WO2020100982A1 - 蓄電素子の管理装置、蓄電装置、車両、及び、蓄電素子の管理方法 - Google Patents

蓄電素子の管理装置、蓄電装置、車両、及び、蓄電素子の管理方法 Download PDF

Info

Publication number
WO2020100982A1
WO2020100982A1 PCT/JP2019/044703 JP2019044703W WO2020100982A1 WO 2020100982 A1 WO2020100982 A1 WO 2020100982A1 JP 2019044703 W JP2019044703 W JP 2019044703W WO 2020100982 A1 WO2020100982 A1 WO 2020100982A1
Authority
WO
WIPO (PCT)
Prior art keywords
current value
current
storage element
power storage
storage device
Prior art date
Application number
PCT/JP2019/044703
Other languages
English (en)
French (fr)
Inventor
悟 成本
剛之 白石
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2020556168A priority Critical patent/JP7428135B2/ja
Publication of WO2020100982A1 publication Critical patent/WO2020100982A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a storage device management device a storage device, a vehicle, and a storage device management method.
  • the current integration method has been known as a method of estimating the state of charge (SOC: State Of Charge) of a storage element.
  • SOC State Of Charge
  • the current integration method is a method of estimating the SOC by constantly measuring the charging / discharging current of the power storage element with a current sensor to measure the amount of electric power flowing in and out of the power storage element, and adjusting this amount from the initial capacity.
  • the above-mentioned current sensor has a resistor (shunt resistor) connected in series with the storage element, and detects the potential difference between two positions separated in the current flow direction in the resistor to measure the current value. Things are known. In such a current sensor, a temperature gradient may occur between two positions, and an electromotive force due to the Seebeck effect may cause a measurement error of the current value. If a measurement error of the current value occurs, the SOC estimation accuracy decreases.
  • Patent Document 1 a shunt resistor having a pair of current terminals and a pair of voltage terminals for detecting a voltage drop caused by a current passed between the pair of current terminals.
  • heat transfer inhibiting means for inhibiting a thermal effect is provided between each current terminal and the voltage terminal. The technique described in Patent Document 1 suppresses the occurrence of a temperature difference by the heat transfer inhibiting means.
  • Patent Document 1 discloses a technique of suppressing the influence of the Seebeck effect when estimating the state of charge of a power storage element based on a current value with a simple configuration.
  • a storage device management apparatus which has a resistor connected in series with the storage device, and detects a potential difference between two positions separated in the current flow direction in the resistor to measure a current value.
  • a current sensor and a management unit are provided, wherein the management unit indicates the state of charge of the storage element estimated based on the current value, the current generated due to a temperature gradient between the two positions.
  • a correction process for correcting based on the measurement error of the sensor is executed.
  • FIG. 1 is a schematic diagram of a power storage device according to Embodiment 1 and an automobile equipped with the power storage device. Exploded perspective view of power storage device The top view of the electric storage element shown in FIG. Sectional view of line AA shown in FIG. 3A
  • FIG. 1 is a perspective view showing a state where a power storage element is housed in the main body of FIG.
  • FIG. 4 is a perspective view showing a state in which a bus bar is attached to the power storage element of FIG.
  • a storage element management device which has a resistor connected in series with the storage element, detects a potential difference between two positions separated in the current flow direction in the resistor, and detects a current value. And a management unit, wherein the management unit generates the state of charge of the storage element estimated based on the current value due to a temperature gradient between the two positions.
  • a correction process for correcting the current sensor based on the measurement error of the current sensor is executed.
  • the current value measured by the current sensor includes a measurement error caused by the temperature gradient between the two positions of the resistor (measurement error caused by the Seebeck effect), and thus charging is performed. State estimation accuracy is reduced.
  • the charge state is corrected based on the measurement error of the current sensor due to the Seebeck effect, and as a result, the charge state can be accurately estimated. That is, according to the management device described above, the effect of the Seebeck effect can be suppressed without reducing the measurement error of the current value by providing the heat transfer inhibiting means in the resistor as in the conventional case. It is possible to suppress the influence of the Seebeck effect when estimating the state of charge of the battery with a simple configuration.
  • the power storage element is a power storage element for starting that supplies electric power to a starter that starts an engine of a vehicle, and the management unit corrects the measurement error caused after the vehicle is parked in the correction process. You may correct based on this.
  • the temperature of the two positions of the resistor may be almost the same because the power storage element is entirely warmed by the heat of the engine or the heat generation of the power storage element itself.
  • a temperature gradient is generated between the two positions depending on the configuration of the power storage element and the usage environment. For this reason, when the vehicle is parked, a measurement error of the current value is likely to occur.
  • the measurement error of the current value due to the Seebeck effect is very small, but when high accuracy is required for estimating the state of charge, the measurement error that occurs after the vehicle is parked is an error factor for estimating the state of charge for the following reasons. I can't ignore it.
  • Reason 1 Since the current value of the dark current flowing from the power storage element to the vehicle after parking is as small as several tens mA, the Seebeck effect is relatively large. In the experiment conducted by the inventors of the present application, a measurement error of about 10 mA occurred due to the temperature gradient of 1 ° C. Normally, when a vehicle is parked, a temperature gradient of 2 ° C to 3 ° C occurs. If the dark current is 20 mA, the measured current value may be twice or more the current value (20 mA) that should be measured.
  • Reason 2 Generally, the vehicle is parked longer than the time it is traveling, and therefore the measurement error that occurs after the vehicle is parked has a large effect on the estimation error of the state of charge. According to the management device described above, the estimation error of the state of charge that occurs after the vehicle is parked is corrected, so that the effect of suppressing the Seebeck effect is significant.
  • the management unit may correct the state of charge based on the measurement error that has occurred during a period in which the current value measured by the current sensor is equal to or less than a first threshold value.
  • the measurement error of the current value due to the Seebeck effect is minute, but when the current value is equal to or less than the first threshold value, the influence of the Seebeck effect becomes relatively large, and therefore it cannot be ignored as a factor of the estimation error of the charge state.
  • the state of charge is corrected based on the measurement error that occurs during the period when the current value is equal to or less than the first threshold value, so that the effect of suppressing the Seebeck effect is significant.
  • the management unit may correct the state of charge when the amount of change in the current value measured by the current sensor per unit time is larger than a second threshold value.
  • the Seebeck effect does not always occur between the two positions of the resistor (the Seebeck effect does not always occur). Whether or not the Seebeck effect is occurring can be determined from the amount of change in the current value measured by the current sensor per unit time (the slope of the graph in which the horizontal axis represents time and the vertical axis represents current value). Specifically, when there is a temperature gradient between the two positions of the resistor (when the Seebeck effect occurs), the temperatures at those two positions gradually become uniform over time. , Seebeck effect gradually converges. Therefore, when the Seebeck effect occurs, the current value changes with the passage of time. Therefore, the amount of change in the measured current value per unit time becomes large to some extent.
  • the state of charge is corrected when the amount of change in the current value per unit time is larger than the second threshold value (when the Seebeck effect is occurring). Therefore, the Seebeck effect does not occur. It is possible to prevent the correction from being performed.
  • the management unit From the time when the current value measured by the current sensor is reduced to the first threshold value or less in the correction process, the management unit then changes the current value per unit time to the second value.
  • the correction value of the state of charge may be determined based on the time until it becomes less than or equal to the threshold value and the amount of change in the current value during that time.
  • the estimation error of the state of charge due to the Seebeck effect occurs when the current value drops below a first threshold value and thereafter the amount of change in current value per unit time falls below a second threshold value (in other words, It can be expressed by the area of a triangle whose base is the time until the Seebeck effect converges and whose height is the amount of change in the current value during that time. According to the above management device, the area of the above-mentioned triangle is used as the correction value, so that the charging state can be corrected based on the measurement error of the current sensor.
  • the management unit measures a current value larger than the first threshold value by the current sensor before the amount of change per unit time of the current value measured by the current sensor becomes equal to or less than the second threshold value. If so, the correction process may be stopped.
  • the storage element may be used before the Seebeck effect converges thereafter.
  • a current larger than the first threshold value flows.
  • the measurement error of the current value due to the Seebeck effect is negligible.
  • the management device described above after the current value decreases to the first threshold value or less, before the amount of change in the current value measured by the current sensor per unit time becomes the second threshold value or less (Seebeck effect converges). If a current value larger than the first threshold value is measured before), the correction process is stopped, and thus unnecessary correction can be suppressed.
  • the management unit may correct the state of charge based on the measurement error and the temperature difference between the two positions.
  • the Seebeck effect does not always occur. Whether the Seebeck effect occurs or not can be judged from the temperature difference between the two positions of the resistor. Specifically, when the Seebeck effect occurs, the temperature difference between the two positions of the resistor becomes large to some extent. Therefore, based on the temperature difference between the two positions, it is possible to determine whether or not the Seebeck effect occurs. .. According to the management device described above, since the charge state is corrected based on the temperature difference between the two positions, it is possible to suppress the correction even if the Seebeck effect does not occur.
  • a temperature sensor that measures the temperature at the two positions is provided, and the management unit corrects the state of charge when the temperature difference between the two positions is larger than a third threshold value in the correction process. Good.
  • the estimation error is corrected when the temperature difference between the two positions is larger than the third threshold value (when the Seebeck effect is occurring). Can be suppressed.
  • the correction value of the charge state may be determined based on the time until it becomes the following and the amount of change in the current value during that time.
  • the estimation error of the charge state due to the Seebeck effect starts when the current value drops below the first threshold value and then when the temperature difference between the two positions of the resistor drops below the third threshold value (In other words, it can be represented by the area of a triangle whose base is the time until the Seebeck effect converges and whose height is the amount of change in the current value during that time. According to the management device described above, the area of the above-described triangle is used as the correction value, so that the charging state can be corrected based on the measurement error of the current sensor.
  • the management unit measures a current value larger than the first threshold value by the current sensor before the temperature difference between the two positions measured by the temperature sensor becomes equal to or less than the third threshold value. In this case, the correction process may be stopped.
  • the storage element may be used before the Seebeck effect converges thereafter.
  • a current larger than the first threshold value flows.
  • the measurement error of the current value due to the Seebeck effect is negligible.
  • the above management device after the current value has dropped to the first threshold value or less and before the temperature difference between the two positions measured by the temperature sensor becomes the third threshold value or less (before the Seebeck effect converges). If a current value larger than the first threshold value is measured, the correction process is stopped, so that unnecessary correction can be suppressed.
  • a storage unit that stores a correction value used to correct the state of charge is provided, and the management unit corrects the state of charge by using the correction value stored in the storage unit in the correction process. May be.
  • the correction value is almost constant. Therefore, if a correction value is determined in advance by experiments and stored in the storage unit, it is not necessary to obtain the correction value for each correction. Therefore, the correction process is simplified.
  • the management unit determines that a current value larger than the first threshold value is detected by the current sensor before a predetermined time elapses after the current value measured by the current sensor decreases to the first threshold value or less.
  • the correction process may be stopped.
  • the storage element Even if the current value drops below the first threshold value, the storage element may be used before the Seebeck effect converges thereafter. Normally, when a storage element is used, a current larger than the first threshold value flows. The correction value stored in the storage unit is determined on the assumption that the storage element is not used until the Seebeck effect converges. Therefore, when the storage element is used before the Seebeck effect converges (the first Even when a current value larger than the threshold value is measured), if the estimation error is corrected using the correction value, the correction error may be inappropriately corrected.
  • the storage element is used after the current value has dropped to the first threshold value or less and before the predetermined time (the time required for the convergence of the Seebeck effect, which has been determined in advance by experiments or the like) has elapsed. If so, the correction process is stopped, so that it is possible to reduce the possibility that the charge state is inappropriately corrected.
  • a power storage device comprising a power storage element and the management device according to any one of claims 1 to 12.
  • the influence of the Seebeck effect when estimating the state of charge of the power storage element based on the current value can be suppressed with a simple configuration.
  • the power storage element may have a plateau region in which a change in open circuit voltage is small with respect to a change in state of charge.
  • the charge state estimated by the current integration method is used by utilizing the fact that there is a relatively accurate correlation between the open circuit voltage (OCV: Open Circuit Voltage) and the state of charge (SOC) of the storage element. Correction is performed according to the state of charge estimated from the open circuit voltage.
  • OCV Open Circuit Voltage
  • SOC state of charge
  • the plateau region is a region in which the amount of change in OCV with respect to the amount of change in SOC is small in the OCV-SOC curve showing the correlation between OCV and SOC. Specifically, for example, a region in which the amount of change in OCV with respect to the amount of change in SOC is 2 [mV /%] or less is called a plateau region.
  • a region in which the amount of change in OCV with respect to the amount of change in SOC is 2 [mV /%] or less is called a plateau region.
  • the charge state is corrected based on the measurement error of the current sensor caused by the temperature gradient between the two positions, so that the charge state can be accurately estimated. Therefore, it is particularly useful in the case of a power storage element in which the OCV-SOC curve has a plateau region.
