WO2020100715A1 - Hapsにおけるサービスリンクのアンテナ構成及びビームフォーミング制御 - Google Patents

Hapsにおけるサービスリンクのアンテナ構成及びビームフォーミング制御 Download PDF

Info

Publication number
WO2020100715A1
WO2020100715A1 PCT/JP2019/043705 JP2019043705W WO2020100715A1 WO 2020100715 A1 WO2020100715 A1 WO 2020100715A1 JP 2019043705 W JP2019043705 W JP 2019043705W WO 2020100715 A1 WO2020100715 A1 WO 2020100715A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication relay
relay device
antenna
haps
target
Prior art date
Application number
PCT/JP2019/043705
Other languages
English (en)
French (fr)
Inventor
兼次 星野
渉一 須藤
太田 喜元
Original Assignee
Hapsモバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hapsモバイル株式会社 filed Critical Hapsモバイル株式会社
Publication of WO2020100715A1 publication Critical patent/WO2020100715A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a service link antenna configuration and beamforming control in a wireless relay device such as HAPS suitable for constructing a three-dimensional network.
  • a communication relay device such as a high altitude platform station (HAPS) (also called “high altitude pseudo satellite”) capable of floating and staying in the air is known (for example, refer to Patent Document 1).
  • the communication line in this floating-type communication relay device includes a feeder link between the communication relay device and a gateway (GW) station on the mobile communication network side, and a service link between the communication relay device and the terminal device. Composed.
  • HAPS high altitude platform station
  • GW gateway
  • Non-Patent Document 1 proposes a technique of fixing the footprint of a cell formed by HAP by mechanically controlling the direction of an antenna of HAP (high altitude platform), but the control mechanism becomes large. Since it becomes heavy, it is difficult to mount it on a small communication relay device.
  • a communication relay device is a stay-in-the-air communication relay device that wirelessly communicates with a terminal device, and a plurality of antenna elements that form a cell that performs wireless communication of a service link with the terminal device. Based on the information of at least one of the position and the attitude of the communication relay device acquired by the information acquisition unit and the information acquisition unit that acquires information of at least one of the position and the attitude of the communication relay device. , A target beam width and a target of an antenna-directed beam from the communication relay device toward the center of the cell so as to fix the position of the footprint of the cell with reference to a preset reference direction direction of the communication relay device.
  • a horizontal angle and a target vertical angle are determined and transmitted and received through each of the plurality of antenna elements of the array antenna to form an antenna pointing beam having the target beam width, the target horizontal angle and the target vertical angle.
  • a control unit that controls the phases and amplitudes of a plurality of transmission / reception signals.
  • the communication relay device a plurality of cells forming a service area are formed, and the control unit fixes each footprint of the plurality of cells with reference to a direction of a reference direction preset in the communication relay device.
  • a target beam width, a target horizontal angle, and a target vertical angle of each of the plurality of antenna-directed beams from the communication relay device toward the center of each of the plurality of cells are determined, and the target beam width of each of the plurality of cells is determined.
  • the phases and amplitudes of the plurality of transmission / reception signals may be controlled so as to form an antenna pointing beam having the target horizontal angle and the target vertical angle.
  • the ground distance from the point vertically below the communication relay device to the center of the cell before the communication relay device moves is dn [km], and before the communication relay device moves.
  • the altitude of the communication relay device is h [km]
  • the movement distances of the communication relay device in the horizontal direction and the vertical direction are ⁇ d [km] and ⁇ h [km], respectively, and the correction coefficient is ⁇
  • the communication relay device is
  • the target vertical angle ⁇ str, n [degree] after the device has moved may satisfy the following expression (1).
  • the ground distance from a point vertically below the communication relay device to the center of the cell before the communication relay device moves is dn [km], and the communication relay device moves.
  • the altitude of the previous communication relay device is set to h [km]
  • the moving distances of the communication relay device in the horizontal direction and the vertical direction are set to ⁇ d [km] and ⁇ h [km], respectively.
  • the elevation angle when looking at the communication relay device is ⁇ n [degrees] and ⁇ edge, k [degrees]
  • the target beam width ⁇ bw, n [degrees] after the communication relay device moves is given by the following equation (2). And (3) may be satisfied.
  • the array antenna may be a cylinder type array antenna in which a plurality of antenna elements are arranged along a cylindrical peripheral surface shape.
  • the cylinder type array antenna is a circular type array antenna in which a plurality of antenna elements are arranged in a circumferential direction of the cylindrical peripheral surface shape and is parallel to a central axis of the cylindrical peripheral surface shape.
  • a plurality of sets may be arranged in the direction.
  • a circular array antenna in which a plurality of antenna elements are arranged in a circumferential direction of the cylindrical peripheral surface shape and a plurality of antenna elements are arranged in a direction parallel to a central axis of the cylindrical peripheral surface shape.
  • the phase and amplitude of the plurality of transmission / reception signals may be controlled independently of each other for each of the linear array antennas.
  • a plurality of antenna elements may be further arranged on the bottom surface of the cylinder type array antenna.
  • the communication relay device In the communication relay device, based on the target horizontal angle and a desired beam pattern, calculate weights to be applied to each of a plurality of transmission / reception signals for the plurality of antenna elements, and based on the plurality of weights, the plurality of weights are calculated.
  • the phase and amplitude of the transmitted / received signal may be controlled.
  • the weight phase and amplitude determined in advance so as to obtain a desired beam pattern for a plurality of horizontal angles of the antenna-directed beam with reference to the direction of the reference direction set in advance in the communication relay device.
  • An approximate expression is stored, the target horizontal angle of the antenna pointing beam is determined so as to fix the footprint of the cell with reference to the direction of the reference direction, and based on the target horizontal angle and the approximate expression, the Weights applied to a plurality of transmission / reception signals for a plurality of antenna elements may be calculated, and the phases and amplitudes of the plurality of transmission / reception signals may be controlled based on the plurality of weights. Further, in the communication relay device, a target horizontal angle of the antenna-directed beam is determined so as to fix the footprint of the cell with reference to a preset reference direction of the communication relay device, and the target horizontal angle is set to the target horizontal angle.
  • a weight applied to each of the plurality of transmission / reception signals for the plurality of antenna elements is calculated by a function of a Gaussian distribution centered on the target horizontal angle, and the plurality of transmission / reception signals of the plurality of transmission / reception signals are calculated.
  • the phase and amplitude may be controlled.
  • the weight may be set to zero for the antenna element on the back side located on the side opposite to the target horizontal angle.
  • the array antenna includes a plurality of planar array antennas in which a plurality of antenna elements are arranged so as to be two-dimensionally distributed along a planar shape, and the beam directions of the array antennas are different from each other.
  • An antenna switching unit may be provided, which is configured and arranged as described above, and switches the array antenna used for forming the cell among the plurality of planar array antennas.
  • the planar array antenna may be arranged on each of a plurality of outer surface portions in a pyramid shape, a prism shape, or a combination thereof.
  • the target horizontal angle and the target vertical angle of the antenna directional beam are calculated so that the footprint of the cell is fixed with reference to the direction of the reference direction preset in the communication relay device.
  • the phase and amplitude of the transmitted and received signals are controlled for the planar array antenna in use, and the current horizontal angle and the target horizontal angle are controlled.
  • the planar array antenna may be switched to control the phase and amplitude of the transmission / reception signal.
  • a weight to be applied to the transmission / reception signal is calculated and stored in advance in association with each of a plurality of different positions and postures in the predicted movement route of the communication relay device based on the position of the service area. Then, a weight corresponding to the position and orientation of the communication relay device acquired by the information acquisition unit is selected from the stored weights corresponding to the respective absolute positions and orientations, and the selected weight is selected.
  • the phase and amplitude of the transmission / reception signal may be controlled based on the above.
  • the present invention it is possible to reduce the size of the airborne communication relay device and suppress the movement of the footprints of the cells forming the service area.
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system that realizes a three-dimensional network according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an example of HAPS used in the communication system of the embodiment.
  • FIG. 3 is a side view showing another example of HAPS used in the communication system of the embodiment.
  • FIG. 4 is an explanatory diagram showing an example of a wireless network formed in the sky by a plurality of HAPSs according to the embodiment.
  • FIG. 5 is a schematic configuration diagram showing an example of the overall configuration of a communication system that realizes a three-dimensional network according to another embodiment.
  • FIG. 6 is a block diagram showing a configuration example of the HAPS relay communication station of the embodiment.
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system that realizes a three-dimensional network according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an example of HAPS used in the communication system of the embodiment
  • FIG. 7 is a block diagram showing another configuration example of the HAPS relay communication station of the embodiment.
  • FIG. 8 is a block diagram showing still another configuration example of the HAPS relay communication station of the embodiment.
  • FIG. 9 is an explanatory diagram showing an example of the cell configuration of HAPS according to the embodiment.
  • FIG. 10A is an explanatory diagram showing an example of movement of a footprint of a cell due to rotational movement (turning) and translational movement of HAPS according to a comparative example.
  • FIG. 10B is an explanatory diagram showing an example of movement of the footprint of the cell due to the rotational movement (turning) and translational movement of the HAPS according to the comparative example.
  • FIG. 10A is an explanatory diagram showing an example of movement of a footprint of a cell due to rotational movement (turning) and translational movement of HAPS according to a comparative example.
  • FIG. 10B is an explanatory diagram showing an example of movement of the footprint of the cell due to the rotational movement (turning)
  • FIG. 11A is an explanatory diagram showing an example of movement of a footprint of a cell due to rotational movement (turning) and translational movement of HAPS according to the embodiment.
  • FIG. 11B is an explanatory diagram illustrating an example of movement of a footprint of a cell due to rotational movement (turning) and translational movement of HAPS according to the embodiment.
  • FIG. 12 is an explanatory diagram showing the definition of an angle indicating the posture change of the HAPS according to the embodiment.
  • FIG. 13A is an explanatory diagram illustrating an example of a HAPS turning pattern.
  • FIG. 13B is an explanatory diagram showing an example of a HAPS turning pattern.
  • FIG. 13C is an explanatory diagram showing an example of a HAPS turning pattern.
  • FIG. 13A is an explanatory diagram illustrating an example of a HAPS turning pattern.
  • FIG. 13B is an explanatory diagram showing an example of a HAPS turning pattern.
  • FIG. 13C is an explanatory diagram showing an example
  • FIG. 14A is an explanatory diagram illustrating an example of footprint fixing control according to the embodiment.
  • FIG. 14B is an explanatory diagram illustrating an example of the footprint fixing control according to the embodiment.
  • FIG. 15A is an explanatory diagram showing from above an example of a circular array antenna that constitutes a partial function of a cylinder type array antenna used for footprint fixing control according to another embodiment.
  • FIG. 15B is an explanatory view of an example of a linear array antenna which constitutes another partial function of the cylinder type array antenna of FIG. 15A as seen from the side.
  • FIG. 16 is a perspective view showing a configuration example of a cylinder type array antenna configured by combining a circular array antenna and a linear array antenna.
  • FIG. 17 is an explanatory diagram of the horizontal angle ( ⁇ ) and the vertical angle ( ⁇ ) in the footprint fixing control using the cylinder type array antenna.
  • FIG. 18 is an explanatory diagram of an antenna element that performs DBF control for each of the horizontal angle ( ⁇ ) and the vertical angle ( ⁇ ) in the cylinder type array antenna.
  • FIG. 19 is an explanatory diagram showing an example of a three-dimensional directional beam formed by DBF control of a cylinder type array antenna.
  • FIG. 20 is an explanatory diagram illustrating an example of a circular array antenna that constitutes a part of the HAPS antenna configuration according to the embodiment.
  • 21 is a graph showing an example of the computer simulation result of the beam pattern in the horizontal direction of the circular array antenna of FIG. FIG.
  • FIG. 22 is an explanatory diagram illustrating an example of a linear array antenna that constitutes a part of the HAPS antenna configuration according to the embodiment.
  • FIG. 23 is an explanatory diagram showing an example of the relationship between the array antenna of HAPS and the arrangement of cells according to the embodiment.
  • FIG. 24 is a graph showing an example of a computer simulation result of a beam pattern in the vertical direction of the array antenna of FIG.
  • FIG. 25A is a graph showing an example of the evaluation result of the distance characteristic of the received power evaluated for the array antenna of FIG. 23.
  • FIG. 25B is a graph showing an example of the evaluation result of the distance characteristic of the received power evaluated for the array antenna of FIG.
  • FIG. 26A is a graph showing an example of evaluation results of fluctuations in cell boundary position evaluated for the array antenna of FIG. 23.
  • FIG. 26B is a graph showing an example of evaluation results of fluctuations in cell boundary positions evaluated for the array antenna of FIG. 23.
  • FIG. 27 is a block diagram showing an example of an antenna configuration and a DBF control system according to the embodiment.
  • FIG. 28 is a block diagram showing another example of the antenna configuration and the DBF control system according to the embodiment.
  • FIG. 29 is a block diagram showing still another example of the antenna configuration and the DBF control system according to the embodiment.
  • FIG. 30 is a perspective view showing an example of the planar array antenna according to the embodiment.
  • FIG. 31 is an explanatory diagram showing an example of horizontal beamforming control of the planar array antenna.
  • FIG. 32 is a block diagram showing still another example of the antenna configuration and the DBF control system according to the embodiment.
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system according to an embodiment of the present invention.
  • the communication system according to the present embodiment is suitable for realizing a three-dimensional network for mobile communication of the fifth generation or the next and subsequent generations after the fifth generation, which supports simultaneous connection to a large number of terminal devices and low delay.
  • the mobile communication standards applicable to the communication system, relay communication station, base station, repeater, and terminal device disclosed in this specification are the fifth generation mobile communication standard and the fifth generation or later. Includes next-generation mobile communication standards.
  • the communication system is also referred to as a high altitude platform station (HAPS) as a plurality of aerial levitation type communication relay devices (wireless relay devices), (“high altitude pseudolite”, “stratospheric platform”). ) 10 and 20 are provided.
  • the HAPS 10 and 20 are located in an air space of a predetermined altitude and form three-dimensional cells (three-dimensional areas) 41 and 42 as shown by hatched areas in the drawing in the cell formation target air space 40 of the predetermined altitude.
  • the HAPS 10 and 20 are controlled by autonomous control or control from the outside so as to float or fly to a high altitude air space (levitation air space) 50 of 100 [km] or less from the ground or sea surface (for example, a floating body).
  • Solar plane, airship is equipped with a relay communication station.
  • the airspace 50 in which the HAPS 10 and 20 are located is, for example, a stratosphere airspace where the altitude above the ground (or above the water such as the sea or lake) is 11 [km] or more and 50 [km] or less.
  • the airspace 50 may be an airspace having an altitude of 15 [km] or more and 25 [km] or less, in which the weather conditions are relatively stable, and may be an airspace having an altitude of approximately 20 [km].
  • Hrsl and Hrsu in the figure respectively indicate the relative heights of the lower end and the upper end of the air space 50 where the HAPS 10, 20 are located with respect to the ground (GL).
  • the cell formation target airspace 40 is a target airspace for forming a three-dimensional cell with one or more HAPS in the communication system of the present embodiment.
  • the cell formation target airspace 40 is located between the airspace 50 in which the HAPSs 10 and 20 are located and a cell formation region near the ground covered by a base station (eg, LTE eNodeB) 90 such as a conventional macrocell base station, at a predetermined altitude.
  • a base station eg, LTE eNodeB
  • It is an airspace of a range (for example, an altitude range of 50 [m] or more and 1000 [m] or less).
  • Hcl and Hcu in the figure respectively indicate the relative altitudes of the lower end and the upper end of the cell formation target airspace 40 with respect to the ground (GL).
  • the cell formation target airspace 40 in which the three-dimensional cell of this embodiment is formed may be above the sea, river, or lake.
  • HAPS flies at a location lower than the flight altitude of artificial satellites and higher than base stations on the ground or at sea, it is possible to secure a high line-of-sight rate with a smaller propagation loss than satellite communications. From this feature, it is also possible to directly provide a communication service from HAPS to a terminal device which is a mobile station such as a terrestrial cellular portable terminal (UE: User Equipment).
  • UE User Equipment
  • the relay communication stations of the HAPS 10 and 20 form beams 100 and 200 for wireless communication with a terminal device, which is a mobile station, toward the ground.
  • the terminal device may be a communication terminal module incorporated in a drone 60 which is an aircraft such as a small helicopter capable of remote control, or a user device used by a user in an airplane 65.
  • the regions through which the beams 100 and 200 pass are the three-dimensional cells 41 and 42.
  • the plurality of beams 100 and 200 adjacent to each other in the cell formation target airspace 40 may partially overlap.
  • Each of the relay communication stations of the HAPS 10 and 20 is, for example, a base station that wirelessly communicates with a gateway station (also referred to as a “feeder station”) 70 as a relay station connected to a ground (or sea) side core network, or It is a repeater slave device that wirelessly communicates with a feeder station (repeater master device) 70 as a relay station connected to a base station on the ground (or sea) side.
  • the relay communication stations of the HAPS 10 and 20 are connected to the core network of the mobile communication network 80 via feeder stations 70 installed on the ground or at the sea. Communication between the HAPS 10 and 20 and the feeder station 70 may be performed by wireless communication using radio waves such as microwaves, or may be performed by optical communication using laser light or the like.
  • Each of the HAPS 10 and 20 may autonomously control its own levitation movement (flying) and processing at the relay communication station by executing a control program by a control unit composed of an internal computer or the like.
  • each of the HAPSs 10 and 20 acquires its own current position information (for example, GPS position information), prestored position control information (for example, flight schedule information), position information of other HAPSs located in the vicinity, and the like.
  • the levitation movement (flight) and the processing in the relay communication station may be autonomously controlled based on the information of (1).
  • the levitation movement (flight) of each of the HAPS 10 and 20 and the processing in the relay communication station are management devices (also referred to as “remote control devices”) 85 as management devices provided in a communication center of the mobile communication network 80. May be controlled by
  • the management device 85 can be configured by, for example, a computer device such as a PC or a server.
  • the HAPS 10, 20 incorporates a control communication terminal device (for example, a mobile communication module) so that it can receive control information from the management device 85 and send various information such as monitoring information to the management device 85.
  • the terminal identification information eg, IP address, telephone number, etc.
  • the management apparatus 85 may be assigned so that the management apparatus 85 can identify it.
  • the MAC address of the communication interface may be used to identify the control communication terminal device.
  • the HAPS 10 and 20 respectively provide monitoring information such as information regarding the levitation movement (flight) of HAPS or its surrounding HAPS and processing at the relay communication station, information regarding the state of the HAPS 10 and 20, and observation data acquired by various sensors. Alternatively, it may be transmitted to a predetermined destination such as the management device 85.
  • the control information may include HAPS target flight route information.
  • the monitoring information includes the current position of the HAPS 10 and 20, flight route history information, airspeed, ground speed and propulsion direction, wind speed and direction of airflow around the HAPS 10 and 20, and pressure and temperature around the HAPS 10 and 20. It may include at least one piece of information.
  • a region where the beams 100 and 200 of the HAPS 10 and 20 do not pass (a region where the three-dimensional cells 41 and 42 are not formed) may occur.
  • a radial beam 300 is formed upward from the ground side or the sea side to form a three-dimensional cell 43 and an ATG (Air To Ground) connection is made.
  • a base station (hereinafter, referred to as “ATG station”) 30 for performing may be provided.
  • the relay communication stations of the HAPSs 10 and 20 are set to the cell formation target airspace 40.
  • the beams 100 and 200 may be formed so as to cover the entire upper end surface of the cell formation target air space 40 so that the dimensional cells are formed all over.
  • the three-dimensional cells formed by the HAPS 10 and 20 may be formed so as to reach the ground or the sea surface so that they can communicate with terminal devices located on the ground or at the sea.
  • FIG. 2 is a perspective view showing an example of the HAPS 10 used in the communication system of the embodiment.
  • the HAPS 10 of FIG. 2 is a solar plane type HAPS, and has a main wing portion 101 with both longitudinal ends warped upward and a plurality of bus power system propulsion devices at one end edge of the main wing portion 101 in the lateral direction.
  • Motor driven propeller 103 Motor driven propeller 103.
  • a solar power generation panel (hereinafter referred to as “solar panel”) 102 as a solar power generation unit having a solar power generation function is provided on the upper surface of the main wing portion 101.
  • pods 105 serving as a plurality of equipment accommodating portions for accommodating mission equipment are connected to two positions in the longitudinal direction on the lower surface of the main wing portion 101 via plate-like connecting portions 104.
  • a relay communication station 110 as a mission device and a battery 106 are housed inside each pod 105. Wheels 107 used at the time of taking off and landing are provided on the lower surface side of each pod 105.
  • the electric power generated by the solar panel 102 is stored in the battery 106, the motor of the propeller 103 is rotationally driven by the electric power supplied from the battery 106, and the relay communication station 110 executes the wireless relay process.
  • the solar plane type HAPS 10 levitates with a lift force, for example, by performing a circular flight, a “D” -shaped flight, or an “8” -shaped flight based on a predetermined target flight route, It can be levitated to stay within a certain horizontal range at a certain altitude.
  • the solar plane type HAPS 10 can fly like a glider when the propeller 103 is not rotationally driven. For example, the power of the battery 106 rises to a higher position when the power of the battery 106 is surplus due to the power generation of the solar panel 102 in the daytime, etc., and the power supply from the battery 106 to the motor is stopped when the solar panel 102 cannot generate the power in the night, etc. Can fly like.
  • the HAPS 10 includes a three-dimensional compatible directional optical antenna device 130 as a communication unit used for optical communication with other HAPS and artificial satellites.
  • the optical antenna device 130 is arranged at both ends in the longitudinal direction of the main wing portion 101, but the optical antenna device 130 may be arranged at another place of the HAPS 10.
