figure PCTCN2019087895-appb-000009
步骤5.2,对净压力系数进行归一化:
Figure PCTCN2019087895-appb-000010
式中,σ n’为归一化的弹性模量差异,μ σn为待评价煤层净压力系数的均值,σ σn为待评价煤层净压力系数的标准差。
进一步地,在上述步骤6中,步骤6.1,通过对煤岩含水量与测井参数相关关系的分析,选择相关性最为密切的三个参数进行多元回归分析,依此建立了煤岩水分含量的预测方程:
M ad=1.4655-0.5827×DEN-2.1115×GR+0.2319×ρ s (17)
式中:M ad为待评价煤层煤岩水分含量,单位为%;DEN为待评价煤层密度值,单位为g/cm 3;GR为待评价煤层的自然伽马值,单位为API;ρ s为待评价煤层的视电阻率值,单位为Ω·m。
步骤6.2,对煤岩水分含量进行正向化、归一化:
M ad’=(M adij-M adjmin)/(M adjmax-M adjmin) (18)
式中,M ad’是正向化的煤岩水分含量,M adij是待评价煤层的煤岩水分含量,M adjmin是所有评价煤层的煤岩水分含量最小值,M adjmax是所有待评价煤层煤岩水分含量的最大值。
Figure PCTCN2019087895-appb-000011
式中,M ad”为正向化、归一化的煤岩水分含量;M ad’为正向化的煤岩水分含量;μ Mad为待评价煤层正向化后煤岩水分含量的均值,σ Mad为待评价煤层正向化后煤岩水分含量的标准差。
进一步地,在上述步骤6中,计算煤储层可压裂性评价分数F rac
F rac=0.3BI+0.25K c”+0.05E d’+0.15E K+0.2σ n’+0.05M ad” (20)
式中,BI为归一化的脆性指数;K c”为正向化、归一化的断裂韧性;E d’为归一化的煤储层厚度;E k’为归一化的围岩与煤储层弹性模量比值;σ n’为归一化煤储层净压力系数;M ad”为正向化、归一化的水分含量;根据煤储层可压裂性评价分数F rac评价煤储层可压裂性。
进一步地,在上述步骤8中,对可压裂性评价分数F rac进行分级:
Figure PCTCN2019087895-appb-000012
Figure PCTCN2019087895-appb-000013
与现有技术相比,本发明的有益效果是:方法利用了研究区域的试井结果、测井实验参数、煤样的室内实验数据。对这些实验数据整合处理,筛选出煤储层的脆性指数、断裂韧性、煤储层厚度、煤储层与围岩的弹性模量差异、净压力系数、水分含量六个对煤储层可压裂性具有重大影响的参数,并对上述参数进行权重赋值,最后对研究区域的煤储层可压裂性进行评价优选。
具体实施方式
为了加深对本发明的理解,下面结合附图和实施例对本发明进一步说明,该实施例仅用于解释本发明,并不对本发明的保护范围构成限定。
如图1所示,本发明所采用的技术方案是:一种煤储层可压裂性评价方法,包含以下步骤:
步骤1:求取待评价煤储层脆性指数BI;
步骤2:求取在围压下煤储层断裂韧性K C
步骤3:求取待评价煤层的煤层厚度E h
步骤4:求取煤层与围岩弹性模量差异E k’;
步骤5:求取待评价煤层的净压力系数σ n
步骤6:计算煤岩的水分含量M ad
步骤7:计算煤储层可压裂性评价分数F rac
步骤8:将煤层的可压裂性进行分级。
在上述步骤1中,获取煤储层弹性模量和泊松比,对弹性模量和泊松比进行归一化处理,求取待评价煤储层脆性指数BI:
Figure PCTCN2019087895-appb-000014
Figure PCTCN2019087895-appb-000015
Figure PCTCN2019087895-appb-000016
(1)式中,E BI’为待评价煤层归一化的弹性模量,E BImax和E BImin分别为煤储层最大和最小弹性模量,单位为GPa;(2)式中,μ BI’为煤储层归一化的泊松比,μ BImax和μ BImin分别为煤储层最大和最小泊松比,无量纲。
进一步地,在上述步骤2中,步骤2.1,求取煤储层抗压强度σ c
σ c=(0.0045+0.0035V sh)E Kc (4)
其中,V sh是煤储层泥质含量,
V sh=(GR-GR min)/(GR max-GR min) (5)
E Kc是煤储层动态弹性模量,
Figure PCTCN2019087895-appb-000017
步骤2.2,再求取煤储层单轴抗拉强度S t
S t=σ c/A (7)
(4)式中,V sh为待评价煤层泥质含量;(5)式中,GR为待评价煤层的伽马测井实测值,单位为API,GR min为测得的井段砂岩层的自然伽马值,单位为API,GR max为测得的井段泥岩层的自然伽马值,单位为API;(6)式中,E Kc为待评价煤层的动态弹性模量,单位为GPa,v p为待评价煤层的纵波速度,单位为km/s,v s为待评价煤层的横波速度,单位为km/s;ρ为岩石密度,单位为g/cm 3;(7)式中,A为常数30。