  • a vehicle including a power storage device, the power storage device being housed in a housing chamber in which an engine of the vehicle is housed.
  • the temperature of the engine is likely to be affected by the heat of the engine, and a measurement error of the current sensor is likely to occur.
  • the charging state is corrected based on the measurement error of the current sensor caused by the temperature gradient between the two positions, so that the charging state is stored even when the storage element is housed in the engine housing chamber. Can be accurately estimated.
  • a storage element management method comprising a resistor connected in series with the storage element, and detecting a potential difference between two positions separated in the current flow direction in the resistor to detect a current value. Based on a measurement error of the current sensor caused by the temperature gradient between the two positions, the step of estimating the state of charge of the storage element based on the current value measured by the current sensor for measuring Correcting the state of charge.
  • the invention disclosed in this specification can be realized in various forms such as an apparatus, a method, a computer program for realizing the functions of these apparatuses or methods, and a recording medium recording the computer program.
  • FIG. 1 a power storage device 1 according to the first embodiment and an automobile 2 (an example of a vehicle) including the power storage device 1 will be described.
  • the vehicle 2 shown in FIG. 1 is an engine vehicle and includes a starter for starting the engine.
  • the electric storage device 1 is a starting electric storage device that is mounted on the automobile 2 and supplies electric power to the starter.
  • FIG. 1 shows the case where power storage device 1 is housed in engine room 2A (an example of a housing chamber), power storage device 1 may be housed under the floor of a living room or in a trunk.
  • power storage device 1 includes exterior body 10 and a plurality of power storage elements 12 housed inside exterior body 10.
  • the exterior body 10 is composed of a main body 13 and a lid body 14 made of a synthetic resin material.
  • the main body 13 has a bottomed tubular shape, and is composed of a bottom surface portion 15 having a rectangular shape in a plan view and four side surface portions 16 rising from four sides thereof to be a tubular shape.
  • An upper opening 17 is formed at the upper end portion by the four side surface portions 16.
  • the lid body 14 has a rectangular shape in a plan view, and a frame body 18 extends downward from four sides thereof.
  • the lid 14 closes the upper opening 17 of the body 13.
  • a protruding portion 19 having a substantially T-shape in plan view is formed.
  • the positive electrode external terminal 20 is fixed to one corner of the two locations where the protrusion 19 is not formed on the upper surface of the lid body 14, and the negative electrode external terminal 21 is fixed to the other corner.
  • the storage element 12 is a rechargeable secondary battery, and specifically, for example, a lithium ion battery. More specifically, the electricity storage device 12 is a so-called iron-based lithium-ion battery in which lithium iron phosphate (LFP) is contained in the positive electrode active material of the electrode body 23 described later.
  • LFP lithium iron phosphate
  • the electricity storage device 12 has an electrode body 23 accommodated in a rectangular parallelepiped case 22 together with a non-aqueous electrolyte.
  • the case 22 includes a case body 24 and a cover 25 that closes an opening above the case body 24.
  • the electrode body 23 is not shown in detail, a porous resin is provided between the negative electrode element in which the base material made of copper foil is coated with the active material and the positive electrode element in which the base material made of aluminum foil is coated with the active material.
  • a separator made of a film is arranged.
  • a positive electrode terminal 27 is connected to the positive electrode element via a positive electrode current collector 26.
  • a negative electrode terminal 29 is connected to the negative electrode element via a negative electrode current collector 28.
  • Each of the positive electrode current collector 26 and the negative electrode current collector 28 has a flat plate-shaped pedestal portion 30 and leg portions 31 extending from the pedestal portion 30. Through holes are formed in the pedestal portion 30.
  • the leg portion 31 is connected to the positive electrode element or the negative electrode element.
  • Each of the positive electrode terminal 27 and the negative electrode terminal 29 has a terminal main body portion 32 and a shaft portion 33 protruding downward from the central portion of the lower surface thereof.
  • the terminal body 32 and the shaft 33 of the positive electrode terminal 27 are integrally formed of aluminum (single material).
  • the terminal body 32 is made of aluminum, the shaft 33 is made of copper, and these are assembled.
  • the terminal main body portions 32 of the positive electrode terminal 27 and the negative electrode terminal 29 are arranged on both ends of the cover 25 via gaskets 34 made of an insulating material, and are exposed to the outside from the gaskets 34.
  • a plurality of storage elements 12 are housed in the main body 13 in a state of being arranged side by side in the width direction.
  • the three storage elements 12 are set as one set from one end side to the other end side (direction Y2 from arrow Y1) of the main body 13, and the terminal polarities of the adjacent storage elements 12 in the same set are the same, and the adjacent sets are adjacent to each other.
  • the electric storage elements 12 adjacent to each other are arranged so that their terminal polarities are opposite to each other.
  • the arrow X1 side is the negative electrode and the arrow X2 side is the positive electrode.
  • the arrow X1 side is the positive electrode and the arrow X2 side is the negative electrode.
  • the third group adjacent to the second group has the same arrangement as the first group, and the fourth group adjacent to the third group has the same arrangement as the second group.
  • terminal bus bars (connecting members) 36 to 40 as conductive members are connected to the positive electrode terminal 27 and the negative electrode terminal 29 by welding.
  • the positive electrode terminals 27 are connected by the first bus bar 36.
  • the first group of negative electrode terminals 29 and the second group of positive electrode terminals 27 are connected by the second bus bar 37 on the arrow X1 side.
  • the second group of negative electrode terminals 29 and the third group of positive electrode terminals 27 are connected by the third bus bar 38 on the arrow X2 side.
  • the negative electrode terminal group 29 of the third group and the positive electrode terminal group 27 of the fourth group are connected by the fourth bus bar 39 on the arrow X1 side.
  • the negative electrode terminal group 29 is connected by the fifth bus bar 40.
  • the first bus bar 36 located at one end of the flow of electricity includes a first electronic device 42A (for example, a fuse), a second electronic device 42B (for example, a relay), a bus bar 43, and a bus bar terminal (see FIG. It is connected to the positive electrode external terminal 20 via (not shown).
  • the fifth bus bar 40 located at the other end of the flow of electricity is connected to the negative electrode external terminal 21 via the bus bars 44A and 44B and the negative electrode bus bar terminal (not shown).
  • each storage element 12 can be charged and discharged via the positive electrode external terminal 20 and the negative electrode external terminal 21.
  • the electronic devices 42A and 42B and the electric component connecting bus bars 43, 44A, and 44B are attached to the circuit board unit 41 disposed above the plurality of power storage elements 12 that are stacked.
  • the bus bar terminal is arranged on the lid body 14.
  • the power storage device 1 includes the plurality of power storage elements 12 described above and a BMS (Battery Management System) 50 that manages the power storage elements 12.
  • the BMS 50 is an example of a management device.
  • the BMS 50 includes a current sensor 51, a voltage sensor 52, and a management unit 55.
  • the current sensor 51 is connected to the storage element 12 in series.
  • the current sensor 51 measures the charge / discharge current of the storage element 12 and outputs it to the management unit 55.
  • the specific configuration of the current sensor will be described later.
  • the voltage sensor 52 is connected to each power storage element 12 in parallel.
  • the voltage sensor 52 measures the terminal voltage of each storage element 12 and outputs it to the management unit 55.
  • the management unit 55 includes a CPU 55B, a ROM 55C (an example of a storage unit), a microcomputer 55A (so-called microcomputer) in which a RAM 55D and the like are integrated into one chip, a communication unit 55E, and the like. These are mounted on the circuit board unit 41 shown in FIG. A management program and various data are stored in the ROM 55C.
  • the management unit 55 manages the storage element 12 by executing the management program stored in the ROM 55C.
  • the communication unit 55E is an interface for the CPU 55B to communicate with a system on the automobile 2 side (for example, ECU: Engine Control Unit).
  • the configuration of the current sensor 51 will be described with reference to FIG. 7.
  • the current sensor 51 measures the potential difference between the shunt resistor 60 (an example of a resistor) connected in series with the storage element 12 and two measurement positions 61 (61L, 61R) in the shunt resistor 60 that are separated from each other in the current flow direction. It has a detection circuit 62 for detecting, and calculates a current value from the resistance value of the shunt resistor 60 and the potential difference between the two measurement positions 61.
  • the two measurement positions 61 are examples of positions.
  • the management unit 55 executes the estimation process and the correction process described below.
  • the estimation process is a process of estimating the SOC of the storage element 12 by the current integration method.
  • the current integration method is a method in which the charge / discharge current of the storage element 12 is constantly measured by the current sensor 51 to measure the amount of electric power that enters and exits the storage element 12, and the SOC is estimated by adjusting this amount from the initial capacity. ..
  • the SOC estimated by the current integration method is an example of “the state of charge of the storage element estimated based on the current value”.
  • bus bars B1 and B2 are connected to both ends of the shunt resistor 60.
  • the left side of the shunt resistor 60 is the power storage element 12 side
  • the right side is the negative electrode external terminal 21 side.
  • the bus bar B1 connected to the left side of the shunt resistor 60 has a smaller heat capacity than the bus bar B2 connected to the right side.
  • the power storage device 1 Normally, when the engine is operating, when the battery is rapidly charged, or when a large current is discharged, the power storage device 1 is entirely warmed by the heat of the engine or the heat generated by the power storage element 12 itself. The temperature is almost the same. However, when the heat capacity of the bus bar B1 is smaller than that of the bus bar B2, when the vehicle is parked and the temperatures of the bus bar B1 and the bus bar B2 decrease, the bus bar B1 generates more heat than the bus bar B2. Therefore, the temperature of the bus bar B1 is higher than that of the bus bar B2.
  • the temperature of the bus bar B1 is higher than that of the bus bar B2
  • the temperature of the left measurement position 61L of the shunt resistor 60 is higher than that of the right measurement position 61R.
  • a current in the left direction flows through the shunt resistor 60 by the electromotive force of the Seebeck effect due to this temperature gradient. Therefore, the current value measured by the current sensor 51 is the current value of the discharge current of the storage element 12 plus the current value due to the Seebeck effect, resulting in a measurement error in which the current value is measured larger than it should be.
  • the measurement error of the current value is not limited to the large measurement error.
  • the temperature of the bus bar B2 may be higher than that of the bus bar B1 because the heat capacity of the bus bar B2 is smaller than that of the bus bar B1.
  • a current flows in the right direction (charging direction). Therefore, the current value measured by the current sensor 51 is the current value of the discharge current of the storage element 12 minus the current value due to the Seebeck effect, and a measurement error occurs in which the current value is measured smaller than it should be.
  • the cause of the temperature difference between the bus bars B1 and B2 is not limited to the difference in heat capacity.
  • a temperature difference may occur depending on the environment around the power storage device 1.
  • the temperature of the bus bar B1 may be higher than that of the bus bar B2 due to the heat of the engine because the bus bar B1 is closer to the engine than the bus bar B2.
  • the management unit 55 uses the SOC estimated by the current integration method to measure the SOC of the current sensor 51 caused by the temperature gradient between the two measurement positions 61 (the current sensor caused by the Seebeck effect). The correction process is performed based on (measurement error of 51). The details will be described below.
  • FIG. 8 shows an example in which a measurement error occurs in which a large current value is measured.
  • the solid line 65 indicates the current value measured by the current sensor 51 (the current value including the measurement error due to the Seebeck effect), and the dotted line 66 is the current value measured when the Seebeck effect does not occur (original The current value to be measured) is shown.
  • the difference between the solid line 65 and the dotted line 66 corresponds to the measurement error of the current sensor 51 caused by the temperature gradient between the two measurement positions 61.
  • time T1 is the time when the automobile 2 is parked.
  • the discharge current of the storage element 12 gradually decreases.
  • the discharge current does not completely reach 0 mA, and a minute dark current of 20 mA or the like flows during parking.
  • Time point T2 is a time point when the current value drops below the first threshold value (for example, 100 mA).
  • the first threshold value is not limited to 100 mA and can be appropriately determined.
  • -Time T4 indicates the time when the Seebeck effect has converged.
  • the temperatures at the two measurement positions 61 gradually become uniform over time, so that the Seebeck effect is generated. It gradually converges. Therefore, the current value measured by the current sensor 51 gradually decreases from time T2 to time T4.
  • the management unit 55 corrects the SOC based on the measurement error of the current sensor 51 that occurs during the period from the time T2 to the time T4 (the time when the current value is 100 mA or less). Specifically, the area of the triangle 67 shown by hatching in FIG. 8 corresponds to the SOC estimation error caused by the measurement error of the current sensor 51 occurring during the period from time T2 to time T4. Therefore, the management unit 55 corrects the SOC by subtracting the area of the triangle 67 from the SOC estimated by the current integration method.
  • the storage element 12 may be used before the Seebeck effect converges after that.
  • a current larger than 100 mA flows.
  • the management unit 55 stops the correction process when a current value larger than 100 mA is measured before the Seebeck effect converges after the current value decreases to 100 mA or less.
  • Fig. 9 is an example of the case where a measurement error occurs when the current value is small.
  • the SOC is estimated to be smaller than it should be due to the measurement error of the current sensor 51. Therefore, the management unit 55 adds the area of the hatched triangle 68 in FIG. 9 to the SOC estimated by the current integration method to calculate the SOC. to correct.
  • the management unit 55 determines whether the automobile 2 is parked. Specifically, the management unit 55 receives a signal indicating the state of the engine from the ECU of the automobile 2 at regular time intervals, and determines from the signal whether or not the automobile 2 is parked. The method of determining whether or not the automobile 2 is parked is not limited to this, and an appropriate method can be used. For example, when the engine vibration is no longer detected, it may be determined that the automobile 2 is parked. If the vehicle 2 is parked, the management unit 55 proceeds to S102, and if not parked, the management unit 55 executes S101 again after a predetermined time has elapsed.
  • the management unit 55 waits until the current sensor 51 measures the next current value, and when the current value is measured, the process proceeds to S103.
  • the management unit 55 determines whether or not the measured current value is 100 mA or less. If it is 100 mA or less, the process proceeds to S104, and if it is greater than 100 mA, the process returns to S102 and repeats the process.
