WO2019093349A1 - 蓄電素子の管理装置、バッテリ、及び、管理方法 - Google Patents

蓄電素子の管理装置、バッテリ、及び、管理方法 Download PDF

Info

Publication number
WO2019093349A1
WO2019093349A1 PCT/JP2018/041269 JP2018041269W WO2019093349A1 WO 2019093349 A1 WO2019093349 A1 WO 2019093349A1 JP 2018041269 W JP2018041269 W JP 2018041269W WO 2019093349 A1 WO2019093349 A1 WO 2019093349A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
voltage
storage element
discharge
charge
Prior art date
Application number
PCT/JP2018/041269
Other languages
English (en)
French (fr)
Inventor
武志 中本
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to DE112018005402.0T priority Critical patent/DE112018005402T5/de
Priority to CN201880071375.3A priority patent/CN111295796B/zh
Priority to US16/758,709 priority patent/US10971766B2/en
Publication of WO2019093349A1 publication Critical patent/WO2019093349A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the technology disclosed in the present specification relates to a technology of managing a storage element using a positive electrode active material containing lithium iron phosphate and having a conductive layer formed on the surface.
  • a storage element in which lithium iron phosphate is contained in a positive electrode active material. Since lithium iron phosphate has high thermal stability, the safety of the storage element can be dramatically improved, but there is a problem that the conductivity is low.
  • a storage element using a positive electrode active material containing lithium iron phosphate and having a conductive layer such as carbon formed on the surface is also known (see, for example, Patent Document 1).
  • the state of charge of the storage element is estimated by measuring the voltage (OCV: Open circuit Voltage) of the storage element and specifying the state of charge corresponding to the measured voltage from the correlation between the voltage and the state of charge. It is The state of charge represents the amount of electricity being charged with respect to the charge capacity of the storage element as a ratio (%), and is generally referred to as SOC (State Of Charge).
  • a storage element using a positive electrode active material containing lithium iron phosphate and having a conductive layer such as carbon formed on the surface is merely correlated between the charge state corresponding to the voltage of the storage element and the charge state. In some cases, it is not possible to accurately estimate the state of charge only by specifying from the relationship.
  • the present specification discloses a technique capable of accurately estimating the state of charge of a storage element using a positive electrode active material containing lithium iron phosphate and having a conductive layer formed on the surface.
  • a management apparatus includes a current measuring unit that measures a current flowing to a storage element using a positive electrode active material containing lithium iron phosphate and having a conductive layer formed on the surface, and the storage element
  • the management unit is provided with: A discharge process for discharging the storage element when the storage element is in a resting state, and a measurement process after discharge for measuring a voltage by the voltage measurement unit after discharging the storage element by the discharge process And a first estimation process of estimating the state of charge of the storage element based on the voltage measured in the measurement process after the discharge and the correlation between the voltage in the inactive state after the discharge and the state of charge Do.
  • the schematic diagram which shows the vehicle and battery which concern on Embodiment 1.
  • Battery perspective view Battery disassembled perspective view Battery schematic Graph showing the correlation between the voltage and the charging state in the resting state after charging, and the correlation between the voltage and the charging state in the resting state after discharging
  • Flow chart of SOC estimation process of battery pack Graph showing the correlation between the voltage difference between the voltage in the resting state after charging and the voltage in the resting state after discharging according to the second embodiment and the state of charge
  • An apparatus for managing a storage element using a positive electrode active material containing lithium iron phosphate and having a conductive layer formed on the surface includes: a current measurement unit that measures a current flowing through the storage element; and a voltage of the storage element
  • the management unit may include a voltage measurement unit to measure and a management unit, and the management unit may define the state where the current value measured by the current measurement unit is less than a reference value as the pause state of the storage element.
  • a first estimation process of estimating the state of charge of the storage element is performed based on the voltage measured in the measurement process after discharge and the correlation between the voltage in the inactive state after discharge and the state of charge.
  • the inventor of the present application pauses after charging (a state in which a current of a reference value or more is flowing in the charging direction) in a storage element using a positive electrode active material containing lithium iron phosphate and having a conductive layer formed on the surface. It has been found that the correlation between the voltage and the charge state is different between when the state is reached and when the cell is in the inactive state after the discharge (state in which a current greater than the reference value flows in the discharge direction). In the following description, it is called hysteresis characteristics that the correlation is different between the case where it is in the resting state after charging and the case where it is in the resting state after discharging.
  • a storage element using a positive electrode active material containing lithium iron phosphate and having a conductive layer formed on the surface has hysteresis characteristics. Lithium iron phosphate is formed on the surface because it has low conductivity. This is because the state of charge differs between the conductive layer and lithium iron phosphate inside.
  • As a method of estimating the state of charge of the storage element for example, in the case of the resting state after charging, it is estimated from the correlation between the voltage in the resting state after charging and the charging state, and in the case of the resting state after discharging It is conceivable to estimate from the correlation between the voltage and the state of charge in the quiescent state after discharge.
  • a method may be considered in which the average of these correlations is regarded as a correlation, and estimation is performed based on the correlation.
  • these methods may not be able to accurately estimate the state of charge.
  • the correlation between the voltage and the charge state in the resting state after charging is smaller in the amount of change in voltage with respect to the change in the charging state than the correlation between the voltage and the charge state in the resting state after discharging .
  • the estimation accuracy is lower than in the case where the terminal is inactive after discharging. I will.
  • the estimation accuracy is reduced.
  • the storage element is turned off after charging, the storage element is discharged, and if the state of charge is estimated based on the correlation between the voltage in the stop state after discharging and the state of charge, The state of charge of the storage element can be estimated more accurately than in the case of estimation based on the correlation with the charge state or estimation from the average of the correlation.
  • the state of charge can be estimated accurately. Therefore, according to said management apparatus, the charge condition of the electrical storage element using the positive electrode active material which contains lithium iron phosphate and in which the conductive layer is formed in the surface can be estimated accurately.
  • the management apparatus described above includes a storage unit storing correlation information after discharge representing a correlation between a voltage and a charge state in a pause state after discharge, and the management unit is configured to, in the first estimation process,
  • the charge state of the storage element may be estimated by specifying the charge state corresponding to the voltage measured in the measurement process after the discharge from the correlation information after the discharge.
  • the charge state is estimated from the correlation between the voltage in the rest state after discharge after discharging the storage element and the charge state.
  • the state of charge can be estimated more accurately than when estimated from the correlation between the voltage and state of charge in the quiescent state.
  • the negative electrode active material of the storage element contains graphite
  • the management device is a voltage representing a correlation between the voltage difference between the voltage in the inactive state after charging and the voltage in the inactive state after discharging and the state of charge.
  • the storage unit in which the difference information is stored, the change in the voltage difference with respect to the change in the charge state has an inflection point, and the management unit is configured to stop the storage element after charging.
  • a measurement process before discharge is performed to measure a voltage by the voltage measurement unit, and in the first estimation process, the voltage measured in the measurement process before the discharge and the voltage If the voltage difference from the voltage measured in the measurement process after discharge is smaller than the minimum voltage difference in the range where the charge state is smaller than the charge state at the inflection point, the charge state corresponding to the voltage difference is the voltage It may estimate the state of charge of said power storage device by identifying the information.
  • a minute change region in which the amount of change in voltage relative to the change in state of charge is relatively small. And a relatively large steep change area (non-plateau area).
  • the inventor of the present application describes a storage element in which lithium iron phosphate is contained in the positive electrode active material, graphite is contained in the negative electrode active material, and a conductive layer such as carbon is formed on the surface of the positive electrode active material. In the above, it was found that an inflection point appears when the correlation between the voltage difference between the voltage in the resting state after charging and the voltage in the resting state after discharging and the charging state is graphed.
  • the inventor of the present application has found that the voltage change with respect to the charge state in the correlation between the voltage in the inactive state after discharge and the charge state in the range where the voltage difference is smaller than the minimum voltage difference in the range where the charge state is smaller than the charge state at the inflection point. It has been found that the amount of change in the voltage difference with respect to the state of charge in the correlation between the voltage difference and the state of charge is larger than the amount.
  • the charge state corresponding to the voltage difference is Since the charge state of the storage element is estimated by specifying from the difference information, the charge state can be estimated more accurately than the charge state is estimated from the correlation between the voltage in the inactive state after discharge and the charge state.
  • the management unit estimates, by the first estimation process, a second estimation process of measuring a current by the current measurement unit to estimate a charge state, and a charge state estimated by the second estimation process. And a correction process of correcting in a charged state.
  • a so-called current integration method in which a current measurement unit measures current to estimate a charge state.
  • measurement errors of the current measurement unit may be accumulated and become gradually inaccurate. Therefore, the state of charge estimated by the current integration method is corrected by the state of charge estimated from the correlation between the voltage and the state of charge. It is also possible to correct the state of charge estimated by the current integration method with the state of charge estimated from the correlation information after discharge.
  • the charge state is It can estimate more accurately than it estimates. According to the above-described management apparatus, correction is performed based on the state of charge estimated from the voltage difference information in the relevant range, so correction can be performed more accurately than in the case of correction based on the state of charge estimated from correlation information after discharge.
  • the above management apparatus includes a storage unit storing correlation information after discharge representing a correlation between a voltage and a charge state in a pause state after discharge, and the management unit charges the battery by the first estimation process. Integration processing of measuring the current by the current measuring unit starting from the time of state estimation and integrating the discharge amount, and the steep change region of the correlation in which the voltage of the storage element is represented by the correlation information after the discharge When it decreases to the third estimation process of estimating the charge condition of the storage element by specifying the charge condition corresponding to the voltage from the correlation information after the discharge, and the charge condition estimated by the first estimation process And a capacity estimation process of estimating the charge capacity of the storage element based on the difference between the charge state estimated in the third estimation process and the discharge amount therebetween.