  • the communication unit used for optical communication with other HAPS or artificial satellites is not limited to such optical communication, and may be wireless communication by other methods such as wireless communication by radio waves such as microwaves. Good.
  • FIG. 3 is a perspective view showing another example of the HAPS 20 used in the communication system of the embodiment.
  • the HAPS 20 of FIG. 3 is an unmanned airship type HAPS, and since it has a large payload, it can be equipped with a large capacity battery.
  • the HAPS 20 includes an airship body 201 filled with a gas such as helium gas for levitating with buoyancy, a motor-driven propeller 202 as a bus power system propulsion device, and a device housing portion 203 in which a mission device is housed.
  • Prepare A relay communication station 210 and a battery 204 are housed inside the device housing unit 203.
  • the electric power supplied from the battery 204 rotationally drives the motor of the propeller 202, and the relay communication station 210 executes a wireless relay process.
  • a solar panel having a solar power generation function may be provided on the upper surface of the airship body 201, and the power generated by the solar panel may be stored in the battery 204.
  • the unmanned airship type HAPS 20 also has a three-dimensional directional optical antenna device 230 as a communication unit used for optical communication with other HAPS and artificial satellites.
  • the optical antenna device 230 is arranged on the upper surface of the airship body 201 and the lower surface of the device housing 203, but the optical antenna device 230 may be arranged on other parts of the HAPS 20.
  • the communication unit used for optical communication with other HAPS and artificial satellites is not limited to such optical communication, but may be wireless communication by other methods such as wireless communication by radio waves such as microwaves. It may be.
  • FIG. 4 is an explanatory diagram showing an example of a wireless network formed in the sky by the plurality of HAPS 10 and 20 of the embodiment.
  • the plurality of HAPS 10 and 20 are configured to enable inter-HAPS communication by optical communication with each other in the sky, and form a wireless communication network with excellent robustness that can stably realize a three-dimensional network over a wide area.
  • This wireless communication network can also function as an ad hoc network by dynamic routing according to various environments and various information.
  • the wireless communication network can be formed to have various two-dimensional or three-dimensional topologies, and may be, for example, a mesh type wireless communication network as shown in FIG.
  • FIG. 5 is a schematic configuration diagram showing an example of the overall configuration of a communication system according to another embodiment.
  • the same parts as those in FIG. 1 described above are designated by the same reference numerals, and the description thereof will be omitted.
  • communication between the HAPS 10 and the core network of the mobile communication network 80 is performed via the feeder station 70 and the low-orbit artificial satellite 72.
  • the communication between the artificial satellite 72 and the feeder station 70 may be performed by wireless communication using radio waves such as microwaves, or may be performed by optical communication using laser light or the like.
  • the communication between the HAPS 10 and the artificial satellite 72 is performed by optical communication using laser light or the like.
  • FIG. 6 is a block diagram showing a configuration example of the relay communication stations 110 and 210 of the HAPS 10 and 20 of the embodiment.
  • Relay communication stations 110 and 210 in FIG. 6 are examples of repeater type relay communication stations.
  • the relay communication stations 110 and 210 respectively include a 3D cell forming antenna section 111, a transmitting / receiving section 112, a feed antenna section 113, a transmitting / receiving section 114, a repeater section 115, a monitoring control section 116, and a power supply section 117.
  • each of the relay communication stations 110 and 210 includes an optical communication unit 125 used for inter-HAPS communication and the like, and a beam control unit 126.
  • the 3D cell formation antenna section 111 has an antenna that forms radial beams 100 and 200 toward the cell formation target airspace 40, and forms three-dimensional cells 41 and 42 that can communicate with a terminal device.
  • the transmission / reception unit 112 constitutes a first wireless communication unit together with the 3D cell formation antenna unit 111, has a duplexer (DUP: DUPlexer), an amplifier, and the like, and has a three-dimensional cell 41 via the 3D cell formation antenna unit 111. , 42 to transmit and receive radio signals to and from the terminal devices located in the area.
  • DUP DUPlexer
  • the feed antenna section 113 has a directional antenna for wireless communication with the feeder station 70 on the ground or at the sea.
  • the transmission / reception unit 114 forms a second wireless communication unit together with the feed antenna unit 113, has a duplexer (DUP: DUPlexer), an amplifier, and the like, and transmits a radio signal to the feeder station 70 via the feed antenna unit 113. To receive a wireless signal from the feeder station 70.
  • DUP DUPlexer
  • the repeater unit 115 relays the signal of the transmission / reception unit 112 transmitted / received to / from the terminal device and the signal of the transmission / reception unit 114 transmitted / received to / from the feeder station 70.
  • the repeater unit 115 has an amplifier function of amplifying a relay target signal having a predetermined frequency to a predetermined level.
  • the repeater unit 115 may have a frequency conversion function of converting the frequency of the relay target signal.
  • the monitoring control unit 116 is composed of, for example, a CPU and a memory, and executes a pre-installed program to monitor the operation processing status of each unit in the HAPS 10 and 20 and control each unit.
  • the supervisory control unit 116 controls the motor drive unit 141 that drives the propellers 103 and 202 by executing the control program to move the HAPS 10 and 20 to the target position and to stay near the target position. To control.
  • the power supply unit 117 supplies the electric power output from the batteries 106 and 204 to each unit inside the HAPS 10 and 20.
  • the power supply unit 117 may have a function of storing electric power generated by a solar power generation panel or the like or electric power supplied from outside in the batteries 106 and 204.
  • the optical communication unit 125 communicates with other HAPSs 10, 20 and artificial satellites 72 in the vicinity via an optical communication medium such as a laser beam.
  • This communication enables dynamic routing that dynamically relays wireless communication between a terminal device such as the drone 60 and the mobile communication network 80, and when one HAPS fails, another HAPS backs it up.
  • a terminal device such as the drone 60 and the mobile communication network 80
  • the robustness of the mobile communication system can be improved.
  • the beam control unit 126 controls the direction and intensity of a beam of laser light or the like used for inter-HAPS communication or communication with the artificial satellite 72, and a relative position with other HAPS (relay communication station) in the vicinity.
  • the other HAPS (relay communication station) that performs communication with a light beam such as a laser beam is controlled to be switched according to the change of This control may be performed based on, for example, the position and orientation of HAPS itself, the position of surrounding HAPS, and the like.
  • the information on the position and orientation of the HAPS itself is acquired based on the outputs of the GPS receiving device, the gyro sensor, the acceleration sensor, etc. incorporated in the HAPS, and the information on the position of the surrounding HAPS is managed by the mobile communication network 80. It may be acquired from the device 85 or the server 86 such as a HAPS management server or an application server.
  • FIG. 7 is a block diagram showing another configuration example of the relay communication stations 110 and 210 of the HAPS 10 and 20 of the embodiment.
  • Relay communication stations 110 and 210 in FIG. 7 are examples of base station type relay communication stations. Note that, in FIG. 7, the same components as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted.
  • Each of the relay communication stations 110 and 210 in FIG. 7 further includes a modem unit 118, and includes a base station processing unit 119 instead of the repeater unit 115. Further, each of the relay communication stations 110 and 210 includes an optical communication unit 125 and a beam control unit 126.
  • the modem unit 118 for example, performs demodulation processing and decoding processing on the received signal received from the feeder station 70 via the feed antenna unit 113 and the transmission / reception unit 114, and outputs the data signal to the base station processing unit 119 side. To generate. In addition, the modem unit 118 performs encoding processing and modulation processing on the data signal received from the base station processing unit 119 side, and transmits to the feeder station 70 via the feed antenna unit 113 and the transmission / reception unit 114. Generate a signal.
  • the base station processing unit 119 has a function as an e-NodeB that performs baseband processing based on, for example, a method based on the LTE / LTE-Advanced standard.
  • the base station processing unit 119 may perform processing by a method that complies with a future mobile communication standard such as the fifth generation.
  • the base station processing unit 119 performs demodulation processing and decoding processing on a reception signal received from the terminal device located in the three-dimensional cells 41 and 42 via the 3D cell formation antenna unit 111 and the transmission / reception unit 112, for example. , And generates a data signal to be output to the modem unit 118 side. In addition, the base station processing unit 119 performs coding processing and modulation processing on the data signal received from the modem unit 118 side, and the three-dimensional cells 41 and 42 via the 3D cell forming antenna unit 111 and the transmitting / receiving unit 112. To generate a transmission signal to be transmitted to the terminal device.
  • FIG. 8 is a block diagram showing still another configuration example of the relay communication stations 110 and 210 of the HAPS 10 and 20 of the embodiment.
  • the relay communication stations 110 and 210 in FIG. 8 are examples of highly functional base station type relay communication stations having an edge computing function.
  • the same components as those in FIGS. 6 and 7 are designated by the same reference numerals, and the description thereof will be omitted.
  • Each of the relay communication stations 110 and 210 of FIG. 8 further includes an edge computing unit 120 in addition to the components of FIG. 7.
  • the edge computing unit 120 is composed of, for example, a small computer, and can execute various kinds of information processing relating to wireless relay in the relay communication stations 110 and 210 of the HAPS 10 and 20 by executing a program installed in advance. it can.
  • the edge computing unit 120 determines the transmission destination of the data signal based on the data signal received from the terminal device located in the three-dimensional cell 41, 42, and the relay destination of the communication based on the determination result. Execute the process of switching. More specifically, when the destination of the data signal output from the base station processing unit 119 is a terminal device located in its own three-dimensional cell 41, 42, the data signal is not passed to the modem unit 118. Then, the processing is returned to the base station processing unit 119 and transmitted to the terminal device of the transmission destination located in the own three-dimensional cells 41 and 42.
  • the data signal is passed to the modem unit 118.
  • the data is transmitted to the feeder station 70, and is transmitted via the mobile communication network 80 to the destination terminal device located in another cell of the destination.
  • the edge computing unit 120 may execute a process of analyzing information received from many terminal devices located in the three-dimensional cells 41 and 42. This analysis result is transmitted to a large number of terminal devices located in the three-dimensional cells 41 and 42, or the management device 85 provided in the mobile communication network 80, or the HAPS management server or application server (application server) as the management device. It may be transmitted to the server 86 or the like.
  • the uplink and downlink duplex schemes of wireless communication with the terminal device via the relay communication stations 110 and 210 are not limited to specific schemes, and for example, Time Division Duplex (TDD) scheme is also available. Alternatively, the frequency division duplex (Frequency Division Duplex: FDD) method may be used.
  • the access method of wireless communication with the terminal device via the relay communication stations 110 and 210 is not limited to a specific method, and for example, an FDMA (Frequency Division Multiple Access) method, a TDMA (Time Division Multiple Access) method, It may be a CDMA (Code Division Multiple Access) method or an OFDMA (Orthogonal Frequency Division Multiple Access) method.
  • the wireless communication has functions such as diversity coding, transmission beamforming, and space division multiplexing (SDM), and a plurality of antennas can be used for both transmission and reception at the same time for each unit frequency.
  • MIMO Multi-Input and Multi-Output and Multi-Output
  • the MIMO technology may be SU-MIMO (Single-User MIMO) technology in which one base station transmits a plurality of signals at the same time and at the same frequency as one terminal device, or one base station has a plurality of signals.
  • SU-MIMO Single-User MIMO
  • MU-MIMO Multi-User MIMO
  • the communication relay device that wirelessly communicates with the terminal device 61 is illustrated as either the solar plane type HAPS 10 or the unmanned airship type HAPS 20. , 20 may be used.
  • the following embodiments can be similarly applied to the airborne communication relay devices other than the HAPS 10 and 20.
  • a link between the HAPS 10 and 20 and a base station 90 via a gateway station (hereinafter abbreviated as “GW station”) 70 as a feeder station is called a “feeder link”, and between the HAPS 10 and the terminal device 61.
  • the link is called a "service link”.
  • the section between the HAPS 10 and 20 and the GW station 70 is referred to as a “feeder link wireless section”.
  • a downlink of communication from the GW station 70 to the terminal device 61 via the HAPS 10 and 20 is referred to as a “forward link”, and an uplink of communication from the terminal device 61 to the GW station 70 via the HAPS 10 and 20. Is also called a "reverse link”.
  • FIG. 9 is an explanatory diagram showing an example of the cell configuration of the HAPS 20 according to the embodiment.
  • FIGS. 10A and 10B are explanatory diagrams showing an example of movement of the footprint of the cell by the rotational movement (rotation of yaw rotation) and translational movement of the HAPS according to the comparative example.
  • FIG. 11A and FIG. 11B are explanatory views showing an example of movement of the footprint of the cell due to rotational movement (rotation of yaw rotation) and translational movement of HAPS according to the embodiment. 10B and FIG. 11B, only some of the three cells are shown and the other four cells are omitted.
  • the communication relay device is an unmanned airship type HAPS 20, but it may be a solar plane type HAPS 10. Further, in the illustrated example, the HAPS 20 is located in the stratosphere at an altitude of about 20 km, the HAPS 20 forms a plurality of cells 200C (1) to 200C (7), and the service area 20A of the plurality of cells (7 cells) is configured. The diameter is 100 to 200 km, but is not limited to these.
  • the communication service that directly communicates with the terminal device 61 on the ground (or on the water) using the HAPS 20 located in the stratosphere is extremely attractive as a communication means at the time of expanding the service area and disaster.
  • the communication line of the HAPS 20 includes a feeder link (FL) connecting the GW station 70 and the HAPS 20 and a service link (SL) connecting the HAPS 20 and the terminal device 61.
  • FL feeder link
  • SL service link
  • the HAPS 20 undergoes rotational movement (turning) or translational movement due to the influence of air currents and atmospheric pressure in the stratosphere, etc., causing the posture and position to change. Therefore, as shown in FIGS. 10A and 10B, in the multi-cell configuration, the footprints 200F (1) to 200F (7) of the cells 200C (1) to 200C (7) formed on the ground (or on the water) should move. Therefore, it is assumed that a large number of terminal devices 61 located at the cell boundary portion 200H (hatched portion in the figure) in the service area are handed over (HO) all at once, and an increase in control signals due to HO and communication disconnection due to HO failure. It may occur. Further, not only HO but also a decrease in received power at the terminal device (out of the coverage area) can be considered.
  • the footprint 200F (1) can be obtained even if the HAPS 20 changes its posture or position due to rotation or translation as shown in FIGS. 11A and 11B.
  • the signal transmitted to and received from the service link antenna based on the information of at least one of the position and orientation of HAPS 20 (for example, with respect to a predetermined azimuth) while configuring the service link antenna so that ⁇ 200F (7) does not move.
  • Digital beam forming (DBF) control (hereinafter also referred to as “footprint fixed control”) that controls the amplitude and phase of a digital signal is applied.
  • the information on the position and orientation of the HAPS 20 itself may be acquired based on the outputs of the GPS receiver, gyro sensor, acceleration sensor, inertial sensor, etc. incorporated in the HAPS 20.
  • information on the position and attitude of the HAPS 20 itself is output from a GNSS inertial navigation system (GNSS / INS) that combines a GNSS (Global Navigation Satellite System) system incorporated in the HAPS 20 and an inertial measurement unit (IMU: Inertial Measurement Unit). You may acquire based on.
  • GNSS inertial navigation system GNSS / INS
  • GNSS Global Navigation Satellite System
  • IMU Inertial Measurement Unit
  • FIG. 12 is an explanatory diagram showing the definition of an angle indicating a posture change of the HAPS according to the embodiment.
  • the rotation angle of the HAPS 20 around the roll axis Y along the front-rear direction (forward traveling direction) is the roll angle ⁇ r
  • the pitch axis X along the left-right direction of the HAPS 20 is centered.
  • the rotation angle is the pitch angle ⁇ p
  • the rotation angle about the yaw axis Z along the vertical direction of the HAPS 20 is the yaw angle ⁇ y.
  • the horizontal (horizontal) movement (translational movement) of the HAPS 20 is about ⁇ 5 km
  • the vertical movement (translational movement) of the HAPS 20 can be assumed to move at an altitude of about 20 to 24 km.
  • the body of the communication relay device such as the HAPS 20 exhibits three-dimensional movement in the sky (for example, changes in longitude, latitude and altitude, and rotation about the roll axis, pitch axis and yaw axis).
  • the DBF control may be applied in consideration of the roll angle ⁇ r, the pitch angle ⁇ p, and the yaw angle ⁇ y so as to correspond to the three-dimensional movement.
  • the antenna configuration of the service link antenna and the DBF control resistant to the movement of the footprint due to the yawing of the HAPS 20 (rotational movement around the vertical axis of the machine body) are applied.
  • FIGS. 13A, 13B, and 13C are explanatory diagrams showing examples of the turning pattern of HAPS.
  • the shape of the flight route may be changed depending on the wind speed in the airspace (for example, the stratosphere) at the altitude where the solar plane type HAPS 10 is flying.
  • a circular flight route is determined as the flight route of HAPS 10 regardless of the direction of the wind W.
  • a circular partial arc is used as the flight route of the HAPS 10 so that the time zone during which the wind is blowing (opposite the wind W) is shortened as much as possible.
  • the flight route will be a "D" shape with a straight line.
  • the flight route of the HAPS 10 has a shape of “8” so that the time zone in which the wind is blowing (opposite the wind W) becomes shorter. Determine the flight route.
  • the DBF control is performed so as to correspond to the HAPS turning pattern in the changed flight route 10F. You may apply.
  • the HAPS flies in a turning pattern as shown in FIGS.
  • the HAPS rotates infinitely around the yaw axis Z (the yaw angle changes by 360 degrees), and the roll angle and the pitch angle are ⁇ numbers.
  • the DBF control may be applied assuming a degree (for example, an absolute value of 10 degrees or less).
  • FIG. 14A and 14B are explanatory views showing an example of footprint fixing control according to the embodiment.
  • FIG. 14A is a diagram of the HAPS 20 before turning
  • FIG. 14B is a diagram of the HAPS 20 after turning after rotating in the R direction in the figure.
  • the HAPS 20 includes, as a service link antenna (for example, the above-described three-dimensional cell forming antenna section 111), an array antenna 400 having a plurality of antenna elements 401 forming a cell 200C that performs wireless communication of a service link with a terminal device. ..
  • the HAPS 20 includes a digital beam forming (DBF) control unit 500 and a GNSS / INS 600 having a GPS antenna.
  • DBF digital beam forming
  • the DBF control unit 500 based on the information of the position and orientation of the HAPS 20 and the position information of the target cell, the amplitude of the digital signal of the signal transmitted / received to / from each antenna element 401 of the array antenna 400 of the service link. And control the phase.
  • the direction of the antenna directional beam (hereinafter, also simply referred to as “beam”) 700 including the main beam 701 and the side lobes 702 of the array antenna 400 is controlled so as to face the target footprint formation position, and the HAPS 20 is yawed.
  • the position of the footprint 200F of the cell 200C formed by the array antenna 400 can be fixed by rotating (turning) around the axis Z.
  • the beam 700 'in FIG. 14B is the beam direction when the DBF control is not performed.
  • FIG. 15A is an explanatory diagram showing from above an example of a circular array antenna 410 that constitutes a partial function of a cylinder type array antenna used for footprint fixing control according to another embodiment.
  • FIG. 15B is an explanatory view of an example of a linear array antenna 420 constituting another partial function of the cylinder type array antenna, as seen from the side. Since various movements such as vertical movement, horizontal movement, and rotation can be considered, the HAPS 20 needs DBF control for controlling the direction of the directional beam (antenna directional beam) of the service link antenna so as to correspond to each movement. Particularly in yawing, which is a turning motion around the yaw axis (Z axis) among the movements of the HAPS 20, the HAPS 20 rotates 360 degrees, so beam direction control for fixing the footprint is indispensable.
  • the footprint is displaced by the anteroposterior movement distance.
  • the farther from the HAPS 20 the greater the influence of the movement of the footprint.
  • the coverage radius is R
  • the displacement distance of the cell at the coverage edge displaced by one yaw rotation can be represented by 2 ⁇ R / 360. Therefore, if the coverage radius is 100 km, it will be displaced by about 1.7 km by rotating once. That is, the rotational movement has a greater effect on the movement of the footprint than the translational movement.
  • yaw rotation is infinitely different from roll rotation and pitch rotation, so beamforming control that is compatible with all directions is required.
  • the movement of the HAPS 20 body is decomposed into yaw rotation (turning) and other types (roll rotation, pitch rotation and movement), and a circular array antenna that considers 360 degrees infinite rotation as yaw rotation (turning).
  • (Circular active array) 410 see FIG. 15A
  • a linear array antenna linear active array 420 (see FIG. 15B) that considers ⁇ several degrees of roll rotation and pitch rotation are combined to form a service link antenna Is composed of.
  • horizontal and vertical three-dimensional beamforming and steering can be realized.
  • the horizontal direction mainly corresponds to the yaw rotation of the HAPS 20
  • the vertical direction mainly corresponds to the pitch rotation, roll rotation and translational movement of the HAPS 20.
  • Circular array antenna 410 is an array antenna in which a plurality of antenna elements 411 are arranged along a circumferential shape.
  • the DBF control that controls the antenna weight (amplitude and phase) to each antenna element 411 of the circular array antenna 410, when the body of the HAPS 20 yaw rotates (turns) in the R direction in the drawing, the cell The position of the footprint 200F can be fixed.
  • Circular array antenna 410 is applicable even when the coverage is wide because the antenna-directed beam is directed in the horizontal direction with respect to the direction toward the ground.
  • the linear array antenna 420 is an array antenna in which a plurality of antenna elements 421 are arranged in a line perpendicular to the ground.
  • the DBF control for controlling the antenna weight (amplitude and phase) to each antenna element 421 of the linear array antenna 420 the body of the HAPS 20 moves (rolls) other than yaw rotation (turn) in the R direction in the figure.
  • the position of the cell footprint 200F can be fixed when rotated, pitch rotated, moved, etc.).
  • the weight is calculated individually for the horizontal (circular array) and the vertical (linear array), and the product is calculated. Determines the weight for each antenna element.
  • the directivity of the entire antenna can be expressed as the product of the directivity of the circular array and the linear array.
  • a cell may be formed by separately using a planar array antenna or the like.
  • FIG. 16 is a perspective view showing a configuration example of a cylindrical array antenna 430 configured by combining a circular array antenna 410 and a linear array antenna 420.
  • the cylinder type array antenna 430 has an antenna configuration that is particularly resistant to movement of the footprint due to yawing.
  • the antenna elements 431 are arranged in a circle (circular array) so that the shape of the antenna does not change in any direction in the horizontal direction, and the vertical direction corresponds to the beam direction control in the vertical direction. Therefore, the antenna elements 431 are linearly arranged.
  • an antenna such as a planar array antenna may be provided separately.