  • the management unit 55 starts counting the time and stores the first measured current value as the current value of 100 mA or less in the RAM 55D. For example, assume that the current value measured last time is 103 mA and the current value measured this time is 98 mA. In this case, the management unit 55 determines in S103 that the current value has dropped to 100 mA or less, starts counting time in S104, and stores 98 mA in the RAM 55D.
  • the management unit 55 determines whether the Seebeck effect has occurred. Whether or not the Seebeck effect is occurring can be determined from the amount of change in the current value measured by the current sensor 51 per unit time (the slope of the graph in which the horizontal axis represents time and the vertical axis represents current value). In the following description, the amount of change in the current value per unit time is called the slope of the current value.
  • the Seebeck effect when the Seebeck effect does not occur, the dark current is almost constant (for example, 20 mA), so the slope of the measured current value is almost zero.
  • the Seebeck effect when the Seebeck effect occurs, the current value gradually decreases, so that the absolute value of the slope of the current value increases to some extent. Therefore, it can be determined whether or not the Seebeck effect is occurring depending on whether or not the absolute value of the slope of the current value is larger than the second threshold value (for example, 0.1).
  • the management unit 55 waits until a predetermined time (for example, 3 minutes) elapses after determining in S103 that the current value has dropped to 100 mA or less.
  • time point T3 indicates the time point when a predetermined time has elapsed.
  • the management unit 55 may not wait until a predetermined time elapses, but may wait until the current value is measured a predetermined number of times (for example, 10 times).
  • the management unit 55 calculates the slope from the current value measured during the predetermined time, and if the calculated slope is larger than the second threshold value, determines that the Seebeck effect is occurring and proceeds to S106. If the slope is less than or equal to the second threshold value, the management unit 55 determines that the Seebeck effect is not occurring (or is negligible even if it is occurring) and cancels this process.
  • the management unit 55 stands by until the next current value is measured by the current sensor 51, and when the current value is measured, the process proceeds to S107.
  • the management unit 55 determines whether or not the measured current value is larger than 100 mA. When the current value is 100 mA or less, the management unit 55 determines that the power storage element 12 is not used and proceeds to S108, and when the current value is higher than 100 mA, determines that the power storage element 12 has been used and cancels this process.
  • the management unit 55 determines whether or not the Seebeck effect has converged. Specifically, when the Seebeck effect converges, the current value becomes constant at about 20 mA, so that the absolute value of the slope of the current value becomes almost zero. Therefore, the management unit 55 calculates the slope of the current value from the current value measured last time and the current value measured this time. The slope may be calculated from the current value measured by the latest three or more measurements including this time. The management unit 55 determines whether or not the calculated absolute value of the slope of the current value is equal to or less than the second threshold value, and when the absolute value is equal to or less than the second threshold value, determines that the Seebeck effect has converged and proceeds to S109. If it is larger than the second threshold value, the process returns to S106 and repeats the processing.
  • the management unit 55 determines a correction value for correcting the SOC. Specifically, the management unit 55 determines from the current value (for example, 98 mA) stored in the RAM 55D in S104 that the absolute value of the slope of the current value becomes equal to or less than the second threshold value T4 (time when the Seebeck effect converges). ), The amount of change in the current value (height of the triangle 67) is obtained. The management unit 55 determines the correction value (the area of the triangle 67) by dividing the product of the time from the time T2 to the time T4 (base of the triangle 67) and the amount of change in the current value described above by 2. The correction value can also be restated as a value obtained by integrating the measurement error of the current sensor 51 caused by the temperature gradient between the two measurement positions 61.
  • the correction value can also be restated as a value obtained by integrating the measurement error of the current sensor 51 caused by the temperature gradient between the two measurement positions 61.
  • the management unit 55 corrects the SOC by subtracting the correction value determined in S109 from the SOC estimated by the current integration method.
  • the current value at time T5 (the time when the Seebeck effect converges) is subtracted from the current value stored in the RAM 55D in S104. Since the amount of change in the current value has a negative value, the correction value also has a negative value. In this case, when the correction value is subtracted from the SOC, the negative value is subtracted, and as a result, the positive correction value is added.
  • the SOC estimated by the current integration method is used to calculate the SOC based on the measurement error of the current sensor 51 caused by the temperature gradient between the two measurement positions 61 of the shunt resistor 60. Since the correction is performed, it is possible to suppress the influence of the Seebeck effect without reducing the measurement error of the current value by providing the shunt resistor 60 with heat transfer inhibiting means as in the conventional case. Therefore, the influence of the Seebeck effect when estimating the SOC by the current integration method can be suppressed with a simple configuration.
  • the SOC is corrected based on the measurement error of the current sensor 51 that occurs after the automobile 2 is parked, so that the effect of suppressing the Seebeck effect becomes remarkable.
  • the SOC is corrected based on the measurement error of the current sensor 51 that occurs during the period when the current value is 100 mA or less (the period after the time T2), so that the effect of suppressing the Seebeck effect becomes remarkable.
  • the SOC is corrected when the absolute value of the slope of the current value is larger than the second threshold value (when the Seebeck effect is occurring), so the correction is performed even though the Seebeck effect is not occurring. Can be suppressed.
  • the SOC can be corrected based on the measurement error of the current sensor 51.
  • the influence of the Seebeck effect can be suppressed without providing the heat transfer inhibiting means to the shunt resistor 60 to reduce the measurement error of the current value as in the conventional case. Therefore, the influence of the Seebeck effect when the SOC is estimated by the current integration method can be suppressed with a simple configuration.
  • the SOC is corrected based on the measurement error of the current sensor 51 caused by the Seebeck effect, so that the SOC can be accurately estimated. Therefore, it is particularly useful in the case of the electricity storage device 12 in which the OCV-SOC curve has a plateau region.
  • the SOC can be accurately estimated even if the power storage device 1 is housed in the engine room 2A of the automobile 2.
  • the BMS 50 includes a temperature sensor 70 that measures the temperature near the measurement position 61L of the shunt resistor 60, and a temperature sensor 71 that measures the temperature near the measurement position 61R. ..
  • the management unit 55 according to the second embodiment determines whether the Seebeck effect has occurred based on the temperature difference between the two measurement positions 61.
  • the management unit 55 determines whether or not the Seebeck effect is occurring depending on whether or not the temperature difference between the two measurement positions 61 is larger than the third threshold value.
  • the management unit 55 corrects the SOC when the current value decreases to 100 mA or less and the temperature difference between the two measurement positions 61 is larger than the third threshold value (when the Seebeck effect occurs).
  • the SOC estimation error due to the measurement error of the current sensor 51 caused by the Seebeck effect shows that the temperature difference between the two measurement positions 61 of the shunt resistor 60 is the first value after the current value decreases to 100 mA or less. It can be represented by the area of a triangle whose base is the time until it becomes equal to or less than the threshold value of 3 (in other words, when the Seebeck effect converges) and whose amount of change in current value during that time is height. Therefore, the management unit 55 sets the area of the triangle as a correction value.
  • the SOC is corrected based on the temperature difference between the two measurement positions 61, the correction can be suppressed even though the Seebeck effect does not occur.
  • the SOC is corrected when the temperature difference between the two measurement positions 61 is larger than the third threshold value (when the Seebeck effect is occurring), so the correction is performed even though the Seebeck effect is not occurring. Can be suppressed.
  • the area of the above-mentioned triangle is used as the correction value, so the SOC can be corrected based on the measurement error of the current sensor 51.
  • the SOC correction value is determined in advance by experiments and stored in the ROM 55C.
  • the management unit 55 determines If it is larger than the third threshold value), the SOC is corrected using the correction value.
  • the correction value will be a substantially constant value. Therefore, if a correction value is determined in advance by experiment and stored in the ROM 55C, the correction value does not have to be calculated each time. Therefore, the correction process is simplified.
  • the storage element 12 may be used before the Seebeck effect converges after that.
  • the correction value stored in the ROM 55C is determined on the assumption that the storage element 12 is not used until the Seebeck effect converges. Therefore, even when the storage element 12 is used before the Seebeck effect converges, the correction value is set to the correction value. If used to correct the SOC, it may be inappropriately corrected.
  • the management unit 55 uses the storage element 12 after the current value has dropped to 100 mA or less and before the predetermined time (the time required for the convergence of the Seebeck effect, which is determined in advance by experiments or the like) elapses. In that case (specifically, when the current sensor 51 measures a current value larger than 100 mA), the correction process is stopped. Therefore, it is possible to reduce the possibility that the SOC is inappropriately corrected.
  • the management unit 55 determines whether or not the automobile 2 is parked, and when the automobile 2 is parked, determines whether or not the current value has dropped to 100 mA or less, and up to 100 mA or less. When it decreases, it is judged whether the Seebeck effect is occurring.
  • the management unit 55 may not determine whether the automobile 2 is parked. Specifically, the management unit 55 may determine whether or not the Seebeck effect occurs when the current value drops to 100 mA or less, regardless of whether or not the automobile 2 is parked. Alternatively, it may not be determined whether or not the current value has dropped to 100 mA or less. Specifically, when the automobile 2 is parked, the management unit 55 may determine whether or not the Seebeck effect has occurred regardless of whether or not the current value has dropped to 100 mA or less.
  • the correction process is stopped if the engine is started before the Seebeck effect converges (S107), but the engine is started if the engine is started before the Seebeck effect converges.
  • the SOC may be corrected by calculating a correction value up to.
  • the Seebeck effect it is determined that the Seebeck effect has converged when the slope of the current value is less than or equal to the second threshold.
  • the dark current becomes substantially constant. Therefore, for example, it may be determined that the Seebeck effect has converged when the current value falls within a predetermined dark current ⁇ 2 mA.
  • the dark current when the Seebeck effect converges may differ depending on the vehicle model. Therefore, when it is determined that the Seebeck effect has converged when the current value falls within the predetermined dark current ⁇ 2 mA, it is desirable to store the predetermined dark current for each vehicle type.
  • it is determined whether or not the Seebeck effect has converged from the slope of the current value it can be determined whether or not the Seebeck effect has converged regardless of the vehicle type, which is more versatile.
  • the case where the temperatures of the measurement positions 61L and 61R of the shunt resistor 60 are measured has been described as an example, but the temperatures of the busbars B1 and B2 may be measured.
  • the temperature measured by the temperature sensor may be used.
  • the automobile 2 includes a temperature sensor that measures the temperature of the bus bar that connects the automobile 2 and the power storage device 1, the temperature measured by the temperature sensor may be used.
  • the correction value is determined in advance by experiments or the like and stored in the ROM 55C.
  • the correction value itself is not stored in the ROM 55C, but the time until the Seebeck effect converges (for example, when the current value decreases to 100 mA or less, the slope of the current value becomes the second threshold value or less).
  • (Time to time) is stored in the ROM 55C, while the amount of change in current value during that time is actually measured, and the product of the time stored in the ROM 55C and the amount of change in current value during that period is divided by 2. May be used as the correction value.
  • the amount of change in the current value from the time when the current value drops to 100 mA or less to the time when the slope of the current value becomes the second threshold value or less is stored in the ROM 55C while the Seebeck effect converges. May be actually measured.
  • the correction value stored in the ROM 55C may be adjusted and used.
  • the correction value may be adjusted according to the vehicle type in which the power storage device 1 is mounted, or may be adjusted according to the internal temperature of the power storage device 1 and the outside air temperature.
  • the iron-based power storage element 12 has been described as an example of the power storage element 12 in the above embodiment, the power storage element 12 is not limited to the iron-based power storage element 12 and may be another lithium ion battery.
  • the power storage element 12 for starting is described as an example, but the application of the power storage element 12 is not limited to this.
  • the electricity storage device 12 may be for an auxiliary machine that is mounted in an electric vehicle or a hybrid vehicle and supplies electric power to auxiliary machines, or may be a forklift or an automatic guided vehicle (AGV) that runs on an electric motor.
  • AGV automatic guided vehicle
  • Power storage element 12 may be used for an uninterruptible power supply (UPS), or may be used for a mobile terminal or the like. It may be a power storage device used for peak shift or a power storage device that stores renewable energy.
  • UPS uninterruptible power supply
  • the current value decreases to 100 mA or less and then the change amount of the current value per unit time occurs in the period from the second threshold value to the second threshold value.
  • the case has been described as an example where the SOC is corrected based on the measurement error of the current sensor 51.
  • the period for correcting the SOC is not limited to this, and the SOC may be corrected for any period as long as it is a period between when the vehicle 2 is parked and when the engine of the vehicle 2 is started.
  • the temperature of the power storage device 1 decreases due to low temperature (environmental temperature).
  • the bus bar connected to one end of the shunt resistor 60 is housed inside the power storage device 1, but the bus bar connected to the other end is outside the power storage device 1 in order to connect with the automobile 2.
  • the temperature of the bus bar connected to the other end rises first.
  • the SOC estimation error caused by the Seebeck effect generated at this time may be corrected.
  • the BMS 50 generally operates by the electric power supplied from the storage element 12. Therefore, the BMS 50 shifts to the sleep mode when the vehicle 2 is parked. In the sleep mode, power consumption is suppressed by lengthening the cycle of measuring the current value and the voltage value.
  • the BMS 50 determines that the engine has started when a current of a predetermined value or more flows, and returns to the normal mode (mode in which the measurement cycle is short).
  • the current value includes a measurement error
  • the current value measured by the current sensor 51 may be corrected based on the measurement error, and the corrected current value may be used to avoid returning from the sleep mode to the normal mode. This can prevent the battery from running out.
  • the lithium-ion battery is described as an example of the storage element, but the storage element is not limited to this.
  • the power storage element may be a capacitor that involves an electrochemical reaction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