  • the storage capacity of the storage element decreases with use. Since the charge capacity of the storage element is used for various management of the storage element, it is required to estimate the charge capacity with high accuracy in order to suppress a decrease in management accuracy. For example, the storage element is generally prohibited from use as it has reached the end of its life when the charge capacity is reduced to a certain capacity. Therefore, it is required to accurately estimate the charge capacity of the storage element.
  • the charge state of the storage element is estimated by the current integration method, since the charge capacity is a denominator for dividing the integrated current value, it is required to estimate the charge capacity of the storage element with high accuracy.
  • the charge state when the storage element is fully charged is set to 100%, and thereafter the voltage of the storage element is measured and the charge state is determined from the correlation between the voltage and the charge state. It is conceivable to estimate the charge capacity at the time of full charge from the change of the charge state and the discharge amount of the storage element during the estimation. However, in this method, there is a problem that the charging capacity can not be estimated unless the storage element is fully charged. According to the above management device, since the charge capacity is estimated based on the difference between the state of charge estimated in the first estimation process and the state of charge estimated in the third estimation process, and the amount of discharge therebetween, the storage element Even if the battery is not fully charged, the charge capacity can be estimated.
  • the correlation information after discharge has lower estimation accuracy of the charge state than the voltage difference information, it may not be possible to accurately estimate the charge capacity using the charge state estimated from the correlation information after discharge.
  • the charge capacity is estimated using the charge state estimated from the voltage difference information, so the charge state estimated from the correlation information after discharge The charging capacity can be estimated more accurately than in the case of estimating the charging capacity using.
  • the charge state corresponding to the voltage of the steep change region of the correlation represented by the post-discharge correlation information is estimated from the post-discharge correlation information.
  • the amount of change in voltage with respect to the change in the charge state is larger than in the minute change region, so the charge state can be estimated more accurately than in the case of estimating the charge state corresponding to the voltage in the minute change region. Therefore, according to the above management device, the charge capacity can be accurately estimated even if the storage element is not fully charged.
  • the method of managing a storage element using a positive electrode active material containing lithium iron phosphate and having a conductive layer formed on the surface is based on the current value measured by the current measuring unit that measures the current flowing through the storage element.
  • the electric storage element is discharged in the discharge step of discharging the electric storage element when the electric storage element is in the inactive state;
  • a measurement step after the discharge measuring the voltage by the voltage measuring unit for measuring the voltage of the storage element, a voltage measured in the measurement step after the discharge, and a correlation between the voltage in the idle state after the discharge and the charge state
  • D a first estimation step of estimating the state of charge of the storage element based on the relationship.
  • the technology disclosed by the present specification can be realized in various modes such as a control device, a control method, a computer program for realizing the functions of these methods or devices, and a recording medium recording the computer program.
  • the vertical direction of the battery case 21 in the state where the battery case 21 is placed horizontally without being inclined with respect to the installation surface is the Y direction.
  • the direction along the direction is taken as the X direction, and the depth direction of the battery case 21 is taken as the Z direction.
  • the battery 20 is mounted on a vehicle 1 such as a gasoline (or diesel, etc.) engine vehicle or hybrid vehicle.
  • vehicle 1 such as a gasoline (or diesel, etc.) engine vehicle or hybrid vehicle.
  • the battery 20 supplies (i.e., discharges) power to an electrical load such as a starter or a headlight that starts the engine, and is charged by a generator (alternator) that uses the engine of the vehicle 1 as a power source.
  • a generator alternnator
  • the battery 20 has a block-shaped battery case 21.
  • a battery pack 30 an example of a storage element
  • a control board 28 and the like in which a plurality of battery cells 31 are connected in series are accommodated.
  • the battery case 21 is mounted on a box-shaped case main body 23 opening upward, a positioning member 24 for positioning the plurality of battery cells 31, a middle lid 25 mounted on the top of the case main body 23, and a top of the middle lid 25.
  • the upper lid 26 may be configured.
  • a plurality of cell chambers 23A in which the battery cells 31 are individually accommodated may be provided side by side in the X direction.
  • the positioning member 24 may have a plurality of bus bars 27 disposed on the top surface.
  • the positioning members 24 are disposed on the upper portions of the plurality of battery cells 31 disposed in the case main body 23, whereby the plurality of battery cells 31 are positioned and connected in series by the plurality of bus bars 27.
  • the inner lid 25 has a substantially rectangular shape in plan view, and may have a height difference in the Y direction.
  • a positive electrode terminal 22P and a negative electrode terminal 22N to which a harness terminal (not shown) is connected are provided at both ends of the inner lid 25 in the X direction.
  • the control board 28 is accommodated in the inside cover 25, and the inside cover 25 is attached to the case main body 23, whereby the assembled battery 30 and the control board 28 are connected.
  • the battery 20 includes an assembled battery 30 and a battery management device 40 (referred to as BMS).
  • BMS battery management device 40
  • the BMS 40 is an example of a storage device management device.
  • the battery assembly 30 is one in which a plurality of battery cells 31 are connected in series.
  • Each battery cell 31 is a secondary battery that can be repeatedly charged, and specifically, a positive electrode active material containing lithium iron phosphate at a mixing ratio of 51% or more and graphite at a mixing ratio of 51% or more
  • the lithium iron phosphate battery has a negative electrode active material and a conductive layer such as carbon is formed on the surface of the positive electrode active material.
  • the battery assembly 30 is provided in a current path 47 connecting the positive electrode terminal 22P and the negative electrode terminal 22N, and is selectively connected to the electric load or alternator mounted on the vehicle 1 through the positive electrode terminal 22P and the negative electrode terminal 22N. Connected to
  • the BMS 40 includes a management unit 42, a current sensor 43, a voltage sensor 45, and four equalization circuits 46 (46A to 46D).
  • the management unit 42 operates by the power supplied from the battery pack 30, and includes a CPU 42A, a ROM 42B (an example of a storage unit), a RAM 42C, a communication unit 42D, and the like.
  • the ROM 42 B stores various control programs and data representing the OCV-SOC characteristic 62 after discharging (described later, which is an example of correlation information after discharge representing the correlation between the voltage in the pause state after discharging and the charge state). ing.
  • the CPU 42A controls each part of the battery 20 by executing a control program stored in the ROM 42B.
  • the communication unit 42D is for communicating with the ECU mounted on the vehicle 1.
  • the signals received by the management unit 42 from the ECU include an ignition on signal transmitted when the ignition switch of the vehicle 1 is in the ignition on position, an engine start signal transmitted when in the engine start position, and an accessory position Included are accessory signals that are sent when, lock signals that are sent when in the locked position, and the like. It is also possible to transmit a signal from the management unit 42 to the ECU via the communication unit 42D.
  • the current sensor 43 is provided in series with the battery assembly 30 in the current path 47.
  • the current sensor 43 measures and measures the current value I [A] of the charging current flowing from the alternator to the assembled battery 30 at the time of charging, and the current value I [A] of the discharging current flowing from the assembled battery 30 to the electrical load at the time of discharging.
  • the current value I is output to the management unit 42.
  • charge / discharge current when the charge current and the discharge current are not distinguished from each other, they are referred to as charge / discharge current.
  • the voltage sensor 45 is connected to both ends of each battery cell 31 of the assembled battery 30.
  • the voltage sensor 45 measures a voltage value V [V] which is a terminal voltage of the battery cell 31, and outputs the measured voltage value V to the management unit 42.
  • the equalization circuits 46A to 46D are connected in parallel to the battery cells 31, respectively.
  • Each equalization circuit 46 has a switch element 48 and a discharge resistor 49 respectively. When the switch element 48 is turned on, the power of the battery cell 31 connected in parallel to the equalization circuit 46 is discharged by the discharge resistor 49.
  • the battery pack 30 As a case where the battery pack 30 is in the inactive state, there is a case where the battery pack 30 is in the inactive state after charging (a state in which a current higher than the reference value flows in the charging direction). State) may go to sleep after that. For example, after the vehicle 1 is stopped, if the ignition switch is switched to the lock position in a state in which the assembled battery 30 is being charged by the alternator, the assembled battery 30 is put to rest after charging. On the other hand, after the vehicle 1 is stopped, for example, when the ignition switch is switched to the accessory position while the headlights are on, the assembled battery 30 is in a state of supplying power (i.e., discharging) to the headlights, and then the ignition is performed. When the switch is switched to the lock position, it becomes inactive after discharging.
  • the method of determining whether or not the assembled battery 30 is in the resting state is not limited to the method of determining from the current value measured by the current sensor 43, and can be determined by an appropriate method.
  • the management unit 42 may determine that the assembled battery 30 is in the paused state. That is, when the management unit 42 receives the lock signal from the vehicle 1, the assembled battery 30 is in the paused state without determining whether the current value measured by the current sensor 43 is equal to or greater than the reference value. You may judge that.
  • the voltage refers to the voltage across the assembled battery 30 when the current flowing through the assembled battery 30 is less than or equal to a reference value.
  • this voltage is called OCV (Open Circuit Voltage).
  • the voltage is not limited to the voltage at both ends when the current is lower than the reference value, and the condition that the voltage change amount per unit time of the battery pack 30 when the current is lower than the reference value is less than a predetermined specified amount. It may be the voltage across the assembled battery 30 when it is satisfied.
  • the dotted line 61 indicates the correlation between the OCV and the SOC (hereinafter referred to as “the OCV-SOC characteristic 61 after charging”) when the battery pack 30 is in the inactive state after charging, and the solid line 62
  • the OCV-SOC characteristic 62 after discharging The correlation between the OCV and the SOC (hereinafter referred to as “the OCV-SOC characteristic 62 after discharging”) when the battery 30 is in the inactive state after discharging is shown.
  • the assembled battery 30 in which lithium iron phosphate is contained in the positive electrode active material and a conductive layer such as carbon is formed on the surface of the positive electrode active material becomes inactive after charging. It has a characteristic (hereinafter referred to as "hysteresis characteristic") that the OCV-SOC characteristic is different between the case where it is discharged and the case where it becomes inactive after discharge. The hysteresis characteristic is caused by the positive electrode active material.
  • a minute change region (plateau region) having a small amount of change in OCV per unit SOC (hereinafter referred to as “OCV change rate”) is wide. It has the characteristic of being present throughout. Specifically, in the case of the OCV-SOC characteristic 62 after discharge, the region of about 64% or less of SOC and the region of about 68% to about 98% of SOC are generally flat, and the OCV change rate is the standard. It is less than the value. In the present embodiment, a region in which the OCV change rate is equal to or less than a reference value is referred to as a minute change region. The reference value can be set arbitrarily.
  • a steep change region in which the OCV change rate is larger than the reference value exists between the two small change regions described above.
  • the region of about 64% to about 68% of SOC corresponds to the steep change region. The reason why the region of about 64% to about 68% of SOC becomes the sharp change region is considered to be because the stage structure of the negative electrode active material containing graphite changes in this region.
