WO2020103351A1 - 应用于复杂管缆线交叉防护的贝雷支架系统及其施工方法 - Google Patents

应用于复杂管缆线交叉防护的贝雷支架系统及其施工方法

Info

Publication number
WO2020103351A1
WO2020103351A1 PCT/CN2019/076471 CN2019076471W WO2020103351A1 WO 2020103351 A1 WO2020103351 A1 WO 2020103351A1 CN 2019076471 W CN2019076471 W CN 2019076471W WO 2020103351 A1 WO2020103351 A1 WO 2020103351A1
Authority
WO
WIPO (PCT)
Prior art keywords
beret
assembly
type
suspension device
suspension system
Prior art date
Application number
PCT/CN2019/076471
Other languages
English (en)
French (fr)
Inventor
张馨
Original Assignee
中铁十八局集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁十八局集团有限公司 filed Critical 中铁十八局集团有限公司
Priority to US16/625,143 priority Critical patent/US11473262B2/en
Publication of WO2020103351A1 publication Critical patent/WO2020103351A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/04Making large underground spaces, e.g. for underground plants, e.g. stations of underground railways; Construction or layout thereof
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C1/00Design or layout of roads, e.g. for noise abatement, for gas absorption
    • E01C1/04Road crossings on different levels; Interconnections between roads on different levels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
    • F16L3/22Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets specially adapted for supporting a number of parallel pipes at intervals

