WO2020100603A1 - Steel pipe, steel pipe for bearing, and method for producing steel pipe - Google Patents

Steel pipe, steel pipe for bearing, and method for producing steel pipe Download PDF

Info

Publication number
WO2020100603A1
WO2020100603A1 PCT/JP2019/042661 JP2019042661W WO2020100603A1 WO 2020100603 A1 WO2020100603 A1 WO 2020100603A1 JP 2019042661 W JP2019042661 W JP 2019042661W WO 2020100603 A1 WO2020100603 A1 WO 2020100603A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
mass
steel
welding
Prior art date
Application number
PCT/JP2019/042661
Other languages
French (fr)
Japanese (ja)
Inventor
秋月 誠
翔平 三町
Original Assignee
日鉄日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄日新製鋼株式会社 filed Critical 日鉄日新製鋼株式会社
Publication of WO2020100603A1 publication Critical patent/WO2020100603A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Definitions

  • the present invention relates to a steel pipe, a steel pipe for bearings, and a method for manufacturing a steel pipe.
  • Welded steel pipe is generally manufactured by welding steel plates or steel strips.
  • high-frequency welding is performed on a low-carbon steel sheet having a carbon content of 0.15 mass% or more and 0.4 mass% or less, and then diameter reduction rolling is performed so that a bond width of an electric resistance welded portion is 25 ⁇ m or less.
  • an electric resistance welded steel pipe which is a kind of welded steel pipe and is mechanically narrowed.
  • Patent Document 1 discloses that a decrease in the strength of the welded portion is prevented by narrowing the bond width of the welded portion in the low carbon steel pipe. However, there is no disclosure about the influence of the bond width of the welded portion in the high carbon steel pipe on the annealing time for improving the workability of the welded portion.
  • One aspect of the present invention is intended to realize a high carbon steel pipe capable of shortening the annealing time of a welded portion.
  • the steel pipe which concerns on one aspect of this invention has C: 0.4 mass% or more and 1.5 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass.
  • % Steel plate or steel strip containing less than or equal to 1%, the ends are welded at a welding temperature of 1200 ° C. or higher and 1700 ° C. or lower, and the ends are melted by heating.
  • the width of the formed bond portion is 0.2% or more and 1.2% or less with respect to the plate thickness of the steel plate or steel strip.
  • a manufacturing method of a steel pipe concerning one mode of the present invention is C: 0.4 mass% or more and 1.5 mass% or less, P: 0.03 mass% or less, and Cu: 0.
  • a method for producing a steel pipe in which the ends of steel sheets or steel strips are welded to each other, containing 3 mass% or less, the step of bending the steel sheet or steel strips to bring the ends into contact with each other, and heating the ends. In the state where the end portions are pressed against each other such that the width of the bond portion formed by melting the portion is 0.2% or more and 1.2% or less of the plate thickness of the steel plate or the steel strip. And a step of welding at a temperature of 1200 ° C. or more and 1700 ° C. or less.
  • FIG. 1 It is a schematic diagram which shows the welding part of the steel pipe which concerns on one Embodiment of this invention. It is a figure showing the photograph which shows the welding part of the steel pipe which concerns on one Embodiment of this invention.
  • (A)-(d) is sectional drawing which shows the cross-sectional shape of the steel pipe 1, respectively. It is a schematic diagram which shows the crushing width and crushing angle of the steel pipe which concerns on one Embodiment of this invention.
  • (A) And (b) is a schematic diagram which shows the upset amount of the steel pipe which concerns on one Embodiment of this invention.
  • the welding method in the present invention is not limited to electric resistance welding and is a method of welding and joining by heating the seam portion of the steel pipe. I wish I had it.
  • FIG. 1 is a schematic diagram showing a welded portion 3 of a steel pipe 1 according to this embodiment.
  • the steel pipe 1 welds the edge part of the steel plate or steel strip containing C: 0.4 mass% or more and 1.5 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less. It is formed by.
  • the ends are welded to each other at a welding temperature of 1200 ° C. or higher and 1700 ° C. or lower, and the width of the bond portion 4 formed by melting the ends by heating is equal to the plate thickness of the steel plate or the steel strip. On the other hand, it is 0.2% or more and 1.2% or less.
  • the welded portion 3 is a portion where the steel strip 2 is welded, for example, a weld bead portion.
  • the steel strip 2 may be a steel plate.
  • a bond 4 and a heat-affected zone 5 are formed in the weld 3.
  • the bond part 4 is formed between the two heat-affected parts 5 in the weld part 3.
  • the electric resistance welded portion is heated to a solid-liquid coexisting region.
  • C contained outside the electric resistance weld is concentrated in the liquid phase and decreased in the solid phase.
  • the liquid phase enriched with C is discharged to the outside of the electric resistance welded portion by pressing (upsetting) the ends of the steel strip 2 to form a bead.
  • the solid phase with reduced C remains in the welded portion 3 and the solid phase forms the bond portion 4.
  • the heat-affected zone 5 is an area in which the metallographic structure at the end portion is changed by heat during electric resistance welding, and is an area other than the bond portion 4.
  • the welded portion 3 is preferably subjected to a spheroidizing annealing treatment described later in order to improve workability.
  • the heat-affected zone 5 has a structure in which undissolved carbide and martensite are mixed due to heating during welding.
  • the bond portion 4 is heated to a temperature higher than that of the heat-affected zone 5 due to heating during welding, and thus has a structure of only martensite containing no undissolved carbide.
  • the heat-affected zone 5 finishes spheroidizing annealing in a short time because the carbide grows with the undissolved carbide as the nucleus, but the bond portion 4 does not undergo the undissolved annealing. Carbides are not included. Therefore, in the bond part 4, after the carbide is first deposited inside the bond part 4, the carbide grows.
  • the bond part 4 needs to be annealed for a longer time than the heat-affected part 5. Further, the wider the bond portion 4 is, the longer the spheroidizing annealing needs to be performed. That is, by reducing the width of the bond portion 4, it is possible to shorten the time required for the spheroidizing annealing of the weld portion 3.
  • FIG. 2 is a view showing a photograph showing the welded portion 3 of the steel pipe 1.
  • the steel pipe 1 is formed such that the width of the bond portion 4 is 0.2% or more and 1.2% or less of the plate thickness of the steel strip 2.
  • the welding temperature is preferably 1200 ° C. or higher and 1700 ° C. or lower.
  • the width of the bond portion 4 is 1.2% or less of the plate thickness, the spheroidizing annealing time after welding can be made relatively short.
  • the width of the bond portion 4 is 0 (zero), it is impossible to determine whether the welding is properly performed. Therefore, the width of the bond portion 4 is 0.2% or more of the plate thickness. preferable.
  • the steel pipe 1 is excellent in rolling contact fatigue life because it contains a specific component in a specific amount as described above.
  • rolling fatigue life refers to a period until surface peeling occurs in the base material of the steel pipe 1 and the welded portion 3 due to rolling movement of the bearing using the steel pipe 1.
  • excellent in rolling contact fatigue life means that the above-mentioned period is as long as that of seamless steel pipe that has been frequently used as high carbon steel pipe.
  • the rolling fatigue life is obtained by, for example, cutting a welded steel pipe and processing it into a plate shape, and then measuring the period until surface peeling occurs in the base material and the welded portion 3 by a thrust type rolling fatigue test. be able to.
  • the steel pipe 1 may contain non-metallic inclusions such as sulfide and oxygen.
  • non-metallic inclusions such as sulfide and oxygen.
  • sulfides, especially MnS aggregate and precipitate on the surface of the steel pipe, causing cracks and surface scratches originating from the non-metallic inclusions, resulting in a rolling fatigue life. It may decrease.
  • the particle size of non-metallic inclusions such as sulfides is preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less. Since the particle size of the non-metallic inclusions in the steel pipe 1 is as small as the above-mentioned preferable range, reduction of rolling fatigue life and increase of manufacturing cost are prevented especially when the non-metallic inclusions are sulfides. can do.
  • the oxygen content in the steel pipe 1 is preferably 20 ppm or less, and more preferably 15 ppm or less.
  • the steel pipe 1 having higher cleanliness can be obtained.
  • the steel pipe 1 having a better rolling fatigue life can be obtained.
  • the diameter of the steel pipe 1 is preferably 15 mm or more and 300 mm or less. Further, the thickness of the steel plate or the steel strip used to form the steel pipe 1 is preferably 2 mm or more and 10 mm or less. Since the diameter of the steel pipe 1 and the thickness of the steel plate or the steel strip are in the above-described preferable ranges, the steel pipe 1 can be manufactured without requiring special manufacturing conditions.
  • the steel pipe 1 may be a round pipe having a substantially circular cross-sectional shape in a cross section perpendicular to the drawing direction of the steel pipe 1.
  • the steel pipe 1 may be a rectangular pipe having the above-mentioned cross-sectional shape of a substantially rectangular shape.
  • it may be a deformed tube whose cross-sectional shape is other than substantially circular or rectangular.
  • the cross-sectional shape of the deformed tube may be, for example, a semicircular shape as shown in FIG. 3C or a drum shape as shown in FIG. 3D.
  • the steel strip 2 is preferably used as a raw material for the steel pipe 1.
  • the steel strip 2 is formed into a tubular shape by being subjected to roll forming, and becomes the steel pipe 1 by being subjected to welding, quenching treatment, tempering treatment and spheroidizing annealing.
  • the amount and size of non-metallic inclusions on the outer surface side and the inner surface side of the steel pipe differ due to the effect of center segregation of the steel bar that is the base material.
  • the non-metallic inclusions on the outer surface side are fine and minute, but a large amount of the non-metallic inclusions are present on the inner surface and are exposed on the inner surface.
  • the outer ring of the rolling bearing uses the inner surface of the seamless steel pipe, but the large amount of non-metallic inclusions on the inner surface has a great influence on the rolling fatigue life. .. From this, in order to prolong the rolling fatigue life, it is necessary to largely perform the turning process on the inner surface of the bearing seamless steel pipe, which is in contact with the rolling elements, which increases the processing cost.