  • a region of about 64% to about 68% has been described as an example of the steep change region of the storage element using graphite as the negative electrode, but the steep change region is the charge depth balance of positive electrode / negative electrode, progress of deterioration of the storage device, etc. , And is not necessarily in the range of about 64% to about 68.
  • the management unit 42 measures the OCV with the voltage sensor 45, and specifies the SOC corresponding to the measured OCV from the OCV-SOC characteristic.
  • the SOC of the battery pack 30 is estimated by
  • the OCV-SOC characteristic 61 after charging has a smaller OCV change rate as a whole than the OCV-SOC characteristic 62 after discharging. For this reason, when the SOC is estimated from the OCV-SOC characteristic 61 after charging, there is a concern that the estimation accuracy of the SOC is reduced compared to the case where the SOC is estimated from the OCV-SOC characteristic 62 after discharging.
  • the management unit 42 discharges the assembled battery 30 by the equalizing circuit 46 regardless of whether the assembled battery 30 is charged or discharged immediately before the inactive state. The SOC is estimated from the later OCV-SOC characteristic 62.
  • the SOC estimation process performed by the management unit 42 will be described with reference to FIG.
  • the present process is started when the battery pack 30 is in the inactive state.
  • the management unit 42 causes the equalization circuit 46 to discharge the battery assembly 30 for a predetermined time (an example of the discharge process).
  • the management unit 42 measures the OCV by the voltage sensor 45 (measurement process after discharge).
  • the management unit 42 estimates the SOC of the battery pack 30 by specifying the SOC corresponding to the OCV measured in S102 from the OCV-SOC characteristic 62 after discharge (an example of a first estimation process).
  • the battery pack 30 is discharged by the equalizing circuit 46 when it is in the inactive state after charging, based on the OCV-SOC characteristic 62 after the discharge. Estimate the SOC. Therefore, the SOC of the battery pack 30 can be estimated more accurately than in the case of estimation based on the OCV-SOC characteristic 61 after charging or in the case of estimation from the average of those OCV-SOC characteristics. However, it may not be possible to know whether the battery pack 30 was charged or discharged immediately before the hibernation state.
  • the battery assembly 30 when the battery assembly 30 is in the inactive state, the battery assembly 30 is discharged regardless of whether the battery assembly 30 was charged or discharged immediately before the idle state. Therefore, the SOC can be accurately estimated even if it is not possible to know whether the battery pack 30 was charged or discharged immediately before entering the inactive state. Therefore, according to BMS 40, it is possible to accurately estimate the SOC of the battery assembly 30 using the positive electrode active material containing lithium iron phosphate and having the conductive layer formed on the surface.
  • the SOC is estimated from the OCV-SOC characteristic 62 after discharging after the battery pack 30 is discharged. Therefore, it is estimated from the OCV-SOC characteristic 61 after charging SOC can be estimated more accurately than
  • Second Embodiment Embodiment 2 of the present invention will be described with reference to FIGS. 5 to 8.
  • the OCV is measured before and after discharging the battery pack 30, and the voltage between the OCV in the inactive state after charging and the OCV in the inactive state after discharging
  • the SOC of the battery pack 30 is estimated from the voltage difference-OCV characteristic 63 (see FIG. 7) representing the correlation between the difference and the SOC.
  • the current sensor 43 has a function of detecting the flow direction of the current. For this reason, in the second embodiment, the management unit 42 determines whether the battery pack 30 is in the inactive state after charging or in the inactive state after discharging from the flow direction detected by the current sensor 43 when the battery assembly 30 is in the inactive state. It can be judged.
  • the voltage difference-SOC characteristics will be described with reference to FIG.
  • the voltage difference-SOC characteristic 63 is obtained by subtracting the voltage of the OCV-SOC characteristic 62 after discharging from the voltage of the OCV-SOC characteristic 61 after charging.
  • lithium iron phosphate is contained in the positive electrode active material
  • graphite is contained in the negative electrode active material
  • a conductive layer such as carbon is formed on the surface of the positive electrode active material.
  • FIG. 7 such a battery pack 30 is a point of inflection 64 when the correlation between the voltage difference between the voltage in the inactive state after charging and the voltage in the inactive state after discharging and SOC is graphed (FIG. In the case of 7, it is also a local maximum).
  • the OCV change rate of the OCV-SOC characteristic 62 after discharge is the voltage difference change Greater than the rate. Therefore, in the range L2, the SOC can be estimated more accurately by specifying from the OCV-SOC characteristic 62 after discharge rather than estimating the SOC from the voltage difference-SOC characteristic 63.
  • the management unit 42 estimates the SOC from the voltage difference-SOC characteristic 63 in the range W1 in which the voltage difference is smaller than the minimum voltage difference Min, and in the range W2 larger than the minimum voltage difference Min, the OCV-SOC characteristic 62 after discharge Estimate the SOC.
  • the ROM 42B according to the second embodiment stores data representing the OCV-SOC characteristic 62 after discharge (an example of post-discharge correlation information representing the correlation between the voltage in the inactive state after discharge and the charge state). . Furthermore, in the ROM 42B according to the second embodiment, data representing the voltage difference-SOC characteristic 63 (a voltage representing a correlation between the voltage difference between the voltage in the resting state after charging and the voltage in the resting state after discharging and the charging state) An example of difference information is also stored.
  • the current integration method measures the amount of power entering and leaving the assembled battery 30 by constantly measuring the charge and discharge current of the assembled battery 30 with the current sensor 43, This is a method of estimating the SOC by adjusting this from the initial capacity.
  • the current integration method has the advantage that the SOC can be estimated even while the battery assembly 30 is in use. For this reason, the management unit 42 estimates the SOC of the battery pack 30 by the current integration method.
  • the management unit 42 estimates the SOC estimated by the current integration method from the voltage difference-SOC characteristic 63 or the OCV-SOC characteristic 62 after discharge. Correct with
  • the management unit 42 corrects with the SOC estimated from the voltage difference-SOC characteristic 63, and the discharge is performed when the voltage difference is the minimum voltage difference Min or more. It corrects with SOC estimated from the later OCV-SOC characteristic 62. If the SOC estimated by the current integration method is corrected with the SOC estimated from the voltage difference-SOC characteristic 63 or the OCV-SOC characteristic 62 after discharge, the error integration in the current integration method is cut off, so the estimation is performed by the current integration method It is possible to improve the estimation accuracy of the SOC.
  • the management unit 42 estimates the charge capacity of the battery pack 30.
  • the SOC when the battery pack 30 is fully charged is 100%, then the OCV of the battery pack 30 is measured to estimate the SOC from the OCV-SOC characteristics.
  • a conceivable method is to estimate the charge capacity at the time of full charge from the change in SOC and the discharge amount of the assembled battery 30 during that time.
  • this method can not estimate the charge capacity unless the battery pack 30 is fully charged. Therefore, the management unit 42 estimates the SOC at two different points in time and estimates the charge capacity of the assembled battery 30 from the difference between the SOCs and the amount of discharge therebetween.
  • the management unit 42 discharges the assembled battery 30 to estimate the SOC (here, referred to as “SOC1”). If the voltage difference is smaller than the minimum voltage difference Min, the SOC is estimated from the voltage difference-SOC characteristic 63. If the voltage difference is equal to or more than the minimum voltage difference Min, the SOC is estimated from the OCV-SOC characteristic 62 after discharge.
  • SOC1 the SOC
  • the management unit 42 measures the current value at constant time intervals by the current sensor 43 starting from the time when the OCV is measured after discharge, and integrates the measured current values to measure the amount of discharge (an example of the integration process)
  • the OCV is measured at constant time intervals by the voltage sensor 45.
  • the management unit 42 measures the SOC (herein referred to as “SOC2”) corresponding to the measured OCV after the discharge.
  • SOC2 the SOC
  • the SOC is estimated by specifying from the SOC characteristic 62 (an example of a third estimation process).
  • the reason why the SOC corresponding to the OCV in the steep change region is used as the SOC2 is that the OCV change rate is larger in the sharp change region than in the minute change region, so the SOC is lower than in the case where the SOC corresponding to the OCV in the minute change region is specified. It is because it can specify precisely.
  • the management unit 42 determines from the flow direction detected by the current sensor 43 whether the assembled battery 30 has been charged or discharged immediately before the hibernation state, and if being charged, the process proceeds to S202 and charging is performed. If not (ie, if it is discharged), the process proceeds to S212.
  • the management unit 42 measures the OCV of the battery pack 30 by the voltage sensor 45 (measurement process before discharge).
  • the management unit 42 causes the equalization circuit 46 to discharge the battery pack 30 for a predetermined time.
  • the management unit 42 measures the voltage of the battery pack 30 by the voltage sensor 45 (measurement process after discharge).
  • the management unit 42 determines whether the difference (voltage difference) between the OCV measured before discharge and the OCV measured after discharge is smaller than the minimum voltage difference Min of the range L2, and if smaller, the process proceeds to S206. If it is the voltage difference Min or more, the process proceeds to S213. In S206, the management unit 42 starts the processing of measuring the current value by the current sensor 43 at a constant time interval and integrating the current value, and the processing of measuring the OCV by the voltage sensor 45 at a constant time interval.
  • the management unit 42 estimates the SOC (that is, SOC1) of the battery pack 30 by specifying the SOC corresponding to the voltage difference from the voltage difference-SOC characteristic 63 (an example of a first estimation process). In S208, the management unit 42 corrects the SOC estimated by the current integration method using SOC1. In S209, the management unit 42 determines whether the OCV measured by the voltage sensor 45 is the OCV in the sharp change region, and if it is the OCV in the sharp change region, the process proceeds to S210.
  • the management unit 42 estimates the SOC (that is, SOC2) by specifying the SOC corresponding to the OCV in the steep change region from the OCV-SOC characteristic 62 after discharge (third estimation process). In S211, the management unit 42 estimates the charge capacity from the above-described Equation 1.
  • the management unit 42 measures the OCV of the battery pack 30 by the voltage sensor 45.
  • the management unit 42 estimates the SOC (that is, SOC1) by specifying the SOC corresponding to the OCV measured in S204 or S212 from the OCV-SOC characteristic 62 after discharge.
  • the management unit 42 corrects the SOC estimated by the current integration method using SOC1.
  • the SOC estimated by the current integration method is estimated from the voltage difference-SOC characteristic 63. Since the correction is performed using the above SOC, the SOC can be corrected more accurately than in the case of using the SOC estimated from the OCV-SOC characteristic 62 after discharge.
  • the charge capacity is estimated based on the difference between the SOC1 estimated in the first estimation process (S207) and the SOC2 estimated in the third estimation process (S210) and the discharge amount therebetween, Even if 30 is not fully charged, the charge capacity can be estimated.
  • the charge capacity is estimated using the SOC estimated from the voltage difference-SOC characteristic 63, so it is estimated from the OCV-SOC characteristic 62 after discharging The charge capacity can be estimated more accurately than in the case of estimation using the SOC.
  • the SOC corresponding to the OCV in the steep change region of the OCV-SOC characteristic 62 after discharge is estimated from the OCV-SOC characteristic 62 after discharge. Since the OCV change rate is larger in the steep change area than in the minute change area, the SOC can be specified more accurately than in the case of specifying the SOC corresponding to the OCV in the minute change area. Therefore, according to BMS 40, the charge capacity can be accurately estimated even if the storage element is not fully charged.
  • the management unit 42 may discharge the assembled battery 30 by requesting the ECU of the vehicle 1 to consume the power of the assembled battery 30 via the communication unit 42D.
  • the configuration of the management unit is not limited to this.
  • the management unit may be configured to include a plurality of CPUs, a hardware circuit such as an application specific integrated circuit (ASIC) or a field-programmable gate array (FPGA), or a configuration including both a hardware circuit and a CPU.
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

