CN109632459B - 一种页岩可压裂性评价方法 - Google Patents

一种页岩可压裂性评价方法 Download PDF

Info

Publication number
CN109632459B
CN109632459B CN201811353712.6A CN201811353712A CN109632459B CN 109632459 B CN109632459 B CN 109632459B CN 201811353712 A CN201811353712 A CN 201811353712A CN 109632459 B CN109632459 B CN 109632459B
Authority
CN
China
Prior art keywords
compressibility
rock
mineral
calculating
shale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811353712.6A
Other languages
English (en)
Other versions
CN109632459A (zh
Inventor
廖如刚
郭建春
高东伟
赵志红
李婷
唐鹏程
张驰
李鹏
张晗
苏慕博文
崔静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Southwest Petroleum University
Sinopec Chongqing Fuling Shale Gas Exploration and Development Co Ltd
Original Assignee
China Petroleum and Chemical Corp
Southwest Petroleum University
Sinopec Chongqing Fuling Shale Gas Exploration and Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Southwest Petroleum University, Sinopec Chongqing Fuling Shale Gas Exploration and Development Co Ltd filed Critical China Petroleum and Chemical Corp
Priority to CN201811353712.6A priority Critical patent/CN109632459B/zh
Publication of CN109632459A publication Critical patent/CN109632459A/zh
Application granted granted Critical
Publication of CN109632459B publication Critical patent/CN109632459B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0256Triaxial, i.e. the forces being applied along three normal axes of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/616Specific applications or type of materials earth materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种基于测井资料、岩石力学三轴测试、X射线衍射全岩定量分析和微地震所测得的改造体积快速计算岩石可压性的方法,用以实现地层条件下页岩储层可压性的快速计算,促进页岩气藏高效开发。本方法主要从矿物脆性和天然裂缝的影响出发,根据矿物脆性越好,天然裂缝影响因子越大,岩石可压性越好的原理,利用岩石力学三轴测试的裂缝条数优选矿物可压性,再结合储层的天然裂缝特征,可以很好的描述岩石的可压性特征,结合微地震所测改造体积,利用多元线性回归分析计算矿物可压性和天然裂缝影响因子的权重系数,从而建立起计算岩石可压性评价的新方法。本方法提高了岩石可压性评价的合理性,促进了页岩气藏的高效开发。

