WO2020100809A1 - Radiation detection module, radiation detector, and radiation detection module production method - Google Patents

Radiation detection module, radiation detector, and radiation detection module production method Download PDF

Info

Publication number
WO2020100809A1
WO2020100809A1 PCT/JP2019/044127 JP2019044127W WO2020100809A1 WO 2020100809 A1 WO2020100809 A1 WO 2020100809A1 JP 2019044127 W JP2019044127 W JP 2019044127W WO 2020100809 A1 WO2020100809 A1 WO 2020100809A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
detection module
scintillator
radiation detection
module according
Prior art date
Application number
PCT/JP2019/044127
Other languages
French (fr)
Japanese (ja)
Inventor
會田 博之
弘 堀内
真也 長井
Original Assignee
キヤノン電子管デバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019185657A external-priority patent/JP7240998B2/en
Application filed by キヤノン電子管デバイス株式会社 filed Critical キヤノン電子管デバイス株式会社
Priority to CN201980070579.XA priority Critical patent/CN112912770A/en
Priority to KR1020217012247A priority patent/KR102535035B1/en
Priority to EP19885834.2A priority patent/EP3882669A4/en
Publication of WO2020100809A1 publication Critical patent/WO2020100809A1/en
Priority to US17/220,978 priority patent/US11513240B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2006Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20181Stacked detectors, e.g. for measuring energy and positional information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal

Definitions

  • the embodiment of the present invention relates to a radiation detection module, a radiation detector, and a method for manufacturing the radiation detection module.
  • An X-ray detector is an example of the radiation detector.
  • the X-ray detector is provided with a scintillator that converts X-rays into fluorescence and an array substrate that converts fluorescence into electrical signals.
  • a reflective layer may be further provided on the scintillator in order to improve the utilization efficiency of fluorescence and improve the sensitivity characteristics.
  • the scintillator and the reflective layer need to be isolated from the external atmosphere in order to suppress the deterioration of the characteristics due to water vapor or the like.
  • the scintillator contains CsI (cesium iodide): Tl (thallium), CsI: Na (sodium), or the like, the characteristic deterioration due to water vapor or the like may increase.
  • the X-ray irradiation amount on the human body can be suppressed to a necessary minimum. Therefore, in the case of an X-ray detector used for medical treatment, the intensity of the X-rays that are emitted may be low, and the intensity of the X-rays that pass through the moisture-proof portion may be extremely low. In this case, if the thickness of the moisture-proof portion is reduced, the intensity of X-rays that are transmitted can be increased. However, if the thickness of the hat-shaped moisture-proof portion is reduced, cracks and the like are likely to occur when forming a foil of aluminum or the like into the hat-shaped. Therefore, it has been desired to develop a technique capable of reducing the size of the X-ray detector and reducing the thickness of the moisture-proof portion.
  • the problem to be solved by the present invention is to provide a radiation detection module, a radiation detector, and a method for manufacturing a radiation detection module, which can reduce the size of the radiation detector and can reduce the thickness of the moisture-proof portion. Is to provide.
  • the radiation detection module includes an array substrate having a plurality of photoelectric conversion units, a scintillator provided on the plurality of photoelectric conversion units, and a thermoplastic resin as a main component, and provided around the scintillator. And a frame-shaped sealing portion joined to the array substrate and the scintillator, and a moisture-proof portion that covers an upper portion of the scintillator and has a peripheral edge portion joined to an outer surface of the sealing portion.
  • the outer surface of the sealing portion has a curved surface protruding outward.
  • (A), (b) is a schematic cross section for illustrating the X-ray detection module concerning other embodiments. It is a schematic cross section for illustrating an X-ray detection module concerning other embodiments.
  • (A) is a schematic plan view of a moisture-proof part.
  • (B) is a schematic perspective view of the moisture-proof part 17. It is a schematic cross section for illustrating an X-ray detection module concerning other embodiments. It is a schematic cross section for illustrating an X-ray detection module concerning other embodiments.
  • (A), (b) is a schematic cross section for illustrating a flexible part concerning other embodiments. It is a schematic cross section for illustrating an X-ray detection module concerning a comparative example. It is a schematic cross section for illustrating an X-ray detection module concerning a comparative example. It is a schematic cross section for illustrating an X-ray detection module concerning a comparative example. It is a schematic cross section for illustrating an X-ray detection module concerning a comparative example. It is a schematic perspective view for illustrating application of a thermoplastic resin according to a comparative example. It is a schematic perspective view for illustrating application of the thermoplastic resin according to the present embodiment.
  • the radiation detector according to the embodiment of the present invention can be applied to various radiations such as ⁇ -rays as well as X-rays.
  • description will be given by taking a case relating to X-rays as a typical one of radiations. Therefore, by replacing “X-ray” in the following embodiments with “other radiation”, it can be applied to other radiation.
  • the radiation detector can be used, for example, in general medicine. However, the application of the radiation detector is not limited to general medicine.
  • FIG. 1 is a schematic perspective view for illustrating an X-ray detector 1 and an X-ray detection module 10 according to this embodiment.
  • the protective layer 2f, the reflection layer 6, the moisture-proof portion 7, the sealing portion 8 and the like are omitted in FIG.
  • FIG. 2 is a schematic cross-sectional view for illustrating the X-ray detection module 10.
  • FIG. 3 is a block diagram of the X-ray detector 1.
  • the X-ray detector 1 is provided with an X-ray detection module 10 and a circuit board 11. Further, the X-ray detector 1 can be provided with a casing (not shown).
  • the X-ray detection module 10 and the circuit board 11 can be provided inside the housing.
  • the plate-shaped support plate 12 is provided inside the housing, the X-ray detection module 10 is provided on the X-ray incident side surface of the support plate 12, and the side opposite to the X-ray incident side of the support plate 12 is provided.
  • the circuit board 11 can be provided on the surface of the.
  • the X-ray detection module 10 is provided with the array substrate 2, the scintillator 5, the reflective layer 6, the moisture-proof portion 7, and the sealing portion 8.
  • the array substrate 2 includes a substrate 2a, a photoelectric conversion unit 2b, a control line (or gate line) 2c1, a data line (or signal line) 2c2, a wiring pad 2d1, a wiring pad 2d2, and a protective layer 2f.
  • the numbers of the photoelectric conversion unit 2b, the control line 2c1, and the data line 2c2 are not limited to those illustrated.
  • the substrate 2a has a plate shape and is made of glass such as alkali-free glass.
  • the planar shape of the substrate 2a can be a quadrangle.
  • the thickness of the substrate 2a can be set to about 0.7 mm, for example.
  • a plurality of photoelectric conversion units 2b are provided on one surface side of the substrate 2a.
  • the photoelectric conversion unit 2b has a rectangular shape and is provided in a region defined by the control line 2c1 and the data line 2c2.
  • the plurality of photoelectric conversion units 2b are arranged in a matrix. Note that one photoelectric conversion unit 2b corresponds to one pixel of the X-ray image.
  • a photoelectric conversion element 2b1 and a thin film transistor (TFT) 2b2 that is a switching element are provided in each of the plurality of photoelectric conversion units 2b. Further, a storage capacitor (not shown) for storing the signal charges converted by the photoelectric conversion element 2b1 can be provided.
  • the storage capacitor has, for example, a rectangular flat plate shape, and can be provided below each thin film transistor 2b2. However, the photoelectric conversion element 2b1 can also serve as a storage capacitor depending on the capacity of the photoelectric conversion element 2b1.
  • the photoelectric conversion element 2b1 can be, for example, a photodiode or the like.
  • the thin film transistor 2b2 performs switching of storage and discharge of electric charge in the storage capacitor.
  • the thin film transistor 2b2 has a gate electrode, a drain electrode, and a source electrode.
  • the gate electrode of the thin film transistor 2b2 is electrically connected to the corresponding control line 2c1.
  • the drain electrode of the thin film transistor 2b2 is electrically connected to the corresponding data line 2c2.
  • the source electrode of the thin film transistor 2b2 is electrically connected to the corresponding photoelectric conversion element 2b1 and storage capacitor.
  • the anode side of the photoelectric conversion element 2b1 and the storage capacitor can be connected to the ground.
  • the anode side of the photoelectric conversion element 2b1 and the storage capacitor can also be connected to a bias line (not shown).
  • a plurality of control lines 2c1 are provided in parallel with each other at a predetermined interval.
  • the control line 2c1 extends in the row direction, for example.
  • One control line 2c1 is electrically connected to one of the plurality of wiring pads 2d1 provided near the peripheral edge of the substrate 2a.
  • One wiring pad 2d1 is electrically connected to one of a plurality of wirings provided on the flexible printed circuit board 2e1.
  • the other ends of the plurality of wirings provided on the flexible printed board 2e1 are electrically connected to the readout circuit 11a provided on the circuit board 11, respectively.
  • a plurality of data lines 2c2 are provided in parallel with each other at a predetermined interval.
  • the data line 2c2 extends, for example, in the column direction orthogonal to the row direction.
  • One data line 2c2 is electrically connected to one of the plurality of wiring pads 2d2 provided near the peripheral edge of the substrate 2a.
  • One wiring pad 2d2 is electrically connected to one of a plurality of wirings provided on the flexible printed circuit board 2e2.
  • the other ends of the plurality of wirings provided on the flexible printed board 2e2 are electrically connected to the signal detection circuit 11b provided on the circuit board 11, respectively.
  • the control line 2c1 and the data line 2c2 can be formed using, for example, a low resistance metal such as aluminum or chromium.
  • the protective layer 2f covers the photoelectric conversion unit 2b, the control line 2c1 and the data line 2c2.
  • the protective layer 2f can be formed of an insulating material.
  • the insulating material can be, for example, an oxide insulating material, a nitride insulating material, an oxynitride insulating material, a resin, or the like.
  • the scintillator 5 is provided on the plurality of photoelectric conversion units 2b and converts incident X-rays into visible light, that is, fluorescence.
  • the scintillator 5 is provided so as to cover a region (effective pixel region A) in which the plurality of photoelectric conversion units 2b are provided on the substrate 2a.
  • the scintillator 5 can contain, for example, cesium iodide (CsI): thallium (Tl), sodium iodide (NaI): thallium (Tl), or cesium bromide (CsBr): europium (Eu).
  • CsI cesium iodide
  • Tl thallium
  • NaI sodium iodide
  • CsBr cesium bromide
  • Eu europium
  • the scintillator 5 can be formed using a vacuum vapor deposition method.
  • the scintillator 5 is formed by using the vacuum evaporation method, the scintillator 5 composed of an aggregate of a plurality of columnar crystals is formed.
  • the scintillator 5 can have a thickness of, for example, about 600 ⁇ m.
  • a mask having an opening is used when forming the scintillator 5 using the vacuum deposition method.
  • the scintillator 5 is formed at a position facing the openings on the array substrate 2 (on the effective pixel area A).
  • a film formed by vapor deposition is also formed on the surface of the mask. Then, in the vicinity of the opening of the mask, the film grows so as to gradually project into the inside of the opening. When the film overhangs inside the opening, vapor deposition on the array substrate 2 is suppressed in the vicinity of the opening. Therefore, as shown in FIGS. 1 and 2, in the vicinity of the peripheral edge of the scintillator 5, the thickness gradually decreases toward the outside.
  • the scintillator 5 can also be formed using, for example, terbium activated gadolinium sulfate sulfate (Gd 2 O 2 S / Tb, or GOS).
  • the groove portions can be provided in a matrix so that the scintillator 5 having a rectangular column shape is provided for each of the plurality of photoelectric conversion units 2b.
  • the reflective layer 6 is provided in order to improve the utilization efficiency of fluorescence and improve the sensitivity characteristic. That is, the reflection layer 6 reflects the light, which is emitted from the scintillator 5 and is directed toward the side opposite to the side on which the photoelectric conversion section 2b is provided, so as to be reflected toward the photoelectric conversion section 2b.
  • the reflective layer 6 is not always necessary, and may be provided according to the sensitivity characteristics required for the X-ray detection module 10. In the following, as an example, a case where the reflective layer 6 is provided will be described.
  • the reflective layer 6 is provided on the X-ray incident side of the scintillator 5.
  • the reflective layer 6 covers at least the upper surface of the scintillator 5.
  • the reflective layer 6 can further cover the side surface 5 a of the scintillator 5.
  • the reflective layer 6 can be formed by coating the scintillator 5 with a material obtained by mixing light-scattering particles made of titanium oxide (TiO 2 ) or the like, a resin, and a solvent, and drying the material.
  • the reflective layer 6 can be formed by forming a layer made of a metal having a high light reflectance such as silver alloy or aluminum on the scintillator 5.
  • a sheet made of a metal having a high light reflectance such as silver alloy or aluminum or a resin sheet containing light scattering particles may be provided on the scintillator 5 to form the reflective layer 6.
  • the sheet-shaped reflective layer 6 can be bonded onto the scintillator 5 by using, for example, a double-sided tape, but it is preferable to place the sheet-shaped reflective layer 6 on the scintillator 5. .. If the sheet-shaped reflective layer 6 is placed on the scintillator 5, it becomes easy to prevent the scintillator 5 from peeling off from the array substrate 2 due to expansion or contraction of the reflective layer 6. ..
  • the moisture-proof portion 7 is provided to prevent the characteristics of the reflective layer 6 and the characteristics of the scintillator 5 from being deteriorated by water contained in the air.
  • the moisture-proof portion 7 covers at least a part of the scintillator 5 and the sealing portion 8. There may be a gap between the moisture-proof portion 7 and the reflective layer 6 or the like, or the moisture-proof portion 7 and the reflective layer 6 or the like may be in contact with each other. For example, if the moisture-proof portion 7 and the sealing portion 8 are joined in an environment depressurized below the atmospheric pressure, the moisture-proof portion 7 and the reflective layer 6 can be brought into contact with each other. Further, generally, the scintillator 5 has voids of about 10% to 40% of its volume.
  • the gas may expand and the moisture-proof portion 7 may be damaged when the X-ray detector 1 is transported by an aircraft or the like. If the moisture-proof portion 7 and the sealing portion 8 are joined in an environment depressurized below the atmospheric pressure, the moisture-proof portion 7 is prevented from being damaged even when the X-ray detector 1 is transported by an aircraft or the like. be able to. That is, the pressure in the space defined by the sealing portion 8 and the moisture-proof portion 7 is preferably lower than atmospheric pressure.
  • the moisture-proof part 7 can be a sheet containing metal.
  • the metal can be, for example, a metal containing aluminum, a metal containing copper, a metal containing magnesium, a metal containing tungsten, stainless steel, a Kovar material, or the like. In this case, if the moisture-proof portion 7 containing metal is used, the moisture that permeates the moisture-proof portion 7 can be almost completely eliminated.
  • the moisture-proof part 7 may be a laminated sheet in which a resin film and a metal film are laminated.
  • the resin film may be formed of, for example, polyimide resin, epoxy resin, polyethylene terephthalate resin, Teflon (registered trademark), low density polyethylene, high density polyethylene, elastic rubber or the like.
  • the metal film may include, for example, the above-mentioned metal.
  • the metal film can be formed by using, for example, a sputtering method or a laminating method. In this case, it is preferable that the metal film is provided on the scintillator 5 side. By doing so, the metal film can be covered with the resin film, so that the metal film can be prevented from being damaged by an external force or the like.
  • an inorganic film can be provided instead of the metal film or together with the metal film.
  • the inorganic film can be, for example, a film containing silicon oxide, aluminum oxide, or the like.
  • the inorganic film can be formed by using, for example, a sputtering method.
  • a resin film having a thickness substantially the same as the thickness of the metal film can be used.
  • the rigidity of the moisture-proof portion 7 can be increased, so that it is possible to suppress the occurrence of pinholes in the moisture-proof portion 7 during the manufacturing process.
  • the coefficient of linear expansion of resin is larger than the coefficient of linear expansion of metal. Therefore, if the thickness of the resin film is too thick, the warp of the array substrate 2 described later tends to occur. Therefore, the thickness of the resin film is preferably equal to or less than the thickness of the metal film.
  • the thickness of the moisture-proof portion 7 can be determined in consideration of absorption of X-rays, rigidity, and the like. In this case, if the thickness of the moistureproof portion 7 is increased, the amount of X-rays absorbed by the moistureproof portion 7 increases. On the other hand, when the thickness of the moisture-proof part 7 is reduced, the rigidity is lowered and the moisture-proof part 7 is easily damaged.
  • the thickness of the moisture-proof portion 7 is less than 10 ⁇ m, the rigidity of the moisture-proof portion 7 becomes too low, and pinholes may occur due to damage due to external force, which may cause leakage. If the thickness of the moistureproof portion 7 exceeds 50 ⁇ m, the rigidity of the moistureproof portion 7 becomes too high, and the conformability to the unevenness of the upper end of the scintillator 5 becomes poor. Therefore, it may be difficult to confirm the above-mentioned gap and leak path. Further, there is a possibility that the warp of the array substrate 2 described later is likely to occur.
  • the thickness of the moisture-proof portion 7 is preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the moisture-proof portion 7 can be, for example, an aluminum foil having a thickness of 10 ⁇ m or more and 50 ⁇ m or less.
  • the X-ray transmission amount can be increased by about 20% to 30% as compared with the aluminum foil having a thickness of 100 ⁇ m.
  • the thickness of the aluminum foil is 10 ⁇ m or more and 50 ⁇ m or less, the occurrence of the above-mentioned leak can be suppressed, and the above-mentioned gap and leak path can be easily confirmed.
  • the warp of the array substrate 2 described later can be suppressed.
  • the irradiation of a large amount of X-rays on the human body here has a negative effect on health, so the amount of X-ray irradiation to the human body can be kept to the minimum necessary. Therefore, in the case of the X-ray detector 1 used for medical treatment, the intensity of the X-rays that are emitted may be low, and the intensity of the X-rays that pass through the moisture-proof portion 7 may be extremely low. Since the moisture-proof part 7 according to the present embodiment is a sheet having a thickness of 10 ⁇ m or more and 50 ⁇ m or less, it is possible to capture an X-ray image even when the intensity of the X-rays to be irradiated is low.
  • the thickness of the moisture-proof part 7 is reduced, the rigidity of the moisture-proof part 7 is reduced. Therefore, if a brim portion or the like is provided to form a three-dimensional moisture-proof portion, for example, cracks are likely to occur when the metal foil is press-molded. As shown in FIG. 2, the vicinity of the peripheral edge of the sheet-shaped moistureproof portion 7 is joined to the outer surface 8 a of the sealing portion 8. Therefore, it is not necessary to previously process the moisture-proof portion 7 into a three-dimensional shape, and the sheet-like moisture-proof portion 7 can be directly bonded to the outer surface 8 a of the sealing portion 8. As a result, even if the moisture-proof portion 7 has a thickness of 10 ⁇ m or more and 50 ⁇ m or less, it is possible to suppress the occurrence of cracks or the like in the moisture-proof portion 7.
  • the vicinity of the peripheral edge of the moisture-proof portion 7 is heated to bond the vicinity of the peripheral edge of the moisture-proof portion 7 and the sealing portion 8.
  • the temperature in the vicinity of the peripheral edge of the moisture-proof portion 7 and the temperature of the sealing portion 8 decrease, thermal stress is generated between the vicinity of the peripheral edge of the moisture-proof portion 7 and the sealing portion 8.
  • peeling may occur between the vicinity of the peripheral edge of the moisture-proof portion 7 and the sealing portion 8. If peeling occurs, the moistureproof performance may be significantly reduced.
  • the moisture-proof portion 7 Since the thickness of the moisture-proof portion 7 is 10 ⁇ m or more and 50 ⁇ m or less, the moisture-proof portion 7 is likely to extend when thermal stress occurs. Therefore, since the thermal stress can be relaxed, it is possible to suppress peeling between the vicinity of the peripheral edge of the moisture-proof portion 7 and the sealing portion 8.
  • the sealing portion 8 is joined to the side surface 5 a of the scintillator 5 and the array substrate 2. In this case, the sealing portion 8 can be brought into close contact with the side surface 5a of the scintillator 5.
  • the scintillator 5 is an aggregate of a plurality of columnar crystals, unevenness is formed on the side surface 5 a of the scintillator 5. Therefore, if a part of the sealing portion 8 is provided inside the unevenness of the side surface 5a of the scintillator 5, the bonding strength between the sealing portion 8 and the scintillator 5 can be increased.
  • the sealing portion 8 can be brought into close contact with the array substrate 2. If the sealing portion 8 and the array substrate 2 are in close contact with each other, it is possible to prevent moisture contained in the atmosphere from penetrating between the sealing portion 8 and the array substrate 2 and reaching the scintillator 5. be able to.
  • the shape of the outer surface 8a of the sealing portion 8 may be a curved surface protruding outward. By doing so, the distance L between the outer surface 8a of the sealing portion 8 and the side surface 5a of the scintillator 5 can be increased. Therefore, it is possible to prevent moisture contained in the atmosphere from passing through the inside of the sealing portion 8 and reaching the scintillator 5. Further, if the shape of the outer surface 8a of the sealing portion 8 is a curved surface projecting to the outside, it is easy to make the peripheral portion of the moisture-proof portion 7 follow the outer surface 8a of the sealing portion 8. Therefore, it becomes easy to bring the moisture-proof portion 7 into close contact with the sealing portion 8. Further, since the moisture-proof portion 7 can be gently deformed, it is possible to prevent the moisture-proof portion 7 from cracking even if the moisture-proof portion 7 is thin.
  • the peripheral end surface 7 a of the moisture-proof portion 7 contacts the array substrate 2 or the peripheral end surface 7 a is located near the array substrate 2. It is preferable to be located. By doing so, it is possible to effectively prevent the moisture contained in the atmosphere from entering the inside of the sealing portion 8.
  • the height of the sealing portion 8 is equal to or lower than the height of the scintillator 5. If the height of the sealing portion 8 is less than or equal to the height of the scintillator 5, the sheet that becomes the moisture-proof portion 7 can be deformed without difficulty, so that wrinkles, breaks, pinholes, etc. occur in the moisture-proof portion 7. Can be suppressed.
  • the height of the sealing portion 8 is lower than the height of the scintillator 5, the vicinity of the peripheral edge of the moistureproof portion 7 can be bent. If the vicinity of the peripheral edge of the moistureproof portion 7 can be bent, the difference between the heat shrinkage amount of the moistureproof portion 7 and the heat shrinkage amount of the array substrate 2 can be absorbed. Therefore, it is possible to suppress the array substrate 2 from being deformed due to thermal stress. Note that details regarding making the height of the sealing portion 8 lower than the height of the scintillator 5 will be described later (see FIG. 8).
  • the sealing portion 8 may include a thermoplastic resin as a main component. If the sealing portion 8 contains a thermoplastic resin as a main component, it can be bonded to the array substrate 2, the scintillator 5, and the moistureproof portion 7 by heating.
  • the sealing portion 8 contains an ultraviolet curable resin as a main component, it is necessary to irradiate ultraviolet rays when the sealing portion 8 is bonded to the array substrate 2, the scintillator 5, and the moistureproof portion 7. is there.
  • the moisture-proof portion 7 contains metal or the like, it cannot transmit ultraviolet rays. If the moisture-proof part 7 transmits ultraviolet rays, the scintillator 5 may be discolored by the ultraviolet rays and the generated fluorescence may be absorbed.
  • the sealing portion 8 contains the thermoplastic resin as a main component, the sealing portion 8 can be easily joined by heating. Further, the scintillator 5 is not discolored by ultraviolet rays. Moreover, since the time required for heating and cooling the sealing portion 8 can be short, the manufacturing time can be shortened, and the manufacturing cost can be reduced.
  • the thermoplastic resin may be, for example, nylon, PET (Polyethyleneterephthalate), polyurethane, polyester, polyvinyl chloride, ABS (Acrylonitrile Butadiene Styrene), acrylic, polystyrene, polyethylene, polypropylene, or the like.
  • the water vapor transmission coefficient of polyethylene is 0.068 g ⁇ mm / day ⁇ m 2
  • the water vapor transmission coefficient of polypropylene is 0.04 g ⁇ mm / day ⁇ m 2 .
  • the sealing portion 8 contains at least one of polyethylene and polypropylene as a main component, it is possible to significantly reduce the amount of water that permeates the inside of the sealing portion 8 and reaches the scintillator 5.
  • the rigidity of the thermoplastic resin can be made lower than the rigidity of the moisture-proof portion 7.
  • the sealing part 8 can further include a filler using an inorganic material. If the filler made of an inorganic material is included in the sealing portion 8, the permeation of water can be further suppressed.
  • the inorganic material can be, for example, talc, graphite, mica, kaolin (clay containing kaolinite as a main component), or the like.
  • the filler can have, for example, a flat shape. The moisture that has entered the inside of the sealing portion 8 from the outside is prevented from diffusing by the filler made of an inorganic material, so that the speed at which the moisture passes through the sealing portion 8 can be reduced. Therefore, the amount of water reaching the scintillator 5 can be reduced.
  • the X-ray detector 1 stored in a high temperature and high humidity environment may be used in a lower temperature environment.
  • the water vapor inside the casing is condensed.
  • X-ray detector 1 may be attached to the surface. If there are fine cracks on the outer surface 8a of the sealing portion 8, water attached to the surface may enter the cracks and be guided to the inside of the sealing portion 8.
  • the X-ray detector 1 may be transported to an environment below freezing and the water that has entered the crack may freeze. When the water that has entered the cracks freezes, the volume increases, so that the cracks become larger and the water easily enters.
  • the sealing part 8 may be damaged, the moisture-proof part 7 and the sealing part 8 may be peeled off, or the array substrate 2 and the sealing part 8 may be peeled off. Therefore, it is preferable that at least the outer surface 8a of the sealing portion 8 has water repellency. If at least the outer surface 8a of the sealing portion 8 has water repellency, it is possible to prevent moisture from entering the cracks. For example, a water repellent agent can be applied to the outer surface 8a of the sealing portion 8. If the sealing portion 8 contains at least one of polyethylene and polypropylene as the main component, the outer surface 8a having water repellency can be obtained.
  • thermoplastic resin applied in a frame shape is transparent even in the thickest portion. That is, it is preferable that the sealing portion 8 has a light-transmitting property. By doing so, it is possible to easily remove a product that has a bubble, a foreign substance, a leak path, and the like, which may shorten the life. Therefore, the quality of the product can be improved.
  • the circuit board 11 is provided on the side of the array substrate 2 opposite to the side on which the scintillator 5 is provided.
  • the circuit board 11 is electrically connected to the X-ray detection module 10 (array board 2).
  • the circuit board 11 is provided with a read circuit 11a and a signal detection circuit 11b. Note that these circuits can be provided on one substrate or these circuits can be provided separately on a plurality of substrates.
  • the readout circuit 11a switches the thin film transistor 2b2 between an on state and an off state.
  • the read circuit 11a includes a plurality of gate drivers 11aa and a row selection circuit 11ab.
  • a control signal S1 is input to the row selection circuit 11ab from an image processing unit (not shown) provided outside the X-ray detector 1.
  • the row selection circuit 11ab inputs the control signal S1 to the corresponding gate driver 11aa according to the scanning direction of the X-ray image.
  • the gate driver 11aa inputs the control signal S1 to the corresponding control line 2c1.
  • the read circuit 11a sequentially inputs the control signal S1 for each control line 2c1 via the flexible printed board 2e1.
  • the thin film transistor 2b2 is turned on by the control signal S1 input to the control line 2c1, and the electric charge (image data signal S2) from the storage capacitor can be received.
  • the signal detection circuit 11b has a plurality of integration amplifiers 11ba, a plurality of selection circuits 11bb, and a plurality of AD converters 11bc.
  • One integrating amplifier 11ba is electrically connected to one data line 2c2.
  • the integrating amplifier 11ba sequentially receives the image data signal S2 from the photoelectric conversion unit 2b. Then, the integrating amplifier 11ba integrates the current flowing within a fixed time and outputs a voltage corresponding to the integrated value to the selection circuit 11bb. By doing so, it becomes possible to convert the value of the current (charge amount) flowing through the data line 2c2 into the voltage value within a predetermined time. That is, the integrating amplifier 11ba converts the image data information corresponding to the intensity distribution of fluorescence generated in the scintillator 5 into potential information.
  • the selection circuit 11bb selects the integration amplifier 11ba to be read, and sequentially reads the image data signal S2 converted into potential information.
  • the AD converter 11bc sequentially converts the read image data signal S2 into a digital signal.
  • the image data signal S2 converted into a digital signal is input to the image processing unit via the wiring.
  • the image data signal S2 converted into a digital signal may be wirelessly transmitted to the image processing unit.
  • the image processing unit forms an X-ray image based on the image data signal S2 converted into a digital signal.
  • the image processing section may be integrated with the circuit board 11.
  • FIGS. 4A and 4B are schematic cross-sectional views for illustrating an X-ray detection module 10a according to another embodiment.
  • the sealing unit 8 applies a softened thermoplastic resin in a frame shape on the array substrate 2 or a thermoplastic resin is provided in a frame shape on the array substrate 2 by a 3D printer or the like. It is formed by doing. Therefore, the dimensions of the sealing portion 8 may vary.
  • the peripheral end surface 7a of the moisture-proof portion 7 may interfere with the array substrate 2 and wrinkles may occur near the periphery of the moisture-proof portion 7. If wrinkles or the like occur near the periphery of the moistureproof portion 7, the moistureproof portion 7 may be peeled off.
  • a distance H1 can be provided between the peripheral end surface 17a of the moisture-proof portion 17 and the array substrate 2.
  • the dimension of the sheet-like moisture-proof portion 17 may be set to be short. By doing so, it is possible to suppress the occurrence of wrinkles or the like near the peripheral edge of the moisture-proof portion 17 even if the dimensions of the sealing portion 8 vary.
  • the distance H1 is equal to or less than half the height H2 of the sealing portion 8 as shown in FIG. In this case, the smaller the distance H1 is, the smaller the amount of water that enters the inside of the sealing portion 8 is.
  • FIG. 5 is a schematic cross-sectional view for illustrating an X-ray detection module 10b according to another embodiment.
  • FIG. 6A is a schematic plan view of the moisture-proof portion 17.
  • FIG. 6B is a schematic perspective view of the moisture-proof portion 17.
  • the vicinity of the peripheral edge of the moisture-proof portion 17 can be bent along the array substrate 2. That is, a bent portion 17b can be provided along the array substrate 2 at the peripheral edge of the moisture-proof portion 17. In this case, the bent portion 17b can be attached to the array substrate 2.
  • the outer surface 8a of the sealing portion 8 can be covered with the moisture-proof portion 17, so that it is possible to effectively prevent moisture from entering the moisture-proof portion 17.
  • the size of the bent portion 17b is preferably 2 mm or less, for example.
  • the moisture-proof part 17 can be formed using a sheet having no distortion or unevenness.
  • the scintillator 5 is covered with a sheet to be the moisture-proof portion 17, the sheet is floated from the array substrate 2 by the thickness of the scintillator 5. It is easy to bend the vicinity of the peripheral edge of the sheet in such a state to the array substrate 2 side along the sealing portion 8, and the stretching stress is hardly applied to the sheet.
  • the moisture-proof part 17 is required to have a function of shielding moisture from the outside, but if a part of the sheet is stretched, that part may become thin, fine cracks may occur, or pinholes may occur. There is. If cracks or pinholes occur, the ability to shield moisture will be reduced.
  • FIG. 7 is a schematic cross-sectional view for illustrating an X-ray detection module 10c according to another embodiment.
  • the material of the array substrate 2, the material of the scintillator 5, the material of the moistureproof portion 7, and the material of the sealing portion 8 are different. Therefore, each has a different linear expansion coefficient.
  • heat is generated while the X-ray detection module 10c is activated, these temperatures become high.
  • the temperature around the X-ray detector 1 may change. Therefore, thermal stress is generated between them according to the temperature change.
  • the tensile stress F when the tensile stress F is generated in the moisture-proof portion 7, the tensile stress F is applied to the joint portion between the moisture-proof portion 7 and the sealing portion 8 or the joint portion between the sealing portion 8 and the array substrate 2 to cause peeling or breakage. May occur. When peeling or breakage occurs, moisture easily reaches the scintillator 5. In addition, the array substrate 2 may be deformed such as warped.
  • the recess 8a1 is provided on the outer surface 8a of the sealing portion 8. If the recess 8a1 is provided, the vicinity of the recess 8a1 is easily deformed. Therefore, the generated tensile stress F can be relaxed by deforming the vicinity of the recess 8a1.
  • the bending portion 7c can be provided at a portion of the moisture-proof portion 7 facing the recess 8a1.
  • the flexible portion 7c can be elastically deformed more easily than the portion of the moisture-proof portion 7 where the flexible portion 7c is not provided. If the bending portion 7c is provided, the tensile stress F generated can be relaxed by elastically deforming the bending portion 7c.
  • the flexible portion 7c and the recess 8a1 may be in contact with each other, or a gap may be provided between the flexible portion 7c and the recess 8a1 as shown in FIG.
  • the rigidity of the bending portion 7c can be increased, so that the bending portion 7c can be prevented from breaking or pinholes. If a gap is provided between the bending portion 7c and the recess 8a1, the bending portion 7c can be easily deformed, and the tensile stress F can be eased easily. If the tensile stress F can be relaxed, peeling or breakage of the moisture-proof portion 7 can be suppressed. In addition, it is possible to prevent the array substrate 2 from being deformed such as warped.
  • a convex portion 18c may be provided on the outer surface 8a of the sealing portion 8. The details of the convex portion 18c will be described later.
  • FIG. 8 is a schematic cross-sectional view for illustrating an X-ray detection module 10d according to another embodiment.
  • the height H3 of the sealing portion 8 can be made lower than the height H4 of the scintillator 5. If the height H3 of the sealing portion 8 is lower than the height H4 of the scintillator 5, the vicinity of the peripheral edge of the moistureproof portion 7 can be bent. That is, in this way, it becomes easy to provide the bending portion 7d near the peripheral edge of the moisture-proof portion 7.
  • the flexible portion 7d can be elastically deformed more easily than the portion of the moisture-proof portion 7 where the flexible portion 7d is not provided. If the bending portion 7d is provided, the same effect as that of the bending portion 7c described above can be obtained.
  • the flexural portion 7d is elastically deformed, so that the generated tensile stress F can be relaxed, so that the moisture-proof portion 7 may be peeled off or broken, or the array substrate 2 may be deformed such as warped. Can be suppressed.
  • the coefficient of linear expansion of the moisture-proof part 7 using aluminum foil is about 23 ⁇ 10 ⁇ 6 .
  • the linear expansion coefficient of the array substrate 2 is about 4 ⁇ 10 ⁇ 6 . Therefore, when the temperature of the moisture-proof portion 7 fixed to the sealing portion 8 decreases, the moisture-proof portion 7 shrinks more than the array substrate 2. In this case, if the moisture-proof portion 7 has a substantially completely flat shape, the difference in shrinkage amount cannot be absorbed and the array substrate 2 warps. On the other hand, if the bending portions 7c and 7d are provided, the difference in shrinkage amount can be absorbed, so that the array substrate 2 can be prevented from warping.
  • the difference between the height H4 of the scintillator 5 and the height H3 of the sealing portion 8 can be equal to or more than the thickness of the moistureproof portion 7.
  • the difference between the height H4 of the scintillator 5 and the height H3 of the sealing portion 8 can be 0.1 mm or more.
  • the difference between the height H4 of the scintillator 5 and the height H3 of the sealing portion 8 is preferably 0.5 mm or less. That is, the difference between the height H4 of the scintillator 5 and the height H3 of the sealing portion 8 is preferably 0.1 mm or more and 0.5 mm or less.
  • the height H3 of the sealing portion 8 is preferably 30% or more and 70% or less of the height H4 of the scintillator 5.
  • the effect of reducing the amount of moisture per unit time can be considered as follows.
  • the total moisture permeation amount of the moisture-proof portion 7 and the sealing portion 8 is Q
  • the moisture permeation amount of the moisture preventing portion 7 per unit time is Q7
  • the moisture permeation amount of the sealing portion 8 per unit time is Q8.
  • the following formula is established.
  • Q Q7 + Q8
  • Q7 is considered to be substantially constant, so the increase / decrease in Q is substantially determined by the increase / decrease in Q8.
  • the moisture permeability coefficient of the sealing portion 8 is P
  • the moisture permeability cross-sectional area of the sealing portion 8 is S (mm 2 )
  • the moisture permeability width of the sealing portion 8 is W
  • the peripheral length of the sealing portion 8 is L. (Mm)
  • the height of the sealing portion 8 is H (mm)
  • the moisture permeation amount Q per hit can be reduced. That is, since the moisture resistance can be improved, the reliability of the X-ray detection module 10 can be improved.
  • FIG. 9A and FIG. 9B are schematic cross-sectional views for illustrating the bending portion 7e according to another embodiment.
  • the bending portion 7e can be provided in a region of the moisture-proof portion 7 that faces the upper surface 5b of the scintillator 5.
  • the flexure 7e can be embossed, for example.
  • the surface of the flexible portion 7e on the side opposite to the scintillator 5 side protrudes outward from the surface of the moistureproof portion 7 on the side opposite to the scintillator 5 side.
  • the surface of the flexible portion 7e of the scintillator 5 projects outward from the surface of the moisture-proof portion 7 on the scintillator 5 side.
  • the thickness of the flexible portion 7e can be made substantially the same as the thickness of the moisture-proof portion 7 where the flexible portion 7e is not provided.
  • the flexible portion 7e can be formed, for example, by subjecting the sheet-shaped moisture-proof portion 7 to press working (embossing) using a press stamping die. Even with a low-moisture-permeable and moisture-proof film in which a resin film and a film made of an inorganic material are laminated, the bending portion 7e can be formed by performing press processing (embossing) using a stamping die.
  • the height dimension of the flexible portion 7e can be made larger than the wall thickness dimension of the moisture-proof portion 7 where the flexible portion 7e is not provided.
  • the width dimension, the number, the arrangement, and the like of the flexible portion 7e can be appropriately determined according to the magnitude of the heat shrinkage amount described above, the size of the moisture-proof portion 7, and the like.
  • the flexible portion 7e can be elastically deformed more easily than the portion of the moisture-proof portion 7 where the flexible portion 7e is not provided. Therefore, the flexible portion 7e elastically deforms to absorb the difference in the thermal contraction amount based on the difference in the linear expansion coefficient. Therefore, by providing the bending portion 7e, it is possible to prevent the array substrate 2 from warping.
  • the moisture-proof portion 7 may be provided with only the bending portion 7e, or as shown in FIG. 9B, the moisture-proof portion 7 may be provided with the bending portion 7e.
  • the bending portions 7d and 7c can be provided near the peripheral edge of the moisture-proof portion 7.
  • FIG. 10 is a schematic cross-sectional view for illustrating the X-ray detection module 110 according to the comparative example.
  • the sealing portion 8 is bonded to the array substrate 2 and is not bonded to the side surface 5a of the scintillator 5, the sealing portion 8 is likely to peel off.
  • thermal stress is generated due to a change in temperature due to activation and a change in ambient temperature.
  • the sealing portion 8 is bonded only to the array substrate 2, the bonding strength of the sealing portion 8 becomes low. Therefore, the generated thermal stress may cause peeling of the sealing portion 8.
  • the sealing portion 8 is joined to the side surface 5a of the scintillator 5 and the array substrate 2.
  • the sealing portion 8 is in close contact with the side surface 5 a of the scintillator 5. Further, a part of the sealing portion 8 is provided inside the unevenness of the side surface 5 a of the scintillator 5. Therefore, since the bonding strength of the sealing portion 8 can be increased, it is possible to prevent the sealing portion 8 from peeling off due to thermal stress.
  • FIG. 11 is a schematic cross-sectional view for illustrating the X-ray detection module 110a according to the comparative example.
  • the exposed portion 118a1 of the outer surface 118a of the sealing portion 118 is an inclined surface that is inclined toward the scintillator 5 toward the array substrate 2 side. Therefore, in the vicinity of the array substrate 2, the distance L between the outer surface 118a of the sealing portion 118 and the side surface 5a of the scintillator 5 becomes short. Therefore, moisture contained in the atmosphere easily penetrates between the sealing portion 118 and the array substrate 2 and reaches the scintillator 5.
  • the outer surface 8a of the sealing portion 8 has a curved surface protruding outward. Therefore, in the vicinity of the array substrate 2, the distance L between the outer surface 18a of the sealing portion 18 and the side surface 5a of the scintillator 5 can be increased, so that moisture contained in the atmosphere reaches the scintillator 5. It will be difficult.
  • FIG. 12 is a schematic cross-sectional view for illustrating the X-ray detection module 110b according to the comparative example.
  • the height of the sealing portion 128 is higher than that of the scintillator 5, it is necessary to force the sheet to be the moistureproof portion 17 to be deformed. Therefore, wrinkles, breaks, pinholes, etc. are likely to occur in the moisture-proof portion 17.
  • the exposed portion of the outer surface 128a of the sealing portion 128 is likely to be large. When the exposed portion becomes large, the water permeation cross section becomes large, so that a larger amount of water easily enters the sealing portion 128.
  • the height of the sealing portion 8 is equal to or lower than the height of the scintillator 5
  • a sheet to be the moistureproof portion 7 should be used. It can be easily transformed. Therefore, it is possible to suppress wrinkles, breakage, pinholes, and the like from occurring in the moisture-proof portion 7.
  • FIG. 13 is a schematic cross-sectional view for illustrating the X-ray detection module 110c according to the comparative example.
  • the outer surface 138a of the sealing portion 138 is a plane perpendicular to the array substrate 2, it becomes difficult to cover the outer surface 138a with the moistureproof portion 117. If the outer surface 138a is not covered with the moisture-proof portion 117, the water permeation cross section becomes large, so that a larger amount of water easily enters the sealing portion 138. In this case, if the peripheral portion 117a of the moisture-proof portion 117 is bent so as to cover the outer surface 138a, cracks or fractures are likely to occur in the bent portion 117b. When cracks or breaks occur, water may enter through the cracks or breaks.
  • the outer surface 8a of the sealing portion 8 has a curved surface protruding outward. Therefore, when the outer surface 8a is covered with the sealing portion 7, there is no portion in which the sealing portion 7 needs to be forcibly bent. Therefore, the outer surface 8a can be covered with the sealing portion 7 without cracking or breaking.
  • the array substrate 2 is manufactured by sequentially forming the control line 2c1, the data line 2c2, the wiring pad 2d1, the wiring pad 2d2, the photoelectric conversion section 2b, the protective layer 2f and the like on the substrate 2a.
  • the array substrate 2 can be manufactured using, for example, a semiconductor manufacturing process. Since a known technique can be applied to the manufacture of the array substrate 2, detailed description will be omitted.
  • the scintillator 5 is formed so as to cover the effective pixel area A on the substrate 2a.
  • the scintillator 5 can be formed using a vacuum vapor deposition method. If the scintillator 5 is formed by using the vacuum evaporation method, the scintillator 5 composed of an aggregate of a plurality of columnar crystals is formed.
  • the thickness of the scintillator 5 can be appropriately changed according to the DQE characteristics, sensitivity characteristics, resolution characteristics and the like required for the X-ray detector 1.
  • the scintillator 5 can have a thickness of, for example, about 600 ⁇ m.
  • a light-emitting substance and a binder material are mixed, the mixed material is applied so as to cover the effective pixel region A, and this is baked, and a matrix-shaped groove is formed in the baked material to form a plurality of photoelectric conversions.
  • a square column scintillator 5 may be provided for each part 2b.
  • the reflective layer 6 is formed on the scintillator 5.
  • the reflective layer 6 can be formed by applying a coating liquid, which is a mixture of a plurality of light-scattering particles, a resin, and a solvent, onto the scintillator 5 and drying the coating liquid.
  • the reflective layer 6 can be formed by forming a layer made of a metal having a high light reflectance such as silver alloy or aluminum on the scintillator 5.
  • a sheet made of a metal having a high light reflectance such as a silver alloy or aluminum, or a resin sheet containing light scattering particles is provided on the scintillator 5 or attached to form the reflection layer 6. It can be provided.
  • the sealing part 8 is formed.
  • the thermoplastic resin is softened using a solvent, the softened thermoplastic resin is applied in a frame shape around the scintillator 5, and the solvent is evaporated to solidify the thermoplastic resin to form the sealing portion 8. can do.
  • the thermoplastic resin is softened by heating, and the softened thermoplastic resin is applied in a frame shape around the scintillator 5, and the thermoplastic resin is solidified by heat radiation or the like to form the sealing portion 8. can do.
  • the frame-shaped sealing portion 8 can be formed using, for example, a 3D printer.
  • FIG. 14 is a schematic perspective view for illustrating application of the thermoplastic resin 18 according to the comparative example.
  • the softened thermoplastic resin 18 is applied in a frame shape. Therefore, at least one joint 18a is formed.
  • the softened thermoplastic resin 18 is applied in a frame shape, if the supply amount of the thermoplastic resin 18 per unit time is made constant, or the moving speed B of the nozzle for discharging the thermoplastic resin 18 is made constant, As shown in FIG. 14, a dent 18b may occur at the joint 18a between the supply start point and the supply end point.
  • a sharp depression 18b having a height lower than the surroundings may be formed at the joint 18a between the supply start point and the supply end point.
  • the steep depression 18b is formed, the sheet that becomes the moisture-proof portion 7 cannot be along the depression 18b, which may cause a leak path.
  • the moisture-proof portion 7 and the outer surface 8a of the sealing portion 8 are not joined to each other, and water easily enters through the leak path.
  • FIG. 15 is a schematic perspective view for illustrating application of the thermoplastic resin 18 according to this embodiment.
  • a protrusion 18c can be formed on the joint 18a.
  • the convex portion 18c can be formed by increasing the supply amount of the thermoplastic resin 18 per unit time or slowing the moving speed B of the nozzle at the joint 18a.
  • the convex portion 18c having a gentle outer surface and having a low height is formed.
  • the sheet is easier to be the moisture-proof portion 7 along the convex portion 18c. Therefore, it is possible to suppress the occurrence of a leak path.
  • the sheet serving as the moisture-proof portion 7 is covered on the scintillator 5, the reflection layer 6, and the sealing portion 8, and the periphery of the sheet is bonded to the outer surface 8 a of the sealing portion 8.
  • the moisture-proof portion 7 can be joined by heating the sheet while pressing the periphery of the sheet against the outer surface 8a of the sealing portion 8 to melt the outer surface 8a of the sealing portion 8.
  • the moisture-proof portion 7 is formed by joining the sheet to the outer surface 8 a of the sealing portion 8. The joining of the sheets can be performed in an environment depressurized below atmospheric pressure.
  • the sheet is bonded to the outer surface 8a of the sealing portion 8 in an environment where the pressure is lower than the atmospheric pressure.
  • the air inside the moisture-proof section 7 prevents It is possible to prevent the moistureproof portion 7 from expanding or deforming. Further, since the moisture-proof portion 7 is pressed down by the atmospheric pressure, the moisture-proof portion 7 comes into close contact with the scintillator 5.
  • the X-ray detection modules 10, 10a to 10c can be manufactured.
  • the array substrate 2 and the circuit board 11 are electrically connected via the flexible printed boards 2e1 and 2e2.
  • circuit components and the like are appropriately mounted.
  • the array substrate 2, the circuit board 11 and the like are stored inside a casing (not shown).
  • the array substrate 2 may interfere with a member stored inside the housing, or the array substrate 2 may interfere with the inner wall of the housing.
  • warpage of the array substrate 2 can be suppressed, so that work in the assembly process can be facilitated.
  • an electrical test or an X-ray image test for confirming whether or not there is an abnormality in the photoelectric conversion element 2b1 or whether or not there is an abnormality in electrical connection can be performed.
  • the X-ray detector 1 can be manufactured as described above.
  • a high-temperature high-humidity test, a thermal cycle test, and the like can be performed.
  • the method of manufacturing the X-ray detection module can include the following steps.
  • a step of forming the sealing portion 8 by applying the softened thermoplastic resin 18 around the scintillator 5 in a frame shape.
  • the convex portion 18c can be formed at the joint 18a for coating.