Definitions

  • the invention relates to the technical field of underground pipeline construction, in particular to a beret support system applied to the cross protection of complex pipe cables and a construction method thereof.
  • An area is built at the intersection of roads with an area of 4,000 square meters, using open cut construction. This intersection is the main road in the area.
  • the underground pipeline network is complex and thermal pipes (heating construction), 66KV high-voltage lines, and several 10KV high-voltage lines , High-voltage control box and some communication lines cannot be changed.
  • the purpose of the present invention is to provide a Beret support system applied to the cross protection of complex pipelines and cables and a construction method thereof to solve the problems in the prior art mentioned above, make the construction of underground pipelines easy to operate, save costs, and avoid safety risks.
  • the present invention provides the following solutions:
  • the present invention provides a Bailey bracket system applied to complex pipe and cable cross protection, including I-type suspension system, II-type suspension system, III-type suspension system, IV-type suspension system and V-type suspension system, the III-type suspension system
  • I-type suspension system I-type suspension system
  • II-type suspension system II-type suspension system
  • III-type suspension system III-type suspension system
  • IV-type suspension system IV-type suspension system
  • V-type suspension system the III-type suspension system
  • the two groups of the type III suspension system on the side are in one-to-one correspondence.
  • the type II suspension system and the type I suspension system are sequentially arranged on the left side of the type IV suspension system from left to right.
  • the V type suspension system Set on the right side of the type IV suspension system, the type II suspension system, the type IV suspension system and the V type suspension system are parallel to each other, the type I suspension system and the type III suspension system are parallel to each other And perpendicular to the type II suspension system.
  • the I-type suspension system includes a first I-beam component, a first beret frame component, a first suspension device, and a first drilled pile, and two ends of the first beret frame component are respectively lapped on On the first I-beam component, both ends of the first I-beam component are lapped on the first bored pile, and the upper end of the first suspension device is lapped on the first An upper side of a beret frame assembly, the lower end of the first suspension device is used to hold a first pipeline;
  • the type III suspension system includes a third I-beam component, a third beret frame assembly, and a third suspension device , A third bored pile and a fourth bored pile, two ends of the third beret frame assembly are respectively lapped on a third I-shaped steel assembly, and both ends of the third I-shaped steel assembly Respectively lapped on a third bored pile, the middle of the third I-beam assembly is lapped on the fourth bored pile, and the upper end of the third suspension device is lapped on the third On
  • the type II suspension system includes a second I-shaped steel component, a second beret frame component, a second suspension device, and a second drilled pile, and two ends of the second beret frame component are respectively lapped on On the second I-shaped steel component, both ends of the second I-shaped steel component are respectively lapped on the second bored pile, and the upper end of the second suspension device is lapped on the first On the upper side of the second beret frame assembly, the lower end of the second suspension device is used to hold up a thermal pipe;
  • the V-shaped suspension system includes a fourth I-beam component, a fifth beret frame assembly, a fifth suspension device and In a fifth drilling pile, both ends of the fifth beret frame assembly are respectively lapped on a fourth I-beam component, wherein two ends of a fourth I-beam assembly are respectively lapped on the On the third bored pile, the two ends of the other fourth I-beam assembly are respectively lapped on the fifth bored pile, and the upper end of the fifth suspension device is lapped on
  • the type IV suspension system includes a supporting beret frame assembly, a fourth beret frame assembly and a fourth suspension device, and both ends of the fourth beret frame assembly are overlapped with a supporting beret frame, respectively On the assembly, both ends of the supporting beret frame assembly are respectively lapped on a third drilling pile, the fourth beret frame assembly and the supporting beret frame assembly are perpendicular to each other, and the fourth The upper end of the suspension device is lapped on the upper side of the fourth beret assembly, and the lower end of the fourth suspension device is used to support the thermal pipe.
  • the number of the second beret rack assembly, the fourth beret rack assembly and the fifth beret rack assembly are matched with the thermal pipeline.
  • the first suspension device, the second suspension device, the third suspension device, the fourth suspension device and the fifth suspension device are all frames made of channel steel.
  • the first I-beam assembly, the second I-beam assembly, the third I-beam assembly and the fourth I-beam assembly are all welded by two 45a I-beams arranged side by side to make.
  • the structures of the first bored pile, the second bored pile, the third bored pile, the fourth bored pile and the fifth bored pile are the same, the first The bored pile includes a reinforced steel cage and a pre-embedded steel plate disposed at an upper end inside the reinforced steel cage, and concrete is filled between the reinforced steel cage and the pre-embedded steel plate.
  • the present invention also provides a construction method of the above-mentioned beret support system applied to the cross protection of complex pipe cables, including the following steps,
  • S4 Measure the distance between two first drilled piles, second drilled piles, third drilled piles and fifth drilled piles respectively and record the data, and cut the first I-beam assembly, the first The lengths of the I-beam components, the third I-beam components and the fourth I-beam components, the lengths of the first I-beam components, the second I-beam components, the third I-beam components and the fourth I-beam components are in accordance with Record data + 1000mm to ensure that the first I-beam component, the second I-beam component, the third I-beam component and the fourth I-beam component are in the first bored pile, the second bored pile, and the third drill The length of the hole pile and the fifth bored pile;
  • the beret frame components can be leased, and the I-beam components and suspension devices used in the hanger system can be recycled.
  • This invention is simple and practical, saves costs, and is economical.
  • FIG. 1 is a top view of the Beret support system applied to the cross protection of complex pipe cables
  • FIG. 2 is a schematic diagram of the A-A cross section in FIG. 1 of the present invention.
  • FIG. 3 is a front view of the I-type suspension system of the present invention.
  • FIG. 6 is a front view of the type II suspension system of the present invention.
  • FIG. 10 is a front view of the type IV suspension system of the present invention.
  • FIG. 11 is a side view of the V-shaped suspension system of the present invention.
  • FIG. 12 is a front view of the V-shaped suspension system of the present invention.
  • FIG. 13 is a front view of I of FIG. 1 of the present invention.
  • FIG. 14 is a side view of I in FIG. 1 of the present invention.
  • FIG. 15 is a front view at II of FIG. 1 of the present invention.
  • FIG. 16 is a side view at II of FIG. 1 of the present invention.
  • 1-I suspension system 2-II suspension system, 3-III suspension system, 4-IV suspension system, 5-V suspension system, 6-first drilling pile, 7-first engineering Steel components, 8-first pipelines, 9-second bored piles, 10-second I-shaped steel components, 11-heat pipes, 12-third bored piles, 13-fourth bored piles, 14- Third I-beam assembly, 15-second pipeline, 16-third pipeline, 17-supporting beret frame assembly, 18-embedded steel plate, 19-fourth I-beam assembly, 20-first beret frame assembly , 21-first suspension device, 22-second beret frame assembly, 23-second suspension device, 24-third beret frame assembly, 25-third suspension device, 26-fourth beret frame assembly, 27 -Fourth suspension device, 28- Fifth beret assembly, 29- Fifth suspension device, 30- Fifth drilling pile.
  • the object of the present invention is to provide a Beret support system applied to the cross protection of complex pipelines and cables and its construction method to solve the problems in the prior art, make the construction of underground pipelines easy to operate, save costs, and avoid safety risks.