リン酸鉄リチウムを含有し、表面に導電層が形成されている正極活物質を用いた組電池30の管理装置(BMS40)であって、組電池30に流れる電流を計測する電流センサ43と、組電池30の電圧を計測する電圧センサ45と、管理部42と、を備え、電流センサ43によって計測される電流値が基準値未満である状態を組電池30の休止状態と定義したとき、管理部42は、組電池30が休止状態になった場合に、組電池30を放電させる放電処理(S101)と、放電処理によって組電池30を放電させた後に、電圧センサ45によって電圧を計測する放電後の計測処理(S102)と、放電後の計測処理で計測した電圧と、放電後のOCV-SOC特性62とに基づいて組電池30のSOCを推定する第1の推定処理(S103)と、を実行する、BMS40。

Description

蓄電素子の管理装置、バッテリ、及び、管理方法
 本明細書で開示する技術は、リン酸鉄リチウムを含有し、表面に導電層が形成されている正極活物質を用いた蓄電素子を管理する技術に関する。
 従来、正極活物質にリン酸鉄リチウムが含有されている蓄電素子が知られている。リン酸鉄リチウムは熱安定性が高いので蓄電素子の安全性を飛躍的に高めることができる反面、導電性が低いという課題がある。この課題を解決するために、リン酸鉄リチウムを含有し、表面にカーボンなどの導電層が形成されている正極活物質を用いた蓄電素子も知られている(例えば、特許文献1参照)。
 従来、蓄電素子の電圧(OCV:Open circuit Voltage)を計測し、計測した電圧に対応する充電状態を電圧と充電状態との相関関係から特定することによって蓄電素子の充電状態を推定することが行われている。充電状態は蓄電素子の充電容量に対して充電されている電気量を比率(%)で表したものであり、一般にSOC(State Of Charge)と称されている。
特許第5098146号公報
 しかしながら、リン酸鉄リチウムを含有し、表面にカーボンなどの導電層が形成されている正極活物質を用いた蓄電素子は、単に蓄電素子の電圧に対応する充電状態を電圧と充電状態との相関関係から特定するだけでは充電状態を精度よく推定できない場合があった。
 本明細書では、リン酸鉄リチウムを含有し、表面に導電層が形成されている正極活物質を用いた蓄電素子の充電状態を精度よく推定できる技術を開示する。
 本発明の一局面に係る管理装置は、リン酸鉄リチウムを含有し、表面に導電層が形成されている正極活物質を用いた蓄電素子に流れる電流を計測する電流計測部と、前記蓄電素子の電圧を計測する電圧計測部と、管理部と、を備え、前記電流計測部によって計測される電流値が基準値未満である状態を前記蓄電素子の休止状態と定義したとき、前記管理部は、前記蓄電素子が休止状態になった場合に、前記蓄電素子を放電させる放電処理と、前記放電処理によって前記蓄電素子を放電させた後に、前記電圧計測部によって電圧を計測する放電後の計測処理と、前記放電後の計測処理で計測した電圧と、放電後の休止状態における電圧と充電状態との相関関係とに基づいて前記蓄電素子の充電状態を推定する第1の推定処理と、を実行する。
 本発明の一局面によれば、リン酸鉄リチウムを含有し、表面に導電層が形成されている正極活物質を用いた蓄電素子の充電状態を精度よく推定できる。
実施形態1に係る車両及びバッテリを示す模式図 バッテリの斜視図 バッテリの分解斜視図 バッテリの回路図 充電後の休止状態における電圧と充電状態との相関関係、及び、放電後の休止状態における電圧と充電状態との相関関係を示すグラフ 組電池のSOC推定処理のフローチャート 実施形態2に係る充電後の休止状態における電圧と放電後の休止状態における電圧との電圧差と充電状態との相関関係を示すグラフ 組電池のSOC推定処理のフローチャート
 (本実施形態の概要)
 リン酸鉄リチウムを含有し、表面に導電層が形成されている正極活物質を用いた蓄電素子の管理装置は、前記蓄電素子に流れる電流を計測する電流計測部と、前記蓄電素子の電圧を計測する電圧計測部と、管理部と、を備え、前記電流計測部によって計測される電流値が基準値未満である状態を前記蓄電素子の休止状態と定義したとき、前記管理部は、前記蓄電素子が休止状態になった場合に、前記蓄電素子を放電させる放電処理と、前記放電処理によって前記蓄電素子を放電させた後に、前記電圧計測部によって電圧を計測する放電後の計測処理と、前記放電後の計測処理で計測した電圧と、放電後の休止状態における電圧と充電状態との相関関係とに基づいて、前記蓄電素子の充電状態を推定する第1の推定処理と、を実行する。
 本願発明者は、リン酸鉄リチウムを含有し、表面に導電層が形成されている正極活物質を用いた蓄電素子では、充電(充電方向に基準値以上の電流が流れている状態)後に休止状態になった場合と、放電(放電方向に基準値以上の電流が流れている状態)後に休止状態になった場合とで電圧と充電状態との相関関係が異なるという知見を得た。以降の説明では、充電後に休止状態になった場合と放電後に休止状態になった場合とで相関関係が異なることをヒステリシス特性という。リン酸鉄リチウムを含有し、表面に導電層が形成されている正極活物質を用いた蓄電素子がヒステリシス特性を有する理由は、リン酸鉄リチウムは導電性が低いため、表面に形成されている導電層と内部のリン酸鉄リチウムとで充電状態が異なるからである。
 このような蓄電素子の充電状態を推定する方法としては、例えば充電後の休止状態の場合は充電後の休止状態における電圧と充電状態との相関関係から推定し、放電後の休止状態の場合は放電後の休止状態における電圧と充電状態との相関関係から推定する方法が考えられる。あるいは、これらの相関関係の平均を相関関係とみなし、その相関関係に基づいて推定する方法が考えられる。しかしながら、これらの方法では充電状態を精度よく推定できない場合があった。
 具体的には、充電後の休止状態における電圧と充電状態との相関関係は、放電後の休止状態における電圧と充電状態との相関関係に比べて、充電状態の変化に対する電圧の変化量が小さい。このため、充電後に休止状態になった場合、充電後の休止状態における電圧と充電状態との相関関係から充電状態を推定すると、放電後に休止状態になった場合に比べて推定精度が低下してしまう。また、これらの相関関係の平均を相関関係とみなす場合も推定精度が低下してしまう。
 これに対し、充電後に休止状態になった場合は蓄電素子を放電させ、放電後の休止状態における電圧と充電状態との相関関係に基づいて充電状態を推定すると、充電後の休止状態における電圧と充電状態との相関関係に基づいて推定する場合や相関関係の平均から推定する場合に比べて蓄電素子の充電状態を精度よく推定できる。
 ただし、休止状態になる直前に蓄電素子が充電されていたか放電していたかを把握できない場合もある。上記の管理装置によると、蓄電素子が休止状態になった場合は休止状態になる直前に充電されていたか放電していたかによらず蓄電素子を放電させるので、休止状態になる直前に充電されていたか放電していたかを把握できない場合であっても充電状態を精度よく推定できる。
 よって上記の管理装置によると、リン酸鉄リチウムを含有し、表面に導電層が形成されている正極活物質を用いた蓄電素子の充電状態を精度よく推定できる。
 上記の管理装置は、放電後の休止状態における電圧と充電状態との相関関係を表す放電後の相関情報を記憶している記憶部を備え、前記管理部は、前記第1の推定処理において、前記放電後の計測処理で計測した電圧に対応する充電状態を前記放電後の相関情報から特定することによって前記蓄電素子の充電状態を推定してもよい。
 上記の管理装置によると、蓄電素子が充電後に休止状態に変化した場合は蓄電素子を放電させた後に放電後の休止状態における電圧と充電状態との相関関係から充電状態を推定するので、充電後の休止状態における電圧と充電状態との相関関係から推定するよりも充電状態を精度よく推定できる。
 前記蓄電素子の負極活物質にはグラファイトが含有されており、上記管理装置は、充電後の休止状態における電圧と放電後の休止状態における電圧との電圧差と充電状態との相関関係を表す電圧差情報が記憶されている記憶部を備え、前記充電状態の変化に対する前記電圧差の変化には変曲点があり、前記管理部は、前記蓄電素子が充電後に休止状態になった場合に、前記放電処理によって前記蓄電素子を放電させる前に前記電圧計測部によって電圧を計測する放電前の計測処理を実行し、前記第1の推定処理において、前記放電前の計測処理で計測した電圧と前記放電後の計測処理で計測した電圧との電圧差が、前記変曲点の充電状態より充電状態が小さい範囲の最小電圧差より小さい場合は、当該電圧差に対応する充電状態を前記電圧差情報から特定することによって前記蓄電素子の充電状態を推定してもよい。
 負極活物質にグラファイトが含有されている蓄電素子は、電圧と充電状態との相関関係をグラフにした場合に、充電状態の変化に対する電圧の変化量が相対的に小さい微少変化領域(プラトー領域)と、相対的に大きい急峻変化領域(非プラトー領域)とが存在する。
 本願発明者は、正極活物質にリン酸鉄リチウムが含有されており、負極活物質にグラファイトが含有されており、且つ、正極活物質の表面にカーボンなどの導電層が形成されている蓄電素子では、充電後の休止状態における電圧と放電後の休止状態における電圧との電圧差と充電状態との相関関係をグラフにすると変曲点が表れることを見出した。
 本願発明者は、変曲点における充電状態より充電状態が小さい範囲の最小電圧差より電圧差が小さい範囲では、放電後の休止状態における電圧と充電状態との相関関係における充電状態に対する電圧の変化量よりも、電圧差と充電状態との相関関係における充電状態に対する電圧差の変化量の方が大きいことを見出した。
 上記の管理装置によると、電圧差が、電圧差情報によって表される相関関係において変曲点の充電状態より充電状態が小さい範囲の最小電圧差より小さい場合は電圧差に対応する充電状態を電圧差情報から特定することによって蓄電素子の充電状態を推定するので、放電後の休止状態における電圧と充電状態との相関関係から充電状態を推定するよりも充電状態を精度よく推定できる。
 前記管理部は、前記電流計測部によって電流を計測して充電状態を推定する第2の推定処理と、前記第2の推定処理で推定されている充電状態を前記第1の推定処理で推定した充電状態で補正する補正処理と、を実行してもよい。
 従来、電流計測部によって電流を計測して充電状態を推定する所謂電流積算法が知られている。しかしながら、電流積算法では電流計測部の計測誤差が累積して次第に不正確になる場合がある。このため、電流積算法によって推定されている充電状態を、電圧と充電状態との相関関係から推定した充電状態によって補正することが行われている。
 電流積算法によって推定されている充電状態を放電後の相関情報から推定した充電状態で補正することも可能である。しかしながら、前述したように、電圧差が、変曲点の充電状態より充電状態が小さい範囲の最小電圧差より小さい範囲では、電圧差情報から推定した方が、放電後の相関情報から充電状態を推定するよりも精度よく推定できる。
 上記の管理装置によると、当該範囲では電圧差情報から推定した充電状態によって補正するので、放電後の相関情報から推定した充電状態によって補正する場合に比べて精度よく補正できる。
 上記の管理装置は、放電後の休止状態における電圧と充電状態との相関関係を表す放電後の相関情報を記憶している記憶部を備え、前記管理部は、前記第1の推定処理で充電状態を推定したときを起点として前記電流計測部によって電流を計測して放電量を積算する積算処理と、前記蓄電素子の電圧が、前記放電後の相関情報によって表される相関関係の急峻変化領域まで低下すると、当該電圧に対応する充電状態を前記放電後の相関情報から特定することによって前記蓄電素子の充電状態を推定する第3の推定処理と、前記第1の推定処理で推定した充電状態と前記第3の推定処理で推定した充電状態との差とその間の前記放電量とに基づいて前記蓄電素子の充電容量を推定する容量推定処理と、を実行してもよい。
 一般に蓄電素子は使用に伴って充電容量が低下する。蓄電素子の充電容量は蓄電素子の種々の管理に用いられるので、管理精度の低下を抑制するために充電容量を精度よく推定することが求められている。例えば、一般に蓄電素子は充電容量がある一定の容量まで低下すると寿命に達したとして使用が禁止される。このため、蓄電素子の充電容量を精度よく推定することが求められている。電流積算法によって蓄電素子の充電状態を推定する場合、充電容量は積算された電流値を除算する分母となるので、蓄電素子の充電容量を精度よく推定することが求められている。
 蓄電素子の充電容量を推定する方法としては、蓄電素子が満充電されたときの充電状態を100%とし、その後に蓄電素子の電圧を計測して電圧と充電状態との相関関係から充電状態を推定し、その間の充電状態の変化と蓄電素子の放電量とから満充電のときの充電容量を推定する方法が考えられる。しかしながら、この方法では蓄電素子が満充電されないと充電容量を推定できないという課題がある。
 上記の管理装置によると、第1の推定処理で推定した充電状態と第3の推定処理で推定した充電状態との差とその間の放電量とに基づいて充電容量を推定するので、蓄電素子が満充電されなくても充電容量を推定できる。
 ただし、放電後の相関情報は電圧差情報に比べて充電状態の推定精度が低いので、放電後の相関情報から推定された充電状態を用いて充電容量を推定すると精度よく推定できない場合がある。