  • the cylinder type array antenna 430 With the cylinder type array antenna 430, by using active elements as each horizontal antenna element, not only phase control for beam direction control but also power control (amplitude control) for side lobe reduction becomes possible. Further, in the cylinder type array antenna 430, a downward fixed tilt may be applied by giving a fixed phase to each antenna element 431 in order to suppress an increase in weight and power consumption in the vertical direction. Further, active elements may be used as the horizontal antenna elements in the same manner as in the horizontal direction. In this case, vertical beam direction control corresponding to vertical movement and horizontal movement and side lobe reduction are also possible.
  • FIG. 17 is an explanatory diagram of a horizontal angle (hereinafter also referred to as “horizontal steering angle”) ⁇ and a vertical angle (hereinafter also referred to as “vertical steering angle”) ⁇ in the footprint fixing control using the cylinder type array antenna 430.
  • FIG. 18 is an explanatory diagram of an antenna element that performs DBF control for each of the horizontal angle ( ⁇ ) and the vertical angle ( ⁇ ) in the cylinder type array antenna 430.
  • FIG. 19 is an explanatory diagram showing an example of a three-dimensional antenna directional beam formed by DBF control of the cylinder type array antenna 430.
  • the target horizontal angle ( ⁇ ) and the target vertical angle ( ⁇ ) viewed from the array antenna 430 of the HAPS 20 are set with respect to the direction of the center position of the footprint 200F of the cell at the target position.
  • the horizontal angle ( ⁇ ) is, for example, the angle of the projection vector of the target beam vector 200V from the array antenna 430 toward the center of the target footprint 200F in the horizontal plane (XY plane in the drawing) with respect to the X axis. ..
  • the vertical angle ( ⁇ ) is the angle of the target beam vector 200V with respect to the horizontal plane in the vertical plane including the target beam vector 200V and the vertical direction of the HAPS 20.
  • DBF control (phase control) of the target horizontal angle ( ⁇ ) of the antenna-directed beam with respect to the target footprint 200F is performed on the horizontal antenna element group 432 arranged in the horizontal direction in FIG.
  • the DBF control (phase control) of the target vertical angle ( ⁇ ) of the antenna directional beam with respect to the target footprint 200F is performed on the vertical antenna element group 433 arranged in the vertical direction in FIG.
  • the main beam is directed in the direction of a predetermined target beam vector 200V.
  • An antenna pointing beam 700 having 701 is formed.
  • HAPS with a multi-cell configuration it is necessary to realize not only beam direction control according to the movement of the aircraft, but also side lobe reduction to reduce inter-cell interference.
  • a desired pattern in which the beam direction, the side lobe level, and the beam width are considered in advance is defined, and the antenna weight approximate to the desired pattern is calculated.
  • FIG. 20 is an explanatory diagram showing an example of the circular array antenna 410 that constitutes a part of the antenna configuration of the HAPS 10 and 20 (for example, the cylinder type array antenna 430) according to the embodiment.
  • the number of elements of the circular array antenna 410 is N
  • the radius is r
  • the angle at which the n (1 ⁇ n ⁇ N) th antenna element 411 is located and the pointing direction are ⁇ n
  • the horizontal angle of the antenna pointing beam horizontal steering.
  • the angle is ⁇ 0 .
  • w ⁇ C N ⁇ 1 be the antenna weight (hereinafter also referred to as “weight”) applied to each antenna element 411, and let a ⁇ C N ⁇ ⁇ 1 be the antenna directivity in the horizontal direction calculated using the weight w.
  • weight the antenna weight
  • w and w The relationship between w and w is expressed by the following equation (4).
  • F ⁇ C N ⁇ ⁇ N is a matrix determined by the element spacing and the directivity pattern of each antenna element 411, and the element fmn in the m-th row and the n-th column can be expressed by the following equation (5).
  • ⁇ m is a horizontal angle of ⁇ 180 degrees to 180 degrees
  • is a wavelength
  • the directivity a for the given antenna weight w can be expressed in a matrix format using F. Therefore, the weight w for an arbitrary antenna directivity can be solved by using the inverse matrix of F as in the following Expression (6).
  • the inverse matrix cannot be obtained. Therefore, in this example, the Moore-Penrose generalized inverse matrix F + that minimizes
  • the desired antenna directivity is given by the Gaussian distribution of the following equation (7), where the element of a is am.
  • FIG. 21 is a graph showing an example of the computer simulation result of the beam pattern in the horizontal direction of the circular array antenna 410 of FIG.
  • the directional beam patterns C31, C32, C33, C34, C35, C36 in the horizontal plane of the antenna 410 are shown.
  • the main beam can form a beam with a half width of about 40 degrees, and the beam direction can be controlled without changing the beam shape in any direction in the horizontal plane.
  • a computer simulation evaluation of the number of handovers was performed using the above-mentioned cylinder type array antenna 430 of FIGS. 15A and 15B.
  • the number of handovers when the horizontal DBF control using the above weight is not applied ⁇ Yaw ⁇ 0
  • An evaluation was made.
  • HAPS is assumed to perform only the yawing rotational movement (yaw rotation), and as one example, one rotation is performed in 10 minutes (rotation is 0.6 degrees per second).
  • Table 1 shows the evaluation specifications of the antenna configuration.
  • the peripheral 6 cells are formed by a cylindrical array antenna 430, and the central 1 cell is covered by a downward facing planar array antenna.
  • the vertical and planar array antennas of the cylinder type array antenna 430 give different amplitudes to the respective antenna elements so as to have the half widths shown in Table 1, respectively.
  • the handover is not performed and when it exceeds 3dB, the handover to the neighboring cell is performed.
  • the HAOS altitude is 20 [km] and the circle with a radius of 100 [km] is the evaluation target area, and the HO rate that occurs per second (the number of UEs handed over to all UEs (terminal devices) in the 100 [km] area) was evaluated when the DBF control was not applied and when it was applied, and it was 0.96% when the DBF control was not applied and 0% when the DBF control was applied (no occurrence of handover).
  • HAPS 10 and 20 can suppress the movement of the cell footprint due to changes in the posture and position such as yawing rotation. Therefore, the handover due to the yaw rotation of the HAPS 10 and 20 can be eliminated, the frequent occurrence of handovers due to the movement of the footprint (a phenomenon in which a large number of terminal devices are handed over at the same time) is suppressed, and an increase in control signals and handovers due to handovers. It is possible to suppress communication interruption due to failure.
  • the vertical beamforming control in the HAPS 10, 20 multi-cell configuration of the present embodiment will be described.
  • the footprint can be fixed by the vertical beamforming control by the linear array antenna.
  • the vertical beam forming is also appropriate by expressing the relationship between the desired antenna directivity and the antenna weight by a matrix. It is possible to find the antenna weight.
  • FIG. 22 is an explanatory diagram showing an example of the linear array antenna 420 that constitutes a part of the antenna configuration of the HAPS 10 and 20 (for example, the cylinder type array antenna 430) according to the embodiment.
  • the number of antenna elements 421 of the linear array antenna 420 is N
  • the element interval is d [m]
  • the vertical steering angle that is a target vertical angle is ⁇ 0 .
  • the downward angle in the figure is a negative angle.
  • the weight in the linear array antenna 420 is w ⁇ C N ⁇ 1
  • the antenna directivity in the vertical direction is a ⁇ C N ⁇ ⁇ 1
  • the matrix determined by the array factor and the directivity of the antenna element is If F ⁇ C N ⁇ ⁇ N , the element fmn in the m-th row and the n-th column of F can be expressed by the following equation (8).
  • the weight w for an arbitrary antenna directivity can be solved using the inverse matrix of F, as in the above-mentioned equation (6).
  • the target beam width and vertical steering angle given to cells that are vertically connected on the ground surface as viewed from HAPS are determined and set as shown below.
  • the target beam width and vertical steering angle in vertical beamforming control must be set appropriately for each cell according to the HAPS operation.
  • FIG. 23 is an explanatory diagram showing an example of the relationship between the array antenna 400 of the HAPS 10 and 20 and the cell arrangement according to the embodiment.
  • the array antenna 400 for the HAPS service link a cylinder type array antenna having a planar array antenna arranged on the bottom surface is used.
  • the area within 20 km from the point (0 km) directly below the array antenna 400 is covered by the downward planar array antenna portion, and the area from 20 to 100 km from the point directly below is covered by the cylinder type array antenna.
  • the array antenna 400 shown by the solid line in the figure shows the antenna position after the HAPS has moved, and the array antenna 400 'shown by the broken line shows the antenna position before the HAPS has moved.
  • N 1,2, ⁇
  • HAPS flight altitude altitude at the center of the array antenna 400
  • the target beam width ⁇ bw, n [degree] of the n-th cell can be expressed by the following equation (10).
  • the vertical steering angle ⁇ str, n of the antenna pointing beam for each cell always faces the center of the footprint of the cell.
  • the vertical steering angle is corrected by multiplying the moving distance of HAPS by the correction coefficient ⁇ .
  • the vertical steering angle ⁇ str, n in consideration of the correction is defined by the following equation (11).
  • the beam before HAPS movement is calculated based on the equations (7) and (8).
  • the width is calculated, the first cell (cell # 1) is 26.6 degrees and the second cell (cell # 2) is 7.1 degrees.
  • the vertical steering angle is 26.6 degrees in cell # 1 and 14.0 degrees in cell # 2.
  • the antenna pattern in the vertical plane was evaluated.
  • FIG. 24 is a graph showing an example of computer simulation results of the beam patterns C41 and C42 in the vertical direction of the array antenna 400 of FIG. As shown in FIG. 24, the difference in gain between cell # 1 and cell # 2 was about 4 dB. The beam width is 11 degrees for cell # 1 and 28 degrees for cell # 2, so a gain difference of about 4 dB is generated. Further, it can be seen that since the beam is directed to the ground side in cell # 1, the grating lobe appears on the sky side.
  • 25A and 25B are graphs showing an example of evaluation results of distance characteristics of received power evaluated for the DBF control methods (I) and (II) of the array antenna 400 of FIG. 23, respectively.
  • 25A is an evaluation result of the DBF control method (I) of the array antenna 400
  • FIG. 25B is an evaluation result of the DBF control method (II) of the array antenna 400.
  • the horizontal axis in FIGS. 25A and 25B is the distance [km] on the ground surface from directly below HAPS, and the vertical axis is the received power “dBm”.
  • FIG. 25A it can be seen that the cell boundaries can be almost fixed with respect to the movement of HAPS by controlling the beam width and the vertical steering of the above equations (10) and (11).
  • FIG. 25B shows that the position of the cell boundary can be almost fixed only by correcting the vertical steering angle without performing the beam width control. Also, from the viewpoint of gain, it can be seen that almost the same characteristics as in the case of the method (I) of the array antenna 400 shown in FIG. 25A can be realized.
  • FIGS. 26A and 26B are graphs each showing an example of the evaluation result of the variation of the cell boundary position (the position of the cell edge) evaluated for the plurality of types of DBF control methods of the array antenna 400 of FIG. 23.
  • FIG. 26A is the evaluation result when the altitude is 20 km and
  • FIG. 26B is the case when the altitude is 24 km.
  • the horizontal axis in the figure represents the horizontal movement distance of HAPS ( ⁇ 5 km ⁇ ⁇ d ⁇ 5 km).
  • the cell boundary is moved by the movement distance (10 km), and the beam width control is not performed and the steering correction is not performed. It can be seen that the displacement is 4 km.
  • the cell boundary shift is kept within about 1 km, and even if the maximum altitude of 24 km is added, the cell (footprint) It can be seen that the distance of displacement is within about 2 km.
  • FIG. 27 is a block diagram showing an example of an antenna configuration and a DBF control system according to the embodiment.
  • the example of FIG. 27 is an example in which one cell (# 0) is formed by a cylinder type array antenna having a plurality of circular array antennas 410 composed of N antenna elements 411. At the position of each antenna element 411 of the circular array antenna 410, although omitted for convenience of illustration, a linear array antenna in which L antenna elements are arranged in the vertical direction is formed.
  • the array antenna of this example has a total of N ⁇ L antenna elements.
  • FIG. 27 only the downlink is described for the downlink and the uplink to simplify the illustration. Further, in FIG. 27, only one of the horizontally polarized wave and the vertically polarized wave (single polarized wave) is shown, but when transmitting / receiving a signal of the other polarized wave, a similar DBF control unit is added. It is provided.
  • the DBF control unit 500 includes a weight calculation unit 501 and a weight calculation unit 502.
  • the weight calculation unit 501 uses a plurality of antennas of the circular array antenna 410 forming a cylinder type array antenna based on the position and orientation data of the HAPS 10 and 20 acquired by GNSS / INS and the position information of the target cell.
  • the weight calculation unit 502 applies the weight calculated by the weight calculation unit 501 to the digital transmission signal, and thereby the plurality of antenna elements 411 (0 to N) of the first-stage circular array antenna forming the cylinder type array antenna are formed. -1) generates a plurality of digital transmission signals (0 to N-1). Similarly, a plurality of digital transmission signals (0 to N-1) corresponding to the plurality of antenna elements 411 (0 to N-1) of the circular array antennas of the second to Lth stages are generated. The plurality of digital transmission signals (0 to N ⁇ 1) output from the weight calculation unit 502 are converted into analog signals by the DA converter (DAC) 510, and converted into a predetermined transmission frequency fc by the frequency converter 511.
  • DAC DA converter
  • the corresponding antenna element 411 (0 to N-1) of each of a plurality of circular array antennas is passed through a duplexer (DUP) 513. Supplied.
  • PA power amplifier
  • DUP duplexer
  • the antenna-oriented beam 700 is formed toward the target position from the cylindrical array antenna composed of the circular array antennas 410 having a plurality of stages, and the beam is located in the cell with the footprint fixed.
  • the transmission signal can be transmitted to the terminal device.
  • the plurality of uplink reception signals received by the plurality of antenna elements 411 (0 to N ⁇ 1) of the plurality of stages (0 to L ⁇ 1) of the circular array antenna 410 are transmitted via the DUP 513.
  • the weight calculator 502. After being amplified by a low noise amplifier, it is converted into a predetermined frequency by a frequency converter, converted into a digital signal by an AD converter (ADC), and supplied to the weight calculator 502.
  • the weight calculation unit 502 applies the plurality of weights to the plurality of digital signals and then adds the plurality of weights to each other, thereby generating a reception signal from the terminal device located in the predetermined cell.
  • the weight calculation unit 502 may have a function of antenna switching control.
  • FIG. 28 is a block diagram showing another example of the antenna configuration and the control system for DBF control according to the embodiment.
  • the example of FIG. 28 is an example in which M cells (# 0 to # M-1) are formed by a cylinder type array antenna having a plurality of circular array antennas 410 composed of N antenna elements 411. Note that, in FIG. 28, description of portions common to FIG. 27 will be omitted.
  • the DBF control unit 500 includes a weight calculation unit 501 and M weight calculation units 502 corresponding to M cells (# 0 to # M-1).
  • the weight calculator 501 calculates weights for the number of cells supplied to each of the plurality of weight calculators 502.
  • the weights calculated here are matrices rather than vectors.
  • Each of the plurality of weight calculation units 502 applies the weight calculated by the weight calculation unit 501 to perform a weight calculation for performing beamforming for each cell and supply a plurality of digital transmissions to each of the N antenna elements 411. Generate and output a signal.
  • the digital transmission signal output from the weight calculator 502 is multiplexed (added) for each antenna element, so that beam control in different directions can be simultaneously performed for a plurality of cells.
  • the antenna-directed beam 700 is formed from each of a plurality of different target positions from a cylinder-type array antenna composed of a plurality of stages of circular array antennas 410, and each of them is formed with a fixed footprint.
  • the transmission signal can be transmitted to the terminal device located in the cell.
  • FIG. 29 is a block diagram showing still another example of the antenna configuration and the DBF control system according to the embodiment.
  • the planar array antennas 440 (0) to 440 (5) which are six planar array antennas, perform antenna switching and DBF control, and the HAPS 10, 120 footprint fixed control corresponding to yaw rotation is performed. This is an example of performing 6 cells (# 0 to # M-1).
  • Each planar array antenna 440 (0) to 440 (5) has N antenna elements 441 and is arranged so that the beam directions of the array antennas are different from each other. Note that, in FIG. 29, the description of the portions common to FIG. 27 is omitted.
  • the DBF control unit 500 includes a weight calculation unit 501 and six weight calculation units 502 (0) to 502 (0) to 620 (0) to be provided corresponding to the six planar array antennas 440 (0) to 440 (5). 502 (5).
  • the numbers of the planar array antenna 440 and the weight calculation unit 502 may be other than six.
  • an antenna switching unit 520 is provided separately from the DBF control unit 500.
  • the antenna switching unit 520 forms the planar array antennas 440 (0) to 440 (5) forming the six cells (# 0 to # M-1) between the planar array antennas 440 (0) to 440 (5). ) Switch.
  • the weight calculation units 502 (0) to 502 (5) are switched so as to switch the planar array antenna forming the first cell (# 0). Switch the connection.
  • FIG. 30 is a perspective view showing an example of the planar array antennas 440 (0) to 440 (5) that are DBF controlled by the control system of FIG.
  • the six planar array antennas 440 (0) to 440 (5) are arranged such that the plurality of antenna elements 441 are two-dimensionally distributed along the planar shape.
  • the planar array antennas 440 (0) to 440 (5) are arranged on each of the six slopes of the downward pyramid shape (hexagonal pyramid shape).
  • a bottom surface may be provided at the lower ends of the plurality of pyramidal shapes (hexagonal pyramid shapes), and a planar array antenna 440 for forming cells may be provided directly below the bottom surface.
  • the plurality of planar array antennas 440 may be arranged on each of a plurality of outer surface portions in a prismatic shape (for example, a hexagonal prism shape).
  • DBF control by the control system of FIG. 29 is performed as follows, for example.
  • phase control is performed by each of the planar array antennas 440 (0) to 440 (5), so that each of the planar array antennas 440 within a predetermined angular range (for example, 30 degrees) in the horizontal direction (lateral direction).
  • a predetermined angular range for example, 30 degrees
  • the planar array antenna 440 corresponding to each cell is Switch from (0) to 440 (5).
  • the DBF control in the vertical direction is performed in the same manner as the control in the vertical direction in the cylinder type array antenna 430 described above, for example.
  • FIG. 31 is an explanatory diagram showing an example of horizontal beamforming control of the planar array antennas 440 (0) to 440 (5).
  • the example of FIG. 31 is an example when the machine body of the HAPS 10, 20 is rotating to the right.
  • a cell is formed by the beam 700 above the drawing in the normal direction of the planar array antenna 440 (5).
  • the airframe rotates (turns) in the rightward rotation direction indicated by arrow R in the figure by, for example, 29 degrees or less
  • the beam 700 is generated by the phase control of the planar array antenna 440 (5) as shown at the center of the figure.
  • the cell position is maintained by steering to the left.
  • the phase control of the planar array antenna 440 (5) is performed. Since it becomes difficult to steer the beam 700 by the above, the planar array antenna for forming the cell is switched from the planar array antenna 440 (5) to the adjacent planar array antenna 440 (0), and the switched planar array antenna 440 ( The beam 700 is steered in the right rotation direction by performing the phase control for 0), and the position of the cell is maintained.
  • the weight calculating unit 502 may perform the DBF control including the antenna switching processing without separately providing the antenna switching unit 520. ..
  • FIG. 32 is a block diagram showing still another example of the antenna configuration and the DBF control system according to the embodiment. Note that, in FIG. 32, description of portions common to FIG. 27 will be omitted.
  • the control system of FIG. 32 paying attention to the fact that the turning of the body of the HAPS 10, 20 is a repetitive motion of the same rotation and movement (there is periodicity), and the predicted movement route of the HAPS 10, 20 based on the position of the service area.
  • the weights corresponding to the positions and orientations (tilt angles and orientations) of the different sets of aircraft in the above are calculated in advance and stored in the storage unit 514 such as a memory.
  • the weight reading unit 504 refers to the storage unit 514 based on the attitude and position of the machine body calculated from the GNSS / INS data, reads the weight corresponding to the calculated attitude and position of the machine body, and the weight calculation unit 502 Used for calculation of transmission signal.
  • the weight reading unit 504 since the sequential weight calculation is unnecessary, the calculation amount and power consumption can be significantly reduced.
  • the array antenna and the DBF control having the above configuration, the movement of the cell footprint due to the changes in the postures and positions of the HAPS 10 and 20 is suppressed, and frequent HO and HO are caused. It is possible to suppress the communication interruption due to the increase of the control signal and the HO failure. Moreover, since the DBF control that is small and easy to reduce the weight is used to control the directional beam of the array antenna, not the large and heavy mechanical control mechanism, the HAPS 10 and 20 can be downsized.
  • the DBF control in each of the above embodiments may be performed independently by the HAPS 10 and 20, or may be performed by a control command from an external device such as the remote control device 85 or the server 86. Further, the DBF control may be performed periodically at a predetermined time interval, or may be performed when the movement distance or posture change of the HAPS 10, 20 becomes larger than a predetermined value.
  • a base station and components of a base station apparatus can be implemented by various means. For example, these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
  • entities for example, relay communication station, feeder station, gateway station, base station, base station device, relay communication station device, terminal device (user device, mobile station, communication terminal), management device, monitoring device) , A remote control device, a server, a hard disk drive device, or an optical disk drive device
  • means such as a processing unit used to implement the steps and components are one or more application specific ICs (ASIC).
  • ASIC application specific ICs
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processor
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Processor Controller, Microcontroller, Microprocessor, Electronic Device, Book It may be implemented in other electronic units, computers, or combinations thereof designed to perform the functions described herein.
  • firmware and / or software implementations means such as processing units used to implement the components may be programs (eg, procedures, functions, modules, instructions) that perform the functions described herein. , Etc.) may be implemented.
  • any computer / processor readable medium embodying firmware and / or software code means, such as a processing unit, used to implement the steps and components described herein. May be used to implement.
  • firmware and / or software code may be stored in memory and executed by a computer or processor, eg, at the controller.
  • the memory may be mounted inside the computer or the processor, or may be mounted outside the processor.
  • the firmware and / or software code may be, for example, random access memory (RAM), read only memory (ROM), non-volatile random access memory (NVRAM), programmable read only memory (PROM), electrically erasable PROM (EEPROM). ), A FLASH memory, a floppy disk, a compact disk (CD), a digital versatile disk (DVD), a magnetic or optical data storage device, etc., and may be stored on a computer or processor readable medium. Good.
  • the code may be executed by one or more computers or processors, or may cause the computers or processors to perform the functional aspects described herein.
  • the medium may be a non-transitory recording medium.
  • the code of the program may be readable and executable by a computer, a processor, or another device or machine, and its format is not limited to a particular format.
  • the code of the program may be any of source code, object code, and binary code, or may be a mixture of two or more of these codes.
  • HAPS Small plane type
  • HAPS airship type
  • GW station gateway station
  • mobile communication network 90, 90 (1), 90 (2) base station (eNodeB) 100A cell 110, 210 relay communication station 200C, 200C (1) to 200C (7) three-dimensional cell 200F, 200F (1) to 200F (7) footprint
  • Vertical direction antenna element group 440 Planar array antenna 441
  • Antenna element 500 DBF control section 501
  • Weight calculation section 503
  • Adder 504 Weight reading section 514 Storage unit 520
  • Antenna switching unit 600
  • GNSS / INS GPS antenna