步骤2.3,在围压下岩石的断裂韧性K C
K C=0.0956p w+0.1383S t-0.0820 (8)
为简化计算,(8)式中围压p w用最小水平主应力代替。
步骤2.4,对待评价煤层的断裂韧性进行正向化、归一化处理:
对KC进行正向化、归一化:
Kc’=(Kc ij-Kc jmin)/(Kc jmax-Kc jmin) (9)
式中,Kc’是正向化的断裂韧性,K cij是待评价煤层的断裂韧性,K cjmin是所有评价煤层的断裂韧性最小值,K cjmax是所有待评价煤层断裂韧性的最大值。
Figure PCTCN2019087895-appb-000018
式中,Kc”为正向化、归一化的断裂韧性;Kc’为正向化的断裂韧性;μ Kc为待评价煤层正向化后断裂韧性的均值,σ Kc为待评价煤层正向化后断裂韧性的标准差。
在上述步骤3中,步骤3.1,利用已有的煤田钻孔以及煤储层气参数井资料,采用内插法线性拟合约束计算研究区域的煤储层厚度,煤储层厚度为E h,单位m。
步骤3.2,对煤储层厚度进行归一化:
Figure PCTCN2019087895-appb-000019
式中,E h’为归一化的煤储层厚度,μ Eh为待评价煤层煤厚的均值,σ Eh为待评价煤层煤厚的标准差。
在上述步骤4中,步骤4.1,利用围岩与煤储层弹性模量的比值E k表征煤储层与围岩的弹性模量差异:
Figure PCTCN2019087895-appb-000020
式中,E c为煤储层弹性模量,单位为GPa;E t为顶板弹性模量,单位为GPa;E b为底板弹性模量,单位为GPa;
步骤4.2,对弹性模量差异进行归一化:
Figure PCTCN2019087895-appb-000021
式中,E k’为归一化的弹性模量差异,μ Ek为待评价煤层弹性模量差异的均值,σ Ek为待评价煤层弹性模量差异标准差。
在上述步骤5中,步骤5.1,采用水压致裂法获得煤储层最小水平主应力P c,单位为MPa。
煤储层最大水平主应力σ H
σ H=3P c-P f-P o+T (14)
式中,P f为煤储层破裂压力,单位为MPa;P o为煤储层压力,单位为MPa;T为煤储层抗拉强度,单位为MPa。
则煤储层净压力系数σ n
Figure PCTCN2019087895-appb-000022
步骤5.2,对净压力系数进行归一化:
Figure PCTCN2019087895-appb-000023
式中,σ n’为归一化的弹性模量差异,μ σn为待评价煤层净压力系数的均值,σ σn为待评价煤层净压力系数的标准差。
在上述步骤6中,步骤6.1,通过对煤岩含水量与测井参数相关关系的分析,选择相关性最为密切的三个参数进行多元回归分析,依此建立了煤岩水分含量的预测方程:
M ad=1.4655-0.5827×DEN-2.1115×GR+0.2319×ρ s (17)
式中:M ad为待评价煤层煤岩水分含量,单位为%;DEN为待评价煤层密度值,单位为g/cm 3;GR为待评价煤层的自然伽马值,单位为API;ρ s为待评价煤层的视电阻率值,单位为Ω·m。
步骤6.2,对煤岩水分含量进行正向化、归一化:
M ad’=(M adij-M adjmin)/(M adjmax-M adjmin) (18)
式中,M ad’是正向化的煤岩水分含量,M adij是待评价煤层的煤岩水分含量,M adjmin是所有评价煤层的煤岩水分含量最小值,M adjmax是所有待评价煤层煤岩水分含量的最大值。
Figure PCTCN2019087895-appb-000024
式中,M ad”为正向化、归一化的煤岩水分含量;M ad’为正向化的煤岩水分含量;μ Mad为待评价煤层正向化后煤岩水分含量的均值,σ Mad为待评价煤层正向化后煤岩水分含量的标准差。
在上述步骤7中,计算煤储层可压裂性评价分数F rac
F rac=0.3BI+0.25K c”+0.05E d’+0.15E K+0.2σ n’+0.05M ad” (20)
式中,BI为归一化的脆性指数;K c”为正向化、归一化的断裂韧性;E d’为归一化的煤储层厚度;E k’为归一化的围岩与煤储层弹性模量比值;σ n’为归一化煤储层净压力系数;M ad”为正向化、归一化的水分含量;根据煤储层可压裂性评价分数F rac评价煤储层可压裂性。
在上述步骤8中,对可压裂性评价分数F rac进行分级:
Figure PCTCN2019087895-appb-000025
本发明的实施例公布的是较佳的实施例,但并不局限于此,本领域的普通技术人员,极易根据上述实施例,领会本发明的精神,并做出不同的引申和变化,但只要不脱离本发明的精神,都在本发明的保护范围内。