  • This embodiment provides a Beret support system applied to complex pipe and cable cross protection, including I-type suspension system 1, II-type suspension system 2, III-type suspension system 3, IV Type 4 suspension system and V type suspension system 5, Type III suspension system 3 is four groups, two sets of type III suspension system 3 are arranged on the front side of type IV suspension system 4, the other two sets of type III suspension system 3 are arranged on IV The rear of the suspension system 4 corresponds to the two sets of III suspension systems 3 on the front side.
  • the II suspension system 2 and the I suspension system 1 are arranged on the left side of the IV suspension system 4 from left to right.
  • the V-type suspension system 5 is provided on the right side of the IV-type suspension system 4.
  • Type II suspension system 2, Type IV suspension system 4 and Type V suspension system 5 are parallel to each other, Type I suspension system 1 and Type III suspension system 3 are parallel to each other and perpendicular to Type II suspension system 2.
  • the I-type suspension system 1 includes a first I-beam assembly 7, a first beret frame assembly 20, a first suspension device 21, and a first drilled pile 6. It is connected to a first I-shaped steel component 7. Both ends of the first I-shaped steel component 7 are respectively lapped on a first bored pile 6, and the upper end of the first suspension device 21 is lapped on the first beret On the upper side of the assembly 20, the lower end of the first suspension device 21 is used to hold the first pipeline 8, specifically, the first pipeline 8 is a 10KV high-voltage line.
  • the type III suspension system 3 includes a third I-beam assembly 14, a third beret assembly 24, a third suspension device 25, a third bored pile 12 and a fourth bored pile 13, and the third beret assembly 24
  • the two ends are respectively lapped on a third I-beam component 14, the two ends of the third I-beam component 14 are respectively lapped on a third drilling pile 12, and the middle of the third I-beam component 14 is lapped On the fourth drilling pile 13, the middle of the third I-beam assembly 14 is supported by the fourth drilling pile 13, and the upper end of the third suspension device 25 overlaps the upper side of the third beret assembly 24, of which
  • the lower ends of the corresponding two sets of third suspension devices 25 are used to hold the second pipeline 15, specifically, the second pipeline 15 is a 10KV high-voltage line, and the lower ends of the other two sets of third suspension devices 25 are used to hold the third pipeline 16, Specifically, the third pipeline 16 is a 60KV high-voltage line.
  • the type II suspension system 2 includes a second I-beam assembly 10, a second beret frame assembly 22, a second suspension device 23, and a second bored pile 9, two ends of the second beret frame assembly 22 Connected to a second I-shaped steel component 10, the two ends of the second I-shaped steel component 10 are respectively lapped on a second bored pile 9, and the upper end of the second suspension device 23 is lapped on the second beret On the upper side of the assembly 22, the lower end of the second suspension device 23 is used to hold up the thermal pipe 11.
  • the V-shaped suspension system 5 includes a fourth I-beam assembly 19, a fifth beret assembly 28, a fifth suspension device 29, and a fifth bored pile 30. Both ends of the fifth beret assembly 28 are lapped to one On the fourth I-beam assembly 19, two ends of a fourth I-beam assembly 19 are lapped on the third bored pile 12, respectively, and two ends of the other fourth I-beam assembly 19 are lapped on the first On the five bored piles 30, the upper end of the fifth suspension device 29 overlaps the upper side of the fifth beret assembly 28, and the lower end of the fifth suspension device 29 is used to support the thermal pipe 11.
  • the IV type suspension system 4 includes a supporting beret frame assembly 17, a fourth beret frame assembly 26, and a fourth suspension device 27, and both ends of the fourth beret frame assembly 26 are lapped on a supporting beret frame assembly 17, Both ends of the supporting beret frame assembly 17 are lapped on a third bored pile 12, the fourth beret frame assembly 26 and the supporting beret frame assembly 17 are perpendicular to each other, and the upper end of the fourth suspension device 27 is lapped on the first On the upper side of the four beret assembly 26, the lower end of the fourth suspension device 27 is used to hold up the thermal pipe 11.
  • the number of the second beret frame assembly 22, the fourth beret frame assembly 26 and the fifth beret frame assembly 28 is matched with the thermal pipe 11.
  • the first beret rack assembly 20, the second beret rack assembly 22, the third beret rack assembly 24, the fourth beret rack assembly 26, the fifth beret rack assembly 28 and the support beret rack assembly 17 are all preferably used
  • a group of two beret racks The two beret racks have a horizontal spacing of 30 cm. They are fixed as a whole with a support frame. Each piece of beret rack is connected with a steel pin in the longitudinal direction. The beret racks are connected according to the length of the spacing between the bored piles at both ends of the pipeline frame.
  • the first suspension device 21, the second suspension device 23, the third suspension device 25, the fourth suspension device 27, and the fifth suspension device 29 are all frames made of channel steel, more specifically, the frame includes upper channel steel, vertical Channel steel and bottom channel steel, upper channel steel and bottom channel steel are welded with one end of vertical channel steel respectively.
  • the first I-beam component 7, the second I-beam component 10, the third I-beam component 14 and the fourth I-beam component 19 are all formed by welding two 45a I-beams side by side.
  • the first drilled pile 6, the second drilled pile 9, the third drilled pile 12, the fourth drilled pile 13 and the fifth drilled pile 30 have the same structure.
  • the first drilled pile 6 includes a reinforced cage and is provided in The embedded steel plate 18 inside the reinforcement cage is filled with concrete between the reinforcement cage and the embedded steel plate 18.
  • This embodiment also provides a construction method of the above-mentioned Beret support system applied to complex pipe and cable cross protection, including the following steps,
  • S5 Draw the center line on the embedded steel plates 18 of the first bored pile 6, the second bored pile 9, the third bored pile 12, the fourth bored pile 13, and the fifth bored pile 30, respectively.
  • a I-beam assembly 7, a second I-beam assembly 10, a third I-beam assembly 14 and a fourth I-beam assembly 19 are symmetrically arranged and welded along the center line of the embedded steel plate 18 corresponding to them, respectively.
  • Two 45a I-beams of the first I-beam assembly 7, the second I-beam assembly 10, the third I-beam assembly 14 and the fourth I-beam assembly 19 are welded into a whole;
  • an excavator is used to cooperate with labor and excavate gradually from one end to the other end, while 6 workers cooperate with the encryption frame .
  • Add another frame in the middle of the fixed hanger system after the soil layer of the lower part of the pipeline is excavated, a frame will be formed every 50 cm, so that the pipeline is fully supported on the bottom channel steel, forming the first suspension device 21, the first The second suspension device 23, the third suspension device 25, the fourth suspension device 27 and the fifth suspension device 29 ensure the safety of the first pipeline 8, the second pipeline 15, the third pipeline 16 and the thermal pipeline 9.
  • the underground first pipeline 8, the second pipeline 15, the third pipeline 16 and the thermal pipeline 11 are replaced by the bracket underpinning method on the roof of the underground passage.
  • the Bailey bracket system and the construction method applied to the cross protection of complex pipe and cable in this embodiment can avoid the heightening of supporting piles and avoid safety risks.
  • the Bailey rack component stacking system is safe and reliable, with a simple structure and convenient construction;
  • the beret frame components can be leased, and the I-beam components and suspension devices used in the hanger system can be recycled.
  • This invention is simple and practical, saves costs, and is economical; the construction is convenient, and there is no need to use large equipment and a large number of professionals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Piles And Underground Anchors (AREA)
  • Supports For Pipes And Cables (AREA)

