WO2020179384A1 - Hapsマルチフィーダリンクにおける干渉キャンセリング - Google Patents

Hapsマルチフィーダリンクにおける干渉キャンセリング Download PDF

Info

Publication number
WO2020179384A1
WO2020179384A1 PCT/JP2020/005323 JP2020005323W WO2020179384A1 WO 2020179384 A1 WO2020179384 A1 WO 2020179384A1 JP 2020005323 W JP2020005323 W JP 2020005323W WO 2020179384 A1 WO2020179384 A1 WO 2020179384A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
feeder link
gateway
stations
communication
Prior art date
Application number
PCT/JP2020/005323
Other languages
English (en)
French (fr)
Inventor
隆史 藤井
藤井 輝也
Original Assignee
Hapsモバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hapsモバイル株式会社 filed Critical Hapsモバイル株式会社
Priority to EP20765586.1A priority Critical patent/EP3934304A4/en
Priority to US17/434,842 priority patent/US11764861B2/en
Publication of WO2020179384A1 publication Critical patent/WO2020179384A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present invention relates to interference canceling in a multi-feeder link of an aerial levitation type wireless relay device such as HAPS suitable for constructing a three-dimensional network.
  • HAPS high-altitude platform stations
  • GW gateway
  • air relay device Since the communication capacity of the service link of the above-mentioned airborne communication relay device (hereinafter referred to as "air relay device") depends on the communication capacity of the feeder link which is the relay frequency, effective use of the frequency of the feeder link is indispensable. is there. Therefore, a method is conceivable in which a plurality of GW stations on the ground are installed at locations separated from each other to form a multi-feeder link that transmits and receives different feeder link signals at the same frequency from each GW station. However, unlike the fixed station, the sky relay device flies around in a predetermined airspace, so that dynamic interference may occur in the multi-feeder link of the same frequency between the sky relay device and the plurality of GW stations.
  • a system is a system including an in-air stay type communication relay device including a relay communication station that relays wireless communication of a terminal device.
  • the system includes a plurality of gateway stations that are time-synchronized with each other and that transmit and receive different relay signals at the same frequency in a feeder link with the relay communication station of the airborne communication relay device.
  • the relay communication station includes a feeder link communication unit that transmits and receives different relay signals at the same frequency in a feeder link between the plurality of gateway stations, and a plurality of feeder links formed between the plurality of gateway stations. It is provided with an interference suppression unit that suppresses interference.
  • Each of the plurality of gateway stations transmits a plurality of pilot signals having frequencies different from each other.
  • the feeder link communication unit receives a plurality of pilot signals having different frequencies transmitted from each of the plurality of gateway stations.
  • the interference suppressing unit based on the reception result of the plurality of pilot signals received from each of the plurality of gateway stations, a plurality of paths between each of the plurality of gateway stations and the feeder link antenna of the communication relay device.
  • a channel response is estimated by calculating a difference, and based on the plurality of channel responses, for each of the plurality of gateway stations, a transmission signal transmitted from the gateway station corresponds to the remaining gateway stations.
  • a relay communication station is a relay communication station that is incorporated in an airborne communication relay device and relays wireless communication of a terminal device.
  • the relay communication station includes a feeder link communication unit that transmits and receives different relay signals at the same frequency on a feeder link with a plurality of gateway stations that are time-synchronized with each other, and a plurality of the relay stations formed between the plurality of gateway stations. It is provided with an interference suppression unit that suppresses interference between the feeder links.
  • the feeder link communication unit receives a plurality of pilot signals having different frequencies transmitted from each of the plurality of gateway stations.
  • the interference suppressing unit based on the reception result of the plurality of pilot signals received from each of the plurality of gateway stations, a plurality of paths between each of the plurality of gateway stations and the feeder link antenna of the communication relay device.
  • a channel response is estimated by calculating a difference, and based on the plurality of channel responses, for each of the plurality of gateway stations, a transmission signal transmitted from the gateway station corresponds to the remaining gateway stations.
  • the received signal received by the directional beam is multiplied by the weight corresponding to the other gateway station and subtracted.
  • the aerial stay type communication relay device includes the relay communication station.
  • the gateway station transmits and receives different relay signals at the same frequency in the feeder link with the relay communication station which is incorporated in the air-stay type communication relay device and relays the wireless communication of the terminal device. It is a gateway station.
  • the gateway station is time-synchronized with other gateway stations that transmit and receive relay signals at the same frequency on the feeder link with the relay communication station, and transmits a plurality of pilot signals having different frequencies on the feeder link.
  • the interference suppression method is a feeder link interference suppression method in a relay communication station incorporated in an aerial stay type communication relay device and relaying wireless communication of the terminal device.
  • the interference suppression method receives a plurality of pilot signals having different frequencies transmitted from each of a plurality of gateway stations time-synchronized with each other, and receives the plurality of pilot signals received from each of the plurality of gateway stations.
  • the propagation path response is estimated by calculating the plurality of path differences between each of the plurality of gateway stations and the feeder link antenna of the communication relay device, and based on the plurality of propagation path responses.
  • the weight for suppressing the interference signal in which the transmission signal transmitted from the gateway station is received by the directional beam corresponding to the remaining other gateway stations and interferes is calculated.
  • the received signal received by the directional beam corresponding to the gateway station corresponds to the other gateway station. Multiplying by the weight and subtracting.
  • the feeder link communication method is incorporated in an aerial stay type communication relay device and relay signals different from each other at the same frequency in a feeder link with a relay communication station that relays wireless communication of the terminal device.
  • the feeder link communication method is time-synchronized with another gateway station that transmits / receives a relay signal at the same frequency in the feeder link with the relay communication station, and a plurality of pilots having different frequencies in the feeder link. Transmitting a signal.
  • a program according to still another aspect of the present invention is a program executed by a computer or a processor provided in a relay communication station that is incorporated in an airborne communication relay device and relays wireless communication of a terminal device.
  • the program is a program code for transmitting and receiving different relay signals at the same frequency in a feeder link between a plurality of gateway stations that are time-synchronized with each other, and a different frequency of the different frequencies transmitted from each of the plurality of gateway stations.
  • a program code for receiving a plurality of pilot signals, a program code for separating the received plurality of pilot signals by a filter, and a reception result of the plurality of pilot signals received from each of the plurality of gateway stations On the basis of the program code for estimating a channel response by calculating a plurality of path differences between each of the plurality of gateway stations and the feeder link antenna of the communication relay device, the plurality of channel responses Based on each of the plurality of gateway stations, for calculating a weight for suppressing an interference signal in which a transmission signal transmitted from the gateway station is received by a directional beam corresponding to the remaining other gateway stations and interferes For each of the plurality of gateway stations, the received signal received by the directional beam corresponding to the gateway station to the received signal received by the directional beam corresponding to the other gateway station to the other gateway.
  • the program code for multiplying and subtracting the weight corresponding to the station is included.
  • a program transmits/receives different relay signals at the same frequency in a feeder link with a relay communication station that is incorporated in an airborne communication relay device and relays wireless communication of a terminal device.
  • a program that is executed by a computer or processor installed in a gateway station.
  • the program is a program code for time synchronization with another gateway station that transmits and receives a relay signal at the same frequency in a feeder link with the relay communication station, and a plurality of pilot signals having different frequencies in the feeder link. Includes the program code for sending.
  • the relay communication station, the airborne communication relay device, the gateway station, the interference suppression method, the feeder link communication method, and the program, the plurality of pilot signals are the transmission signal bands of the feeder link. It may be transmitted in a distributed manner in a plurality of guard bands located on both sides of the.
  • the interference suppression unit may estimate the plurality of propagation path responses and calculate the plurality of weights at the center frequency of the transmission signal band of the feeder link or a frequency around the center frequency.
  • Each of the plurality of weights may be calculated by the ZF (Zero-Forcing) method or the MMSE (Minimum Mean Square Error) method using the matrix of the propagation path response.
  • Each of the plurality of gateway stations may include an antenna control unit that controls the feeder link antenna so as to track the in-air stay type communication relay device.
  • the aerial stay type communication relay device includes a feeder link antenna having a plurality of directional beams corresponding to the plurality of gateway stations, and the feeder so that the plurality of beams are directed to the corresponding gateway stations.
  • An antenna control unit that controls a link antenna may be provided.
  • the feeder link antenna is a plurality of feeder link antennas having directional beams in mutually different directions, the antenna control unit, the directional beam of the plurality of feeder link antennas respectively corresponding to the direction of the gateway station.
  • Each of the plurality of feeder link antennas may be mechanically controlled so as to face.
  • the feeder link antenna is an array antenna capable of forming the plurality of directional beams in an arbitrary outer direction around a virtual axis in the vertical direction, and the antenna control unit includes the plurality of directional beams.
  • a system characterized in that the amplitude and phase of a transmitted / received signal with respect to a plurality of antenna elements of the array antenna are controlled so that the two antennas face the corresponding gateway stations.
  • the feeder link antenna is a plurality of array antennas capable of forming a directional beam in a predetermined angle range centered on mutually different directions, the antenna control unit, the directional beam of the plurality of array antennas respectively
  • the control of the amplitude and phase of the transmission/reception signal with respect to the plurality of antenna elements of each array antenna and the switching control of the plurality of array antennas may be selectively performed so as to face the corresponding gateway station.
  • FIG. 1 is an explanatory diagram showing an example of a HAPS cell configuration in a communication system according to an embodiment of the present invention.
  • FIG. 2A is a side view showing an example of a schematic configuration of a plurality of GW systems according to an embodiment.
  • FIG. 2B is an explanatory view of the relationship between the plurality of feeder link antennas of HAPS and the plurality of GW stations as viewed from above.
  • FIG. 3 is an explanatory diagram showing an example of how the GW antennas of a plurality of GW stations according to the embodiment track HAPS.
  • FIG. 4 is an explanatory diagram showing an example of directional beams of a plurality of FL antennas of HAPS according to the embodiment.
  • FIG. 5 is an explanatory diagram showing an example of directional beam control of the FL antenna in HAPS according to the embodiment.
  • FIG. 6 is an explanatory diagram showing another example of directional beam control of the FL antenna in HAPS according to the embodiment.
  • FIG. 7 is an explanatory diagram showing still another example of directional beam control of the FL antenna in HAPS according to the embodiment.
  • FIG. 8 is an explanatory diagram of an example of interference between GW stations (between feeder links) in a plurality of GW systems.
  • FIG. 9 is an explanatory diagram showing an example of a MIMO interference canceller to which the weight W is obtained by an approximate expression and applied.
  • FIG. 10 is an explanatory diagram showing an example of a schematic configuration of an interference canceller unit mounted on the HAPS.
  • FIG. 10 is an explanatory diagram showing an example of a schematic configuration of an interference canceller unit mounted on the HAPS.
  • FIG. 11 is an explanatory diagram showing an example of a MIMO interference canceller applied by obtaining a weight W by the ZF method.
  • FIG. 12 is an explanatory diagram showing an example of the transmission signal band of the feeder link in the plurality of GW systems according to the embodiment.
  • FIG. 13 is a graph showing an example of the result of a computer simulation for evaluating the interference reduction effect when the weights are obtained at different pilot frequencies according to the embodiment.
  • FIG. 14 is a graph showing an example of the result of computer simulation of SINR characteristics of the entire transmission signal band of the feeder link when the HAPS machine body is rotated.
  • FIG. 15 is an explanatory diagram showing an example of the frequency of each pilot signal when a plurality of GW stations according to the comparative example transmit a single pilot signal.
  • FIG. 12 is an explanatory diagram showing an example of the transmission signal band of the feeder link in the plurality of GW systems according to the embodiment.
  • FIG. 13 is a graph showing an example of the result of a computer simulation for
  • FIG. 16 is an explanatory diagram showing an example of a derivation model of the propagation path response of the feeder link using the pilot signal of FIG.
  • FIG. 17 is an explanatory diagram showing an example of an arrangement of frequencies of pilot signals when a plurality of GW stations according to the embodiment respectively transmit a plurality of pilot signals.
  • FIG. 18 is an explanatory diagram showing an example of a derivation model of the propagation path response of the feeder link using the pilot signal of FIG.
  • FIG. 19 is an explanatory diagram showing another example of arrangement of pilot frequencies when a plurality of GW stations according to an embodiment each transmit a plurality of pilot signals.
  • FIG. 17 is an explanatory diagram showing an example of an arrangement of frequencies of pilot signals when a plurality of GW stations according to the embodiment respectively transmit a plurality of pilot signals.
  • FIG. 18 is an explanatory diagram showing an example of a derivation model of the propagation path response of the feeder link using the pilot signal of FIG.
  • FIG. 19 is an explanatory
  • FIG. 20 is an explanatory diagram showing still another example of the arrangement of pilot frequencies when a plurality of GW stations according to the embodiment respectively transmit a plurality of pilot signals.
  • FIG. 21 is an explanatory diagram showing an example of a main configuration of the HAPS relay communication station according to the embodiment.
  • FIG. 1 is an explanatory diagram showing an example of a cell configuration of the HAPS 20 in the communication system according to the embodiment of the present invention.
  • the communication system according to the present embodiment is suitable for realizing a three-dimensional network of fifth-generation mobile communication that supports simultaneous connection to a large number of terminal devices and low delay.
  • the communication system includes a high altitude platform station (HAPS) as a plurality of airborne communication relay devices (wireless relay devices) (also referred to as “high altitude pseudolite” or “stratospheric platform”). Equipped with 20.
  • the HAPS 20 is located in an airspace at a predetermined altitude and forms a three-dimensional cell (three-dimensional area) in the cell formation target airspace at a predetermined altitude.
  • the HAPS 20 relays communication to an airship as a levitation body that is controlled to float or fly to a high altitude airspace (levitation airspace) of 100 [km] or less from the ground or sea surface by autonomous control or external control.
  • the station 21 is installed.
  • the airspace where HAPS20 is located is, for example, the airspace of the stratosphere where the altitude above the ground (or above the water such as the sea or lake) is 11 [km] or more and 50 [km] or less.
  • This airspace may be an airspace with an altitude of 15 [km] or more and 25 [km] or less in which the weather conditions are relatively stable, and in particular, an airspace with an altitude of approximately 20 [km].
  • the cell formation target airspace which is a target airspace for forming a three-dimensional cell with one or more HAPS in the communication system of the present embodiment, includes a space in which the HAPS 20 is located and a base station such as a conventional macrocell base station (for example, in LTE).
  • eNodeB is an air space of a predetermined altitude range (for example, an altitude range of 50 [m] or more and 1000 [m] or less) located between the cell formation region near the ground covered by the eNodeB).
  • the cell formation target airspace in which the three-dimensional cell of the present embodiment is formed may be above the sea, river, or lake. Also, the three-dimensional cell formed by the HAPS 20 may be formed so as to reach the ground or the sea surface so that it can communicate with the terminal device 61 located on the ground or on the sea.
  • Each of the relay communication stations of the HAPS 20 uses a service link antenna (hereinafter referred to as "SL antenna") 215 to form a plurality of beams for wireless communication with the terminal device 61, which is a mobile station, toward the ground.
  • the terminal device 61 may be a communication terminal module incorporated in a drone, which is an aircraft such as a small helicopter capable of remote control, or a user device used by a user in an airplane.
  • the region through which the beam passes in the cell formation target airspace is a three-dimensional cell. Multiple beams adjacent to each other in the cell formation target airspace may partially overlap.