Abstract

A radiation detection module according to an embodiment comprises: an array substrate that has a plurality of photoelectric conversion parts; a scintillator that is provided on top of the plurality of photoelectric conversion parts; a frame-like sealing part that includes a thermoplastic resin as the main component, is provided at the periphery of the scintillator, and is joined to the array substrate and the scintillator; and an anti-moisture part that covers the upper part of the scintillator and is joined to the outer surface of the sealing part near the peripheral edge of the anti-moisture part. The shape of the outer surface of the sealing part is that of an outwardly protruding curved surface.

Description

放射線検出モジュール、放射線検出器、及び放射線検出モジュールの製造方法Radiation detection module, radiation detector, and method of manufacturing radiation detection module
 本発明の実施形態は、放射線検出モジュール、放射線検出器、及び放射線検出モジュールの製造方法に関する。 The embodiment of the present invention relates to a radiation detection module, a radiation detector, and a method for manufacturing the radiation detection module.
 放射線検出器の一例にX線検出器がある。X線検出器には、X線を蛍光に変換するシンチレータと、蛍光を電気信号に変換するアレイ基板とが設けられている。また、蛍光の利用効率を高めて感度特性を改善するために、シンチレータの上に反射層をさらに設ける場合もある。 
 ここで、水蒸気などに起因する特性の劣化を抑制するために、シンチレータと反射層は、外部雰囲気から隔離する必要がある。例えば、シンチレータが、CsI(ヨウ化セシウム):Tl(タリウム)やCsI:Na(ナトリウム)などを含む場合には、水蒸気などによる特性劣化が大きくなるおそれがある。
An X-ray detector is an example of the radiation detector. The X-ray detector is provided with a scintillator that converts X-rays into fluorescence and an array substrate that converts fluorescence into electrical signals. In addition, a reflective layer may be further provided on the scintillator in order to improve the utilization efficiency of fluorescence and improve the sensitivity characteristics.
Here, the scintillator and the reflective layer need to be isolated from the external atmosphere in order to suppress the deterioration of the characteristics due to water vapor or the like. For example, when the scintillator contains CsI (cesium iodide): Tl (thallium), CsI: Na (sodium), or the like, the characteristic deterioration due to water vapor or the like may increase.
 そのため、高い防湿性能が得られる構造として、シンチレータと反射層をハット形状の防湿部で覆い、防湿部のつば(鍔)部をアレイ基板に接着する技術が提案されている。 
 ところが、防湿部のつば部をアレイ基板に接着すると、シンチレータの周辺につば部を接着するためのスペースが必要となる。近年においてはX線検出器の小型化が望まれているが、ハット形状の防湿部とすると、X線検出器の小型化が図れなくなるおそれがある。
Therefore, as a structure capable of obtaining high moistureproof performance, a technique has been proposed in which the scintillator and the reflection layer are covered with a hat-shaped moistureproof portion, and the brim (flange) portion of the moistureproof portion is bonded to the array substrate.
However, if the brim portion of the moisture-proof portion is bonded to the array substrate, a space for bonding the brim portion is required around the scintillator. In recent years, it has been desired to reduce the size of the X-ray detector. However, when the hat-shaped moisture-proof portion is used, there is a fear that the X-ray detector cannot be downsized.
 また、人体に対して大量のX線照射を行うと健康への悪影響があるため、人体へのX線照射量は必要最低限に抑えられる。そのため、医療に用いられるX線検出器の場合には、照射されるX線の強度が小さくなり、防湿部を透過するX線の強度が非常に小さくなるおそれがある。この場合、防湿部の厚みを薄くすれば、透過するX線の強度を大きくすることができる。ところが、ハット形状の防湿部の厚みを薄くすると、アルミニウムなどの箔を、ハット形状に成形する際に亀裂などが発生しやすくなる。
 そこで、X線検出器の小型化を図ることができ、且つ、防湿部の厚みを薄くすることができる技術の開発が望まれていた。
Further, since a large amount of X-ray irradiation on the human body has a bad influence on health, the X-ray irradiation amount on the human body can be suppressed to a necessary minimum. Therefore, in the case of an X-ray detector used for medical treatment, the intensity of the X-rays that are emitted may be low, and the intensity of the X-rays that pass through the moisture-proof portion may be extremely low. In this case, if the thickness of the moisture-proof portion is reduced, the intensity of X-rays that are transmitted can be increased. However, if the thickness of the hat-shaped moisture-proof portion is reduced, cracks and the like are likely to occur when forming a foil of aluminum or the like into the hat-shaped.
Therefore, it has been desired to develop a technique capable of reducing the size of the X-ray detector and reducing the thickness of the moisture-proof portion.
特開2009-128023号公報JP, 2009-128023, A
 本発明が解決しようとする課題は、放射線検出器の小型化を図ることができ、且つ、防湿部の厚みを薄くすることができる放射線検出モジュール、放射線検出器、及び放射線検出モジュールの製造方法を提供することである。 The problem to be solved by the present invention is to provide a radiation detection module, a radiation detector, and a method for manufacturing a radiation detection module, which can reduce the size of the radiation detector and can reduce the thickness of the moisture-proof portion. Is to provide.
 実施形態に係る放射線検出モジュールは、複数の光電変換部を有するアレイ基板と、前記複数の光電変換部の上に設けられたシンチレータと、熱可塑性樹脂を主成分として含み、前記シンチレータの周囲に設けられ、前記アレイ基板と前記シンチレータに接合された枠状の封止部と、前記シンチレータの上方を覆い、周縁近傍が前記封止部の外面に接合された防湿部と、を備えている。前記封止部の外面の形状は、外側に突出する曲面である。 The radiation detection module according to the embodiment includes an array substrate having a plurality of photoelectric conversion units, a scintillator provided on the plurality of photoelectric conversion units, and a thermoplastic resin as a main component, and provided around the scintillator. And a frame-shaped sealing portion joined to the array substrate and the scintillator, and a moisture-proof portion that covers an upper portion of the scintillator and has a peripheral edge portion joined to an outer surface of the sealing portion. The outer surface of the sealing portion has a curved surface protruding outward.
本実施の形態に係るX線検出器およびX線検出モジュールを例示するための模式斜視図である。It is a schematic perspective view for illustrating the X-ray detector and the X-ray detection module according to the present embodiment. X線検出モジュールを例示するための模式断面図である。It is a schematic cross section for illustrating an X-ray detection module. X線検出器のブロック図である。It is a block diagram of an X-ray detector. (a)、(b)は、他の実施形態に係るX線検出モジュールを例示するための模式断面図である。(A), (b) is a schematic cross section for illustrating the X-ray detection module concerning other embodiments. 他の実施形態に係るX線検出モジュールを例示するための模式断面図である。It is a schematic cross section for illustrating an X-ray detection module concerning other embodiments. (a)は、防湿部の模式平面図である。(b)は、防湿部17の模式斜視図である。(A) is a schematic plan view of a moisture-proof part. (B) is a schematic perspective view of the moisture-proof part 17. 他の実施形態に係るX線検出モジュールを例示するための模式断面図である。It is a schematic cross section for illustrating an X-ray detection module concerning other embodiments. 他の実施形態に係るX線検出モジュールを例示するための模式断面図である。It is a schematic cross section for illustrating an X-ray detection module concerning other embodiments. (a)、(b)は、他の実施形態に係る撓み部を例示するための模式断面図である。(A), (b) is a schematic cross section for illustrating a flexible part concerning other embodiments. 比較例に係るX線検出モジュールを例示するための模式断面図である。It is a schematic cross section for illustrating an X-ray detection module concerning a comparative example. 比較例に係るX線検出モジュールを例示するための模式断面図である。It is a schematic cross section for illustrating an X-ray detection module concerning a comparative example. 比較例に係るX線検出モジュールを例示するための模式断面図である。It is a schematic cross section for illustrating an X-ray detection module concerning a comparative example. 比較例に係るX線検出モジュールを例示するための模式断面図である。It is a schematic cross section for illustrating an X-ray detection module concerning a comparative example. 比較例に係る熱可塑性樹脂の塗布を例示するための模式斜視図である。It is a schematic perspective view for illustrating application of a thermoplastic resin according to a comparative example. 本実施の形態に係る熱可塑性樹脂の塗布を例示するための模式斜視図である。It is a schematic perspective view for illustrating application of the thermoplastic resin according to the present embodiment.
 以下、図面を参照しつつ、実施の形態について例示をする。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。 
 また、本発明の実施形態に係る放射線検出器は、X線のほかにもγ線などの各種放射線に適用させることができる。ここでは、一例として、放射線の中の代表的なものとしてX線に係る場合を例にとり説明をする。したがって、以下の実施形態の「X線」を「他の放射線」に置き換えることにより、他の放射線にも適用させることができる。 
 また、放射線検出器は、例えば、一般医療などに用いることができる。ただし、放射線検出器の用途は、一般医療に限定されるわけではない。
Embodiments will be exemplified below with reference to the drawings. In the drawings, the same components are designated by the same reference numerals, and detailed description thereof will be appropriately omitted.
Further, the radiation detector according to the embodiment of the present invention can be applied to various radiations such as γ-rays as well as X-rays. Here, as an example, description will be given by taking a case relating to X-rays as a typical one of radiations. Therefore, by replacing “X-ray” in the following embodiments with “other radiation”, it can be applied to other radiation.
Further, the radiation detector can be used, for example, in general medicine. However, the application of the radiation detector is not limited to general medicine.
 (X線検出器およびX線検出モジュール) 
 図1は、本実施の形態に係るX線検出器1およびX線検出モジュール10を例示するための模式斜視図である。 
 なお、煩雑となるのを避けるために、図1においては、保護層2f、反射層6、防湿部7、および封止部8などを省いて描いている。
 図2は、X線検出モジュール10を例示するための模式断面図である。 
 図3は、X線検出器1のブロック図である。
(X-ray detector and X-ray detection module)
FIG. 1 is a schematic perspective view for illustrating an X-ray detector 1 and an X-ray detection module 10 according to this embodiment.
In order to avoid complication, the protective layer 2f, the reflection layer 6, the moisture-proof portion 7, the sealing portion 8 and the like are omitted in FIG.
FIG. 2 is a schematic cross-sectional view for illustrating the X-ray detection module 10.
FIG. 3 is a block diagram of the X-ray detector 1.
 図1および図2に示すように、X線検出器1には、X線検出モジュール10、および回路基板11が設けられている。また、X線検出器1には、図示しない筐体を設けることができる。筐体の内部には、X線検出モジュール10、および回路基板11を設けることができる。例えば、筐体の内部に板状の支持板12を設け、支持板12のX線の入射側の面にはX線検出モジュール10を設け、支持板12のX線の入射側とは反対側の面には回路基板11を設けることができる。 As shown in FIGS. 1 and 2, the X-ray detector 1 is provided with an X-ray detection module 10 and a circuit board 11. Further, the X-ray detector 1 can be provided with a casing (not shown). The X-ray detection module 10 and the circuit board 11 can be provided inside the housing. For example, the plate-shaped support plate 12 is provided inside the housing, the X-ray detection module 10 is provided on the X-ray incident side surface of the support plate 12, and the side opposite to the X-ray incident side of the support plate 12 is provided. The circuit board 11 can be provided on the surface of the.
 X線検出モジュール10には、アレイ基板2、シンチレータ5、反射層6、防湿部7、および封止部8が設けられている。 
 アレイ基板2は、基板2a、光電変換部2b、制御ライン(又はゲートライン)2c1、データライン(又はシグナルライン)2c2、配線パッド2d1、配線パッド2d2および保護層2fを有する。 
 なお、光電変換部2b、制御ライン2c1、およびデータライン2c2の数などは例示をしたものに限定されるわけではない。
The X-ray detection module 10 is provided with the array substrate 2, the scintillator 5, the reflective layer 6, the moisture-proof portion 7, and the sealing portion 8.
The array substrate 2 includes a substrate 2a, a photoelectric conversion unit 2b, a control line (or gate line) 2c1, a data line (or signal line) 2c2, a wiring pad 2d1, a wiring pad 2d2, and a protective layer 2f.
The numbers of the photoelectric conversion unit 2b, the control line 2c1, and the data line 2c2 are not limited to those illustrated.
 基板2aは、板状を呈し、無アルカリガラスなどのガラスから形成されている。基板2aの平面形状は、四角形とすることができる。基板2aの厚みは、例えば、0.7mm程度とすることができる。 
 光電変換部2bは、基板2aの一方の面側に複数設けられている。 
 光電変換部2bは、矩形状を呈し、制御ライン2c1とデータライン2c2とにより画された領域に設けられている。複数の光電変換部2bは、マトリクス状に並べられている。なお、1つの光電変換部2bは、X線画像の1つの画素(pixel)に対応する。
The substrate 2a has a plate shape and is made of glass such as alkali-free glass. The planar shape of the substrate 2a can be a quadrangle. The thickness of the substrate 2a can be set to about 0.7 mm, for example.
A plurality of photoelectric conversion units 2b are provided on one surface side of the substrate 2a.
The photoelectric conversion unit 2b has a rectangular shape and is provided in a region defined by the control line 2c1 and the data line 2c2. The plurality of photoelectric conversion units 2b are arranged in a matrix. Note that one photoelectric conversion unit 2b corresponds to one pixel of the X-ray image.
 複数の光電変換部2bのそれぞれには、光電変換素子2b1と、スイッチング素子である薄膜トランジスタ(TFT;Thin Film Transistor)2b2が設けられている。 
 また、光電変換素子2b1において変換した信号電荷を蓄積する図示しない蓄積キャパシタを設けることができる。蓄積キャパシタは、例えば、矩形平板状を呈し、各薄膜トランジスタ2b2の下に設けることができる。ただし、光電変換素子2b1の容量によっては、光電変換素子2b1が蓄積キャパシタを兼ねることができる。
A photoelectric conversion element 2b1 and a thin film transistor (TFT) 2b2 that is a switching element are provided in each of the plurality of photoelectric conversion units 2b.
Further, a storage capacitor (not shown) for storing the signal charges converted by the photoelectric conversion element 2b1 can be provided. The storage capacitor has, for example, a rectangular flat plate shape, and can be provided below each thin film transistor 2b2. However, the photoelectric conversion element 2b1 can also serve as a storage capacitor depending on the capacity of the photoelectric conversion element 2b1.
 光電変換素子2b1は、例えば、フォトダイオードなどとすることができる。 
 薄膜トランジスタ2b2は、蓄積キャパシタへの電荷の蓄積および放出のスイッチングを行う。薄膜トランジスタ2b2は、ゲート電極、ドレイン電極及びソース電極を有している。薄膜トランジスタ2b2のゲート電極は、対応する制御ライン2c1と電気的に接続される。薄膜トランジスタ2b2のドレイン電極は、対応するデータライン2c2と電気的に接続される。薄膜トランジスタ2b2のソース電極は、対応する光電変換素子2b1と蓄積キャパシタとに電気的に接続される。また、光電変換素子2b1のアノード側と蓄積キャパシタは、グランドに接続することができる。なお、光電変換素子2b1のアノード側と蓄積キャパシタは、図示しないバイアスラインに接続することもできる。
The photoelectric conversion element 2b1 can be, for example, a photodiode or the like.
The thin film transistor 2b2 performs switching of storage and discharge of electric charge in the storage capacitor. The thin film transistor 2b2 has a gate electrode, a drain electrode, and a source electrode. The gate electrode of the thin film transistor 2b2 is electrically connected to the corresponding control line 2c1. The drain electrode of the thin film transistor 2b2 is electrically connected to the corresponding data line 2c2. The source electrode of the thin film transistor 2b2 is electrically connected to the corresponding photoelectric conversion element 2b1 and storage capacitor. Further, the anode side of the photoelectric conversion element 2b1 and the storage capacitor can be connected to the ground. The anode side of the photoelectric conversion element 2b1 and the storage capacitor can also be connected to a bias line (not shown).
 制御ライン2c1は、所定の間隔をあけて互いに平行に複数設けられている。制御ライン2c1は、例えば、行方向に延びている。1つの制御ライン2c1は、基板2aの周縁近傍に設けられた複数の配線パッド2d1のうちの1つと電気的に接続されている。1つの配線パッド2d1には、フレキシブルプリント基板2e1に設けられた複数の配線のうちの1つが電気的に接続されている。フレキシブルプリント基板2e1に設けられた複数の配線の他端は、回路基板11に設けられた読み出し回路11aとそれぞれ電気的に接続されている。 A plurality of control lines 2c1 are provided in parallel with each other at a predetermined interval. The control line 2c1 extends in the row direction, for example. One control line 2c1 is electrically connected to one of the plurality of wiring pads 2d1 provided near the peripheral edge of the substrate 2a. One wiring pad 2d1 is electrically connected to one of a plurality of wirings provided on the flexible printed circuit board 2e1. The other ends of the plurality of wirings provided on the flexible printed board 2e1 are electrically connected to the readout circuit 11a provided on the circuit board 11, respectively.
 データライン2c2は、所定の間隔をあけて互いに平行に複数設けられている。データライン2c2は、例えば、行方向に直交する列方向に延びている。1つのデータライン2c2は、基板2aの周縁近傍に設けられた複数の配線パッド2d2のうちの1つと電気的に接続されている。1つの配線パッド2d2には、フレキシブルプリント基板2e2に設けられた複数の配線のうちの1つが電気的に接続されている。フレキシブルプリント基板2e2に設けられた複数の配線の他端は、回路基板11に設けられた信号検出回路11bとそれぞれ電気的に接続されている。 
 制御ライン2c1、およびデータライン2c2は、例えば、アルミニウムやクロムなどの低抵抗金属を用いて形成することができる。
A plurality of data lines 2c2 are provided in parallel with each other at a predetermined interval. The data line 2c2 extends, for example, in the column direction orthogonal to the row direction. One data line 2c2 is electrically connected to one of the plurality of wiring pads 2d2 provided near the peripheral edge of the substrate 2a. One wiring pad 2d2 is electrically connected to one of a plurality of wirings provided on the flexible printed circuit board 2e2. The other ends of the plurality of wirings provided on the flexible printed board 2e2 are electrically connected to the signal detection circuit 11b provided on the circuit board 11, respectively.
The control line 2c1 and the data line 2c2 can be formed using, for example, a low resistance metal such as aluminum or chromium.
 保護層2fは、光電変換部2b、制御ライン2c1、およびデータライン2c2を覆っている。保護層2fは、絶縁性材料から形成することができる。絶縁性材料は、例えば、酸化物絶縁材料、窒化物絶縁材料、酸窒化物絶縁材料、および樹脂などとすることができる。 The protective layer 2f covers the photoelectric conversion unit 2b, the control line 2c1 and the data line 2c2. The protective layer 2f can be formed of an insulating material. The insulating material can be, for example, an oxide insulating material, a nitride insulating material, an oxynitride insulating material, a resin, or the like.
 シンチレータ5は、複数の光電変換部2bの上に設けられ、入射するX線を可視光すなわち蛍光に変換する。シンチレータ5は、基板2a上の複数の光電変換部2bが設けられた領域(有効画素領域A)を覆うように設けられている。 
 シンチレータ5は、例えば、ヨウ化セシウム(CsI):タリウム(Tl)、ヨウ化ナトリウム(NaI):タリウム(Tl)、あるいは臭化セシウム(CsBr):ユーロピウム(Eu)などを含むものとすることができる。シンチレータ5は、真空蒸着法を用いて形成することができる。真空蒸着法を用いてシンチレータ5を形成すれば、複数の柱状結晶の集合体からなるシンチレータ5が形成される。シンチレータ5の厚みは、例えば、600μm程度とすることができる。
The scintillator 5 is provided on the plurality of photoelectric conversion units 2b and converts incident X-rays into visible light, that is, fluorescence. The scintillator 5 is provided so as to cover a region (effective pixel region A) in which the plurality of photoelectric conversion units 2b are provided on the substrate 2a.
The scintillator 5 can contain, for example, cesium iodide (CsI): thallium (Tl), sodium iodide (NaI): thallium (Tl), or cesium bromide (CsBr): europium (Eu). The scintillator 5 can be formed using a vacuum vapor deposition method. If the scintillator 5 is formed by using the vacuum evaporation method, the scintillator 5 composed of an aggregate of a plurality of columnar crystals is formed. The scintillator 5 can have a thickness of, for example, about 600 μm.
 なお、真空蒸着法を用いてシンチレータ5を形成する際には、開口を有するマスクが用いられる。この場合、アレイ基板2上の開口に対峙する位置(有効画素領域Aの上)にシンチレータ5が形成される。また、蒸着による膜は、マスクの表面にも形成される。そして、マスクの開口の近傍においては、膜は、開口の内部に徐々に張り出すように成長する。開口の内部に膜が張り出すと、開口の近傍において、アレイ基板2への蒸着が抑制される。そのため、図1および図2に示すように、シンチレータ5の周縁近傍は、外側になるに従い厚みが漸減している。 A mask having an opening is used when forming the scintillator 5 using the vacuum deposition method. In this case, the scintillator 5 is formed at a position facing the openings on the array substrate 2 (on the effective pixel area A). A film formed by vapor deposition is also formed on the surface of the mask. Then, in the vicinity of the opening of the mask, the film grows so as to gradually project into the inside of the opening. When the film overhangs inside the opening, vapor deposition on the array substrate 2 is suppressed in the vicinity of the opening. Therefore, as shown in FIGS. 1 and 2, in the vicinity of the peripheral edge of the scintillator 5, the thickness gradually decreases toward the outside.
 また、シンチレータ5は、例えば、テルビウム賦活硫酸化ガドリニウム(GdS/Tb、又はGOS)などを用いて形成することもできる。この場合、複数の光電変換部2bごとに四角柱状のシンチレータ5が設けられるように、マトリクス状の溝部を設けることができる。 The scintillator 5 can also be formed using, for example, terbium activated gadolinium sulfate sulfate (Gd 2 O 2 S / Tb, or GOS). In this case, the groove portions can be provided in a matrix so that the scintillator 5 having a rectangular column shape is provided for each of the plurality of photoelectric conversion units 2b.
 反射層6は、蛍光の利用効率を高めて感度特性を改善するために設けられている。すなわち、反射層6は、シンチレータ5において生じた蛍光のうち、光電変換部2bが設けられた側とは反対側に向かう光を反射させて、光電変換部2bに向かうようにする。ただし、反射層6は、必ずしも必要ではなく、X線検出モジュール10に求められる感度特性などに応じて設けるようにすればよい。 
 以下においては、一例として、反射層6が設けられている場合を説明する。
The reflective layer 6 is provided in order to improve the utilization efficiency of fluorescence and improve the sensitivity characteristic. That is, the reflection layer 6 reflects the light, which is emitted from the scintillator 5 and is directed toward the side opposite to the side on which the photoelectric conversion section 2b is provided, so as to be reflected toward the photoelectric conversion section 2b. However, the reflective layer 6 is not always necessary, and may be provided according to the sensitivity characteristics required for the X-ray detection module 10.
In the following, as an example, a case where the reflective layer 6 is provided will be described.
 反射層6は、シンチレータ5のX線の入射側に設けられている。反射層6は、少なくともシンチレータ5の上面を覆っている。反射層6は、シンチレータ5の側面5aをさらに覆うこともできる。 
 例えば、酸化チタン(TiO)などからなる光散乱性粒子と、樹脂と、溶媒とを混合した材料をシンチレータ5上に塗布し、これを乾燥することで反射層6を形成することができる。 
 また、例えば、銀合金やアルミニウムなどの光反射率の高い金属からなる層をシンチレータ5上に成膜することで反射層6を形成することができる。 
 また、例えば、表面が銀合金やアルミニウムなどの光反射率の高い金属からなるシートや、光散乱性粒子を含む樹脂シートなどをシンチレータ5の上に設けることで反射層6とすることもできる。
The reflective layer 6 is provided on the X-ray incident side of the scintillator 5. The reflective layer 6 covers at least the upper surface of the scintillator 5. The reflective layer 6 can further cover the side surface 5 a of the scintillator 5.
For example, the reflective layer 6 can be formed by coating the scintillator 5 with a material obtained by mixing light-scattering particles made of titanium oxide (TiO 2 ) or the like, a resin, and a solvent, and drying the material.
Further, for example, the reflective layer 6 can be formed by forming a layer made of a metal having a high light reflectance such as silver alloy or aluminum on the scintillator 5.
Alternatively, for example, a sheet made of a metal having a high light reflectance such as silver alloy or aluminum or a resin sheet containing light scattering particles may be provided on the scintillator 5 to form the reflective layer 6.
 なお、ペースト状の材料をシンチレータ5の上に塗布し、これを乾燥する場合は、乾燥に伴い材料が収縮するので、シンチレータ5が引っ張られて、シンチレータ5がアレイ基板2から剥離する場合がある。そのため、シート状の反射層6を、シンチレータ5の上に設けることが好ましい。この場合、シート状の反射層6を、例えば、両面テープなどを用いて、シンチレータ5の上に接合することもできるが、シート状の反射層6をシンチレータ5の上に載置することが好ましい。シート状の反射層6をシンチレータ5の上に載置するようにすれば、反射層6の膨張または収縮に起因して、シンチレータ5がアレイ基板2から剥離するのを抑制するのが容易となる。 When a paste-like material is applied onto the scintillator 5 and dried, the material shrinks as it dries, so the scintillator 5 may be pulled and the scintillator 5 may peel off from the array substrate 2. .. Therefore, it is preferable to provide the sheet-shaped reflective layer 6 on the scintillator 5. In this case, the sheet-shaped reflective layer 6 can be bonded onto the scintillator 5 by using, for example, a double-sided tape, but it is preferable to place the sheet-shaped reflective layer 6 on the scintillator 5. .. If the sheet-shaped reflective layer 6 is placed on the scintillator 5, it becomes easy to prevent the scintillator 5 from peeling off from the array substrate 2 due to expansion or contraction of the reflective layer 6. ..