Abstract

一种应用于复杂管缆线交叉防护的贝雷支架系统及施工方法,系统包括I型悬挂系统(1)、II型悬挂系统(2)、III型悬挂系统(3)、 IV型悬挂系统(4)和V型悬挂系统(5),III型悬挂系统(3)为四组,其中两组III 型悬挂系统(3)设置于IV型悬挂系统(4)的前侧,另外两组III型悬挂系统(3)设置于IV型悬挂系统(4)的后侧且与前侧的两组III型悬挂系统(3)一一对应, II型悬挂系统(2)和I型悬挂系统(1)自左至右依次设置于IV型悬挂系统(4)的左侧,V型悬挂系统(5)设置于IV型悬挂系统(4)的右侧。II型悬挂系统(2)、 IV型悬挂系统(4)和V型悬挂系统(5)相互平行,I型悬挂系统(1)和III型悬挂系统(3)相互平行并与II型悬挂系统(2)相互垂直。该系统使地下管线施工操作方便,节省成本,规避安全风险。

Description

应用于复杂管缆线交叉防护的贝雷支架系统及其施工方法 技术领域
本发明涉及地下管线施工技术领域,特别是涉及一种应用于复杂管缆线交叉防护的贝雷支架系统及其施工方法。
背景技术
某地区在道路十字交叉路口修建一座地下通道,面积4000平米,采用明挖法施工,此路口为该地区主要干道,地下管网复杂且热力管道(供暖期施工)、66KV高压线、若干条10KV高压线、高压控制箱及若干通讯线路等无法迁改。
热力管道(供暖期施工)、66KV高压线、10KV高压线、地铁10KV专用线立体交叉,高差最大达2米,贝雷架无法实现交叉跨越,若实现交叉跨越,需加高钻孔桩近2米,因基坑开挖深度达10米,钻孔桩开挖后外露长度较长,贝雷架和管线重量均集中在钻孔桩上,同时该工程临近海边,季风较大,安全风险较大,不采用交叉跨越方案。
发明内容
本发明的目的是提供一种应用于复杂管缆线交叉防护的贝雷支架系统及其施工方法,以解决上述现有技术存在的问题,使地下管线施工操作方便,节省成本,规避安全风险。
为实现上述目的,本发明提供了如下方案:
本发明提供了一种应用于复杂管缆线交叉防护的贝雷支架系统,包括I型悬挂系统、II型悬挂系统、III型悬挂系统、IV型悬挂系统和V型悬挂系统,所述III型悬挂系统为四组,其中两组所述III型悬挂系统设置于所述IV型悬挂系统的前侧,另外两组所述III型悬挂系统设置于所述IV型悬挂系统的后侧且与前侧的两组所述III型悬挂系统一一对应,所述II型悬挂系统和所述I型悬挂系统自左至右依次设置于所述IV型悬挂系统的左侧,所述V型悬挂系统设置于所述IV型悬挂系统的右侧,所述II型悬挂系统、所述IV型悬挂系统和所述V型悬挂系统相互平行,所述I 型悬挂系统和所述III型悬挂系统相互平行并与所述II型悬挂系统相互垂直。
优选地,所述I型悬挂系统包括第一工字钢组件、第一贝雷架组件、第一悬挂装置和第一钻孔桩,所述第一贝雷架组件的两端分别搭接于一所述第一工字钢组件上,所述第一工字钢组件的两端分别搭接于一所述第一钻孔桩上,所述第一悬挂装置的上端搭接于所述第一贝雷架组件的上侧,所述第一悬挂装置的下端用于托起第一管线;所述III型悬挂系统包括第三工字钢组件、第三贝雷架组件、第三悬挂装置、第三钻孔桩和第四钻孔桩,所述第三贝雷架组件的两端分别搭接于一所述第三工字钢组件上,所述第三工字钢组件的两端分别搭接于一所述第三钻孔桩上,所述第三工字钢组件的中部搭接于所述第四钻孔桩上,所述第三悬挂装置的上端搭接于所述第三贝雷架组件的上侧,其中前后对应的两组所述第三悬挂装置的下端用于托起第二管线,另外两组所述第三悬挂装置的下端用于托起第三管线。
优选地,所述II型悬挂系统包括第二工字钢组件、第二贝雷架组件、第二悬挂装置和第二钻孔桩,所述第二贝雷架组件的两端分别搭接于一所述第二工字钢组件上,所述第二工字钢组件的两端分别搭接于一所述第二钻孔桩上,所述第二悬挂装置的上端搭接于所述第二贝雷架组件的上侧,所述第二悬挂装置的下端用于托起热力管道;所述V型悬挂系统包括第四工字钢组件、第五贝雷架组件、第五悬挂装置和第五钻孔桩,所述第五贝雷架组件的两端分别搭接于一所述第四工字钢组件上,其中一所述第四工字钢组件的两端分别搭接于所述第三钻孔桩上,另一所述第四工字钢组件的两端分别搭接于所述第五钻孔桩上,所述第五悬挂装置的上端搭接于所述第五贝雷架组件的上侧,所述第五悬挂装置的下端用于托起所述热力管道。
优选地,所述IV型悬挂系统包括支撑贝雷架组件、第四贝雷架组件和第四悬挂装置,所述第四贝雷架组件的两端分别搭接于一所述支撑贝雷架组件上,所述支撑贝雷架组件的两端分别搭接于一所述第三钻孔桩上,所述第四贝雷架组件与所述支撑贝雷架组件相互垂直,所述第四悬挂装置 的上端搭接于所述第四贝雷架组件的上侧,所述第四悬挂装置的下端用于托起所述热力管道。
优选地,所述第二贝雷架组件、所述第四贝雷架组件所述第五贝雷架组件的数量与所述热力管道相匹配。
优选地,所述第一悬挂装置、所述第二悬挂装置、所述第三悬挂装置、所述第四悬挂装置和所述第五悬挂装置均为由槽钢制成的框架。
优选地,所述第一工字钢组件、所述第二工字钢组件、所述第三工字钢组件和所述第四工字钢组件均由两根45a工字钢并排设置焊接而成。
优选地,所述第一钻孔桩、所述第二钻孔桩、所述第三钻孔桩、所述第四钻孔桩和所述第五钻孔桩的结构相同,所述第一钻孔桩包括钢筋笼以及设置于所述钢筋笼内部上端的预埋钢板,所述钢筋笼和所述预埋钢板之间填充有混凝土。
本发明还提供了一种上述应用于复杂管缆线交叉防护的贝雷支架系统的施工方法,包括以下步骤,
S1:按照地下管网分布图,将地下管网全部探测出来;
S2:根据探测得到的地下管网的位置确定第一钻孔桩、第二钻孔桩、第三钻孔桩、第四钻孔桩和第五钻孔桩的位置,钻机进场进行钻孔桩施工,在钢筋笼的中间位置安装预埋钢板,安装到位后在钢筋笼和预埋钢板之间灌注混凝土;
S3:混凝土达到强度,破除钻孔桩的桩头,将预埋钢板周围的混凝土凿除,将钻孔桩的桩顶凿成平面;
S4:分别测量两个第一钻孔桩、第二钻孔桩、第三钻孔桩和第五钻孔桩之间的间距并记录数据,根据记录的数据切割第一工字钢组件、第二工字钢组件、第三工字钢组件和第四工字钢组件,第一工字钢组件、第二工字钢组件、第三工字钢组件和第四工字钢组件的长度按照记录数据+1000mm,确保第一工字钢组件、第二工字钢组件、第三工字钢组件和第四工字钢组件分别在第一钻孔桩、第二钻孔桩、第三钻孔桩和第五钻孔桩上的受力长度;
S5:在预埋钢板上画出中心线,第一工字钢组件、第二工字钢组件、第三工字钢组件和第四工字钢组件分别沿与之对应的预埋钢板的中心线 对称布置并焊接,同时分别将第一工字钢组件、第二工字钢组件、第三工字钢组件和第四工字钢组件的2根45a工字钢焊接成一个整体;
S6:将两组支撑贝雷架组件分别放置于两个第四钻孔桩上,并将支撑贝雷架组件的两端和与之对应的预埋钢板焊接;