  • the steel pipe 1 that is, the welded steel pipe such as the electric resistance welded steel pipe to which the steel strip 2 is welded, unlike the seamless steel pipe, has many non-metallic inclusions inside the steel strip and almost all on the front and back surfaces. do not do. Therefore, the welded steel pipe using a steel strip as a base material has a higher cleanness on the inner surface side than the seamless steel pipe, and the difference in cleanness between the inner surface and the outer surface of the steel pipe can be reduced.
  • the steel pipe 1 since the steel pipe 1 has a high degree of cleanliness on the inner surface side, it is possible to obtain a rolling fatigue life equivalent to that of a seamless steel pipe while reducing the amount of cutting when processing into a part shape.
  • the steel pipe 1 is obtained by welding the steel strip 2, it is possible to easily mass-produce the steel pipe, as compared with the case of manufacturing the steel pipe by punching a bar material.
  • the steel strip 2 refers to, among steel plates, a coil-shaped product having a thickness of 10 mm or less, for example.
  • either the steel strip 2 or the steel plate can be used as the raw material of the present embodiment, but it is preferable to manufacture the steel pipe 1 using the steel strip 2.
  • the productivity is improved by using the steel strip 2 which is thinner than the steel plate and has excellent roll formability described later. Thereby, the steel pipe 1 can be manufactured more efficiently.
  • the steel strip 2 can be obtained, for example, by hot rolling steel.
  • the steel strip 2 is formed into a tubular shape by passing the steel strip 2 between the rollers.
  • the roll forming is easier when the steel strip 2 is used as the base material than the above steel plate, it is preferable to form the coiled steel strip 2 by hot rolling the steel before the roll forming. ..
  • the steel strip 2 may be washed with an acid or annealed under the conditions of 600 ° C. or higher and 800 ° C. or lower and 1 hour or longer and 50 hours or shorter. This facilitates roll forming.
  • crushing In order to adjust the shape and strength of the welded portion 3 between the ends of the steel strip 2 formed into a tubular shape by the roll forming, the corner portions located inside the pipe at the ends are formed by a crushing roll. It is crushed (hereinafter, "crushing"). By properly setting the width and angle of the crushing, it is possible to obtain a sound welded portion 3 with little strength reduction in butt welding described later.
  • FIG. 4 is a schematic diagram showing the crushing width C and the crushing angle ⁇ of the steel pipe 1 according to the present embodiment.
  • the width of the crushing (crushing width C) is preferably 5% or more and 40% or less of the plate thickness of the steel strip 2.
  • the crushing width C is a portion in which the corners of the steel strip 2 are crushed in the plate width direction of the steel strip 2 when the longitudinal direction of the steel pipe 1 is the longitudinal direction of the steel strip 2. Means the length corresponding to.
  • the crushing angle ⁇ means the smaller one of the angles formed by the plane including the lower surface 2A (or the upper surface) of the steel strip 2 and the surface 2B formed by the crushing.
  • the crushing angle ⁇ is preferably 20 degrees or more and 60 degrees or less, and most preferably 45 degrees.
  • the crushing width C When the crushing width C is small or when the crushing angle ⁇ is small, the amount of molten metal generated during welding is discharged from the boundary between the welded ends of the steel strip 2 (molten metal discharge amount) is small. Become. Therefore, a wide portion is formed in the bond portion 4, and a long-time annealing process is required in the wide portion. Further, when the crushing width C is large or the crushing angle ⁇ is large, the area of the welded end of the steel strip 2 is reduced, so that the strength of the welded portion 3 is reduced.
  • the crushing width C is 5% or more and 40% or less of the plate thickness
  • the temperature of the welded portion 3 does not vary, and the width of the bond portion 4 to be formed may be constant. it can. Therefore, long-time annealing treatment is not required due to the large part of the bond portion 4.
  • FIG. 5 are schematic diagrams showing the upset amount of the steel pipe 1 according to the present embodiment.
  • the ends are pressed against each other and abutted against each other.
  • a point separated by a predetermined distance X in the plate width direction from one end of the steel strip 2 before being welded is P1
  • the other end of the steel strip 2 is A point separated from the end by a predetermined distance Y in the plate width direction is P2.
  • the distance Z between the welded P1 and P2 is the distance X and the distance Y. Will be shorter than the total length.
  • the length (X + Y ⁇ Z) of the end portion shortened by the pressing in the direction in which the end portions are pressed against each other is referred to as the upset amount.
  • the upset amount at each end is preferably 20% or more and 30% or less with respect to the plate thickness of the steel strip 2.
  • the molten metal discharge amount is reduced. Therefore, the amount of the molten metal remaining in the bond portion 4 increases, and as a result, the width of the bond portion 4 increases.
  • the upset amount is larger than 30% of the plate thickness, the end portion is excessively crushed.
  • Examples of the welding method in the present embodiment include high-density energy welding such as resistance welding, laser beam welding, and electron beam welding.
  • resistance welding is preferable, and high-frequency welding (high-frequency resistance) among resistance welding is preferable.
  • Welding is preferred.
  • High-frequency welding is resistance welding in which welding is performed by resistance heat generated by high-frequency current while applying pressure to the welded joint.
  • high frequency contact resistance welding or high frequency induction resistance welding may be used.
  • the welding temperature is preferably 1200 ° C or higher and 1700 ° C or lower. If the welding temperature is too high, the amount of molten metal produced during welding increases, and the width of the bond portion 4 becomes wider. Further, when the welding temperature is 1200 ° C. or lower, the amount of the molten metal becomes small, and a part of the welded portion 3 which is not welded is generated. With the welding temperature as described above, welding can be performed such that the width of the bond portion 4 is 0.2% or more and 1.2% or less of the plate thickness of the steel strip 2.
  • the said welding may weld the edge parts of one steel strip 2 or a steel plate, and may form a steel pipe, and may join the edge parts of two or more steel strips 2 or steel plates. May be
  • the metal structure of the bond portion 4 may be hard martensite. Therefore, the workability of the welded portion 3 is reduced.
  • spheroidizing annealing treatment is preferably performed.
  • the spheroidizing annealing treatment means annealing the high carbon steel at a temperature near the A1 transformation point so that the carbide contained in the high carbon steel is spheroidized and precipitated. By performing the spheroidizing annealing treatment, the high carbon steel becomes soft and the workability is improved.
  • the bond part 4 can transform the martensite structure into a ferrite structure in which spherical carbides are dispersed by a spheroidizing annealing treatment. As a result, the workability of the bond portion 4 is improved.
  • the steel pipe provided with the welded portion 3 in which the width of the bond portion 4 is 0.2% or more and 1.2% or less of the plate thickness of the steel strip 2 without having to perform the diameter reduction rolling step. 1 can be manufactured.
  • the steel pipe 1 contains C (carbon): 0.4 mass% or more and 1.5 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less, with the balance being Fe and unavoidable impurities. Consists of.
  • the steel pipe 1 contains a specific component in a specific amount, has a small amount of impurities, and has high hardness and cleanliness, and thus has excellent rolling fatigue life.
  • the steel pipe 1 contains 0.4 mass% or more and 1.5 mass% or less C. That is, the steel pipe 1 is a high carbon welded steel pipe. C is the most basic element in carbon steel, and the hardness and the amount of carbide of the steel pipe greatly vary depending on the content. When the content of C is 0.4% by mass or more, the strength required for use as a mechanical component such as a bearing can be obtained. Further, when the C content is 0.6% by mass or more, the effect of obtaining the strength required for use as a mechanical component such as a bearing becomes remarkable.
  • the spheroidizing annealing treatment can impart sufficient workability to the welded portion 3.
  • P P (phosphorus) is an element that reduces the ductility and toughness of a steel pipe.
  • the P content in the steel pipe 1 is preferably 0.03 mass% or less, more preferably 0.02 mass% or less, and further preferably 0.01 mass% or less.
  • the steel pipe 1 may not contain P.
  • the P content is 0.03 mass% or less, it is possible to prevent the toughness of the former austenite grain boundary in the steel pipe 1 from increasing after quenching and to prevent the rolling fatigue resistance of the steel pipe 1 after heat treatment from decreasing. ..
  • Cu Cu (copper) is an element that improves the surface properties of the steel strip and the steel pipe obtained from the steel strip by improving the peelability of the oxide scale produced in the steel strip during hot rolling.
  • the Cu content in the steel pipe 1 is preferably 0.3 mass% or less.
  • the steel pipe 1 may not contain Cu. When the Cu content is 0.3 mass% or less, fine cracks are less likely to occur on the surface of the steel strip 2 and the steel pipe 1 obtained from the steel strip 2.
  • the steel pipe 1 is a range in which the problem of efficiently manufacturing a high carbon welded steel pipe can be solved, and in addition to the above-mentioned components, Si, Mn, Cr, S, Al, Cr, Mo, Ti, Nb, V, And B may be further included.
  • the total content of these components is preferably 7.2 mass% or less with respect to the steel pipe 1, and 6.0 mass%.
  • the content is more preferably below, and even more preferably 4.0% by mass or less.
  • Si Si silicon
  • Si is an element that delays the precipitation of carbides in the spheroidizing annealing treatment.
  • the Si content in the steel pipe 1 is preferably 2.0% by mass or less. Since the content of Si is not too large as described above, precipitation of spherical carbides is not hindered in the spheroidizing annealing treatment, and the spheroidizing annealing treatment proceeds efficiently.
  • Mn manganese Mn (manganese) suppresses the ferrite transformation of the steel in the steel pipe in the cooling process after quenching when the steel pipe is heated by quenching, and becomes a martensite-centered structure even at a relatively slow cooling rate. It is an element that enhances hardenability.