Claims (10)

  1. 一种煤储层可压裂性评价方法,其特征在于,包含以下步骤:
    步骤1:求取待评价煤储层脆性指数BI;
    步骤2:求取在围压下煤储层断裂韧性K C
    步骤3:求取待评价煤层的煤层厚度E h
    步骤4:求取煤层与围岩弹性模量差异E k’;
    步骤5:求取待评价煤层的净压力系数σ n
    步骤6:计算煤岩的水分含量M ad
    步骤7:计算煤储层可压裂性评价分数F rac
    步骤8:将煤层的可压裂性进行分级。
  2. 根据权利要求1所述的煤储层可压裂性评价方法,其特征在于:在上述步骤1中,获取煤储层弹性模量和泊松比,对弹性模量和泊松比进行归一化处理,求取待评价煤储层脆性指数BI:
    Figure PCTCN2019087895-appb-100001
    Figure PCTCN2019087895-appb-100002
    Figure PCTCN2019087895-appb-100003
    (1)式中,E BI’为待评价煤层归一化的弹性模量,E BImax和E BImin分别为煤储层最大和最小弹性模量,单位为GPa;(2)式中,μ BI’为煤储层归一化的泊松比,μ BImax和μ BImin分别为煤储层最大和最小泊松比,无量纲。
  3. 根据权利要求1所述的煤储层可压裂性评价方法,其特征在于:在上述步骤2中,步骤2.1,求取煤储层抗压强度σ c
    σ c=(0.0045+0.0035V sh)E Kc (4)
    其中,V sh是煤储层泥质含量,
    V sh=(GR-GR min)/(GR max-GR min) (5)
    E Kc是煤储层动态弹性模量,
    Figure PCTCN2019087895-appb-100004
    步骤2.2,再求取煤储层单轴抗拉强度S t
    S t=σ c/A (7)
    (4)式中,V sh为待评价煤层泥质含量;(5)式中,GR为待评价煤层的伽马测井实测值,单位为API,GR min为测得的井段砂岩层的自然伽马值,单位为API,GR max为测得的井段泥岩层的自然伽马值,单位为API;(6)式中,E Kc为待评价煤层的动态弹性模量,单位为GPa,v p为待评价煤层的纵波速度,单位为km/s,v s为待评价煤层的横波速度,单位为km/s;ρ为岩石密度,单位为g/cm 3;(7)式中,A为常数;
    步骤2.3,在围压下岩石的断裂韧性K C
    K C=0.0956p w+0.1383S t-0.0820 (8)
    为简化计算,(8)式中围压p w用最小水平主应力代替。
    步骤2.4,对待评价煤层的断裂韧性进行正向化、归一化处理,
    对KC进行正向化、归一化:
    Kc’=(Kc ij-Kc jmin)/(Kc jmax-Kc jmin) (9)
    式中,Kc’是正向化的断裂韧性,K cij是待评价煤层的断裂韧性,K cjmin是所有评价煤层的断裂韧性最小值,K cjmax是所有待评价煤层断裂韧性的最大值;
    Figure PCTCN2019087895-appb-100005
    式中,Kc”为正向化、归一化的断裂韧性;Kc’为正向化的断裂韧性;μ Kc为待评价煤层正向化后断裂韧性的均值,σ Kc为待评价煤层正向化后断裂韧性的标准差。
  4. 根据权利要求1所述的煤储层可压裂性评价方法,其特征在于:在上述步骤3中,步骤3.1,利用已有的煤田钻孔以及煤储层气参数井资料,采用内插法线性拟合约束计算研究区域的煤储层厚度,煤储层厚度为Eh,单位m,
    步骤3.2,对煤储层厚度进行归一化:
    Figure PCTCN2019087895-appb-100006
    式中,E h’为归一化的煤储层厚度,μ Eh为待评价煤层煤厚的均值,σ Eh为待评价煤层煤厚的标准差。
  5. 根据权利要求1所述的煤储层可压裂性评价方法,其特征在于:在上述步骤4中,步骤4.1,利用围岩与煤储层弹性模量的比值Ek表征煤储层与围岩的弹性模量差异:
    Figure PCTCN2019087895-appb-100007
    式中,E c为煤储层弹性模量,单位为GPa;E t为顶板弹性模量,单位为GPa;E b为底板弹性模量,单位为GPa,
    步骤4.2,对弹性模量差异进行归一化:
    Figure PCTCN2019087895-appb-100008
    式中,E k’为归一化的弹性模量差异,μ Ek为待评价煤层弹性模量差异的均值,σ Ek为待评价煤层弹性模量差异标准差。
  6. 根据权利要求1所述的煤储层可压裂性评价方法,其特征在于:在上述步骤5中,步骤5.1,采用水压致裂法获得煤储层最小水平主应力Pc,单位为MPa。
  7. 煤储层最大水平主应力σ H
    σ H=3P c-P f-P o+T (14)
    式中,P f为煤储层破裂压力,单位为MPa;P o为煤储层压力,单位为MPa;T为煤储层抗拉强度,单位为MPa。
    则煤储层净压力系数σ n
    Figure PCTCN2019087895-appb-100009
    步骤5.2,对净压力系数进行归一化:
    Figure PCTCN2019087895-appb-100010
    式中,σ n’为归一化的弹性模量差异,μ σn为待评价煤层净压力系数的均值,σ σn为待评价煤层净压力系数的标准差。
  8. 根据权利要求1所述的煤储层可压裂性评价方法,其特征在于:在上述步骤6中,步骤6.1,通过对煤岩含水量与测井参数相关关系的分析,选择相关性最为密切的三个参数进行多元回归分析,依此建立了煤岩水分含量的预测方程:
    M ad=1.4655-0.5827×DEN-2.1115×GR+0.2319×ρ s (17)
    式中:M ad为待评价煤层煤岩水分含量,单位为%;DEN为待评价煤层密度值,单位为g/cm 3;GR为待评价煤层的自然伽马值,单位为API;ρ s为待评价煤层的视电阻率值,单位为Ω·m。
    步骤6.2,对煤岩水分含量进行正向化、归一化:
    M ad’=(M adij-M adjmin)/(M adjmax-M adjmin) (18)
    式中,M ad’是正向化的煤岩水分含量,M adij是待评价煤层的煤岩水分含量,M adjmin是所有评价煤层的煤岩水分含量最小值,M adjmax是所有待评价煤层煤岩水分含量的最大值。
    Figure PCTCN2019087895-appb-100011
    式中,M ad”为正向化、归一化的煤岩水分含量;M ad’为正向化的煤岩水分含量;μ Mad为待评价煤层正向化后煤岩水分含量的均值,σ Mad为待评价煤层正向化后煤岩水分含量的标准差。
  9. 根据权利要求1所述的煤储层可压裂性评价方法,其特征在于:在上述步骤7中,计算煤储层可压裂性评价分数F rac
    F rac=0.3BI+0.25K c”+0.05E d’+0.15E K+0.2σ n’+0.05M ad” (20)
    式中,BI为归一化的脆性指数;K c”为正向化、归一化的断裂韧性;E d’为归一化的煤储层厚度;E k’为归一化的围岩与煤储层弹性模量比值;σ n’为归一化煤储层净压力系数;M ad”为正向化、归一化的水分含量;根据煤储层可压裂性评价分数F rac评价煤储层可压裂性。
  10. 根据权利要求1所述的煤储层可压裂性评价方法,其特征在于:在上述步骤8中,对可压裂性评价分数F rac进行分级。
PCT/CN2019/087895 2018-11-22 2019-05-22 一种煤储层可压裂性评价方法 WO2020103414A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2020/00093A ZA202000093B (en) 2018-11-22 2020-01-07 Fracability evaluation method for coal reservoir