S7:在第二工字钢组件上安装第二贝雷架组件并焊接,在第一工字钢组件上安装第一贝雷架组件并焊接,在两组支撑贝雷架组件上安装第四贝雷架组件并焊接,在第四工字钢组件上安装第五贝雷架组件并焊接,分别在两组第三工字钢组件上安装两组第三贝雷架组件并焊接,并在第一贝雷架组、第二贝雷架组件、第三贝雷架组件、第四贝雷架组件、第五贝雷架组件和支撑贝雷架的两侧焊接斜撑,以保证第一贝雷架组、第二贝雷架组件、第三贝雷架组件、第四贝雷架组件、第五贝雷架组件和支撑贝雷架的稳固;
S8:分别在第一贝雷架组、第二贝雷架组件、第三贝雷架组件、第四贝雷架组件和第五贝雷架组件上安装第一悬挂装置、第二悬挂装置、第三悬挂装置、第四悬挂装置和第五悬挂装置;
S9:地下通道主体施工完成后,在地下通道顶板采用支架托换的方法将地下管线和热力管道托换,托换完成后,先拆除第一悬挂装置、第二悬挂装置、第三悬挂装置、第四悬挂装置和第五悬挂装置,再使用塔吊拆除第一贝雷架组、第二贝雷架组件、第三贝雷架组件、第四贝雷架组件和第五贝雷架组件,再拆除第一工字钢组件、第二工字钢组件、第三工字钢组件、第四工字钢组件和支撑贝雷梁,最后拆除第一钻孔桩、第二钻孔桩、第三钻孔桩、第四钻孔桩和第五钻孔桩。
本发明相对于现有技术取得了以下技术效果:
1、可以避免加高支护桩,规避安全风险,同时贝雷架组件叠加系统安全可靠,结构简洁,施工方便。
2、贝雷架组件可以租赁,吊架系统使用的工字钢组件和悬挂装置可以回收利用,此发明简单实用,节省成本,经济性好。
3、施工方便,无需采用大型设备和大量专业人员。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对 实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明应用于复杂管缆线交叉防护的贝雷支架系统的俯视图;
图2为本发明图1中A-A截面的示意图;
图3为本发明I型悬挂系统的主视图;
图4为本发明I型悬挂系统的侧视图;
图5为本发明II型悬挂系统的侧视图;
图6为本发明II型悬挂系统的主视图;
图7为本发明III型悬挂系统的主视图;
图8为本发明III型悬挂系统的侧视图;
图9为本发明IV型悬挂系统的侧视图;
图10为本发明IV型悬挂系统的主视图;
图11为本发明V型悬挂系统的侧视图;
图12为本发明V型悬挂系统的主视图;
图13为本发明图1中I处的主视图;
图14为本发明图1中I处的侧视图;
图15为本发明图1中II处的主视图;
图16为本发明图1中II处的侧视图;
其中:1-I型悬挂系统,2-II型悬挂系统,3-III型悬挂系统,4-IV型悬挂系统,5-V型悬挂系统,6-第一钻孔桩,7-第一工字钢组件,8-第一管线,9-第二钻孔桩,10-第二工字钢组件,11-热力管道,12-第三钻孔桩,13-第四钻孔桩,14-第三工字钢组件,15-第二管线,16-第三管线,17-支撑贝雷架组件,18-预埋钢板,19-第四工字钢组件,20-第一贝雷架组件,21-第一悬挂装置,22-第二贝雷架组件,23-第二悬挂装置,24-第三贝雷架组件,25-第三悬挂装置,26-第四贝雷架组件,27-第四悬挂装置,28-第五贝雷架组件,29-第五悬挂装置,30-第五钻孔桩。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中需要理解的是,术语“上”、“下”、“左”和“右”指示的方位或位置关系是基于附图所示的方位和位置关系,仅仅是为了方便描述的结构和操作方式,而不是指示或者暗示所指的部分必须具有特定的方位、以特定的方位操作,因而不能理解为对本发明的限制。
本发明的目的是提供一种应用于复杂管缆线交叉防护的贝雷支架系统及其施工方法,以解决现有技术存在的问题,使地下管线施工操作方便,节省成本,规避安全风险。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1-图16所示:本实施例提供了一种应用于复杂管缆线交叉防护的贝雷支架系统,包括I型悬挂系统1、II型悬挂系统2、III型悬挂系统3、IV型悬挂系统4和V型悬挂系统5,III型悬挂系统3为四组,其中两组III型悬挂系统3设置于IV型悬挂系统4的前侧,另外两组III型悬挂系统3设置于IV型悬挂系统4的后侧且与前侧的两组III型悬挂系统3一一对应,II型悬挂系统2和I型悬挂系统1自左至右依次设置于IV型悬挂系统4的左侧,V型悬挂系统5设置于IV型悬挂系统4的右侧。II型悬挂系统2、IV型悬挂系统4和V型悬挂系统5相互平行,I型悬挂系统1和III型悬挂系统3相互平行并与II型悬挂系统2相互垂直。
I型悬挂系统1和III型悬挂系统3的结构相同。具体地,I型悬挂系统1包括第一工字钢组件7、第一贝雷架组件20、第一悬挂装置21和第一钻孔桩6,第一贝雷架组件20的两端分别搭接于一第一工字钢组件7上,第一工字钢组件7的两端分别搭接于一第一钻孔桩6上,第一悬挂装置21的上端搭接于第一贝雷架组件20的上侧,第一悬挂装置21的下端用于托起第一管线8,具体地,第一管线8为10KV高压线。III型悬挂系统3包括第三工字钢组件14、第三贝雷架组件24、第三悬挂装置25、第三钻孔桩12和第四钻孔桩13,第三贝雷架组件24的两端分别搭接于一第三工字钢组件14上,第三工字钢组件14的两端分别搭接于一第三钻孔 桩12上,第三工字钢组件14的中部搭接于第四钻孔桩13上,通过第四钻孔桩13支撑第三工字钢组件14的中部,第三悬挂装置25的上端搭接于第三贝雷架组件24的上侧,其中前后对应的两组第三悬挂装置25的下端用于托起第二管线15,具体地,第二管线15为10KV高压线,另外两组第三悬挂装置25的下端用于托起第三管线16,具体地,第三管线16为60KV高压线。
II型悬挂系统2和V型悬挂系统5的结构相同。具体地,II型悬挂系统2包括第二工字钢组件10、第二贝雷架组件22、第二悬挂装置23和第二钻孔桩9,第二贝雷架组件22的两端分别搭接于一第二工字钢组件10上,第二工字钢组件10的两端分别搭接于一第二钻孔桩9上,第二悬挂装置23的上端搭接于第二贝雷架组件22的上侧,第二悬挂装置23的下端用于托起热力管道11。V型悬挂系统5包括第四工字钢组件19、第五贝雷架组件28、第五悬挂装置29和第五钻孔桩30,第五贝雷架组件28的两端分别搭接于一第四工字钢组件19上,其中一第四工字钢组件19的两端分别搭接于第三钻孔桩12上,另一第四工字钢组件19的两端分别搭接于第五钻孔桩30上,第五悬挂装置29的上端搭接于第五贝雷架组件28的上侧,第五悬挂装置29的下端用于托起热力管道11。
IV型悬挂系统4包括支撑贝雷架组件17、第四贝雷架组件26和第四悬挂装置27,第四贝雷架组件26的两端分别搭接于一支撑贝雷架组件17上,支撑贝雷架组件17的两端分别搭接于一第三钻孔桩12上,第四贝雷架组件26与支撑贝雷架组件17相互垂直,第四悬挂装置27的上端搭接于第四贝雷架组件26的上侧,第四悬挂装置27的下端用于托起热力管道11。