  • the Mn content in the steel pipe 1 is preferably 0.1% by mass or more and 2.0% by mass or less, and more preferably 0.5% by mass or more and 1.5% by mass or less. As described above, when the Mn content is 0.1% by mass or more, deterioration of the hardenability of the steel pipe 1 is prevented, and high-temperature generation of pearlite and upper bainite is generated in the steel of the steel pipe 1 during cooling. It is possible to prevent an object from being formed. Thereby, when the steel pipe 1 is used as a bearing, the hardness required for the bearing can be obtained. Further, when the Mn content is 2.0% by mass or less, it is possible to prevent the ferrite from being hardened and hindering the roll forming during pipe making.
  • S sulfur
  • S is an element that affects the workability and rolling fatigue life of steel pipes.
  • the S content in the steel pipe 1 is preferably 0.02 mass% or less.
  • S produces MnS-based non-metallic inclusions.
  • the generation of MnS-based non-metallic inclusions may be the starting point of fatigue fracture due to stress concentration, which may reduce the rolling fatigue life.
  • the content of S is 0.02 mass% or less, the generation of MnS-based nonmetallic inclusions can be suppressed, and the reduction of rolling contact fatigue life can be prevented.
  • the S content is 0.02 mass% or less, it is possible to suppress the generation of secondary shear planes and tongues in the slit coil end face shape before pipe making, and to form a suitable welded portion.
  • Al Al (aluminum) is an element that is used as a deoxidizing agent for molten steel and also has an action of fixing N (nitrogen).
  • the Al content in the steel pipe 1 is preferably 0.2 mass% or less, and more preferably 0.005 mass% or more and 0.05 mass% or less.
  • the content of Al is 0.005 mass% or more, the effect of fixing N becomes more remarkable.
  • the Al content is 0.2% by mass or less, the cleanliness of steel can be prevented from being impaired, and as a result, the reduction of rolling fatigue life due to fatigue fracture can be prevented. Further, it is possible to prevent the deterioration of the surface quality of the steel strip 2.
  • (Cr) Cr (chromium) is an element effective in improving hardenability.
  • the Cr content in the steel pipe 1 is preferably 5.0% by mass or less, more preferably 2.0% by mass or less, and 0.5% by mass or more and 1.6% by mass or less. It is more preferably 0.8% by mass or more and 1.5% by mass or less.
  • the Cr content is 0.2 mass% or more, the hardenability of the steel pipe 1 can be further improved.
  • the content of Cr is 5.0 mass% or less, the content of Cr is not too large, and thus it is possible to prevent the workability from being deteriorated.
  • Mo mobdenum
  • Mo mobdenum
  • the Mo content in the steel pipe 1 is preferably 0.5 mass% or less.
  • the content of Mo is not too large, i.e., 0.5% by mass or less, when the steel strip 2 is annealed, it tends to be softened, and the roll formability at the time of pipe forming can be prevented from deteriorating.
  • Nb Nb (niobium) is an element that forms very hard Nb.Ti-based carbide particles in the steel in the cooling process after casting of steel and contributes to improvement of wear resistance.
  • the Nb content in the steel pipe 1 is preferably 0.5 mass% or less.
  • Ti titanium
  • Ti titanium
  • the content of Ti in the steel pipe 1 is preferably 0.3 mass% or less.
  • V vanadium
  • vanadium is an element effective in improving the toughness of steel.
  • the V content in the steel pipe 1 is preferably 1.5 mass% or less.
  • B (boron) is an element that improves the hot workability of the steel pipe and is effective in preventing cracks during hot rolling. However, if the steel pipe contains an excessive amount of B, the hot workability is rather deteriorated. Therefore, the content of B in the steel pipe 1 is preferably 0.01% by mass or less.
  • the method for manufacturing the steel pipe 1 in the present embodiment includes a step of forming the steel strip 2 and a step of welding the ends of the steel strip 2 to each other. These steps are similar to the roll forming process and the welding process described above, respectively.
  • the steel pipe 1 includes a step of bending the steel plate or the steel strip 2 to bring the ends of the steel plate or the steel strip 2 into contact with each other, and a bond portion 4 formed by melting the end portion by heating.
  • the steel pipe for bearing according to the present embodiment includes the steel pipe 1 according to the present embodiment described above.
  • the steel pipe 1 has a high hardness and cleanliness because it contains a specific component in a specific amount and contains a small amount of impurities. Therefore, the steel pipe 1 can be suitably used as a bearing steel pipe.
  • a steel pipe according to an aspect of the present invention is a steel plate or steel strip containing C: 0.4 mass% or more and 1.5 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less.
  • the end portions are formed by welding, the end portions are welded at a welding temperature of 1200 ° C. or higher and 1700 ° C. or lower, and the width of the bond portion formed by melting the end portions by heating is: It is 0.2% or more and 1.2% or less with respect to the plate thickness of the above steel plate or steel strip.
  • the C content in the steel pipe may be 0.6% by mass or more and 1.2% by mass or less.
  • the steel pipe which concerns on 1 aspect of this invention has Si: 2.0 mass% or less, Mn: 0.1 mass% or more and 2.0 mass% or less, S: 0.02 mass% or less, and Al: 0.2 mass%. At least one of the following conditions may be further satisfied.
  • the steel pipe according to one aspect of the present invention may further satisfy at least one condition of Cr: 5.0 mass% or less and Mo: 0.5 mass% or less.
  • At least 1 of Ti 0.3 mass% or less, Nb: 0.5 mass% or less, V: 1.5 mass% or less, and B: 0.01 mass% or less. The two conditions may be further satisfied.
  • the above welding may be high frequency welding.
  • the steel pipe according to one aspect of the present invention may be formed by heating the ends and pressing each other so that the crushing amount is 20% or more and 30% or less with respect to the plate thickness.
  • the end is crushed at a corner, and the length corresponding to the crushed portion in the plate width direction of the steel plate or the steel strip is equal to the plate thickness.
  • it is 5% or more and 40% or less, and the smaller one of the angles formed by the plane including the upper surface or the lower surface of the steel plate or steel strip and the surface formed by the crushing is 20 degrees or more and 60 degrees. It may be the following.
  • the steel pipe according to one aspect of the present invention may be a round pipe, a square pipe, or a deformed pipe.
  • a bearing steel pipe according to an aspect of the present invention includes the steel pipe according to any one of the above.
  • a method for manufacturing a steel pipe according to one aspect of the present invention includes a steel sheet containing C: 0.4 mass% or more and 1.5 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less.
  • a method for manufacturing a steel pipe in which ends of steel strips are welded to each other is formed by bending the steel plate or steel strip to bring the ends into contact with each other, and by melting the ends by heating.
  • the step of welding with is
  • Hot rolling coils (steel strips) having a thickness of 6.0 mm were manufactured by heating the slabs of various steels in Table 1 to 1250 to 1300 ° C. and hot rolling. The obtained hot-rolled coils were pickled, and all steel types were annealed at 750 ° C. for 10 hours. Then, the hot rolled coil was slit in the longitudinal direction and roll-formed. After roll forming, the end faces of the hot-rolled coils facing each other were high-frequency welded at various welding temperatures (heating temperatures), crushing amounts, and upset amounts to manufacture steel pipes having a diameter of 34 mm and a thickness of 6.0 mm. The steel pipe after welding was annealed. In the annealing treatment, after soaking at 700 ° C., air cooling was performed.
  • the bond portion which is the width of the bond portion
  • the bond portion was measured at 5 locations every 100 mm, and the widest portion was defined as the maximum bond width.
  • spherical carbide area ratio In order to obtain the spherical carbide area ratio, a photograph was taken at a maximum bond width of 20 locations using a scanning electron microscope (SEM) at a magnification of 5000 times. The spherical carbide area area of the bond portion in the photograph was measured and the spherical carbide area ratio was determined by averaging the measured values of the spherical carbide area.
  • SEM scanning electron microscope
  • Table 2 shows the results of evaluating the amount of spherical carbide precipitation in steel pipes manufactured under various welding conditions in each steel type.
  • Table 2 the steel types according to the comparative examples are underlined.
  • the area ratio of the spherical carbides was 90% or more of f, and a good amount of the precipitated spherical carbides was obtained.
  • the good precipitation amount of the spherical carbide as in the example of the present invention was not obtained. The reason for this is discussed below.
  • the bond width is wide refers to the case where the bond width is wider than 72 ⁇ m, which is 1.2% of the plate thickness 6 mm of the steel strip.
  • the spherical carbide precipitation rate was less than 90%. Therefore, the precipitation amount of spherical carbide was evaluated as x.
  • the area ratio of the spherical carbide was 90% or more of f, and a good amount of the precipitated spherical carbide was obtained. That is, a bond part having good workability was obtained by the annealing treatment for 50 hours.
  • the area ratio of the spherical carbides was less than 90% of f, and sufficient precipitation of the spherical carbides could not be obtained by the annealing treatment for 50 hours. That is, it was suggested that in the steel pipe according to the comparative example, a longer annealing treatment was required in order to obtain a bond part having good workability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

A high-carbon steel pipe (1) with which it is possible to shorten the annealing time of a weld (3) is realized. The steel pipe (1) is formed by welding the edges of a steel plate or steel strip (2) containing 0.4-1.5 mass% of C, 0.03 mass% or less of P, and 0.3 mass% or less of Cu. The edges are welded at a welding temperature of 1200-1700°C, and the width of a bond part (4) is 0.2-1.2% with respect to the thickness of the steel plate or steel strip (2).

Description

鋼管、軸受用鋼管、および鋼管の製造方法Steel pipe, steel pipe for bearing, and method for manufacturing steel pipe
 本発明は、鋼管、軸受用鋼管、および鋼管の製造方法に関する。 The present invention relates to a steel pipe, a steel pipe for bearings, and a method for manufacturing a steel pipe.
 溶接鋼管は、一般的に、鋼板または鋼帯などを溶接することで製造される。例えば、特許文献1には、炭素量が0.15質量%以上0.4質量%以下である低炭素鋼板を高周波溶接した後、電縫溶接部のボンド幅が25μm以下となるよう縮径圧延により機械的に狭くした、溶接鋼管の一種である電縫溶接鋼管が開示されている。 Welded steel pipe is generally manufactured by welding steel plates or steel strips. For example, in Patent Document 1, high-frequency welding is performed on a low-carbon steel sheet having a carbon content of 0.15 mass% or more and 0.4 mass% or less, and then diameter reduction rolling is performed so that a bond width of an electric resistance welded portion is 25 μm or less. Discloses an electric resistance welded steel pipe which is a kind of welded steel pipe and is mechanically narrowed.