  • the relay communication stations 21 of the HAPS 20 are, for example, a base station that wirelessly communicates with a gateway station (also referred to as a “feeder station”) 70 as a relay station connected to a core network on the terrestrial (or sea) side, or a terrestrial. It is a repeater slave device that wirelessly communicates with a feeder station (repeater master device) 70 as a relay station connected to a base station on the (or maritime) side.
  • a gateway station also referred to as a “feeder station” 70 as a relay station connected to a core network on the terrestrial (or sea) side, or a terrestrial.
  • It is a repeater slave device that wirelessly communicates with a feeder station (repeater master device) 70 as a relay station connected to a base station on the (or maritime) side.
  • the relay communication station 21 of the HAPS 20 is connected to the core network of the mobile communication network 80 via the feeder station 70 installed on the ground or the sea where wireless communication is possible by the feeder link antenna (hereinafter referred to as “FL antenna”) 211.
  • FL antenna the feeder link antenna
  • the feeder link communication between the HAPS 20 and the feeder station 70 may be performed by wireless communication using radio waves such as microwaves, or by optical communication using laser light or the like.
  • Each of the HAPS 20 may autonomously control its own levitating movement (flying) and processing at the relay communication station 21 by executing a control program by a control unit configured by a computer incorporated therein.
  • each HAPS 20 acquires its own current position information (eg, GPS position information), prestored position control information (eg, flight schedule information), position information of other HAPS located in the vicinity, and the like information.
  • the floating movement (flying) and the processing in the relay communication station 21 may be autonomously controlled based on the above.
  • the levitation movement (flight) of each HAPS 20 and the processing in the relay communication station 21 can be controlled by a management device (also referred to as “remote control device”) as a management device provided in a communication center of the mobile communication network. You may do it.
  • the management device can be configured by, for example, a computer device such as a PC, a server, or the like.
  • the HAPS 20 incorporates a control communication terminal device (for example, a mobile communication module) so as to be able to receive control information from the management device and send various types of information such as monitoring information to the management device.
  • Terminal identification information for example, IP address, telephone number, etc.
  • the MAC address of the communication interface may be used to identify the control communication terminal device.
  • the HAPS 20 manages monitoring information such as information regarding the levitation movement (flight) of HAPS or its surrounding HAPS and processing at the relay communication station 21, information regarding the state of the HAPS 20, observation data acquired by various sensors, and the like. It may be sent to a predetermined destination such as.
  • the control information may include HAPS target flight route information.
  • the monitoring information includes at least one of the current position of the HAPS 20, flight route history information, airspeed, ground speed and propulsion direction, wind velocity and direction of airflow around the HAPS 20, and pressure and temperature around the HAPS 20. But it's okay.
  • the uplink and downlink duplex schemes for wireless communication between the relay communication station 21 and the terminal device 61 are not limited to specific schemes, and may be, for example, a Time Division Duplex (TDD) scheme, A frequency division duplex (FDD) system may also be used.
  • the access method for wireless communication between the relay communication station 21 and the terminal device 61 is not limited to a specific method, and is, for example, an FDMA (Frequency Division Multiple Access) method, a TDMA (Time Division Multiple Access) method, or a CDMA (Code) method. It may be a Division Multiple Access (Ordinary Multiple Access) method or OFDMA (Orthogonal Frequency Division Multiple Access).
  • the wireless communication has functions such as diversity coding, transmission beamforming, and space division multiplexing (SDM), and by using multiple antennas at the same time for both transmission and reception, per unit frequency MIMO (multi-input and multi-output: Multi-Input and Multi-Output) technology that can increase the transmission capacity of the above may be used.
  • MIMO technology may be SU-MIMO (Single-User MIMO) technology in which one base station transmits a plurality of signals at the same time and at the same frequency as one terminal device, or one base station has a plurality of signals. It may be MU-MIMO (Multi-User MIMO) technology in which signals are transmitted to different terminal devices at the same time and same frequency, or a plurality of different base stations transmits signals to one terminal device at the same time and same frequency. ..
  • the communication relay device having the relay communication station 21 that wirelessly communicates with the terminal device 61 is the unmanned airship type HAPS 20
  • the communication relay device is the solar plane type HAPS. It may be.
  • the following embodiments can be similarly applied to other airborne communication relay devices other than HAPS.
  • the link between the HAPS 20 and the base station 90 via the gateway station (hereinafter abbreviated as "GW station") 70 as a feeder station is called a "feeder link”
  • the link between the HAPS 10 and the terminal device 61 is called a "feeder link”.
  • service link It is called "service link”.
  • the section between the HAPS 20 and the GW station 70 is referred to as a "feeder link radio section”.
  • the downlink of the communication from the GW station 70 to the terminal device 61 via the HAPS 20 is called a "forward link”
  • the uplink of the communication from the terminal device 61 to the GW station 70 via the HAPS 20 is a "reverse link”. Also called.
  • the communication relay device is an unmanned airship type HAPS20, but a solar plane type HAPS may also be used.
  • the HAPS 20 is located in the stratosphere at an altitude of about 20 km, the HAPS 20 forms a plurality of cells 200C (1) to 200C (7), and the cells 200C (1) having the plurality of cells (7 cells) are configured.
  • the diameter of the service area 20A including the footprints 200F (1) to 200F (7) of 200C (7) is 100 to 200 km, but the diameter is not limited thereto.
  • a communication service that directly communicates with a terrestrial (or water) terminal device 61 using the HAPS 20 located in the stratosphere is very attractive as a means of communication in the event of a disaster or expansion of a service area.
  • the communication line of the HAPS 20 includes a feeder link FL connecting the GW station 70 and the HAPS 20, and a service link SL connecting the HAPS 20 and the terminal device 61. Since the communication capacity of the service link is determined by the communication capacity of the feeder link, which is the relay frequency, it is necessary to improve the frequency utilization efficiency of the feeder link. In particular, when the service link has a multi-cell configuration as shown in FIG.
  • the communication capacity of the feeder link is likely to be insufficient, and therefore a technique for effectively using the frequency of the feeder link is essential.
  • the HAPS 20 and the GW station 70 are configured one-to-one, it is difficult to improve the frequency utilization efficiency of the feeder link.
  • the feeder link between the HAPS 20 and the feeder link includes a plurality of GW stations that transmit and receive different relay signals at the same frequency, and the multi-feeder link formed between the one HAPS 20 and the plurality of GW stations.
  • a multiple gateway system hereinafter also referred to as "multiple GW system” that performs spatial division multiplex communication.
  • this multiple GW system by removing the interference between the plurality of feeder links, the frequency utilization efficiency can be improved by the number of GW stations to be installed.
  • the space division multiplex communication between the HAPS 20 and the plurality of GW stations is performed only by the forward link of the feeder link
  • the space division multiplex communication is only the reverse link of the feeder link. It may be done with, or it may be done with both forward link and reverse link.
  • FIG. 2A is a side view showing an example of a schematic configuration of a plurality of GW systems according to an embodiment
  • FIG. 2B shows a plurality of FL antennas 211 (1) to 211 (3) and a plurality of GW stations 70 (1) to the HAPS 20. It is explanatory drawing which looked at the relationship with 70 (3) from the upper part.
  • the number of FL antennas (N) and the number of GW stations (N) are the same (3 in the illustrated example), and the same number of FL antennas 211 (1) to 211 (3) and the GW station 70 are used.
  • (1) to 70 (3) are provided in a one-to-one correspondence with each other.
  • the number of sets of the FL antenna 211 and the GW station 70 may be two sets or four or more sets.
  • the plurality of GW stations 70 are arranged so that the distance from the HAPS 20 and the distance between the GW stations are equal to each other, but at least one of the distance and the distance may be different from each other. ..
  • the GW stations 70 are arranged so that the complex amplitudes received by the FL antennas 211 (also referred to as “HAPS station antennas”) of the HAPS 20 are uncorrelated.
  • the feeder link antennas (hereinafter referred to as "GW antennas") 71 (1) to 71 (3) of the GW stations 70 (1) to 70 (3) are vertically polarized waves (V) and horizontally polarized waves orthogonal to each other. Transmission and reception are possible with the two polarized waves of (H).
  • the plurality of FL antennas 211 (1) to 211 (3) of the HAPS 20 are arranged so that the distance from the center of the HAPS 20 and the distance between the FL antennas are equal to each other. At least one of the intervals may be different between the FL antennas. For example, the distance and the distance may be different from each other between the FL antennas.
  • the plurality of GW stations 70 (1) to 70 (3) are antennas that control the GW antennas 71 (1) to 71 (3) so as to track the HAPS 20 moving in the air, respectively.
  • a control unit may be provided.
  • the broken line HAPS20'in the figure indicates the position before the movement, and the solid line HAPS20 in the figure indicates the position after the movement. Since each of the GW antennas 71 (1) to 71 (3) tracks the HAPS20, even when the GW antennas 71 (1) to 71 (3) having high directivity such as a parabolic antenna are used, the movement of the HAPS20 causes it. It is possible to suppress deterioration of communication quality of the feeder link.
  • the plurality of FL antennas 211 (1) to 211 (3) of the HAPS 20 are antenna directional beams corresponding to the GW stations 70 (1) to 70 (3), respectively (hereinafter, “directivity”). It has (referred to as "beam” or “beam”) 212 (1) to 212 (3), and the HAPS 20 has directional beams 212 (1) to 212 (3) of a plurality of FL antennas 211 (1) to 211 (3). ) May be provided with an antenna control unit that controls the FL antennas 211 (1) to 211 (3) so as to face the corresponding GW stations 70 (1) to 70 (3).
  • the directional beams 212 (1) to 212 (3) of the FL antennas 211 (1) to 211 (3) face, for example, the direction of the GW station 70 most opposed to itself, and the other GW stations It is formed so as not to cause interference, that is, the ratio (F / B) of the gain of the main beam to the gain in the opposite direction is sufficiently large. As a result, even when the HAPS 20 moves or rotates, it is possible to suppress the deterioration of the communication quality of the feeder link due to the movement and rotation of the HAPS 20.
  • the control methods of the directional beams 212 (1) to 212 (3) of the plurality of FL antennas 211 (1) to 211 (3) by the antenna control unit of the HAPS 20 include a gimbal method and an electric method (360 degree beamforming control).
  • Various methods such as (method) and electric method (beamforming control method with limited angle + antenna switching) can be used.
  • a plurality of FL antennas 211 (1) to 211 (a plurality of FL antennas 211 (1) to 211 (around the axis) according to the rotation (swivel) about the vertical axis (yaw axis, Z axis) of the HAPS 20.
  • the whole of 3) can be mechanically rotationally controlled.
  • the HAPS 20 rotates about 45 degrees in the counterclockwise rotation direction Rb
  • the entire plurality of FL antennas 211 (1) to 211 (3) are mechanically moved in the clockwise rotation direction Ra opposite to the rotation direction. Rotate drive.
  • Rotational drive control for angle adjustment of the FL antennas 211 (1) to 211 (3) may be performed with reference to the information on the position and orientation of the HAPS, but the FL antennas 211 (1) to 211 (3) Rotational drive control of each FL antenna 211 (1) to 211 (3) may be performed with reference to the value of the reception level. For example, rotate each FL antenna 211 (1) to 211 (3) in small steps, find an angle that maximizes the reception level of each FL antenna 211 (1) to 211 (3), and turn to that angle. The rotation drive control of each FL antenna 211 (1) to 211 (3) is performed.
  • a threshold value is set for each reception level of each FL antenna 211 (1) to 211 (3), and when the threshold value falls below the threshold value, each FL antenna 211 (1) to 211 (3) is rotated by a predetermined angle.
  • the rotation drive control of the FL antennas 211 (1) to 211 (3) may be performed to the angle at which the reception level is maximized.
  • the threshold value of the reception level may be obtained by an experiment in advance, and the predetermined angle may be, for example, 360 degrees / the number of FL antennas (120 degrees in the illustrated example).
  • a monitoring beam for comparing the reception level from other than the corresponding GW station is created from the FL antennas 211 (1) to 211 (3), the GW station having the maximum level is selected, and the directional beam is directed in that direction.
  • the FL antennas 211 (1) to 211 (3) may be rotationally driven and controlled so as to face.
  • FIG. 5 shows the horizontal angle adjustment of each of the FL antennas 211 (1) to 211 (3), the vertical angle may be adjusted in the same manner.
  • the electrical system of FIG. 6 (360-degree beamforming control system) is provided with a circular array antenna 213 in which a plurality of antenna elements 213a are arranged along the circumference as a FL antenna. Then, based on the position and orientation information of the HAPS 20, the weight applied to the signal (amplitude, phase) transmitted and received via each of the plurality of antenna elements 213a is controlled. For example, the position and orientation information of the HAPS 20 is output to the GNSS inertial navigation system (GNSS / INS) that combines the GNSS (Global Navigation Satellite System) system incorporated in the HAPS 20 and the inertial measurement unit (IMU). You may acquire based on.
  • GNSS GNSS inertial navigation system
  • IMU inertial measurement unit
  • the weight of each antenna element 213a of the circular array antenna 213 may be controlled by referring to the information on the position and orientation of the HAPS, but the value of the reception level of each antenna element 213a of the circular array antenna 213 may be referred to.
  • the weight of each antenna element 213a may be controlled so as to form a directional beam having a maximum reception level at a position corresponding to each GW station. For example, the phase of each antenna element 213a of the circular array antenna 213 is changed in small steps to find an angle that maximizes the reception level, and the weight of each antenna element 213a is formed so that a beam is formed in that angle direction. Take control. Further, a monitoring beam for comparing reception levels from other than the corresponding GW station may be created from the circular array antenna 213, the GW station having the maximum level may be selected, and the beam may be formed in that direction.
  • FIG. 6 shows the beam angle adjustment in the horizontal direction
  • the beam angle adjustment may be performed in the vertical direction as well.
  • the directional beams 212 (1) to 212 (3) directed in the respective directions of the plurality of GW stations 70 (1) to 70 (3) are formed.
  • the directional beams 212 (1) to 212 (3) of the FL antennas 211 (1) to 211 (3) correspond to the GW stations 70 (1) to 70 (3), respectively. Since it faces in the direction, it is possible to prevent deterioration of the communication quality of the feeder link.
  • a plurality of planar array antennas 214 (1) to 214 (3) in which a plurality of antenna elements 214a are two-dimensionally arranged in a plane.
  • the switching of the planar array antennas 214 (1) to 214 (3) and the control of beam forming may be performed with reference to the information on the position and orientation of the HAPS, but the planar array antennas 214 (1) to 214 (1) to 214 ( With reference to the reception level value of 3), antenna switching and beam forming may be controlled so that each of the planar array antennas 214 (1) to 214 (3) has the maximum reception level. For example, by rotating each planar array antenna 214 (1) to 214 (3) in small steps, find an angle that maximizes the reception level of each planar array antenna 214 (1) to 214 (3), and set the angle to that angle. Each rotation drive control is performed so as to face.
  • a threshold value is set for each reception level of each of the planar array antennas 214 (1) to 214 (3), and when the value falls below the threshold value, the planar array antennas 214 (1) to 214 (3) are switched.
  • each planar array antenna 214 (1) to 214 (3) may be rotated by a predetermined angle to perform beam forming to form a beam at an angle that maximizes the reception level.
  • the threshold value of the reception level may be obtained by an experiment in advance, and the predetermined angle may be, for example, 360 degrees / the number of FL antennas (120 degrees in the illustrated example).
  • a monitoring beam is created from each of the planar array antennas 214 (1) to 214 (3) to compare the reception level from other than the corresponding GW station, and each planar array antenna 214 (1) to 214 (3) is the maximum.
  • a GW station to be a level may be selected, and antenna switching and beamforming may be performed so as to form a beam in that direction.
  • FIG. 7 shows the beam angle adjustment in the horizontal direction
  • the beam angle adjustment may be performed in the vertical direction as well.
  • the directional beams 212 (1) to 212 (3) directed in the respective directions of the plurality of GW stations 70 (1) to 70 (3). 3) is formed.
  • the angle ( ⁇ in the figure) at which the directional beam 212 (1) is tilted with respect to the normal direction perpendicular to the plane of the plane array antenna 214 (1) is from a predetermined angle ⁇ th degree set in advance.
  • the FL antenna corresponding to the GW station 70 (1) is switched to the planar array antenna 214 (2).
  • the directional beams 212 (1) to 212 (3) of the FL antennas 211 (1) to 211 (3) correspond to the GW stations 70 (1) to 70 (3), respectively. Since it faces in the direction, it is possible to prevent deterioration of the communication quality of the feeder link.
  • a MIMO interference canceller compatible with a line-of-sight (LOS) line is applied between GW stations (between feeder links), and the GW stations (between feeder links) are connected.
  • LOS line-of-sight