更具体地,第二贝雷架组件22、第四贝雷架组件26和第五贝雷架组件28的数量与热力管道11相匹配。第一贝雷架组件20、第二贝雷架组件22、第三贝雷架组件24、第四贝雷架组件26、第五贝雷架组件28和支撑贝雷架组件17均优选为采用两片贝雷架一组,两片贝雷架横向间距为30cm,使用支撑架固定成整体,纵向每片贝雷架连接采用钢销连接,按照管线两端钻孔桩间距长度配接贝雷架。第一悬挂装置21、第二悬挂装置23、第三悬挂装置25、第四悬挂装置27和第五悬挂装置29均为由 槽钢制成的框架,更具体地,框架包括上部槽钢、竖向槽钢和底部槽钢,上部槽钢和底部槽钢分别与竖向槽钢的一端焊接。第一工字钢组件7、第二工字钢组件10、第三工字钢组件14和第四工字钢组件19均由两根45a工字钢并排设置焊接而成。第一钻孔桩6、第二钻孔桩9、第三钻孔桩12、第四钻孔桩13和第五钻孔桩30的结构相同,第一钻孔桩6包括钢筋笼以及设置于钢筋笼内部的预埋钢板18,钢筋笼和预埋钢板18之间填充有混凝土。
本实施例还提供了一种上述应用于复杂管缆线交叉防护的贝雷支架系统的施工方法,包括以下步骤,
S1:按照地下管网分布图,将地下管网全部探测出来,将能迁改的管线进行迁改,不能迁改的将其全部暴露出来,以便进行钻孔桩施工,避免因实际位置与图纸位置偏差导致事故,特别是热力管道11、某轻轨10KV高压线、10KV高压线、60KV高压线;
S2:根据探测得到的地下管网的位置并结合现场实际情况,确定第一钻孔桩6、第二钻孔桩9、第三钻孔桩12、第四钻孔桩13和第五钻孔桩30的位置,具体地,钻孔桩的具体数量根据实际需要具体设置,钻机进场进行钻孔桩施工,桩孔成形后,吊装钢筋笼,钢筋笼就位后,在钢筋笼的中间位置的顶端安装预埋钢板18,安装到位后在钢筋笼和预埋钢板18之间灌注混凝土;
S3:钻孔桩养护龄期到后,外委试验室对同条件试块进行实验,确定混凝土强度是否达到强度要求,当混凝土达到强度后,破除第一钻孔桩6、第二钻孔桩9、第三钻孔桩12、第四钻孔桩13和第五钻孔桩30的桩头,将预埋钢板18周围的混凝土凿除,将第一钻孔桩6、第二钻孔桩9、第三钻孔桩12、第四钻孔桩13和第五钻孔桩30的桩顶凿成平面;
S4:分别测量两个第一钻孔桩6、第二钻孔桩9、第三钻孔桩12和第五钻孔桩30之间的间距并记录数据,根据记录的数据切割第一工字钢组件7、第二工字钢组件10、第三工字钢组件14和第四工字钢组件19,第一工字钢组件7、第二工字钢组件10、第三工字钢组件14和第四工字钢组件19的长度按照记录数据+1000mm,确保第一工字钢组件7、第二 工字钢组件10、第三工字钢组件14和第四工字钢组件19分别在第一钻孔桩6、第二钻孔桩9、第三钻孔桩12和第五钻孔桩30上的受力长度;
S5:分别在第一钻孔桩6、第二钻孔桩9、第三钻孔桩12、第四钻孔桩13和第五钻孔桩30的预埋钢板18上画出中心线,第一工字钢组件7、第二工字钢组件10第三工字钢组件14和第四工字钢组件19分别沿与之对应的预埋钢板18的中心线对称布置并焊接,同时分别将第一工字钢组件7、第二工字钢组件10、第三工字钢组件14和第四工字钢组件19的2根45a工字钢焊接成一个整体;
S6:将两组支撑贝雷架组件26分别放置于两个第四钻孔桩13上,并将支撑贝雷架组件26的两端和与之对应的预埋钢板18焊接;
S7:在第二工字钢组件10上安装第二贝雷架组件22并焊接,并在第二贝雷架组件22的两侧焊接斜撑,以保证第二贝雷架组件22的稳固;在第一工字钢组件7上安装第一贝雷架组件20并焊接,并在第一贝雷架组件20的两侧焊接斜撑,以保证第一贝雷架组件20的稳固;在两组支撑贝雷架17组件上安装第四贝雷架组件26并焊接,并在第四贝雷架组件26和支撑贝雷架组件17的两侧焊接斜撑,以保证第四贝雷架组件26和支撑贝雷架组件17的稳固;在第四工字钢组件19上安装第五贝雷架组件28并焊接,并在第五贝雷架组件28的两侧焊接斜撑,以保证第五贝雷架组件28的稳固;分别在两组第三工字钢组件14上安装两组第三贝雷架组件24并焊接,并在第三贝雷架组件24的两侧焊接斜撑,以保证第三贝雷架组件24的稳固;具体地,以上斜撑优选为20a槽钢;
S8:先按照图纸及现场实际将第一悬挂装置21、第二悬挂装置23、第三悬挂装置25、第四悬挂装置27和第五悬挂装置29所需的槽钢备料、下料,第一悬挂装置21、第二悬挂装置23、第三悬挂装置25、第四悬挂装置27和第五悬挂装置29的上部横向槽钢与竖向槽钢可先焊接成上部结构备用,底部槽钢待使用时再同上部结构焊接,分别在第一贝雷架组20、第二贝雷架组件22、第三贝雷架组件24、第四贝雷架组件26和第五贝雷架组件28上安装第一悬挂装置21、第二悬挂装置23、第三悬挂装置25、第四悬挂装置27和第五悬挂装置29;具体地,使用人工每间距100cm从管线下部掏横洞,将底部槽钢从横洞穿过,再分别将已焊好的第一悬挂装 置21、第二悬挂装置23、第三悬挂装置25、第四悬挂装置27和第五悬挂装置29的上部结构放置于第一贝雷架组20、第二贝雷架组件22、第三贝雷架组件24、第四贝雷架组件26和第五贝雷架组件28上,两名工人将底部槽钢顶紧管线,两侧各一名焊工同时焊接,将底部槽钢与上部结构中的竖向槽钢连接形成整体,上述工作完成后,使用挖掘机配合人工,从一端逐步向另一端开挖,同时6名工人配合加密框架,在已固定好的吊架系统中间再加一道框架,管线下部土层开挖完之后,将形成每50cm一道的框架,使管线全部托在底部槽钢上,形成第一悬挂装置21、第二悬挂装置23、第三悬挂装置25、第四悬挂装置27和第五悬挂装置29,以确保第一管线8、第二管线15、第三管线16和热力管道9的安全。
S9:地下通道主体施工完成后,在地下通道顶板采用支架托换的方法将地下第一管线8、第二管线15、第三管线16和热力管道11托换,托换完成后,先拆除第一悬挂装置21、第二悬挂装置23、第三悬挂装置25、第四悬挂装置27和第五悬挂装置29,再使用塔吊拆除第一贝雷架组20、第二贝雷架组件22、第三贝雷架组件24、第四贝雷架组件26和第五贝雷架组件28,再拆除第一工字钢组件7、第二工字钢组件10、第三工字钢组件14、第四工字钢组件19和支撑贝雷梁17,最后拆除第一钻孔桩6、第二钻孔桩9、第三钻孔桩12、第四钻孔桩13和第五钻孔桩30。
本实施例中的应用于复杂管缆线交叉防护的贝雷支架系统及其施工方法可以避免加高支护桩,规避安全风险,同时贝雷架组件叠加系统安全可靠,结构简洁,施工方便;贝雷架组件可以租赁,吊架系统使用的工字钢组件和悬挂装置可以回收利用,此发明简单实用,节省成本,经济性好;施工方便,无需采用大型设备和大量专业人员。
本说明书中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (9)