日本国公開特許公報「特開2013-147751号公報」Japanese Patent Laid-Open Publication "JP 2013-147751"
 高炭素鋼管において、溶接部の加工性を向上させるために焼鈍処理が施される。特許文献1には、低炭素鋼管における溶接部のボンド幅を狭くすることで、溶接部の強度低下を防ぐことが開示されている。しかしながら、高炭素鋼管における溶接部のボンド幅が、当該溶接部の加工性を向上するための焼鈍時間に与える影響については開示されていない。 ▽ High carbon steel pipe is annealed to improve the workability of the weld. Patent Document 1 discloses that a decrease in the strength of the welded portion is prevented by narrowing the bond width of the welded portion in the low carbon steel pipe. However, there is no disclosure about the influence of the bond width of the welded portion in the high carbon steel pipe on the annealing time for improving the workability of the welded portion.
 本発明の一態様は、溶接部の焼鈍時間を短縮することができる高炭素鋼管を実現することを目的とする。 One aspect of the present invention is intended to realize a high carbon steel pipe capable of shortening the annealing time of a welded portion.
 上記の課題を解決するために、本発明の一態様に係る鋼管は、C:0.4質量%以上1.5質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含む鋼板または鋼帯の端部を溶接することにより形成され、上記端部同士は、1200℃以上1700℃以下の溶接温度で溶接されており、加熱によって上記端部が溶融することで形成されるボンド部の幅は、上記鋼板または鋼帯の板厚に対し0.2%以上1.2%以下であることを特徴とする。 In order to solve the above-mentioned subject, the steel pipe which concerns on one aspect of this invention has C: 0.4 mass% or more and 1.5 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass. % Steel plate or steel strip containing less than or equal to 1%, the ends are welded at a welding temperature of 1200 ° C. or higher and 1700 ° C. or lower, and the ends are melted by heating. The width of the formed bond portion is 0.2% or more and 1.2% or less with respect to the plate thickness of the steel plate or steel strip.
 上記の課題を解決するために、本発明の一態様に係る鋼管の製造方法は、C:0.4質量%以上1.5質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含む、鋼板または鋼帯の端部同士が溶接された鋼管の製造方法であって、上記鋼板または鋼帯を曲げて上記端部同士を接触させる工程と、加熱によって上記端部が溶融することで形成されるボンド部の幅が、上記鋼板または鋼帯の板厚に対し0.2%以上1.2%以下となるように、上記端部同士を互いに押圧した状態で、1200℃以上1700℃以下の温度で溶接する工程と、を含むことを特徴とする。 In order to solve the above-mentioned subject, a manufacturing method of a steel pipe concerning one mode of the present invention is C: 0.4 mass% or more and 1.5 mass% or less, P: 0.03 mass% or less, and Cu: 0. A method for producing a steel pipe, in which the ends of steel sheets or steel strips are welded to each other, containing 3 mass% or less, the step of bending the steel sheet or steel strips to bring the ends into contact with each other, and heating the ends. In the state where the end portions are pressed against each other such that the width of the bond portion formed by melting the portion is 0.2% or more and 1.2% or less of the plate thickness of the steel plate or the steel strip. And a step of welding at a temperature of 1200 ° C. or more and 1700 ° C. or less.
 本発明の一態様によれば、溶接部の焼鈍時間を短縮することができる高炭素鋼管を実現することができる。 According to one aspect of the present invention, it is possible to realize a high carbon steel pipe capable of shortening the annealing time of the welded portion.
本発明の一実施形態に係る鋼管の溶接部を示す模式図である。It is a schematic diagram which shows the welding part of the steel pipe which concerns on one Embodiment of this invention. 本発明の一実施形態に係る鋼管の溶接部を示す写真を表す図である。It is a figure showing the photograph which shows the welding part of the steel pipe which concerns on one Embodiment of this invention. (a)~(d)はそれぞれ、鋼管1の断面形状を示す断面図である。(A)-(d) is sectional drawing which shows the cross-sectional shape of the steel pipe 1, respectively. 本発明の一実施形態に係る鋼管のクラッシング幅およびクラッシング角度を示す模式図である。It is a schematic diagram which shows the crushing width and crushing angle of the steel pipe which concerns on one Embodiment of this invention. (a)および(b)は、本発明の一実施形態に係る鋼管のアプセット量を示す模式図である。(A) And (b) is a schematic diagram which shows the upset amount of the steel pipe which concerns on one Embodiment of this invention.
 以下、本発明の一実施形態について、図1および図2を参照して詳細に説明する。以下では、本発明における溶接方法の一例として電縫溶接を挙げて説明するが、本発明における溶接方法は、電縫溶接に限定されず、鋼管のシーム部を加熱することにより溶接接合する方法であればよい。 An embodiment of the present invention will be described in detail below with reference to FIGS. 1 and 2. Hereinafter, although description will be given by taking electric resistance welding as an example of the welding method in the present invention, the welding method in the present invention is not limited to electric resistance welding and is a method of welding and joining by heating the seam portion of the steel pipe. I wish I had it.
 <鋼管1>
 図1は、本実施形態に係る鋼管1の溶接部3を示す模式図である。鋼管1は、C:0.4質量%以上1.5質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含む鋼板または鋼帯の端部を溶接することにより形成されている。上記端部同士は、1200℃以上1700℃以下の溶接温度で溶接されており、加熱によって上記端部が溶融することで形成されるボンド部4の幅は、上記鋼板または鋼帯の板厚に対し0.2%以上1.2%以下である。
<Steel pipe 1>
FIG. 1 is a schematic diagram showing a welded portion 3 of a steel pipe 1 according to this embodiment. The steel pipe 1 welds the edge part of the steel plate or steel strip containing C: 0.4 mass% or more and 1.5 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less. It is formed by. The ends are welded to each other at a welding temperature of 1200 ° C. or higher and 1700 ° C. or lower, and the width of the bond portion 4 formed by melting the ends by heating is equal to the plate thickness of the steel plate or the steel strip. On the other hand, it is 0.2% or more and 1.2% or less.
 図1に示すように、溶接部3は、鋼帯2が溶接されている部分であり、例えば、溶接ビード部である。なお、鋼帯2は鋼板であってもよい。 As shown in FIG. 1, the welded portion 3 is a portion where the steel strip 2 is welded, for example, a weld bead portion. The steel strip 2 may be a steel plate.
 溶接部3には、ボンド部4および熱影響部5が形成される。ボンド部4は、溶接部3において、2つの熱影響部5の間に形成される。電縫溶接時において、電縫溶接部は固液共存域まで加熱される。これにより、電縫溶接部外に含まれるCは液相では濃化し、固相では減少する。Cが濃化された上記液相は、鋼帯2の端部同士の押圧(アプセット)により電縫溶接部の外側に排出され、ビードを形成する。一方、Cが減少した上記固相は溶接部3に残存し、当該固相によってボンド部4が形成される。また、熱影響部5は、電縫溶接時の熱によって、上記端部における金属組織が変化した領域であって、ボンド部4以外の領域である。 A bond 4 and a heat-affected zone 5 are formed in the weld 3. The bond part 4 is formed between the two heat-affected parts 5 in the weld part 3. During electric resistance welding, the electric resistance welded portion is heated to a solid-liquid coexisting region. As a result, C contained outside the electric resistance weld is concentrated in the liquid phase and decreased in the solid phase. The liquid phase enriched with C is discharged to the outside of the electric resistance welded portion by pressing (upsetting) the ends of the steel strip 2 to form a bead. On the other hand, the solid phase with reduced C remains in the welded portion 3 and the solid phase forms the bond portion 4. Further, the heat-affected zone 5 is an area in which the metallographic structure at the end portion is changed by heat during electric resistance welding, and is an area other than the bond portion 4.
 溶接部3は、加工性を向上させるために、後述する球状化焼鈍処理が施されることが好ましい。溶接部3において、熱影響部5は、溶接時の加熱によって、未溶解炭化物およびマルテンサイトが混在した組織となる。一方、ボンド部4は、溶接時の加熱によって熱影響部5よりも高温となるため、上記未溶解炭化物が含まれないマルテンサイトのみの組織となる。したがって、溶接部3に球状化焼鈍を施した場合、熱影響部5は上記未溶解炭化物を核として炭化物が成長することから短時間で球状化焼鈍が終了するが、ボンド部4は上記未溶解炭化物が含まれない。そのため、ボンド部4では、まずボンド部4内部に炭化物が析出した後に、当該炭化物が成長する。 The welded portion 3 is preferably subjected to a spheroidizing annealing treatment described later in order to improve workability. In the welded portion 3, the heat-affected zone 5 has a structure in which undissolved carbide and martensite are mixed due to heating during welding. On the other hand, the bond portion 4 is heated to a temperature higher than that of the heat-affected zone 5 due to heating during welding, and thus has a structure of only martensite containing no undissolved carbide. Therefore, when the welded portion 3 is subjected to spheroidizing annealing, the heat-affected zone 5 finishes spheroidizing annealing in a short time because the carbide grows with the undissolved carbide as the nucleus, but the bond portion 4 does not undergo the undissolved annealing. Carbides are not included. Therefore, in the bond part 4, after the carbide is first deposited inside the bond part 4, the carbide grows.
 その結果、ボンド部4は熱影響部5よりも長時間の球状化焼鈍が施される必要がある。また、ボンド部4の幅が広いほど、更に長時間の球状化焼鈍が施される必要がある。すなわち、ボンド部4の幅を狭くすることで、溶接部3への球状化焼鈍に必要な時間を短くすることができる。 As a result, the bond part 4 needs to be annealed for a longer time than the heat-affected part 5. Further, the wider the bond portion 4 is, the longer the spheroidizing annealing needs to be performed. That is, by reducing the width of the bond portion 4, it is possible to shorten the time required for the spheroidizing annealing of the weld portion 3.