 防湿部7は、空気中に含まれる水分により、反射層6の特性やシンチレータ5の特性が劣化するのを抑制するために設けられている。 
 防湿部7は、シンチレータ5、および、封止部8の少なくとも一部を覆っている。防湿部7と反射層6などとの間には隙間があってもよいし、防湿部7と反射層6などとが接触するようにしてもよい。例えば、大気圧よりも減圧された環境において防湿部7と封止部8とを接合すれば、防湿部7と反射層6などとが接触するようにすることができる。また、一般的に、シンチレータ5には、その体積の10%~40%程度の空隙が存在する。そのため、空隙にガスが含まれていると、X線検出器1を航空機などで輸送した場合にガスが膨張して防湿部7が破損するおそれがある。大気圧よりも減圧された環境において防湿部7と封止部8とを接合すれば、X線検出器1が航空機などで輸送された場合であっても防湿部7が破損するのを抑制することができる。すなわち、封止部8と防湿部7とにより画された空間の圧力は、大気圧よりも低くすることが好ましい。
The moisture-proof portion 7 is provided to prevent the characteristics of the reflective layer 6 and the characteristics of the scintillator 5 from being deteriorated by water contained in the air.
The moisture-proof portion 7 covers at least a part of the scintillator 5 and the sealing portion 8. There may be a gap between the moisture-proof portion 7 and the reflective layer 6 or the like, or the moisture-proof portion 7 and the reflective layer 6 or the like may be in contact with each other. For example, if the moisture-proof portion 7 and the sealing portion 8 are joined in an environment depressurized below the atmospheric pressure, the moisture-proof portion 7 and the reflective layer 6 can be brought into contact with each other. Further, generally, the scintillator 5 has voids of about 10% to 40% of its volume. Therefore, if the void contains gas, the gas may expand and the moisture-proof portion 7 may be damaged when the X-ray detector 1 is transported by an aircraft or the like. If the moisture-proof portion 7 and the sealing portion 8 are joined in an environment depressurized below the atmospheric pressure, the moisture-proof portion 7 is prevented from being damaged even when the X-ray detector 1 is transported by an aircraft or the like. be able to. That is, the pressure in the space defined by the sealing portion 8 and the moisture-proof portion 7 is preferably lower than atmospheric pressure.
 ここで、封止部8の内部に気泡や空隙があったり、封止部8と防湿部7の間に隙間やリークパスがあったり、封止部8とアレイ基板2の間に隙間やリークパスがあったりする場合がある。この場合、大気圧よりも減圧された環境において防湿部7と封止部8とを接合し、その後、大気圧環境に戻した際に、隙間やリークパスなどを介して大気が内部に侵入する場合がある。大気が内部に侵入すると、防湿部7とシンチレータ5とが密着せず、防湿部7の表面にしわが発生したり、張りが無くなったりする。そのため、隙間やリークパスなどがあることを目視にて容易に知ることができる。隙間やリークパスなどがある製品の寿命は短くなるおそれがあるが、この様な製品を検査において容易に発見し除去することができる。そのため、X線検出器1の品質を向上させることが容易となる。 Here, there are air bubbles or voids inside the sealing portion 8, gaps or leak paths between the sealing portion 8 and the moistureproof portion 7, and gaps or leak paths between the sealing portion 8 and the array substrate 2. It may happen. In this case, when the moisture-proof portion 7 and the sealing portion 8 are joined in an environment depressurized below the atmospheric pressure and then the atmosphere is returned to the atmospheric pressure environment, the atmosphere enters the inside through a gap or a leak path. There is. When the air enters the inside, the moisture-proof portion 7 and the scintillator 5 do not come into close contact with each other, and the surface of the moisture-proof portion 7 is wrinkled or the tension disappears. Therefore, it is possible to easily visually recognize that there is a gap or a leak path. The life of a product having a gap or a leak path may be shortened, but such a product can be easily found and removed by inspection. Therefore, it becomes easy to improve the quality of the X-ray detector 1.
 防湿部7は、金属を含むシートとすることができる。金属は、例えば、アルミニウムを含む金属、銅を含む金属、マグネシウムを含む金属、タングステンを含む金属、ステンレス、コバール材などとすることができる。この場合、金属を含む防湿部7とすれば、防湿部7を透過する水分をほぼ完全になくすことができる。 The moisture-proof part 7 can be a sheet containing metal. The metal can be, for example, a metal containing aluminum, a metal containing copper, a metal containing magnesium, a metal containing tungsten, stainless steel, a Kovar material, or the like. In this case, if the moisture-proof portion 7 containing metal is used, the moisture that permeates the moisture-proof portion 7 can be almost completely eliminated.
 また、防湿部7は、樹脂膜と金属膜とが積層された積層シートとすることもできる。この場合、樹脂膜は、例えば、ポリイミド樹脂、エポキシ樹脂、ポリエチレンテレフタレート樹脂、テフロン(登録商標)、低密度ポリエチレン、高密度ポリエチレン、弾性ゴムなどから形成されたものとすることができる。金属膜は、例えば、前述した金属を含むものとすることができる。金属膜は、例えば、スパッタリング法、ラミネート法などを用いて形成することができる。この場合、金属膜がシンチレータ5側に設けられるようにすることが好ましい。この様にすれば、樹脂膜により金属膜を覆うことができるので、外力などにより金属膜が傷つくのを抑制することができる。また、金属膜が樹脂膜よりも内側(シンチレータ5側)に設けられていれば、樹脂層を介した透湿でシンチレータ5の特性が劣化するのを抑制することができる。
 また、金属膜に代えて、あるいは金属膜と共に無機膜を設けることができる。無機膜は、例えば、酸化珪素、酸化アルミニウムなどを含む膜とすることができる。無機膜は、例えば、スパッタリング法などを用いて形成することができる。
Further, the moisture-proof part 7 may be a laminated sheet in which a resin film and a metal film are laminated. In this case, the resin film may be formed of, for example, polyimide resin, epoxy resin, polyethylene terephthalate resin, Teflon (registered trademark), low density polyethylene, high density polyethylene, elastic rubber or the like. The metal film may include, for example, the above-mentioned metal. The metal film can be formed by using, for example, a sputtering method or a laminating method. In this case, it is preferable that the metal film is provided on the scintillator 5 side. By doing so, the metal film can be covered with the resin film, so that the metal film can be prevented from being damaged by an external force or the like. Further, if the metal film is provided inside the resin film (on the side of the scintillator 5), it is possible to prevent the characteristics of the scintillator 5 from deteriorating due to moisture permeation through the resin layer.
An inorganic film can be provided instead of the metal film or together with the metal film. The inorganic film can be, for example, a film containing silicon oxide, aluminum oxide, or the like. The inorganic film can be formed by using, for example, a sputtering method.
 金属膜を含む積層シートとする場合には、例えば、金属膜の厚みと略同じ厚みを有する樹脂膜を用いることができる。この様な厚みを有する樹脂膜を設ければ、防湿部7の剛性を増加させることができるので、製造工程中において、防湿部7にピンホールが発生するのを抑制することができる。なお、一般的に、樹脂の線膨張係数は、金属の線膨張係数よりも大きいため、樹脂膜の厚みを厚くし過ぎると、後述するアレイ基板2の反りが発生しやすくなる。そのため、樹脂膜の厚みは、金属膜の厚み以下とすることが好ましい。 When a laminated sheet including a metal film is used, for example, a resin film having a thickness substantially the same as the thickness of the metal film can be used. By providing the resin film having such a thickness, the rigidity of the moisture-proof portion 7 can be increased, so that it is possible to suppress the occurrence of pinholes in the moisture-proof portion 7 during the manufacturing process. Generally, the coefficient of linear expansion of resin is larger than the coefficient of linear expansion of metal. Therefore, if the thickness of the resin film is too thick, the warp of the array substrate 2 described later tends to occur. Therefore, the thickness of the resin film is preferably equal to or less than the thickness of the metal film.
 また、防湿部7の厚みは、X線の吸収や剛性などを考慮して決定することができる。この場合、防湿部7の厚みを厚くすると、防湿部7に吸収されるX線の量が多くなる。一方、防湿部7の厚みを薄くすると、剛性が低下して破損しやすくなる。 Also, the thickness of the moisture-proof portion 7 can be determined in consideration of absorption of X-rays, rigidity, and the like. In this case, if the thickness of the moistureproof portion 7 is increased, the amount of X-rays absorbed by the moistureproof portion 7 increases. On the other hand, when the thickness of the moisture-proof part 7 is reduced, the rigidity is lowered and the moisture-proof part 7 is easily damaged.
 例えば、防湿部7の厚みを10μm未満にすると、防湿部7の剛性が低くなりすぎて、外力などによるダメージによりピンホールが生じ、リークが発生するおそれがある。防湿部7の厚みが50μmを超えると、防湿部7の剛性が高くなり過ぎて、シンチレータ5の上端の凹凸への追従性が悪くなる。そのため、前述した隙間やリークパスの確認が困難となるおそれがある。またさらに、後述するアレイ基板2の反りが発生しやすくなるおそれがある。 For example, if the thickness of the moisture-proof portion 7 is less than 10 μm, the rigidity of the moisture-proof portion 7 becomes too low, and pinholes may occur due to damage due to external force, which may cause leakage. If the thickness of the moistureproof portion 7 exceeds 50 μm, the rigidity of the moistureproof portion 7 becomes too high, and the conformability to the unevenness of the upper end of the scintillator 5 becomes poor. Therefore, it may be difficult to confirm the above-mentioned gap and leak path. Further, there is a possibility that the warp of the array substrate 2 described later is likely to occur.
 そのため、防湿部7の厚みは、10μm以上、50μm以下とすることが好ましい。
 この場合、防湿部7は、例えば、厚みが10μm以上、50μm以下のアルミニウム箔とすることができる。アルミニウム箔の厚みが10μm以上、50μm以下であれば、厚みが100μmのアルミニウム箔に比べてX線の透過量を20%~30%程度多くすることができる。また、厚みが10μm以上、50μm以下のアルミニウム箔とすれば、前述したリークの発生を抑制することができ、且つ、前述した隙間やリークパスの確認が容易となる。また、後述するアレイ基板2の反りを抑制することができる。
Therefore, the thickness of the moisture-proof portion 7 is preferably 10 μm or more and 50 μm or less.
In this case, the moisture-proof portion 7 can be, for example, an aluminum foil having a thickness of 10 μm or more and 50 μm or less. When the thickness of the aluminum foil is 10 μm or more and 50 μm or less, the X-ray transmission amount can be increased by about 20% to 30% as compared with the aluminum foil having a thickness of 100 μm. Further, when the thickness of the aluminum foil is 10 μm or more and 50 μm or less, the occurrence of the above-mentioned leak can be suppressed, and the above-mentioned gap and leak path can be easily confirmed. In addition, the warp of the array substrate 2 described later can be suppressed.
 ここで、人体に対して大量のX線照射を行うと健康への悪影響があるため、人体へのX線照射量は必要最低限に抑えられる。そのため、医療に用いられるX線検出器1の場合には、照射されるX線の強度が小さくなり、防湿部7を透過するX線の強度が非常に小さくなるおそれがある。本実施の形態に係る防湿部7は、厚みが10μm以上、50μm以下のシートとしているので、照射されるX線の強度が小さい場合であってもX線画像の撮影が可能となる。 The irradiation of a large amount of X-rays on the human body here has a negative effect on health, so the amount of X-ray irradiation to the human body can be kept to the minimum necessary. Therefore, in the case of the X-ray detector 1 used for medical treatment, the intensity of the X-rays that are emitted may be low, and the intensity of the X-rays that pass through the moisture-proof portion 7 may be extremely low. Since the moisture-proof part 7 according to the present embodiment is a sheet having a thickness of 10 μm or more and 50 μm or less, it is possible to capture an X-ray image even when the intensity of the X-rays to be irradiated is low.
 この場合、防湿部7の厚みを薄くすると防湿部7の剛性が低下する。そのため、つば部などを設けて立体的な防湿部とすると、例えば、金属箔をプレス成形する際に亀裂などが生じ易くなる。図2に示すように、シート状を呈する防湿部7の周縁近傍は、封止部8の外面8aに接合される。そのため、予め防湿部7を立体形状に加工する必要はなく、シート状を呈する防湿部7をそのまま封止部8の外面8aに接合することができる。その結果、防湿部7の厚みを10μm以上、50μm以下としても、防湿部7に亀裂などが発生するのを抑制することができる。 In this case, if the thickness of the moisture-proof part 7 is reduced, the rigidity of the moisture-proof part 7 is reduced. Therefore, if a brim portion or the like is provided to form a three-dimensional moisture-proof portion, for example, cracks are likely to occur when the metal foil is press-molded. As shown in FIG. 2, the vicinity of the peripheral edge of the sheet-shaped moistureproof portion 7 is joined to the outer surface 8 a of the sealing portion 8. Therefore, it is not necessary to previously process the moisture-proof portion 7 into a three-dimensional shape, and the sheet-like moisture-proof portion 7 can be directly bonded to the outer surface 8 a of the sealing portion 8. As a result, even if the moisture-proof portion 7 has a thickness of 10 μm or more and 50 μm or less, it is possible to suppress the occurrence of cracks or the like in the moisture-proof portion 7.
 また、後述するように、防湿部7の周縁近傍を加熱することで、防湿部7の周縁近傍と封止部8を接合する。この場合、防湿部7の周縁近傍の温度と、封止部8の温度が低下すると、防湿部7の周縁近傍と封止部8との間に熱応力が発生する。防湿部7の周縁近傍と封止部8との間に熱応力が発生すると、防湿部7の周縁近傍と封止部8との間に剥離が生じるおそれがある。剥離が生じると防湿性能が著しく低下するおそれがある。防湿部7の厚みは10μm以上、50μm以下としているので、熱応力が発生した際に防湿部7が延びやすくなる。そのため、熱応力を緩和させることができるので、防湿部7の周縁近傍と封止部8との間に剥離が生じるのを抑制することができる。 Further, as will be described later, the vicinity of the peripheral edge of the moisture-proof portion 7 is heated to bond the vicinity of the peripheral edge of the moisture-proof portion 7 and the sealing portion 8. In this case, when the temperature in the vicinity of the peripheral edge of the moisture-proof portion 7 and the temperature of the sealing portion 8 decrease, thermal stress is generated between the vicinity of the peripheral edge of the moisture-proof portion 7 and the sealing portion 8. When thermal stress is generated between the vicinity of the peripheral edge of the moisture-proof portion 7 and the sealing portion 8, peeling may occur between the vicinity of the peripheral edge of the moisture-proof portion 7 and the sealing portion 8. If peeling occurs, the moistureproof performance may be significantly reduced. Since the thickness of the moisture-proof portion 7 is 10 μm or more and 50 μm or less, the moisture-proof portion 7 is likely to extend when thermal stress occurs. Therefore, since the thermal stress can be relaxed, it is possible to suppress peeling between the vicinity of the peripheral edge of the moisture-proof portion 7 and the sealing portion 8.
 図2に示すように、封止部8は、シンチレータ5の側面5aとアレイ基板2に接合されている。この場合、封止部8は、シンチレータ5の側面5aと密着させることができる。シンチレータ5が複数の柱状結晶の集合体となっている場合には、シンチレータ5の側面5aに凹凸が形成されている。そのため、封止部8の一部が、シンチレータ5の側面5aの凹凸の内部に設けられていれば、封止部8とシンチレータ5との接合強度を大きくすることができる。封止部8は、アレイ基板2と密着させることができる。封止部8とアレイ基板2とが密着していれば、大気に含まれている水分などが、封止部8とアレイ基板2との間を透過してシンチレータ5に到達するのを抑制することができる。 As shown in FIG. 2, the sealing portion 8 is joined to the side surface 5 a of the scintillator 5 and the array substrate 2. In this case, the sealing portion 8 can be brought into close contact with the side surface 5a of the scintillator 5. When the scintillator 5 is an aggregate of a plurality of columnar crystals, unevenness is formed on the side surface 5 a of the scintillator 5. Therefore, if a part of the sealing portion 8 is provided inside the unevenness of the side surface 5a of the scintillator 5, the bonding strength between the sealing portion 8 and the scintillator 5 can be increased. The sealing portion 8 can be brought into close contact with the array substrate 2. If the sealing portion 8 and the array substrate 2 are in close contact with each other, it is possible to prevent moisture contained in the atmosphere from penetrating between the sealing portion 8 and the array substrate 2 and reaching the scintillator 5. be able to.
 封止部8の外面8aの形状は、外側に突出する曲面とすることができる。この様にすれば、封止部8の外面8aとシンチレータ5の側面5aとの間の距離Lを長くすることができる。そのため、大気に含まれている水分などが、封止部8の内部を透過してシンチレータ5に到達するのを抑制することができる。 
 また、封止部8の外面8aの形状が外側に突出する曲面となっていれば、防湿部7の周縁近傍を封止部8の外面8aに倣わせるのが容易となる。そのため、防湿部7を封止部8に密着させるのが容易となる。また、防湿部7をなだらかに変形させることができるので、防湿部7の厚みを薄くしても防湿部7に亀裂などが発生するのを抑制することができる。
The shape of the outer surface 8a of the sealing portion 8 may be a curved surface protruding outward. By doing so, the distance L between the outer surface 8a of the sealing portion 8 and the side surface 5a of the scintillator 5 can be increased. Therefore, it is possible to prevent moisture contained in the atmosphere from passing through the inside of the sealing portion 8 and reaching the scintillator 5.
Further, if the shape of the outer surface 8a of the sealing portion 8 is a curved surface projecting to the outside, it is easy to make the peripheral portion of the moisture-proof portion 7 follow the outer surface 8a of the sealing portion 8. Therefore, it becomes easy to bring the moisture-proof portion 7 into close contact with the sealing portion 8. Further, since the moisture-proof portion 7 can be gently deformed, it is possible to prevent the moisture-proof portion 7 from cracking even if the moisture-proof portion 7 is thin.
 また、図2に示すように、防湿部7を封止部8に密着させた際に、防湿部7の周端面7aがアレイ基板2と接触するか、周端面7aがアレイ基板2の近傍に位置するようにすることが好ましい。この様にすれば、大気に含まれている水分などが、封止部8の内部に侵入するのを効果的に抑制することができる。 In addition, as shown in FIG. 2, when the moisture-proof portion 7 is brought into close contact with the sealing portion 8, the peripheral end surface 7 a of the moisture-proof portion 7 contacts the array substrate 2 or the peripheral end surface 7 a is located near the array substrate 2. It is preferable to be located. By doing so, it is possible to effectively prevent the moisture contained in the atmosphere from entering the inside of the sealing portion 8.
 また、封止部8の高さは、シンチレータ5の高さ以下とすることが好ましい。封止部8の高さがシンチレータ5の高さ以下となっていれば、防湿部7となるシートを無理なく変形させることができるので防湿部7にシワ、破断、ピンホールなどが発生するのを抑制することができる。 Moreover, it is preferable that the height of the sealing portion 8 is equal to or lower than the height of the scintillator 5. If the height of the sealing portion 8 is less than or equal to the height of the scintillator 5, the sheet that becomes the moisture-proof portion 7 can be deformed without difficulty, so that wrinkles, breaks, pinholes, etc. occur in the moisture-proof portion 7. Can be suppressed.
 またさらに、封止部8の高さが、シンチレータ5の高さよりも低ければ、防湿部7の周縁近傍を撓ませることができる。防湿部7の周縁近傍を撓ませることができれば、防湿部7の熱収縮量と、アレイ基板2の熱収縮量との差を吸収することができる。そのため、熱応力によりアレイ基板2が変形するのを抑制することができる。 
 なお、封止部8の高さをシンチレータ5の高さよりも低くすることに関する詳細は後述する(図8を参照)。
Furthermore, if the height of the sealing portion 8 is lower than the height of the scintillator 5, the vicinity of the peripheral edge of the moistureproof portion 7 can be bent. If the vicinity of the peripheral edge of the moistureproof portion 7 can be bent, the difference between the heat shrinkage amount of the moistureproof portion 7 and the heat shrinkage amount of the array substrate 2 can be absorbed. Therefore, it is possible to suppress the array substrate 2 from being deformed due to thermal stress.
Note that details regarding making the height of the sealing portion 8 lower than the height of the scintillator 5 will be described later (see FIG. 8).
 封止部8は、熱可塑性樹脂を主成分として含むものとすることができる。封止部8が熱可塑性樹脂を主成分として含んでいれば、加熱により、アレイ基板2、シンチレータ5、および防湿部7と接合することができる。ここで、例えば、封止部8が紫外線硬化樹脂を主成分として含んでいれば、封止部8を、アレイ基板2、シンチレータ5、および防湿部7と接合する際に紫外線を照射する必要がある。ところが、防湿部7は金属などを含んでいるため紫外線を透過させることができない。また、防湿部7が紫外線を透過するものとすると、紫外線によりシンチレータ5が変色し、発生した蛍光が吸収されるおそれがある。
 これに対し、封止部8は、熱可塑性樹脂を主成分として含んでいるので、加熱により容易に接合を行うことができる。また、シンチレータ5が紫外線により変色することもない。また、封止部8の加熱と冷却に要する時間は短くてすむので、製造時間の短縮、ひいては製造コストの低減を図ることができる。
The sealing portion 8 may include a thermoplastic resin as a main component. If the sealing portion 8 contains a thermoplastic resin as a main component, it can be bonded to the array substrate 2, the scintillator 5, and the moistureproof portion 7 by heating. Here, for example, if the sealing portion 8 contains an ultraviolet curable resin as a main component, it is necessary to irradiate ultraviolet rays when the sealing portion 8 is bonded to the array substrate 2, the scintillator 5, and the moistureproof portion 7. is there. However, since the moisture-proof portion 7 contains metal or the like, it cannot transmit ultraviolet rays. If the moisture-proof part 7 transmits ultraviolet rays, the scintillator 5 may be discolored by the ultraviolet rays and the generated fluorescence may be absorbed.
On the other hand, since the sealing portion 8 contains the thermoplastic resin as a main component, the sealing portion 8 can be easily joined by heating. Further, the scintillator 5 is not discolored by ultraviolet rays. Moreover, since the time required for heating and cooling the sealing portion 8 can be short, the manufacturing time can be shortened, and the manufacturing cost can be reduced.
 熱可塑性樹脂は、例えば、ナイロン、PET(Polyethyleneterephthalate)、ポリウレタン、ポリエステル、ポリ塩化ビニル、ABS(Acrylonitrile Butadiene Styrene),アクリル、ポリスチレン、ポリエチレン、ポリプロピレンなどとすることができる。この場合、ポリエチレンの水蒸気透過係数は0.068g・mm/day・mであり、ポリプロピレンの水蒸気透過係数は0.04g・mm/day・mである。そのため、封止部8が、ポリエチレンおよびポリプロピレンの少なくともいずれかを主成分として含んでいれば、封止部8の内部を透過してシンチレータ5に到達する水分を大幅に少なくすることができる。
 熱可塑性樹脂の剛性は、防湿部7の剛性よりも低くすることができる。
The thermoplastic resin may be, for example, nylon, PET (Polyethyleneterephthalate), polyurethane, polyester, polyvinyl chloride, ABS (Acrylonitrile Butadiene Styrene), acrylic, polystyrene, polyethylene, polypropylene, or the like. In this case, the water vapor transmission coefficient of polyethylene is 0.068 g · mm / day · m 2 , and the water vapor transmission coefficient of polypropylene is 0.04 g · mm / day · m 2 . Therefore, if the sealing portion 8 contains at least one of polyethylene and polypropylene as a main component, it is possible to significantly reduce the amount of water that permeates the inside of the sealing portion 8 and reaches the scintillator 5.
The rigidity of the thermoplastic resin can be made lower than the rigidity of the moisture-proof portion 7.
 また、封止部8は、無機材料を用いたフィラーをさらに含むことができる。無機材料からなるフィラーが封止部8に含まれていれば、水分の透過をさらに抑制することができる。無機材料は、例えば、タルク、グラファイト、雲母、カオリン(カオリナイトを主成分とする粘土)などとすることができる。フィラーは、例えば、扁平な形態を有するものとすることができる。外部から封止部8の内部に侵入した水分は、無機材料からなるフィラーによって拡散が妨げられるので、水分が封止部8を通過する速度を減少させることができる。そのため、シンチレータ5に到達する水分の量を少なくすることができる。 Further, the sealing part 8 can further include a filler using an inorganic material. If the filler made of an inorganic material is included in the sealing portion 8, the permeation of water can be further suppressed. The inorganic material can be, for example, talc, graphite, mica, kaolin (clay containing kaolinite as a main component), or the like. The filler can have, for example, a flat shape. The moisture that has entered the inside of the sealing portion 8 from the outside is prevented from diffusing by the filler made of an inorganic material, so that the speed at which the moisture passes through the sealing portion 8 can be reduced. Therefore, the amount of water reaching the scintillator 5 can be reduced.
 ここで、高温多湿の環境に保管されていたX線検出器1が、より低い温度の環境で使用される場合がある、この様な場合には、筐体の内部にある水蒸気が結露して、X線検出器1の表面に付着する場合がある。封止部8の外面8aに微細な亀裂があると、表面に付着した水分が亀裂に侵入し、封止部8の内部に導かれるおそれがある。また、X線検出器1が氷点下以下の環境に搬送され、亀裂に侵入した水分が凍結する場合がある。亀裂に侵入した水分が凍結すると体積が大きくなるので、亀裂が大きくなるとともに水分がさらに侵入し易くなる。以上のことが繰り返されると、封止部8の破損、防湿部7と封止部8の剥離、アレイ基板2と封止部8の剥離などが生じるおそれがある。
 そのため、封止部8の少なくとも外面8aは、撥水性を有するものとすることが好ましい。封止部8の少なくとも外面8aが撥水性を有していれば、亀裂に水分が侵入するのを抑制することができる。 
 例えば、封止部8の外面8aに撥水剤を塗布することができる。また、封止部8が、ポリエチレンおよびポリプロピレンの少なくともいずれかを主成分として含んでいれば、撥水性を有する外面8aとすることができる。