  1. 一种应用于复杂管缆线交叉防护的贝雷支架系统,其特征在于:包括I型悬挂系统、II型悬挂系统、III型悬挂系统、IV型悬挂系统和V型悬挂系统,所述III型悬挂系统为四组,其中两组所述III型悬挂系统设置于所述IV型悬挂系统的前侧,另外两组所述III型悬挂系统设置于所述IV型悬挂系统的后侧且与前侧的两组所述III型悬挂系统一一对应,所述II型悬挂系统和所述I型悬挂系统自左至右依次设置于所述IV型悬挂系统的左侧,所述V型悬挂系统设置于所述IV型悬挂系统的右侧,所述II型悬挂系统、所述IV型悬挂系统和所述V型悬挂系统相互平行,所述I型悬挂系统和所述III型悬挂系统相互平行并与所述II型悬挂系统相互垂直。
  2. 根据权利要求1所述的应用于复杂管缆线交叉防护的贝雷支架系统,其特征在于:所述I型悬挂系统包括第一工字钢组件、第一贝雷架组件、第一悬挂装置和第一钻孔桩,所述第一贝雷架组件的两端分别搭接于一所述第一工字钢组件上,所述第一工字钢组件的两端分别搭接于一所述第一钻孔桩上,所述第一悬挂装置的上端搭接于所述第一贝雷架组件的上侧,所述第一悬挂装置的下端用于托起第一管线;所述III型悬挂系统包括第三工字钢组件、第三贝雷架组件、第三悬挂装置、第三钻孔桩和第四钻孔桩,所述第三贝雷架组件的两端分别搭接于一所述第三工字钢组件上,所述第三工字钢组件的两端分别搭接于一所述第三钻孔桩上,所述第三工字钢组件的中部搭接于所述第四钻孔桩上,所述第三悬挂装置的上端搭接于所述第三贝雷架组件的上侧,其中前后对应的两组所述第三悬挂装置的下端用于托起第二管线,另外两组所述第三悬挂装置的下端用于托起第三管线。
  3. 根据权利要求2所述的应用于复杂管缆线交叉防护的贝雷支架系统,其特征在于:所述II型悬挂系统包括第二工字钢组件、第二贝雷架组件、第二悬挂装置和第二钻孔桩,所述第二贝雷架组件的两端分别搭接于一所述第二工字钢组件上,所述第二工字钢组件的两端分别搭接于一所述第二钻孔桩上,所述第二悬挂装置的上端搭接于所述第二贝雷架组件的上侧,所述第二悬挂装置的下端用于托起热力管道;所述V型悬挂系统 包括第四工字钢组件、第五贝雷架组件、第五悬挂装置和第五钻孔桩,所述第五贝雷架组件的两端分别搭接于一所述第四工字钢组件上,其中一所述第四工字钢组件的两端分别搭接于所述第三钻孔桩上,另一所述第四工字钢组件的两端分别搭接于所述第五钻孔桩上,所述第五悬挂装置的上端搭接于所述第五贝雷架组件的上侧,所述第五悬挂装置的下端用于托起所述热力管道。
  4. 根据权利要求3所述的应用于复杂管缆线交叉防护的贝雷支架系统,其特征在于:所述IV型悬挂系统包括支撑贝雷架组件、第四贝雷架组件和第四悬挂装置,所述第四贝雷架组件的两端分别搭接于一所述支撑贝雷架组件上,所述支撑贝雷架组件的两端分别搭接于一所述第三钻孔桩上,所述第四贝雷架组件与所述支撑贝雷架组件相互垂直,所述第四悬挂装置的上端搭接于所述第四贝雷架组件的上侧,所述第四悬挂装置的下端用于托起所述热力管道。
  5. 根据权利要求4所述的应用于复杂管缆线交叉防护的贝雷支架系统,其特征在于:所述第二贝雷架组件、所述第四贝雷架组件所述第五贝雷架组件的数量与所述热力管道相匹配。
  6. 根据权利要求4所述的应用于复杂管缆线交叉防护的贝雷支架系统,其特征在于:所述第一悬挂装置、所述第二悬挂装置、所述第三悬挂装置、所述第四悬挂装置和所述第五悬挂装置均为由槽钢制成的框架。
  7. 根据权利要求4所述的应用于复杂管缆线交叉防护的贝雷支架系统,其特征在于:所述第一工字钢组件、所述第二工字钢组件、所述第三工字钢组件和所述第四工字钢组件均由两根45a工字钢并排设置焊接而成。
  8. 根据权利要求3所述的应用于复杂管缆线交叉防护的贝雷支架系统,其特征在于:所述第一钻孔桩、所述第二钻孔桩、所述第三钻孔桩、所述第四钻孔桩和所述第五钻孔桩的结构相同,所述第一钻孔桩包括钢筋笼以及设置于所述钢筋笼内部上端的预埋钢板,所述钢筋笼和所述预埋钢板之间填充有混凝土。
  9. 一种如权利要求1-8中任意一项所述应用于复杂管缆线交叉防护的贝雷支架系统的施工方法,其特征在于,包括以下步骤,
    S1:按照地下管网分布图,将地下管网全部探测出来;
    S2:根据探测得到的地下管网的位置确定第一钻孔桩、第二钻孔桩、第三钻孔桩、第四钻孔桩和第五钻孔桩的位置,钻机进场进行钻孔桩施工,在钢筋笼的中间位置安装预埋钢板,安装到位后在钢筋笼和预埋钢板之间灌注混凝土;
    S3:混凝土达到强度,破除钻孔桩的桩头,将预埋钢板周围的混凝土凿除,将钻孔桩的桩顶凿成平面;
    S4:分别测量两个第一钻孔桩、第二钻孔桩、第三钻孔桩和第五钻孔桩之间的间距并记录数据,根据记录的数据切割第一工字钢组件、第二工字钢组件、第三工字钢组件和第四工字钢组件,第一工字钢组件、第二工字钢组件、第三工字钢组件和第四工字钢组件的长度按照记录数据+1000mm,确保第一工字钢组件、第二工字钢组件、第三工字钢组件和第四工字钢组件分别在第一钻孔桩、第二钻孔桩、第三钻孔桩和第五钻孔桩上的受力长度;
    S5:在预埋钢板上画出中心线,第一工字钢组件、第二工字钢组件、第三工字钢组件和第四工字钢组件分别沿与之对应的预埋钢板的中心线对称布置并焊接,同时分别将第一工字钢组件、第二工字钢组件、第三工字钢组件和第四工字钢组件的2根45a工字钢焊接成一个整体;
    S6:将两组支撑贝雷架组件分别放置于两个第四钻孔桩上,并将支撑贝雷架组件的两端和与之对应的预埋钢板焊接;
    S7:在第二工字钢组件上安装第二贝雷架组件并焊接,在第一工字钢组件上安装第一贝雷架组件并焊接,在两组支撑贝雷架组件上安装第四贝雷架组件并焊接,在第四工字钢组件上安装第五贝雷架组件并焊接,分别在两组第三工字钢组件上安装两组第三贝雷架组件并焊接,并在第一贝雷架组、第二贝雷架组件、第三贝雷架组件、第四贝雷架组件、第五贝雷架组件和支撑贝雷架的两侧焊接斜撑,以保证第一贝雷架组、第二贝雷架组件、第三贝雷架组件、第四贝雷架组件、第五贝雷架组件和支撑贝雷架的稳固;
    S8:分别在第一贝雷架组、第二贝雷架组件、第三贝雷架组件、第四贝雷架组件和第五贝雷架组件上安装第一悬挂装置、第二悬挂装置、第 三悬挂装置、第四悬挂装置和第五悬挂装置;
    S9:地下通道主体施工完成后,在地下通道顶板采用支架托换的方法将地下管线和热力管道托换,托换完成后,先拆除第一悬挂装置、第二悬挂装置、第三悬挂装置、第四悬挂装置和第五悬挂装置,再使用塔吊拆除第一贝雷架组、第二贝雷架组件、第三贝雷架组件、第四贝雷架组件和第五贝雷架组件,再拆除第一工字钢组件、第二工字钢组件、第三工字钢组件、第四工字钢组件和支撑贝雷梁,最后拆除第一钻孔桩、第二钻孔桩、第三钻孔桩、第四钻孔桩和第五钻孔桩。
PCT/CN2019/076471 2018-11-21 2019-02-28 应用于复杂管缆线交叉防护的贝雷支架系统及其施工方法 WO2020103351A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/625,143 US11473262B2 (en) 2018-11-21 2019-02-28 Bailey support system applied to cross protection of complex pipes and cables and construction method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811389323.9 2018-11-21
CN201811389323.9A CN109653244B (zh) 2018-11-21 2018-11-21 应用于复杂管缆线交叉防护的贝雷支架系统及其施工方法