蓄電素子12のBMS50であって、蓄電素子12と直列に接続されているシャント抵抗60を有し、シャント抵抗60において電流の流れ方向に離間した二つの計測位置61(61L,61R)の電位差を検出して電流値を計測する電流センサ51と、管理部55と、を備え、管理部55は、電流値に基づいて推定された蓄電素子12のSOCを、二つの位置61(61L,61R)の間の温度勾配に起因して生じた電流センサ51の計測誤差に基づいて補正する補正処理を実行する、BMS50。

Description

蓄電素子の管理装置、蓄電装置、車両、及び、蓄電素子の管理方法
 蓄電素子の管理装置、蓄電装置、車両、及び、蓄電素子の管理方法に関する。
 従来、蓄電素子の充電状態(SOC:State Of Charge)を推定する方法として電流積算法が知られている。電流積算法は電流センサによって蓄電素子の充放電電流を常時計測することで蓄電素子に出入りする電力量を計測し、これを初期容量から加減することでSOCを推定する方法である。
 上述した電流センサとしては、蓄電素子と直列に接続されている抵抗体(シャント抵抗)を有し、抵抗体において電流の流れ方向に離間した二つの位置の電位差を検出して電流値を計測するものが知られている。このような電流センサでは二つの位置の間に温度勾配が生じ、ゼーベック効果による起電力によって電流値の計測誤差が生じる場合がある。電流値の計測誤差が生じるとSOCの推定精度が低下する。
 このため、従来、ゼーベック効果の影響を抑制する試みが行われている(例えば、特許文献1参照)。具体的には、特許文献1に記載の技術では、一対の電流端子と、当該一対の電流端子間に通電される電流によって発生する電圧降下を検出するための一対の電圧端子とを有するシャント抵抗において、各電流端子と電圧端子との間に熱的影響を阻害するための伝熱阻害手段が設けられている。特許文献1に記載の技術は、伝熱阻害手段によって温度差の発生を抑制する。
特開2011-047721号公報
 しかしながら、上述した特許文献1に記載の技術では電流端子と電圧端子との間に伝熱阻害手段を備える必要があり、シャント抵抗の構成が複雑になる。
 本明細書では、電流値に基づいて蓄電素子の充電状態を推定する場合のゼーベック効果の影響を簡素な構成で抑制する技術を開示する。
 蓄電素子の管理装置であって、前記蓄電素子と直列に接続されている抵抗体を有し、前記抵抗体において電流の流れ方向に離間した二つの位置の電位差を検出して電流値を計測する電流センサと、管理部と、を備え、前記管理部は、前記電流値に基づいて推定された前記蓄電素子の充電状態を、前記二つの位置の間の温度勾配に起因して生じた前記電流センサの計測誤差に基づいて補正する補正処理を実行する。
 電流値に基づいて蓄電素子の充電状態を推定する場合のゼーベック効果の影響を簡素な構成で抑制できる。
実施形態1に係る蓄電装置、及び、その蓄電装置が搭載されている自動車の模式図 蓄電装置の分解斜視図 図2に示す蓄電素子の平面図 図3Aに示すA-A線の断面図 図1の本体内に蓄電素子を収容した状態を示す斜視図 図4の蓄電素子にバスバーを装着した状態を示す斜視図 蓄電装置の電気的構成を示す模式図 電流センサの模式図 車両の駐車後の電流値の変化を示すグラフ(電流値が大きく計測される計測誤差が生じる場合) 車両の駐車後の電流値の変化を示すグラフ(電流値が小さく計測される計測誤差が生じる場合) 補正処理のフローチャート 実施形態2に係る電流センサの模式図 鉄系の蓄電素子のOCV-SOCカーブ
 (本実施形態の概要)
 (1)蓄電素子の管理装置であって、前記蓄電素子と直列に接続されている抵抗体を有し、前記抵抗体において電流の流れ方向に離間した二つの位置の電位差を検出して電流値を計測する電流センサと、管理部と、を備え、前記管理部は、前記電流値に基づいて推定された前記蓄電素子の充電状態を、前記二つの位置の間の温度勾配に起因して生じた前記電流センサの計測誤差に基づいて補正する補正処理を実行する。
 上記の管理装置によると、電流センサによって計測される電流値は抵抗体の二つの位置の間の温度勾配に起因する計測誤差(ゼーベック効果に起因する計測誤差)を含んだものとなるため、充電状態の推定精度が低下する。しかしながら、上記の管理装置によると、ゼーベック効果に起因する電流センサの計測誤差に基づいて充電状態を補正するので、結果として充電状態を精度よく推定できる。
 すなわち、上記の管理装置によると、従来のように抵抗体に伝熱阻害手段を設けて電流値の計測誤差を低減しなくてもゼーベック効果の影響を抑制できるので、電流値に基づいて蓄電素子の充電状態を推定する場合のゼーベック効果の影響を簡素な構成で抑制できる。
 (2)前記蓄電素子は車両のエンジンを始動させるスタータに電力を供給する始動用の蓄電素子であり、前記管理部は、前記補正処理において、前記車両が駐車されてから生じた前記計測誤差に基づいて補正してもよい。
 車両が走行中のときはエンジンの熱や蓄電素子自体の発熱などによって蓄電素子が全体に暖まっているため、抵抗体の二つの位置の温度はほぼ同じ場合がある。しかしながら、車両が駐車されると蓄電素子の構成や使用環境などによっては二つの位置の間に温度勾配が生じる。このため、車両が駐車されると電流値の計測誤差が生じ易い。
 一般にゼーベック効果による電流値の計測誤差は微小であるが、充電状態の推定に高い精度が求められる場合は、車両が駐車されてから生じた計測誤差は以下の理由から充電状態の推定誤差要因として無視できない。
 理由1:駐車された後に蓄電素子から車両に流れる暗電流の電流値は数十mAと微小であるため、ゼーベック効果の影響が相対的に大きくなる。本願発明者らが実験したところでは、1℃の温度勾配によって10mA程度の計測誤差が生じた。通常、車両が駐車されると2℃~3℃の温度勾配が生じる。暗電流が20mAであるとすると、計測される電流値は本来計測されるべき電流値(20mA)の2倍以上になる可能性がある。
 理由2:一般に車両は走行している時間よりも駐車されている時間の方が長いため、車両が駐車されてから生じた計測誤差は充電状態の推定誤差に大きく影響する。
 上記の管理装置によると、車両が駐車されてから生じた充電状態の推定誤差を補正するので、ゼーベック効果の影響を抑制する効果が顕著となる。
 (3)前記管理部は、前記補正処理において、前記電流センサによって計測された電流値が第1の閾値以下である期間に生じた前記計測誤差に基づいて前記充電状態を補正してもよい。
 一般にゼーベック効果による電流値の計測誤差は微小であるが、電流値が第1の閾値以下のときはゼーベック効果の影響が相対的に大きくなるので、充電状態の推定誤差要因として無視できない。
 上記の管理装置によると、電流値が第1の閾値以下である期間に生じた計測誤差に基づいて充電状態を補正するので、ゼーベック効果の影響を抑制する効果が顕著となる。
 (4)前記管理部は、前記電流センサによって計測された電流値の単位時間当たりの変化量が第2の閾値より大きい場合に前記充電状態を補正してもよい。
 電流値が第1の閾値以下になっても必ずしも抵抗体の二つの位置の間に温度勾配が生じるとは限らない(ゼーベック効果が生じるとは限らない)。
 ゼーベック効果が生じているか否かは、電流センサによって計測された電流値の単位時間当たりの変化量(横軸を時間、縦軸を電流値としたグラフの傾き)から判断できる。具体的には、抵抗体の二つの位置の間に温度勾配が生じている場合(ゼーベック効果が生じている場合)は時間の経過に伴ってそれら二つの位置の温度が徐々に均一になるため、ゼーベック効果が徐々に収束する。このため、ゼーベック効果が生じている場合は時間の経過に伴って電流値が変化する。このため、計測される電流値の単位時間当たりの変化量がある程度大きくなる。このため、電流値の単位時間当たりの変化量が第2の閾値より大きいか否かにより、ゼーベック効果が生じているか否かを判断できる。
 上記の管理装置によると、電流値の単位時間当たりの変化量が第2の閾値より大きい場合(ゼーベック効果が生じている場合)に充電状態を補正するので、ゼーベック効果が生じていないにもかかわらず補正が行われることを抑制できる。
 (5)前記管理部は、前記補正処理において、前記電流センサによって計測された電流値が前記第1の閾値以下まで低下したときから、その後に電流値の単位時間当たりの変化量が前記第2の閾値以下になったときまでの時間と、その間の電流値の変化量とに基づいて前記充電状態の補正値を決定してもよい。
 ゼーベック効果に起因する充電状態の推定誤差は、電流値が第1の閾値以下まで低下したときから、その後に電流値の単位時間当たりの変化量が第2の閾値以下になったとき(言い換えるとゼーベック効果が収束したとき)までの時間を底辺、その間の電流値の変化量を高さとする三角形の面積によって表すことができる。
 上記の管理装置によると、上述した三角形の面積を補正値とするので、電流センサの計測誤差に基づいて充電状態を補正できる。
 (6)前記管理部は、前記電流センサによって計測された電流値の単位時間当たりの変化量が前記第2の閾値以下になる前に前記電流センサによって前記第1の閾値より大きい電流値が計測された場合は前記補正処理を中止してもよい。
 電流値が第1の閾値以下まで低下しても、その後にゼーベック効果が収束する前に蓄電素子が使用される場合がある。通常、蓄電素子が使用される場合は第1の閾値より大きい電流が流れる。電流値が第1の閾値より大きい場合はゼーベック効果による電流値の計測誤差は無視できる程度である。
 上記の管理装置によると、電流値が第1の閾値以下まで低下した後、電流センサによって計測された電流値の単位時間当たりの変化量が第2の閾値以下になる前(ゼーベック効果が収束する前)に第1の閾値より大きい電流値が計測された場合は補正処理を中止するので、無用な補正を抑制できる。
 (7)前記管理部は、前記補正処理において、前記計測誤差と前記二つの位置の温度差とに基づいて前記充電状態を補正してもよい。
 電流値が第1の閾値以下になっても必ずしも抵抗体の二つの位置の間に温度勾配が生じるとは限らない(ゼーベック効果が生じるとは限らない)。ゼーベック効果が生じているか否かは、抵抗体の二つの位置の温度差から判断できる。具体的には、ゼーベック効果が生じている場合は抵抗体の二つの位置の温度差がある程度大きくなるので、二つの位置の温度差に基づくことにより、ゼーベック効果が生じているか否かを判断できる。
 上記の管理装置によると、二つの位置の温度差に基づいて充電状態を補正するので、ゼーベック効果が生じていないにもかかわらず補正が行われることを抑制できる。
 (8)前記二つの位置の温度を計測する温度センサを備え、前記管理部は、前記補正処理において、前記二つの位置の温度差が第3の閾値より大きい場合に前記充電状態を補正してもよい。
 上記の管理装置によると、二つの位置の温度差が第3の閾値より大きい場合(ゼーベック効果が生じている場合)に推定誤差を補正するので、ゼーベック効果が生じていないにもかかわらず補正が行われることを抑制できる。
 (9)前記管理部は、前記補正処理において、前記電流センサによって計測された電流値が前記第1の閾値以下まで低下したときから、その後に前記二つの位置の温度差が前記第3の閾値以下になったときまでの時間と、その間の電流値の変化量とに基づいて前記充電状態の補正値を決定してもよい。
 ゼーベック効果に起因する充電状態の推定誤差は、電流値が第1の閾値以下まで低下したときから、その後に抵抗体の二つの位置の間の温度差が第3の閾値以下になったとき(言い換えるとゼーベック効果が収束したとき)までの時間を底辺、その間の電流値の変化量を高さとする三角形の面積によって表すことができる。
 上記の管理装置によると、上述した三角形の面積を補正値とするので、電流センサの計測誤差に基づいて充電状態を補正できる。
 (10)前記管理部は、前記温度センサによって計測された前記二つの位置の温度差が前記第3の閾値以下になる前に前記電流センサによって前記第1の閾値より大きい電流値が計測された場合は前記補正処理を中止してもよい。
 電流値が第1の閾値以下まで低下しても、その後にゼーベック効果が収束する前に蓄電素子が使用される場合がある。通常、蓄電素子が使用される場合は第1の閾値より大きい電流が流れる。電流値が第1の閾値より大きい場合はゼーベック効果による電流値の計測誤差は無視できる程度である。