  • FIG. 9 is an explanatory diagram showing an example of the MIMO interference canceller in which the weight W is obtained by an approximate expression and applied.
  • FIG. 10 is an explanatory diagram showing an example of a schematic configuration of the interference canceller unit 220 mounted on the HAPS 20.
  • the FL antenna 211(1) of the HAPS 20 transmits the desired signal S1(Y11) transmitted from the GW station 70(1), the interference signal I2(Y12) transmitted from the GW station 70(2), and the GW station 70( The interference signal I3 (Y13) transmitted from 3) is received.
  • the received signal AN1 is represented by the following equation (1).
  • the weights W2 and W3 corresponding to the signals S2 and S3 received by the other FL antennas 211(2) and 211(3) are respectively multiplied and subtracted as shown in the following equation (2).
  • the desired signal S1 (Y11) in which the interference signals I2 and I3 are canceled can be output.
  • the desired signals S2(Y22) and S3(Y33) transmitted from the GW stations 70(2) and 70(3) can also cancel interference signals from other GW stations in the same manner.
  • FIG. 11 is an explanatory diagram showing an example of a MIMO interference canceller applied by obtaining a weight W by the ZF (Zero-Forcing) method.
  • the signal transmitted from the GW station 70(1) is not only received as the desired signal S1(Y11) by the FL antenna 211(1) of the HAPS 20, but also as interference signals I1(Y12), I1'(Y13).
  • the signals are received by the FL antennas 211(2) and 211(3).
  • the signal transmitted from the GW station 70(2) is not only received by the FL antenna 211(1) as the interference signal I2(Y21), but also the FL antenna 211(3) as the interference signal I2′(Y23). Is received by.
  • the signal transmitted from the GW station 70(3) is not only received by the FL antenna 211(1) as the interference signal I3(Y31), but also the FL antenna 211(2) as the interference signal I3′(Y32). Is received by.
  • the MIMO interference canceller of FIG. 11 considers these interference signals I1, I1′, I2′, and I3′ and outputs a desired signal S1(Y11), for example, as shown in the following equation (3). Thereby, the accuracy of interference suppression between GW stations (between feeder links) can be improved.
  • the propagation path response H between the FL antennas 211 (1) to 211 (3) of the HAPS 20 In order to calculate the weight W used for the MIMO interference canceller, it is necessary to grasp the propagation path response H between the FL antennas 211 (1) to 211 (3) of the HAPS 20. In particular, in the plurality of GW systems of the present embodiment, since the body of the HAPS 20 moves relative to the GW stations 70 (1) to 70 (3), the propagation path response also changes according to the movement.
  • pilot signals are transmitted from each of the GW stations 70(1) to 70(3) in order to grasp the propagation path response.
  • the frequency band of the pilot signal is a narrow band, and each pilot signal has a different transmission frequency (orthogonal).
  • the propagation path of the center frequency fsc (see fc in FIG. 12) of the transmission signal band FB of the feeder link is based on the pilot signals received from the GW stations 70(1) to 70(3). Estimate the response and derive the weight W.
  • three GW stations 70 (1) to 70 (3) are installed at every 120 °, and the FL antennas 211 (1) to the relay communication station 21 of the HAPS 20 are installed.
  • Three 211 (3) are installed every 120 ° on the circumference having a radius ⁇ d. Since the aircraft of the HAPS 20 generally flies while rotating in the stratosphere, for example, as shown in FIG. 5 described above, the FL antennas 211 (1) to 211 (3) of the relay communication station 21 are opposed to the GW stations 70 (1) to. Beam control is performed so that the main beam is directed to 70(3).
  • the rotation angle ⁇ of the body of the HAPS 20 is a relative rotation angle with each GW station direction as 0 °.
  • the propagation paths (mainly the phase due to the difference in path length) of the FL antennas 211 (1) to 211 (3) on the circumference of the radius ⁇ d change. Since the weight W is determined by the frequency of the pilot signal (hereinafter referred to as "pilot frequency"), the amount of interference cancellation in a signal band different from the pilot frequency decreases, and the larger the frequency difference, the smaller the amount of cancellation.
  • pilot frequency the frequency of the pilot signal
  • FIG. 13 is a graph showing an example of the result of a computer simulation for evaluating the interference reduction effect when the weights are obtained at different pilot frequencies according to the embodiment.
  • FIG. 14 is a graph showing an example of the result of computer simulation of the SINR characteristic of the entire transmission signal band of the feeder link when the body of HAPS 20 is rotated. The evaluation parameters are shown in Table 1.
  • the radius ⁇ d of the FL antenna (relay antenna) 211 is 0.5 [m], the gain of the FL antenna 211 is 20 [dBi], and the front-back ratio (F / B ratio) is 20 [dB].
  • the reception SNR of the relay communication station 21 received by the omnidirectional antenna is 20 [dB]
  • the reception SNR of the relay communication station 21 received by the FL antenna 211 is 40 [dB].
  • the transmission signal bandwidth of the feeder link is set to 18 [MHz]. As an example, the case where the pilot frequency is set at the edge and the center of the transmission signal bandwidth of the feeder link is evaluated.
  • the amount of interference reduction in the transmission signal band of the feeder link differs depending on the pilot frequency.
  • the pilot frequency is set to the center of the transmission signal band (C2 in the figure)
  • interference can be reduced over the entire transmission signal bandwidth.
  • the SINR can be improved by 15 dB or more as compared with the case without the interference canceller.
  • FIG. 15 is an explanatory diagram showing an example of frequencies f 1 , f 2 and f 3 of pilot signals when the GW stations 70(1) to 70(3) according to the comparative example respectively transmit a single pilot signal.
  • FIG. 16 is an explanatory diagram showing an example of a model for deriving the channel response of the feeder link using the pilot signal of FIG.
  • the pilot signals S P1 , S P2 , and S P3 are transmitted one by one from each of the GW stations 70(1) to 70(3).
  • the pilot signal S P1, S P2, S P3, the first guard band is a first adjacent band adjacent the low frequency side to the transmission signal band FB of the feeder link the desired signal S1, S2, S3 are sent GB1 It is located in.
  • the pilot signals h 11 and h 21 received by the FL antennas 211(1) and 211(2) of the HAPS 20 are represented by the following equations (4) and (5), respectively, and the ratio of these signals is expressed by the following equation ( It is represented by 6).
  • d 1 is the path length between the GW station 70(1) and the FL antenna 211(1)
  • ⁇ d 21 is the GW station 70(1) and FL antenna 211( 1) and 211(2)
  • ⁇ d 31 is a path length between the GW station 70(1) and the FL antennas 211(1) and 211(3), respectively. It is a difference in length (path difference).
  • the path length between the GW station 70(1) and the FL antenna 211(2) is represented by d 1 + ⁇ d 21
  • the path length between the GW station 70(1) and the FL antenna 211(3) is d 1 It is represented by + ⁇ d 31 .
  • the path difference ⁇ d 21 can be obtained by the following equation (7).
  • ⁇ in the equation is the phase difference between h 21 and h 11 .
  • Other path differences such as the path difference ⁇ d 31 can be similarly obtained.
  • the propagation path response at the center frequency fsc of the transmission signal band of the feeder link is estimated by the following equation (8). it can.
  • the GW stations 70(1) to 70(3) each transmit one pilot signal S P1 , S P2 , S P3 in the first guard band GB1 as shown in FIGS. It is not possible to detect a path difference of wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 or more.
  • ⁇ d 21 can be estimated only in the range of 0 ⁇ d 21 ⁇ 0.09 [m].
  • the GW stations 70(1) to 70(3) exemplify two pilot signals having different frequencies, but the GW station 70(1)
  • the number of pilot signals transmitted by ⁇ 70(3) may be three or more. Further, the number of pilot signals may be different among the GW stations 70(1) to 70(3).
  • FIG. 17 is an explanatory diagram showing an example of the arrangement of frequencies of pilot signals when the GW stations 70(1) to 70(3) according to the embodiment respectively transmit a plurality of pilot signals.
  • FIG. 18 is an explanatory diagram showing an example of a derivation model of the propagation path response of the feeder link using the pilot signal of FIG.
  • the first adjacent band that is adjacent to the transmission signal band FB of the feeder link from which the desired signals S1, S2, S3 are transmitted from the GW stations 70(1) to 70(3) from the low frequency side and the high frequency side.
  • a plurality of pilot signals transmitted from the GW stations 70(1) to 70(3) are arranged in a distributed manner in each of the first guard band GB1 and the second guard band GB2 which is the second adjacent band.
  • pilot signal S P1, S P2, S P3 of the frequency f 1, f 2, f 3 are different from each other to be transmitted to the first guard band GB1 from each GW station 70 (1) to 70 (3) positioned. Further, pilot signals S P1 ′, S P2 ′, S transmitted from the GW stations 70(1) to 70(3) to the second guard band GB2 and having different frequencies f 1 ′, f 2 ′, f 3 ′ are mutually different. P3 ' is located.
  • Relay communication station 21 HAPS20 is, GW station 70 (1), 70 (2) and 70 (3) in the first respective filter a plurality of pilot signals S P1, S P2, S P3 of the guard band GB1 received from the separation Then, the plurality of pilot signals S P1 ′, S P2 ′, S P3 ′ of the second guard band GB2 received from the GW stations 70(1), 70(2) and 70(3) are separated by filters.
  • the pilot signals h 11 , h 11 ′, h 21 and h 21 ′ received by the FL antennas 211(1) and 211(2) of the HAPS 20 are expressed by the following equations (9), (10), (11) and (11), respectively. It is represented by 12), and the ratio / and / of those signals is represented by the following equations (13) and (14), respectively.
  • d 1 is the path length between the GW station 70(1) and the FL antenna 211(1)
  • ⁇ d 21 is the GW station 70(1) and FL antenna 211( This is the difference in path length (path difference) between 1) and 211 (2).
  • the path length between the GW station 70 (1) and the FL antenna 211 (2) is represented by d 1 + ⁇ d 21 .
  • the propagation path response at the center frequency fsc of the transmission signal band of the feeder link is as described in the above equation (8). Can be estimated.
  • a path difference of wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 or more of each pilot signal is detected. can do.
  • the bandwidth B of the transmission signal band FB of the feeder link is 18 MHz, so ⁇ d 21 can be estimated within the wavelength range of the pilot frequency difference B as shown in the above equation (15).
  • the frequencies f 1 , f 2 , f 3 , f 1 ′, f 2 ′, and f 3 ′ transmitted from the GW stations 70(1) to 70(3) are mutually different.
  • different pilot signals S P1, S P2, S P3 and the pilot signal S P1 ', S P2', the S P3 ' are arranged to be evenly distributed to the first guard band GB1 and the second guard band GB2 Therefore, each pilot signal can be separated by a filter and easily individually detected.
  • FIG. 19 is an explanatory diagram showing another example of the arrangement of pilot signals when a plurality of GW stations 70(1) to 70(3) according to the embodiment respectively transmit a plurality of pilot signals.
  • a plurality of pilot signals S P1 transmitted from the GW stations 70(1) to 70(3) and having different frequencies f 1 , f 2 , f 3 , f 1 ′, f 2 ′, f 3 ′ are mutually different.
  • SP2 , SP3 and pilot signals SP1 ', SP2 ', SP3 ' are all arranged in the first guard band GB1.
  • Relay communication station 21 HAPS20 a plurality of pilot signals S P1, S P2, S P3 , S P1 of the first guard band GB1 received from the GW station 70 (1) ⁇ 70 (3 ) ', S P2', S Separate P3'with a filter.
  • FIG. 20 is an explanatory diagram showing still another example of the arrangement of pilot signals when a plurality of GW stations 70(1) to 70(3) according to the embodiment respectively transmit a plurality of pilot signals.
  • the illustrated example is an example in which the numbers of pilot signals arranged in the first guard band GB1 and the second guard band GB2 are different from each other.
  • 'pilot signal S P1 which is different, S P1' frequency f 1, f 1 together transmitted from GW station 70 to the first guard band GB1 (1) is located, GW to the second guard band GB2 station 70 (2) and 70 (3) to one another frequency f 2, f 2 is transmitted from ', f 3, f 3' pilot signals different S P2, S P2 and position ', S P3, S P3' There is.
  • Relay communication station 21 HAPS20 a plurality of pilot signals S P1 of the first guard band GB1 received from the GW station 70 (1), S P1 'is separated by a filter, respectively, GW station 70 (2) and 70 (3 ), the plurality of pilot signals S P2 , S P2 ′, S P3 and S P3 ′ of the second guard band GB2 are separated by filters.
  • the pilot signals SPi and SPi′ transmitted from each GW station 70(i) are arranged in the same guard band.
  • the pilot signals S P1 and S P1 ′ transmitted from the GW station 70(1) are arranged in the first guard band GB1 and the pilot signals transmitted from the GW stations 70(2) and 70(3) are arranged.
  • S P2, S P2 are located a ', S P2, S P3, S P3' to the second guard band GB2.
  • weights used for the interference canceller for example, be calculated by using the matrix channel response ZF (Zero-Forcing) method or MMSE (Minimum Mean Square Error) method be able to.
  • the weight W can be obtained by the inverse matrix of the matrix H fc of the propagation path response as in the following equation (16).
  • the weight W can be used according to the following expression (17).
  • N T is the number of transmission antennas and ⁇ is the SNR.
  • FIG. 21 is an explanatory diagram showing an example of a main configuration of the relay communication station 21 of the HAPS 20 according to the embodiment.
  • the relay communication station 21 includes a feeder link communication unit 221, a service link communication unit 222, a frequency conversion unit 223, a control unit 224 that controls each unit, and an interference suppression unit 225.
  • the feeder link communication unit 221 transmits/receives a wireless signal of the first frequency F1 for feeder link to/from the GW station 70 via the FL antenna 211.
  • the feeder link communication unit 221 also receives a plurality of pilot signals transmitted from each of the plurality of GW stations 70(1) to 70(3) and separates the received plurality of pilot signals with a filter.
  • the service link communication unit 222 transmits/receives a radio signal of the second frequency F2 for service link to/from the terminal device 61 via the service link antenna 115.
  • the frequency conversion unit 223 performs frequency conversion between the first frequency F1 and the second frequency F2 between the feeder link communication unit 221 and the service link communication unit 222.
  • the wireless signal relayed by the relay communication station 21 may be transmitted/received using, for example, an OFMDA communication method based on the LTE or LTE-Advanced standard. In this case, good communication quality can be maintained even if multipaths with different radio signal delays occur.
  • the control unit 224 can control each unit by executing a program incorporated in advance.
  • the interference suppressing unit 225 is formed between a plurality of GW stations 70(1) to 70(3) by executing a program incorporated in advance, as illustrated in the following (1) to (3). Performs processing to suppress interference between multiple feeder links.
  • the transmission signal transmitted from the GW station is received by the directional beam corresponding to another gateway station based on the plurality of channel responses.
  • the weight W for suppressing the interfering interference signal is calculated.
  • the weight W corresponding to another GW station is multiplied and subtracted.
  • the user terminal (mobile station) connected to the control unit 224. 226 may be provided.
  • the control unit 224 may receive the control information transmitted from the remote control device at the user terminal (mobile station) 226 and control each unit based on the control information.
  • communication between the remote control device and the user terminal (mobile station) 226 is performed using, for example, the IP address (or telephone number) assigned to each of the remote control device and the user terminal (mobile station) 226. Good.
  • P3 ' the path difference between the HAPS 20 and the plurality of GW stations 70(1) to 70(3), which is necessary for the dynamic suppression of interference in the multi-feeder link, is estimated to the extent necessary for implementation. Since it can be grasped, the interference in the multi-feeder link can be suppressed accurately.
  • the components of the communication terminal), the base station and the base station apparatus can be implemented by various means. For example, these processes and components may be implemented in hardware, firmware, software, or a combination thereof.
  • entities for example, wireless relay station, feeder station, gateway station, base station, base station device, wireless relay station device, terminal device (user device, mobile station, communication terminal), management device, monitoring device) , A remote control device, a server, a hard disk drive device, or an optical disk drive device
  • means such as a processing unit used to implement the steps and components are one or more application specific ICs (ASIC).
  • ASIC application specific ICs
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processor
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Processor Controller, Microcontroller, Microprocessor, Electronic Device, Book It may be implemented in other electronic units, computers, or combinations thereof designed to perform the functions described herein.
  • firmware and / or software implementation means such as processing units used to implement the components are programs (eg, procedures, functions, modules, instructions) that perform the functions described herein. , Etc.) may be implemented.
  • any computer / processor readable medium that explicitly embodies the firmware and / or software code is a means such as a processing unit used to implement the steps and components described herein. May be used to implement.
  • the firmware and / or software code may be stored in memory and executed by a computer or processor, for example, in a control device.
  • the memory may be mounted inside the computer or the processor, or may be mounted outside the processor.
  • the firmware and/or software code may be, for example, random access memory (RAM), read only memory (ROM), non-volatile random access memory (NVRAM), programmable read only memory (PROM), electrically erasable PROM (EEPROM). ), FLASH memory, floppy disk, compact disk (CD), digital versatile disk (DVD), magnetic or optical data storage device, etc. Good.
  • the code may be executed by one or more computers or processors, or may cause a computer or processor to perform any of the functional aspects described herein.
  • the medium may be a non-transitory recording medium.
  • the code of the program may be readable and executable by a computer, a processor, or another device or machine, and its format is not limited to a particular format.
  • the code of the program may be any of source code, object code, and binary code, or may be a mixture of two or more of these codes.
  • HAPS communication relay device
  • 21 relay communication station 61 terminal device 70, 70(1) to 70(3) gateway station (GW station) 71, 71 (1) to 71 (3)
  • Antenna directional beam 215 Service link antenna (SL antenna)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