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

小型化を図るともにセルのフットプリントの移動を抑制することができる空中浮揚型の通信中継装置を提供する。通信中継装置は、端末装置と間のサービスリンクの無線通信を行うセルを形成する複数のアンテナ素子を有するアレイアンテナと、通信中継装置の位置及び姿勢の少なくとも一方の情報を取得する情報取得部と、通信中継装置の位置及び姿勢の少なくとも一方の情報に基づいて、通信中継装置に予め設定した基準方向の向きを基準にして、セルのフットプリントの位置を固定するように通信中継装置からセルの中心に向かうアンテナ指向ビームの目標ビーム幅、目標水平角度及び目標垂直角度を決定し、目標ビーム幅、目標水平角度及び目標垂直角度を有するアンテナ指向ビームを形成するようにアレイアンテナの前記複数のアンテナ素子それぞれを介して送受信される複数の送受信信号の位相及び振幅を制御する制御部とを備える。

Description

HAPSにおけるサービスリンクのアンテナ構成及びビームフォーミング制御
 本発明は、3次元化ネットワークの構築に適したHAPS等の無線中継装置におけるサービスリンクのアンテナ構成及びビームフォーミング制御に関するものである。
 従来、空中に浮揚して滞在可能な高高度プラットフォーム局(HAPS)(「高高度疑似衛星」ともいう。)等の通信中継装置が知られている(例えば、特許文献1参照)。この空中浮揚型の通信中継装置における通信回線は、その通信中継装置と移動通信網側のゲートウェイ(GW)局との間のフィーダリンクと、通信中継装置と端末装置との間のサービスリンクとで構成される。
米国特許出願公開第2016/0046387号明細書
Hui Li, Xin Xu, Mingchuan Yang and Qing Guo, "Compensative mechanism based on steerable antennas for High Altitude Platform movement," 2011 6th International ICST Conference on Communications and Networking in China (CHINACOM), Harbin, 2011, pp. 870-874.
 上記空中浮揚型の通信中継装置では、その通信中継装置が位置している成層圏等での気流や気圧などの影響により姿勢や位置が変動すると、地上等に形成されるセルのフットプリントが移動する。このため、サービスエリア内の多数の端末装置が一斉にハンドオーバ(HO)するHOの頻発が想定され、HOの頻発による制御信号の増加やHO失敗による通信断が発生するおそれがある。
 非特許文献1には、HAP(高高度プラットフォーム)のアンテナの方向を機械的に制御することによりHAPが形成するセルのフットプリントを固定する技術が提案されているが、制御機構が大型になり重量が大きくなるため、小型の通信中継装置に搭載するのが難しい。
 本発明の一態様に係る通信中継装置は、端末装置と無線通信する空中滞在型の通信中継装置であって、前記端末装置と間のサービスリンクの無線通信を行うセルを形成する複数のアンテナ素子を有するアレイアンテナと、前記通信中継装置の位置及び姿勢の少なくとも一方の情報を取得する情報取得部と、前記情報取得部で取得した前記通信中継装置の位置及び姿勢の少なくとも一方の情報に基づいて、前記通信中継装置に予め設定した基準方向の向きを基準にして、前記セルのフットプリントの位置を固定するように前記通信中継装置から前記セルの中心に向かうアンテナ指向ビームの目標ビーム幅、目標水平角度及び目標垂直角度を決定し、前記目標ビーム幅、前記目標水平角度及び前記目標垂直角度を有するアンテナ指向ビームを形成するように前記アレイアンテナの前記複数のアンテナ素子それぞれを介して送受信される複数の送受信信号の位相及び振幅を制御する制御部と、を備える。
 前記通信中継装置において、サービスエリアを構成する複数のセル形成し、前記制御部は、前記通信中継装置に予め設定した基準方向の向きを基準にして、前記複数のセルのフットプリントそれぞれを固定するように前記通信中継装置から前記複数のセルそれぞれの中心に向かう複数のアンテナ指向ビームそれぞれの目標ビーム幅、目標水平角度及び目標垂直角度を決定し、前記複数のセルのそれぞれについて、前記目標ビーム幅、前記目標水平角度及び前記目標垂直角度を有するアンテナ指向ビームを形成するように前記複数の送受信信号の位相及び振幅を制御してもよい。
 前記通信中継装置において、前記通信中継装置が移動する前の前記通信中継装置の鉛直方向下方の地点から前記セルの中心までの地表距離をdn[km]とし、前記通信中継装置が移動する前の前記通信中継装置の高度をh[km]とし、前記通信中継装置の水平方向及び垂直方向における移動距離をそれぞれΔd[km]及びΔh[km]とし、補正係数をβとしたとき、前記通信中継装置が移動した後の前記目標垂直角度θstr,n[度]は次式(1)を満たすようにしてもよい。
Figure JPOXMLDOC01-appb-M000004
 また、前記通信中継装置において、前記通信中継装置が移動する前の前記通信中継装置の鉛直方向下方の地点から前記セルの中心までの地表距離をdn[km]とし、前記通信中継装置が移動する前の前記通信中継装置の高度をh[km]とし、前記通信中継装置の水平方向及び垂直方向における移動距離をそれぞれΔd[km]及びΔh[km]とし、前記セルの中心及びセル境界から前記通信中継装置を見たときの仰角をθn[度]及びθedge,k[度]としたとき、前記通信中継装置が移動した後の前記目標ビーム幅θbw,n[度]は次式(2)及び(3)を満たすようにしてもよい。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 前記通信中継装置において、前記アレイアンテナは、円柱周面形状に沿って複数のアンテナ素子を分布させるように配置したシリンダー型のアレイアンテナであってもよい。
 また、前記通信中継装置において、前記シリンダー型のアレイアンテナは、前記円柱周面形状の周方向に複数のアンテナ素子を並べたサーキュラー型のアレイアンテナを、前記円柱周面形状の中心軸に平行な方向に複数組並べて構成してもよい。
 また、前記通信中継装置において、前記円柱周面形状の周方向に複数のアンテナ素子が並んだサーキュラー型のアレイアンテナ及び前記円柱周面形状の中心軸に平行な方向に複数のアンテナ素子が並んだリニア型のアレイアンテナのそれぞれに対して、前記複数の送受信信号の位相及び振幅の制御を互いに独立に行ってもよい。
 また、前記通信中継装置において、前記シリンダー型のアレイアンテナの底面部に複数のアンテナ素子を更に配置してもよい。
 前記通信中継装置において、前記目標水平角度と所望のビームパターンとに基づいて、前記複数のアンテナ素子に対する複数の送受信信号それぞれに適用するウェイトを計算し、前記複数のウェイトに基づいて、前記複数の送受信信号の位相及び振幅の制御を行ってもよい。
 また、前記通信中継装置において、前記通信中継装置に予め設定した基準方向の向きを基準にしたアンテナ指向ビームの複数の水平角度について所望のビームパターンを得るように予め決定したウェイトの位相及び振幅の近似式を記憶し、前記基準方向の向きを基準にして、前記セルのフットプリントを固定するようにアンテナ指向ビームの目標水平角度を求め、前記目標水平角度と前記近似式とに基づいて、前記複数のアンテナ素子に対する複数の送受信信号それぞれに適用するウェイトを計算し、前記複数のウェイトに基づいて、前記複数の送受信信号の位相及び振幅の制御を行ってもよい。
 また、前記通信中継装置において、前記通信中継装置に予め設定した基準方向の向きを基準にして、前記セルのフットプリントを固定するようにアンテナ指向ビームの目標水平角度を求め、前記目標水平角度に基づいて、前記複数のアンテナ素子に対する複数の送受信信号それぞれに適用するウェイトを、前記目標水平角度を中心としたガウス分布の関数で計算し、前記複数のウェイトに基づいて、前記複数の送受信信号の位相及び振幅の制御を行ってもよい。
 また、前記通信中継装置において、前記目標水平角度とは反対側に位置する背面側のアンテナ素子について前記ウェイトをゼロにしてもよい。
 前記通信中継装置において、前記アレイアンテナは、平面形状にそって複数のアンテナ素子を2次元的に分布させるように配置した複数の平面型のアレイアンテナを、各アレイアンテナのビームの向きが互いに異なるように配置して構成し、前記複数の平面型のアレイアンテナの間で前記セルの形成に用いるアレイアンテナを切り替えるアンテナ切り替え部を備えてもよい。
 また、前記通信中継装置において、前記平面型のアレイアンテナを、角錐形状、角柱形状又はそれらを組み合わせた形状における複数の外面部それぞれに配置してもよい。
 また、前記通信中継装置において、前記通信中継装置に予め設定した基準方向の向きを基準にして、前記セルのフットプリントを固定するようにアンテナ指向ビームの目標水平角度と目標垂直角度を求め、現在の水平角度と目標水平角度との差が所定の閾値以下のときは、使用中の平面型のアレイアンテナに対して前記送受信信号の位相及び振幅の制御を行い、現在の水平角度と目標水平角度との差が前記閾値よりも大きくなったときに、前記平面型のアレイアンテナを切り替えて前記送受信信号の位相及び振幅の制御を行ってもよい。
 前記通信中継装置において、サービスエリアの位置を基準にした前記通信中継装置の予測移動経路における互いに異なる複数組の位置及び姿勢それぞれに対応づけて、前記送受信信号に適用するウェイトを予め計算して保存し、前記保存している複数組の絶対的な位置及び姿勢それぞれに対応するウェイトから、前記情報取得部で取得した前記通信中継装置の位置及び姿勢に対応するウェイトを選択し、前記選択したウェイトに基づいて前記送受信信号の位相及び振幅の制御を行ってもよい。
 本発明によれば、空中浮揚型の通信中継装置の小型化を図るともにサービスエリアを構成するセルのフットプリントの移動を抑制することができる。
図1は、本発明の一実施形態に係る3次元化ネットワークを実現する通信システムの全体構成の一例を示す概略構成図である。 図2は、実施形態の通信システムに用いられるHAPSの一例を示す斜視図である。 図3は、実施形態の通信システムに用いられるHAPSの他の例を示す側面図である。 図4は、実施形態の複数のHAPSで上空に形成される無線ネットワークの一例を示す説明図である。 図5は、更に他の実施形態に係る3次元化ネットワークを実現する通信システムの全体構成の一例を示す概略構成図である。 図6は、実施形態のHAPSの中継通信局の一構成例を示すブロック図である。 図7は、実施形態のHAPSの中継通信局の他の構成例を示すブロック図である。 図8は、実施形態のHAPSの中継通信局の更に他の構成例を示すブロック図である。 図9は、実施形態に係るHAPSのセル構成の一例を示す説明図である。 図10Aは、比較例に係るHAPSの回転運動(旋回)及び並進運動によるセルのフットプリントの移動の一例を示す説明図である。 図10Bは、比較例に係るHAPSの回転運動(旋回)及び並進運動によるセルのフットプリントの移動の一例を示す説明図である。 図11Aは、実施形態に係るHAPSの回転運動(旋回)及び並進運動によるセルのフットプリントの移動の一例を示す説明図である。 図11Bは、実施形態に係るHAPSの回転運動(旋回)及び並進運動によるセルのフットプリントの移動の一例を示す説明図である。 図12は、実施形態に係るHAPSの姿勢変化を示す角度の定義を示す説明図である。 図13Aは、HAPSの旋回パターンの例を示す説明図である。 図13Bは、HAPSの旋回パターンの例を示す説明図である。 図13Cは、HAPSの旋回パターンの例を示す説明図である。 図14Aは、実施形態に係るフットプリント固定制御の一例を示す説明図である。 図14Bは、実施形態に係るフットプリント固定制御の一例を示す説明図である。 図15Aは、他の実施形態に係るフットプリント固定制御に用いられるシリンダー型アレイアンテナの一部分機能を構成するサーキュラーアレイアンテナの一例を上方から見た説明図である。 図15Bは、図15Aのシリンダー型アレイアンテナの他の部分機能を構成するリニアアレイアンテナの一例を側方から見た説明図である。 図16は、サーキュラーアレイアンテナとリニアアレイアンテナとを組み合わせて構成したシリンダー型のアレイアンテナの一構成例を示す斜視図である。 図17は、シリンダー型のアレイアンテナを用いたフットプリント固定制御における水平角度(φ)及び垂直角度(θ)の説明図である。 図18は、シリンダー型のアレイアンテナにおける水平角度(φ)及び垂直角度(θ)それぞれに対するDBF制御を行うアンテナ素子の説明図である。 図19は、シリンダー型のアレイアンテナのDBF制御で形成される3次元的な指向性ビームの一例を示す説明図である。 図20は、実施形態に係るHAPSのアンテナ構成の一部を構成するサーキュラーアレイアンテナの一例を示す説明図である。 図21は、図20のサーキュラーアレイアンテナの水平方向におけるビームパターンの計算機シミュレーション結果の一例を示すグラフである。 図22は、実施形態に係るHAPSのアンテナ構成の一部を構成するリニアアレイアンテナの一例を示す説明図である。 図23は、実施形態に係るHAPSのアレイアンテナとセルの配置との関係の一例を示す説明図である。 図24は、図23のアレイアンテナの垂直方向におけるビームパターンの計算機シミュレーション結果の一例を示すグラフである。 図25Aは、図23のアレイアンテナについて評価した受信電力の距離特性の評価結果の一例を示すグラフである。 図25Bは、図23のアレイアンテナについて評価した受信電力の距離特性の評価結果の一例を示すグラフである。 図26Aは、図23のアレイアンテナについて評価したセル境界位置の変動の評価結果の一例を示すグラフである。 図26Bは、図23のアレイアンテナについて評価したセル境界位置の変動の評価結果の一例を示すグラフである。 図27は、実施形態に係るアンテナ構成及びDBF制御の制御系の一例を示すブロック図である。 図28は、実施形態に係るアンテナ構成及びDBF制御の制御系の他の例を示すブロック図である。 図29は、実施形態に係るアンテナ構成及びDBF制御の制御系の更に他の例を示すブロック図である。 図30は、実施形態に係る平面アレイアンテナの一例を示す斜視図である。 図31は、平面アレイアンテナの水平方向のビームフォーミング制御の一例を示す説明図である。 図32は、実施形態に係るアンテナ構成及びDBF制御の制御系の更に他の例を示すブロック図である。
 以下、図面を参照して本発明の実施形態について説明する。
 図1は、本発明の一実施形態に係る通信システムの全体構成の一例を示す概略構成図である。
 本実施形態に係る通信システムは、多数の端末装置への同時接続や低遅延化などに対応する第5世代又は第5世代以降の次々世代の移動通信の3次元化ネットワークの実現に適する。なお、本明細書に開示する通信システム、中継通信局、基地局、リピーター及び端末装置に適用可能な移動通信の標準規格は、第5世代の移動通信の標準規格、及び、第5世代以降の次々世代の移動通信の標準規格を含む。
 図1に示すように、通信システムは、複数の空中浮揚型の通信中継装置(無線中継装置)としての高高度プラットフォーム局(HAPS)、(「高高度疑似衛星」、「成層圏プラットフォーム」ともいう。)10,20を備えている。HAPS10,20は、所定高度の空域に位置して、所定高度のセル形成目標空域40に図中ハッチング領域で示すような3次元セル(3次元エリア)41,42を形成する。HAPS10,20は、自律制御又は外部からの制御により地面又は海面から100[km]以下の高高度の空域(浮揚空域)50に浮遊あるいは飛行して位置するように制御される浮揚体(例えば、ソーラープレーン、飛行船)に、中継通信局が搭載されたものである。
 HAPS10,20の位置する空域50は、例えば、地上(又は海や湖などの水上)の高度が11[km]以上及び50[km]以下の成層圏の空域である。この空域50は、気象条件が比較的安定している高度15[km]以上25[km]以下の空域であってもよく、特に高度がほぼ20[km]の空域であってもよい。図中のHrsl及びHrsuはそれぞれ、地面(GL)を基準にしたHAPS10,20の位置する空域50の下端及び上端の相対的な高度を示している。
 セル形成目標空域40は、本実施形態の通信システムにおける1又は2以上のHAPSで3次元セルを形成する目標の空域である。セル形成目標空域40は、HAPS10,20が位置する空域50と従来のマクロセル基地局等の基地局(例えばLTEのeNodeB)90がカバーする地面近傍のセル形成領域との間に位置する、所定高度範囲(例えば、50[m]以上1000[m]以下の高度範囲)の空域である。図中のHcl及びHcuはそれぞれ、地面(GL)を基準にしたセル形成目標空域40の下端及び上端の相対的な高度を示している。
 なお、本実施形態の3次元セルが形成されるセル形成目標空域40は、海、川又は湖の上空であってもよい。
 HAPSは人工衛星の飛行高度よりも低く、地上や海上の基地局よりも高い場所を飛行するため、衛星通信よりも小さい伝搬ロスでありながら、高い見通し率を確保できる。この特徴から、HAPSから直接地上のセルラ携帯端末(UE:UserEquipment)等の移動局である端末装置に対して通信サービスを提供することも可能である。携帯通信サービスをHAPSから提供することで、これまで多数の地上又は海上の基地局でカバーされていた広いエリアを少数のHAPSで一度にカバーできるため、低コストで安定した通信サービスを提供できるメリットがある。
 HAPS10,20の中継通信局はそれぞれ、移動局である端末装置と無線通信するためのビーム100,200を地面に向けて形成する。端末装置は、遠隔操縦可能な小型のヘリコプター等の航空機であるドローン60に組み込まれた通信端末モジュールでもよいし、飛行機65の中でユーザが使用するユーザ装置であってもよい。セル形成目標空域40においてビーム100,200が通過する領域が3次元セル41,42である。セル形成目標空域40において互いに隣り合う複数のビーム100,200は部分的に重なってもよい。
 HAPS10,20の中継通信局はそれぞれ、例えば、地上(又は海上)側のコアネットワークに接続された中継局としてのゲートウェイ局(「フィーダ局」ともいう。)70と無線通信する基地局、又は、地上(又は海上)側の基地局に接続された中継局としてのフィーダ局(リピーター親機)70と無線通信するリピーター子機である。HAPS10,20の中継通信局はそれぞれ、地上又は海上に設置されたフィーダ局70を介して、移動通信網80のコアネットワークに接続されている。HAPS10,20とフィーダ局70との間の通信は、マイクロ波などの電波による無線通信で行ってもよいし、レーザ光などを用いた光通信で行ってもよい。
 HAPS10,20はそれぞれ、内部に組み込まれたコンピュータ等で構成された制御部が制御プログラムを実行することにより、自身の浮揚移動(飛行)や中継通信局での処理を自律制御してもよい。例えば、HAPS10,20はそれぞれ、自身の現在位置情報(例えばGPS位置情報)、予め記憶した位置制御情報(例えば、飛行スケジュール情報)、周辺に位置する他のHAPSの位置情報などを取得し、それらの情報に基づいて浮揚移動(飛行)や中継通信局での処理を自律制御してもよい。
 また、HAPS10,20それぞれの浮揚移動(飛行)や中継通信局での処理は、移動通信網80の通信センター等に設けられた管理装置としての管理装置(「遠隔制御装置」ともいう。)85によって制御できるようにしてもよい。管理装置85は、例えば、PCなどのコンピュータ装置やサーバ等で構成することができる。この場合、HAPS10,20は、管理装置85からの制御情報を受信したり管理装置85に監視情報などの各種情報を送信したりできるように制御用通信端末装置(例えば、移動通信モジュール)が組み込まれ、管理装置85から識別できるように端末識別情報(例えば、IPアドレス、電話番号など)が割り当てられるようにしてもよい。制御用通信端末装置の識別には通信インターフェースのMACアドレスを用いてもよい。また、HAPS10,20はそれぞれ、自身又は周辺のHAPSの浮揚移動(飛行)や中継通信局での処理に関する情報、HAPS10,20の状態に関する情報や各種センサなどで取得した観測データなどの監視情報を、管理装置85等の所定の送信先に送信するようにしてもよい。制御情報は、HAPSの目標飛行ルート情報を含んでもよい。監視情報は、HAPS10,20の現在位置、飛行ルート履歴情報、対気速度、対地速度及び推進方向、HAPS10,20の周辺の気流の風速及び風向、並びに、HAPS10,20の周辺の気圧及び気温の少なくとも一つの情報を含んでもよい。