 上記の管理装置によると、電流値が第1の閾値以下まで低下した後、温度センサによって計測された二つの位置の温度差が第3の閾値以下になる前(ゼーベック効果が収束する前)に第1の閾値より大きい電流値が計測された場合は補正処理を中止するので、無用な補正を抑制できる。
 (11)前記充電状態の補正に用いる補正値を記憶する記憶部を備え、前記管理部は、前記補正処理において、前記記憶部に記憶されている前記補正値を用いて前記充電状態を補正してもよい。
 多くの場合、補正値は概ね一定の値になる。このため、実験などによって予め補正値を決定して記憶部に記憶させておけば、補正の度に補正値を求めなくてよい。このため補正処理が簡素になる。
 (12)前記管理部は、前記電流センサによって計測された電流値が前記第1の閾値以下まで低下した後、所定時間が経過する前に前記電流センサによって前記第1の閾値より大きい電流値が計測された場合は前記補正処理を中止してもよい。
 電流値が第1の閾値以下まで低下しても、その後にゼーベック効果が収束する前に蓄電素子が使用される場合もある。通常、蓄電素子が使用される場合は第1の閾値より大きい電流が流れる。記憶部に記憶される補正値はゼーベック効果が収束するまで蓄電素子が使用されないことを前提に決定されるので、ゼーベック効果が収束する前に蓄電素子が使用された場合(電流センサによって第1の閾値より大きい電流値が計測された場合)にもその補正値を用いて推定誤差を補正すると不適切に補正される可能性がある。
 上記の管理装置によると、電流値が第1の閾値以下まで低下した後、所定時間(ゼーベック効果の収束に要する時間として予め実験などによって決定された時間)が経過する前に蓄電素子が使用された場合は補正処理を中止するので、充電状態が不適切に補正される可能性を低減できる。
 (13)蓄電装置であって、蓄電素子と、請求項1乃至請求項12のいずれか一項に記載の管理装置と、を備える。
 上記の蓄電装置によると、電流値に基づいて蓄電素子の充電状態を推定する場合のゼーベック効果の影響を簡素な構成で抑制できる。
 (14)前記蓄電素子は、充電状態の変化に対して開放電圧の変化が小さいプラトー領域を有してもよい。
 電流積算法では電流を常時計測するので電流センサの計測誤差が累積して次第に不正確になる場合がある。このため、従来、蓄電素子の開放電圧(OCV:Open Circuit Voltage)と充電状態(SOC)との間に比較的精度の良い相関関係があることを利用し、電流積算法によって推定した充電状態を開放電圧から推定した充電状態によって補正することが行われている。
 しかしながら、図12に示すように、蓄電素子の中には開放電圧と充電状態との関係を表すOCV-SOCカーブがプラトー領域を有しているものがある(例えば鉄系の蓄電素子)。プラトー領域とは、OCVとSOCとの相関関係を表すOCV-SOCカーブにおいてSOCの変化量に対するOCVの変化量が小さい領域のことをいう。具体的には例えば、SOCの変化量に対するOCVの変化量が2[mV/%]以下の領域をプラトー領域という。
 OCV-SOCカーブがプラトー領域を有している場合は開放電圧に対応する充電状態を精度よく特定することが難しい。このため、OCV-SOCカーブがプラトー領域を有している蓄電素子の場合は電流積算法の推定精度を向上させることがより求められている。
 上記の蓄電装置によると、二つの位置の間の温度勾配に起因して生じた電流センサの計測誤差に基づいて充電状態を補正するので、充電状態を精度よく推定できる。このため、OCV-SOCカーブがプラトー領域を有している蓄電素子の場合に特に有用である。
 (15)蓄電装置を備える車両であって、前記蓄電装置は当該車両のエンジンが収容されている収容室内に収容されている。
 蓄電装置がエンジンの収容室内に収容されているとエンジンの熱の影響を受け易いため、温度勾配が発生し、電流センサの計測誤差が生じ易い。
 上記の車両によると、二つの位置の間の温度勾配に起因して生じた電流センサの計測誤差に基づいて充電状態を補正するので、蓄電素子がエンジンの収容室内に収容されていても充電状態を精度よく推定できる。
 (16)蓄電素子の管理方法であって、前記蓄電素子と直列に接続されている抵抗体を有し、前記抵抗体において電流の流れ方向に離間した二つの位置の電位差を検出して電流値を計測する電流センサによって計測された電流値に基づいて前記蓄電素子の充電状態を推定するステップと、前記二つの位置の間の温度勾配に起因して生じた前記電流センサの計測誤差に基づいて前記充電状態を補正するステップと、を含む。
 上記の管理方法によると、電流値に基づいて蓄電素子の充電状態を推定する場合のゼーベック効果の影響を簡素な構成で抑制できる。
 本明細書によって開示される発明は、装置、方法、これらの装置または方法の機能を実現するためのコンピュータプログラム、そのコンピュータプログラムを記録した記録媒体等の種々の態様で実現できる。
 <一実施形態>
 一実施形態を図1ないし図10によって説明する。
 図1を参照して、実施形態1に係る蓄電装置1、及び、蓄電装置1を備える自動車2(車両の一例)について説明する。図1に示す自動車2はエンジン自動車であり、エンジンを始動させるスタータを備えている。蓄電装置1は自動車2に搭載されてスタータに電力を供給する始動用の蓄電装置である。図1では蓄電装置1がエンジンルーム2A(収容室の一例)に収容されている場合を示しているが、蓄電装置1は居室の床下やトランクに収容されてもよい。
 (1)蓄電装置の構成
 図2に示すように、蓄電装置1は外装体10と、外装体10の内部に収容される複数の蓄電素子12とを備える。外装体10は合成樹脂材料からなる本体13と蓋体14とで構成されている。本体13は有底筒状であり、平面視矩形状の底面部15とその4辺から立ち上がって筒状となる4つの側面部16とで構成される。4つの側面部16によって上端部分に上方開口部17が形成されている。
 蓋体14は平面視矩形状であり、その4辺から下方に向かって枠体18が延びている。蓋体14は本体13の上方開口部17を閉鎖する。蓋体14の上面には平面視略T字形の突出部19が形成されている。蓋体14の上面には突出部19が形成されていない2箇所のうち一方の隅部に正極外部端子20が固定され、他方の隅部に負極外部端子21が固定されている。
 蓄電素子12は繰り返し充電可能な二次電池であり、具体的には例えばリチウムイオン電池である。より具体的には、蓄電素子12は後述する電極体23の正極活物質にリン酸鉄リチウム(LFP)を含有した所謂鉄系のリチウムイオン電池である。
 図3(a)及び図3(b)に示すように、蓄電素子12は直方体形状のケース22内に電極体23を非水電解質と共に収容したものである。ケース22はケース本体24と、その上方の開口部を閉鎖するカバー25とで構成されている。
 電極体23は、詳細については図示しないが、銅箔からなる基材に活物質を塗布した負極要素と、アルミニウム箔からなる基材に活物質を塗布した正極要素との間に多孔性の樹脂フィルムからなるセパレータを配置したものである。これらはいずれも帯状であり、セパレータに対して負極要素と正極要素とを幅方向の反対側にそれぞれ位置をずらした状態で、ケース本体24に収容可能となるように扁平状に巻回されている。
 正極要素には正極集電体26を介して正極端子27が接続されている。負極要素には負極集電体28を介して負極端子29が接続されている。正極集電体26及び負極集電体28は平板状の台座部30と、台座部30から延びる脚部31とを有している。台座部30には貫通孔が形成されている。脚部31は正極要素又は負極要素に接続されている。正極端子27及び負極端子29は、端子本体部32と、その下面中心部分から下方に突出する軸部33とを有している。そのうち正極端子27の端子本体部32と軸部33とはアルミニウム(単一材料)によって一体成形されている。負極端子29においては、端子本体部32がアルミニウム製であり、軸部33が銅製であり、これらを組み付けたものである。正極端子27及び負極端子29の端子本体部32はカバー25の両端に絶縁材料からなるガスケット34を介して配置され、このガスケット34から外方へ露出されている。
 図4に示すように、蓄電素子12は複数個(例えば12個)が幅方向に並設された状態で本体13内に収容されている。ここでは本体13の一端側から他端側(矢印Y1からY2方向)に向かって3つの蓄電素子12を1組として、同一組では隣り合う蓄電素子12の端子極性が同じになり、隣り合う組同士では隣り合う蓄電素子12の端子極性が逆になるように配置されている。最も矢印Y1側に位置する3つの蓄電素子12(第1組)では矢印X1側が負極、矢印X2側が正極となっている。第1組に隣接する3つの蓄電素子12(第2組)では矢印X1側が正極、矢印X2側が負極となっている。さらに第2組に隣接する第3組では第1組と同じ配置となっており、第3組に隣接する第4組では第2組と同じ配置となっている。
 図5に示すように、正極端子27及び負極端子29には導電部材としての端子用バスバー(接続部材)36~40が溶接により接続されている。第1組の矢印X2側では正極端子27群が第1バスバー36によって接続されている。第1組と第2組の間では矢印X1側で第1組の負極端子29群と第2組の正極端子27群とが第2バスバー37によって接続されている。第2組と第3組の間では矢印X2側で第2組の負極端子29群と第3組の正極端子27群とが第3バスバー38によって接続されている。第3組と第4組の間では、矢印X1側で第3組の負極端子29群と第4組の正極端子27群とが第4バスバー39によって接続されている。第4組の矢印X2側では、負極端子29群が第5バスバー40によって接続されている。
 図2を併せて参照すると、電気の流れの一端に位置する第1バスバー36は第1の電子機器42A(例えばヒューズ)、第2の電子機器42B(例えばリレー)、バスバー43及びバスバーターミナル(図示せず)を介して正極外部端子20に接続されている。電気の流れの他端に位置する第5バスバー40はバスバー44A,44B及び負極バスバーターミナル(図示せず)を介して負極外部端子21に接続されている。これによりそれぞれの蓄電素子12は正極外部端子20及び負極外部端子21を介して充電と放電とが可能になっている。電子機器42A,42Bと電気部品接続用バスバー43、44A及び44Bとは、積層配置した複数の蓄電素子12の上部に配置された回路基板ユニット41に取り付けられている。バスバーターミナルは、蓋体14に配置されている。
 (2)蓄電装置の電気的構成
 図6に示すように、蓄電装置1は前述した複数の蓄電素子12と、それらの蓄電素子12を管理するBMS(Battery Management System)50とを備えている。BMS50は管理装置の一例である。
 BMS50は電流センサ51、電圧センサ52、及び、管理部55を備えている。
 電流センサ51は蓄電素子12と直列に接続されている。電流センサ51は蓄電素子12の充放電電流を計測して管理部55に出力する。電流センサの具体的な構成については後述する。
 電圧センサ52は各蓄電素子12に並列に接続されている。電圧センサ52は各蓄電素子12の端子電圧を計測して管理部55に出力する。
 管理部55はCPU55B、ROM55C(記憶部の一例)、RAM55Dなどが1チップ化されたマイクロコンピュータ55A(所謂マイコン)、通信部55Eなどを備えている。これらは図2に示す回路基板ユニット41に実装されている。ROM55Cには管理プログラムや各種のデータが記憶されている。管理部55はROM55Cに記憶されている管理プログラムを実行することによって蓄電素子12を管理する。通信部55EはCPU55Bが自動車2側のシステム(例えばECU:Engine Control Unit)と通信するためのインタフェースである。
 (3)電流センサの構成
 図7を参照して、電流センサ51の構成について説明する。電流センサ51は蓄電素子12と直列に接続されているシャント抵抗60(抵抗体の一例)と、シャント抵抗60において互いに電流の流れ方向に離間した二つの計測位置61(61L,61R)の電位差を検出する検出回路62とを有しており、シャント抵抗60の抵抗値と二つの計測位置61の電位差とから電流値を算出する。二つの計測位置61はそれぞれ位置の一例である。
 (4)管理部によって実行される処理
 管理部55は、次に説明する推定処理及び補正処理を実行する。
 (4-1)推定処理