空中浮揚型の通信中継装置と複数のゲートウェイ(GW)局との間の同一周波数のマルチフィーダリンクにおける干渉を動的に抑圧する。複数のGW局はそれぞれ、フィーダリンクにおいて互いに異なる周波数の複数のパイロット信号を送信する。通信中継装置の中継通信局は、複数のGW局それぞれから受信した複数のパイロット信号の受信結果に基づいて、複数のGW局それぞれと通信中継装置のフィーダリンク用アンテナとの間の複数の経路差を計算して伝搬路応答を推定し、複数の伝搬路応答に基づいて、GW局から送信した送信信号が残りの他のGW局に対応する指向性ビームで受信されて干渉する干渉信号を抑圧するためのウェイトを計算し、GW局に対応する指向性ビームで受信した受信信号から、他のGW局に対応する指向性ビームで受信した受信信号に他のGW局に対応するウェイトを掛けて減算する。

Description

HAPSマルチフィーダリンクにおける干渉キャンセリング
 本発明は、3次元化ネットワークの構築に適したHAPS等の空中浮揚型の無線中継装置のマルチフィーダリンクにおける干渉キャンセリングに関するものである。
 従来、空中に浮揚して滞在可能な高高度プラットフォーム局(HAPS)(「高高度疑似衛星」ともいう。)等の通信中継装置が知られている(例えば、特許文献1参照)。この空中浮揚型の通信中継装置における通信回線は、その通信中継装置と移動通信網側のゲートウェイ(GW)局との間のフィーダリンクと、通信中継装置と端末装置との間のサービスリンクとで構成される。
米国特許出願公開第2016/0046387号明細書
 上記空中浮揚型の通信中継装置(以下「上空中継装置」という。)のサービスリンクの通信容量はその中継周波数であるフィーダリンクの通信容量に依存するため、フィーダリンクの周波数有効利用は必要不可欠である。そのため、地上のGW局を互いに離れた場所に複数設置し、それぞれのGW局から同一周波数で異なるフィーダリンク信号を送受信するマルチフィーダリンクを形成する方式が考えられる。しかし、上空中継装置は固定局と異なり所定の空域内を飛び回るので、上空中継装置と複数のGW局と間の同一周波数のマルチフィーダリンクにおいて動的な干渉が発生するおそれがある。
 本発明の一態様に係るシステムは、端末装置の無線通信を中継する中継通信局を含む空中滞在型の通信中継装置を備えるシステムである。前記システムは、互いに時間同期され、前記空中滞在型の通信中継装置の前記中継通信局との間のフィーダリンクにおいて同一周波数で互いに異なる中継信号を送受信する複数のゲートウェイ局を備える。前記中継通信局は、前記複数のゲートウェイ局との間のフィーダリンクにおいて同一周波数で互いに異なる中継信号を送受信するフィーダリンク通信部と、前記複数のゲートウェイ局との間に形成する複数のフィーダリンク間の干渉を抑圧する干渉抑圧部とを備える。前記複数のゲートウェイ局はそれぞれ、互いに異なる周波数の複数のパイロット信号を送信する。前記フィーダリンク通信部は、前記複数のゲートウェイ局それぞれから送信された互いに異なる周波数の複数のパイロット信号を受信する。前記干渉抑圧部は、前記複数のゲートウェイ局それぞれから受信した前記複数のパイロット信号の受信結果に基づいて、前記複数のゲートウェイ局それぞれと前記通信中継装置のフィーダリンク用アンテナとの間の複数の経路差を計算して伝搬路応答を推定し、前記複数の伝搬路応答に基づいて、前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局から送信した送信信号が残りの他のゲートウェイ局に対応する指向性ビームで受信されて干渉する干渉信号を抑圧するためのウェイトを計算し、前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局に対応する指向性ビームで受信した受信信号から、前記他のゲートウェイ局に対応する指向性ビームで受信した受信信号に前記他のゲートウェイ局に対応する前記ウェイトを掛けて減算する。
 本発明の他の態様に係る中継通信局は、空中滞在型の通信中継装置に組み込まれ端末装置の無線通信を中継する中継通信局である。前記中継通信局は、互いに時間同期された複数のゲートウェイ局との間のフィーダリンクにおいて同一周波数で互いに異なる中継信号を送受信するフィーダリンク通信部と、前記複数のゲートウェイ局との間に形成する複数のフィーダリンク間の干渉を抑圧する干渉抑圧部と、を備える。前記フィーダリンク通信部は、前記複数のゲートウェイ局それぞれから送信された互いに異なる周波数の複数のパイロット信号を受信する。前記干渉抑圧部は、前記複数のゲートウェイ局それぞれから受信した前記複数のパイロット信号の受信結果に基づいて、前記複数のゲートウェイ局それぞれと前記通信中継装置のフィーダリンク用アンテナとの間の複数の経路差を計算して伝搬路応答を推定し、前記複数の伝搬路応答に基づいて、前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局から送信した送信信号が残りの他のゲートウェイ局に対応する指向性ビームで受信されて干渉する干渉信号を抑圧するためのウェイトを計算し、前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局に対応する指向性ビームで受信した受信信号から、前記他のゲートウェイ局に対応する指向性ビームで受信した受信信号に前記他のゲートウェイ局に対応する前記ウェイトを掛けて減算する。
 本発明の他の態様に係る空中滞在型の通信中継装置は、前記中継通信局を備える。
 本発明の更に他の態様に係るゲートウェイ局は、空中滞在型の通信中継装置に組み込まれ端末装置の無線通信を中継する中継通信局との間のフィーダリンクにおいて同一周波数で互いに異なる中継信号を送受信するゲートウェイ局である。前記ゲートウェイ局は、前記中継通信局との間のフィーダリンクにおいて前記同一周波数で中継信号を送受信する他のゲートウェイ局と時間同期され、前記フィーダリンクにおいて互いに異なる周波数の複数のパイロット信号を送信する。
 本発明の更に他の態様に係る干渉抑圧方法は、空中滞在型の通信中継装置に組み込まれ端末装置の無線通信を中継する中継通信局におけるフィーダリンクの干渉抑圧方法である。前記干渉抑圧方法は、互いに時間同期された複数のゲートウェイ局それぞれから送信された互いに異なる周波数の複数のパイロット信号を受信することと、前記複数のゲートウェイ局それぞれから受信した前記複数のパイロット信号の受信結果に基づいて、前記複数のゲートウェイ局それぞれと前記通信中継装置のフィーダリンク用アンテナとの間の複数の経路差を計算して伝搬路応答を推定することと、前記複数の伝搬路応答に基づいて、前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局から送信した送信信号が残りの他のゲートウェイ局に対応する指向性ビームで受信されて干渉する干渉信号を抑圧するためのウェイトを計算することと、前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局に対応する指向性ビームで受信した受信信号から、前記他のゲートウェイ局に対応する指向性ビームで受信した受信信号に前記他のゲートウェイ局に対応する前記ウェイトを掛けて減算することと、を含む。
 本発明の更に他の態様に係るフィーダリンク通信方法は、空中滞在型の通信中継装置に組み込まれ端末装置の無線通信を中継する中継通信局との間のフィーダリンクにおいて同一周波数で互いに異なる中継信号を送受信するゲートウェイ局におけるフィーダリンク通信方法である。前記フィーダリンク通信方法は、前記中継通信局との間のフィーダリンクにおいて前記同一周波数で中継信号を送受信する他のゲートウェイ局と時間同期することと、前記フィーダリンクおいて互いに異なる周波数の複数のパイロット信号を送信することと、を含む。
 本発明の更に他の態様に係るプログラムは、空中滞在型の通信中継装置に組み込まれ端末装置の無線通信を中継する中継通信局に設けられたコンピュータ又はプロセッサで実行されるプログラムである。前記プログラムは、互いに時間同期された複数のゲートウェイ局との間のフィーダリンクにおいて同一周波数で互いに異なる中継信号を送受信するためのプログラムコードと、前記複数のゲートウェイ局それぞれから送信された互いに異なる周波数の複数のパイロット信号を受信するためのプログラムコードと、前記受信した複数のパイロット信号をそれぞれフィルターで分離するためのプログラムコードと、前記複数のゲートウェイ局それぞれから受信した前記複数のパイロット信号の受信結果に基づいて、前記複数のゲートウェイ局それぞれと前記通信中継装置のフィーダリンク用アンテナとの間の複数の経路差を計算して伝搬路応答を推定するためのプログラムコードと、前記複数の伝搬路応答に基づいて、前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局から送信した送信信号が残りの他のゲートウェイ局に対応する指向性ビームで受信されて干渉する干渉信号を抑圧するためのウェイトを計算するためのプログラムコードと、前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局に対応する指向性ビームで受信した受信信号から、前記他のゲートウェイ局に対応する指向性ビームで受信した受信信号に前記他のゲートウェイ局に対応する前記ウェイトを掛けて減算するためのプログラムコードと、を含む。
 本発明の更に他の態様に係るプログラムは、空中滞在型の通信中継装置に組み込まれ端末装置の無線通信を中継する中継通信局との間のフィーダリンクにおいて同一周波数で互いに異なる中継信号を送受信するゲートウェイ局に設けられたコンピュータ又はプロセッサで実行されるプログラムである。前記プログラムは、前記中継通信局との間のフィーダリンクにおいて前記同一周波数で中継信号を送受信する他のゲートウェイ局と時間同期するためのプログラムコードと、前記フィーダリンクにおいて互いに異なる周波数の複数のパイロット信号を送信するためのプログラムコードと、を含む。
 前記システム、前記中継通信局、前記空中滞在型の通信中継装置、前記ゲートウェイ局、前記干渉抑圧方法、前記フィーダリンク通信方法及び前記プログラムにおいて、前記複数のパイロット信号は、前記フィーダリンクの送信信号帯域の両隣に位置する複数のガードバンドに分散されて送信されてもよい。
 前記干渉抑圧部は、前記フィーダリンクの送信信号帯域の中心周波数又はその周辺の周波数において、前記複数の伝搬路応答を推定して前記複数のウェイトを計算してもよい。
 前記複数のウェイトはそれぞれ、前記伝搬路応答の行列を用いたZF(Zero-Forcing)法又はMMSE(Minimum Mean Square Error)法により計算してもよい。
 前記複数のゲートウェイ局はそれぞれ、前記空中滞在型の通信中継装置を追尾するようにフィーダリンク用アンテナを制御するアンテナ制御部を備えてもよい。
 前記空中滞在型の通信中継装置は、前記複数のゲートウェイ局それぞれに対応する複数の指向性ビームを有するフィーダリンク用アンテナと、前記複数のビームがそれぞれ対応するゲートウェイ局の方向に向くように前記フィーダリンク用アンテナを制御するアンテナ制御部と、を備えてもよい。
 前記フィーダリンク用アンテナは、互いに異なる方向に指向性ビームを有する複数のフィーダリンク用アンテナであり、前記アンテナ制御部は、前記複数のフィーダリンク用アンテナの指向性ビームがそれぞれ対応するゲートウェイ局の方向に向くように、前記複数のフィーダリンク用アンテナそれぞれを機械的に制御してもよい。
 前記フィーダリンク用アンテナは、鉛直方向の仮想軸を中心とした任意の外方向に向けて前記複数の指向性ビームを形成可能なアレイアンテナであり、前記アンテナ制御部は、前記複数の指向性ビームがそれぞれ対応するゲートウェイ局の方向に向くように、前記アレイアンテナの複数のアンテナ素子に対する送受信信号の振幅及び位相を制御することを特徴とするシステム。
 前記フィーダリンク用アンテナは、互いに異なる方向を中心とした所定の角度範囲に指向性ビームを形成可能な複数のアレイアンテナであり、前記アンテナ制御部は、前記複数のアレイアンテナの指向性ビームがそれぞれ対応するゲートウェイ局の方向に向くように、各アレイアンテナの複数のアンテナ素子に対する送受信信号の振幅及び位相の制御と前記複数のアレイアンテナの切替制御とを選択的に行ってもよい。
 本発明によれば、空中浮揚型の通信中継装置と複数のゲートウェイ局との間の同一周波数のマルチフィーダリンクにおける動的な干渉を抑圧することができる。
図1は、本発明の一実施形態に係る通信システムにおけるHAPSのセル構成の一例を示す説明図である。 図2Aは、実施形態に係る複数GWシステムの概略構成の一例を示す側面図である。 図2Bは、HAPSの複数のフィーダリンク用アンテナと複数のGW局との関係を上方から見た説明図である。 図3は、実施形態に係る複数のGW局のGWアンテナがHAPSを追尾する様子の一例を示す説明図である。 図4は、実施形態に係るHAPSの複数のFLアンテナの指向性ビームの一例を示す説明図である。 図5は、実施形態に係るHAPSにおけるFLアンテナの指向性ビーム制御の一例を示す説明図である。 図6は、実施形態に係るHAPSにおけるFLアンテナの指向性ビーム制御の他の例を示す説明図である。 図7は、実施形態に係るHAPSにおけるFLアンテナの指向性ビーム制御の更に他の例を示す説明図である。 図8は、複数GWシステムにおけるGW局間(フィーダリンク間)の干渉の一例の説明図である。 図9は、ウェイトWを近似式で求めて適用したMIMO干渉キャンセラの一例を示す説明図である。 図10は、HAPSに搭載した干渉キャンセラ部の概略構成の一例を示す説明図である。 図11は、ZF法によりウェイトWを求めて適用したMIMO干渉キャンセラの一例を示す説明図である。 図12は、実施形態に係る複数GWシステムにおけるフィーダリンクの送信信号帯域の一例を示す説明図である。 図13は、実施形態に係る互いに異なるパイロット周波数でウェイトを求めたときの干渉低減効果を評価した計算機シミュレーションの結果の一例を示すグラフである。 図14は、HAPSの機体を回転した場合のフィーダリンクの送信信号帯域全体のSINR特性の計算機シミュレーションの結果の一例を示すグラフである。 図15は、比較例に係る複数のGW局がそれぞれ単一のパイロット信号を送信する場合の各パイロット信号の周波数の一例を示す説明図である。 図16は、図15のパイロット信号を用いたフィーダリンクの伝搬路応答の導出モデルの一例を示す説明図である。 図17は、実施形態に係る複数のGW局がそれぞれ複数のパイロット信号を送信する場合の各パイロット信号の周波数の配置の一例を示す説明図である。 図18は、図17のパイロット信号を用いたフィーダリンクの伝搬路応答の導出モデルの一例を示す説明図である。 図19は、実施形態に係る複数のGW局がそれぞれ複数のパイロット信号を送信する場合のパイロット周波数の配置の他の例を示す説明図である。 図20は、実施形態に係る複数のGW局がそれぞれ複数のパイロット信号を送信する場合のパイロット周波数の配置の更に他の例を示す説明図である。 図21は、実施形態に係るHAPSの中継通信局の主要構成の一例を示す説明図である。
 以下、図面を参照して本発明の実施形態について説明する。
 図1は、本発明の一実施形態に係る通信システムにおけるHAPS20のセル構成の一例を示す説明図である。本実施形態に係る通信システムは、多数の端末装置への同時接続や低遅延化などに対応する第5世代移動通信の3次元化ネットワークの実現に適する。
 図1に示すように、通信システムは、複数の空中浮揚型の通信中継装置(無線中継装置)としての高高度プラットフォーム局(HAPS)(「高高度疑似衛星」、「成層圏プラットフォーム」ともいう。)20を備えている。HAPS20は、所定高度の空域に位置して、所定高度のセル形成目標空域に3次元セル(3次元エリア)を形成する。HAPS20は、自律制御又は外部から制御により地面又は海面から100[km]以下の高高度の空域(浮揚空域)に浮遊あるいは飛行して位置するように制御される浮揚体としての飛行船に、中継通信局21が搭載されたものである。