 セル形成目標空域40では、HAPS10,20のビーム100,200が通過していない領域(3次元セル41,42が形成されない領域)が発生するおそれがある。この領域を補完するため、図1の構成例のように、地上側又は海上側から上方に向かって放射状のビーム300を形成して3次元セル43を形成してATG(Air To Ground)接続を行う基地局(以下「ATG局」という。)30を備えてもよい。
 また、ATG局30を用いずに、HAPS10,20の位置やビーム100,200の発散角(ビーム幅)等を調整することにより、HAPS10,20の中継通信局が、セル形成目標空域40に3次元セルがくまなく形成されるように、セル形成目標空域40の上端面の全体をカバーするビーム100,200を形成してもよい。
 なお、前記HAPS10,20で形成する3次元セルは、地上又は海上に位置する端末装置との間でも通信できるよう地面又は海面に達するように形成してもよい。
 図2は、実施形態の通信システムに用いられるHAPS10の一例を示す斜視図である。
 図2のHAPS10は、ソーラープレーンタイプのHAPSであり、長手方向の両端部側が上方に反った主翼部101と、主翼部101の短手方向の一端縁部にバス動力系の推進装置としての複数のモータ駆動のプロペラ103とを備える。主翼部101の上面には、太陽光発電機能を有する太陽光発電部としての太陽光発電パネル(以下「ソーラーパネル」という。)102が設けられている。また、主翼部101の下面の長手方向の2箇所には、板状の連結部104を介して、ミッション機器が収容される複数の機器収容部としてのポッド105が連結されている。各ポッド105の内部には、ミッション機器としての中継通信局110と、バッテリー106とが収容されている。また、各ポッド105の下面側には離発着時に使用される車輪107が設けられている。ソーラーパネル102で発電された電力はバッテリー106に蓄電され、バッテリー106から供給される電力により、プロペラ103のモータが回転駆動され、中継通信局110による無線中継処理が実行される。
 ソーラープレーンタイプのHAPS10は、例えば所定の目標飛行ルートに基づいて円形状に旋回飛行を行ったり「D」の字飛行を行ったり「8」の字飛行を行ったりすることにより揚力で浮揚し、所定の高度で水平方向の所定の範囲に滞在するように浮揚することができる。なお、ソーラープレーンタイプのHAPS10は、プロペラ103が回転駆動されていないときは、グライダーのように飛ぶこともできる。例えば、昼間などのソーラーパネル102の発電によってバッテリー106の電力が余っているときに高い位置に上昇し、夜間などのソーラーパネル102で発電できないときにバッテリー106からモータへの給電を停止してグライダーのように飛ぶことができる。
 また、HAPS10は、他のHAPSや人工衛星と光通信に用いられる通信部としての3次元対応指向性の光アンテナ装置130を備えている。なお、図2の例では主翼部101の長手方向の両端部に光アンテナ装置130を配置しているが、HAPS10の他の箇所に光アンテナ装置130を配置してもよい。なお、他のHAPSや人工衛星と光通信に用いられる通信部は、このような光通信を行うものに限らず、マイクロ波などの電波による無線通信などの他の方式による無線通信であってもよい。
 図3は、実施形態の通信システムに用いられるHAPS20の他の例を示す斜視図である。図3のHAPS20は、無人飛行船タイプのHAPSであり、ペイロードが大きいため大容量のバッテリーを搭載することができる。HAPS20は、浮力で浮揚するためのヘリウムガス等の気体が充填された飛行船本体201と、バス動力系の推進装置としてのモータ駆動のプロペラ202と、ミッション機器が収容される機器収容部203とを備える。機器収容部203の内部には、中継通信局210とバッテリー204とが収容されている。バッテリー204から供給される電力により、プロペラ202のモータが回転駆動され、中継通信局210による無線中継処理が実行される。
 なお、飛行船本体201の上面に、太陽光発電機能を有するソーラーパネルを設け、ソーラーパネルで発電された電力をバッテリー204に蓄電するようにしてもよい。
 また、無人飛行船タイプのHAPS20も、他のHAPSや人工衛星と光通信に用いられる通信部としての3次元対応指向性の光アンテナ装置230を備えている。なお、図3の例では飛行船本体201の上面部及び機器収容部203の下面部に光アンテナ装置230を配置しているが、HAPS20の他の部分に光アンテナ装置230を配置してもよい。なお、他のHAPSや人工衛星と光通信に用いられる通信部は、このような光通信を行うものに限らず、マイクロ波などの電波による無線通信などの他の方式による無線通信を行うものであってもよい。
 図4は、実施形態の複数のHAPS10,20で上空に形成される無線ネットワークの一例を示す説明図である。
 複数のHAPS10,20は、上空で互いに光通信によるHAPS間通信ができるように構成され、3次元化したネットワークを広域にわたって安定に実現することができるロバスト性に優れた無線通信ネットワークを形成する。この無線通信ネットワークは、各種環境や各種情報に応じたダイナミックルーティングによるアドホックネットワークとして機能することもできる。前記無線通信ネットワークは、2次元又は3次元の各種トポロジーを有するように形成することができ、例えば、図4に示すようにメッシュ型の無線通信ネットワークであってもよい。
 図5は、他の実施形態に係る通信システムの全体構成の一例を示す概略構成図である。なお、図5において、前述の図1と共通する部分については同じ符号を付し、その説明は省略する。
 図5の実施形態では、HAPS10と移動通信網80のコアネットワークとの間の通信を、フィーダ局70及び低軌道の人工衛星72を介して行っている。この場合、人工衛星72とフィーダ局70との間の通信は、マイクロ波などの電波による無線通信で行ってもよいし、レーザ光などを用いた光通信で行ってもよい。また、HAPS10と人工衛星72との間の通信については、レーザ光などを用いた光通信で行っている。
 図6は、実施形態のHAPS10,20の中継通信局110,210の一構成例を示すブロック図である。
 図6の中継通信局110,210はリピータータイプの中継通信局の例である。中継通信局110,210はそれぞれ、3Dセル形成アンテナ部111と、送受信部112と、フィード用アンテナ部113と、送受信部114と、リピーター部115と、監視制御部116と、電源部117とを備える。更に、中継通信局110,210はそれぞれ、HAPS間通信などに用いる光通信部125と、ビーム制御部126とを備える。
 3Dセル形成アンテナ部111は、セル形成目標空域40に向けて放射状のビーム100,200を形成するアンテナを有し、端末装置と通信可能な3次元セル41,42を形成する。送受信部112は、3Dセル形成アンテナ部111とともに第一無線通信部を構成し、送受共用器(DUP:DUPlexer)や増幅器などを有し、3Dセル形成アンテナ部111を介して、3次元セル41,42に在圏する端末装置に無線信号を送信したり端末装置から無線信号を受信したりする。
 フィード用アンテナ部113は、地上又は海上のフィーダ局70と無線通信するための指向性アンテナを有する。送受信部114は、フィード用アンテナ部113とともに第二無線通信部を構成し、送受共用器(DUP:DUPlexer)や増幅器などを有し、フィード用アンテナ部113を介して、フィーダ局70に無線信号を送信したりフィーダ局70から無線信号を受信したりする。
 リピーター部115は、端末装置との間で送受信される送受信部112の信号と、フィーダ局70との間で送受信される送受信部114の信号とを中継する。リピーター部115は、所定周波数の中継対象信号を所定のレベルまで増幅するアンプ機能を有する。リピーター部115は、中継対象信号の周波数を変換する周波数変換機能を有してもよい。
 監視制御部116は、例えばCPU及びメモリ等で構成され、予め組み込まれたプログラムを実行することにより、HAPS10,20内の各部の動作処理状況を監視したり各部を制御したりする。特に、監視制御部116は、制御プログラムを実行することにより、プロペラ103,202を駆動するモータ駆動部141を制御して、HAPS10,20を目標位置へ移動させ、また、目標位置近辺に留まるように制御する。
 電源部117は、バッテリー106,204から出力された電力をHAPS10,20内の各部に供給する。電源部117は、太陽光発電パネル等で発電した電力や外部から給電された電力をバッテリー106,204に蓄電させる機能を有してもよい。
 光通信部125は、レーザ光等の光通信媒体を介して周辺の他のHAPS10,20や人工衛星72と通信する。この通信により、ドローン60等の端末装置と移動通信網80との間の無線通信を動的に中継するダイナミックルーティングが可能になるとともに、いずれかのHAPSが故障したときに他のHAPSがバックアップして無線中継することにより移動通信システムのロバスト性を高めることができる。
 ビーム制御部126は、HAPS間通信や人工衛星72との通信に用いるレーザ光などのビームの方向及び強度を制御したり、周辺の他のHAPS(中継通信局)との間の相対的な位置の変化に応じてレーザ光等の光ビームによる通信を行う他のHAPS(中継通信局)を切り替えるように制御したりする。この制御は、例えば、HAPS自身の位置及び姿勢、周辺のHAPSの位置などに基づいて行ってもよい。HAPS自身の位置及び姿勢の情報は、そのHAPSに組み込んだGPS受信装置、ジャイロセンサ、加速度センサなどの出力に基づいて取得し、周辺のHAPSの位置の情報は、移動通信網80に設けた管理装置85、又は、HAPS管理サーバやアプリケーションサーバ等のサーバ86から取得してもよい。
 図7は、実施形態のHAPS10,20の中継通信局110,210の他の構成例を示すブロック図である。
 図7の中継通信局110,210は基地局タイプの中継通信局の例である。
 なお、図7において、図6と同様な構成要素については同じ符号を付し、説明を省略する。図7の中継通信局110,210はそれぞれ、モデム部118を更に備え、リピーター部115の代わりに基地局処理部119を備える。更に、中継通信局110,210はそれぞれ、光通信部125とビーム制御部126とを備える。
 モデム部118は、例えば、フィーダ局70からフィード用アンテナ部113及び送受信部114を介して受信した受信信号に対して復調処理及び復号処理を実行し、基地局処理部119側に出力するデータ信号を生成する。また、モデム部118は、基地局処理部119側から受けたデータ信号に対して符号化処理及び変調処理を実行し、フィード用アンテナ部113及び送受信部114を介してフィーダ局70に送信する送信信号を生成する。
 基地局処理部119は、例えば、LTE/LTE-Advancedの標準規格に準拠した方式に基づいてベースバンド処理を行うe-NodeBとしての機能を有する。基地局処理部119は、第5世代等の将来の移動通信の標準規格に準拠する方式で処理するものであってもよい。
 基地局処理部119は、例えば、3次元セル41,42に在圏する端末装置から3Dセル形成アンテナ部111及び送受信部112を介して受信した受信信号に対して復調処理及び復号処理を実行し、モデム部118側に出力するデータ信号を生成する。また、基地局処理部119は、モデム部118側から受けたデータ信号に対して符号化処理及び変調処理を実行し、3Dセル形成アンテナ部111及び送受信部112を介して3次元セル41,42の端末装置に送信する送信信号を生成する。
 図8は、実施形態のHAPS10,20の中継通信局110,210の更に他の構成例を示すブロック図である。
 図8の中継通信局110,210はエッジコンピューティング機能を有する高機能の基地局タイプの中継通信局の例である。なお、図8において、図6及び図7と同様な構成要素については同じ符号を付し、説明を省略する。図8の中継通信局110,210はそれぞれ、図7の構成要素に加えてエッジコンピューティング部120を更に備える。
 エッジコンピューティング部120は、例えば小型のコンピュータで構成され、予め組み込まれたプログラムを実行することにより、HAPS10,20の中継通信局110,210における無線中継などに関する各種の情報処理を実行することができる。
 例えば、エッジコンピューティング部120は、3次元セル41,42に在圏する端末装置から受信したデータ信号に基づいて、そのデータ信号の送信先を判定し、その判定結果に基づいて通信の中継先を切り換える処理を実行する。より具体的には、基地局処理部119から出力されたデータ信号の送信先が自身の3次元セル41,42に在圏する端末装置の場合は、そのデータ信号をモデム部118に渡さずに、基地局処理部119に戻して自身の3次元セル41,42に在圏する送信先の端末装置に送信するようにする。一方、基地局処理部119から出力されたデータ信号の送信先が自身の3次元セル41,42以外の他のセルに在圏する端末装置の場合は、そのデータ信号をモデム部118に渡してフィーダ局70に送信し、移動通信網80を介して送信先の他のセルに在圏する送信先の端末装置に送信するようにする。
 エッジコンピューティング部120は、3次元セル41,42に在圏する多数の端末装置から受信した情報を分析する処理を実行してもよい。この分析結果は3次元セル41,42に在圏する多数の端末装置に送信したり、移動通信網80に設けた管理装置85、又は、管理装置としてのHAPS管理サーバやアプリケーションサーバ(アプリサーバ)等のサーバ86などに送信したりしてもよい。
 中継通信局110、210を介した端末装置との無線通信の上りリンク及び下りリンクの複信方式は、特定の方式に限定されず、例えば、時分割複信(Time Division Duplex:TDD)方式でもよいし、周波数分割複信(Frequency Division Duplex:FDD)方式でもよい。また、中継通信局110、210を介した端末装置との無線通信のアクセス方式は、特定の方式に限定されず、例えば、FDMA(Frequency Division Multiple Access)方式、TDMA(Time Division Multiple Access)方式、CDMA(Code Division Multiple Access)方式、又は、OFDMA(Orthogonal Frequency Division Multiple Access)であってもよい。また、前記無線通信には、ダイバーシティ・コーディング、送信ビームフォーミング、空間分割多重化(SDM:Spatial Division Multiplexing)等の機能を有し、送受信両方で複数のアンテナを同時に利用することにより、単位周波数当たりの伝送容量を増やすことができるMIMO(多入力多出力:Multi-Input and Multi-Output)技術を用いてもよい。また、前記MIMO技術は、1つの基地局が1つの端末装置と同一時刻・同一周波数で複数の信号を送信するSU-MIMO(Single-User MIMO)技術でもよいし、1つの基地局が複数の異なる端末装置に同一時刻・同一周波数で信号を送信又は複数の異なる基地局が1つの端末装置に同一時刻・同一周波数で信号を送信するMU-MIMO(Multi-User MIMO)技術であってもよい。
 なお、以下の実施形態では、端末装置61と無線通信する通信中継装置が、ソーラープレーンタイプのHAPS10及び無人飛行船タイプのHAPS20のいずれの一方の場合について図示して説明するが、通信中継装置はHAPS10,20のいずれであってもよい。また、以下の実施形態は、HAPS10,20以外の他の空中浮揚型の通信中継装置にも同様に適用できる。
 また、HAPS10,20とフィーダ局としてのゲートウェイ局(以下「GW局」と略す。)70を介した基地局90との間のリンクを「フィーダリンク」といい、HAPS10と端末装置61の間のリンクを「サービスリンク」という。特に、HAPS10,20とGW局70との間の区間を「フィーダリンクの無線区間」という。また、GW局70からHAPS10,20を経由して端末装置61に向かう通信のダウンリンクを「フォワードリンク」といい、端末装置61からHAPS10,20を経由してGW局70に向かう通信のアップリンクを「リバースリンク」ともいう。
 図9は実施形態に係るHAPS20のセル構成の一例を示す説明図である。また、図10A及び図10Bはそれぞれ比較例に係るHAPSの回転運動(ヨー回転の旋回)及び並進運動によるセルのフットプリントの移動の一例を示す説明図である。図11A及び図11Bはそれぞれ実施形態に係るHAPSの回転運動(ヨー回転の旋回)及び並進運動によるセルのフットプリントの移動の一例を示す説明図である。なお、図10B及び図11Bでは一部3セルのみ図示し、他の4セルは省略している。
 図9、図10A、図10B、図11A及び図11Bにおいて、通信中継装置は無人飛行船タイプのHAPS20であるが、ソーラープレーンタイプのHAPS10であってもよい。また、図示の例において、HAPS20の高度が約20kmの成層圏に位置し、HAPS20が複数のセル200C(1)~200C(7)を形成し、その複数セル(7セル)構成のサービスエリア20Aの直径は100~200kmであるが、これらに限定されるものではない。
 図9において、成層圏に位置するHAPS20を用いた地上(又は水上)の端末装置61と直接通信する通信サービスは、サービスエリアの拡大、災害時の通信手段として非常に魅力的である。HAPS20の通信回線はGW局70とHAPS20との間を結ぶフィーダリンク(FL)と、HAPS20と端末装置61との間を結ぶサービスリンク(SL)から成る。サービスリンクにおいて十分な通信容量を確保するためには、1つのHAPSで複数のセルを構成する複数セル構成が前提となる。
 しかし、HAPS20は成層圏などの空中での気流や気圧などの影響により回転運動(旋回)又は並進運動して姿勢や位置が変動する。そのため、図10A及び図10Bに示すように複数セル構成では地上(又は水上)に形成されるセル200C(1)~200C(7)のフットプリント200F(1)~200F(7)が移動することでサービスエリア内のセル境界部200H(図中の斜線部)に位置する多数の端末装置61が一斉にハンドオーバ(HO)することが想定され、HOによる制御信号の増加やHO失敗による通信断が発生するおそれがある。また、HOのみならず端末装置での受信電力の低下(カバーエリアから外れる)の影響も考えられる。
 そこで、本実施形態では、上記HOの頻発や受信電力の低下に対する対策として、図11A及び図11Bに示すようにHAPS20が回転や並進移動によって姿勢や位置が変動してもフットプリント200F(1)~200F(7)が移動しないように、サービスリンクアンテナを構成するとともに、HAPS20の位置及び姿勢(例えば、所定方位に対する)の少なくとも一方の情報に基づいてサービスリンクアンテナに対して送受信される信号についてデジタル信号の振幅及び位相を制御するデジタルビームフォーミング(DBF)制御(以下、「フットプリント固定制御」ともいう。)を適用している。
 HAPS20自身の位置及び姿勢の情報は、そのHAPS20に組み込んだGPS受信装置、ジャイロセンサ、加速度センサ、慣性センサなどの出力に基づいて取得してもよい。例えば、HAPS20自身の位置及び姿勢の情報は、HAPS20に組み込んだGNSS(Global Navigation Satellite System)システムと慣性測定ユニット(IMU:Inertial Measurement Unit)とを組み合わせたGNSS慣性航法システム(GNSS/INS)の出力に基づいて取得してもよい。
 図12は、実施形態に係るHAPSの姿勢変化を示す角度の定義を示す説明図である。図12に示すように、HAPS20の前後方向(前方の進行方向)に沿ったロール軸Yを中心とした回転角度がロール角θrであり、HAPS20の左右方向に沿ったピッチ軸Xを中心とした回転角度がピッチ角θpであり、HAPS20の上下方向に沿ったヨー軸Zを中心とした回転角度がヨー角θyである。例えば、HAPS20が一般的な飛行機や飛行船等であると想定した場合、ロール回転及びピッチ回転は±10度程度であり、ヨー回転は360度無限に回転するものと想定できる。また、HAPS20の左右方向及び前後方向の移動(並進運動)は±5km程度であり、HAPS20の上下方向の移動(並進運動)については高度20~24km程度を移動するものと想定できる。
 本実施形態では、HAPS20等の通信中継装置の機体は上空において三次元的な動き(例えば経度、緯度及び高度の変化、並びに、ロール軸、ピッチ軸及びヨー軸を中心にした回転)を示すので、例えばロール角θr、ピッチ角θp及びヨー角θyを考慮して三次元的な動きに対応するようにDBF制御を適用してもよい。特に、本実施形態では、HAPS20のヨーイング(機体の上下方向の軸を中心とした回転運動)によるフットプリントの移動に耐性のあるサービスリンクアンテナのアンテナ構成及びDBF制御を適用している。