 上記の管理装置によると、電圧差が前記範囲の最小電圧差より小さい場合は電圧差情報から推定された充電状態を用いて充電容量を推定するので、放電後の相関情報から推定された充電状態を用いて充電容量を推定する場合に比べて充電容量を精度よく推定できる。
 上記の管理装置によると、第3の推定処理では、放電後の相関情報によって表される相関関係の急峻変化領域の電圧に対応する充電状態を放電後の相関情報から推定する。急峻変化領域では微小変化領域に比べて充電状態の変化に対する電圧の変化量が大きいので、微小変化領域の電圧に対応する充電状態を推定する場合に比べて充電状態を精度よく推定できる。
 よって、上記の管理装置によると、蓄電素子が満充電されなくても充電容量を精度よく推定できる。
 リン酸鉄リチウムを含有し、表面に導電層が形成されている正極活物質を用いた蓄電素子の管理方法は、前記蓄電素子に流れる電流を計測する電流計測部によって計測される電流値が基準値未満である状態を前記蓄電素子の休止状態と定義したとき、前記蓄電素子が休止状態になった場合に、前記蓄電素子を放電させる放電工程と、前記放電工程で前記蓄電素子を放電させた後に、前記蓄電素子の電圧を計測する電圧計測部によって電圧を計測する放電後の計測工程と、前記放電後の計測工程で計測した電圧と、放電後の休止状態における電圧と充電状態との相関関係とに基づいて、前記蓄電素子の充電状態を推定する第1の推定工程と、を含む。
 上記の管理方法によると、リン酸鉄リチウムを含有し、表面に導電層が形成されている正極活物質を用いた蓄電素子の充電状態を精度よく推定できる。
 本明細書によって開示される技術は、制御装置、制御方法、これらの方法または装置の機能を実現するためのコンピュータプログラム、そのコンピュータプログラムを記録した記録媒体等の種々の態様で実現できる。
 <実施形態1>
 実施形態1を図1ないし図6によって説明する。以下の説明において、図2及び図3を参照する場合、電池ケース21が設置面に対して傾きなく水平に置かれた状態の電池ケース21の上下方向をY方向とし、電池ケース21の長辺方向に沿う方向をX方向とし、電池ケース21の奥行き方向をZ方向として説明する。
 (1-1)バッテリの構造
 図1に示すように、バッテリ20はガソリン(ディーゼル等でもよい)エンジン自動車やハイブリッド自動車などの車両1に搭載されるものである。バッテリ20はエンジンを始動させるスタータやヘッドライトなどの電気負荷に電力を供給(すなわち放電)するとともに、車両1のエンジンを動力源とする発電機(オルタネータ)によって充電される。
 図2に示すように、バッテリ20はブロック状の電池ケース21を有している。図3に示すように、電池ケース21内には複数の電池セル31が直列接続された組電池30(蓄電素子の一例)や制御基板28などが収容されている。電池ケース21は上方に開口する箱型のケース本体23と、複数の電池セル31を位置決めする位置決め部材24と、ケース本体23の上部に装着される中蓋25と、中蓋25の上部に装着される上蓋26とを備えて構成されてもよい。
 ケース本体23内には各電池セル31が個別に収容される複数のセル室23AがX方向に並んで設けられてもよい。位置決め部材24は複数のバスバー27が上面に配置されてもよい。ケース本体23内に配置された複数の電池セル31の上部に位置決め部材24が配置されることで複数の電池セル31が位置決めされると共に、複数のバスバー27によって直列に接続される。
 中蓋25は平面視略矩形状をなしており、Y方向に高低差が付けられてもよい。中蓋25のX方向両端部には図示しないハーネス端子が接続される正極端子22P、負極端子22Nが設けられている。中蓋25は制御基板28が内部に収容されており、中蓋25がケース本体23に装着されることで組電池30と制御基板28とが接続される。
 (1-2)バッテリの電気的構成
 図4を参照して、バッテリ20の電気的構成について説明する。バッテリ20は組電池30及び電池管理装置40(BMSという)を備えている。BMS40は蓄電素子の管理装置の一例である。
 前述したように組電池30は複数の電池セル31が直列接続されたものである。各電池セル31は繰り返し充電可能な二次電池であり、具体的にはリン酸鉄リチウムが51%以上の配合比で含有された正極活物質と、グラファイトが51%以上の配合比で含有された負極活物質とを有し、正極活物質の表面にカーボンなどの導電層が形成されているリン酸鉄リチウムイオン電池である。組電池30は正極端子22Pと負極端子22Nとを接続している電流経路47に設けられており、車両1に搭載されている電気負荷やオルタネータに正極端子22P及び負極端子22Nを介して選択的に接続される。
 BMS40は管理部42、電流センサ43、電圧センサ45、及び、4つの均等化回路46(46A~46D)を備えている。
 管理部42は組電池30から供給される電力によって動作するものであり、CPU42A、ROM42B(記憶部の一例)、RAM42C、通信部42Dなどを備えている。ROM42Bには各種の制御プログラムや後述する放電後のOCV-SOC特性62を表すデータ(放電後の休止状態における電圧と充電状態との相関関係を表す放電後の相関情報の一例)などが記憶されている。CPU42AはROM42Bに記憶されている制御プログラムを実行することによってバッテリ20の各部を制御する。
 通信部42Dは車両1に搭載されているECUと通信するためのものである。管理部42がECUから受信する信号には、車両1のイグニションスイッチがイグニションオン位置にあるときに送信されるイグニションオン信号、エンジン始動位置にあるときに送信されるエンジン始動信号、アクセサリ位置にあるときに送信されるアクセサリ信号、ロック位置にあるときに送信されるロック信号などが含まれる。管理部42から通信部42Dを介してECUに信号を送信することも可能である。
 電流センサ43は電流経路47に組電池30と直列に設けられている。電流センサ43は充電時にオルタネータから組電池30に流れる充電電流の電流値I[A]、及び、放電時に組電池30から電気負荷に流れる放電電流の電流値I[A]を計測し、計測した電流値Iを管理部42に出力する。以降の説明では充電電流と放電電流とを区別しない場合は充放電電流という。
 電圧センサ45は組電池30の各電池セル31の両端に接続されている。電圧センサ45は電池セル31の端子電圧である電圧値V[V]を計測し、計測した電圧値Vを管理部42に出力する。
 各均等化回路46A~46Dは各電池セル31にそれぞれ並列接続されている。各均等化回路46はそれぞれスイッチ素子48と放電抵抗49とを有している。スイッチ素子48をオンにするとその均等化回路46に並列接続されている電池セル31の電力が放電抵抗49によって放電される。
 (1-3)組電池の休止状態
 車両1が停車されてイグニションスイッチがロック位置に切り替えられると、組電池30はオルタネータによる充電もされず、車両1に搭載されている電気負荷への放電もしない休止状態になる。ただし、休止状態でも組電池30に微小な暗電流が流れることがある。このため、本実施形態では電流センサ43によって計測される電流値が所定の基準値未満である状態を組電池30の休止状態と定義する。
 組電池30が休止状態になる場合としては、充電(充電方向に基準値以上の電流が流れている状態)後に休止状態になる場合と、放電(放電方向に基準値以上の電流が流れている状態)後に休止状態になる場合とがある。
 例えば、車両1が停車された後、オルタネータによって組電池30が充電されている状態でイグニションスイッチがロック位置に切り替えられると組電池30は充電後に休止状態になる。これに対し、車両1が停車された後、例えばヘッドライトを点灯したままイグニションスイッチがアクセサリ位置に切り替えられると、組電池30はヘッドライトに電力を供給(すなわち放電)する状態となり、その後にイグニションスイッチがロック位置に切り替えられると放電後に休止状態になる。
 組電池30が充電後に休止状態になったか又は放電後に休止状態になったかについては、判断できる場合と判断できない場合とがある。例えば電流の流れ方向を検出する機能を有している電流センサ43を用いる場合は、休止状態になる直前の電流の流れ方向から判断できる。これに対し、電流の流れ方向を検出する機能を有していない電流センサ43を用いる場合は、休止状態になる直前の電流の流れ方向が判らないので判断することができない。実施形態1では、電流センサ43は電流の流れ方向を検出する機能を有していないものとする。
 組電池30が休止状態になったか否かを判断する方法は電流センサ43によって計測される電流値から判断する方法に限られるものではなく、適宜の方法で判断できる。例えば、管理部42は通信部42Dを介して車両1からロック信号を受信すると組電池30が休止状態になったと判断してもよい。すなわち、管理部42は、車両1からロック信号を受信した場合は、電流センサ43によって計測される電流値が基準値以上であるか否かを判断することなく、組電池30が休止状態になったと判断してもよい。
 (1-4)OCV-SOC特性
 図5を参照して、組電池30の電圧とSOCとの相関関係について説明する。本実施形態において電圧とは、組電池30に流れる電流が基準値以下のときの組電池30の両端電圧のことをいう。以降の説明ではこの電圧のことをOCV(Open circuit Voltage)という。電圧は電流が基準値以下のときの両端電圧に限定されるものではなく、電流が基準値以下のときの組電池30の単位時間当たりの電圧変化量が所定の規定量以下であるという条件を満たしているときの組電池30の両端電圧であってもよい。
 図5において点線61は組電池30が充電後に休止状態になった場合のOCVとSOCとの相関関係(以下、「充電後のOCV-SOC特性61」という)を示しており、実線62は組電池30が放電後に休止状態になった場合のOCVとSOCとの相関関係(以下、「放電後のOCV-SOC特性62」という)を示している。
 図5に示すように、正極活物質にリン酸鉄リチウムが含有されており、且つ、正極活物質の表面にカーボンなどの導電層が形成されている組電池30は、充電後に休止状態になった場合と放電後に休止状態になった場合とでOCV-SOC特性が異なるという特性(以下「ヒステリシス特性」という)を有している。ヒステリシス特性は正極活物質に起因して生じるものである。
 図5に示すように、負極活物質にグラファイトが含有されている組電池30は、単位SOC当たりのOCVの変化量(以下「OCV変化率」という)が小さい微少変化領域(プラトー領域)が広範囲に亘って存在するという特性を有している。具体的には、放電後のOCV-SOC特性62の場合、SOCが約64%以下の領域、及び、SOCが約68%から約98%までの領域は概ねフラットであり、OCV変化率が基準値以下である。本実施形態ではOCV変化率が基準値以下である領域のことを微少変化領域という。当該基準値は任意に定めることができる。
 負極活物質にグラファイトが含有されている組電池30は、上述した2つの微少変化領域の間にOCV変化率が基準値より大きい急峻変化領域(非プラトー領域)が存在する。図5に示す例ではSOCが約64%~約68%の領域が急峻変化領域に該当する。SOCが約64%~約68%の領域が急峻変化領域になる理由は、グラファイトが含有されている負極活物質のステージ構造がこの領域で変化するからであると考えられる。
 ここでは負極にグラファイトを用いた蓄電素子の急峻変化領域として約64%~約68%の領域を例に説明したが、急峻変化領域は正極/負極の充電深度バランスや蓄電素子の劣化の進行などによって可変であり、必ずしも約64%~約68の領域であるとは限らない。
 (1-5)組電池のSOC推定処理
 管理部42は、組電池30が休止状態になると、電圧センサ45によってOCVを計測し、計測したOCVに対応するSOCをOCV-SOC特性から特定することによって組電池30のSOCを推定する。
 図5から判るように、充電後のOCV-SOC特性61は放電後のOCV-SOC特性62に比べて全体にOCV変化率が小さい。このため、充電後のOCV-SOC特性61からSOCを推定すると、放電後のOCV-SOC特性62から推定する場合に比べてSOCの推定精度が低下することが懸念される。管理部42は、組電池30が休止状態になると、休止状態になる直前に組電池30が充電されていたか放電されていたかによらず均等化回路46によって組電池30を放電させた後、放電後のOCV-SOC特性62からSOCを推定する。
 図6を参照して、管理部42によって実行されるSOC推定処理について説明する。本処理は組電池30が休止状態になると開始される。
 S101では、管理部42は均等化回路46によって組電池30を所定時間放電させる(放電処理の一例)。
 S102では、管理部42は電圧センサ45によってOCVを計測する(放電後の計測処理)。
 S103では、管理部42はS102で計測したOCVに対応するSOCを放電後のOCV-SOC特性62から特定することによって組電池30のSOCを推定する(第1の推定処理の一例)。
 前述したように、組電池30が充電後に休止状態になったか又は放電後に休止状態になったかを判断できる場合もある。その場合は、S101の前に、組電池30が充電後に休止状態になったか又は放電後に休止状態になったかを判断し、放電後に休止状態になった場合はS101をスキップしてS102を実行してもよい。
 (1-6)実施形態の効果