Publications (1)

Publication Number Publication Date
WO2020103351A1 true WO2020103351A1 (zh) 2020-05-28

Family

ID=66112205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076471 WO2020103351A1 (zh) 2018-11-21 2019-02-28 应用于复杂管缆线交叉防护的贝雷支架系统及其施工方法

Country Status (3)

Country Link
US (1) US11473262B2 (zh)
CN (1) CN109653244B (zh)
WO (1) WO2020103351A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115653000A (zh) * 2022-11-15 2023-01-31 中铁隧道勘察设计研究院有限公司 一种基坑范围内重力管廊原位保护结构体系及施工方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113279428B (zh) * 2021-06-09 2022-08-12 中铁四局集团第五工程有限公司 盖挖逆作条件下半悬挂预应力混凝土墙行车道及施工方法
CN115155916A (zh) * 2022-08-02 2022-10-11 中交第四航务工程局有限公司 板桩除锈装置以及板桩处理系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787560A (zh) * 2012-08-24 2012-11-21 杭州市市政工程集团有限公司 大挑臂盖梁与立柱的支架一体化施工方法
CN203144907U (zh) * 2013-03-18 2013-08-21 广州市市政工程机械施工有限公司 大跨度双层贝雷桁架结构
CN104676110A (zh) * 2015-01-22 2015-06-03 中国地质大学(武汉) 一种基坑开挖状况下高压电缆贝雷架原地悬吊保护方法
CN205529923U (zh) * 2016-01-28 2016-08-31 中铁上海工程局集团华海工程有限公司 贝雷梁滑移式拆除装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105570539B (zh) * 2015-12-21 2018-03-20 广州机施建设集团有限公司 管线保护结构的施工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787560A (zh) * 2012-08-24 2012-11-21 杭州市市政工程集团有限公司 大挑臂盖梁与立柱的支架一体化施工方法
CN203144907U (zh) * 2013-03-18 2013-08-21 广州市市政工程机械施工有限公司 大跨度双层贝雷桁架结构
CN104676110A (zh) * 2015-01-22 2015-06-03 中国地质大学(武汉) 一种基坑开挖状况下高压电缆贝雷架原地悬吊保护方法
CN205529923U (zh) * 2016-01-28 2016-08-31 中铁上海工程局集团华海工程有限公司 贝雷梁滑移式拆除装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115653000A (zh) * 2022-11-15 2023-01-31 中铁隧道勘察设计研究院有限公司 一种基坑范围内重力管廊原位保护结构体系及施工方法

Also Published As

Publication number Publication date
CN109653244A (zh) 2019-04-19
CN109653244B (zh) 2019-10-22
US20210010222A1 (en) 2021-01-14
US11473262B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
LU102302B1 (en) Steel reinforcement cage for use in ventilation shaft diaphragm wall, and usage method
WO2020114523A1 (zh) 一种双壁围堰及墩身施工方法
WO2020103351A1 (zh) 应用于复杂管缆线交叉防护的贝雷支架系统及其施工方法
CN103123016B (zh) 随桥敷设燃气管道施工工法
CN113529740B (zh) 张弦梁支撑系统
CN215669551U (zh) 张弦梁支撑结构
CN114673169A (zh) 一种城市核心区域多层大跨深基坑盖挖顺逆结合施工方法
CN103233426A (zh) 一种软基中无支墩的贝雷梁支架及其支护方法
CN215669549U (zh) 双级张弦梁支撑结构
CN115387207A (zh) 一种浅覆盖层钢混组合桩桥墩结构及施工方法
CN213937393U (zh) 一种模块化管线悬吊保护结构
CN114809043A (zh) 一种钢管与波形钢板组合吊箱围堰及施工方法
CN109798139B (zh) 一种适用于巨型溶洞防护的框架结构及其施工方法
CN109113750B (zh) 盾构端头加固失效的应急装置及其施工方法
CN208685457U (zh) 现浇箱梁支架装置
CN111910643A (zh) 一种用于海域承台桩基钢筋笼的下放装置
CN214274677U (zh) 一种用于浅埋地下管线的贝雷架支撑保护结构
CN221052585U (zh) 全砂层地质超大直径复合桩钢管的安装系统
CN221150891U (zh) 管廊工程既有电力管沟悬吊保护装置
CN220652868U (zh) 一种横跨深基坑的电缆支托保护结构
CN217104669U (zh) 一种临时施工栈桥组合中转平台
CN215948208U (zh) 张弦梁砼支撑组合结构
CN217949124U (zh) 一种邻近深基坑开挖区域的既有高边坡支护结构
CN216512506U (zh) 一种龙门吊体系
CN215669062U (zh) 一种用于桥梁主塔牛腿的施工平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886703

Country of ref document: EP

Kind code of ref document: A1