 図13A、図13B及び図13CはそれぞれHAPSの旋回パターンの例を示す説明図である。図13A、図13B及び図13Cに示すようにソーラープレーンタイプのHAPS10が飛行している高度の空域(例えば成層圏)での風速により飛行ルートの形状を変更する場合がある。例えば、図13Aのほぼ無風時には、風Wの方向にかかわらずHAPS10の飛行ルートとして円形の飛行ルートに決定する。また、図13Bの穏風時には、風が吹いている方向に向かって(風Wに逆って)飛行している時間帯がなるべく短くなるように、HAPS10の飛行ルートとして、円形の一部円弧の部分が直線になった「D」字形の飛行ルートに決定する。また、図13Cの強風時には、風が吹いている方向に向かって(風Wに逆って)飛行している時間帯がより短くなるように、HAPS10の飛行ルートとして、「8」の字形の飛行ルートに決定する。このように上空の風Wの強さに応じて飛行ルート10Fの形状を変更した場合、本実施形態では、その変更後の形状の飛行ルート10FにおけるHAPSの旋回パターンに対応するようにDBF制御を適用してもよい。特に、図13A、図13B及び図13Cに示すようにHAPSが旋回パターンで飛行する場合、ヨー軸Zの周りに無限回転し(ヨー角が360度変化)、ロール角及びピッチ角については±数度程度(例えば、絶対値で10度以下)を想定してDBF制御を適用してもよい。
 図14A及び図14Bはそれぞれ実施形態に係るフットプリント固定制御の一例を示す説明図である。図14AはHAPS20の旋回前の図であり、図14BはHAPS20が図中R方向に回転した旋回後の図である。HAPS20は、サービスリンクアンテナ(例えば、前述の3次元セル形成アンテナ部111)として、端末装置と間のサービスリンクの無線通信を行うセル200Cを形成する複数のアンテナ素子401を有するアレイアンテナ400を備える。更に、HAPS20は、デジタルビームフォーミング(DBF)制御部500と、GPSアンテナを有するGNSS/INS600とを備える。DBF制御部500は、HAPS20の位置及び姿勢の情報と、目標とするセルの位置情報とに基づいて、サービスリンクのアレイアンテナ400の各アンテナ素子401に対して送受信される信号についてデジタル信号の振幅及び位相を制御する。これにより、アレイアンテナ400の主ビーム701及びサイドローブ702からなるアンテナ指向ビーム(以下、単に「ビーム」ともいう。)700の方向が目標のフットプリント形成位置に向かうように制御され、HAPS20がヨー軸Zを中心にして回転(旋回)しても、アレイアンテナ400で形成されるセル200Cのフットプリント200Fの位置を固定することができる。なお、図14B中のビーム700’は、DBF制御を行わない場合のビームの方向である。
 図15Aは他の実施形態に係るフットプリント固定制御に用いられるシリンダー型アレイアンテナの一部分機能を構成するサーキュラーアレイアンテナ410の一例を上方から見た説明図である。図15Bは同シリンダー型アレイアンテナの他の部分機能を構成するリニアアレイアンテナ420の一例を側方から見た説明図である。HAPS20は上下昇降、横移動、回転等様々な動きが考えられるため、それぞれの動きに対応するようにサービスリンクアンテナの指向性ビーム(アンテナ指向ビーム)の方向を制御するDBF制御が必要である。特にHAPS20の動きのうちヨー軸(Z軸)を中心とした旋回であるヨーイングではHAPS20が360度回転するためフットプリント固定のためのビーム方向制御が必要不可欠である。
 前述の図10B及び図11Bに示すHAPS20の前後移動の並進運動においては、前後の移動距離だけフットプリントがずれる。一方、前述の図10A及び図11Aに示すHAPS20のヨー回転の回転運動では、HAPS20から遠方ほどフットプリントの移動による影響が大きい。カバレッジ半径をRとして、1度ヨー回転することにより変位するカバレッジ端でのセルの変位距離は2πR/360で表せる。従って、カバレッジ半径を100kmとすると、1度回転するだけで約1.7kmも変位することとなる。つまり、並進運動よりも回転運動によるフットプリントの移動への影響が大きい。特にヨー回転はロール回転やピッチ回転と異なり無限に回転するため全方位対応のビームフォーミング制御が必要である。
 そこで、本実施形態では、HAPS20の機体の動きをヨー回転(旋回)とそれ以外(ロール回転、ピッチ回転や移動)に分解し、ヨー回転(旋回)として360度無限回転を考慮したサーキュラーアレイアンテナ(サーキュラー型のアクティブアレイ)410(図15A参照)と、ロール回転及びピッチ回転として±数度を考慮したリニアアレイアンテナ(リニア型のアクティブアレイ)420(図15B参照)とを組み合わせてサービスリンクアンテナを構成している。この組み合わせ構成により、水平方向及び垂直方向の三次元的なビームフォーミング及びステアリングが実現できる。水平方向は主にHAPS20のヨー回転に対応し、垂直方向は主にHAPS20のピッチ回転、ロール回転及び並進運動に対応することができる。
 サーキュラーアレイアンテナ410は、円周形状に沿って複数のアンテナ素子411を分布させるように配置したアレイアンテナである。サーキュラーアレイアンテナ410の各アンテナ素子411に対してアンテナウェイト(振幅及び位相)を制御するDBF制御を適用することにより、図中のR方向にHAPS20の機体がヨー回転(旋回)した場合に、セルのフットプリント200Fの位置を固定することができる。サーキュラーアレイアンテナ410は、アンテナ指向ビームが地上に向かう方向に対して水平方向に向くため、カバレッジが広い場合でも対応可能である。
 リニアアレイアンテナ420は、地上と垂直に線状に複数のアンテナ素子421を分布させるように配置したアレイアンテナである。リニアアレイアンテナ420の各アンテナ素子421に対してアンテナウェイト(振幅及び位相)を制御するDBF制御を適用することにより、図中のR方向にHAPS20の機体がヨー回転(旋回)以外の動き(ロール回転、ピッチ回転、移動など)をした場合に、セルのフットプリント200Fの位置を固定することができる。
 図15A及び図15Bのアンテナ構成のDBF制御では、平面アレイアンテナの考え方と同様に、例えば、水平(サーキュラーアレイ)と垂直(リニアアレイ)に対してそれぞれ個別にウェイトを算出し、積を取ることで各アンテナ素子に対するウェイトを決定する。これにより、アンテナ全体の指向性をサーキュラーアレイとリニアアレイの指向性の積として表すことができる。ただし、HAPS20の斜め下(水平面から45度以上)の方向のエリアについてはアンテナ素子毎に偏波が崩れることにより正しくセルを形成することは難しいので、HAPS20の真下方向のエリアについては、例えば後述のように別途平面アレイアンテナ等を用いることでセルを形成するようにしてもよい。
 図16は、サーキュラーアレイアンテナ410とリニアアレイアンテナ420とを組み合わせて構成したシリンダー型のアレイアンテナ430の一構成例を示す斜視図である。シリンダー型のアレイアンテナ430は、特にヨーイングによるフットプリントの移動に耐性のあるアンテナ構成である。このアレイアンテナ430では、水平方向にはどの方向から見てもアンテナの形状が変わらないようにアンテナ素子431が円形に配置 (サーキュラーアレイ)され、垂直方向には縦方向のビーム方向制御に対応するためアンテナ素子431が線形配置されている。なお、HAPS20の真下方向にセルを作る場合は別途平面アレイアンテナ等のアンテナを設けてもよい。
 シリンダー型のアレイアンテナ430では、水平方向の各アンテナ素子としてアクティブ素子を用いることで、ビーム方向制御のための位相制御のみならずサイドローブ低減のための電力制御 (振幅制御)も可能となる。また、シリンダー型のアレイアンテナ430において、垂直方向に対しては重量、消費電力の増加を抑えるため各アンテナ素子431に固定位相を与えて下向きの固定チルトを適用してもよい。また、水平方向の各アンテナ素子として水平方向と同様にアクティブ素子を用いてよく、この場合は、上下昇降や横移動に対応した垂直ビーム方向制御及びサイドローブ低減も可能である。
 図17は、シリンダー型のアレイアンテナ430を用いたフットプリント固定制御における水平角度(以下「水平ステアリング角」ともいう。)φ及び垂直角度(以下「垂直ステアリング角」ともいう。)θの説明図である。図18はシリンダー型のアレイアンテナ430における水平角度(φ)及び垂直角度(θ)それぞれに対するDBF制御を行うアンテナ素子の説明図である。図19は、シリンダー型のアレイアンテナ430のDBF制御で形成される3次元的なアンテナ指向ビームの一例を示す説明図である。シリンダー型のアレイアンテナ430を用いる場合、目標とする位置のセルのフットプリント200Fの中心位置の方向に対して、HAPS20のアレイアンテナ430から見た目標水平角度(φ)及び目標垂直角度(θ)を求める(図17参照)。ここで、水平角度(φ)は、例えば、アレイアンテナ430から目標のフットプリント200Fの中心に向かう目標ビームベクトル200Vの水平面(図中のX-Y面)における投影ベクトルのX軸に対する角度である。垂直角度(θ)は、目標ビームベクトル200VとHAPS20の上下方向とを含む垂直面における目標ビームベクトル200Vの水平面に対する角度である。
 目標フットプリント200Fに対するアンテナ指向ビームの目標水平角度(φ)についてのDBF制御(位相制御)は図18中の横方向に並んだ横方向アンテナ素子群432に対して行う。一方、目標フットプリント200Fに対するアンテナ指向ビームの目標垂直角度(θ)についてのDBF制御(位相制御)は図18中の縦方向に並んだ縦方向アンテナ素子群433に対して行う。このように横方向アンテナ素子群432及び縦方向アンテナ素子群433に対してDBF制御(位相制御)を互いに独立に行うことにより、図19に示すように所定の目標ビームベクトル200Vの方向に主ビーム701を有するアンテナ指向ビーム700が形成される。
 次に、本実施形態のHAPS10、20の複数セル構成における水平ビームフォーミング制御について説明する。
 多セル構成のHAPSでは、その機体の移動に応じたビーム方向制御のみならず、セル間干渉を低減するためのサイドローブ低減も同時に実現する必要がある。本実施形態では、ビーム方向、サイドローブレベル及びビーム幅を予め考慮した所望パターンを定義し、所望パターンに近似するアンテナウェイトを計算している。
 図20は、実施形態に係るHAPS10,20のアンテナ構成(例えば、シリンダー型のアレイアンテナ430)の一部を構成するサーキュラーアレイアンテナ410の一例を示す説明図である。図20において、サーキュラーアレイアンテナ410の素子数をN、半径をr、n(1≦n≦N)番目のアンテナ素子411が位置する角度及び指向方向をφn、アンテナ指向ビームの水平角度(水平ステアリング角度)をφとする。各アンテナ素子411に適用するアンテナウェイト(以下「ウェイト」ともいう。)をw∈CN×1、ウェイトwを用いて計算される水平方向のアンテナ指向性をa∈CNφ×1として、aとwの関係を次式(4)のように表す。
Figure JPOXMLDOC01-appb-M000007
 但し、Nφは水平方向の全方位(-180度~180度)のサンプリング個数である。例えば、1度単位でサンプリングすれば、Nφ=360となる。
 ここで、F∈CNφ×Nは素子間隔や各アンテナ素子411の指向性パターンによって決まる行列であり、そのm行n列目の要素fmnは次式(5)のように表せる。
Figure JPOXMLDOC01-appb-M000008
 但し、φmは-180度~180度の水平角度であり、λは波長であり、各アンテナ素子411の水平方向の指向性を、φ=0度をアンテナ正面方向としてg(φ)と定義する。このように、与えられたアンテナウェイトwに対する指向性aは、Fを用いた行列形式で表すことができる。したがって、任意のアンテナ指向性に対するウェイトwは、次式(6)のようにFの逆行列を用いて解くことができる。
Figure JPOXMLDOC01-appb-M000009
 但し、Fは列数(アンテナ素子数)よりも行数(水平角のサンプリング個数)の方が大きい非正則行列であるため、逆行列を求めることはできない。そこで、本例では、||Fw-a||を最小とするMoore-Penroseの一般逆行列Fを使用している。これにより、所望の指向性aに最も近いアンテナウェイトwを算出することができる。
 一例として、N=16、r=0.19(素子間隔0.5λに相当)、各アンテナ素子411の指向性を、一般的なパッチアンテナの特性に近いcosineで表される指向性g(φ)=cosα(φ)cosα(θ)(但し、α=1.3(半値幅約80度、最大利得約8.6dBi)、-90度>φ,φ>90度はg(φ)=0)を用いて評価する。但し、本例では水平面での特性検討のため、θ=0度とする。また、所望アンテナ指向性を、aの要素をamとして、次式(7)のガウス分布で与える。
Figure JPOXMLDOC01-appb-M000010
 図21は、図20のサーキュラーアレイアンテナ410の水平方向におけるビームパターンの計算機シミュレーション結果の一例を示すグラフである。計算では、アンテナ素子411の素子数N=16、半径r=0.19[m]のサーキュラーアレイアンテナとし、周波数fcを2[GHz]、素子間隔を0.5λ、σを0.3(半値幅40度相当)とした。また、φn=-168.75度~168.75度の範囲でアンテナ素子411の素子間隔を均等に設定した。また、各アンテナ素子411のビームパターンをcosφ(但し、m=1.3、90度<φ及びφ<-90度の範囲は0)とした。
 図21では、計算機シミュレーションの一例として、水平ステアリング角φを0度,10度,20度,180度,-120度(=240度),-60度(=300度)として計算したサーキュラーアレイアンテナ410の水平面内の指向性ビームパターンC31,C32,C33,C34,C35,C36を示す。
 図21に示す通り、メインビームが半値幅約40度のビームを形成できており、水平面内のどの方向に対してもビームの形状をほとんど変えることなくビーム方向を制御できていることが分かる。
 以上より、例えばHAPS20の機体のヨーイング(ヨー回転)の回転角度をφYawとすると、HAPS20の機体に対して逆向きの回転角(φ=-φYaw)を与えることでセルのフットプリントの固定が可能である。また、1つのアレイアンテナで水平方向に複数セルを多重させる場合は、セル毎に異なるφを設定して多重することで実現できる。例えば、水平方向に60度毎に6セルを形成する場合は、φ(k)=60k/-φYaw(但し、セル番号k=0~5)となる。
 更に、前述の図15A及び図15Bのシリンダー型のアレイアンテナ430を用いてハンドオーバ(HO)回数の計算機シミュレーション評価を行った。シミュレーション評価では、1つのHAPS、7セル構成(中央1セル、周辺6セル)において、上記ウェイトを用いた水平方向のDBF制御を適用しない場合(φYaw≡0)と適用する場合のハンドオーバ回数の評価を行った。ここでは簡単のため、HAPSはヨーイングの回転運動(ヨー回転)のみ行うものとし、一例として10分で1回転(1秒間に0.6度回転)するものとする。アンテナ構成の評価諸元を表1に示す。
Figure JPOXMLDOC01-appb-T000011
 周辺6セルはシリンダー型のアレイアンテナ430で形成し、中央1セルは下向きの平面アレイアンテナでカバーする。シリンダー型のアレイアンテナ430の垂直方向及び平面アレイアンテナはそれぞれ表1に記載した半値幅となるように各アンテナ素子に異なる振幅を与えている。
 ハンドオーバの頻発を抑えるため、在圏セルに対する隣接セルの受信電力の比が3dB以内であればハンドオーバを行わず、3dBを上回ったときに隣接セルへハンドオーバを行うものとする。HAPSの高度を20[km]、半径100[km]の円内を評価対象エリアとし、1秒間当たりに発生するHO率(100[km]エリア内の全UE(端末装置)に対するハンドオーバしたUE数の割合)を、DBF制御を適用しない場合と適用する場合で評価したところ、適用しない場合で0.96%、適用する場合で0%(ハンドオーバ発生なし)となった。
 以上示したように、本実施形態のサーキュラーアレイアンテナやシリンダー型アレイアンテナなどのアンテナ構成と上記HAPS10,20の位置及び姿勢の情報に基づいて計算したウェイトを用いたDBF制御とを適用することにより、HAPS10,20のヨーイング回転等の姿勢や位置の変動によるセルのフットプリントの移動を抑制することができる。従って、HAPS10、20のヨー回転によるハンドオーバをなくすことができ、フットプリントの移動に起因したハンドオーバの頻発(多数の端末装置が一斉にハンドオーバする現象)を抑制し、ハンドオーバによる制御信号の増加及びハンドオーバ失敗による通信断を抑制することができる。
 次に、本実施形態のHAPS10、20の複数セル構成における垂直ビームフォーミング制御について説明する。HAPS10、20のピッチ回転、ロール回転や並進運動に対してはリニアアレイアンテナによる垂直方向のビームフォーミング制御によりフットプリントの固定が可能である。
 前述のシリンダー型のアレイアンテナ430を構成するサーキュラーアレイアンテナ410による水平ビームフォーミングの場合と同様に、垂直ビームフォーミングも所望のアンテナ指向性とアンテナウェイトの関係性を行列で表現することにより、適切なアンテナウェイトを求めることが可能である。
 図22は、実施形態に係るHAPS10,20のアンテナ構成(例えば、シリンダー型のアレイアンテナ430)の一部を構成するリニアアレイアンテナ420の一例を示す説明図である。図22において、リニアアレイアンテナ420のアンテナ素子421の素子数をN、素子間隔をd[m]、目標の垂直角度である垂直ステアリング角度をθとする。但し、図中の下方向の角度が負の角度である。
 前述の式(4)において、リニアアレイアンテナ420におけるウェイトをw∈CN×1、垂直方向のアンテナ指向性をa∈CNθ×1、アレイファクタとアンテナ素子の指向性によって決定される行列をF∈CNθ×Nとすると、Fのm行n列目の要素fmnは、次式(8)のように表せる。
Figure JPOXMLDOC01-appb-M000012
 但し、θは-90度~+90度の垂直角度、各素子の垂直方向の指向性を、θ=0をアンテナ正面方向として、g(θ)と定義する。
 以上より、任意のアンテナ指向性に対するウェイトwは、前述の式(6)と同様に、Fの逆行列を用いて解くことができる。
 本実施形態の垂直ビームフォーミング制御において、HAPSから見て地表上で垂直方向に連なるセルに対して与える目標のビーム幅及び垂直ステアリング角は、以下に示すように決定して設定する。
 垂直ビームフォーミング制御における目標のビーム幅と垂直ステアリング角度は、セル毎に、HAPSの動作に応じて適切に設定する必要がある。
 図23は、実施形態に係るHAPS10,20のアレイアンテナ400とセルの配置との関係の一例を示す説明図である。図23の例において、HAPSのサービスリンク用のアレイアンテナ400として、底面に平面アレイアンテナが配置されたシリンダー型のアレイアンテナを用いている。アレイアンテナ400の直下地点(0km)から20km以内のエリアでは下向きの平面アレイアンテナの部分でカバーし、直下地点から20~100kmまでのエリアをシリンダー型のアレイアンテナでカバーしている。図中の実線で示すアレイアンテナ400はHAPSが移動した後のアンテナ位置を示し、破線で示すアレイアンテナ400’はHAPSが移動する前のアンテナ位置を示している。
 ここで、シリンダー型のアレイアンテナを構成しているリニアアレイアンテナで複数のセルに分割するモデルを考える。HAPSのアレイアンテナ400の直下地点からn(=1,2、・・・)番目のセルのフットプリント200F(n)の中心までの地表距離をd[km]とし、直下地点から各セルのフットプリント200F(n)のセル境界までの地表距離をdedge,k[km]とし、HAPSの飛行高度(=アレイアンテナ400の中心の高度)をh[km](図示の例では、20km)とする。
 HAPSがx軸(前後)方向にΔd[km]、z軸(上下)方向にΔh[km]移動すると、各セルのフットプリントの中心及びセル境界におけるHAPSのアレイアンテナ400に対する仰角(θ,θedge,k)は、次式(9)のように表せる。
Figure JPOXMLDOC01-appb-M000013
 ここで、ビーム幅をセル境界の間の角度と考えると、n番目のセルの目標ビーム幅θbw,n[度]は、次式(10)のように表すことができる。
Figure JPOXMLDOC01-appb-M000014
 