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811398934.X 2018-11-22
CN201811398934.XA CN109558663B (zh) 2018-11-22 2018-11-22 一种煤储层可压裂性评价方法

Publications (1)

Publication Number Publication Date
WO2020103414A1 true WO2020103414A1 (zh) 2020-05-28

Family

ID=65867067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087895 WO2020103414A1 (zh) 2018-11-22 2019-05-22 一种煤储层可压裂性评价方法

Country Status (6)

Country Link
CN (1) CN109558663B (zh)
BE (1) BE1026492B1 (zh)
LU (1) LU101489B1 (zh)
NL (1) NL1043472B1 (zh)
WO (1) WO2020103414A1 (zh)
ZA (1) ZA202000093B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812714A (zh) * 2020-06-08 2020-10-23 中煤科工集团西安研究院有限公司 基于折射纵波与高频槽波的煤层纵横波速度求取方法
CN113283108A (zh) * 2021-06-10 2021-08-20 西安石油大学 一种定量评价页岩油储层可压裂性的方法及系统
US11162347B2 (en) * 2019-10-11 2021-11-02 Yangtze University Slick water volumetric fracturing method with large liquid volume, high flow rate, large preflush and low sand ratio
CN115324549A (zh) * 2022-06-27 2022-11-11 中石化石油工程技术服务有限公司 基于测井资料的泥灰岩压裂甜点区的综合评价方法
CN115795773A (zh) * 2022-01-20 2023-03-14 山东科技大学 一种煤体灾变时顶板弹性能贡献率影响因素的分析方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109558663B (zh) * 2018-11-22 2020-04-03 中国矿业大学 一种煤储层可压裂性评价方法
CN111425193B (zh) * 2020-01-21 2020-12-01 东北石油大学 一种基于聚类分析测井岩石物理相划分的储层可压性评价方法
CN111271055B (zh) * 2020-02-26 2021-10-08 中国石油大学(北京) 页岩的脆性指数确定方法、装置和设备
CN111577232B (zh) * 2020-05-21 2022-03-01 重庆市能源投资集团科技有限责任公司 一种煤矿井下控制压裂安全保障方法
CN115584963B (zh) * 2022-09-20 2024-05-31 西南石油大学 一种非常规储层可压裂性综合评价方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382838A (zh) * 2013-07-25 2013-11-06 中国石油大学(北京) 一种基于压裂地质体可压性的储层分析方法及装置
CN104268377A (zh) * 2014-09-11 2015-01-07 西安石油大学 一种基于煤岩工业组分的脆性指数确定方法
CN104314563A (zh) * 2014-10-21 2015-01-28 西安科技大学 一种煤层气储层可压裂性的测井定量评价方法
CN106097133A (zh) * 2016-07-11 2016-11-09 中国石油天然气集团公司 一种煤层含水量和产水量预测方法
CN108593436A (zh) * 2018-05-11 2018-09-28 北京石油化工学院 一种基于应力应变曲线评价致密储层可压性的方法
CN109558663A (zh) * 2018-11-22 2019-04-02 中国矿业大学 一种煤储层可压裂性评价方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105822292A (zh) * 2016-03-17 2016-08-03 成都创源油气技术开发有限公司 一种利用测井数据计算页岩气储层可压性评价方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382838A (zh) * 2013-07-25 2013-11-06 中国石油大学(北京) 一种基于压裂地质体可压性的储层分析方法及装置
CN104268377A (zh) * 2014-09-11 2015-01-07 西安石油大学 一种基于煤岩工业组分的脆性指数确定方法
CN104314563A (zh) * 2014-10-21 2015-01-28 西安科技大学 一种煤层气储层可压裂性的测井定量评价方法
CN106097133A (zh) * 2016-07-11 2016-11-09 中国石油天然气集团公司 一种煤层含水量和产水量预测方法
CN108593436A (zh) * 2018-05-11 2018-09-28 北京石油化工学院 一种基于应力应变曲线评价致密储层可压性的方法
CN109558663A (zh) * 2018-11-22 2019-04-02 中国矿业大学 一种煤储层可压裂性评价方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11162347B2 (en) * 2019-10-11 2021-11-02 Yangtze University Slick water volumetric fracturing method with large liquid volume, high flow rate, large preflush and low sand ratio
CN111812714A (zh) * 2020-06-08 2020-10-23 中煤科工集团西安研究院有限公司 基于折射纵波与高频槽波的煤层纵横波速度求取方法
CN113283108A (zh) * 2021-06-10 2021-08-20 西安石油大学 一种定量评价页岩油储层可压裂性的方法及系统
CN113283108B (zh) * 2021-06-10 2023-09-22 西安石油大学 一种定量评价页岩油储层可压裂性的方法及系统
CN115795773A (zh) * 2022-01-20 2023-03-14 山东科技大学 一种煤体灾变时顶板弹性能贡献率影响因素的分析方法
CN115795773B (zh) * 2022-01-20 2023-06-23 山东科技大学 一种煤体灾变时顶板弹性能贡献率影响因素的分析方法
CN115324549A (zh) * 2022-06-27 2022-11-11 中石化石油工程技术服务有限公司 基于测井资料的泥灰岩压裂甜点区的综合评价方法