 HAPS20の位置する空域は、例えば、地上(又は海や湖などの水上)の高度が11[km]以上及び50[km]以下の成層圏の空域である。この空域は、気象条件が比較的安定している高度15[km]以上25[km]以下の空域であってもよく、特に高度がほぼ20[km]の空域であってもよい。
 本実施形態の通信システムにおける1又は2以上のHAPSで3次元セルを形成する目標の空域であるセル形成目標空域は、HAPS20が位置する空域と従来のマクロセル基地局等の基地局(例えばLTEのeNodeB)がカバーする地面近傍のセル形成領域との間に位置する、所定高度範囲(例えば、50[m]以上1000[m]以下の高度範囲)の空域である。
 なお、本実施形態の3次元セルが形成されるセル形成目標空域は、海、川又は湖の上空であってもよい。また、HAPS20で形成する3次元セルは、地上又は海上に位置する端末装置61との間でも通信できるよう地面又は海面に達するように形成してもよい。
 HAPS20の中継通信局はそれぞれ、サービスリンク用アンテナ(以下「SLアンテナ」という。)215により、移動局である端末装置61と無線通信するための複数のビームを地面に向けて形成する。端末装置61は、遠隔操縦可能な小型のヘリコプター等の航空機であるドローンに組み込まれた通信端末モジュールでもよいし、飛行機の中でユーザが使用するユーザ装置であってもよい。セル形成目標空域においてビームが通過する領域が3次元セルである。セル形成目標空域において互いに隣り合う複数のビームは部分的に重なってもよい。
 HAPS20の中継通信局21はそれぞれ、例えば、地上(又は海上)側のコアネットワークに接続された中継局としてのゲートウェイ局(「フィーダ局」ともいう。)70と無線通信する基地局、又は、地上(又は海上)側の基地局に接続された中継局としてのフィーダ局(リピーター親機)70と無線通信するリピーター子機である。
 HAPS20の中継通信局21は、フィーダリンク用アンテナ(以下「FLアンテナ」という。)211により無線通信可能な地上又は海上に設置されたフィーダ局70を介して、移動通信網80のコアネットワークに接続されている。HAPS20とフィーダ局70との間のフィーダリンクの通信は、マイクロ波などの電波による無線通信で行ってもよいし、レーザ光などを用いた光通信で行ってもよい。
 HAPS20はそれぞれ、内部に組み込まれたコンピュータ等で構成された制御部が制御プログラムを実行することにより、自身の浮揚移動(飛行)や中継通信局21での処理を自律制御してもよい。例えば、HAPS20はそれぞれ、自身の現在位置情報(例えばGPS位置情報)、予め記憶した位置制御情報(例えば、飛行スケジュール情報)、周辺に位置する他のHAPSの位置情報などを取得し、それらの情報に基づいて浮揚移動(飛行)や中継通信局21での処理を自律制御してもよい。
 また、HAPS20それぞれの浮揚移動(飛行)や中継通信局21での処理は、移動通信網の通信センター等に設けられた管理装置としての管理装置(「遠隔制御装置」ともいう。)によって制御できるようにしてもよい。管理装置は、例えば、PCなどのコンピュータ装置やサーバ等で構成することができる。この場合、HAPS20は、管理装置からの制御情報を受信したり管理装置に監視情報などの各種情報を送信したりできるように制御用通信端末装置(例えば、移動通信モジュール)が組み込まれ、管理装置8ら識別できるように端末識別情報(例えば、IPアドレス、電話番号など)が割り当てられるようにしてもよい。制御用通信端末装置の識別には通信インターフェースのMACアドレスを用いてもよい。
 また、HAPS20はそれぞれ、自身又は周辺のHAPSの浮揚移動(飛行)や中継通信局21での処理に関する情報、HAPS20の状態に関する情報や各種センサなどで取得した観測データなどの監視情報を、管理装置等の所定の送信先に送信するようにしてもよい。制御情報は、HAPSの目標飛行ルート情報を含んでもよい。監視情報は、HAPS20の現在位置、飛行ルート履歴情報、対気速度、対地速度及び推進方向、HAPS20の周辺の気流の風速及び風向、並びに、HAPS20の周辺の気圧及び気温の少なくとも一つの情報を含んでもよい。
 中継通信局21と端末装置61との無線通信の上りリンク及び下りリンクの複信方式は、特定の方式に限定されず、例えば、時分割複信(Time Division Duplex:TDD)方式でもよいし、周波数分割複信(Frequency Division Duplex:FDD)方式でもよい。また、中継通信局21と端末装置61との無線通信のアクセス方式は、特定の方式に限定されず、例えば、FDMA(Frequency Division Multiple Access)方式、TDMA(Time Division Multiple Access)方式、CDMA(Code Division Multiple Access)方式、又は、OFDMA(Orthogonal Frequency Division Multiple Access)であってもよい。また、前記無線通信には、ダイバーシティ・コーディング、送信ビームフォーミング、空間分割多重化(SDM:Spatial Division Multiplexing)等の機能を有し、送受信両方で複数のアンテナを同時に利用することにより、単位周波数当たりの伝送容量を増やすことができるMIMO(多入力多出力:Multi-Input and Multi-Output)技術を用いてもよい。また、前記MIMO技術は、1つの基地局が1つの端末装置と同一時刻・同一周波数で複数の信号を送信するSU-MIMO(Single-User MIMO)技術でもよいし、1つの基地局が複数の異なる端末装置に同一時刻・同一周波数で信号を送信又は複数の異なる基地局が1つの端末装置に同一時刻・同一周波数で信号を送信するMU-MIMO(Multi-User MIMO)技術であってもよい。
 なお、以下の実施形態では、端末装置61と無線通信する中継通信局21を有する通信中継装置が、無人飛行船タイプのHAPS20の場合について図示して説明するが、通信中継装置はソーラープレーンタイプのHAPSであってもよい。また、以下の実施形態は、HAPS以外の他の空中浮揚型の通信中継装置にも同様に適用できる。
 また、HAPS20とフィーダ局としてのゲートウェイ局(以下「GW局」と略す。)70を介した基地局90との間のリンクを「フィーダリンク」といい、HAPS10と端末装置61の間のリンクを「サービスリンク」という。特に、HAPS20とGW局70との間の区間を「フィーダリンクの無線区間」という。また、GW局70からHAPS20を経由して端末装置61に向かう通信のダウンリンクを「フォワードリンク」といい、端末装置61からHAPS20を経由してGW局70に向かう通信のアップリンクを「リバースリンク」ともいう。
 図1において、通信中継装置は無人飛行船タイプのHAPS20であるが、ソーラープレーンタイプのHAPSあってもよい。また、図示の例において、HAPS20の高度が約20kmの成層圏に位置し、HAPS20が複数のセル200C(1)~200C(7)を形成し、その複数セル(7セル)構成のセル200C(1)~200C(7)のフットプリント200F(1)~200F(7)からなるサービスエリア20Aの直径は100~200kmであるが、これらに限定されるものではない。
 図1において、成層圏に位置するHAPS20を用いた地上(又は水上)の端末装置61と直接通信する通信サービスは、サービスエリアの拡大、災害時の通信手段として非常に魅力的である。HAPS20の通信回線はGW局70とHAPS20との間を結ぶフィーダリンクFLと、HAPS20と端末装置61との間を結ぶサービスリンクSLから成る。サービスリンクの通信容量はその中継周波数であるフィーダリンクの通信容量で決まることから、フィーダリンクの周波数利用効率を高める必要がある。特に図9に示すようにサービスリンクが多セル構成になった場合はフィーダリンクの通信容量が不足しやすくなるため、フィーダリンクの周波数有効利用技術が不可欠である。しかしながら、HAPS20とGW局70を一対一で構成した場合、フィーダリンクの周波数利用効率を高めることが難しい。
 そこで、本実施形態では、HAPS20との間のフィーダリンクにおいて同一周波数で互いに異なる中継信号を送受信する複数のGW局を備え、一つのHAPS20と複数のGW局との間に形成したマルチフィーダリンクにおいて空間分割多重通信を行う複数ゲートウェイシステム(以下「複数GWシステム」ともいう。)を構築している。この複数GWシステムでは、複数のフィーダリンク間の干渉を除去することにより、設置するGW局の数の分だけ周波数利用効率を向上できる。
 なお、以下の実施形態では、HAPS20と複数のGW局との間の空間分割多重通信をフィーダリンクのフォワードリンクのみで行う場合について説明するが、当該空間分割多重通信は、フィーダリンクのリバースリンクのみで行ってもよいし、フォワードリンクとリバースリンクの両方で行うようにしてもよい。
 図2Aは実施形態に係る複数GWシステムの概略構成の一例を示す側面図であり、図2BはHAPS20の複数のFLアンテナ211(1)~211(3)と複数のGW局70(1)~70(3)との関係を上方から見た説明図である。図示の例では、FLアンテナの数(N)及びGW局の数(N)はそれぞれ同数(図示の例では3)であり、同数のFLアンテナ211(1)~211(3)及びGW局70(1)~70(3)を互いに1対1で対応させて設けている。また、FLアンテナ211及びGW局70の組数は2組でもよいし、4組以上であってもよい。また、図示の例では複数のGW局70は、HAPS20からの距離及びGW局間の間隔が互いに等しくなるように配置されているが、当該距離及び当該間隔の少なくとも一方は互いに異ならせてもよい。各GW局70は、HAPS20の各FLアンテナ211(「HAPS局アンテナ」ともいう。)の受信する複素振幅が無相関となるように配置する。また、GW局70(1)~70(3)のフィーダリンク用アンテナ(以下「GWアンテナ」という。)71(1)~71(3)は互いに直交する垂直偏波(V)及び水平偏波(H)の2偏波で送受信可能である。また、図示の例ではHAPS20の複数のFLアンテナ211(1)~211(3)は、HAPS20の中心からの距離及びFLアンテナ間の間隔が互いに等しくなるように配置されているが、当該距離及び当該間隔の少なくとも一方はFLアンテナ間で互いに異ならせてもよい。例えば、当該距離及び当該間隔はFLアンテナ間で互いに異ならせてもよい。
 また、図3に示すように、複数のGW局70(1)~70(3)はそれぞれ、空中で移動するHAPS20を追尾するようにGWアンテナ71(1)~71(3)を制御するアンテナ制御部を備えてもよい。図中の破線のHAPS20’は移動前の位置を示し、図中の実線のHAPS20は移動後の位置を示している。GWアンテナ71(1)~71(3)それぞれがHAPS20を追尾することにより、パラボラアンテナなどの高い指向性を有するGWアンテナ71(1)~71(3)を用いた場合でも、HAPS20の移動によるフィーダリンクの通信品質の低下を抑制できる。
 また、図4に示すように、HAPS20の複数のFLアンテナ211(1)~211(3)はそれぞれ、GW局70(1)~70(3)に対応するアンテナ指向性ビーム(以下「指向性ビーム」又は「ビーム」という。)212(1)~212(3)を有し、HAPS20は、複数のFLアンテナ211(1)~211(3)の指向性ビーム212(1)~212(3)がそれぞれ対応するGW局70(1)~70(3)の方向に向くようにFLアンテナ211(1)~211(3)を制御するアンテナ制御部を備えてもよい。FLアンテナ211(1)~211(3)の指向性ビーム212(1)~212(3)はそれぞれ、例えば、自身に最も対向しているGW局70の方向を向き、その他のGW局には干渉を与えないように、すなわち、主ビームの利得と反対方向の利得の比(F/B)が十分に大きくなるように形成される。これにより、HAPS20が移動したり回転したりした場合もで、そのHAPS20の移動及び回転によるフィーダリンクの通信品質の低下を抑制できる。
 HAPS20のアンテナ制御部による複数のFLアンテナ211(1)~211(3)の指向性ビーム212(1)~212(3)の制御方式としては、ジンバル方式、電気方式(360度のビームフォーミング制御方式)、電気方式(角度限定のビームフォーミング制御方式+アンテナ切替)など、各種の方式を用いることができる。
 例えば、図5のジンバル方式では、HAPS20の上下方向の軸(ヨーイング軸、Z軸)を中心とした回転(旋回)に応じて、その軸を中心として複数のFLアンテナ211(1)~211(3)の全体を機械的に回転駆動制御可能である。例えば、図5において、HAPS20が左回転方向Rbに約45度回転すると、その回転方向とは逆の右回転方向Raに複数のFLアンテナ211(1)~211(3)の全体を機械的に回転駆動させる。
 各FLアンテナ211(1)~211(3)の角度調整の回転駆動制御は、HAPSの位置や姿勢の情報を参照して行ってもよいが、FLアンテナ211(1)~211(3)の受信レベルの値を参照して各FLアンテナ211(1)~211(3)の回転駆動制御を行ってもよい。例えば、各FLアンテナ211(1)~211(3)を小刻みに回転させ、各FLアンテナ211(1)~211(3)の受信レベルが最大となるような角度を見つけ、その角度に向くように各FLアンテナ211(1)~211(3)の回転駆動制御を行う。ここで、各FLアンテナ211(1)~211(3)の受信レベルそれぞれに閾値を設定し、その値を下回ったときに各FLアンテナ211(1)~211(3)を既定の角度回転させ、上記受信レベルが最大となる角度へのFLアンテナ211(1)~211(3)の回転駆動制御を行ってもよい。上記受信レベルの閾値は例えば予め実験により求め、上記既定の角度は例えば360度/FLアンテナ数(図示の例では120度)であってもよい。各また、FLアンテナ211(1)~211(3)から対応するGW局以外からの受信レベルを比較するためのモニタリングビームを作り、最大レベルとなるGW局を選択し、その方向に指向性ビームが向くように各FLアンテナ211(1)~211(3)を回転駆動制御してもよい。
 なお、図5では各FLアンテナ211(1)~211(3)の水平方向の角度調整について示しているが、垂直方向についても同様に角度調整を行ってもよい。
 上記FLアンテナ211(1)~211(3)の回転駆動制御により、HAPS20が回転しても、FLアンテナ211(1)~211(3)の指向性ビーム212(1)~212(3)がそれぞれ対応するGW局70(1)~70(3)の方向に向くので、フィーダリンクの通信品質の低下を防止できる。
 また、図6の電気方式(360度のビームフォーミング制御方式)では、FLアンテナとして、複数のアンテナ素子213aを円周形状に沿って配置したサーキュラーアレイアンテナ213を備える。そして、HAPS20の位置及び姿勢情報に基づいて、複数のアンテナ素子213aそれぞれを介して送受信される信号(振幅、位相)に適用するウェイトを制御する。例えば、HAPS20の位置及び姿勢の情報は、HAPS20に組み込んだGNSS(Global Navigation Satellite System)システムと慣性測定ユニット(IMU:Inertial Measurement Unit)とを組み合わせたGNSS慣性航法システム(GNSS/INS)の出力に基づいて取得してもよい。