 一方、垂直ステアリング角はHAPSが移動してもセルのフットプリントの位置が移動しないようにするため、各セルに対するアンテナ指向ビームの垂直ステアリング角θstr,nが常にセルのフットプリントの中心に向くように制御する。但し、セル間の境界位置は各ビームのセル境界における利得が変わるため、HAPSの移動に伴って多少移動することが考えられる。そこで、本実施形態ではHAPSの移動距離に対して補正係数βを掛けることで垂直ステアリング角を補正している。補正を考慮した垂直ステアリング角θstr,nを、次式(11)のように定義する。
Figure JPOXMLDOC01-appb-M000015
 
 図23に示すように、垂直方向のセル数を2セル、各セルの地表上のフットプリント200Fの半径を20kmと仮定し、前記式(7)及び(8)に基づいてHAPS移動前のビーム幅を計算すると、第1番目のセル(セル#1)が26.6度であり、第2番目のセル(セル#2)が7.1度である。また、垂直ステアリング角は、セル#1が26.6度であり、セル#2が14.0度である。
 図23の例において、垂直面内のアンテナパターンについて評価を行った。ここでは、リニアアレイの素子数をN=8、素子間隔をd=0.65λ、各アンテナ素子の指向性を前述のようにcosineを用いたアンテナ指向性(ただし、φ=0deg.)とした。所望のアンテナ指向性は前述の式(7)と同じガウス分布を用いた。また、上記算出されるビーム幅に合わせ、セル#1はσ=0.20度、セル#2はσ=0.05度とした。
 図24は、図23のアレイアンテナ400の垂直方向におけるビームパターンC41,C42の計算機シミュレーション結果の一例を示すグラフである。図24に示すように、セル#1とセル#2の利得の差は約4dBとなった。ビーム幅はセル#1が11度、セル#2が28度となったため、その分約4dBの利得差が生じている。また、セル#1の方は地上側にビームを向けていることで天空側にグレーティングローブが出てきていることが分かる。
 次に、HAPSの移動前後でのセル境界の位置について評価を行う。ここでは、z軸(上下)方向の移動距離をΔh=0km(飛行高度h=20km)とし、x軸(前後)方向の移動距離Δd=-5,+5kmとして、第1のDBF制御方式(I):「ビーム幅制御あり、垂直ステアリング角補正なし」と、第2のDBF制御方式(II)「ビーム幅制御なし、垂直ステアリング角補正あり」の2方式について評価を行う。評価は地表距離をパラメータとし、送信電力を43dBmとして各距離の仰角に対応する垂直面内アンテナ利得を加算し、直線距離に応じた自由空間伝搬損(fc=2GHz)を差し引いた受信電力で行った。ここでは、セル境界の移動を考慮して予め補正係数βを調整し、β=1.7としている。
 図25A及び図25Bはそれぞれ、図23のアレイアンテナ400のDBF制御方式(I)及び(II)について評価した受信電力の距離特性の評価結果の一例を示すグラフである。図25Aはアレイアンテナ400のDBF制御方式(I)の評価結果であり、図25Bはアレイアンテナ400のDBF制御方式(II)の評価結果である。図25A及び図25Bにおける横軸は、HAPSの直下からの地表上の距離[km]であり、縦軸は受信電力「dBm」である。
 図25Aにより、前述の式(10)及び(11)のビーム幅及び垂直ステアリングの制御を行うことで、HAPSの移動に対してセル境界をほとんど固定できていることが分かる。一方、図25Bにより、ビーム幅制御を行わなくても垂直ステアリング角の補正だけでセル境界の位置をほとんど固定できていることが分かる。また、利得の観点からも、図25Aに示すアレイアンテナ400の方式(I)の場合と概ね同じ特性が実現できていることが分かる。
 図26A及び図26Bはそれぞれ、図23のアレイアンテナ400の複数種類のDBF制御方式について評価したセル境界位置(セル端の位置)の変動の評価結果の一例を示すグラフである。図26Aが高度20km、図26Bが24kmの場合の評価結果である。図中の横軸はHAPSの水平方向の移動距離(-5km≦Δd≦5km)である。図25A及び図25Bの場合と同様に、前述の式(11)中の補正係数βは、β=1.7に固定している。
 図26A及び図26Bにより、ビーム制御を一切行わない場合は移動距離分(10km)だけセル境界も移動し、ビーム幅制御を行わずステアリング補正も行わないと図26A及び図26Bのいずれの場合も4km変位することが分かる。一方、前述のDBF制御方式(I)及び(II)においては、同一高度であればセル境界のずれが約1km以内に収められ、最大高度である24kmを加味してもセル(フットプリント)の変位する距離は約2km以内に収められることが分かる。
 図27は、実施形態に係るアンテナ構成及びDBF制御の制御系の一例を示すブロック図である。図27の例は、N個のアンテナ素子411からなるサーキュラーアレイアンテナ410を複数段有するシリンダー型のアレイアンテナで一つのセル(#0)を形成する例である。サーキュラーアレイアンテナ410の各アンテナ素子411の位置では、図示の都合上省略しているが、垂直方向にL個のアンテナ素子が配列したリニアアレイアンテナが形成されている。本例のアレイアンテナは、全体でN×L個のアンテナ素子を有することになる。
 なお、図27では、図示を簡略化するため、ダウンリンク及びアップリンクについてはダウンリンクのみ記載している。また、図27では、水平偏波及び垂直偏波の一方の偏波(片偏波)のみ記載しているが、他方の偏波の信号について送受信する場合は同様なDBF制御部が追加して設けられる。
 DBF制御部500は、ウェイト計算部501とウェイト演算部502とを備える。ウェイト計算部501は、GNSS/INSで取得したHAPS10,20の位置及び姿勢のデータと、目標のセルの位置情報とに基づいて、シリンダー型のアレイアンテナを構成するサーキュラーアレイアンテナ410の複数のアンテナ素子411(0~N-1)及びリニアアレイアンテナの複数のアンテナ素子(0~L-1)で送信される送信信号(デジタルのベースバンド信号)に適用する前述のウェイト(振幅及び位相のベクトルデータ)を計算する。
 ウェイト演算部502は、ウェイト計算部501で計算したウェイトをデジタル送信信号に適用することにより、シリンダー型のアレイアンテナを構成する第1段目のサーキュラーアレイアンテナの複数のアンテナ素子411(0~N-1)に対応する複数のデジタル送信信号(0~N-1)を生成する。同様に、第2段目~第L段目それぞれのサーキュラーアレイアンテナの複数のアンテナ素子411(0~N-1)に対応する複数のデジタル送信信号(0~N-1)を生成する。ウェイト演算部502から出力された複数のデジタル送信信号(0~N-1)はそれぞれ、DAコンバータ(DAC)510でアナログ信号に変換され、周波数変換器511で所定の送信周波数fcに変換され、電力増幅器(PA)512で所定の電力まで増幅された後、送受共用器(DUP:DUPlexer)513を介して、複数段のサーキュラーアレイアンテナそれぞれの対応するアンテナ素子411(0~N-1)に供給される。
 以上のDBF制御により、複数段のサーキュラーアレイアンテナ410で構成されるシリンダー型のアレイアンテナから目標の位置に向けてアンテナ指向ビーム700を形成し、フットプリントを固定した状態でセル内に在圏する端末装置に送信信号を送信することができる。
 なお、図27において、複数段(0~L-1)のサーキュラーアレイアンテナ410の複数のアンテナ素子411(0~N-1)それぞれによって受信された複数のアップリンクの受信信号は、DUP513を介してローノイズアンプで増幅された後、周波数変換器で所定の周波数に変換され、ADコンバータ(ADC)でデジタル信号に変換されてウェイト演算部502に供給される。ウェイト演算部502で複数のデジタル信号に上記複数のウェイトを適用した後互いに加算されることにより、上記所定のセル内に在圏する端末装置からの受信信号を生成することができる。
 図27において、ウェイト演算部502には、アンテナ切り換え制御の機能を持たせてもよい。
 図28は、実施形態に係るアンテナ構成及びDBF制御の制御系の他の例を示すブロック図である。図28の例は、N個のアンテナ素子411からなるサーキュラーアレイアンテナ410を複数段有するシリンダー型のアレイアンテナでM個のセル(#0~#M-1)を形成する例である。なお、図28において、図27と共通する部分については説明を省略する。
 図28において、DBF制御部500は、ウェイト計算部501と、M個のセル(#0~#M-1)に対応するM個のウェイト演算部502とを備える。ウェイト計算部501は、複数のウェイト演算部502それぞれに供給するセル数分のウェイトを計算する。ここで計算されるウェイトはベクトルではなく行列である。
 複数のウェイト演算部502はそれぞれ、ウェイト計算部501で計算したウェイトを適用して、セル毎にビームフォーミングを行うためのウェイト演算を行ってN個のアンテナ素子411それぞれに供給する複数のデジタル送信信号を生成して出力する。ウェイト演算部502から出力されたデジタル送信信号は、アンテナ素子ごとに多重化(加算)されることにより、複数セルについて同時に異なる方向へのビーム制御が可能である。
 図28のDBF制御では、複数段のサーキュラーアレイアンテナ410で構成されるシリンダー型のアレイアンテナから互いに異なる複数の目標位置それぞれに向けてアンテナ指向ビーム700を形成し、フットプリントを固定した状態で各セル内に在圏する端末装置に送信信号を送信することができる。
 図29は、実施形態に係るアンテナ構成及びDBF制御の制御系の更に他の例を示すブロック図である。図29の例は、6個の平面型のアレイアンテナとしての平面アレイアンテナ440(0)~440(5)でアンテナ切替とDBF制御を行い、HAPS10,120のヨー回転対応のフットプリント固定制御を行って6個のセル(#0~#M-1)を形成する例である。各平面アレイアンテナ440(0)~440(5)はN個のアンテナ素子441を有し、各アレイアンテナのビームの向きが互いに異なるように配置されている。なお、図29において、図27と共通する部分については説明を省略する。
 図29において、DBF制御部500は、ウェイト計算部501と、6個の平面アレイアンテナ440(0)~440(5)に対応するように設けられた6個のウェイト演算部502(0)~502(5)とを備える。なお、平面アレイアンテナ440及びウェイト演算部502それぞれの個数は6個以外であってもよい。
 また、図29の例では、DBF制御部500とは別に、アンテナ切替部520を備える。アンテナ切替部520は、平面アレイアンテナ440(0)~440(5)の間で、6個のセル(#0~#M-1)それぞれを形成する平面アレイアンテナ440(0)~440(5)を切り替える。例えば、平面アレイアンテナ440(0)~440(5)の間で、第1番目のセル(#0)を形成する平面アレイアンテナを切り替えるようにウェイト演算部502(0)~502(5)への接続を切り替える。
 図30は、図29の制御系でDBF制御される平面アレイアンテナ440(0)~440(5)の一例を示す斜視図である。図示の例では、6個の平面アレイアンテナ440(0)~440(5)はそれぞれ、平面形状にそって複数のアンテナ素子441が2次元的に分布するように配置されている。また、平面アレイアンテナ440(0)~440(5)は、下向きの角錐形状(6角錐形状)の6つの斜面それぞれに配置されている。この複数の角錐形状(6角錐形状)下端に底面を設け、その底面に真下方向にセルを形成するための平面アレイアンテナ440を設けてもよい。また、複数の平面アレイアンテナ440は、角柱形状(例えば6角柱形状)における複数の外面部それぞれに配置してもよい。
 図29の制御系によるDBF制御は例えば次のように行う。水平方向のDBF制御では、各平面アレイアンテナ440(0)~440(5)で位相制御を行うことにより、水平方向(横方向)の所定の角度範囲(例えば30度)で各平面アレイアンテナ440(0)~440(5)の指向性ビームをステアリングする。そして、ステアリングで振れる角度が限界まできたとき、例えば位相制御により各平面アレイアンテナの垂直な法線方向に対して±30度まで指向性ビームをステアリングしたとき、各セルに対応する平面アレイアンテナ440(0)~440(5)を切り替える。一方、垂直方向のDBF制御は、例えば、前述のシリンダー型のアレイアンテナ430における垂直方向の制御と同様に行う。
 図31は、平面アレイアンテナ440(0)~440(5)の水平方向のビームフォーミング制御の一例を示す説明図である。図31の例は、HAPS10,20の機体が右回転しているときの例である。図中左の回転前の状態では、平面アレイアンテナ440(5)の法線方向の図中上方にビーム700によってセルが形成される。この状態から機体が図中矢印Rで示す右回転方向に例えば29度以下で回転(旋回)する場合は、図中中央時に示すように、平面アレイアンテナ440(5)の位相制御によりビーム700が左回転方向にステアリングされ、セルの位置が維持される。そして、図中右の状態に示すように、機体が図中矢印Rで示す右回転方向に例えば閾値の30度又はそれ以上回転(旋回)する場合は、平面アレイアンテナ440(5)の位相制御によるビーム700のステアリングが難しくなるため、上記セルを形成するための平面アレイアンテナを平面アレイアンテナ440(5)から隣の平面アレイアンテナ440(0)に切り替え、その切り替え後の平面アレイアンテナ440(0)に対して位相制御を行うことでビーム700が右回転方向にステアリングされ、セルの位置が維持される。
 なお、図29の例において、アンテナ切り換えを含めたウェイトを適用することにより、アンテナ切替部520を別途設けずに、アンテナ切り換え処理を含めたDBF制御をウェイト演算部502で行うようにしてもよい。
 図32は、実施形態に係るアンテナ構成及びDBF制御の制御系の更に他の例を示すブロック図である。なお、図32において、図27と共通する部分については説明を省略する。
 図32の制御系では、HAPS10,20の機体の旋回が同じ回転及び移動の繰り返し運動である(周期性がある)ことに着目し、サービスエリアの位置を基準にしたHAPS10,20の予測移動経路における互いに異なる複数組の機体の位置及び姿勢(傾き角度及び向き)に応じたウェイトを予め計算してメモリ等の記憶部514に保存しておく。そして、ウェイト読込部504により、GNSS/INSデータから計算した機体の姿勢及び位置に基づいて記憶部514を参照し、計算した機体の姿勢及び位置に対応するウェイトを読み込み、ウェイト演算部502での送信信号の演算に用いる。図32の例では、逐次ウェイト計算が不要であることから計算量及び消費電力を大幅に減らすことができる。
 以上、本実施形態によれば、上記構成のアレイアンテナ及びDBF制御とを適用することにより、HAPS10,20の姿勢や位置の変動によるセルのフットプリントの移動を抑制し、HOの頻発、HOによる制御信号の増加及びHO失敗による通信断を抑制することができる。しかも、アレイアンテナの指向性ビームの制御に、大型で重い機械的な制御機構でなく、小型で軽量化が容易なDBF制御を用いているため、HAPS10,20の小型化を図ることができる。
 上記各実施形態におけるDBF制御は、HAPS10,20が自立的に判断して行ってもよいし、遠隔制御装置85やサーバ86等の外部装置からの制御指令によって行ってもよい。また、上記DBF制御は所定の時間間隔で定期的に行ってもよいし、HAPS10,20の移動距離又は姿勢変化が所定よりも大きくなったときに行ってもよい。
 なお、本明細書で説明された処理工程並びにHAPS10,20等の通信中継装置の中継通信局、フィーダ局、ゲートウェイ局、管理装置、監視装置、遠隔制御装置、サーバ、端末装置(ユーザ装置、移動局、通信端末)、基地局及び基地局装置の構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。
 ハードウェア実装については、実体(例えば、中継通信局、フィーダ局、ゲートウェイ局、基地局、基地局装置、中継通信局装置、端末装置(ユーザ装置、移動局、通信端末)、管理装置、監視装置、遠隔制御装置、サーバ、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において前記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。
 また、ファームウェア及び/又はソフトウェア実装については、前記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された前記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、FLASHメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。
 また、前記媒体は非一時的な記録媒体であってもよい。また、前記プログラムのコードは、コンピュータ、プロセッサ、又は他のデバイス若しくは装置機械で読み込んで実行可能であれよく、その形式は特定の形式に限定されない。例えば、前記プログラムのコードは、ソースコード、オブジェクトコード及びバイナリコードのいずれでもよく、また、それらのコードの2以上が混在したものであってもよい。
 また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。
 10 HAPS(ソーラープレーンタイプ)
 20 HAPS(飛行船タイプ)
 20A サービスエリア
 61 端末装置
 70 ゲートウェイ局(GW局)
 80 移動通信網
 90,90(1),90(2) 基地局(eNodeB)
 100A セル
 110,210 中継通信局
 200C,200C(1)~200C(7) 3次元セル
 200F,200F(1)~200F(7) フットプリント
 400 アレイアンテナ
 401,411,421,431 アンテナ素子
 410 サーキュラーアレイアンテナ
 420 リニアアレイアンテナ
 430 シリンダー型のアレイアンテナ
 432 横方向アンテナ素子群
 433 縦方向アンテナ素子群
 440 平面アレイアンテナ
 441 アンテナ素子
 500 DBF制御部
 501 ウェイト計算部
 502 ウェイト演算部
 503 加算器
 504 ウェイト読込部
 514 記憶部
 520 アンテナ切替部
 600 GNSS/INS(GPSアンテナ)
 700 アンテナ指向ビーム
 701 主ビーム
 702 サイドローブ