 推定処理は、電流積算法によって蓄電素子12のSOCを推定する処理である。電流積算法は、電流センサ51によって蓄電素子12の充放電電流を常時計測することで蓄電素子12に出入りする電力量を計測し、これを初期容量から加減することでSOCを推定する方法である。電流積算法によって推定されたSOCは「電流値に基づいて推定された蓄電素子の充電状態」の一例である。
 (4-2)補正処理
 図7に示すように、シャント抵抗60の両端にはバスバーB1,B2が接続されている。ここで、図7においてシャント抵抗60の左側は蓄電素子12側であり、右側は負極外部端子21側である。図7に示す例ではシャント抵抗60の左側に接続されているバスバーB1の方が右側に接続されているバスバーB2より熱容量が小さいと仮定する。
 通常、エンジンの動作中や急速充電、大電流が放電されたときなどはエンジンの熱や蓄電素子12自体の発熱などによって蓄電装置1が全体に温まっているので、バスバーB1の温度とバスバーB2の温度とがほぼ同じである。しかしながら、バスバーB1の方がバスバーB2より熱容量が小さいと、車両が駐車されてバスバーB1及びバスバーB2の温度が低下するとき、バスバーB1の方がバスバーB2より発熱が大きくなる。このためバスバーB1の方がバスバーB2より温度が高くなる。
 バスバーB1の方がバスバーB2より温度が高いと、シャント抵抗60の左側の計測位置61Lの方が右側の計測位置61Rより温度が高くなる。この温度勾配によるゼーベック効果の起電力によってシャント抵抗60に左方向(放電方向)の電流が流れる。このため、電流センサ51によって計測される電流値は蓄電素子12の放電電流の電流値にゼーベック効果による電流値が加算されたものとなり、電流値が本来より大きく計測される計測誤差が生じる。
 電流値の計測誤差は大きく計測される計測誤差に限られない。例えばバスバーB2の方がバスバーB1より熱容量が小さいことによってバスバーB2の方がバスバーB1より温度が高くなる場合もある。その場合は右方向(充電方向)に電流が流れる。このため電流センサ51によって計測される電流値は蓄電素子12の放電電流の電流値からゼーベック効果による電流値を減算したものとなり、電流値が本来より小さく計測される計測誤差が生じる。
 バスバーB1とバスバーB2とに温度差が生じる原因は熱容量の違いに限られない。例えばバスバーB1とバスバーB2とで熱容量が同じであっても蓄電装置1の周囲の環境などによって温度差が生じることもある。例えばバスバーB1の方がバスバーB2よりエンジンに近いことにより、エンジンの熱によってバスバーB1の方がバスバーB2より温度が高くなることも考えられる。
 ゼーベック効果によって電流値の計測誤差が生じるとSOCの推定精度が低下する。このため、管理部55は電流積算法によって推定されたSOCを、二つの計測位置61の間の温度勾配に起因して生じた電流センサ51の計測誤差(ゼーベック効果に起因して生じた電流センサ51の計測誤差)に基づいて補正する補正処理を実行する。以下、具体的に説明する。
 (4-2-1)補正処理の概略
 図8は電流値が大きく計測される計測誤差が生じる場合の例である。図8において実線65は電流センサ51によって計測された電流値(ゼーベック効果による計測誤差を含んだ電流値)を示しており、点線66はゼーベック効果が生じていない場合に計測される電流値(本来計測されるべき電流値)を示している。実線65と点線66との差は、二つの計測位置61の間の温度勾配に起因して生じた電流センサ51の計測誤差に相当する。
 図8において時点T1は自動車2が駐車された時点である。時点T1で自動車2が駐車されると蓄電素子12の放電電流が徐々に低下する。ただし、放電電流は完全には0mAにはならず、駐車中も20mAなどの微小な暗電流が流れる。
 時点T2は電流値が第1の閾値(例えば100mA)以下まで低下した時点である。第1の閾値は100mAに限定されるものではなく、適宜に決定できる。時点T1から時点T2までの期間もゼーベック効果による電流値の計測誤差が生じるが、この期間は比較的短く、且つ、電流値も比較的大きいのでSOCの推定誤差要因としては無視できる程度である。このため、管理部55は、自動車2が駐車されても時点T1から時点T2までの期間についてはSOCの補正を行わない。
 時点T4はゼーベック効果が収束した時点を示している。二つの計測位置61の間に温度勾配が生じている場合(ゼーベック効果が生じている場合)は時間の経過に伴ってそれら二つの計測位置61の温度が徐々に均一になるため、ゼーベック効果が徐々に収束する。このため、時点T2から時点T4では電流センサ51によって計測される電流値が徐々に小さくなる。
 時点T2から時点T4までの期間は比較的長く、且つ、電流値も微小(100mA以下)であるため、SOCの推定誤差要因として無視できない。このため、管理部55は時点T2から時点T4までの期間(電流値が100mA以下である期間)に生じた電流センサ51の計測誤差に基づいてSOCを補正する。具体的には、図8においてハッチングで示される三角形67の面積は、時点T2から時点T4までの期間に生じた電流センサ51の計測誤差によって生じたSOCの推定誤差に相当する。このため、管理部55は電流積算法によって推定したSOCから三角形67の面積を減じることによってSOCを補正する。
 ただし、時点T2で電流値が100mA以下まで低下しても、その後にゼーベック効果が収束する前に蓄電素子12が使用される場合もある。通常、蓄電素子12が使用される場合は100mAより大きい電流が流れる。電流値が100mAより大きい場合はゼーベック効果による電流値の計測誤差は無視できる程度である。このため、管理部55は、電流値が100mA以下まで低下した後、ゼーベック効果が収束する前に100mAより大きい電流値が計測された場合は補正処理を中止する。
 図9は電流値が小さく計測される計測誤差が生じる場合の例である。この場合は電流センサ51の計測誤差によってSOCが本来より小さく推定されるので、管理部55は電流積算法によって推定したSOCに図9においてハッチングで示される三角形68の面積を加算することによってSOCを補正する。
 (4-2-2)補正処理のフロー
 図10を参照して、補正処理のフローについて説明する。以下の説明では自動車2の駐車中は電流センサ51によって数秒~数十秒間隔で電流値が計測されるものと仮定する。
 S101では、管理部55は自動車2が駐車されたか否かを判断する。
 具体的には、管理部55は自動車2のECUからエンジンの状態を示す信号を一定時間間隔で受信しており、自動車2が駐車されたか否かを当該信号から判断する。自動車2が駐車されたか否かを判断する方法はこれに限られるものではなく、適宜の方法で判断できる。例えばエンジンの振動が検出されなくなったら自動車2が駐車されたと判断してもよい。
 管理部55は、自動車2が駐車された場合はS102に進み、駐車されていない場合は所定時間が経過した後に再度S101を実行する。
 S102では、管理部55は電流センサ51によって次の電流値が計測されるまで待機し、電流値が計測されるとS103に進む。
 S103では、管理部55は計測された電流値が100mA以下であるか否かを判断し、100mA以下である場合はS104に進み、100mAより大きい場合はS102に戻って処理を繰り返す。
 S104では、管理部55は時間のカウントを開始するとともに、100mA以下の電流値として最初に計測された電流値をRAM55Dに記憶する。
 例えば前回計測された電流値が103mAであり、今回計測された電流値が98mAであるとする。この場合、管理部55は前述したS103において電流値が100mA以下まで低下したと判断し、S104において時間のカウントを開始するとともに、98mAをRAM55Dに記憶する。
 S105では、管理部55はゼーベック効果が生じているか否かを判断する。ゼーベック効果が生じているか否かは、電流センサ51によって計測された電流値の単位時間当たりの変化量(横軸を時間、縦軸を電流値としたグラフの傾き)から判断できる。以降の説明では電流値の単位時間当たりの変化量のことを電流値の傾きという。
 具体的には、ゼーベック効果が生じていない場合は暗電流が略一定(例えば20mA)になるため、計測される電流値の傾きはほぼ0になる。これに対し、ゼーベック効果が生じている場合は電流値が徐々に小さくなるため、電流値の傾きの絶対値がある程度大きくなる。このため、電流値の傾きの絶対値が第2の閾値(例えば0.1)より大きいか否かにより、ゼーベック効果が生じているか否かを判断できる。
 管理部55は、S103で電流値が100mA以下まで低下したと判断した後、所定時間(例えば3分)が経過するまで待機する。図8において時点T3は所定時間が経過した時点を示している。管理部55は所定時間が経過するまで待機するのではなく、電流値が所定回数(例えば10回)計測されるまで待機してもよい。
 管理部55は所定時間が経過するとその間に計測された電流値から傾きを計算し、計算した傾きが第2の閾値より大きい場合はゼーベック効果が生じていると判断してS106に進む。傾きが第2の閾値以下である場合は、管理部55はゼーベック効果が生じていない(あるいは生じていたとしても無視できる程度である)と判断して本処理を中止する。
 S106では、管理部55は電流センサ51によって次の電流値が計測されるまで待機し、電流値が計測されるとS107に進む。
 S107では、管理部55は計測された電流値が100mAより大きいか否かを判断する。管理部55は、電流値が100mA以下の場合は蓄電素子12が使用されていないと判断してS108に進み、100mAより大きい場合は蓄電素子12が使用されたと判断して本処理を中止する。
 S108では、管理部55はゼーベック効果が収束したか否かを判断する。
 具体的には、ゼーベック効果が収束すると電流値が概ね20mAで一定となるので、電流値の傾きの絶対値がほぼ0になる。このため、管理部55は前回計測された電流値と今回計測された電流値とから電流値の傾きを計算する。今回を含む直近の3回以上の計測によって計測された電流値から傾きを計算してもよい。
 管理部55は、計算した電流値の傾きの絶対値が第2の閾値以下であるか否かを判断し、第2の閾値以下である場合はゼーベック効果が収束したと判断してS109に進み、第2の閾値より大きい場合はS106に戻って処理を繰り返す。
 S109では、管理部55はSOCを補正するための補正値を決定する。
 具体的には、管理部55はS104でRAM55Dに記憶した電流値(例えば98mA)から、その後に電流値の傾きの絶対値が第2の閾値以下になった時点T4(ゼーベック効果が収束した時点)の電流値を減じることによってその間の電流値の変化量(三角形67の高さ)を求める。管理部55は、時点T2から時点T4までの時間(三角形67の底辺)と、上述した電流値の変化量との積を2で除算することによって補正値(三角形67の面積)を決定する。補正値は、二つの計測位置61の間の温度勾配に起因して生じた電流センサ51の計測誤差を積算した値と言い換えることもできる。
 S110では、管理部55は電流積算法によって推定されているSOCからS109で決定した補正値を減算することによってSOCを補正する。
 前述した図9に示すように、電流値が小さく計測される計測誤差が生じている場合は、S104でRAM55Dに記憶した電流値から時点T5(ゼーベック効果が収束した時点)の電流値を減じると電流値の変化量がマイナスの値となるので、補正値もマイナスの値となる。この場合、SOCから補正値を減算するとマイナスの値を減算することになるため、結果としてプラスの補正値が加算される。
 (5)実施形態の効果
 BMS50によると、電流積算法によって推定されたSOCを、シャント抵抗60の二つの計測位置61の間の温度勾配に起因して生じた電流センサ51の計測誤差に基づいて補正するので、従来のようにシャント抵抗60に伝熱阻害手段を設けて電流値の計測誤差を低減しなくてもゼーベック効果の影響を抑制できる。このため、電流積算法によってSOCを推定する場合のゼーベック効果の影響を簡素な構成で抑制できる。
 BMS50によると、自動車2が駐車されてから生じた電流センサ51の計測誤差に基づいてSOCを補正するので、ゼーベック効果の影響を抑制する効果が顕著となる。