Here, the X-ray detector 1 stored in a high temperature and high humidity environment may be used in a lower temperature environment. In such a case, the water vapor inside the casing is condensed. , X-ray detector 1 may be attached to the surface. If there are fine cracks on the outer surface 8a of the sealing portion 8, water attached to the surface may enter the cracks and be guided to the inside of the sealing portion 8. In addition, the X-ray detector 1 may be transported to an environment below freezing and the water that has entered the crack may freeze. When the water that has entered the cracks freezes, the volume increases, so that the cracks become larger and the water easily enters. If the above is repeated, the sealing part 8 may be damaged, the moisture-proof part 7 and the sealing part 8 may be peeled off, or the array substrate 2 and the sealing part 8 may be peeled off.
Therefore, it is preferable that at least the outer surface 8a of the sealing portion 8 has water repellency. If at least the outer surface 8a of the sealing portion 8 has water repellency, it is possible to prevent moisture from entering the cracks.
For example, a water repellent agent can be applied to the outer surface 8a of the sealing portion 8. If the sealing portion 8 contains at least one of polyethylene and polypropylene as the main component, the outer surface 8a having water repellency can be obtained.
 また、熱可塑性樹脂を枠状に塗布した直後に、内部を観察して泡、異物、リークパスなどの有無をチェックすることが好ましい。この様なチェックが、目視もしくは光学顕微鏡を用いて行うことができれば、生産効率を向上させることができる。そのため、枠状に塗布された熱可塑性樹脂は、厚みが最も厚い部分においても透明であることが好ましい。すなわち、封止部8は、透光性を有するものとすることが好ましい。この様にすれば、泡、異物、リークパスなどがあり寿命が短くなるおそれがある製品を容易に除去することができる。そのため、製品の品質を向上させることができる。 Also, immediately after applying the thermoplastic resin in a frame shape, it is preferable to observe the inside to check for the presence of bubbles, foreign matters, leak paths, and the like. If such a check can be performed visually or using an optical microscope, the production efficiency can be improved. Therefore, it is preferable that the thermoplastic resin applied in a frame shape is transparent even in the thickest portion. That is, it is preferable that the sealing portion 8 has a light-transmitting property. By doing so, it is possible to easily remove a product that has a bubble, a foreign substance, a leak path, and the like, which may shorten the life. Therefore, the quality of the product can be improved.
 次に、図1に戻って、回路基板11について説明する。 
 図1に示すように、回路基板11は、アレイ基板2の、シンチレータ5が設けられる側とは反対側に設けられている。回路基板11は、X線検出モジュール10(アレイ基板2)と電気的に接続されている。 
 図3に示すように、回路基板11には、読み出し回路11aおよび信号検出回路11bが設けられている。なお、これらの回路を1つの基板に設けることもできるし、これらの回路を複数の基板に分けて設けることもできる。
Next, returning to FIG. 1, the circuit board 11 will be described.
As shown in FIG. 1, the circuit board 11 is provided on the side of the array substrate 2 opposite to the side on which the scintillator 5 is provided. The circuit board 11 is electrically connected to the X-ray detection module 10 (array board 2).
As shown in FIG. 3, the circuit board 11 is provided with a read circuit 11a and a signal detection circuit 11b. Note that these circuits can be provided on one substrate or these circuits can be provided separately on a plurality of substrates.
 読み出し回路11aは、薄膜トランジスタ2b2のオン状態とオフ状態を切り替える。
 読み出し回路11aは、複数のゲートドライバ11aaと行選択回路11abとを有する。 
 行選択回路11abには、X線検出器1の外部に設けられた図示しない画像処理部などから制御信号S1が入力される。行選択回路11abは、X線画像の走査方向に従って、対応するゲートドライバ11aaに制御信号S1を入力する。 
 ゲートドライバ11aaは、対応する制御ライン2c1に制御信号S1を入力する。 
 例えば、読み出し回路11aは、フレキシブルプリント基板2e1を介して、制御信号S1を各制御ライン2c1毎に順次入力する。制御ライン2c1に入力された制御信号S1により薄膜トランジスタ2b2がオン状態となり、蓄積キャパシタからの電荷(画像データ信号S2)が受信できるようになる。
The readout circuit 11a switches the thin film transistor 2b2 between an on state and an off state.
The read circuit 11a includes a plurality of gate drivers 11aa and a row selection circuit 11ab.
A control signal S1 is input to the row selection circuit 11ab from an image processing unit (not shown) provided outside the X-ray detector 1. The row selection circuit 11ab inputs the control signal S1 to the corresponding gate driver 11aa according to the scanning direction of the X-ray image.
The gate driver 11aa inputs the control signal S1 to the corresponding control line 2c1.
For example, the read circuit 11a sequentially inputs the control signal S1 for each control line 2c1 via the flexible printed board 2e1. The thin film transistor 2b2 is turned on by the control signal S1 input to the control line 2c1, and the electric charge (image data signal S2) from the storage capacitor can be received.
 信号検出回路11bは、複数の積分アンプ11ba、複数の選択回路11bb、および複数のADコンバータ11bcを有している。 
 1つの積分アンプ11baは、1つのデータライン2c2と電気的に接続されている。積分アンプ11baは、光電変換部2bからの画像データ信号S2を順次受信する。そして、積分アンプ11baは、一定時間内に流れる電流を積分し、その積分値に対応した電圧を選択回路11bbへ出力する。この様にすれば、所定の時間内にデータライン2c2を流れる電流の値(電荷量)を電圧値に変換することが可能となる。すなわち、積分アンプ11baは、シンチレータ5において発生した蛍光の強弱分布に対応した画像データ情報を、電位情報へと変換する。
The signal detection circuit 11b has a plurality of integration amplifiers 11ba, a plurality of selection circuits 11bb, and a plurality of AD converters 11bc.
One integrating amplifier 11ba is electrically connected to one data line 2c2. The integrating amplifier 11ba sequentially receives the image data signal S2 from the photoelectric conversion unit 2b. Then, the integrating amplifier 11ba integrates the current flowing within a fixed time and outputs a voltage corresponding to the integrated value to the selection circuit 11bb. By doing so, it becomes possible to convert the value of the current (charge amount) flowing through the data line 2c2 into the voltage value within a predetermined time. That is, the integrating amplifier 11ba converts the image data information corresponding to the intensity distribution of fluorescence generated in the scintillator 5 into potential information.
 選択回路11bbは、読み出しを行う積分アンプ11baを選択し、電位情報へと変換された画像データ信号S2を順次読み出す。 
 ADコンバータ11bcは、読み出された画像データ信号S2をデジタル信号に順次変換する。デジタル信号に変換された画像データ信号S2は、配線を介して画像処理部に入力される。なお、デジタル信号に変換された画像データ信号S2は、無線により画像処理部に送信されるようにしてもよい。
The selection circuit 11bb selects the integration amplifier 11ba to be read, and sequentially reads the image data signal S2 converted into potential information.
The AD converter 11bc sequentially converts the read image data signal S2 into a digital signal. The image data signal S2 converted into a digital signal is input to the image processing unit via the wiring. The image data signal S2 converted into a digital signal may be wirelessly transmitted to the image processing unit.
 画像処理部は、デジタル信号に変換された画像データ信号S2に基づいてX線画像を構成する。なお、画像処理部は、回路基板11と一体化することもできる。 The image processing unit forms an X-ray image based on the image data signal S2 converted into a digital signal. The image processing section may be integrated with the circuit board 11.
 次に、他の実施形態に係るX線検出モジュールについて説明する。 
 図4(a)、(b)は、他の実施形態に係るX線検出モジュール10aを例示するための模式断面図である。 
 後述するように、封止部8は、軟化させた熱可塑性樹脂をアレイ基板2の上に枠状に塗布したり、3Dプリンタなどで熱可塑性樹脂をアレイ基板2の上に枠状に設けたりすることで形成される。そのため、封止部8の寸法がばらつく場合がある。
Next, an X-ray detection module according to another embodiment will be described.
4A and 4B are schematic cross-sectional views for illustrating an X-ray detection module 10a according to another embodiment.
As will be described later, the sealing unit 8 applies a softened thermoplastic resin in a frame shape on the array substrate 2 or a thermoplastic resin is provided in a frame shape on the array substrate 2 by a 3D printer or the like. It is formed by doing. Therefore, the dimensions of the sealing portion 8 may vary.
 封止部8の寸法がばらつくと、防湿部7の周端面7aがアレイ基板2と干渉して、防湿部7の周縁近傍にシワなどが発生する場合がある。防湿部7の周縁近傍にシワなどが発生すると、防湿部7の剥離などが生ずるおそれがある。 
 この場合、図4(a)に示すように、防湿部17の周端面17aとアレイ基板2との間に距離H1が設けられる様にすることができる。例えば、シート状を呈する防湿部17の寸法を短めにしておけば良い。この様にすれば、封止部8の寸法がばらついたとしても、防湿部17の周縁近傍にシワなどが発生するのを抑制することができる。
If the dimensions of the sealing portion 8 vary, the peripheral end surface 7a of the moisture-proof portion 7 may interfere with the array substrate 2 and wrinkles may occur near the periphery of the moisture-proof portion 7. If wrinkles or the like occur near the periphery of the moistureproof portion 7, the moistureproof portion 7 may be peeled off.
In this case, as shown in FIG. 4A, a distance H1 can be provided between the peripheral end surface 17a of the moisture-proof portion 17 and the array substrate 2. For example, the dimension of the sheet-like moisture-proof portion 17 may be set to be short. By doing so, it is possible to suppress the occurrence of wrinkles or the like near the peripheral edge of the moisture-proof portion 17 even if the dimensions of the sealing portion 8 vary.
 この場合、距離H1があまり大きくなると、封止部8の内部に侵入する水分が多くなるおそれがある。本発明者らの得た知見によれば、図4(b)に示すように、距離H1が封止部8の高さH2の半分以下となるようにすることが好ましい。この場合、距離H1がより小さくなれば、封止部8の内部に侵入する水分がより少なくなる。 In this case, if the distance H1 is too large, there is a possibility that a large amount of water will enter the inside of the sealing portion 8. According to the knowledge obtained by the present inventors, it is preferable that the distance H1 is equal to or less than half the height H2 of the sealing portion 8 as shown in FIG. In this case, the smaller the distance H1 is, the smaller the amount of water that enters the inside of the sealing portion 8 is.
 図5は、他の実施形態に係るX線検出モジュール10bを例示するための模式断面図である。 
 図6(a)は、防湿部17の模式平面図である。 
 図6(b)は、防湿部17の模式斜視図である。 
 図5に示すように、防湿部17の周縁近傍をアレイ基板2に沿って折り曲げることもできる。すなわち、防湿部17の周縁にはアレイ基板2に沿う折り曲げ部17bを設けることができる。この場合、折り曲げ部17bはアレイ基板2に接着することもできる。この様にすれば、封止部8の外面8aを防湿部17により覆うことができるので、防湿部17の内部に水分が侵入するのを効果的に抑制することができる。なお、折り曲げ部17bの寸法を余り大きくすると、X線検出モジュール10bの小型化、ひいてはX線検出器1の小型化が図れなくなるおそれがある。そのため、折り曲げ部17bの寸法は、例えば、2mm以下とすることが好ましい。
FIG. 5 is a schematic cross-sectional view for illustrating an X-ray detection module 10b according to another embodiment.
FIG. 6A is a schematic plan view of the moisture-proof portion 17.
FIG. 6B is a schematic perspective view of the moisture-proof portion 17.
As shown in FIG. 5, the vicinity of the peripheral edge of the moisture-proof portion 17 can be bent along the array substrate 2. That is, a bent portion 17b can be provided along the array substrate 2 at the peripheral edge of the moisture-proof portion 17. In this case, the bent portion 17b can be attached to the array substrate 2. In this way, the outer surface 8a of the sealing portion 8 can be covered with the moisture-proof portion 17, so that it is possible to effectively prevent moisture from entering the moisture-proof portion 17. If the size of the bent portion 17b is too large, the X-ray detection module 10b and the X-ray detector 1 may not be downsized. Therefore, the size of the bent portion 17b is preferably 2 mm or less, for example.
 また、防湿部17の周縁近傍を折り曲げると以下の問題が生じる。 
 防湿部17は、ゆがみや凹凸の無いシートを用いて形成することができる。防湿部17となるシートをシンチレータ5に被せると、シートはシンチレータ5の厚みの分だけアレイ基板2から浮いた状態になる。この様な状態にあるシートの周縁近傍を封止部8に沿ってアレイ基板2側に曲げることは容易であり、シートに引き延ばしの応力はほとんどかからない。
Further, bending the vicinity of the peripheral edge of the moisture-proof portion 17 causes the following problems.
The moisture-proof part 17 can be formed using a sheet having no distortion or unevenness. When the scintillator 5 is covered with a sheet to be the moisture-proof portion 17, the sheet is floated from the array substrate 2 by the thickness of the scintillator 5. It is easy to bend the vicinity of the peripheral edge of the sheet in such a state to the array substrate 2 side along the sealing portion 8, and the stretching stress is hardly applied to the sheet.
 ところが、枠状を呈する封止部8のコーナーの部分においては、シートを辺と同じ形に折り曲げることは幾何学的に不可能である。そのため、シートの一部を引き延ばすことで封止部8に沿うようにする必要がある。 
 防湿部17には、外部からの水分を遮蔽する機能が求められるが、シートの一部を引き延ばすと、その部分が薄くなったり、微細なひび割れが発生したり、ピンホールが発生したりするおそれがある。ひび割れやピンホールが発生すると、水分を遮蔽する能力が低下することになる。
However, it is geometrically impossible to fold the sheet in the same shape as the sides at the corners of the frame-shaped sealing portion 8. Therefore, it is necessary to stretch a part of the sheet so as to be along the sealing portion 8.
The moisture-proof part 17 is required to have a function of shielding moisture from the outside, but if a part of the sheet is stretched, that part may become thin, fine cracks may occur, or pinholes may occur. There is. If cracks or pinholes occur, the ability to shield moisture will be reduced.
 この場合、図6(a)、(b)に示すように、防湿部17のコーナー部に、外側に向けて突出する凸状の凸部17cを設ければ、前述した幾何学的ゆがみを吸収することができる。そのため、シートの一部が引き延ばされるのを抑制することができるので、ひび割れやピンホールが発生するのを抑制することができる。 In this case, as shown in FIGS. 6 (a) and 6 (b), if the convex portion 17c protruding outward is provided at the corner of the moisture-proof portion 17, the above-mentioned geometrical distortion can be absorbed. can do. Therefore, since it is possible to prevent a part of the sheet from being stretched, it is possible to suppress the occurrence of cracks and pinholes.
 図7は、他の実施形態に係るX線検出モジュール10cを例示するための模式断面図である。 
 前述したように、アレイ基板2の材料、シンチレータ5の材料、防湿部7の材料、および封止部8の材料は異なっている。そのため、それぞれが異なる線膨張係数を有している。ここで、X線検出モジュール10cが起動している間は熱が発生するので、これらの温度が高くなる。また、X線検出器1の周囲の温度が変化する場合もある。そのため、温度変化に応じて、これらの間に熱応力が発生する。この場合、防湿部7に引張応力Fが発生すると、引張応力Fが、防湿部7と封止部8の接合部分、もしくは封止部8とアレイ基板2の接合部分に印加され、剥がれや破断などが生じるおそれがある。剥がれや破断などが生じると、水分がシンチレータ5に到達し易くなる。また、アレイ基板2に反りなどの変形が生じるおそれもある。
FIG. 7 is a schematic cross-sectional view for illustrating an X-ray detection module 10c according to another embodiment.
As described above, the material of the array substrate 2, the material of the scintillator 5, the material of the moistureproof portion 7, and the material of the sealing portion 8 are different. Therefore, each has a different linear expansion coefficient. Here, since heat is generated while the X-ray detection module 10c is activated, these temperatures become high. In addition, the temperature around the X-ray detector 1 may change. Therefore, thermal stress is generated between them according to the temperature change. In this case, when the tensile stress F is generated in the moisture-proof portion 7, the tensile stress F is applied to the joint portion between the moisture-proof portion 7 and the sealing portion 8 or the joint portion between the sealing portion 8 and the array substrate 2 to cause peeling or breakage. May occur. When peeling or breakage occurs, moisture easily reaches the scintillator 5. In addition, the array substrate 2 may be deformed such as warped.
 そこで、本実施の形態に係るX線検出モジュール10cにおいては、封止部8の外面8aに凹部8a1を設けている。凹部8a1が設けられていれば、凹部8a1の近傍が変形し易くなる。そのため、凹部8a1の近傍が変形することで、発生した引張応力Fを緩和させることができる。 Therefore, in the X-ray detection module 10c according to the present embodiment, the recess 8a1 is provided on the outer surface 8a of the sealing portion 8. If the recess 8a1 is provided, the vicinity of the recess 8a1 is easily deformed. Therefore, the generated tensile stress F can be relaxed by deforming the vicinity of the recess 8a1.
 また、防湿部7の、凹部8a1に対峙する部分に撓み部7cを設けることができる。撓み部7cは、防湿部7の、撓み部7cが設けられていない部分よりも、弾性変形が容易とすることができる。撓み部7cが設けられていれば、撓み部7cが弾性変形することで、発生した引張応力Fを緩和させることができる。この場合、撓み部7cと凹部8a1は接触させてもよいし、図7に示すように撓み部7cと凹部8a1の間に隙間を設けてもよい。撓み部7cと凹部8a1が接触していれば、撓み部7cの剛性を高めることができるので、撓み部7cに破断やピンホールが発生するのを抑制することができる。撓み部7cと凹部8a1の間に隙間が設けられていれば、撓み部7cの変形が容易となるので、引張応力Fの緩和が容易となる。
 引張応力Fを緩和させることができれば、防湿部7の剥がれや破断などを抑制することができる。また、アレイ基板2に反りなどの変形が発生するのを抑制することができる。
Further, the bending portion 7c can be provided at a portion of the moisture-proof portion 7 facing the recess 8a1. The flexible portion 7c can be elastically deformed more easily than the portion of the moisture-proof portion 7 where the flexible portion 7c is not provided. If the bending portion 7c is provided, the tensile stress F generated can be relaxed by elastically deforming the bending portion 7c. In this case, the flexible portion 7c and the recess 8a1 may be in contact with each other, or a gap may be provided between the flexible portion 7c and the recess 8a1 as shown in FIG. If the bending portion 7c and the concave portion 8a1 are in contact with each other, the rigidity of the bending portion 7c can be increased, so that the bending portion 7c can be prevented from breaking or pinholes. If a gap is provided between the bending portion 7c and the recess 8a1, the bending portion 7c can be easily deformed, and the tensile stress F can be eased easily.
If the tensile stress F can be relaxed, peeling or breakage of the moisture-proof portion 7 can be suppressed. In addition, it is possible to prevent the array substrate 2 from being deformed such as warped.
 また、後述する図15に示すように、封止部8の外面8aには凸部18cを設けることもできる。なお、凸部18cに関する詳細は後述する。 Further, as shown in FIG. 15 described later, a convex portion 18c may be provided on the outer surface 8a of the sealing portion 8. The details of the convex portion 18c will be described later.
 図8は、他の実施形態に係るX線検出モジュール10dを例示するための模式断面図である。 
 図8に示すように、封止部8の高さH3は、シンチレータ5の高さH4よりも低くすることができる。封止部8の高さH3が、シンチレータ5の高さH4よりも低ければ、防湿部7の周縁近傍を撓ませることができる。すなわち、この様にすれば、防湿部7の周縁近傍の撓み部7dを設けるのが容易となる。撓み部7dは、防湿部7の、撓み部7dが設けられていない部分よりも、弾性変形が容易とすることができる。撓み部7dが設けられていれば、前述した撓み部7cと同様の効果を得ることができる。すなわち、撓み部7dが弾性変形することで、発生した引張応力Fを緩和させることができるので、防湿部7の剥がれや破断などが発生したり、アレイ基板2に反りなどの変形が発生したりするのを抑制することができる。
FIG. 8 is a schematic cross-sectional view for illustrating an X-ray detection module 10d according to another embodiment.
As shown in FIG. 8, the height H3 of the sealing portion 8 can be made lower than the height H4 of the scintillator 5. If the height H3 of the sealing portion 8 is lower than the height H4 of the scintillator 5, the vicinity of the peripheral edge of the moistureproof portion 7 can be bent. That is, in this way, it becomes easy to provide the bending portion 7d near the peripheral edge of the moisture-proof portion 7. The flexible portion 7d can be elastically deformed more easily than the portion of the moisture-proof portion 7 where the flexible portion 7d is not provided. If the bending portion 7d is provided, the same effect as that of the bending portion 7c described above can be obtained. That is, since the flexural portion 7d is elastically deformed, the generated tensile stress F can be relaxed, so that the moisture-proof portion 7 may be peeled off or broken, or the array substrate 2 may be deformed such as warped. Can be suppressed.
 例えば、アルミニウム箔を用いた防湿部7の線膨張係数は、23×10-6程度となる。アレイ基板2の線膨張係数は、4×10-6程度となる。そのため、封止部8に固定された防湿部7の温度が低下すると、防湿部7がアレイ基板2より大きく収縮する。この場合、防湿部7が、ほぼ完全な平面状となっていると、収縮量の差を吸収することができず、アレイ基板2に反りが発生する。これに対し、撓み部7c、7dが設けられていれば、収縮量の差を吸収することができるので、アレイ基板2に反りが発生するのを抑制することができる。 For example, the coefficient of linear expansion of the moisture-proof part 7 using aluminum foil is about 23 × 10 −6 . The linear expansion coefficient of the array substrate 2 is about 4 × 10 −6 . Therefore, when the temperature of the moisture-proof portion 7 fixed to the sealing portion 8 decreases, the moisture-proof portion 7 shrinks more than the array substrate 2. In this case, if the moisture-proof portion 7 has a substantially completely flat shape, the difference in shrinkage amount cannot be absorbed and the array substrate 2 warps. On the other hand, if the bending portions 7c and 7d are provided, the difference in shrinkage amount can be absorbed, so that the array substrate 2 can be prevented from warping.
 この場合、シンチレータ5の高さH4と、封止部8の高さH3との差は、防湿部7の厚み以上とすることができる。例えば、シンチレータ5の高さH4と、封止部8の高さH3との差は、0.1mm以上とすることができる。一方、封止部8の高さH3を低くし過ぎると、静電気などの高い電圧が印加された際に、防湿部7とアレイ基板2とがショートするおそれがある。そのため、シンチレータ5の高さH4と、封止部8の高さH3との差は、0.5mm以下とすることが好ましい。すなわち、シンチレータ5の高さH4と、封止部8の高さH3との差は、0.1mm以上、0.5mm以下とすることが好ましい。 In this case, the difference between the height H4 of the scintillator 5 and the height H3 of the sealing portion 8 can be equal to or more than the thickness of the moistureproof portion 7. For example, the difference between the height H4 of the scintillator 5 and the height H3 of the sealing portion 8 can be 0.1 mm or more. On the other hand, if the height H3 of the sealing portion 8 is too low, the moisture-proof portion 7 and the array substrate 2 may be short-circuited when a high voltage such as static electricity is applied. Therefore, the difference between the height H4 of the scintillator 5 and the height H3 of the sealing portion 8 is preferably 0.5 mm or less. That is, the difference between the height H4 of the scintillator 5 and the height H3 of the sealing portion 8 is preferably 0.1 mm or more and 0.5 mm or less.
 本発明者らの得た知見によれば、封止部8の高さH3は、シンチレータ5の高さH4の30%以上、70%以下とすることが好ましい。封止部8の高さH3をこの様にすれば、前述した、アレイ基板2の反りの抑制、単位時間当たりの透湿量の低減、封止部8の形成に必要となる材料の量の低減などを図ることができる。 According to the knowledge obtained by the present inventors, the height H3 of the sealing portion 8 is preferably 30% or more and 70% or less of the height H4 of the scintillator 5. By setting the height H3 of the sealing portion 8 in this way, it is possible to suppress the warp of the array substrate 2 described above, reduce the amount of moisture per unit time, and reduce the amount of material required for forming the sealing portion 8. It can be reduced.
 例えば、単位時間当たりの透湿量の低減効果は以下の様に考えることができる。
 防湿部7と封止部8の合計の、単位時間当たりの透湿量をQ、防湿部7の単位時間当たりの透湿量をQ7、封止部8の単位時間当たりの透湿量をQ8とすると以下の式が成り立つ。
 Q=Q7+Q8
 この場合、Q7は略一定と考えられるので、Qの増減は、Q8の増減によりほぼ決まることになる。
 ここで、封止部8の透湿係数をP、封止部8の透湿断面積をS(mm)、封止部8の透湿幅をW、封止部8の周長をL(mm)、封止部8の高さをH(mm)とすると以下の式が成り立つ。
 Q8=P×S/W=P×L×H/W
 そのため、封止部8の高さHを小さくすれば、封止部8の単位時間当たりの透湿量Q8を小さくすることができ、ひいては防湿部7と封止部8の合計の、単位時間当たりの透湿量Qを小さくすることができる。
 すなわち、防湿性の向上を図ることができるので、X線検出モジュール10の信頼性を向上させることができる。
For example, the effect of reducing the amount of moisture per unit time can be considered as follows.
The total moisture permeation amount of the moisture-proof portion 7 and the sealing portion 8 is Q, the moisture permeation amount of the moisture preventing portion 7 per unit time is Q7, and the moisture permeation amount of the sealing portion 8 per unit time is Q8. Then, the following formula is established.
Q = Q7 + Q8
In this case, Q7 is considered to be substantially constant, so the increase / decrease in Q is substantially determined by the increase / decrease in Q8.
Here, the moisture permeability coefficient of the sealing portion 8 is P, the moisture permeability cross-sectional area of the sealing portion 8 is S (mm 2 ), the moisture permeability width of the sealing portion 8 is W, and the peripheral length of the sealing portion 8 is L. (Mm) and the height of the sealing portion 8 is H (mm), the following formula is established.
Q8 = P × S / W = P × L × H / W
Therefore, if the height H of the sealing portion 8 is reduced, the amount of moisture permeation Q8 of the sealing portion 8 per unit time can be reduced, and as a result, the total of the moisture-proof portion 7 and the sealing portion 8 per unit time can be reduced. The moisture permeation amount Q per hit can be reduced.