Claims (16)

  1.  端末装置と無線通信する空中滞在型の通信中継装置であって、
     前記端末装置と間のサービスリンクの無線通信を行うセルを形成する複数のアンテナ素子を有するアレイアンテナと、
     前記通信中継装置の位置及び姿勢の少なくとも一方の情報を取得する情報取得部と、
     前記情報取得部で取得した前記通信中継装置の位置及び姿勢の少なくとも一方の情報に基づいて、前記通信中継装置に予め設定した基準方向の向きを基準にして、前記セルのフットプリントの位置を固定するように前記通信中継装置から前記セルの中心に向かうアンテナ指向ビームの目標ビーム幅、目標水平角度及び目標垂直角度を決定し、前記目標ビーム幅、前記目標水平角度及び前記目標垂直角度を有するアンテナ指向ビームを形成するように前記アレイアンテナの前記複数のアンテナ素子それぞれを介して送受信される複数の送受信信号の位相及び振幅を制御する制御部と、を備えることを特徴とする通信中継装置。
  2.  請求項1の通信中継装置において、
     サービスエリアを構成する複数のセル形成し、
     前記制御部は、
      前記通信中継装置に予め設定した基準方向の向きを基準にして、前記複数のセルのフットプリントそれぞれを固定するように前記通信中継装置から前記複数のセルそれぞれの中心に向かう複数のアンテナ指向ビームそれぞれの目標ビーム幅、目標水平角度及び目標垂直角度を決定し、
      前記複数のセルのそれぞれについて、前記目標ビーム幅、前記目標水平角度及び前記目標垂直角度を有するアンテナ指向ビームを形成するように前記複数の送受信信号の位相及び振幅を制御することを特徴とする通信中継装置。
  3.  請求項1又は2の通信中継装置において、
     前記通信中継装置が移動する前の前記通信中継装置の鉛直方向下方の地点から前記セルの中心までの地表距離をdn[km]とし、前記通信中継装置が移動する前の前記通信中継装置の高度をh[km]とし、前記通信中継装置の水平方向及び垂直方向における移動距離をそれぞれΔd[km]及びΔh[km]とし、補正係数をβとしたとき、
     前記通信中継装置が移動した後の前記目標垂直角度θstr,n[度]は次式(1)を満たすことを特徴とする通信中継装置。
    Figure JPOXMLDOC01-appb-M000001
     
  4.  請求項1乃至3のいずれかの通信中継装置において、
     前記通信中継装置が移動する前の前記通信中継装置の鉛直方向下方の地点から前記セルの中心までの地表距離をdn[km]とし、前記通信中継装置が移動する前の前記通信中継装置の高度をh[km]とし、前記通信中継装置の水平方向及び垂直方向における移動距離をそれぞれΔd[km]及びΔh[km]とし、前記セルの中心及びセル境界から前記通信中継装置を見たときの仰角をθn[度]及びθedge,k[度]としたとき、
     前記通信中継装置が移動した後の前記目標ビーム幅θbw,n[度]は次式(2)及び(3)を満たすことを特徴とする通信中継装置。
    Figure JPOXMLDOC01-appb-M000002
     
    Figure JPOXMLDOC01-appb-M000003
     
  5.  請求項1乃至4のいずれかの通信中継装置において、
     前記アレイアンテナは、円柱周面形状に沿って複数のアンテナ素子を分布させるように配置したシリンダー型のアレイアンテナであることを特徴とする通信中継装置。
  6.  請求項5の通信中継装置において、
     前記シリンダー型のアレイアンテナは、前記円柱周面形状の周方向に複数のアンテナ素子を並べたサーキュラー型のアレイアンテナを、前記円柱周面形状の中心軸に平行な方向に複数組並べて構成したことを特徴とする通信中継装置。
  7.  請求項5又は6の通信中継装置において、
     前記円柱周面形状の周方向に複数のアンテナ素子が並んだサーキュラー型のアレイアンテナ及び前記円柱周面形状の中心軸に平行な方向に複数のアンテナ素子が並んだリニア型のアレイアンテナのそれぞれに対して、前記複数の送受信信号の位相及び振幅の制御を互いに独立に行うことを特徴とする通信中継装置。
  8.  請求項5乃至7のいずれかの通信中継装置において、
     前記シリンダー型のアレイアンテナの底面部に複数のアンテナ素子を更に配置したことを特徴とする通信中継装置。
  9.  請求項1乃至8のいずれかの通信中継装置において、
     前記目標水平角度と所望のビームパターンとに基づいて、前記複数のアンテナ素子に対する複数の送受信信号それぞれに適用するウェイトを計算し、
     前記複数のウェイトに基づいて、前記複数の送受信信号の位相及び振幅の制御を行うことを特徴とする通信中継装置。
  10.  請求項1乃至8のいずれかの通信中継装置において、
     前記通信中継装置に予め設定した基準方向の向きを基準にしたアンテナ指向ビームの複数の水平角度について所望のビームパターンを得るように予め決定したウェイトの位相及び振幅の近似式を記憶し、
     前記基準方向の向きを基準にして、前記セルのフットプリントを固定するようにアンテナ指向ビームの目標水平角度を求め、
     前記目標水平角度と前記近似式とに基づいて、前記複数のアンテナ素子に対する複数の送受信信号それぞれに適用するウェイトを計算し、
     前記複数のウェイトに基づいて、前記複数の送受信信号の位相及び振幅の制御を行うことを特徴とする通信中継装置。
  11.  請求項1乃至8のいずれかの通信中継装置において、
     前記目標水平角度に基づいて、前記複数のアンテナ素子に対する複数の送受信信号それぞれに適用するウェイトを、前記目標水平角度を中心としたガウス分布の関数で計算し、
     前記複数のウェイトに基づいて、前記複数の送受信信号の位相及び振幅の制御を行うことを特徴とする通信中継装置。
  12.  請求項9乃至11のいずれかの通信中継装置において、
     前記目標水平角度とは反対側に位置する背面側のアンテナ素子について前記ウェイトをゼロにすることを特徴とする通信中継装置。
  13.  請求項1乃至4のいずれかの通信中継装置において、
     前記アレイアンテナは、平面形状にそって複数のアンテナ素子を2次元的に分布させるように配置した複数の平面型のアレイアンテナを、各アレイアンテナのビームの向きが互いに異なるように配置して構成し、
     前記複数の平面型のアレイアンテナの間で前記セルの形成に用いるアレイアンテナを切り替えるアンテナ切り替え部を備えることを特徴とする通信中継装置。
  14.  請求項13の通信中継装置において、
     前記平面型のアレイアンテナを、角錐形状、角柱形状又はそれらを組み合わせた形状における複数の外面部それぞれに配置したことを特徴とする通信中継装置。
  15.  請求項13又は14の通信中継装置において、
     現在の水平角度と目標水平角度との差が所定の閾値以下のときは、使用中の平面型のアレイアンテナに対して前記送受信信号の位相及び振幅の制御を行い、
     現在の水平角度と目標水平角度との差が前記閾値よりも大きくなったときに、前記平面型のアレイアンテナを切り替えて前記送受信信号の位相及び振幅の制御を行うことを特徴とする通信中継装置。
  16.  請求項1乃至8のいずれかの通信中継装置において、
     サービスエリアの位置を基準にした前記通信中継装置の予測移動経路における互いに異なる複数組の位置及び姿勢それぞれに対応づけて、前記送受信信号に適用するウェイトを予め計算して保存し、
     前記保存している複数組の絶対的な位置及び姿勢それぞれに対応するウェイトから、前記情報取得部で取得した前記通信中継装置の位置及び姿勢に対応するウェイトを選択し、
     前記選択したウェイトに基づいて前記送受信信号の位相及び振幅の制御を行うことを特徴とする通信中継装置。
PCT/JP2019/043705 2018-11-12 2019-11-07 Hapsにおけるサービスリンクのアンテナ構成及びビームフォーミング制御 WO2020100715A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-212492 2018-11-12
JP2018212492A JP7152270B2 (ja) 2018-11-12 2018-11-12 Hapsにおけるサービスリンクのアンテナ構成及びビームフォーミング制御

Publications (1)

Publication Number Publication Date
WO2020100715A1 true WO2020100715A1 (ja) 2020-05-22

Family

ID=70731344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043705 WO2020100715A1 (ja) 2018-11-12 2019-11-07 Hapsにおけるサービスリンクのアンテナ構成及びビームフォーミング制御

Country Status (2)

Country Link
JP (1) JP7152270B2 (ja)
WO (1) WO2020100715A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2783202C2 (ru) * 2021-03-09 2022-11-09 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Спутник-ретранслятор
EP4297288A4 (en) * 2021-02-17 2024-08-21 Softbank Corp FOOTPRINT FIXATION CONTROL LIMITED TO A SPECIFIC CHANNEL, TAKES INTO ACCOUNT MOVEMENT AND ROTATION OF HAPS

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7170690B2 (ja) * 2020-07-22 2022-11-14 Hapsモバイル株式会社 Hapsのマルチフィーダリンクにおけるアンテナ切り替え時の処理遅延における干渉低減性能低下の緩和
JP6898687B1 (ja) * 2021-01-25 2021-07-07 WaveArrays株式会社 飛行体及び通信システム
CA3148916C (en) 2021-01-25 2023-07-11 Wavearrays Inc. Flight vehicle and communication system
JPWO2023199797A1 (ja) * 2022-04-11 2023-10-19

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020719A1 (en) * 1999-09-13 2001-03-22 Motorola Inc. Smart antenna for airborne cellular system
WO2016139469A1 (en) * 2015-03-03 2016-09-09 Stratospheric Platforms Limited Increasing data transfer rates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020719A1 (en) * 1999-09-13 2001-03-22 Motorola Inc. Smart antenna for airborne cellular system
WO2016139469A1 (en) * 2015-03-03 2016-09-09 Stratospheric Platforms Limited Increasing data transfer rates

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOSHINO, KENJI ET AL.: "A Study on Service Link Antenna Considering Fixed Footprint in HAPS System", IEICE TECHNICAL REPORT, November 2018 (2018-11-01), pages 95 - 100 *
SUDO SHOICHI ET AL.: "A Study on Service Link Antenna for Fixing Footprint in HAPS System", LECTURE PROCEEDINGS 1 OF THE 2018 COMMUNICATION SOCIETY CONFERENCE OF IEICE, 28 August 2018 (2018-08-28), pages 315 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4297288A4 (en) * 2021-02-17 2024-08-21 Softbank Corp FOOTPRINT FIXATION CONTROL LIMITED TO A SPECIFIC CHANNEL, TAKES INTO ACCOUNT MOVEMENT AND ROTATION OF HAPS
RU2783202C2 (ru) * 2021-03-09 2022-11-09 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Спутник-ретранслятор
RU2793898C1 (ru) * 2022-10-21 2023-04-07 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Спутник-ретранслятор

Also Published As

Publication number Publication date
JP7152270B2 (ja) 2022-10-12
JP2020080459A (ja) 2020-05-28

Similar Documents

Publication Publication Date Title
JP6855421B2 (ja) 通信中継装置
WO2020100715A1 (ja) Hapsにおけるサービスリンクのアンテナ構成及びビームフォーミング制御
EP3836421B1 (en) Feeder link communication system of haps
WO2019155872A1 (ja) Haps協調飛行システム
WO2018207612A1 (ja) 第5世代通信の3次元化ネットワークを構築するhaps間通信及び大容量多セル係留飛行船型haps
JP6653684B2 (ja) 無線中継装置、遠隔制御装置及び通信システム
JP6721618B2 (ja) 通信システム、ゲートウェイ局及び基地局
JP2023520467A (ja) 高高度プラットフォームの運動を補償するためのアンテナビーム生成の制御
WO2020179384A1 (ja) Hapsマルチフィーダリンクにおける干渉キャンセリング
WO2020195294A1 (ja) 複数ゲートウェイhapsシステムにおけるフィーダリンク送信帯域の固定分割による干渉キャンセリング
WO2022224655A1 (ja) 通信中継装置、システム及びプログラム
WO2022004728A1 (ja) Hapsのサービスリンクにおけるアンテナ取付プレートからの反射波干渉抑制
JP7073296B2 (ja) 複数ゲートウェイhapsシステムにおけるフィーダリンク送信帯域の可変分割による干渉キャンセリング
JP7089558B2 (ja) Hapsのマルチフィーダリンクにおけるhaps搭載アンテナ位置変更による動的な伝搬空間相関の改善
WO2022019125A1 (ja) Hapsのマルチフィーダリンクにおけるアンテナ切り替え時の処理遅延における干渉低減性能低下の緩和
JP7499903B1 (ja) 広域セル基地局、システム、並びに、アンテナ指向性のヌルを形成する方法及びプログラム
WO2024203298A1 (ja) 広域セル基地局及び地上セル基地局を備えるシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883855

Country of ref document: EP

Kind code of ref document: A1