 実施形態1に係るBMS40によると、充電後に休止状態になった場合は均等化回路46によって組電池30を放電させ、放電後のOCV-SOC特性62に基づいてSOCを推定する。よって、充電後のOCV-SOC特性61に基づいて推定する場合や、それらのOCV-SOC特性の平均から推定する場合に比べて組電池30のSOCを精度よく推定できる。
 ただし、休止状態になる直前に組電池30が充電されていたか放電していたかを把握できない場合もある。BMS40によると、組電池30が休止状態になった場合は休止状態になる直前に組電池30が充電されていたか放電していたかによらず組電池30を放電させる。よって、休止状態になる直前に組電池30が充電されていたか放電していたかを把握できない場合であってもSOCを精度よく推定できる。
 よってBMS40によると、リン酸鉄リチウムを含有し、表面に導電層が形成されている正極活物質を用いた組電池30のSOCを精度よく推定できる。
 BMS40によると、組電池30が充電後に休止状態になった場合は組電池30を放電させた後に放電後のOCV-SOC特性62からSOCを推定するので、充電後のOCV-SOC特性61から推定するよりもSOCを精度よく推定できる。
 <実施形態2>
 本発明の実施形態2を図5ないし図8によって説明する。
 実施形態2では、組電池30が充電後に休止状態になった場合に、組電池30を放電させる前後でOCVを計測し、充電後の休止状態におけるOCVと放電後の休止状態におけるOCVとの電圧差とSOCとの相関関係を表す電圧差-OCV特性63(図7参照)から組電池30のSOCを推定する。
 実施形態2に係る電流センサ43は電流の流れ方向を検出する機能を有しているものとする。このため、実施形態2では、管理部42は組電池30が休止状態になった場合に充電後に休止状態になったのか放電後に休止状態になったのかを電流センサ43によって検出された流れ方向から判断できる。
 (2-1)電圧差-SOC特性
 図7を参照して、電圧差-SOC特性について説明する。電圧差-SOC特性63は充電後のOCV-SOC特性61の電圧から放電後のOCV-SOC特性62の電圧を減算したものである。前述したように組電池30は正極活物質にリン酸鉄リチウムが含有され、負極活物質にグラファイトが含有され、正極活物質の表面にカーボンなどの導電層が形成されている。このような組電池30は、図7に示すように、充電後の休止状態における電圧と放電後の休止状態における電圧との電圧差とSOCとの相関関係をグラフにすると変曲点64(図7の場合は極大点でもある)が表れる。
 図5と図7とを比較すると判るように、変曲点64のSOC(66%付近)よりもSOCが大きい範囲L1(図7において変曲点64より右側の範囲)では、単位SOC当たりの電圧差の変化量(以下「電圧差変化率」という)が、放電後のOCV-SOC特性62のOCV変化率より大きい。このため、範囲L1では放電後のOCV-SOC特性62からSOCを推定するよりも電圧差-SOC特性63から特定した方がSOCを精度よく推定できる。
 これに対し、変曲点64のSOCよりもSOCが小さい範囲L2(図7において変曲点64より左側の範囲)では、放電後のOCV-SOC特性62のOCV変化率の方が電圧差変化率より大きい。このため、範囲L2では電圧差-SOC特性63からSOCを推定するよりも放電後のOCV-SOC特性62から特定した方がSOCを精度よく推定できる。
 ただし、図7に示すように、電圧差が範囲L2の最小電圧差Min以上である場合は、一の電圧差に二つのSOCが対応してしまうので、電圧差だけからSOCを推定することができない。これに対し、電圧差が最小電圧差Minより小さい範囲W1では電圧差とSOCとが一体一に対応する。このため、管理部42は、電圧差が最小電圧差Minより小さい範囲W1では電圧差-SOC特性63からSOCを推定し、最小電圧差Min以上の範囲W2では放電後のOCV-SOC特性62からSOCを推定する。
 実施形態2に係るROM42Bには、放電後のOCV-SOC特性62を表すデータ(放電後の休止状態における電圧と充電状態との相関関係を表す放電後の相関情報の一例)を記憶している。さらに、実施形態2に係るROM42Bには、電圧差-SOC特性63を表すデータ(充電後の休止状態における電圧と放電後の休止状態における電圧との電圧差と充電状態との相関関係を表す電圧差情報の一例)も記憶している。
 (2-2)電流積算法によって推定されているSOCの補正
 電流積算法は、電流センサ43によって組電池30の充放電電流を常時計測することで組電池30に出入りする電力量を計測し、これを初期容量から加減することでSOCを推定する手法である。電流積算法は組電池30の使用中でもSOCを推定できるという利点がある。このため、管理部42は電流積算法によって組電池30のSOCを推定する。
 電流積算法は常に電流を計測して充放電電力量を積算するので、電流センサ43の計測誤差が累積して次第に不正確になる場合がある。このため、管理部42は、組電池30が休止状態になった場合に、電流積算法によって推定されているSOCを、電圧差-SOC特性63又は放電後のOCV-SOC特性62から推定したSOCで補正する。
 具体的には、管理部42は、電圧差が範囲L2の最小電圧差Minより小さい場合は電圧差-SOC特性63から推定したSOCで補正し、電圧差が最小電圧差Min以上の場合は放電後のOCV-SOC特性62から推定したSOCで補正する。
 電流積算法によって推定されているSOCを電圧差-SOC特性63や放電後のOCV-SOC特性62から推定されたSOCで補正すると電流積算法における誤差の累積が断ち切られるので、電流積算法によって推定されているSOCの推定精度を高めることができる。
 (2-3)充電容量の推定
 一般にリチウムイオン電池は使用に伴って充電容量が低下する。このため、管理部42は組電池30の充電容量を推定する。
 組電池30の充電容量を推定する方法としては、組電池30が満充電されたときのSOCを100%とし、その後に組電池30のOCVを計測してOCV-SOC特性からSOCを推定し、その間のSOCの変化と組電池30の放電量とから満充電のときの充電容量を推定する方法が考えられる。
 しかしながら、この方法では組電池30が満充電されなければ充電容量を推定できない。そこで、管理部42は、互いに異なる2つの時点でSOCを推定し、それらのSOCの差とその間の放電量とから組電池30の充電容量を推定する。
 具体的には、前述したように、管理部42は組電池30が充電後に休止状態になると、組電池30を放電させてSOC(ここでは「SOC1」という)を推定する。電圧差が最小電圧差Minより小さい場合は電圧差-SOC特性63からSOCが推定され、最小電圧差Min以上の場合は放電後のOCV-SOC特性62からSOCが推定される。
 管理部42は、放電後にOCVを計測した時点を起点として電流センサ43によって電流値を一定時間間隔で計測し、計測した電流値を積算することによって放電量を計測する(積算処理の一例)とともに、電圧センサ45によってOCVを一定時間間隔で計測する。
 管理部42は、電圧センサ45によって放電後のOCV-SOC特性62の急峻変化領域のOCVが計測されると、計測されたOCVに対応するSOC(ここでは「SOC2」という)を放電後のOCV-SOC特性62から特定することによってSOCを推定する(第3の推定処理の一例)。管理部42は以下の式1から充電容量を推定する(容量推定処理の一例)。
 充電容量={放電量/(SOC1-SOC2)}×100    式補正
 急峻変化領域のOCVに対応するSOCをSOC2として用いる理由は、急峻変化領域では微小変化領域に比べてOCV変化率が大きいので、微小変化領域のOCVに対応するSOCを特定する場合に比べてSOCを精度よく特定できるからである。
 (2-4)組電池のSOC推定処理
 図8を参照して、実施形態2に係る管理部42によって実行されるSOC推定処理について説明する。本処理は組電池30が休止状態になると開始される。図8では放電後のOCV-SOC特性62から推定されたSOCを用いて充電容量を推定する処理については省略している。
 S201では、管理部42は休止状態になる直前に組電池30が充電されていたか放電していたかを電流センサ43によって検出された流れ方向から判断し、充電されていた場合はS202に進み、充電されていなかった場合(すなわち放電していた場合)はS212に進む。
 S202では、管理部42は電圧センサ45によって組電池30のOCVを計測する(放電前の計測処理)。
 S203では、管理部42は均等化回路46によって組電池30を所定時間放電させる。
 S204では、管理部42は電圧センサ45によって組電池30の電圧を計測する(放電後の計測処理)。
 S205では、管理部42は放電前に計測したOCVと放電後に計測したOCVとの差(電圧差)が範囲L2の最小電圧差Minより小さいか否かを判断し、小さい場合はS206進み、最小電圧差Min以上である場合はS213に進む。
 S206では、管理部42は電流センサ43によって電流値を一定時間間隔で計測して電流値を積算する処理、及び、電圧センサ45によってOCVを一定時間間隔で計測する処理を開始する。
 S207では、管理部42は電圧差に対応するSOCを電圧差-SOC特性63から特定することによって組電池30のSOC(すなわちSOC1)を推定する(第1の推定処理の一例)。
 S208では、管理部42は電流積算法によって推定されているSOCをSOC1で補正する。
 S209では、管理部42は電圧センサ45によって計測されたOCVが急峻変化領域のOCVであるか否かを判断し、急峻変化領域のOCVである場合はS210に進む。
 S210では、管理部42は急峻変化領域のOCVに対応するSOCを放電後のOCV-SOC特性62から特定することによってSOC(すなわちSOC2)を推定する(第3の推定処理)。
 S211では、管理部42は前述した式1から充電容量を推定する。
 S212では、管理部42は電圧センサ45によって組電池30のOCVを計測する。
 S213では、管理部42はS204又はS212で計測したOCVに対応するSOCを放電後のOCV―SOC特性62から特定することによってSOC(すなわちSOC1)を推定する。
 S214では、管理部42は電流積算法によって推定されているSOCをSOC1で補正する。
 (2-5)実施形態の効果
 実施形態2に係るBMS40によると、電圧差が、電圧差-SOC特性63の変曲点64のSOCよりSOCが小さい範囲L2の最小電圧差Minより小さい場合は電圧差に対応するSOCを電圧差-SOC特性63から特定することによって組電池30のSOCを推定するので、放電後のOCV-SOC特性62からSOCを推定するよりもSOCを精度よく推定できる。
 BMS40によると、組電池30が休止状態になった場合に、電圧差が範囲L2の最小電圧差Minより小さい場合は、電流積算法によって推定されているSOCを、電圧差-SOC特性63から推定したSOCで補正するので、放電後のOCV-SOC特性62から推定したSOCで補正する場合に比べてSOCを精度よく補正できる。
 BMS40によると、第1の推定処理(S207)で推定したSOC1と第3の推定処理(S210)で推定したSOC2との差とその間の放電量とに基づいて充電容量を推定するので、組電池30が満充電されなくても充電容量を推定できる。
 BMS40によると、電圧差が範囲L2の最小電圧差Minより小さい場合は電圧差-SOC特性63から推定されたSOCを用いて充電容量を推定するので、放電後のOCV-SOC特性62から推定されたSOCを用いて推定する場合に比べて充電容量を精度よく推定できる。
 BMS40によると、第3の推定処理では、放電後のOCV―SOC特性62の急峻変化領域のOCVに対応するSOCを放電後のOCV―SOC特性62から推定する。急峻変化領域では微小変化領域に比べてOCV変化率が大きいので、微小変化領域のOCVに対応するSOCを特定する場合に比べてSOCを精度よく特定できる。よってBMS40によると、蓄電素子が満充電されなくても充電容量を精度よく推定できる。
 <他の実施形態>
 本明細書で開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も含まれる。
 (1)上記実施形態では均等化回路46によって組電池30を放電する場合を例に説明した。これに対し、管理部42は通信部42Dを介して車両1のECUに組電池30の電力を消費するよう要求することによって組電池30を放電させてもよい。
 (2)上記実施形態では管理部として1つのCPU42Aを有する管理部42を例に説明したが、管理部の構成はこれに限られない。例えば、管理部は複数のCPUを備える構成や、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)などのハード回路を備える構成や、ハード回路及びCPUの両方を備える構成でもよい。
1  SOC
20  バッテリ
30  組電池(蓄電素子の一例)
40  BMS(管理装置の一例)
42  管理部
42B  ROM(記憶部の一例)
43  電流センサ(電流計測部の一例)
45  電圧センサ(電圧計測部の一例)
61  充電後のOCV-SOC特性(充電後の休止状態における電圧と充電状態との相関関係の一例)
62  放電後のOCV-SOC特性(放電後の休止状態における電圧と充電状態との相関関係の一例)
63  電圧差-SOC特性(充電後の休止状態における電圧と放電後の休止状態における電圧との電圧差と充電状態との相関関係の一例)
64  変曲点