Description

一种页岩可压裂性评价方法
技术领域
本发明涉及非常规油气勘探与开发领域,具体涉及一种计算页岩可压性指数的方法。
背景技术
我国的页岩气储量丰富,具有良好的开发潜力,但开发难度较大。与常规油气藏开发不同,页岩气藏的开发普遍使用缝网压裂。在缝网压裂中,岩石的可压性是判断储层压裂形成缝网能力的重要参数。蒋廷学等专家认为,脆性指数是评价页岩可压性的基础,但这没有考虑到天然裂缝的影响。因此,页岩气压裂急需一种考虑天然裂缝影响和现场应用方便的页岩可压性计算方法。
发明内容
本发明针对目前页岩油气现场应用的岩石可压性计算方法的不足,提出了一种基于岩石矿物、破裂形态和测井资料快速计算岩石可压性指数的方法,用以实现地层条件下页岩储层岩石可压性的快速计算,为页岩储层压裂方案设计提供依据。
石英、长石等脆性矿物含量高有利于后期的压裂改造形成裂缝,是岩石易压的具体表现。本发明提出的一种计算页岩可压性指数的方法,利用了岩石的矿物特征和天然裂缝特征,具有很好的描述岩石的可压性特征的原理。通过赋予两参数相应的权值来建立新的页岩可压性计算方法。
本发明主要包括以下步骤:
1.地层数据资料准备,至少包括最大水平主应力、最小水平主应力、水力裂缝面与天然裂缝面的夹角和微地震所测得的改造体积;
2.利用最大水平主应力,最小水平主应力和水力裂缝面与天然裂缝面的夹角计算出天然裂缝张开的影响因子,该影响因子作为裂缝可压性,用式(1)计算:
Figure BDA0001865535620000021
式中,Fn为天然裂缝张开的影响因子,无因次;θ为水力裂缝面与天然裂缝面的夹角,°;σnm为区块(σHh)sin2θ的最大值,MPa。
3.利用三轴岩石力学测试系统,对页岩标准岩样进行力学测试;
4.对经过步骤3得到的岩样进行岩石破裂形态的描述,幷记录产生的裂缝条数;
5.采用X’Pert PRO X-射线衍射仪,将步骤4后的岩样进行X射线衍射全岩定量分析;
6.将步骤4所得的裂缝条数与步骤5所得的每种脆性矿物含量分别进行相关性分析,选出相关性最大的脆性矿物,用该矿物含量作为矿物可压性,用式(2)计算:
BI=C/100 (2)
式中,C为选定矿物含量,%。
7.将步骤1的微地震所测得的改造体积作为因变量、步骤2所得的天然裂缝张开的影响因子和步骤6所得的脆性矿物含量作为自变量,通过多元线性回归分析,计算天然裂缝张开的影响因子和矿物含量的权重系数,用式(3)计算:
SRV=W1BI+W2Fn (3)
式中,W1为矿物可压性所占权重,W2为裂缝张开的影响因子所占的权重。
8.运用步骤2得到的天然裂缝张开的影响因子、步骤6得到的矿物含量和步骤7得到的权重系数,计算得到页岩可压性指数。
与现有计算页岩可压性指数的方法相比,本发明有如下有益效果:本发明基于岩石破裂形态和地层特征,提出了一种可以利用测井资料和工程资料快速评价可压性指数的计算方法,将岩石的矿物特征和地层的天然裂缝特征结合起来,为地下岩石可压性提供了较直观的判断,为页岩气藏压裂方案优化提供依据,有利于提高页岩压裂效果。
附图说明
图1为本发明计算页岩可压性指数的步骤框图。
具体实施方式
下面对本发明实现方法作进一步详细说明,具体如下:
以涪陵某井为例,该储层埋深为3908-3945m,利用本发明的方法计算页岩可压性指数。
1.根据步骤1,准备压裂层段的最大水平主应力、最小水平主应力、水力裂缝面与天然裂缝面的夹角和微地震所测得的改造体积。
2.利用最大水平主应力,最小水平主应力和水力裂缝面与天然裂缝面的夹角计算出每段天然裂缝张开的影响因子,如附表1所示。
3.利用步骤3、4得到裂缝条数,裂缝条数如附表2所示。运用步骤5、6选定碳酸盐矿物表征涪陵某井的矿物可压性,X射线衍射全岩定量分析得到矿物可压性BI。X射线衍射全岩定量分析结果如附表3所示。
4.得到的各压裂段的BI、FN和SRV如附表4所示。根据步骤7计算天然裂缝张开的影响因子和矿物含量的权重系数分别为0.4和0.6。
附表1
Figure BDA0001865535620000031
Figure BDA0001865535620000041
附表2
Figure BDA0001865535620000042
附表3
Figure BDA0001865535620000043
Figure BDA0001865535620000051
附表4
压裂段号 BI FN SRV
1 0.09 0.17 496
2 0.09 0.17 580
3 0.10 0.14 560
4 0.11 0.28 610
5 0.10 0.26 803
6 0.10 0.32 716
7 0.11 0.22 702
8 0.11 0.19 633
9 0.11 0.19 882
10 0.11 0.26 820
11 0.10 0.20 623
12 0.11 0.31 910
13 0.11 0.23 948
14 0.11 0.33 1009
15 0.11 0.31 963
虽然结合附图对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可做出的各种修改和变形仍属本专利的保护范围。

Claims (3)