 上記サーキュラーアレイアンテナ213の各アンテナ素子213aのウェイトの制御は、HAPSの位置や姿勢の情報を参照して行ってもよいが、サーキュラーアレイアンテナ213の各アンテナ素子213aの受信レベルの値を参照し、各GW局に対応する位置で最大の受信レベルとなる指向性ビームを形成するように、各アンテナ素子213aのウェイトの制御を行ってもよい。例えば、サーキュラーアレイアンテナ213の各アンテナ素子213aの位相を小刻みに変化させ、受信レベルが最大となるような角度を見つけ、その角度方向にビームが形成されるように各各アンテナ素子213aのウェイトの制御を行う。また、サーキュラーアレイアンテナ213から対応するGW局以外からの受信レベルを比較するためのモニタリングビームを作り、最大レベルとなるGW局を選択し、その方向にビームを形成してもよい。
 なお、図6では水平方向のビーム角度調整について示しているが、垂直方向についても同様にビーム角度調整を行ってもよい。
 上記サーキュラーアレイアンテナ213の各アンテナ素子213aのウェイトの制御により、複数のGW局70(1)~70(3)それぞれの方向に向く指向性ビーム212(1)~212(3)を形成する。これにより、HAPS20が回転しても、FLアンテナ211(1)~211(3)の指向性ビーム212(1)~212(3)がそれぞれ対応するGW局70(1)~70(3)の方向に向くので、フィーダリンクの通信品質の低下を防止できる。
 図7の電気方式(角度限定のビームフォーミング制御方式+アンテナ切替)では、FLアンテナとして、複数のアンテナ素子214aを平面状に2次元配置した複数の平面アレイアンテナ214(1)~214(3)を備える。そして、GNSS/INSなどによって取得されたHAPS20の位置及び姿勢情報に基づいて、複数の平面アレイアンテナ214(1)~214(3)の複数のアンテナ素子214aそれぞれを介して送受信される信号(振幅、位相)に適用するウェイトを制御するビームフォーミング制御を行う。
 上記平面アレイアンテナ214(1)~214(3)の切り替え及びビームフォーミングの制御は、HAPSの位置や姿勢の情報を参照して行ってもよいが、各平面アレイアンテナ214(1)~214(3)の受信レベルの値を参照し、各平面アレイアンテナ214(1)~214(3)が最大の受信レベルとなるようにアンテナ切り替えとビームフォーミングの制御を行ってもよい。例えば、各平面アレイアンテナ214(1)~214(3)を小刻みに回転させ、各平面アレイアンテナ214(1)~214(3)の受信レベルが最大となるような角度を見つけ、その角度に向くように各の回転駆動制御を行う。ここで、各平面アレイアンテナ214(1)~214(3)の受信レベルそれぞれに閾値を設定し、その値を下回ったときに、平面アレイアンテナ214(1)~214(3)の切り替えを行うとともに、各平面アレイアンテナ214(1)~214(3)を既定の角度回転させ、上記受信レベルが最大となる角度へビームを形成するビームフォーミングを行ってもよい。上記受信レベルの閾値は例えば予め実験により求め、上記既定の角度は例えば360度/FLアンテナ数(図示の例では120度)であってもよい。また、各平面アレイアンテナ214(1)~214(3)から対応するGW局以外からの受信レベルを比較するためのモニタリングビームを作り、各平面アレイアンテナ214(1)~214(3)が最大レベルとなるGW局を選択し、その方向にビームを形成するようにアンテナ切り替えとビームフォーミングを行ってもよい。
 なお、図7では水平方向のビーム角度調整について示しているが、垂直方向についても同様にビーム角度調整を行ってもよい。
 上記平面アレイアンテナ214(1)~214(3)の切り替え及びビームフォーミングの制御により、複数のGW局70(1)~70(3)それぞれの方向に向く指向性ビーム212(1)~212(3)を形成する。ここで、例えば、平面アレイアンテナ214(1)の平面に垂直な法線方向に対して指向性ビーム212(1)が傾いている角度(図中のθ)が予め設定した所定角度θth度よりも大きくなったときに、GW局70(1)に対応するFLアンテナを平面アレイアンテナ214(2)に切り替える。これにより、HAPS20が回転しても、FLアンテナ211(1)~211(3)の指向性ビーム212(1)~212(3)がそれぞれ対応するGW局70(1)~70(3)の方向に向くので、フィーダリンクの通信品質の低下を防止できる。
 上記構成の複数GWシステムではGW局間(フィーダリンク間)の干渉が大きくなるおそれがある。例えば、図8に示すように、GW局70(1)から送信された希望信号(所望信号)S1がHAPS20のFLアンテナ211(1)で受信されているときに、他のGW局70(2),70(3)から送信された信号が干渉信号I2,I3としてFLアンテナ211(1)で受信される。そのため、フィーダリンクのSINR特性が悪化するおそれがある。
 そこで、本実施形態では、以下に示すように見通し環境(LOS:Line-Of-Sight)対応のMIMO干渉キャンセラをGW局間(フィーダリンク間)に適用し、GW局間(フィーダリンク間)の干渉を低減することにより、フィーダリンクのSINR特性を向上させている。
 図9は、ウェイトWを近似式で求めて適用したMIMO干渉キャンセラの一例を示す説明図である。図10は、HAPS20に搭載した干渉キャンセラ部220の概略構成の一例を示す説明図である。
 HAPS20のFLアンテナ211(1)は、GW局70(1)から送信された希望信号S1(Y11)と、GW局70(2)から送信された干渉信号I2(Y12)と、GW局70(3)から送信された干渉信号I3(Y13)とを受信する。その受信信号AN1は、次式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 HAPS20の干渉キャンセラ部220では、次式(2)に示すように他のFLアンテナ211(2)及び211(3)で受信された信号S2,S3にそれぞれ対応するウェイトW2,W3を掛け、減算することにより、上記干渉信号I2,I3をキャンセルした希望信号S1(Y11)を出力することができる。GW局70(2),70(3)から送信された希望信号S2(Y22)及びS3(Y33)についても同様に他のGW局からの干渉信号をキャンセルすることができる。
Figure JPOXMLDOC01-appb-M000002
 図11は、ZF(Zero-Forcing)法によりウェイトWを求めて適用したMIMO干渉キャンセラの一例を示す説明図である。例えばGW局70(1)から送信された信号は、HAPS20のFLアンテナ211(1)で希望信号S1(Y11)として受信されるだけでなく、干渉信号I1(Y12),I1’(Y13)としてFLアンテナ211(2)及び211(3)に受信されル。更に、GW局70(2)から送信された信号は、干渉信号I2(Y21)としてFLアンテナ211(1)に受信されるだけでなく、干渉信号I2’(Y23)としてFLアンテナ211(3)に受信される。更に、GW局70(3)から送信された信号は、干渉信号I3(Y31)としてFLアンテナ211(1)に受信されるだけでなく、干渉信号I3’(Y32)としてFLアンテナ211(2)に受信される。図11のMIMO干渉キャンセラでは、これらの干渉信号I1,I1’,I2’及びI3’を考慮し、例えば次式(3)に示すように希望信号S1(Y11)を出力する。これにより、GW局間(フィーダリンク間)の干渉抑圧の精度を高めることができる。
Figure JPOXMLDOC01-appb-M000003
 上記MIMO干渉キャンセラに用いるウェイトWを計算するには、HAPS20のFLアンテナ211(1)~211(3)との間の伝搬路応答Hを把握する必要がある。特に、本実施形態の複数GWシステムでは、GW局70(1)~70(3)に対してHAPS20の機体が相対的に動くため、その動きに応じて伝搬路応答も変化する。
 そこで、本実施形態では、伝搬路応答を把握するため、各GW局70(1)~70(3)からパイロット信号を送信している。パイロット信号の周波数帯域は狭帯域であり、各パイロット信号は送信周波数が互いに異なる(直交している)。HAPS20の中継通信局21では、各GW局70(1)~70(3)から受信したパイロット信号に基づいて、フィーダリンクの送信信号帯域FBの中心周波数fsc(図12のfc参照)の伝搬路応答を推定し、ウェイトWを導出する。
 上記ウェイトWを求める周波数とフィーダリンクの送信信号帯域との差が大きくなるほど、干渉キャンセル量は減少する。例えば、前述の図2A及び図2Bの複数GWシステムでは、GW局70(1)~70(3)を120°毎に3台設置し、HAPS20の中継通信局21のFLアンテナ211(1)~211(3)を半径Δdの円周上に120°毎に3つ設置している。HAPS20の機体は一般に成層圏を回転しながら飛行することから、例えば前述の図5に示すように中継通信局21のFLアンテナ211(1)~211(3)は対向するGW局70(1)~70(3)に主ビームが向くようにビーム制御する。ここで、HAPS20の機体の回転角度Φを、各GW局方向を0°とした相対回転角度としている。HAPS20の機体の回転に伴い、半径Δdの円周上にある各FLアンテナ211(1)~211(3)の伝搬路(主に経路長差による位相)が変化する。パイロット信号の周波数(以下「パイロット周波数」という。)によりウェイトWを決定するため、パイロット周波数と異なる信号帯域での干渉キャンセル量は減少し、その周波数差が大きい程キャンセル量は少なくなる。
 図13は実施形態に係る互いに異なるパイロット周波数でウェイトを求めたときの干渉低減効果を評価した計算機シミュレーションの結果の一例を示すグラフである。また、図14は、HAPS20の機体を回転した場合のフィーダリンクの送信信号帯域全体のSINR特性の計算機シミュレーションの結果の一例を示すグラフである。評価パラメータを表1に示す。
Figure JPOXMLDOC01-appb-T000004
 FLアンテナ(中継アンテナ)211の半径Δdを0.5[m]、FLアンテナ211の利得を20[dBi]、フロントバック比(F/B比)を20[dB]とする。無指向性アンテナで受信した中継通信局21の受信SNRを20[dB]とすると、FLアンテナ211で受信した中継通信局21の受信SNRは40[dB]となる。また、フィーダリンクの送信信号帯域幅を18[MHz]とする。一例として,パイロット周波数をフィーダリンクの送信信号帯域幅の端と中央に設定した場合について評価する。
 図13に示すように、パイロット周波数に応じて、フィーダリンクの送信信号帯域内の干渉低減量が異なることがわかる。パイロット周波数を送信信号帯域の中央(図中のC2)にした場合、送信信号帯域幅全体に渡って干渉を低減できる。また、図14に示すように送信信号帯域の中央(図中のC2)にした場合、干渉キャンセラなしと比較して、SINRを15dB以上改善できることがわかる。
 図15は、比較例に係るGW局70(1)~70(3)がそれぞれ単一のパイロット信号を送信する場合の各パイロット信号の周波数f,f,fの一例を示す説明図である。図16は、図15のパイロット信号を用いたフィーダリンクの伝搬路応答の導出モデルの一例を示す説明図である。図示の例では、各GW局70(1)~70(3)からパイロット信号SP1,SP2,SP3が一つずつ送信される。このパイロット信号SP1,SP2,SP3は、希望信号S1,S2,S3が送信されるフィーダリンクの送信信号帯域FBに低周波側から隣接する第1の隣接帯域である第1ガードバンドGB1に配置されている。
 例えば、HAPS20のFLアンテナ211(1)及び211(2)が受信するパイロット信号h11,h21はそれぞれ次式(4)及び(5)で表され、それらの信号の比は、次式(6)で表される。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
上記式(4)~(6)中のdはGW局70(1)とFLアンテナ211(1)との間の経路長であり、Δd21はGW局70(1)とFLアンテナ211(1)及び211(2)それぞれとの間の経路長の差(経路差)であり、Δd31はGW局70(1)とFLアンテナ211(1)及び211(3)それぞれとの間の経路長の差(経路差)である。GW局70(1)とFLアンテナ211(2)との間の経路長はd+Δd21で表され、GW局70(1)とFLアンテナ211(3)との間の経路長はd+Δd31で表される。
 上記式(6)から、上記経路差Δd21は次式(7)で求めることができる。式中のθは、h21とh11との位相差である。上記経路差Δd31等の他の経路差についても同様に求めることができる。
Figure JPOXMLDOC01-appb-M000008
 上記経路差Δd31及びその他の経路差Δd12,Δd13,Δd23,Δd32についても同様に求めることができる。
 上記経路差Δd21,Δd31,Δd12,Δd13,Δd23,Δd32を用いて、上記フィーダリンクの送信信号帯域の中心周波数fscにおける伝搬路応答は、次式(8)のように推定できる。
Figure JPOXMLDOC01-appb-M000009
 しかしながら、図15及び図16に示すようにGW局70(1)~70(3)がそれぞれ第1ガードバンドGB1で一つのパイロット信号SP1,SP2,SP3を送信する場合、各パイロット信号の波長λ、λ、λ以上の経路差を検知することができない。例えば、GW局70(1)のパイロット信号SP1の周波数fが3.3GHzとすると、Δd21は0<Δd21<0.09[m]の範囲でしか推定することができない。
 そこで、本実施形態では、各パイロット信号SP1,SP2,SP3の波長λ、λ、λ以上の経路差を検知することができるように、GW局70(1)~70(3)それぞれから互いに周波数が異なる複数のパイロット周波数を送信している。なお、以下の実施形態の例では、GW局70(1)~70(3)がそれぞれ、互いに周波数が異なる2つ複数のパイロット信号をする場合について例示しているが、GW局70(1)~70(3)がそれぞれ送信するパイロット信号の数は3以上であってもよい。また、パイロット信号の数はGW局70(1)~70(3)の間で異なってもよい。
 図17は、実施形態に係る複数のGW局70(1)~70(3)がそれぞれ複数のパイロット信号を送信する場合の各パイロット信号の周波数の配置の一例を示す説明図である。図18は、図17のパイロット信号を用いたフィーダリンクの伝搬路応答の導出モデルの一例を示す説明図である。図示の例では、GW局70(1)~70(3)から希望信号S1,S2,S3が送信されるフィーダリンクの送信信号帯域FBに低周波側及び高周波側から隣接する第1の隣接帯域である第1ガードバンドGB1及び第2の隣接帯域である第2ガードバンドGB2それぞれに、各GW局70(1)~70(3)から送信される複数のパイロット信号が分散配置されている。具体的には、第1ガードバンドGB1に各GW局70(1)~70(3)から送信される互いに周波数f,f,fが異なるパイロット信号SP1,SP2,SP3が位置している。また、第2ガードバンドGB2に各GW局70(1)~70(3)から送信される互いに周波数f’,f’,f’が異なるパイロット信号SP1’,SP2’,SP3’が位置している。HAPS20の中継通信局21は、GW局70(1)、70(2)及び70(3)から受信した第1ガードバンドGB1の複数のパイロット信号SP1,SP2,SP3をそれぞれフィルターで分離し、GW局70(1)、70(2)及び70(3)から受信した第2ガードバンドGB2の複数のパイロット信号SP1’,SP2’,SP3’をそれぞれフィルターで分離する。
 例えば、HAPS20のFLアンテナ211(1)及び211(2)が受信するパイロット信号h11,h11’,h21及びh21’はそれぞれ次式(9)、(10)、(11)及び(12)で表され、それらの信号の比/及び/はそれぞれ、次式(13)及び(14)で表される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 
Figure JPOXMLDOC01-appb-M000012
 