That is, since the moisture resistance can be improved, the reliability of the X-ray detection module 10 can be improved.
 図9(a)、(b)は、他の実施形態に係る撓み部7eを例示するための模式断面図である。 
 図9(a)、(b)に示すように、撓み部7eは、防湿部7の、シンチレータ5の上面5bと対峙する領域に設けることもできる。撓み部7eは、例えば、エンボス状を呈するものとすることができる。撓み部7eのシンチレータ5側とは反対側の面(X線が入射する側の面)は、防湿部7のシンチレータ5側とは反対側の面から外部に向けて突出している。撓み部7eのシンチレータ5の面は、防湿部7のシンチレータ5側の面から外部に向けて突出している。
FIG. 9A and FIG. 9B are schematic cross-sectional views for illustrating the bending portion 7e according to another embodiment.
As shown in FIGS. 9A and 9B, the bending portion 7e can be provided in a region of the moisture-proof portion 7 that faces the upper surface 5b of the scintillator 5. The flexure 7e can be embossed, for example. The surface of the flexible portion 7e on the side opposite to the scintillator 5 side (the surface on the side on which the X-rays are incident) protrudes outward from the surface of the moistureproof portion 7 on the side opposite to the scintillator 5 side. The surface of the flexible portion 7e of the scintillator 5 projects outward from the surface of the moisture-proof portion 7 on the scintillator 5 side.
 撓み部7eの肉厚寸法は、防湿部7の、撓み部7eが設けられていない部分の肉厚寸法とほぼ同じとすることができる。撓み部7eは、例えば、シート状の防湿部7にプレス刻印金型によるプレス加工(エンボス加工)を施すことで形成することができる。なお、樹脂膜と無機材料からなる膜とが積層された低透湿防湿膜であっても、プレス刻印金型によるプレス加工(エンボス加工)を施すことで撓み部7eを形成することができる。 The thickness of the flexible portion 7e can be made substantially the same as the thickness of the moisture-proof portion 7 where the flexible portion 7e is not provided. The flexible portion 7e can be formed, for example, by subjecting the sheet-shaped moisture-proof portion 7 to press working (embossing) using a press stamping die. Even with a low-moisture-permeable and moisture-proof film in which a resin film and a film made of an inorganic material are laminated, the bending portion 7e can be formed by performing press processing (embossing) using a stamping die.
 撓み部7eの高さ寸法は、防湿部7の、撓み部7eが設けられていない部分の肉厚寸法よりも大きくすることができる。撓み部7eの幅寸法、数、配置などには特に限定はない。撓み部7eの幅寸法、数、配置などは、前述した熱収縮量の大きさや、防湿部7の大きさなどに応じて適宜決定することができる。 The height dimension of the flexible portion 7e can be made larger than the wall thickness dimension of the moisture-proof portion 7 where the flexible portion 7e is not provided. There is no particular limitation on the width dimension, number, arrangement, etc. of the flexible portions 7e. The width dimension, the number, the arrangement, and the like of the flexible portion 7e can be appropriately determined according to the magnitude of the heat shrinkage amount described above, the size of the moisture-proof portion 7, and the like.
 撓み部7eは、防湿部7の、撓み部7eが設けられていない部分よりも、弾性変形が容易とすることができる。そのため、撓み部7eが弾性変形することで、線膨張係数の差に基づく熱収縮量の差を吸収することができる。そのため、撓み部7eを設けるようにすれば、アレイ基板2に反りが発生するのを抑制することができる。 
 この場合、図9(a)に示すように、防湿部7に撓み部7eのみを設けるようにすることもできるし、図9(b)に示すように、防湿部7に撓み部7eを設けるとともに、防湿部7の周縁近傍に撓み部7d、7cを設けることもできる。
The flexible portion 7e can be elastically deformed more easily than the portion of the moisture-proof portion 7 where the flexible portion 7e is not provided. Therefore, the flexible portion 7e elastically deforms to absorb the difference in the thermal contraction amount based on the difference in the linear expansion coefficient. Therefore, by providing the bending portion 7e, it is possible to prevent the array substrate 2 from warping.
In this case, as shown in FIG. 9A, the moisture-proof portion 7 may be provided with only the bending portion 7e, or as shown in FIG. 9B, the moisture-proof portion 7 may be provided with the bending portion 7e. At the same time, the bending portions 7d and 7c can be provided near the peripheral edge of the moisture-proof portion 7.
 図10は、比較例に係るX線検出モジュール110を例示するための模式断面図である。
 図10に示すように、封止部8がアレイ基板2と接合され、シンチレータ5の側面5aとは接合されていなければ、封止部8の剥がれが生じやすくなる。例えば、前述したように、起動による温度変化や周囲温度の変化により熱応力が発生する。この場合、封止部8がアレイ基板2のみとしか接合されていなければ、封止部8の接合強度が低くなる。そのため、発生した熱応力により、封止部8の剥がれが生じるおそれがある。
FIG. 10 is a schematic cross-sectional view for illustrating the X-ray detection module 110 according to the comparative example.
As shown in FIG. 10, if the sealing portion 8 is bonded to the array substrate 2 and is not bonded to the side surface 5a of the scintillator 5, the sealing portion 8 is likely to peel off. For example, as described above, thermal stress is generated due to a change in temperature due to activation and a change in ambient temperature. In this case, if the sealing portion 8 is bonded only to the array substrate 2, the bonding strength of the sealing portion 8 becomes low. Therefore, the generated thermal stress may cause peeling of the sealing portion 8.
 これに対して、本実施の形態に係るX線検出モジュール10、10a~10cにおいては、封止部8は、シンチレータ5の側面5aとアレイ基板2に接合されている。また、封止部8は、シンチレータ5の側面5aと密着している。さらに、封止部8の一部が、シンチレータ5の側面5aの凹凸の内部に設けられている。そのため、封止部8の接合強度を高くすることができるので、熱応力により封止部8が剥がれるのを抑制することができる。 On the other hand, in the X-ray detection modules 10, 10a to 10c according to the present embodiment, the sealing portion 8 is joined to the side surface 5a of the scintillator 5 and the array substrate 2. The sealing portion 8 is in close contact with the side surface 5 a of the scintillator 5. Further, a part of the sealing portion 8 is provided inside the unevenness of the side surface 5 a of the scintillator 5. Therefore, since the bonding strength of the sealing portion 8 can be increased, it is possible to prevent the sealing portion 8 from peeling off due to thermal stress.
 図11は、比較例に係るX線検出モジュール110aを例示するための模式断面図である。
 図11に示すように、封止部118の外面118aの露出部118a1は、アレイ基板2側になるに従いシンチレータ5に近づく方向に傾斜する傾斜面となっている。そのため、アレイ基板2の近傍において、封止部118の外面118aとシンチレータ5の側面5aとの間の距離Lが短くなる。そのため、大気に含まれている水分などが、封止部118とアレイ基板2との間を透過してシンチレータ5に到達し易くなる。
FIG. 11 is a schematic cross-sectional view for illustrating the X-ray detection module 110a according to the comparative example.
As shown in FIG. 11, the exposed portion 118a1 of the outer surface 118a of the sealing portion 118 is an inclined surface that is inclined toward the scintillator 5 toward the array substrate 2 side. Therefore, in the vicinity of the array substrate 2, the distance L between the outer surface 118a of the sealing portion 118 and the side surface 5a of the scintillator 5 becomes short. Therefore, moisture contained in the atmosphere easily penetrates between the sealing portion 118 and the array substrate 2 and reaches the scintillator 5.
 これに対して、本実施の形態に係るX線検出モジュール10、10a~10cにおいては、封止部8の外面8aの形状は、外側に突出する曲面となっている。そのため、アレイ基板2の近傍において、封止部18の外面18aとシンチレータ5の側面5aとの間の距離Lを長くすることができるので、大気に含まれている水分などがシンチレータ5に到達し難くなる。 On the other hand, in the X-ray detection modules 10, 10a to 10c according to the present embodiment, the outer surface 8a of the sealing portion 8 has a curved surface protruding outward. Therefore, in the vicinity of the array substrate 2, the distance L between the outer surface 18a of the sealing portion 18 and the side surface 5a of the scintillator 5 can be increased, so that moisture contained in the atmosphere reaches the scintillator 5. It will be difficult.
 図12は、比較例に係るX線検出モジュール110bを例示するための模式断面図である。
 図12に示すように、封止部128の高さがシンチレータ5の高さよりも高ければ、防湿部17となるシートを被せる際に無理に変形させる必要がある。そのため、防湿部17にシワ、破断、ピンホールなどが発生しやすくなる。 
 また、封止部128の外面128aの露出部分が大きくなり易くなる。露出部分が大きくなると、水分の透過断面が大きくなるので、より多くの水分が封止部128の内部に侵入しやすくなる。
FIG. 12 is a schematic cross-sectional view for illustrating the X-ray detection module 110b according to the comparative example.
As shown in FIG. 12, if the height of the sealing portion 128 is higher than that of the scintillator 5, it is necessary to force the sheet to be the moistureproof portion 17 to be deformed. Therefore, wrinkles, breaks, pinholes, etc. are likely to occur in the moisture-proof portion 17.
Further, the exposed portion of the outer surface 128a of the sealing portion 128 is likely to be large. When the exposed portion becomes large, the water permeation cross section becomes large, so that a larger amount of water easily enters the sealing portion 128.
 これに対して、本実施の形態に係るX線検出モジュール10、10a~10cにおいては、封止部8の高さがシンチレータ5の高さ以下となっているので、防湿部7となるシートを無理なく変形させることができる。そのため、防湿部7にシワ、破断、ピンホールなどが発生するのを抑制することができる。 On the other hand, in the X-ray detection modules 10, 10a to 10c according to the present embodiment, since the height of the sealing portion 8 is equal to or lower than the height of the scintillator 5, a sheet to be the moistureproof portion 7 should be used. It can be easily transformed. Therefore, it is possible to suppress wrinkles, breakage, pinholes, and the like from occurring in the moisture-proof portion 7.
 図13は、比較例に係るX線検出モジュール110cを例示するための模式断面図である。
 図13に示すように、封止部138の外面138aがアレイ基板2に垂直な平面となっていると、外面138aを防湿部117で覆うのが難しくなる。外面138aが防湿部117により覆われていないと、水分の透過断面が大きくなるので、より多くの水分が封止部138の内部に侵入しやすくなる。この場合、防湿部117の周縁近傍117aを折り曲げて外面138aを覆うようにすると、折り曲げ部117bに亀裂や破断が生じ易くなる。亀裂や破断が生じると、亀裂や破断を介して水分が侵入するおそれがある。
FIG. 13 is a schematic cross-sectional view for illustrating the X-ray detection module 110c according to the comparative example.
As shown in FIG. 13, when the outer surface 138a of the sealing portion 138 is a plane perpendicular to the array substrate 2, it becomes difficult to cover the outer surface 138a with the moistureproof portion 117. If the outer surface 138a is not covered with the moisture-proof portion 117, the water permeation cross section becomes large, so that a larger amount of water easily enters the sealing portion 138. In this case, if the peripheral portion 117a of the moisture-proof portion 117 is bent so as to cover the outer surface 138a, cracks or fractures are likely to occur in the bent portion 117b. When cracks or breaks occur, water may enter through the cracks or breaks.
 これに対して、本実施の形態に係るX線検出モジュール10、10a~10cにおいては、封止部8の外面8aの形状は、外側に突出する曲面となっている。そのため、外面8aを封止部7により覆う際に、封止部7を無理に曲げることが必要となる部分が生じない。そのため、亀裂や破断が生じることなく、外面8aを封止部7により覆うことができる。 On the other hand, in the X-ray detection modules 10, 10a to 10c according to the present embodiment, the outer surface 8a of the sealing portion 8 has a curved surface protruding outward. Therefore, when the outer surface 8a is covered with the sealing portion 7, there is no portion in which the sealing portion 7 needs to be forcibly bent. Therefore, the outer surface 8a can be covered with the sealing portion 7 without cracking or breaking.
 (X線検出モジュールの製造方法、およびX線検出器の製造方法) 
 次に、X線検出モジュールの製造方法、およびX線検出器の製造方法について例示する。
 まず、基板2aの上に、制御ライン2c1、データライン2c2、配線パッド2d1、配線パッド2d2、光電変換部2b、および保護層2fなどを順次形成してアレイ基板2を製造する。アレイ基板2は、例えば、半導体製造プロセスを用いて製造することができる。なお、アレイ基板2の製造には既知の技術を適用することができるので詳細な説明は省略する。
(Method of manufacturing X-ray detection module and method of manufacturing X-ray detector)
Next, a method for manufacturing the X-ray detection module and a method for manufacturing the X-ray detector will be illustrated.
First, the array substrate 2 is manufactured by sequentially forming the control line 2c1, the data line 2c2, the wiring pad 2d1, the wiring pad 2d2, the photoelectric conversion section 2b, the protective layer 2f and the like on the substrate 2a. The array substrate 2 can be manufactured using, for example, a semiconductor manufacturing process. Since a known technique can be applied to the manufacture of the array substrate 2, detailed description will be omitted.
 次に、基板2a上の有効画素領域Aを覆うようにシンチレータ5を形成する。 
 例えば、シンチレータ5は、真空蒸着法を用いて形成することができる。真空蒸着法を用いてシンチレータ5を形成すれば、複数の柱状結晶の集合体からなるシンチレータ5が形成される。シンチレータ5の厚みは、X線検出器1に求められるDQE特性、感度特性、解像度特性などに応じて適宜変更することができる。シンチレータ5の厚みは、例えば、600μm程度とすることができる。
Next, the scintillator 5 is formed so as to cover the effective pixel area A on the substrate 2a.
For example, the scintillator 5 can be formed using a vacuum vapor deposition method. If the scintillator 5 is formed by using the vacuum evaporation method, the scintillator 5 composed of an aggregate of a plurality of columnar crystals is formed. The thickness of the scintillator 5 can be appropriately changed according to the DQE characteristics, sensitivity characteristics, resolution characteristics and the like required for the X-ray detector 1. The scintillator 5 can have a thickness of, for example, about 600 μm.
 また、発光物質とバインダ材とを混合し、混合された材料を有効画素領域Aを覆うように塗布し、これを焼成し、焼成された材料にマトリクス状の溝部を形成して複数の光電変換部2bごとに四角柱状のシンチレータ5が設けられるようにしてもよい。 Further, a light-emitting substance and a binder material are mixed, the mixed material is applied so as to cover the effective pixel region A, and this is baked, and a matrix-shaped groove is formed in the baked material to form a plurality of photoelectric conversions. A square column scintillator 5 may be provided for each part 2b.
 次に、シンチレータ5の上に反射層6を形成する。 
 例えば、反射層6は、複数の光散乱性粒子、樹脂、および溶媒を混合した塗布液をシンチレータ5上に塗布し、これを乾燥させることで形成することができる。
 また、例えば、銀合金やアルミニウムなどの光反射率の高い金属からなる層をシンチレータ5上に成膜することで反射層6を形成することもできる。
 また、例えば、表面が銀合金やアルミニウムなどの光反射率の高い金属からなるシートや、光散乱性粒子を含む樹脂シートなどをシンチレータ5の上に設けたり、貼り付けたりして反射層6を設けることもできる。
Next, the reflective layer 6 is formed on the scintillator 5.
For example, the reflective layer 6 can be formed by applying a coating liquid, which is a mixture of a plurality of light-scattering particles, a resin, and a solvent, onto the scintillator 5 and drying the coating liquid.
Further, for example, the reflective layer 6 can be formed by forming a layer made of a metal having a high light reflectance such as silver alloy or aluminum on the scintillator 5.
In addition, for example, a sheet made of a metal having a high light reflectance such as a silver alloy or aluminum, or a resin sheet containing light scattering particles is provided on the scintillator 5 or attached to form the reflection layer 6. It can be provided.
 次に、封止部8を形成する。 
 例えば、溶剤を用いて熱可塑性樹脂を軟化させ、軟化させた熱可塑性樹脂を、シンチレータ5の周囲に枠状に塗布し、溶剤を蒸発させて熱可塑性樹脂を固化し、封止部8を形成することができる。 
 また、例えば、熱可塑性樹脂を加熱することで軟化させ、軟化させた熱可塑性樹脂を、シンチレータ5の周囲に枠状に塗布し、放熱などにより熱可塑性樹脂を固化させて封止部8を形成することができる。 
 また、例えば、3Dプリンタなどを用いて、枠状の封止部8を形成することもできる。
Next, the sealing part 8 is formed.
For example, the thermoplastic resin is softened using a solvent, the softened thermoplastic resin is applied in a frame shape around the scintillator 5, and the solvent is evaporated to solidify the thermoplastic resin to form the sealing portion 8. can do.
In addition, for example, the thermoplastic resin is softened by heating, and the softened thermoplastic resin is applied in a frame shape around the scintillator 5, and the thermoplastic resin is solidified by heat radiation or the like to form the sealing portion 8. can do.
Alternatively, the frame-shaped sealing portion 8 can be formed using, for example, a 3D printer.
 図14は、比較例に係る熱可塑性樹脂18の塗布を例示するための模式斜視図である。 前述したように、軟化させた熱可塑性樹脂18は、枠状に塗布される。そのため、つなぎ目18aが少なくとも1箇所生じることになる。軟化させた熱可塑性樹脂18を枠状に塗布する場合、熱可塑性樹脂18の単位時間当たりの供給量を一定にしたり、熱可塑性樹脂18を吐出するノズルの移動速度Bを一定にしたりすると、図14に示すように、供給の始点と供給の終点のつなぎ目18aに窪み18bが生じる場合がある。例えば、供給の始点と供給の終点が離れていると、供給の始点と供給の終点のつなぎ目18aに、周囲より高さが低く急峻な窪み18bが生じる場合がある。急峻な窪み18bが生じると、防湿部7となるシートが窪み18bに沿うことができず、リークパスが生じるおそれがある。リークパスの部分においては、防湿部7と封止部8の外面8aとが接合されておらず、リークパスを介して水分が侵入し易くなる。 FIG. 14 is a schematic perspective view for illustrating application of the thermoplastic resin 18 according to the comparative example. As described above, the softened thermoplastic resin 18 is applied in a frame shape. Therefore, at least one joint 18a is formed. When the softened thermoplastic resin 18 is applied in a frame shape, if the supply amount of the thermoplastic resin 18 per unit time is made constant, or the moving speed B of the nozzle for discharging the thermoplastic resin 18 is made constant, As shown in FIG. 14, a dent 18b may occur at the joint 18a between the supply start point and the supply end point. For example, when the supply start point and the supply end point are separated from each other, a sharp depression 18b having a height lower than the surroundings may be formed at the joint 18a between the supply start point and the supply end point. When the steep depression 18b is formed, the sheet that becomes the moisture-proof portion 7 cannot be along the depression 18b, which may cause a leak path. At the leak path portion, the moisture-proof portion 7 and the outer surface 8a of the sealing portion 8 are not joined to each other, and water easily enters through the leak path.
 図15は、本実施の形態に係る熱可塑性樹脂18の塗布を例示するための模式斜視図である。 
 図15に示すように、つなぎ目18aに凸部18cを形成することができる。例えば、つなぎ目18aの部分において熱可塑性樹脂18の単位時間当たりの供給量を増加させたり、ノズルの移動速度Bを遅くしたりすることで凸部18cを形成することができる。この場合、なだらかな外面を有し、高さの低い凸部18cが形成されるようにすることが好ましい。 
 急峻な窪み18bに比べて、凸部18cに防湿部7となるシートを沿わせることは容易である。そのため、リークパスが発生するのを抑制することができる。
FIG. 15 is a schematic perspective view for illustrating application of the thermoplastic resin 18 according to this embodiment.
As shown in FIG. 15, a protrusion 18c can be formed on the joint 18a. For example, the convex portion 18c can be formed by increasing the supply amount of the thermoplastic resin 18 per unit time or slowing the moving speed B of the nozzle at the joint 18a. In this case, it is preferable that the convex portion 18c having a gentle outer surface and having a low height is formed.
Compared with the steep depression 18b, it is easier to arrange the sheet to be the moisture-proof portion 7 along the convex portion 18c. Therefore, it is possible to suppress the occurrence of a leak path.
 次に、防湿部7となるシートを、シンチレータ5、反射層6、および封止部8に被せ、シートの周縁近傍を封止部8の外面8aに接合する。 
 例えば、シートの周縁近傍を封止部8の外面8aに押し付けた状態でシートを加熱し、封止部8の外面8aを溶融させて防湿部7を接合することができる。シートが封止部8の外面8aに接合されることで防湿部7が形成される。 
 シートの接合は、大気圧よりも減圧された環境において行うことができる。
Next, the sheet serving as the moisture-proof portion 7 is covered on the scintillator 5, the reflection layer 6, and the sealing portion 8, and the periphery of the sheet is bonded to the outer surface 8 a of the sealing portion 8.
For example, the moisture-proof portion 7 can be joined by heating the sheet while pressing the periphery of the sheet against the outer surface 8a of the sealing portion 8 to melt the outer surface 8a of the sealing portion 8. The moisture-proof portion 7 is formed by joining the sheet to the outer surface 8 a of the sealing portion 8.
The joining of the sheets can be performed in an environment depressurized below atmospheric pressure.
 大気圧よりも減圧された環境においてシートを封止部8の外面8aに接合する。
ことで、防湿部7の内部に水蒸気を含む空気が収納されるのを抑制することができる。また、航空機によりX線検出器1を輸送する場合などのように、X線検出器1が大気圧よりも減圧された環境に置かれる場合であっても、防湿部7の内部にある空気により防湿部7が膨張したり変形したりするのを抑制することができる。また、大気圧により防湿部7が押さえつけられるので、防湿部7がシンチレータ5に密着する。 
 以上の様にして、X線検出モジュール10、10a~10cを製造することができる。
The sheet is bonded to the outer surface 8a of the sealing portion 8 in an environment where the pressure is lower than the atmospheric pressure.
As a result, it is possible to prevent the air containing water vapor from being stored inside the moisture-proof portion 7. Even when the X-ray detector 1 is placed in an environment where the pressure is lower than atmospheric pressure, such as when the X-ray detector 1 is transported by an aircraft, the air inside the moisture-proof section 7 prevents It is possible to prevent the moistureproof portion 7 from expanding or deforming. Further, since the moisture-proof portion 7 is pressed down by the atmospheric pressure, the moisture-proof portion 7 comes into close contact with the scintillator 5.
As described above, the X-ray detection modules 10, 10a to 10c can be manufactured.
 次に、フレキシブルプリント基板2e1、2e2を介して、アレイ基板2と回路基板11を電気的に接続する。 
 その他、回路部品などを適宜実装する。
Next, the array substrate 2 and the circuit board 11 are electrically connected via the flexible printed boards 2e1 and 2e2.
In addition, circuit components and the like are appropriately mounted.
 次に、図示しない筐体の内部にアレイ基板2、回路基板11などを格納する。 
 この場合、アレイ基板2の反りが大きいと、アレイ基板2が筐体の内部に格納されている部材と干渉したり、アレイ基板2が筐体の内壁に干渉したりするおそれがある。前述したように、本実施の形態に係るX線検出モジュール10とすれば、アレイ基板2の反りを抑制することができるので、組立工程における作業の円滑化を図ることができる。
 また、必要に応じて、光電変換素子2b1の異常の有無や電気的な接続の異常の有無を確認する電気試験、X線画像試験などを行うことができる。 
 以上のようにして、X線検出器1を製造することができる。 
 なお、製品の防湿信頼性や温度環境の変化に対する信頼性を確認するために、高温高湿試験、冷熱サイクル試験などを実施することもできる。
Next, the array substrate 2, the circuit board 11 and the like are stored inside a casing (not shown).
In this case, if the warp of the array substrate 2 is large, the array substrate 2 may interfere with a member stored inside the housing, or the array substrate 2 may interfere with the inner wall of the housing. As described above, with the X-ray detection module 10 according to the present embodiment, warpage of the array substrate 2 can be suppressed, so that work in the assembly process can be facilitated.
Further, if necessary, an electrical test or an X-ray image test for confirming whether or not there is an abnormality in the photoelectric conversion element 2b1 or whether or not there is an abnormality in electrical connection can be performed.
The X-ray detector 1 can be manufactured as described above.
In addition, in order to confirm the moisture-proof reliability of the product and the reliability against changes in the temperature environment, a high-temperature high-humidity test, a thermal cycle test, and the like can be performed.
 以上に説明したように、本実施の形態に係るX線検出モジュールの製造方法は以下の工程を備えることができる。 
 アレイ基板2に設けられた複数の光電変換部2bの上に、シンチレータ5を形成する工程。
 軟化させた熱可塑性樹脂18をシンチレータ5の周囲に枠状に塗布して封止部8を形成する工程。
 防湿部7となるシートを、シンチレータ5および封止部8に被せ、シートの周縁近傍を加熱して、シートの周縁近傍を封止部8の外面8aに接合する工程。
 この場合、封止部8形成する工程において、塗布のつなぎ目18aに凸部18cを形成することができる。
As described above, the method of manufacturing the X-ray detection module according to this embodiment can include the following steps.
A step of forming the scintillator 5 on the plurality of photoelectric conversion units 2b provided on the array substrate 2.
A step of forming the sealing portion 8 by applying the softened thermoplastic resin 18 around the scintillator 5 in a frame shape.
A step of covering the scintillator 5 and the sealing portion 8 with a sheet to be the moisture-proof portion 7, heating the periphery of the sheet, and joining the periphery of the sheet to the outer surface 8a of the sealing portion 8.
In this case, in the step of forming the sealing portion 8, the convex portion 18c can be formed at the joint 18a for coating.
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。 Although some embodiments of the present invention have been illustrated above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, and are also included in the invention described in the claims and the scope of equivalents thereof. Further, the above-described respective embodiments can be implemented in combination with each other.