Claims (7)

  1.  リン酸鉄リチウムを含有し、表面に導電層が形成されている正極活物質を用いた蓄電素子の管理装置であって、
     前記蓄電素子に流れる電流を計測する電流計測部と、
     前記蓄電素子の電圧を計測する電圧計測部と、
     管理部と、
    を備え、
     前記電流計測部によって計測される電流値が基準値未満である状態を前記蓄電素子の休止状態と定義したとき、
     前記管理部は、
     前記蓄電素子が休止状態になった場合に、前記蓄電素子を放電させる放電処理と、
     前記放電処理によって前記蓄電素子を放電させた後に、前記電圧計測部によって電圧を計測する放電後の計測処理と、
     前記放電後の計測処理で計測した電圧と、放電後の休止状態における電圧と充電状態との相関関係とに基づいて前記蓄電素子の充電状態を推定する第1の推定処理と、
    を実行する、蓄電素子の管理装置。
  2.  請求項1に記載の蓄電素子の管理装置であって、
     放電後の休止状態における電圧と充電状態との相関関係を表す放電後の相関情報を記憶している記憶部を備え、
     前記管理部は、前記第1の推定処理において、前記放電後の計測処理で計測した電圧に対応する充電状態を前記放電後の相関情報から特定することによって前記蓄電素子の充電状態を推定する、蓄電素子の管理装置。
  3.  請求項1に記載の蓄電素子の管理装置であって、
     前記蓄電素子の負極活物質にはグラファイトが含有されており、
     当該管理装置は、
     充電後の休止状態における電圧と放電後の休止状態における電圧との電圧差と充電状態との相関関係を表す電圧差情報が記憶されている記憶部を備え、
     前記管理部は、
     前記蓄電素子が充電後に休止状態になった場合に、前記放電処理によって前記蓄電素子を放電させる前に前記電圧計測部によって電圧を計測する放電前の計測処理を実行し、
     前記第1の推定処理において、前記放電前の計測処理で計測した電圧と前記放電後の計測処理で計測した電圧との電圧差が、前記電圧差の変曲点の充電状態より充電状態が小さい範囲の最小電圧差より小さい場合は、当該電圧差に対応する充電状態を前記電圧差情報から特定することによって前記蓄電素子の充電状態を推定する、蓄電素子の管理装置。
  4.  請求項3に記載の蓄電素子の管理装置であって、
     前記管理部は、
     前記電流計測部によって電流を計測して充電状態を推定する第2の推定処理と、
     前記第2の推定処理で推定されている充電状態を前記第1の推定処理で推定した充電状態で補正する補正処理と、
    を実行する、蓄電素子の管理装置。
  5.  請求項3又は請求項4に記載の蓄電素子の管理装置であって、
     放電後の休止状態における電圧と充電状態との相関関係を表す放電後の相関情報を記憶している記憶部を備え、
     前記管理部は、
     前記第1の推定処理で充電状態を推定したときを起点として前記電流計測部によって電流を計測して放電量を積算する積算処理と、
     前記蓄電素子の電圧が、前記放電後の相関情報によって表される相関関係の急峻変化領域まで低下すると、当該電圧に対応する充電状態を前記放電後の相関情報から特定することによって前記蓄電素子の充電状態を推定する第3の推定処理と、
     前記第1の推定処理で推定した充電状態と前記第3の推定処理で推定した充電状態との差とその間の前記放電量とに基づいて前記蓄電素子の充電容量を推定する容量推定処理と、
    を実行する、蓄電素子の管理装置。
  6.  リン酸鉄リチウムを含有し、表面に導電層が形成されている正極活物質を用いた蓄電素子を含むバッテリであって、
     前記蓄電素子に流れる電流を計測する電流計測部と、
     前記蓄電素子の電圧を計測する電圧計測部と、
     管理部と、
    を備え、
     前記電流計測部によって計測される電流値が基準値未満である状態を前記蓄電素子の休止状態と定義したとき、
     前記管理部は、
     前記蓄電素子が休止状態になった場合に、前記蓄電素子を放電させる放電処理と、
     前記放電処理によって前記蓄電素子を放電させた後に、前記電圧計測部によって電圧を計測する放電後の計測処理と、
     前記放電後の計測処理で計測した電圧と、放電後の休止状態における電圧と充電状態との相関関係とに基づいて前記蓄電素子の充電状態を推定する第1の推定処理と、
    を実行する、バッテリ。
  7.  リン酸鉄リチウムを含有し、表面に導電層が形成されている正極活物質を用いた蓄電素子の管理方法であって、
     前記蓄電素子に流れる電流を計測する電流計測部によって計測される電流値が基準値未満である状態を前記蓄電素子の休止状態と定義したとき、
     前記蓄電素子が休止状態になった場合に、前記蓄電素子を放電させる放電工程と、
     前記放電工程で前記蓄電素子を放電させた後に、電圧計測部によって前記蓄電素子の電圧を計測する放電後の計測工程と、
     前記放電後の計測工程で計測した電圧と、放電後の休止状態における電圧と充電状態との相関関係とに基づいて前記蓄電素子の充電状態を推定する第1の推定工程と、
    を含む、蓄電素子の管理方法。
PCT/JP2018/041269 2017-11-08 2018-11-07 蓄電素子の管理装置、バッテリ、及び、管理方法 WO2019093349A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018005402.0T DE112018005402T5 (de) 2017-11-08 2018-11-07 Verwaltungssystem, batterie und verwaltungsverfahren für energiespeichervorrichtung
CN201880071375.3A CN111295796B (zh) 2017-11-08 2018-11-07 蓄电元件的管理装置、蓄电池以及管理方法
US16/758,709 US10971766B2 (en) 2017-11-08 2018-11-07 Management system, battery, and management method for energy storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-215696 2017-11-08
JP2017215696A JP6988386B2 (ja) 2017-11-08 2017-11-08 蓄電素子の管理装置、及び、管理方法