Figure JPOXMLDOC01-appb-M000013
 
Figure JPOXMLDOC01-appb-M000014
 
Figure JPOXMLDOC01-appb-M000015
 
上記式(9)~(14)中のdはGW局70(1)とFLアンテナ211(1)との間の経路長であり、Δd21はGW局70(1)とFLアンテナ211(1)及び211(2)それぞれとの間の経路長の差(経路差)である。GW局70(1)とFLアンテナ211(2)との間の経路長はd+Δd21で表される。
 上記式(13)及び(14)から、上記経路差Δd21は次式(15)で求めることができる。なお、式(15)中のθは、h11’とh11の位相差と、h21とh21’の位相差とを加算した位相差である。すなわち、θ=(h11’とh11の位相差)+(h21とh21’の位相差)である。
Figure JPOXMLDOC01-appb-M000016
 
 GW局70(1)とFLアンテナ211(1)及び211(3)それぞれとの間の経路差Δd31及びその他の経路差Δd12,Δd13,Δd23,Δd32についても、同様に求めることができる。
 上記経路差Δd21,Δd31,Δd12,Δd13,Δd23,Δd32を用いて、上記フィーダリンクの送信信号帯域の中心周波数fscにおける伝搬路応答は、前述の式(8)のように推定できる。
 図17及び図18に示すようにGW局70(1)~70(3)がそれぞれ複数のパイロット信号を送信する場合、各パイロット信号の波長λ、λ、λ以上の経路差を検知することができる。例えば、LTEを想定するとフィーダリンクの送信信号帯域FBの帯域幅Bは18MHzであるので、上記式(15)に示すようにΔd21をパイロット周波数差Bの波長以内の範囲で推定可能となる。本例では、実装上必要な範囲である0<Δd21<16[m]の範囲まで精度よく推定することができる。
 また、図17及び図18の例では、各GW局70(1)~70(3)から送信される互いに周波数f,f,f,f’,f’,f’が異なる複数のパイロット信号SP1,SP2,SP3及びパイロット信号SP1’,SP2’,SP3’が、第1ガードバンドGB1及び第2ガードバンドGB2に均等に分散されて配置されているので、各パイロット信号をフィルターで分離して容易に個別検出することができる。
 図19は、実施形態に係る複数のGW局70(1)~70(3)がそれぞれ複数のパイロット信号を送信する場合のパイロット信号の配置の他の例を示す説明図である。図示の例では、GW局70(1)~70(3)から送信される互いに周波数f,f,f,f’,f’,f’が異なる複数のパイロット信号SP1,SP2,SP3及びパイロット信号SP1’,SP2’,SP3’をすべて第1ガードバンドGB1に配置した例である。HAPS20の中継通信局21は、GW局70(1)~70(3)から受信した第1ガードバンドGB1の複数のパイロット信号SP1,SP2,SP3,SP1’,SP2’,SP3’をそれぞれフィルターで分離する。
 図20は、実施形態に係る複数のGW局70(1)~70(3)がそれぞれ複数のパイロット信号を送信する場合のパイロット信号の配置の更に他の例を示す説明図である。図示の例は、第1ガードバンドGB1及び第2ガードバンドGB2に配置するパイロット信号の数が互いに異なる場合の例である。具体的には、第1ガードバンドGB1にGW局70(1)から送信される互いに周波数f,f’が異なるパイロット信号SP1,SP1’が位置し、第2ガードバンドGB2にGW局70(2)及び70(3)から送信される互いに周波数f,f’,f,f’が異なるパイロット信号SP2,SP2’,SP3,SP3’が位置している。HAPS20の中継通信局21は、GW局70(1)から受信した第1ガードバンドGB1の複数のパイロット信号SP1,SP1’をそれぞれフィルターで分離し、GW局70(2)及び70(3)から受信した第2ガードバンドGB2の複数のパイロット信号SP2,SP2’,SP3,SP3’をそれぞれフィルターで分離する。
 特に,図20のパイロット信号の配置例では、各GW局70(i)(i=1,2,3)から送信されるパイロット信号SPi,SPi’を同じガードバンドに配置している。具体的には、GW局70(1)から送信されるパイロット信号SP1,SP1’を第1ガードバンドGB1に配置し、GW局70(2)及び70(3)から送信されるパイロット信号SP2,SP2’,SP2,SP3,SP3’を第2ガードバンドGB2に位置している。このように同一のGW局70(i)から周波数f,f’で送信されるパイロット信号SPi,SPi’を同一ガードバンドに配置すると、f-f’の周波数差が小さくなるので、前述の式(15)に示すようにΔd21の推定距離は大きくなる。
 なお、上記伝搬路応答の行列Hfcを用いて、干渉キャンセラに用いるウェイトは、例えば、伝搬路応答の行列を用いたZF(Zero-Forcing)法又はMMSE(Minimum Mean Square Error)法により計算することができる。
 例えば、ZF法では、次式(16)のように伝搬路応答の行列Hfcの逆行列でウェイトWを求めることができる。
Figure JPOXMLDOC01-appb-M000017
 
 また、MMSE法では、次式(17)によりウェイトWを用いることができる。ここで、Nは送信アンテナ数であり、γはSNRである。
Figure JPOXMLDOC01-appb-M000018
 
 図21は、実施形態に係るHAPS20の中継通信局21の主要構成の一例を示す説明図である。図20において、中継通信局21は、フィーダリンク通信部221とサービスリンク通信部222と周波数変換部223と各部を制御する制御部224と干渉抑圧部225を備える。
 フィーダリンク通信部221は、FLアンテナ211を介してGW局70との間でフィーダリンク用の第1周波数F1の無線信号を送受信する。また、フィーダリンク通信部221は、複数のGW局70(1)~70(3)それぞれから送信された複数のパイロット信号を受信し、受信した複数のパイロット信号をそれぞれフィルターで分離する。サービスリンク通信部222は、サービスリンク用アンテナ115を介して端末装置61との間でサービスリンク用の第2周波数F2の無線信号を送受信する。周波数変換部223は、フィーダリンク通信部221とサービスリンク通信部222との間で第1周波数F1と第2周波数F2との周波数変換を行う。中継通信局21で中継される無線信号は、例えば、LTE又はLTE-Advancedの標準規格に準拠したOFMDA通信方式を用いて送受信してもよい。この場合は、無線信号の遅延が異なるマルチパスが発生しても良好な通信品質を維持できる。
 制御部224は、予め組み込まれたプログラムを実行することにより各部を制御することができる。
 干渉抑圧部225は、予め組み込まれたプログラムを実行することにより、次の(1)~(3)に例示するように、複数のGW局70(1)~70(3)との間に形成する複数のフィーダリンク間の干渉を抑圧する処理を行う。
(1)複数のGW局70(1)~70(3)それぞれから受信した複数のパイロット信号の受信結果に基づいて、複数のGW局70それぞれとFLアンテナ211との間の複数の経路差Δd21,Δd31,Δd12,Δd13,Δd23,Δd32を計算してフィーダリンクの送信信号帯域の中心周波数fscにおける伝搬路応答を推定する。
(2)前記複数の伝搬路応答に基づいて、複数のGW局70(1)~70(3)それぞれについて、GW局から送信した送信信号が他のゲートウェイ局に対応する指向性ビームで受信されて干渉する干渉信号を抑圧するためのウェイトWを計算する。
(3)複数のGW局70(1)~70(3)それぞれについて、GW局に対応する指向性ビームで受信した受信信号から、他のGW局に対応する指向性ビームで受信した受信信号に他のGW局に対応する前記ウェイトWを掛けて減算する。
 なお、移動通信網の通信オペレータの遠隔制御装置(制御元)からの制御情報を受信したり遠隔制御装置に情報を送信したりする場合は、制御部224に接続されたユーザ端末(移動局)226を備えてもよい。制御部224は、例えば、遠隔制御装置から送信されてきた制御情報をユーザ端末(移動局)226で受信し、その制御情報に基づいて各部を制御してもよい。ここで、遠隔制御装置とユーザ端末(移動局)226との間の通信は、例えば遠隔制御装置及びユーザ端末(移動局)226それぞれに割り当てられたIPアドレス(又は電話番号)を用いて行ってもよい。
 以上、本実施形態によれば、HAPS20と複数のGW局70(1)~70(3)との間の同一周波数のマルチフィーダリンクにおける干渉を動的に抑圧することができる。
 特に本実施形態によれば、複数のGW局70(1)~70(3)それぞれから、互いに異なる周波数の複数のパイロット信号SP1,SP2,SP3,SP1’,SP2’,SP3’を送信することにより、マルチフィーダリンクにおける干渉の動的な抑圧に必要となるHAPS20と複数のGW局70(1)~70(3)との経路差を実装上必要な範囲まで推定して把握することができるので、マルチフィーダリンクにおける干渉を精度よく抑圧することができる。
 また、本実施形態によれば、HAPS20のフィーダリンクのSINRの低下を抑制しつつ、フィーダリンクの周波数利用効率の向上を図ることができる。
 なお、本明細書で説明された処理工程並びにHAPS等の通信中継装置の中継通信局、フィーダ局、ゲートウェイ局、管理装置、監視装置、遠隔制御装置、サーバ、端末装置(ユーザ装置、移動局、通信端末)、基地局及び基地局装置の構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。
 ハードウェア実装については、実体(例えば、無線中継局、フィーダ局、ゲートウェイ局、基地局、基地局装置、無線中継局装置、端末装置(ユーザ装置、移動局、通信端末)、管理装置、監視装置、遠隔制御装置、サーバ、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において前記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。
 また、ファームウェア及び/又はソフトウェア実装については、前記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された前記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、FLASHメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。
 また、前記媒体は非一時的な記録媒体であってもよい。また、前記プログラムのコードは、コンピュータ、プロセッサ、又は他のデバイス若しくは装置機械で読み込んで実行可能であれよく、その形式は特定の形式に限定されない。例えば、前記プログラムのコードは、ソースコード、オブジェクトコード及びバイナリコードのいずれでもよく、また、それらのコードの2以上が混在したものであってもよい。
 また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。
 20 HAPS(通信中継装置)
 21 中継通信局
 61 端末装置
 70,70(1)~70(3) ゲートウェイ局(GW局)
 71,71(1)~71(3) フィーダリンク用アンテナ(GWアンテナ)
 200C,200C(1)~200C(7) 3次元セル
 200F,200F(1)~200F(7) フットプリント
 211、211(1)~211(3) フィーダリンク用アンテナ(FLアンテナ)
 212、212(1)~212(3) アンテナ指向性ビーム
 215 サービスリンク用アンテナ(SLアンテナ)

Claims (16)