1.一种计算页岩可压性指数的方法,包括以下步骤:
(1)地层数据资料准备,所述地层数据资料至少包括最大水平主应力、最小水平主应力、水力裂缝面与天然裂缝面的夹角和微地震所测得的改造体积;
(2)利用最大水平主应力,最小水平主应力和水力裂缝面与天然裂缝面的夹角计算出天然裂缝张开的影响因子,该影响因子作为裂缝可压性评价参数;
(3)利用三轴岩石力学测试系统,对页岩标准岩样进行力学测试;
(4)对经过步骤(3)得到的岩样进行岩石破裂形态的描述,并记录产生的裂缝条数;
(5)采用X射线衍射仪,将步骤(4)后的岩样进行X射线衍射全岩定量分析;
(6)将步骤(4)所得的裂缝条数与步骤(5)所得的每种脆性矿物含量分别进行相关性分析,选出相关性最大的脆性矿物,用该脆性矿物含量作为矿物可压性评价参数;
(7)将步骤(1)的微地震所测得的改造体积作为因变量,步骤(2)所得的天然裂缝张开的影响因子和步骤(6)所得的脆性矿物含量作为自变量,通过多元线性回归分析,计算天然裂缝张开的影响因子和脆性矿物含量的权重系数;
所述步骤(7)中的页岩可压性指数的计算公式为:
SRV=W1BI+W2Fn (3)
式中,W1为矿物可压性所占权重,W2为裂缝张开的影响因子所占权重;
(8)运用步骤(2)得到的天然裂缝张开的影响因子,步骤(6)得到的脆性矿物含量和步骤(7)得到的权重系数,计算得到页岩可压性指数。
2.根据权利要求1所述的计算页岩可压性指数的方法,其特征在于:所述步骤(2)中的天然裂缝张开的影响因子的计算公式为:
Figure 746517DEST_PATH_IMAGE002
(1)
式中,Fn为天然裂缝张开的影响因子,无因次;θ为水力裂缝面与天然裂缝 面的夹角,°;σnm为区块(σHh)sin2θ的最大值,MPa;σH为最大水平主应力,MPa;σh为最小水平主应力,MPa。
3.根据权利要求1或2之一所述的计算页岩可压性指数的方法,其特征在于,所述步骤(6)中的矿物可压性公式为:
BI=C/100 (2)
式中,C为选定脆性矿物含量,%。
CN201811353712.6A 2018-11-14 2018-11-14 一种页岩可压裂性评价方法 Active CN109632459B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811353712.6A CN109632459B (zh) 2018-11-14 2018-11-14 一种页岩可压裂性评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811353712.6A CN109632459B (zh) 2018-11-14 2018-11-14 一种页岩可压裂性评价方法

Publications (2)

Publication Number Publication Date
CN109632459A CN109632459A (zh) 2019-04-16
CN109632459B true CN109632459B (zh) 2021-04-13

Family

ID=66067890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811353712.6A Active CN109632459B (zh) 2018-11-14 2018-11-14 一种页岩可压裂性评价方法

Country Status (1)

Country Link
CN (1) CN109632459B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110163533B (zh) * 2019-06-03 2020-03-03 西南石油大学 一种页岩气缝网综合可压性评价方法
CN112085305A (zh) * 2019-06-13 2020-12-15 中国石油天然气集团有限公司 评价储层缝网性能的方法及装置
CN110219644B (zh) * 2019-06-29 2021-05-28 西南石油大学 确定储层可压裂性指数值空间分布的方法
CN110529088A (zh) * 2019-08-30 2019-12-03 西南石油大学 一种基于薄片鉴定的岩石可压裂性剖面建立方法
CN111275273B (zh) * 2020-03-18 2022-06-10 西南石油大学 一种页岩压裂形成缝网复杂程度的预测方法
CN115584963B (zh) * 2022-09-20 2024-05-31 西南石油大学 一种非常规储层可压裂性综合评价方法
CN116698577B (zh) * 2023-04-27 2024-03-01 兰州城市学院 一种页岩油储层体积压裂形成复杂缝网潜力的定量评价方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2009103035A (ru) * 2009-01-30 2010-08-10 Эрнест Юлианович Миколаевский (RU) Способ поиска, разведки и исследования месторождений нефти, газа и воды
CN104777035A (zh) * 2015-04-08 2015-07-15 西南石油大学 一种基于单轴强度实验的页岩可压性综合评价方法
CN105201479A (zh) * 2015-10-09 2015-12-30 西南石油大学 一种页岩储层水平井分段压裂射孔簇参数优化设计方法
CN108009705A (zh) * 2017-11-07 2018-05-08 中国石油大学(华东) 一种基于支持向量机技术的页岩储层可压性评价方法
CN107991188B (zh) * 2016-10-26 2020-04-28 中国石油化工股份有限公司 一种基于岩心残余应力水平预测水力裂缝复杂性的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170269017A1 (en) * 2016-03-18 2017-09-21 Intel Corporation Inflatable Bladder Based Mechanical Testing for Stretchable Electronics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2009103035A (ru) * 2009-01-30 2010-08-10 Эрнест Юлианович Миколаевский (RU) Способ поиска, разведки и исследования месторождений нефти, газа и воды
CN104777035A (zh) * 2015-04-08 2015-07-15 西南石油大学 一种基于单轴强度实验的页岩可压性综合评价方法
CN105201479A (zh) * 2015-10-09 2015-12-30 西南石油大学 一种页岩储层水平井分段压裂射孔簇参数优化设计方法
CN107991188B (zh) * 2016-10-26 2020-04-28 中国石油化工股份有限公司 一种基于岩心残余应力水平预测水力裂缝复杂性的方法
CN108009705A (zh) * 2017-11-07 2018-05-08 中国石油大学(华东) 一种基于支持向量机技术的页岩储层可压性评价方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
页岩气储层缝网压裂理论与技术研究新进展;赵金洲 等;《本期视点》;20180331;第38卷(第3期);1-14页 *