 図2は、鋼管1の溶接部3を示す写真を表す図である。図2に示すように、鋼管1は、ボンド部4の幅が、鋼帯2の板厚に対し0.2%以上1.2%以下となるように形成される。このようなボンド部4の幅を実現するには、溶接温度が1200℃以上1700℃以下であることが好ましい。このように、ボンド部4の幅が前記板厚に対し1.2%以下であれば、溶接後の球状化焼鈍時間は、比較的短時間にすることができる。また、ボンド部4の幅が0(ゼロ)であった場合、溶接が適切に行われたか判断できなくなるため、ボンド部4の幅は、前記板厚に対し0.2%以上であることが好ましい。 FIG. 2 is a view showing a photograph showing the welded portion 3 of the steel pipe 1. As shown in FIG. 2, the steel pipe 1 is formed such that the width of the bond portion 4 is 0.2% or more and 1.2% or less of the plate thickness of the steel strip 2. In order to realize such a width of the bond portion 4, the welding temperature is preferably 1200 ° C. or higher and 1700 ° C. or lower. Thus, if the width of the bond portion 4 is 1.2% or less of the plate thickness, the spheroidizing annealing time after welding can be made relatively short. Further, when the width of the bond portion 4 is 0 (zero), it is impossible to determine whether the welding is properly performed. Therefore, the width of the bond portion 4 is 0.2% or more of the plate thickness. preferable.
 また、鋼管1は、上述のように特定の成分を特定の量だけ含むことにより、転動疲労寿命にも優れる。ここで、「転動疲労寿命」とは、鋼管1を用いた軸受が転がり運動することによって、鋼管1の母材および溶接部3において表面剥離が発生するまでの期間のことをいう。 Also, the steel pipe 1 is excellent in rolling contact fatigue life because it contains a specific component in a specific amount as described above. Here, the "rolling fatigue life" refers to a period until surface peeling occurs in the base material of the steel pipe 1 and the welded portion 3 due to rolling movement of the bearing using the steel pipe 1.
 また、「転動疲労寿命に優れる」とは、上記期間が、従来から高炭素鋼管として多用されるシームレス鋼管と同等に長いことをいう。転動疲労寿命は、例えば、溶接された鋼管を切り開いて板状に加工した後に、スラスト型転動疲労試験により母材および溶接部3において表面剥離が発生するまでの期間を測定することによって求めることができる。 Also, "excellent in rolling contact fatigue life" means that the above-mentioned period is as long as that of seamless steel pipe that has been frequently used as high carbon steel pipe. The rolling fatigue life is obtained by, for example, cutting a welded steel pipe and processing it into a plate shape, and then measuring the period until surface peeling occurs in the base material and the welded portion 3 by a thrust type rolling fatigue test. be able to.
 また、鋼管1に硫化物および酸素などの非金属介在物が含まれていてもよい。ただし、非金属介在物のうち、硫化物、なかでもMnSが鋼管表面に凝集および析出することで、非金属介在物を起点とする割れおよび表面傷の原因となり、結果的に転動疲労寿命を低減する虞がある。 Also, the steel pipe 1 may contain non-metallic inclusions such as sulfide and oxygen. However, among the non-metallic inclusions, sulfides, especially MnS, aggregate and precipitate on the surface of the steel pipe, causing cracks and surface scratches originating from the non-metallic inclusions, resulting in a rolling fatigue life. It may decrease.
 また、転がり軸受の転動体と接触する表面部に、MnSなどの硫化物が存在する場合は、その部分の大幅な旋削加工が必要となり、製造コストが増加する虞がある。そのため、硫化物などの非金属介在物の粒径は、20μm以下であることが好ましく、10μm以下であることがより好ましい。鋼管1における非金属介在物の粒径が上述の好ましい範囲のように小さいことで、特に当該非金属介在物が硫化物である場合には、転動疲労寿命の低減および製造コストの増加を防止することができる。 Also, if sulfides such as MnS are present on the surface of the rolling bearing that comes into contact with the rolling elements, a large amount of turning is required at that part, which may increase the manufacturing cost. Therefore, the particle size of non-metallic inclusions such as sulfides is preferably 20 μm or less, and more preferably 10 μm or less. Since the particle size of the non-metallic inclusions in the steel pipe 1 is as small as the above-mentioned preferable range, reduction of rolling fatigue life and increase of manufacturing cost are prevented especially when the non-metallic inclusions are sulfides. can do.
 また、鋼管1が非金属介在物として酸素を含む場合、鋼管1における酸素の含有量は20ppm以下であることが好ましく、15ppm以下であることがより好ましい。鋼管1における酸素の含有量が上述の好ましい範囲であることで、より清浄度の高い鋼管1を得ることができる。その結果、転動疲労寿命により優れた鋼管1を得ることができる。 Further, when the steel pipe 1 contains oxygen as a non-metallic inclusion, the oxygen content in the steel pipe 1 is preferably 20 ppm or less, and more preferably 15 ppm or less. When the oxygen content in the steel pipe 1 is within the above-mentioned preferable range, the steel pipe 1 having higher cleanliness can be obtained. As a result, the steel pipe 1 having a better rolling fatigue life can be obtained.
 鋼管1の直径は、直径15mm以上300mm以下であることが好ましい。また、鋼管1を形成するために用いられる鋼板または鋼帯の厚さは、2mm以上10mm以下であることが好ましい。鋼管1の直径および上記鋼板または鋼帯の厚さが上述の好ましい範囲であることにより、特殊な製造条件を必要とせずに鋼管1を製造することができる。 The diameter of the steel pipe 1 is preferably 15 mm or more and 300 mm or less. Further, the thickness of the steel plate or the steel strip used to form the steel pipe 1 is preferably 2 mm or more and 10 mm or less. Since the diameter of the steel pipe 1 and the thickness of the steel plate or the steel strip are in the above-described preferable ranges, the steel pipe 1 can be manufactured without requiring special manufacturing conditions.
 図3の(a)~(d)はそれぞれ、鋼管1の断面形状を示す断面図である。図3の(a)に示すように、鋼管1は、鋼管1の延伸方向に垂直な断面の断面形状が略円形である丸管であってもよい。また、図3の(b)に示すように、鋼管1は、上記断面形状が略矩形である角管であってもよい。また、上記断面形状が略円形・略矩形以外である異形管であってもよい。なお、上記異形管の上記断面形状として、例えば、図3の(c)に示すような半円形、または図3の(d)に示すような鼓形等が挙げられる。 3A to 3D are cross-sectional views showing the cross-sectional shape of the steel pipe 1. As shown in (a) of FIG. 3, the steel pipe 1 may be a round pipe having a substantially circular cross-sectional shape in a cross section perpendicular to the drawing direction of the steel pipe 1. Further, as shown in FIG. 3B, the steel pipe 1 may be a rectangular pipe having the above-mentioned cross-sectional shape of a substantially rectangular shape. Further, it may be a deformed tube whose cross-sectional shape is other than substantially circular or rectangular. The cross-sectional shape of the deformed tube may be, for example, a semicircular shape as shown in FIG. 3C or a drum shape as shown in FIG. 3D.
 〔鋼帯2〕
 鋼帯2は、鋼管1の素形材として好適に用いられる。鋼帯2は、ロール成形を施されることで管状に形成され、溶接、焼入処理、焼戻処理および球状化焼鈍を施されることで、鋼管1となる。
[Steel strip 2]
The steel strip 2 is preferably used as a raw material for the steel pipe 1. The steel strip 2 is formed into a tubular shape by being subjected to roll forming, and becomes the steel pipe 1 by being subjected to welding, quenching treatment, tempering treatment and spheroidizing annealing.
 ここで、溶接部3が存在しない鋼管であるシームレス鋼管は、母材である棒鋼の中心偏析の影響により、鋼管外面側と内面側とで非金属介在物の量および大きさに差異が生じる。外面側の非金属介在物は微細かつ微量であるが、内面側では非金属介在物は多量に存在するとともに内表面に露出している。 Here, in a seamless steel pipe that is a steel pipe having no welded portion 3, the amount and size of non-metallic inclusions on the outer surface side and the inner surface side of the steel pipe differ due to the effect of center segregation of the steel bar that is the base material. The non-metallic inclusions on the outer surface side are fine and minute, but a large amount of the non-metallic inclusions are present on the inner surface and are exposed on the inner surface.
 そのため、シームレス鋼管を軸受に用いた場合、転がり軸受の外輪はシームレス鋼管の内表面を使用することとなるが、内表面に多量に存在する非金属介在物は転動疲労寿命に大きな影響を及ぼす。このことから、転動疲労寿命を長くするには、軸受シームレス鋼管の内表面の、転動体と接触する部分を大幅に旋削加工する必要があり、加工コストが高くなる。 Therefore, when a seamless steel pipe is used for the bearing, the outer ring of the rolling bearing uses the inner surface of the seamless steel pipe, but the large amount of non-metallic inclusions on the inner surface has a great influence on the rolling fatigue life. .. From this, in order to prolong the rolling fatigue life, it is necessary to largely perform the turning process on the inner surface of the bearing seamless steel pipe, which is in contact with the rolling elements, which increases the processing cost.
 これに対し、鋼管1、すなわち、鋼帯2が溶接された電縫鋼管などの溶接鋼管は、シームレス鋼管と異なり、非金属介在物の多くが鋼帯の内部に存在し、表裏面にほとんど存在しない。そのため、素形材として鋼帯を用いた溶接鋼管は、シームレス鋼管に比べて、内面側における清浄度が高く、鋼管における内面と外面との清浄度の差を小さくすることができる。 On the other hand, the steel pipe 1, that is, the welded steel pipe such as the electric resistance welded steel pipe to which the steel strip 2 is welded, unlike the seamless steel pipe, has many non-metallic inclusions inside the steel strip and almost all on the front and back surfaces. do not do. Therefore, the welded steel pipe using a steel strip as a base material has a higher cleanness on the inner surface side than the seamless steel pipe, and the difference in cleanness between the inner surface and the outer surface of the steel pipe can be reduced.