Also Published As

Publication number Publication date
BE1026492B1 (fr) 2020-12-08
NL1043472A (en) 2020-06-03
ZA202000093B (en) 2021-08-25
BE1026492A1 (fr) 2020-02-18
CN109558663B (zh) 2020-04-03
LU101489B1 (fr) 2020-05-22
NL1043472B1 (en) 2020-09-04
CN109558663A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2020103414A1 (zh) 一种煤储层可压裂性评价方法
CN107288626B (zh) 一种页岩气地质甜度与工程甜度计算方法
Honarpour et al. Characterization of critical fluid, rock, and rock-fluid properties-impact on reservoir performance of liquid-rich shales
US9990586B2 (en) System and method for analyzing and validating oil and gas well production data
CN110321595B (zh) 一种测井提取静态品质系数的断层封闭性评价方法
CN106295042B (zh) 一种煤层顶板稳定性测井定量评价方法
CN113283108B (zh) 一种定量评价页岩油储层可压裂性的方法及系统
CN109632459B (zh) 一种页岩可压裂性评价方法
CN111797546B (zh) 一种页岩油气储层矿物组分模型最优化反演方法
US10073182B2 (en) Combination model for predicting stiffness coefficients absent Stoneley wave velocity data
CN116451013B (zh) 一种深部地层岩石原位可钻性级值预测方法
CN113189647B (zh) 一种横观各向同性页岩地层脆性指数预测方法
CN110939428B (zh) 一种致密砂岩油气藏储层裂缝的识别方法
Sui et al. A new evaluation method for the fracability of a shale reservoir based on the structural properties
CN112412434A (zh) 一种改进的疏松砂岩地应力计算方法
CN115951422A (zh) 构建天然裂缝漏失压力模型的方法
Abbas et al. Application of statistical analysis to optimize rate of penetration
CN112459777B (zh) 一种储层工程甜点系数的计算方法
CN113494284B (zh) 深层页岩气储层水力压裂参数确定方法、装置和存储介质
CN114060025A (zh) 一种低煤阶煤层气可采性评价方法
Hamza et al. Determination of Closure Stress and Characterization of Natural Fractures with Micro-Fracturing Field Data
Grande et al. Development of a Pore Pressure Workflow and Multi-Variate Depletion Flag for Horizontal Child Wells in the Eagle Ford Formation
CN116754735B (zh) 一种煤矿矿井水的水质成分及浓度含量预测方法
Leblanc et al. Reservoir characterization using injection test after-closure analysis: field case history in a depleted oil reservoir
CN113756793B (zh) 页岩油开采方式的确定方法、装置、设备及可读存储介质

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886203

Country of ref document: EP

Kind code of ref document: A1