Also Published As

Publication number Publication date
CN109632459A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN109632459B (zh) 一种页岩可压裂性评价方法
CN107766662B (zh) 一种页岩气水平井测试分段评价方法
CN108009705B (zh) 一种基于支持向量机技术的页岩储层可压性评价方法
CN102312671B (zh) 能快速解释评价储层流体性质的方法
Hakami et al. Characterization of carbonate mudrocks of the Jurassic Tuwaiq Mountain Formation, Jafurah basin, Saudi Arabia: Implications for unconventional reservoir potential evaluation
CN106869911B (zh) 一种描述页岩储层可压性的评价方法
CN105134156A (zh) 一种用于致密砂岩储层三维可压裂性模型的建模方法
CN112502701B (zh) 一种低渗透储层综合地质-工程的分类评价方法
CN102707333A (zh) 页岩气资源量/储量的测量方法
CN111027818B (zh) 一种页岩油分类评价方法
He et al. A comprehensive approach for fracability evaluation in naturally fractured sandstone reservoirs based on analytical hierarchy process method
CN107290799B (zh) 一种岩石可压性的确定方法
CN113283108A (zh) 一种定量评价页岩油储层可压裂性的方法及系统
CN115030707A (zh) 一种油页岩“甜点”快速评价方法
CN112145165B (zh) 一种微裂缝-孔隙型储层动静态渗透率转换方法
KR102051225B1 (ko) 셰일층의 파쇄효율 및 가스부존 유망성 예측 방법
Crawford et al. Determining static elastic anisotropy in shales from sidewall cores: impact on stress prediction and hydraulic fracture modeling
CN112560246B (zh) 一种目标井散点地层压力系数的预测方法
Wang et al. Geology Quality: Case Study of Improving Multistage Fracturing and Completion with Quantitative Geology Considerations
Okeahialam et al. Completion optimization under constraints: An Eagle Ford shale case study
CN111927445A (zh) 基于随钻岩矿数据拟合测井参数获取随钻地层压力的方法
Zhu et al. Feasibility analysis on the pilot test of acid fracturing for carbonate reservoirs in Halfaya Oilfield, Iraq
CN108875115B (zh) 一种确定岩石强度的方法
CN105259576A (zh) 一种利用地震统计特征的油气藏识别方法
CN113720745A (zh) 含碳屑碎屑岩储层地球物理测井计算孔隙度的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200102

Address after: 100728 Beijing, Chaoyangmen, North Street, No. 22, No.

Applicant after: China Petrochemical Co., Ltd.

Applicant after: Sinopec Chongqing Fuling Shale Gas Exploration and Development Co., Ltd.

Address before: 408100, 6 Feng Feng Road, Xincheng District, Fuling District, Chongqing, China

Applicant before: Sinopec Chongqing Fuling Shale Gas Exploration and Development Co., Ltd.

Applicant before: Southwest Petroleum University

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201225

Address after: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Applicant after: China Petroleum & Chemical Corp.

Applicant after: SOUTHWEST PETROLEUM University

Applicant after: SINOPEC CHONGQING FULING SHALE GAS EXPLORATION AND DEVELOPMENT Co.,Ltd.

Address before: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Applicant before: China Petroleum & Chemical Corp.

Applicant before: SINOPEC CHONGQING FULING SHALE GAS EXPLORATION AND DEVELOPMENT Co.,Ltd.

GR01 Patent grant
GR01 Patent grant