 以上のことから、鋼管1は、内面側の清浄度が高いため、部品形状に加工する際の切削量を低減しながら、シームレス鋼管と同程度の優れた転動疲労寿命を得ることができる。 From the above, since the steel pipe 1 has a high degree of cleanliness on the inner surface side, it is possible to obtain a rolling fatigue life equivalent to that of a seamless steel pipe while reducing the amount of cutting when processing into a part shape.
 また、鋼管1は、鋼帯2を溶接することで得られるため、棒材を穿孔して鋼管を製造する場合に比べて、鋼管を容易に大量生産することができる。 Further, since the steel pipe 1 is obtained by welding the steel strip 2, it is possible to easily mass-produce the steel pipe, as compared with the case of manufacturing the steel pipe by punching a bar material.
 なお、鋼帯2とは、鋼板のなかでも、例えば、厚さ10mm以下のコイル状のものをいう。本実施形態では、鋼帯2および鋼板のいずれも本実施形態の素形材として使用できるが、鋼帯2を用いて鋼管1を製造することが好ましい。鋼板よりも薄く、後述するロール成形性に優れる鋼帯2を用いることで、生産性が向上する。これにより、鋼管1をより効率的に製造することができる。なお、鋼帯2は、例えば鋼を熱間圧延することによって得ることができる。 Note that the steel strip 2 refers to, among steel plates, a coil-shaped product having a thickness of 10 mm or less, for example. In the present embodiment, either the steel strip 2 or the steel plate can be used as the raw material of the present embodiment, but it is preferable to manufacture the steel pipe 1 using the steel strip 2. The productivity is improved by using the steel strip 2 which is thinner than the steel plate and has excellent roll formability described later. Thereby, the steel pipe 1 can be manufactured more efficiently. The steel strip 2 can be obtained, for example, by hot rolling steel.
 (ロール成形)
 本実施形態におけるロール成形では、ローラーの間に鋼帯2を通すことで鋼帯2を管状に成形加工する。ここで、上記鋼板よりも鋼帯2を素形材として用いたほうがロール成形しやすくなるため、ロール成形前に鋼に熱間圧延などを施すことでコイル状の鋼帯2にすることが好ましい。また、鋼帯2をロール成形する前に、酸で洗浄したり、600℃以上800℃以下、1時間以上50時間以下の条件で焼鈍したりしてもよい。これによって、よりロール成形しやすくなる。
(Roll forming)
In the roll forming in this embodiment, the steel strip 2 is formed into a tubular shape by passing the steel strip 2 between the rollers. Here, since the roll forming is easier when the steel strip 2 is used as the base material than the above steel plate, it is preferable to form the coiled steel strip 2 by hot rolling the steel before the roll forming. .. Further, before the steel strip 2 is roll-formed, it may be washed with an acid or annealed under the conditions of 600 ° C. or higher and 800 ° C. or lower and 1 hour or longer and 50 hours or shorter. This facilitates roll forming.
 (クラッシング)
 上記ロール成形によって管状に成形加工された鋼帯2の端部同士は、溶接部3の形状および強度を調節するために、上記端部における管の内側に位置する角の部分がクラッシングロールによって押し潰される(以下、「クラッシング」)。クラッシングの幅および角度を適切に設定することにより、後述する突き合わせ溶接において、強度低下の少ない健全な溶接部3を得ることができる。
(Crushing)
In order to adjust the shape and strength of the welded portion 3 between the ends of the steel strip 2 formed into a tubular shape by the roll forming, the corner portions located inside the pipe at the ends are formed by a crushing roll. It is crushed (hereinafter, "crushing"). By properly setting the width and angle of the crushing, it is possible to obtain a sound welded portion 3 with little strength reduction in butt welding described later.
 図4は、本実施形態に係る鋼管1のクラッシング幅Cおよびクラッシング角度θを示す模式図である。図4に示すように、上記クラッシングの幅(クラッシング幅C)は、鋼帯2の板厚に対し5%以上40%以下の幅となることが好ましい。なお、クラッシング幅Cとは、鋼管1の長手方向に沿う方向を鋼帯2の長手方向としたときの、鋼帯2の板幅方向における、鋼帯2の角部が押し潰された部分に対応する長さを意味する。 FIG. 4 is a schematic diagram showing the crushing width C and the crushing angle θ of the steel pipe 1 according to the present embodiment. As shown in FIG. 4, the width of the crushing (crushing width C) is preferably 5% or more and 40% or less of the plate thickness of the steel strip 2. The crushing width C is a portion in which the corners of the steel strip 2 are crushed in the plate width direction of the steel strip 2 when the longitudinal direction of the steel pipe 1 is the longitudinal direction of the steel strip 2. Means the length corresponding to.
 クラッシング角度θは、鋼帯2の下面2A(または上面)を含む平面と、クラッシングによって形成された面2Bとがなす角度のうちの小さい方の角度を意味する。クラッシング角度θは、20度以上60度以内であることが好ましく、45度が最も好ましい。 The crushing angle θ means the smaller one of the angles formed by the plane including the lower surface 2A (or the upper surface) of the steel strip 2 and the surface 2B formed by the crushing. The crushing angle θ is preferably 20 degrees or more and 60 degrees or less, and most preferably 45 degrees.
 クラッシング幅Cが小さい場合、またはクラッシング角度θが小さい場合、溶接時に生じる溶融金属が、鋼帯2の溶接される端部同士の境界部分から排出される量(溶融メタル排出量)が少なくなる。そのため、ボンド部4において幅が広い部分が形成されてしまい、当該幅が広い部分において長時間の焼鈍処理が必要となる。また、クラッシング幅Cが広い場合、またはクラッシング角度θが大きい場合、鋼帯2の溶接される端部の面積が少なくなるため、溶接部3の強度が低下する。 When the crushing width C is small or when the crushing angle θ is small, the amount of molten metal generated during welding is discharged from the boundary between the welded ends of the steel strip 2 (molten metal discharge amount) is small. Become. Therefore, a wide portion is formed in the bond portion 4, and a long-time annealing process is required in the wide portion. Further, when the crushing width C is large or the crushing angle θ is large, the area of the welded end of the steel strip 2 is reduced, so that the strength of the welded portion 3 is reduced.
 一方、クラッシング幅Cが上記板厚に対し5%以上40%以下の幅である場合、上記溶接部3の温度に斑が生じず、形成されるボンド部4の幅を一定にすることができる。そのため、ボンド部4の一部が広いことによる、長時間の焼鈍処理が必要ない。 On the other hand, when the crushing width C is 5% or more and 40% or less of the plate thickness, the temperature of the welded portion 3 does not vary, and the width of the bond portion 4 to be formed may be constant. it can. Therefore, long-time annealing treatment is not required due to the large part of the bond portion 4.
 (溶接)
 本実施形態における溶接では、上記クラッシングが施された鋼帯2の端部同士を突き合わせ溶接する。これにより、鋼管1が得られる。
(welding)
In the welding of the present embodiment, the ends of the crushed steel strip 2 are butt-welded together. Thereby, the steel pipe 1 is obtained.
 図5の(a)および(b)は、本実施形態に係る鋼管1のアプセット量を示す模式図である。上記突き合わせ溶接において、上記端部同士は互いに押圧されて突き合わされる。このとき、図5の(a)に示すように、溶接される前の鋼帯2の一方の端部から板幅方向に所定の距離Xだけ離れた点をP1とし、鋼帯2の他方の端部から板幅方向に所定の距離Yだけ離れた点をP2とする。この場合に、図5の(b)に示すように、上記端部が互いに押圧されて突き合わせて溶接されると、溶接後のP1とP2との間の距離Zは、距離Xと距離Yとを足し合わせた長さよりも短くなる。このように、上記端部が互いに押圧される方向(換言すれば、板幅方向)における、その押圧によって短くなった当該端部の長さ(X+Y-Z)のことを、アプセット量という。 (A) and (b) of FIG. 5 are schematic diagrams showing the upset amount of the steel pipe 1 according to the present embodiment. In the butt welding, the ends are pressed against each other and abutted against each other. At this time, as shown in (a) of FIG. 5, a point separated by a predetermined distance X in the plate width direction from one end of the steel strip 2 before being welded is P1, and the other end of the steel strip 2 is A point separated from the end by a predetermined distance Y in the plate width direction is P2. In this case, as shown in FIG. 5B, when the ends are pressed against each other and butt welded, the distance Z between the welded P1 and P2 is the distance X and the distance Y. Will be shorter than the total length. In this way, the length (X + Y−Z) of the end portion shortened by the pressing in the direction in which the end portions are pressed against each other (in other words, the plate width direction) is referred to as the upset amount.
 各端部のアプセット量は、鋼帯2の板厚に対して20%以上30%以下であることが好ましい。アプセット量が上記板厚の20%未満である場合、溶融メタル排出量が低減する。そのため、ボンド部4に残存する上記溶融金属の量が増大し、結果としてボンド部4の幅が広がる。また、アプセット量が上記板厚の30%より大きい場合、上記端部が過度に押し潰されてしまう。 The upset amount at each end is preferably 20% or more and 30% or less with respect to the plate thickness of the steel strip 2. When the upset amount is less than 20% of the plate thickness, the molten metal discharge amount is reduced. Therefore, the amount of the molten metal remaining in the bond portion 4 increases, and as a result, the width of the bond portion 4 increases. Moreover, when the upset amount is larger than 30% of the plate thickness, the end portion is excessively crushed.
 上記のように、鋼帯2の板厚に対して20%以上30%以下であるアプセット量によれば、ボンド部4の幅を狭くするために十分な溶融メタル排出量が得られる。 As described above, according to the upset amount that is 20% or more and 30% or less with respect to the plate thickness of the steel strip 2, a sufficient molten metal discharge amount for narrowing the width of the bond portion 4 can be obtained.