Claims (26)

  1.  複数の光電変換部を有するアレイ基板と、
     前記複数の光電変換部の上に設けられたシンチレータと、
     熱可塑性樹脂を主成分として含み、前記シンチレータの周囲に設けられ、前記アレイ基板と前記シンチレータに接合された枠状の封止部と、
     前記シンチレータの上方を覆い、周縁近傍が前記封止部の外面に接合された防湿部と、
     を備え、
     前記封止部の外面の形状は、外側に突出する曲面である放射線検出モジュール。
    An array substrate having a plurality of photoelectric conversion units,
    A scintillator provided on the plurality of photoelectric conversion units,
    A thermoplastic resin as a main component, provided around the scintillator, a frame-shaped sealing portion joined to the array substrate and the scintillator,
    A moisture-proof portion that covers the upper side of the scintillator and has a peripheral edge portion joined to the outer surface of the sealing portion,
    Equipped with
    The radiation detecting module, wherein the outer surface of the sealing portion has a curved surface protruding outward.
  2.  前記防湿部の周端面は、前記アレイ基板と接触している請求項1記載の放射線検出モジュール。 The radiation detection module according to claim 1, wherein a peripheral end surface of the moisture-proof portion is in contact with the array substrate.
  3.  前記防湿部の周端面は、前記アレイ基板の近傍に設けられている請求項1記載の放射線検出モジュール。 The radiation detection module according to claim 1, wherein a peripheral end surface of the moisture-proof portion is provided near the array substrate.
  4.  前記防湿部の周端面と前記アレイ基板との間の距離は、前記封止部の高さの半分以下である請求項1記載の放射線検出モジュール。 The radiation detection module according to claim 1, wherein the distance between the peripheral end surface of the moisture-proof portion and the array substrate is half the height of the sealing portion or less.
  5.  前記防湿部の周縁には前記アレイ基板に沿う折り曲げ部が設けられている請求項1記載の放射線検出モジュール。 The radiation detection module according to claim 1, wherein a bent portion along the array substrate is provided on a peripheral edge of the moisture-proof portion.
  6.  前記防湿部のコーナー部には、外側に向けて突出する凸部が設けられている請求項5記載の放射線検出モジュール。 The radiation detection module according to claim 5, wherein a convex portion protruding outward is provided at a corner portion of the moisture-proof portion.
  7.  前記封止部の外面には凹部が設けられている請求項1~6のいずれか1つに記載の放射線検出モジュール。 The radiation detection module according to any one of claims 1 to 6, wherein a concave portion is provided on the outer surface of the sealing portion.
  8.  前記防湿部の前記凹部に対峙する部分には、撓み部が設けられている請求項7記載の放射線検出モジュール。 The radiation detection module according to claim 7, wherein a bending portion is provided in a portion of the moisture-proof portion facing the recess.
  9.  前記封止部の外面には凸部が設けられている請求項1~8のいずれか1つに記載の放射線検出モジュール。 The radiation detection module according to any one of claims 1 to 8, wherein a convex portion is provided on the outer surface of the sealing portion.
  10.  前記封止部の高さは、前記シンチレータの高さ以下である請求項1~9のいずれか1つに記載の放射線検出モジュール。 The radiation detection module according to any one of claims 1 to 9, wherein the height of the sealing portion is less than or equal to the height of the scintillator.
  11.  前記シンチレータの高さと、前記封止部の高さとの差は、0.1mm以上、0.5mm以下である請求項10記載の放射線検出モジュール。 The radiation detection module according to claim 10, wherein a difference between a height of the scintillator and a height of the sealing portion is 0.1 mm or more and 0.5 mm or less.
  12.  前記封止部の高さは、前記シンチレータの高さの30%以上、70%以下ある請求項10または11に記載の放射線検出モジュール。 The radiation detection module according to claim 10 or 11, wherein the height of the sealing portion is 30% or more and 70% or less of the height of the scintillator.
  13.  前記シンチレータの側面には凹凸が設けられ、
     前記封止部の一部は、前記シンチレータの側面の凹凸の内部に設けられている請求項1~12のいずれか1つに記載の放射線検出モジュール。
    The side surface of the scintillator is provided with irregularities,
    The radiation detection module according to any one of claims 1 to 12, wherein a part of the sealing portion is provided inside the unevenness on the side surface of the scintillator.
  14.  前記封止部は透光性を有する請求項1~13のいずれか1つに記載の放射線検出モジュール。 The radiation detection module according to any one of claims 1 to 13, wherein the sealing portion has a light-transmitting property.
  15.  前記封止部の少なくとも外面は、撥水性を有する請求項1~14のいずれか1つに記載の放射線検出モジュール。 The radiation detection module according to any one of claims 1 to 14, wherein at least the outer surface of the sealing portion has water repellency.
  16.  前記熱可塑性樹脂は、ポリエチレンおよびポリプロピレンの少なくともいずれかである請求項1~15のいずれか1つに記載の放射線検出モジュール。 The radiation detection module according to any one of claims 1 to 15, wherein the thermoplastic resin is at least one of polyethylene and polypropylene.
  17.  前記熱可塑性樹脂は、無機材料を用いたフィラーをさらに含む請求項1~16のいずれか1つに記載の放射線検出モジュール。 The radiation detection module according to any one of claims 1 to 16, wherein the thermoplastic resin further contains a filler using an inorganic material.
  18.  前記防湿部は、金属を含むシート、樹脂膜と金属膜とが積層された積層シート、および、樹脂膜と無機膜とが積層された積層シートのいずれかである請求項1~17のいずれか1つに記載の放射線検出モジュール。 18. The moisture-proof part is any one of a sheet containing a metal, a laminated sheet in which a resin film and a metal film are laminated, and a laminated sheet in which a resin film and an inorganic film are laminated. The radiation detection module according to one.
  19.  前記防湿部の厚みは、10μm以上、50μm以下である請求項1~18のいずれか1つに記載の放射線検出モジュール。 The radiation detection module according to any one of claims 1 to 18, wherein the moisture-proof part has a thickness of 10 μm or more and 50 μm or less.
  20.  前記防湿部は、撓み部を有し、
     前記撓み部は、前記防湿部の、前記撓み部が設けられていない部分よりも、弾性変形が容易である請求項1~19のいずれか1つに記載の放射線検出モジュール。
    The moisture-proof portion has a flexible portion,
    The radiation detecting module according to any one of claims 1 to 19, wherein the flexible portion is elastically deformable more easily than a portion of the moisture-proof portion where the flexible portion is not provided.
  21.  前記熱可塑性樹脂の剛性は、前記防湿部の剛性よりも低い請求項1~20のいずれか1つに記載の放射線検出モジュール。 The radiation detection module according to any one of claims 1 to 20, wherein a rigidity of the thermoplastic resin is lower than a rigidity of the moisture-proof part.
  22.  前記封止部と前記防湿部とにより画された空間の圧力は、大気圧よりも低い請求項1~21のいずれか1つに記載の放射線検出モジュール。 The radiation detection module according to any one of claims 1 to 21, wherein a pressure of a space defined by the sealing portion and the moistureproof portion is lower than atmospheric pressure.
  23.  前記シンチレータは、ヨウ化セシウム(CsI):タリウム(Tl)を含む請求項1~22のいずれか1つに記載の放射線検出モジュール。 The radiation detection module according to any one of claims 1 to 22, wherein the scintillator contains cesium iodide (CsI): thallium (Tl).
  24.  前記シンチレータと、前記防湿部と、の間に設けられた反射層をさらに備えた請求項1~23のいずれか1つに記載の放射線検出モジュール。 The radiation detection module according to any one of claims 1 to 23, further comprising a reflection layer provided between the scintillator and the moistureproof portion.
  25.  請求項1~24のいずれか1つに記載の放射線検出モジュールと、
     前記放射線検出モジュールと電気的に接続された回路基板と、
     を備えた放射線検出器。
    A radiation detection module according to any one of claims 1 to 24;
    A circuit board electrically connected to the radiation detection module,
    Radiation detector equipped with.
  26.  アレイ基板に設けられた複数の光電変換部の上に、シンチレータを形成する工程と、
     軟化させた熱可塑性樹脂を前記シンチレータの周囲に枠状に塗布して封止部を形成する工程と、
     防湿部となるシートを、前記シンチレータおよび前記封止部に被せ、前記シートの周縁近傍を加熱して、前記シートの周縁近傍を前記封止部の外面に接合する工程と、
     を備え、
     前記封止部を形成する工程において、塗布のつなぎ目に凸部を形成する放射線検出モジュールの製造方法。
    A step of forming a scintillator on a plurality of photoelectric conversion units provided on the array substrate,
    A step of applying a softened thermoplastic resin in a frame shape around the scintillator to form a sealing portion,
    A step of covering a sheet to be a moisture-proof section on the scintillator and the sealing section, heating the peripheral edge of the sheet, and bonding the peripheral edge of the sheet to the outer surface of the sealing section,
    Equipped with
    A method of manufacturing a radiation detection module, wherein a convex portion is formed at a joint of application in the step of forming the sealing portion.
PCT/JP2019/044127 2018-11-13 2019-11-11 Radiation detection module, radiation detector, and radiation detection module production method WO2020100809A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980070579.XA CN112912770A (en) 2018-11-13 2019-11-11 Radiation detection module, radiation detector, and method for manufacturing radiation module
KR1020217012247A KR102535035B1 (en) 2018-11-13 2019-11-11 Radiation detection module, radiation detector and manufacturing method of radiation detection module
EP19885834.2A EP3882669A4 (en) 2018-11-13 2019-11-11 Radiation detection module, radiation detector, and radiation detection module production method
US17/220,978 US11513240B2 (en) 2018-11-13 2021-04-02 Radiation detection module, radiation detector, and method for manufacturing radiation detection module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018213196 2018-11-13
JP2018-213196 2018-11-13
JP2019185657A JP7240998B2 (en) 2018-11-13 2019-10-09 Radiation detection module, radiation detector, and method for manufacturing radiation detection module
JP2019-185657 2019-10-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/220,978 Continuation US11513240B2 (en) 2018-11-13 2021-04-02 Radiation detection module, radiation detector, and method for manufacturing radiation detection module