  1.  端末装置の無線通信を中継する中継通信局を含む空中滞在型の通信中継装置を備えるシステムであって、
     互いに時間同期され、前記空中滞在型の通信中継装置の前記中継通信局との間のフィーダリンクにおいて同一周波数で互いに異なる中継信号を送受信する複数のゲートウェイ局を備え、
     前記中継通信局は、前記複数のゲートウェイ局との間のフィーダリンクにおいて同一周波数で互いに異なる中継信号を送受信するフィーダリンク通信部と、前記複数のゲートウェイ局との間に形成する複数のフィーダリンク間の干渉を抑圧する干渉抑圧部とを備え、
     前記複数のゲートウェイ局はそれぞれ、互いに異なる周波数の複数のパイロット信号を送信し、
     前記フィーダリンク通信部は、前記複数のゲートウェイ局それぞれから送信された互いに異なる周波数の複数のパイロット信号を受信し、
     前記干渉抑圧部は、
      前記複数のゲートウェイ局それぞれから受信した前記複数のパイロット信号の受信結果に基づいて、前記複数のゲートウェイ局それぞれと前記通信中継装置のフィーダリンク用アンテナとの間の複数の経路差を計算して伝搬路応答を推定し、
      前記複数の伝搬路応答に基づいて、前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局から送信した送信信号が他のゲートウェイ局に対応する指向性ビームで受信されて干渉する干渉信号を抑圧するためのウェイトを計算し、
      前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局に対応する指向性ビームで受信した受信信号から、他のゲートウェイ局に対応する指向性ビームで受信した受信信号に前記他のゲートウェイ局に対応する前記ウェイトを掛けて減算する、
    ことを特徴とするシステム。
  2.  請求項1のシステムにおいて、
     前記複数のパイロット信号は、前記フィーダリンクの送信信号帯域の両隣に位置する複数のガードバンドに分散されて送信されることを特徴とするシステム。
  3.  請求項1又は2のシステムにおいて、
     前記干渉抑圧部は、前記フィーダリンクの送信信号帯域の中心周波数又はその周辺の周波数において、前記複数の伝搬路応答を推定して前記複数のウェイトを計算する、ことを特徴とするシステム。
  4.  請求項1乃至3のいずれかのシステムにおいて、
     前記複数のウェイトはそれぞれ、前記伝搬路応答の行列を用いたZF(Zero-Forcing)法又はMMSE(Minimum Mean Square Error)法により計算することを特徴とするシステム。
  5.  請求項1乃至4のいずれかのシステムにおいて、
     前記複数のゲートウェイ局はそれぞれ、前記空中滞在型の通信中継装置を追尾するようにフィーダリンク用アンテナを制御するアンテナ制御部を備えることを特徴とするシステム。
  6.  請求項1乃至5のいずれかのシステムにおいて、
     前記空中滞在型の通信中継装置は、
      前記複数のゲートウェイ局それぞれに対応する複数の指向性ビームを有するフィーダリンク用アンテナと、
      前記複数のビームがそれぞれ対応するゲートウェイ局の方向に向くように前記フィーダリンク用アンテナを制御するアンテナ制御部と、を備えることを特徴とするシステム。
  7.  請求項6のシステムにおいて、
     前記フィーダリンク用アンテナは、互いに異なる方向に指向性ビームを有する複数のフィーダリンク用アンテナであり、
     前記アンテナ制御部は、前記複数のフィーダリンク用アンテナの指向性ビームがそれぞれ対応するゲートウェイ局の方向に向くように、前記複数のフィーダリンク用アンテナそれぞれを機械的に制御することを特徴とするシステム。
  8.  請求項6のシステムにおいて、
     前記フィーダリンク用アンテナは、鉛直方向の仮想軸を中心とした任意の外方向に向けて前記複数の指向性ビームを形成可能なアレイアンテナであり、
     前記アンテナ制御部は、前記複数の指向性ビームがそれぞれ対応するゲートウェイ局の方向に向くように、前記アレイアンテナの複数のアンテナ素子に対する送受信信号の振幅及び位相を制御することを特徴とするシステム。
  9.  請求項6のシステムにおいて、
     前記フィーダリンク用アンテナは、互いに異なる方向を中心とした所定の角度範囲に指向性ビームを形成可能な複数のアレイアンテナであり、
     前記アンテナ制御部は、前記複数のアレイアンテナの指向性ビームがそれぞれ対応するゲートウェイ局の方向に向くように、各アレイアンテナの複数のアンテナ素子に対する送受信信号の振幅及び位相の制御と前記複数のアレイアンテナの切替制御とを選択的に行うことを特徴とするシステム。
  10.  空中滞在型の通信中継装置に組み込まれ端末装置の無線通信を中継する中継通信局であって、
     互いに時間同期された複数のゲートウェイ局との間のフィーダリンクにおいて同一周波数で互いに異なる中継信号を送受信するフィーダリンク通信部と、
     前記複数のゲートウェイ局との間に形成する複数のフィーダリンク間の干渉を抑圧する干渉抑圧部と、を備え、
     前記フィーダリンク通信部は、前記複数のゲートウェイ局それぞれから送信された互いに異なる周波数の複数のパイロット信号を受信し、
     前記干渉抑圧部は、
      前記複数のゲートウェイ局それぞれから受信した前記複数のパイロット信号の受信結果に基づいて、前記複数のゲートウェイ局それぞれと前記通信中継装置のフィーダリンク用アンテナとの間の複数の経路差を計算して伝搬路応答を推定し、
      前記複数の伝搬路応答に基づいて、前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局から送信した送信信号が他のゲートウェイ局に対応する指向性ビームで受信されて干渉する干渉信号を抑圧するためのウェイトを計算し、
      前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局に対応する指向性ビームで受信した受信信号から、他のゲートウェイ局に対応する指向性ビームで受信した受信信号に前記他のゲートウェイ局に対応する前記ウェイトを掛けて減算する、
    ことを特徴とする中継通信局。
  11.  請求項10の中継通信局を有することを特徴とする空中滞在型の通信中継装置。
  12.  空中滞在型の通信中継装置に組み込まれ端末装置の無線通信を中継する中継通信局との間のフィーダリンクにおいて同一周波数で互いに異なる中継信号を送受信するゲートウェイ局であって、
     前記中継通信局との間のフィーダリンクにおいて前記同一周波数で中継信号を送受信する他のゲートウェイ局と時間同期され、
     前記フィーダリンクにおいて互いに異なる周波数の複数のパイロット信号を送信することを特徴とするゲートウェイ局。
  13.  空中滞在型の通信中継装置に組み込まれ端末装置の無線通信を中継する中継通信局におけるフィーダリンクの干渉抑圧方法であって、
     互いに時間同期された複数のゲートウェイ局それぞれから送信された互いに異なる周波数の複数のパイロット信号を受信することと、
     前記複数のゲートウェイ局それぞれから受信した前記複数のパイロット信号の受信結果に基づいて、前記複数のゲートウェイ局それぞれと前記通信中継装置のフィーダリンク用アンテナとの間の複数の経路差を計算して伝搬路応答を推定することと、
     前記複数の伝搬路応答に基づいて、前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局から送信した送信信号が他のゲートウェイ局に対応する指向性ビームで受信されて干渉する干渉信号を抑圧するためのウェイトを計算することと、
     前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局に対応する指向性ビームで受信した受信信号から、他のゲートウェイ局に対応する指向性ビームで受信した受信信号に前記他のゲートウェイ局に対応する前記ウェイトを掛けて減算することと、
    を含むことを特徴とする干渉抑圧方法。
  14.  空中滞在型の通信中継装置に組み込まれ端末装置の無線通信を中継する中継通信局との間のフィーダリンクにおいて同一周波数で互いに異なる中継信号を送受信するゲートウェイ局におけるフィーダリンク通信方法であって、
     前記中継通信局との間のフィーダリンクにおいて前記同一周波数で中継信号を送受信する他のゲートウェイ局と時間同期することと、
     前記フィーダリンクにおいて互いに異なる周波数の複数のパイロット信号を送信することと、
    を含むことを特徴とするフィーダリンク通信方法。
  15.  空中滞在型の通信中継装置に組み込まれ端末装置の無線通信を中継する中継通信局に設けられたコンピュータ又はプロセッサで実行されるプログラムであって、
     互いに時間同期された複数のゲートウェイ局との間のフィーダリンクにおいて同一周波数で互いに異なる中継信号を送受信するためのプログラムコードと、
     前記複数のゲートウェイ局それぞれから送信された互いに異なる周波数の複数のパイロット信号を受信するためのプログラムコードと、
     前記受信した複数のパイロット信号をそれぞれフィルターで分離するためのプログラムコードと、
     前記複数のゲートウェイ局それぞれから受信した前記複数のパイロット信号の受信結果に基づいて、前記複数のゲートウェイ局それぞれと前記通信中継装置のフィーダリンク用アンテナとの間の複数の経路差を計算して伝搬路応答を推定するためのプログラムコードと、
     前記複数の伝搬路応答に基づいて、前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局から送信した送信信号が他のゲートウェイ局に対応する指向性ビームで受信されて干渉する干渉信号を抑圧するためのウェイトを計算するためのプログラムコードと、
     前記複数のゲートウェイ局それぞれについて、前記ゲートウェイ局に対応する指向性ビームで受信した受信信号から、他のゲートウェイ局に対応する指向性ビームで受信した受信信号に前記他のゲートウェイ局に対応する前記ウェイトを掛けて減算するためのプログラムコードと、
    を含むことを特徴とするプログラム。
  16.  空中滞在型の通信中継装置に組み込まれ端末装置の無線通信を中継する中継通信局との間のフィーダリンクにおいて同一周波数で互いに異なる中継信号を送受信するゲートウェイ局に設けられたコンピュータ又はプロセッサで実行されるプログラムであって、
     前記中継通信局との間のフィーダリンクにおいて前記同一周波数で中継信号を送受信する他のゲートウェイ局と時間同期するためのプログラムコードと、
     前記フィーダリンクにおいて互いに異なる周波数の複数のパイロット信号を送信するためのプログラムコードと、を含むことを特徴とするプログラム。
PCT/JP2020/005323 2019-03-01 2020-02-12 Hapsマルチフィーダリンクにおける干渉キャンセリング WO2020179384A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20765586.1A EP3934304A4 (en) 2019-03-01 2020-02-12 INTERFERENCE REJECTION IN A HAPS MULTIFEED CONNECTION
US17/434,842 US11764861B2 (en) 2019-03-01 2020-02-12 Interference canceling in HAPS multi-feeder link

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-038046 2019-03-01
JP2019038046A JP7244302B2 (ja) 2019-03-01 2019-03-01 Hapsマルチフィーダリンクにおける干渉キャンセリング

Publications (1)

Publication Number Publication Date
WO2020179384A1 true WO2020179384A1 (ja) 2020-09-10

Family

ID=72265308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005323 WO2020179384A1 (ja) 2019-03-01 2020-02-12 Hapsマルチフィーダリンクにおける干渉キャンセリング

Country Status (4)

Country Link
US (1) US11764861B2 (ja)
EP (1) EP3934304A4 (ja)
JP (1) JP7244302B2 (ja)
WO (1) WO2020179384A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6976995B2 (ja) * 2019-07-03 2021-12-08 Hapsモバイル株式会社 Haps通信システムのフィーダリンクにおけるリバースリンク通信の干渉検知及び干渉抑制
JP7084512B1 (ja) 2021-01-18 2022-06-14 ソフトバンク株式会社 通信中継装置、システム、干渉抑圧方法及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160046387A1 (en) 2014-08-18 2016-02-18 Sunlight Photonics Inc. Methods and apparatus for a distributed airborne wireless communications fleet
US20170126309A1 (en) * 2015-10-30 2017-05-04 The Florida International University Board Of Trustees Cooperative clustering for enhancing mu-massive-miso-based uav communication
US9798329B2 (en) * 2015-07-27 2017-10-24 Genghiscomm Holdings, LLC Airborne relays in cooperative-MIMO systems
WO2018207612A1 (ja) * 2017-05-12 2018-11-15 ソフトバンク株式会社 第5世代通信の3次元化ネットワークを構築するhaps間通信及び大容量多セル係留飛行船型haps

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7027769B1 (en) * 2000-03-31 2006-04-11 The Directv Group, Inc. GEO stationary communications system with minimal delay
US6675013B1 (en) * 2000-06-26 2004-01-06 Motorola, Inc. Doppler correction and path loss compensation for airborne cellular system
WO2006099443A1 (en) * 2005-03-15 2006-09-21 Atc Technologies, Llc Intra-system and/or inter-system reuse of feeder link frequencies including interference suppression systems and methods
AU2006280065B2 (en) * 2005-08-09 2010-09-30 Atc Technologies, Llc Satellite communications systems and methods using substantially co-located feeder link antennas
US8605687B2 (en) * 2007-07-05 2013-12-10 Qualcomm Incorporated Method for channel estimation in a point-to-point communication network
JP6276313B2 (ja) 2016-03-14 2018-02-07 ソフトバンク株式会社 通信端末装置、衛星基地局、基地局制御装置及び移動通信システム
ES2856184T3 (es) * 2016-10-21 2021-09-27 Viasat Inc Comunicaciones de formación de haces terrestre que utilizan enlaces de alimentador espacialmente multiplexados mutuamente sincronizados
EP3484067B1 (en) * 2017-11-13 2021-01-27 NEOSAT GmbH Method for operating a communication system
JP6832896B6 (ja) * 2018-08-27 2021-03-24 Hapsモバイル株式会社 空中滞在型の通信中継装置におけるフィーダリンクの通信を行うシステム
JP7184690B2 (ja) * 2019-03-27 2022-12-06 Hapsモバイル株式会社 複数ゲートウェイhapsシステムにおけるフィーダリンク送信帯域の固定分割による干渉キャンセリング
JP7059232B2 (ja) * 2019-08-26 2022-04-25 Hapsモバイル株式会社 Hapsマルチフィーダリンクにおけるリバースリンク干渉キャンセリング
JP7236370B2 (ja) * 2019-11-01 2023-03-09 Hapsモバイル株式会社 Hapsのマルチフィーダリンクにおけるスペクトル拡散パイロット信号を用いた伝搬路応答測定及び干渉キャンセリング

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160046387A1 (en) 2014-08-18 2016-02-18 Sunlight Photonics Inc. Methods and apparatus for a distributed airborne wireless communications fleet
US9798329B2 (en) * 2015-07-27 2017-10-24 Genghiscomm Holdings, LLC Airborne relays in cooperative-MIMO systems
US20170126309A1 (en) * 2015-10-30 2017-05-04 The Florida International University Board Of Trustees Cooperative clustering for enhancing mu-massive-miso-based uav communication
WO2018207612A1 (ja) * 2017-05-12 2018-11-15 ソフトバンク株式会社 第5世代通信の3次元化ネットワークを構築するhaps間通信及び大容量多セル係留飛行船型haps

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAZUKI MARUTA, CHANG-JUN AHN: "Interference suppression schemes for pilot decontamination on multicell massive MIMO systems", IEICE TECHNICAL REPORT, vol. 118, no. 254 (RCS2018-177), 11 October 2018 (2018-10-11), pages 143 - 148, XP009523632, ISSN: 0913-5685 *
TAKASHI FUJII, YOSHIMOTO OTA: "B-5-60 HAPS Multi-Gateway Feeder Link System Supports Transmission Interference Canceller Crash", PROCEEDINGS OF IEICE SOCIETY CONFERENCE; SEPTEMBER 10-13, 2019, vol. 1, 27 August 2019 (2019-08-27), pages 314, XP009523749 *

Also Published As

Publication number Publication date
JP7244302B2 (ja) 2023-03-22
US11764861B2 (en) 2023-09-19
JP2020141387A (ja) 2020-09-03
EP3934304A4 (en) 2022-11-02
US20220149929A1 (en) 2022-05-12
EP3934304A1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
US11133858B2 (en) Feeder link communication system of HAPS
WO2020179384A1 (ja) Hapsマルチフィーダリンクにおける干渉キャンセリング
WO2020195294A1 (ja) 複数ゲートウェイhapsシステムにおけるフィーダリンク送信帯域の固定分割による干渉キャンセリング
WO2021038936A1 (ja) Hapsマルチフィーダリンクにおけるリバースリンク干渉キャンセリング
WO2021084777A1 (ja) Hapsのマルチフィーダリンクにおけるスペクトル拡散パイロット信号を用いた伝搬路応答測定及び干渉キャンセリング
WO2020202820A1 (ja) 複数ゲートウェイhapsシステムにおけるフィーダリンク送信帯域の可変分割による干渉キャンセリング
WO2022019125A1 (ja) Hapsのマルチフィーダリンクにおけるアンテナ切り替え時の処理遅延における干渉低減性能低下の緩和
JP7089558B2 (ja) Hapsのマルチフィーダリンクにおけるhaps搭載アンテナ位置変更による動的な伝搬空間相関の改善
WO2022154012A1 (ja) 通信中継装置、システム、干渉抑圧方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020765586

Country of ref document: EP

Effective date: 20211001