 本実施形態における溶接の方法としては、例えば、抵抗溶接、レーザービーム溶接および電子ビーム溶接などの高密度エネルギー溶接を挙げることができるが、抵抗溶接が好ましく、抵抗溶接のなかでも高周波溶接(高周波抵抗溶接)が好ましい。高周波溶接とは、溶接継手に加圧力を与えながら高周波電流による抵抗熱で接合を行う抵抗溶接である。本実施形態において、高周波接触抵抗溶接を用いてもよいし、高周波誘導抵抗溶接を用いてもよい。鋼帯2を高周波溶接によって溶接することで、効率的かつ低コストで鋼帯2を溶接することができる。 Examples of the welding method in the present embodiment include high-density energy welding such as resistance welding, laser beam welding, and electron beam welding. However, resistance welding is preferable, and high-frequency welding (high-frequency resistance) among resistance welding is preferable. Welding) is preferred. High-frequency welding is resistance welding in which welding is performed by resistance heat generated by high-frequency current while applying pressure to the welded joint. In the present embodiment, high frequency contact resistance welding or high frequency induction resistance welding may be used. By welding the steel strip 2 by high frequency welding, the steel strip 2 can be welded efficiently and at low cost.
 また、溶接温度は1200℃以上1700℃以下で行うことが好ましい。溶接温度が高すぎると、溶接時に生じる溶融金属の量が増加するため、ボンド部4の幅が広くなってしまう。また、溶接温度が1200℃以下の場合、上記溶融金属の量が少なくなり、溶接部3の一部に溶接されていない部分が生じてしまう。上記のような溶接温度であれば、ボンド部4の幅が鋼帯2の板厚に対し0.2%以上1.2%以下となるように溶接することができる。 Also, the welding temperature is preferably 1200 ° C or higher and 1700 ° C or lower. If the welding temperature is too high, the amount of molten metal produced during welding increases, and the width of the bond portion 4 becomes wider. Further, when the welding temperature is 1200 ° C. or lower, the amount of the molten metal becomes small, and a part of the welded portion 3 which is not welded is generated. With the welding temperature as described above, welding can be performed such that the width of the bond portion 4 is 0.2% or more and 1.2% or less of the plate thickness of the steel strip 2.
 また、上記溶接は、1枚の鋼帯2または鋼板の端部同士を溶接して鋼管を形成するものであってもよく、2枚以上の鋼帯2または鋼板の端部同士を継ぎ合わせるものであってもよい。 Moreover, the said welding may weld the edge parts of one steel strip 2 or a steel plate, and may form a steel pipe, and may join the edge parts of two or more steel strips 2 or steel plates. May be
 (焼入れ・焼戻し)
 鋼管1には、溶接の後、焼入処理および焼戻処理が施されている。これにより、溶接部3の溶接割れを防止することができる。
(Quenching and tempering)
After welding, the steel pipe 1 is subjected to quenching treatment and tempering treatment. Thereby, weld cracking of the welded portion 3 can be prevented.
 (球状化焼鈍処理)
 上述したように、ボンド部4の金属組織は硬質なマルテンサイトとなることがある。そのため、溶接部3の加工性が低下する。上記加工性の低下を改善するために行われる焼鈍処理として、例えば、球状化焼鈍処理が行われることが好ましい。球状化焼鈍処理とは、高炭素鋼中に含まれる炭化物が球状化して析出されるように、高炭素鋼をA1変態点付近の温度により焼鈍処理することである。球状化焼鈍処理を行うことで、高炭素鋼が柔らかくなり加工性が向上する。
(Spheroidizing annealing)
As described above, the metal structure of the bond portion 4 may be hard martensite. Therefore, the workability of the welded portion 3 is reduced. As the annealing treatment performed to improve the deterioration of the workability, for example, spheroidizing annealing treatment is preferably performed. The spheroidizing annealing treatment means annealing the high carbon steel at a temperature near the A1 transformation point so that the carbide contained in the high carbon steel is spheroidized and precipitated. By performing the spheroidizing annealing treatment, the high carbon steel becomes soft and the workability is improved.
 ボンド部4は、球状化焼鈍処理によってマルテンサイト組織を球状炭化物が分散したフェライト組織に変態させることができる。この結果、ボンド部4の加工性が向上する。 The bond part 4 can transform the martensite structure into a ferrite structure in which spherical carbides are dispersed by a spheroidizing annealing treatment. As a result, the workability of the bond portion 4 is improved.
 以上のような方法によれば、縮径圧延工程を施す必要なく、ボンド部4の幅が鋼帯2の板厚に対し0.2%以上1.2%以下となる溶接部3を備える鋼管1を製造することができる。 According to the method as described above, the steel pipe provided with the welded portion 3 in which the width of the bond portion 4 is 0.2% or more and 1.2% or less of the plate thickness of the steel strip 2 without having to perform the diameter reduction rolling step. 1 can be manufactured.
 〔鋼管1に含まれる成分〕
 鋼管1は、C(炭素):0.4質量%以上1.5質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含み、残部がFeおよび不可避的不純物からなる。鋼管1は、特定の成分を特定の量だけ含み、不純物の含有量が少ないため、硬度および清浄度が高いため、転動疲労寿命に優れる。
[Components contained in steel pipe 1]
The steel pipe 1 contains C (carbon): 0.4 mass% or more and 1.5 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less, with the balance being Fe and unavoidable impurities. Consists of. The steel pipe 1 contains a specific component in a specific amount, has a small amount of impurities, and has high hardness and cleanliness, and thus has excellent rolling fatigue life.
 (C)
 鋼管1は0.4質量%以上1.5質量%以下のCを含む。すなわち、鋼管1は高炭素溶接鋼管である。Cは、炭素鋼において最も基本となる元素であり、含有量によって鋼管の硬さおよび炭化物量が大きく変動する。Cの含有量が0.4質量%以上であることにより、軸受などの機械部品として使用するために必要な強度を得ることができる。また、Cの含有量が0.6質量%以上であることにより、軸受などの機械部品として使用するために必要な強度を得る効果が顕著になる。
(C)
The steel pipe 1 contains 0.4 mass% or more and 1.5 mass% or less C. That is, the steel pipe 1 is a high carbon welded steel pipe. C is the most basic element in carbon steel, and the hardness and the amount of carbide of the steel pipe greatly vary depending on the content. When the content of C is 0.4% by mass or more, the strength required for use as a mechanical component such as a bearing can be obtained. Further, when the C content is 0.6% by mass or more, the effect of obtaining the strength required for use as a mechanical component such as a bearing becomes remarkable.
 また、Cの含有量が1.5質量%以下であることにより、球状化焼鈍処理によって球状炭化物を形成しない炭化物の析出が抑制できる。そのため、球状化焼鈍処理によって、溶接部3に十分な加工性を付与することができる。 Further, when the content of C is 1.5 mass% or less, the precipitation of carbides that do not form spherical carbides by the spheroidizing annealing treatment can be suppressed. Therefore, the spheroidizing annealing treatment can impart sufficient workability to the welded portion 3.
 (P)
 P(リン)は鋼管の延性および靱性を低下させる元素である。鋼管1におけるPの含有量は、0.03質量%以下であることが好ましく、0.02質量%以下であることがより好ましく、0.01質量%以下であることがさらに好ましい。鋼管1には、Pが含まれていなくてもよい。Pの含有量が0.03質量%以下であることにより、焼入後に鋼管1における旧オーステナイト粒界の靭性が高まり、熱処理後の鋼管1の転動疲労性が低下するのを防ぐことができる。
(P)
P (phosphorus) is an element that reduces the ductility and toughness of a steel pipe. The P content in the steel pipe 1 is preferably 0.03 mass% or less, more preferably 0.02 mass% or less, and further preferably 0.01 mass% or less. The steel pipe 1 may not contain P. When the P content is 0.03 mass% or less, it is possible to prevent the toughness of the former austenite grain boundary in the steel pipe 1 from increasing after quenching and to prevent the rolling fatigue resistance of the steel pipe 1 after heat treatment from decreasing. ..
 (Cu)
 Cu(銅)は、熱間圧延中に鋼帯に生成する酸化スケールの剥離性を向上させることで、鋼帯および鋼帯から得られる鋼管の表面性状を改善する元素である。鋼管1におけるCuの含有量は、0.3質量%以下であることが好ましい。鋼管1には、Cuが含まれていなくてもよい。Cuの含有量が0.3質量%以下であることで、鋼帯2および鋼帯2から得られる鋼管1の表面に微細なクラックが生じにくくなる。
(Cu)
Cu (copper) is an element that improves the surface properties of the steel strip and the steel pipe obtained from the steel strip by improving the peelability of the oxide scale produced in the steel strip during hot rolling. The Cu content in the steel pipe 1 is preferably 0.3 mass% or less. The steel pipe 1 may not contain Cu. When the Cu content is 0.3 mass% or less, fine cracks are less likely to occur on the surface of the steel strip 2 and the steel pipe 1 obtained from the steel strip 2.
 〔鋼管に含まれ得るその他の成分〕
 また、鋼管1は、高炭素の溶接鋼管を効率的に製造するという課題を解決できる範囲で、上述の成分以外にSi、Mn、Cr、S、Al、Cr、Mo、Ti,Nb,V,およびBのうちの少なくとも1つをさらに含んでいてもよい。ここで、P、Mo、S、およびAlの少なくともいずれかを含む場合、これらの成分の含有量の総量は鋼管1に対して7.2質量%以下とすることが好ましく、6.0質量%以下とすることがより好ましく、4.0質量%以下とすることがさらに好ましい。上述の好ましい範囲にあることにより、鋼管1に含まれる不純物を少なし、鋼管1の清浄度をより高めることができる。その結果、転動疲労寿命により優れた鋼管1を得ることができる。
[Other components that can be contained in the steel pipe]
Further, the steel pipe 1 is a range in which the problem of efficiently manufacturing a high carbon welded steel pipe can be solved, and in addition to the above-mentioned components, Si, Mn, Cr, S, Al, Cr, Mo, Ti, Nb, V, And B may be further included. Here, when at least one of P, Mo, S, and Al is contained, the total content of these components is preferably 7.2 mass% or less with respect to the steel pipe 1, and 6.0 mass%. The content is more preferably below, and even more preferably 4.0% by mass or less. By being in the above-described preferable range, impurities contained in the steel pipe 1 can be reduced and the cleanliness of the steel pipe 1 can be further enhanced. As a result, the steel pipe 1 having a better rolling fatigue life can be obtained.