 BMS50によると、電流値が100mA以下である期間(時点T2以降の期間)に生じた電流センサ51の計測誤差に基づいてSOCを補正するので、ゼーベック効果の影響を抑制する効果が顕著となる。
 BMS50によると、電流値の傾きの絶対値が第2の閾値より大きい場合(ゼーベック効果が生じている場合)にSOCを補正するので、ゼーベック効果が生じていないにもかかわらず補正が行われることを抑制できる。
 BMS50によると、図8においてハッチングで示す三角形67の面積を補正値とするので、電流センサ51の計測誤差に基づいてSOCを補正できる。
 BMS50によると、電流値が100mA以下まで低下した後、ゼーベック効果が収束する前に蓄電素子12が使用された場合は補正処理を中止するので、無用な補正を抑制できる。
 蓄電装置1によると、従来のようにシャント抵抗60に伝熱阻害手段を設けて電流値の計測誤差を低減しなくてもゼーベック効果の影響を抑制できる。このため、電流積算法によってSOCを推定する場合のゼーベック効果の影響を簡素な構成で抑制できる。
 蓄電装置1によると、ゼーベック効果に起因して生じた電流センサ51の計測誤差に基づいてSOCを補正するので、SOCを精度よく推定できる。このため、OCV-SOCカーブがプラトー領域を有している蓄電素子12の場合に特に有用である。
 自動車2によると、蓄電装置1が自動車2のエンジンルーム2A内に収容されていてもSOCを精度よく推定できる。
 <実施形態2>
 図11に示すように、実施形態2に係るBMS50は、シャント抵抗60の計測位置61L近傍の温度を計測する温度センサ70、及び、計測位置61R近傍の温度を計測する温度センサ71を備えている。実施形態2に係る管理部55はゼーベック効果が生じているか否かをそれら二つの計測位置61の温度差から判断する。
 具体的には、ゼーベック効果が生じている場合は二つの計測位置61の温度差がある程度大きくなる。このため、管理部55は、二つの計測位置61の温度差が第3の閾値より大きいか否かにより、ゼーベック効果が生じているか否かを判断する。管理部55は、電流値が100mA以下まで低下し、且つ、二つの計測位置61の温度差が第3の閾値より大きい場合(ゼーベック効果が生じている場合)にSOCを補正する。
 ゼーベック効果に起因して生じた電流センサ51の計測誤差によるSOCの推定誤差は、電流値が100mA以下まで低下したときから、その後にシャント抵抗60の二つの計測位置61の間の温度差が第3の閾値以下になったとき(言い換えるとゼーベック効果が収束したとき)までの時間を底辺、その間の電流値の変化量を高さとする三角形の面積によって表すことができる。このため、管理部55は、当該三角形の面積を補正値とする。
 実施形態2に係るBMS50によると、二つの計測位置61の温度差に基づいてSOCを補正するので、ゼーベック効果が生じていないにもかかわらず補正が行われることを抑制できる。
 BMS50によると、二つの計測位置61の温度差が第3の閾値より大きい場合(ゼーベック効果が生じている場合)にSOCを補正するので、ゼーベック効果が生じていないにもかかわらず補正が行われることを抑制できる。
 BMS50によると、上述した三角形の面積を補正値とするので、電流センサ51の計測誤差に基づいてSOCを補正できる。
 BMS50によると、電流値が100mA以下まで低下した後、ゼーベック効果が収束する前に蓄電素子12が使用された場合は補正処理を中止するので、無用な補正を抑制できる。
 <実施形態3>
 実施形態3では、実験などによって予めSOCの補正値を決定してROM55Cに記憶させておく。管理部55は、電流値が100mA以下まで低下し、且つ、ゼーベック効果が生じている場合(電流値の傾きの絶対値が第2の閾値より大きい場合、あるいは二つの計測位置61の温度差が第3の閾値より大きい場合)は、その補正値を用いてSOCを補正する。
 多くの場合、補正値は概ね一定の値になる。このため、実験などによって予め補正値を決定してROM55Cに記憶させておけば、補正の度に補正値を求めなくてよい。このため補正処理が簡素になる。
 ただし、電流値が100mA以下まで低下しても、その後にゼーベック効果が収束する前に蓄電素子12が使用される場合もある。ROM55Cに記憶される補正値はゼーベック効果が収束するまで蓄電素子12が使用されないことを前提に決定されるので、ゼーベック効果が収束する前に蓄電素子12が使用された場合にもその補正値を用いてSOCを補正すると不適切に補正される可能性がある。
 このため、管理部55は、電流値が100mA以下まで低下した後、所定時間(ゼーベック効果の収束に要する時間として予め実験などによって決定された時間)が経過する前に蓄電素子12が使用された場合(具体的には電流センサ51によって100mAより大きい電流値が計測された場合)は補正処理を中止する。このためSOCが不適切に補正される可能性を低減できる。
 <他の実施形態>
 本明細書によって開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本明細書によって開示される技術的範囲に含まれる。
 (1)上記実施形態では、管理部55は自動車2が駐車されたか否かを判断し、自動車2が駐車された場合は電流値が100mA以下まで低下したか否かを判断し、100mA以下まで低下した場合にゼーベック効果が生じているか否かを判断する。
 これに対し、管理部55は自動車2が駐車されたか否かの判断は行わないようにしてもよい。具体的には、管理部55は、自動車2が駐車されたか否かによらず、電流値が100mA以下まで低下するとゼーベック効果が生じているか否かを判断してもよい。
 あるいは、電流値が100mA以下まで低下したか否かの判断は行わないようにしてもよい。具体的には、管理部55は、自動車2が駐車されると、電流値が100mA以下まで低下したか否かによらず、ゼーベック効果が生じているか否かを判断してもよい。
 (2)上記実施形態では電流値が100mA以下まで低下したと判断した後、ゼーベック効果が生じているか否かを判断しているが、ゼーベック効果が生じているか否かを判断しなくてもよい。具体的には、電流値が100mA以下まで低下した場合はゼーベック効果が生じているとみなしてSOCの推定誤差を補正してもよい。
 (3)上記実施形態ではゼーベック効果が収束する前にエンジンが始動された場合は補正処理を中止するが(S107)、ゼーベック効果が収束する前にエンジンが始動された場合はエンジンが始動されるまでの間の補正値を算出してSOCを補正してもよい。
 (4)上記実施形態1では電流値の傾きが第2の閾値以下である場合にゼーベック効果が収束したと判断する。これに対し、ゼーベック効果が収束すると暗電流は概ね一定になるので、例えば電流値が所定の暗電流±2mA以内になるとゼーベック効果が収束したと判断してもよい。
 ただし、ゼーベック効果が収束したときの暗電流は車種によって異なる可能性がある。このため、電流値が所定の暗電流±2mA以内になるとゼーベック効果が収束したと判断する場合は車種毎に所定の暗電流を記憶しておくことが望ましい。これに対し、ゼーベック効果が収束したか否かを電流値の傾きから判断すると、ゼーベック効果が収束したか否かを車種によらず判断できるので、より汎用的である。
 (5)上記実施形態2ではシャント抵抗60の計測位置61L及び計測位置61Rの温度を計測する場合を例に説明したが、バスバーB1及びバスバーB2の温度を計測してもよい。蓄電素子12の温度を計測する温度センサを備えている場合は、その温度センサによって計測された温度を用いてもよい。自動車2と蓄電装置1とを接続しているバスバーの温度を計測する温度センサを自動車2が備えている場合は、その温度センサによって計測された温度を用いてもよい。
 (6)上記実施形態3では実験などによって予め補正値を決定してROM55Cに記憶させる。これに対し、補正値そのものをROM55Cに記憶させるのではなく、ゼーベック効果が収束するまでの時間(例えば電流値が100mA以下まで低下したときから、電流値の傾きが第2の閾値以下になったときまでの時間)をROM55Cに記憶させる一方、その間の電流値の変化量については実際に計測し、ROM55Cに記憶されている時間とその間の電流値の変化量との積を2で除算した値を補正値としてもよい。
 電流値が100mA以下まで低下したときから、電流値の傾きが第2の閾値以下になったときまでの間の電流値の変化量をROM55Cに記憶させる一方、ゼーベック効果が収束するまでの時間については実際に計測してもよい。
 (7)上記実施形態3ではROM55Cに記憶されている補正値をそのまま用いて補正する場合を例に説明した。これに対し、ROM55Cに記憶されている補正値を調整して用いてもよい。例えば蓄電装置1が搭載されている車種に応じて補正値を調整してもよいし、蓄電装置1の内部の温度と外気温とに応じて調整してもよい。
 (8)上記実施形態では蓄電素子12として鉄系の蓄電素子12を例に説明したが、蓄電素子12は鉄系に限られるものではなく、他のリチウムイオン電池であってもよい。
 (9)上記実施形態1では始動用の蓄電素子12を例に説明したが、蓄電素子12の用途はこれに限られない。例えば、蓄電素子12は電気自動車やハイブリッド自動車に搭載されて補機類に電力を供給する補機用であってもよいし、電気モータで走行するフォークリフトや無人搬送車(AGV:Automatic Guided Vehicle)などに搭載されて電気モータに電力を供給する移動体用であってもよい。
 蓄電素子12は無停電電源装置(UPS:Uninterruptible Power Supply)に用いられるものであってもよいし、携帯端末などに用いられるものであってもよい。ピークシフトに用いられる蓄電装置でもよいし、再生可能エネルギーを蓄電する蓄電装置でもよい。
 (10)上記実施形態では、自動車2が駐車された後、電流値が100mA以下まで低下してから電流値の単位時間当たりの変化量が第2の閾値以下になったときまでの期間に生じた電流センサ51の計測誤差に基づいてSOCを補正する場合を例に説明した。しかしながら、SOCを補正する期間はこれに限られるものではなく、自動車2が駐車されてから自動車2のエンジンが始動されるまでの間の期間であればどの期間にSOCを補正してもよい。
 例えば、夜に自動車2を駐車すると気温(環境温度)が低いことによって蓄電装置1の温度が低下する。シャント抵抗60の一端に接続されているバスバーは蓄電装置1の内部に収容されているが、他端に接続されているバスバーは自動車2と接続するために蓄電装置1の外にあるため、朝になって気温が上昇したとき、他端に接続されているバスバーの方が先に温度が上昇する。このときに生じたゼーベック効果によるSOCの推定誤差を補正してもよい。
 (11)上記実施形態では二つの計測位置61の間の温度勾配に起因して生じた電流センサの計測誤差に基づいてSOCを補正する場合を例に説明したが、この計測誤差は他の制御に用いられてもよい。例えば、一般にBMS50は蓄電素子12から供給される電力によって動作する。このため、BMS50は自動車2が駐車されるとスリープモードに移行する。スリープモードでは電流値や電圧値を計測する周期が長くなることによって電力消費が抑制される。BMS50は所定値以上の電流が流れるとエンジンが始動されたと判断して通常モード(計測周期が短いモード)に復帰する。このとき、電流値に計測誤差が含まれていると、通常モードに復帰すべきでないにもかかわらず通常モードに復帰する可能性がある。仮に自動車2が駐車中でエンジンが停止中の場合には、バッテリへの充電が行われないため、通常モードに復帰するとバッテリ上がりになる可能性がある。
 そこで、電流センサ51によって計測された電流値を計測誤差に基づいて補正し、補正後の電流値を用いることでスリープモードから通常モードに復帰することを回避してもよい。これによりバッテリ上がりになることを防ぐことが出来る。
 (12)上記実施形態1では蓄電素子としてリチウムイオン電池を例に説明したが、蓄電素子はこれに限られない。例えば蓄電素子は電気化学反応を伴うキャパシタであってもよい。
1 蓄電装置、2 自動車(車両の一例)、2A エンジンルーム2A(収容室の一例)、12 蓄電素子、23 電極体、50 BMS(管理装置の一例)、51 電流センサ、55 管理部、55C ROM(記憶部の一例)、60 シャント抵抗(抵抗体の一例)、70 温度センサ、71…温度センサ