Publications (1)

Publication Number Publication Date
WO2019093349A1 true WO2019093349A1 (ja) 2019-05-16

Family

ID=66439151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041269 WO2019093349A1 (ja) 2017-11-08 2018-11-07 蓄電素子の管理装置、バッテリ、及び、管理方法

Country Status (5)

Country Link
US (1) US10971766B2 (ja)
JP (1) JP6988386B2 (ja)
CN (1) CN111295796B (ja)
DE (1) DE112018005402T5 (ja)
WO (1) WO2019093349A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4148441A4 (en) * 2020-08-13 2023-11-22 LG Energy Solution, Ltd. BATTERY MANAGEMENT DEVICE AND METHOD

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102458526B1 (ko) * 2018-02-07 2022-10-25 주식회사 엘지에너지솔루션 배터리의 동작 상태에 따라 soc를 추정하는 장치 및 방법
KR102660502B1 (ko) * 2019-04-18 2024-04-24 현대모비스 주식회사 자동차용 배터리 관리 방법 및 장치
CN112531850B (zh) * 2019-04-24 2022-08-02 宁德时代新能源科技股份有限公司 电池组均衡控制方法、装置、设备和介质
CN112154341A (zh) * 2020-01-13 2020-12-29 深圳市大疆创新科技有限公司 功率输出能力的估算方法、电池组件、可移动平台和存储介质
CN111284480B (zh) * 2020-03-10 2021-03-16 浙江吉利新能源商用车集团有限公司 车用动力电池的soc修正方法及修正设备
CN118355582A (zh) * 2021-12-06 2024-07-16 日产自动车株式会社 电池控制系统和电池控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059206A (ja) * 2012-09-18 2014-04-03 Toyota Industries Corp 充電状態推定装置及び充電状態推定方法
WO2017010475A1 (ja) * 2015-07-13 2017-01-19 三菱電機株式会社 リチウムイオン電池の充電状態推定方法およびリチウムイオン電池の充電状態推定装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10321720A1 (de) * 2002-05-14 2003-12-04 Yazaki Corp Verfahren zum Abschätzen des Ladezustandes und der Leerlaufspannung einer Batterie, sowie Verfahren und Vorrichtung zum Berechnen des Degradationsgrades einer Batterie
JP5098146B2 (ja) 2005-10-14 2012-12-12 株式会社Gsユアサ 非水電解質二次電池用正極材料の製造方法およびそれを備える非水電解質二次電池
US9885757B2 (en) * 2011-04-01 2018-02-06 Atieva, Inc. Method and apparatus for determining the state-of-charge of a battery
JP5866987B2 (ja) 2011-11-10 2016-02-24 日産自動車株式会社 二次電池の制御装置およびsoc検出方法
JP6135110B2 (ja) 2012-03-08 2017-05-31 日産自動車株式会社 二次電池の制御装置、充電制御方法およびsoc検出方法
JP6531784B2 (ja) * 2012-05-10 2019-06-19 株式会社Gsユアサ 蓄電素子管理装置、及び、蓄電素子のsoc推定方法
JP6155781B2 (ja) * 2012-05-10 2017-07-05 株式会社Gsユアサ 蓄電素子管理装置、及び、soc推定方法
JP6035883B2 (ja) 2012-06-04 2016-11-30 日本電気株式会社 リチウムイオン電池の残存容量の測定方法
JP6449609B2 (ja) 2014-10-06 2019-01-09 川崎重工業株式会社 二次電池の充電率推定方法及び充電率推定装置
US10101401B2 (en) * 2015-03-05 2018-10-16 Gs Yuasa International Ltd. Energy storage device management apparatus, energy storage device management method, energy storage device module, energy storage device management program, and movable body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059206A (ja) * 2012-09-18 2014-04-03 Toyota Industries Corp 充電状態推定装置及び充電状態推定方法
WO2017010475A1 (ja) * 2015-07-13 2017-01-19 三菱電機株式会社 リチウムイオン電池の充電状態推定方法およびリチウムイオン電池の充電状態推定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4148441A4 (en) * 2020-08-13 2023-11-22 LG Energy Solution, Ltd. BATTERY MANAGEMENT DEVICE AND METHOD

Also Published As

Publication number Publication date
US10971766B2 (en) 2021-04-06
JP6988386B2 (ja) 2022-01-05
CN111295796A (zh) 2020-06-16
JP2019087458A (ja) 2019-06-06
CN111295796B (zh) 2024-08-30
DE112018005402T5 (de) 2020-07-02
US20200341072A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2019093349A1 (ja) 蓄電素子の管理装置、バッテリ、及び、管理方法
US11285813B2 (en) Estimation device for estimating an SOC of an energy storage device, energy storage apparatus including estimation device for estimating an SOC of an energy storage device, and estimation method for estimating an SOC of an energy storage device
US10712393B2 (en) Energy storage device management apparatus, energy storage device module, vehicle, and energy storage device management method
JP4866187B2 (ja) 電池制御装置、電動車両、及び二次電池の充電状態を推定するための処理をコンピュータに実行させるためのプログラム
KR100845960B1 (ko) 2차 전지의 충전 상태를 검출하기 위한 장치
US10135264B2 (en) Electric power supply system for vehicle
KR101983392B1 (ko) 배터리 충전 상태 추정 장치 및 그 방법
WO2017170621A1 (ja) 二次電池劣化推定装置および二次電池劣化推定方法
JP4129109B2 (ja) 充電制御装置および方法
KR20130045093A (ko) 분극전압과 개로전압을 이용한 배터리 잔존용량 추정방법
JP2007333447A (ja) 二次電池の充電状態推定装置、充電状態推定方法、およびプログラム
JP6135898B2 (ja) 蓄電素子の充電制御装置、蓄電装置および充電制御方法
JP2023053983A (ja) 蓄電素子の充電状態推定値の補正方法、蓄電素子の管理装置、蓄電装置、移動体、車両、及び、再生可能エネルギー蓄電装置
WO2022196362A1 (ja) 蓄電装置、及び、蓄電装置の制御方法
JP3744833B2 (ja) 電動車両用二次電池の寿命判別方法
JP4872513B2 (ja) 電池の電流−電圧特性検出装置およびそれを用いた内部抵抗検出装置
JP4820329B2 (ja) 蓄電量算出装置および蓄電量算出方法
JP2021071415A (ja) 蓄電量推定装置、蓄電量推定方法及びコンピュータプログラム
US20210088018A1 (en) Energy storage apparatus and restart method for engine of idling-stop vehicle
WO2022264698A1 (ja) 蓄電装置、及び、蓄電装置の制御方法
JP6969307B2 (ja) 管理装置、蓄電システム、蓄電素子の残存容量を均等化する方法、蓄電素子の内部状態を推定する方法
WO2023062894A1 (ja) 鉛蓄電デバイス、情報処理方法及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877200

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18877200

Country of ref document: EP

Kind code of ref document: A1