Publications (1)

Publication Number Publication Date
WO2020100809A1 true WO2020100809A1 (en) 2020-05-22

Family

ID=70730815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044127 WO2020100809A1 (en) 2018-11-13 2019-11-11 Radiation detection module, radiation detector, and radiation detection module production method

Country Status (2)

Country Link
TW (1) TWI758658B (en)
WO (1) WO2020100809A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220018975A1 (en) * 2020-07-14 2022-01-20 Canon Kabushiki Kaisha Radiation imaging panel, radiation imaging apparatus, radiation imaging system, and scintillator plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030001100A1 (en) * 2001-06-29 2003-01-02 Dejule Michael Clement Cover plate having spacer lip with hermetic barrier for radiation imager and method of manufacturing same
JP2009128023A (en) 2007-11-20 2009-06-11 Toshiba Electron Tubes & Devices Co Ltd Radiation detector and method of manufacturing the same
JP2011191290A (en) * 2010-02-18 2011-09-29 Canon Inc Radiation detector and radiation detection system
US20120288688A1 (en) * 2011-05-09 2012-11-15 Yun Bong Kug Scintillator panel and method of manufacturing the scintillator panel
JP2014081364A (en) * 2012-09-27 2014-05-08 Fujifilm Corp Radiation image detection device
JP2015004560A (en) * 2013-06-20 2015-01-08 株式会社東芝 Radiation detector and method of manufacturing the same
JP2017090090A (en) * 2015-11-04 2017-05-25 東芝電子管デバイス株式会社 Radiation detector and manufacturing method of the same
JP2017111082A (en) * 2015-12-18 2017-06-22 東芝電子管デバイス株式会社 Radiation detector and manufacturing method of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5905672B2 (en) * 2011-06-28 2016-04-20 株式会社東芝 Radiation detector and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030001100A1 (en) * 2001-06-29 2003-01-02 Dejule Michael Clement Cover plate having spacer lip with hermetic barrier for radiation imager and method of manufacturing same
JP2009128023A (en) 2007-11-20 2009-06-11 Toshiba Electron Tubes & Devices Co Ltd Radiation detector and method of manufacturing the same
JP2011191290A (en) * 2010-02-18 2011-09-29 Canon Inc Radiation detector and radiation detection system
US20120288688A1 (en) * 2011-05-09 2012-11-15 Yun Bong Kug Scintillator panel and method of manufacturing the scintillator panel
JP2014081364A (en) * 2012-09-27 2014-05-08 Fujifilm Corp Radiation image detection device
JP2015004560A (en) * 2013-06-20 2015-01-08 株式会社東芝 Radiation detector and method of manufacturing the same
JP2017090090A (en) * 2015-11-04 2017-05-25 東芝電子管デバイス株式会社 Radiation detector and manufacturing method of the same
JP2017111082A (en) * 2015-12-18 2017-06-22 東芝電子管デバイス株式会社 Radiation detector and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220018975A1 (en) * 2020-07-14 2022-01-20 Canon Kabushiki Kaisha Radiation imaging panel, radiation imaging apparatus, radiation imaging system, and scintillator plate
US11520062B2 (en) * 2020-07-14 2022-12-06 Canon Kabushiki Kaisha Radiation imaging panel, radiation imaging apparatus, radiation imaging system, and scintillator plate

Also Published As

Publication number Publication date
TW202037928A (en) 2020-10-16
TWI758658B (en) 2022-03-21

Similar Documents

Publication Publication Date Title
US11513240B2 (en) Radiation detection module, radiation detector, and method for manufacturing radiation detection module
JP2009128023A (en) Radiation detector and method of manufacturing the same
WO2020100809A1 (en) Radiation detection module, radiation detector, and radiation detection module production method
US20230288583A1 (en) Radiation detection panel
JP6948815B2 (en) Radiation detector
JP2020091236A (en) Radiation detection module, radiation detector, and method for manufacturing radiation detection module
JP2012156204A (en) Radiation detector and method of manufacturing the same
JP2019184278A (en) Radiation detector
JP6818617B2 (en) Radiation detectors, radiation detector manufacturing equipment, and radiation detector manufacturing methods
JP7374862B2 (en) radiation detector
JP7353191B2 (en) Radiation detection module and radiation detector
JP2021063719A (en) Radiation detection module and radiation detector
JP2021189101A (en) Radiation detection module and radiation detector
WO2024004236A1 (en) Radiation detector
JP2021105591A (en) Radiation detection module, radiation detector and manufacturing method for radiation detection module
JP2020041948A (en) Radiation detection module, radiation detector, and method for manufacturing radiation detector
JP2020176966A (en) Radiation detection module and radiator detector
JP2023082795A (en) Radiation detection panel and method for manufacturing radiation detection panel
JP2024063272A (en) Radiation image detector and method for manufacturing the same
JP2020056667A (en) Radiation detection module, radiation detector, and method for manufacturing radiation detection module
KR20230124044A (en) radiation detector
JP2023004719A (en) Photoelectric conversion substrate
JP2022020171A (en) Radiation detector
KR20230128094A (en) photoelectric conversion board
JP2020085620A (en) Radiation detection module, radiation detector, and manufacturing method for radiation detection module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217012247

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019885834

Country of ref document: EP

Effective date: 20210614