Claims (16)

  1.  蓄電素子の管理装置であって、
     前記蓄電素子と直列に接続されている抵抗体を有し、前記抵抗体において電流の流れ方向に離間した二つの位置の電位差を検出して電流値を計測する電流センサと、
     管理部と、
    を備え、
     前記管理部は、前記電流値に基づいて推定された前記蓄電素子の充電状態を、前記二つの位置の間の温度勾配に起因して生じた前記電流センサの計測誤差に基づいて補正する補正処理を実行する、管理装置。
  2.  請求項1に記載の蓄電素子の管理装置であって、
     前記蓄電素子は車両のエンジンを始動させるスタータに電力を供給する始動用の蓄電素子であり、
     前記管理部は、前記補正処理において、前記車両が駐車されてから生じた前記計測誤差に基づいて補正する、管理装置。
  3.  請求項1又は請求項2に記載の蓄電素子の管理装置であって、
     前記管理部は、前記補正処理において、前記電流センサによって計測された電流値が第1の閾値以下である期間に生じた前記計測誤差に基づいて前記充電状態を補正する、管理装置。
  4.  請求項3に記載の蓄電素子の管理装置であって、
     前記管理部は、前記電流センサによって計測された電流値の単位時間当たりの変化量が第2の閾値より大きい場合に前記充電状態を補正する、管理装置。
  5.  請求項4に記載の蓄電素子の管理装置であって、
     前記管理部は、前記補正処理において、前記電流センサによって計測された電流値が前記第1の閾値以下まで低下したときから、その後に電流値の単位時間当たりの変化量が前記第2の閾値以下になったときまでの時間と、その間の電流値の変化量とに基づいて前記充電状態の補正値を決定する、管理装置。
  6.  請求項5に記載の蓄電素子の管理装置であって、
     前記管理部は、前記電流センサによって計測された電流値の単位時間当たりの変化量が前記第2の閾値以下になる前に前記電流センサによって前記第1の閾値より大きい電流値が計測された場合は前記補正処理を中止する、管理装置。
  7.  請求項3に記載の蓄電素子の管理装置であって、
     前記管理部は、前記補正処理において、前記計測誤差と前記二つの位置の温度差とに基づいて前記充電状態を補正する、管理装置。
  8.  請求項7に記載の蓄電素子の管理装置であって、
     前記二つの位置の温度を計測する温度センサを備え、
     前記管理部は、前記補正処理において、前記二つの位置の温度差が第3の閾値より大きい場合に前記充電状態を補正する、管理装置。
  9.  請求項8に記載の蓄電素子の管理装置であって、
     前記管理部は、前記補正処理において、前記電流センサによって計測された電流値が前記第1の閾値以下まで低下したときから、その後に前記二つの位置の温度差が前記第3の閾値以下になったときまでの時間と、その間の電流値の変化量とに基づいて前記充電状態の補正値を決定する、管理装置。
  10.  請求項9に記載の蓄電素子の管理装置であって、
     前記管理部は、前記温度センサによって計測された前記二つの位置の温度差が前記第3の閾値以下になる前に前記電流センサによって前記第1の閾値より大きい電流値が計測された場合は前記補正処理を中止する、管理装置。
  11.  請求項3に記載の蓄電素子の管理装置であって、
     前記充電状態の補正に用いる補正値を記憶する記憶部を備え、
     前記管理部は、前記補正処理において、前記記憶部に記憶されている前記補正値を用いて前記充電状態を補正する、管理装置。
  12.  請求項11に記載の蓄電素子の管理装置であって、
     前記管理部は、前記電流センサによって計測された電流値が前記第1の閾値以下まで低下した後、所定時間が経過する前に前記電流センサによって前記第1の閾値より大きい電流値が計測された場合は前記補正処理を中止する、管理装置。
  13.  蓄電素子と、
     請求項1乃至請求項12のいずれか一項に記載の管理装置と、
    を備える蓄電装置。
  14.  請求項13に記載の蓄電装置であって、
     前記蓄電素子は、充電状態の変化に対して開放電圧の変化が小さいプラトー領域を有する、蓄電装置。
  15.  請求項13又は請求項14に記載の蓄電装置を備える車両であって、
     前記蓄電装置は当該車両のエンジンが収容されている収容室内に収容されている、車両。
  16.  蓄電素子の管理方法であって、
     前記蓄電素子と直列に接続されている抵抗体を有し、前記抵抗体において電流の流れ方向に離間した二つの位置の電位差を検出して電流値を計測する電流センサによって計測された電流値に基づいて前記蓄電素子の充電状態を推定するステップと、
     前記二つの位置の間の温度勾配に起因して生じた前記電流センサの計測誤差に基づいて前記充電状態を補正するステップと、
    を含む、管理方法。
PCT/JP2019/044703 2018-11-16 2019-11-14 蓄電素子の管理装置、蓄電装置、車両、及び、蓄電素子の管理方法 WO2020100982A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020556168A JP7428135B2 (ja) 2018-11-16 2019-11-14 蓄電素子の管理装置、蓄電装置、車両、及び、蓄電素子の管理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-215399 2018-11-16
JP2018215399 2018-11-16

Publications (1)

Publication Number Publication Date
WO2020100982A1 true WO2020100982A1 (ja) 2020-05-22

Family

ID=70730691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044703 WO2020100982A1 (ja) 2018-11-16 2019-11-14 蓄電素子の管理装置、蓄電装置、車両、及び、蓄電素子の管理方法

Country Status (2)

Country Link
JP (1) JP7428135B2 (ja)
WO (1) WO2020100982A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3139238A1 (fr) * 2022-08-26 2024-03-01 Psa Automobiles Sa Procede d’ajustement du courant de charge d’une batterie lithium-fer-phosphate de vehicule a propulsion electrique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022073A1 (ja) * 2004-08-25 2006-03-02 Nec Corporation 内部インピーダンス検出装置、内部インピーダンス検出方法、劣化度検出装置および劣化度検出方法
JP2017090124A (ja) * 2015-11-05 2017-05-25 住友電気工業株式会社 内部抵抗算出装置、コンピュータプログラム及び内部抵抗算出方法
JP2017514115A (ja) * 2014-04-24 2017-06-01 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH 温度補償付シャント電流測定
WO2018181489A1 (ja) * 2017-03-28 2018-10-04 株式会社Gsユアサ 推定装置、蓄電装置、推定方法
WO2018199222A1 (ja) * 2017-04-28 2018-11-01 株式会社Gsユアサ 電流検出装置、管理装置、エンジン始動用のバッテリ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4211715B2 (ja) 2004-08-23 2009-01-21 株式会社デンソー 車載電源システム
JP2006149070A (ja) 2004-11-18 2006-06-08 Denso Corp 車両用バッテリー残存容量演算装置
CN101803102A (zh) 2007-09-20 2010-08-11 Utc电力公司 用于具有电池平衡的多电池能量储存系统的荷电状态计算器
EP2502086B1 (de) 2009-11-19 2013-06-05 Robert Bosch GmbH Verfahren und vorrichtung zur fehlerkompensierten strommessung eines elektrischen akkumulators
JP2011164008A (ja) 2010-02-12 2011-08-25 Denso Corp 電流検出装置
US9026389B2 (en) 2010-02-24 2015-05-05 Mitsubishi Heavy Industries, Ltd. State of charge computation system
JP5318128B2 (ja) 2011-01-18 2013-10-16 カルソニックカンセイ株式会社 バッテリの充電率推定装置
JP2015224975A (ja) 2014-05-28 2015-12-14 カルソニックカンセイ株式会社 バッテリ充放電電流検出装置
JP6769046B2 (ja) 2016-03-01 2020-10-14 株式会社Gsユアサ 蓄電素子の監視装置、蓄電素子モジュール、socの推定方法
CN107861069B (zh) 2017-10-23 2020-07-14 宁德时代新能源科技股份有限公司 检测电路及方法、检测器、电池装置、运输工具与计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022073A1 (ja) * 2004-08-25 2006-03-02 Nec Corporation 内部インピーダンス検出装置、内部インピーダンス検出方法、劣化度検出装置および劣化度検出方法
JP2017514115A (ja) * 2014-04-24 2017-06-01 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH 温度補償付シャント電流測定
JP2017090124A (ja) * 2015-11-05 2017-05-25 住友電気工業株式会社 内部抵抗算出装置、コンピュータプログラム及び内部抵抗算出方法
WO2018181489A1 (ja) * 2017-03-28 2018-10-04 株式会社Gsユアサ 推定装置、蓄電装置、推定方法
WO2018199222A1 (ja) * 2017-04-28 2018-11-01 株式会社Gsユアサ 電流検出装置、管理装置、エンジン始動用のバッテリ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3139238A1 (fr) * 2022-08-26 2024-03-01 Psa Automobiles Sa Procede d’ajustement du courant de charge d’une batterie lithium-fer-phosphate de vehicule a propulsion electrique

Also Published As

Publication number Publication date
JP7428135B2 (ja) 2024-02-06
JPWO2020100982A1 (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
US11285813B2 (en) Estimation device for estimating an SOC of an energy storage device, energy storage apparatus including estimation device for estimating an SOC of an energy storage device, and estimation method for estimating an SOC of an energy storage device
US10712393B2 (en) Energy storage device management apparatus, energy storage device module, vehicle, and energy storage device management method
US10800261B2 (en) Battery state estimation apparatus, assembled battery, energy storage system, and methods of using the same
US9506988B2 (en) Condition estimation device and method of estimating condition
JP7274368B2 (ja) 電池制御システム
WO2019093349A1 (ja) 蓄電素子の管理装置、バッテリ、及び、管理方法
WO2022249943A1 (ja) 推定装置、蓄電装置、推定方法
WO2020100982A1 (ja) 蓄電素子の管理装置、蓄電装置、車両、及び、蓄電素子の管理方法
WO2020100707A1 (ja) 管理装置、管理方法、および車両
WO2022196362A1 (ja) 蓄電装置、及び、蓄電装置の制御方法
WO2022259766A1 (ja) 蓄電装置、及び、蓄電装置の異常放電検出方法
JP7099224B2 (ja) 蓄電素子の管理装置、及び、蓄電装置
WO2021039355A1 (ja) 蓄電素子の充電状態推定値の補正方法、蓄電素子の管理装置、及び、蓄電装置
JP7491108B2 (ja) 蓄電素子の管理装置、蓄電装置、及び、管理方法
JP2021071415A (ja) 蓄電量推定装置、蓄電量推定方法及びコンピュータプログラム
WO2022264698A1 (ja) 蓄電装置、及び、蓄電装置の制御方法
WO2022249784A1 (ja) 補正装置、蓄電装置、補正方法
WO2024043044A1 (ja) 検出装置、蓄電装置、及び、検出方法
JP6969307B2 (ja) 管理装置、蓄電システム、蓄電素子の残存容量を均等化する方法、蓄電素子の内部状態を推定する方法
JP7500404B2 (ja) 蓄電素子の充電率推定装置
US20240230769A1 (en) Estimation device, energy storage apparatus, and estimation method
JP2022132800A (ja) 蓄電セルの制御装置、蓄電装置、充電システム、充電電圧の制御方法
US20210088018A1 (en) Energy storage apparatus and restart method for engine of idling-stop vehicle
JP2023029091A (ja) 蓄電素子の充電率推定装置および充電率推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885171

Country of ref document: EP

Kind code of ref document: A1