 (Si)
 Si(ケイ素)は、球状化焼鈍処理における炭化物の析出を遅らせる元素である。鋼管1におけるSiの含有量は、2.0質量%以下であることが好ましい。このようにSiの含有量が多すぎないことで、球状化焼鈍処理において球状炭化物の析出が妨げられず、効率よく球状化焼鈍処理が進行する。
(Si)
Si (silicon) is an element that delays the precipitation of carbides in the spheroidizing annealing treatment. The Si content in the steel pipe 1 is preferably 2.0% by mass or less. Since the content of Si is not too large as described above, precipitation of spherical carbides is not hindered in the spheroidizing annealing treatment, and the spheroidizing annealing treatment proceeds efficiently.
 また、Siの固溶強化作用によるフェライトの硬化を防ぎ、これによって成形加工時に鋼管1に割れが発生するのを防ぐことができる。また、製造工程で鋼帯2の表面にスケール疵が発生するのを防いだり、鋼管1の焼入加熱中に粒界酸化が起こることで転動疲労寿命が低下するのを防いだりすることができる。 Also, it is possible to prevent hardening of ferrite due to the solid solution strengthening action of Si, and thereby to prevent cracks from occurring in the steel pipe 1 during forming. Further, it is possible to prevent scale flaws from being generated on the surface of the steel strip 2 in the manufacturing process, and to prevent the rolling fatigue life from being shortened due to grain boundary oxidation during quenching and heating of the steel pipe 1. it can.
 (Mn)
 Mn(マンガン)は、鋼管を焼入加熱した場合、当該焼入後の冷却過程で鋼管における鋼のフェライト変態を抑制し、比較的遅い冷却速度でもマルテンサイト中心の組織になることにより、鋼管の焼入性を高める元素である。
(Mn)
Mn (manganese) suppresses the ferrite transformation of the steel in the steel pipe in the cooling process after quenching when the steel pipe is heated by quenching, and becomes a martensite-centered structure even at a relatively slow cooling rate. It is an element that enhances hardenability.
 鋼管1におけるMnの含有量は、0.1質量%以上2.0質量%以下であることが好ましく、0.5質量%以上1.5質量%以下であることがより好ましい。このように、Mnの含有量が0.1質量%以上であることで、鋼管1の焼入性の低下を防止し、かつ、冷却中に鋼管1の鋼にパーライトおよび上部ベイナイトなどの高温生成物が形成されるのを防止することができる。これにより、鋼管1を軸受として用いた場合に軸受に必要な硬さを得ることができる。また、Mnの含有量が2.0質量%以下であることで、フェライトが硬化し、造管時のロール成形が阻害されるのを防ぐことができる。 The Mn content in the steel pipe 1 is preferably 0.1% by mass or more and 2.0% by mass or less, and more preferably 0.5% by mass or more and 1.5% by mass or less. As described above, when the Mn content is 0.1% by mass or more, deterioration of the hardenability of the steel pipe 1 is prevented, and high-temperature generation of pearlite and upper bainite is generated in the steel of the steel pipe 1 during cooling. It is possible to prevent an object from being formed. Thereby, when the steel pipe 1 is used as a bearing, the hardness required for the bearing can be obtained. Further, when the Mn content is 2.0% by mass or less, it is possible to prevent the ferrite from being hardened and hindering the roll forming during pipe making.
 (S)
 S(硫黄)は、鋼管の加工性および転動疲労寿命に影響を及ぼす元素である。鋼管1におけるSの含有量は、0.02質量%以下であることが好ましい。SはMnS系の非金属介在物を生成する。MnS系の非金属介在物が生成されることにより、応力集中による疲労破壊の起点となり、転動疲労寿命が低減する虞がある。これに対し、Sの含有量が0.02質量%以下であることにより、MnS系の非金属介在物の生成を抑え、転動疲労寿命の低減を防ぐことができる。また、Sの含有量が0.02質量%以下であることにより、造管前のスリットコイル端面形状における二次せん断面およびタングの生成を抑え、好適な溶接部を形成することができる。
(S)
S (sulfur) is an element that affects the workability and rolling fatigue life of steel pipes. The S content in the steel pipe 1 is preferably 0.02 mass% or less. S produces MnS-based non-metallic inclusions. The generation of MnS-based non-metallic inclusions may be the starting point of fatigue fracture due to stress concentration, which may reduce the rolling fatigue life. On the other hand, when the content of S is 0.02 mass% or less, the generation of MnS-based nonmetallic inclusions can be suppressed, and the reduction of rolling contact fatigue life can be prevented. Further, when the S content is 0.02 mass% or less, it is possible to suppress the generation of secondary shear planes and tongues in the slit coil end face shape before pipe making, and to form a suitable welded portion.
 (Al)
 Al(アルミニウム)は、溶鋼の脱酸剤として使用され、N(窒素)を固定する作用も呈する元素である。鋼管1におけるAlの含有量は、0.2質量%以下であることが好ましく、0.005質量%以上0.05質量%以下であることがより好ましい。Alの含有量が0.005質量%以上であることにより、Nを固定する作用がより顕著になる。Alの含有量が0.2質量%以下であることにより、鋼の清浄度が損なわれるのを防ぎ、その結果、疲労破壊による転動疲労寿命の低減を防ぐことができる。また、鋼帯2の表面品質の低下を防ぐことができる。
(Al)
Al (aluminum) is an element that is used as a deoxidizing agent for molten steel and also has an action of fixing N (nitrogen). The Al content in the steel pipe 1 is preferably 0.2 mass% or less, and more preferably 0.005 mass% or more and 0.05 mass% or less. When the content of Al is 0.005 mass% or more, the effect of fixing N becomes more remarkable. When the Al content is 0.2% by mass or less, the cleanliness of steel can be prevented from being impaired, and as a result, the reduction of rolling fatigue life due to fatigue fracture can be prevented. Further, it is possible to prevent the deterioration of the surface quality of the steel strip 2.
 (Cr)
 Cr(クロム)は、焼入性の改善に有効な元素である。鋼管1におけるCrの含有量は、5.0質量%以下であることが好ましく、2.0質量%以下であることがより好ましく、0.5質量%以上1.6質量%以下であることがより好ましく、0.8質量%以上1.5質量%以下であることがさらに好ましい。Crの含有量が0.2質量%以上であることにより、鋼管1の焼入性をより改善することができる。また、Crの含有量が5.0質量%以下であることにより、Crの含有量が多すぎないため、加工性が低下するのを防ぐことができる。
(Cr)
Cr (chromium) is an element effective in improving hardenability. The Cr content in the steel pipe 1 is preferably 5.0% by mass or less, more preferably 2.0% by mass or less, and 0.5% by mass or more and 1.6% by mass or less. It is more preferably 0.8% by mass or more and 1.5% by mass or less. When the Cr content is 0.2 mass% or more, the hardenability of the steel pipe 1 can be further improved. Further, when the content of Cr is 5.0 mass% or less, the content of Cr is not too large, and thus it is possible to prevent the workability from being deteriorated.
 (Mo)
 Mo(モリブテン)は少量の添加でCrと同様に鋼管の焼入性および焼戻し軟化抵抗の改善に寄与する元素である。鋼管1におけるMoの含有量は、0.5質量%以下であることが好ましい。Moの含有量が0.5質量%以下と多すぎないことにより、鋼帯2に焼鈍処理を施す際に軟質化しやすく、造管時のロール成形性が低下するのを防ぐことができる。
(Mo)
Mo (molybdenum) is an element that contributes to the improvement of the hardenability and the resistance to temper softening of steel pipes, like Cr, even when added in a small amount. The Mo content in the steel pipe 1 is preferably 0.5 mass% or less. When the content of Mo is not too large, i.e., 0.5% by mass or less, when the steel strip 2 is annealed, it tends to be softened, and the roll formability at the time of pipe forming can be prevented from deteriorating.
 (Nb)
 Nb(ニオブ)は、鋼の鋳造後の冷却過程において、鋼中に非常に硬質なNb・Ti系炭化物粒子を形成し、耐摩耗性の向上に寄与する元素である。ただし、Nbを多量に添加するとNb・Ti系炭化物粒子の生成量が過大となり、靭性を損なう要因となる。そのため、鋼管1におけるNbの含有量は、0.5質量%以下であることが好ましい。
(Nb)
Nb (niobium) is an element that forms very hard Nb.Ti-based carbide particles in the steel in the cooling process after casting of steel and contributes to improvement of wear resistance. However, when a large amount of Nb is added, the amount of Nb / Ti-based carbide particles produced becomes excessive, which becomes a factor that impairs toughness. Therefore, the Nb content in the steel pipe 1 is preferably 0.5 mass% or less.
 (Ti)
 Ti(チタン)は、Nbと同様、鋼の鋳造後の冷却過程において、鋼中に非常に硬質なNb・Ti系炭化物粒子を形成し、耐摩耗性の向上に寄与する元素である。ただし、Tiを多量に添加すると靭性を損なう要因となる。そのため、鋼管1におけるTiの含有量は、0.3質量%以下であることが好ましい。
(Ti)
Like Nb, Ti (titanium) is an element that forms very hard Nb / Ti-based carbide particles in the steel in the cooling process after casting of steel and contributes to improvement of wear resistance. However, adding a large amount of Ti becomes a factor that impairs toughness. Therefore, the content of Ti in the steel pipe 1 is preferably 0.3 mass% or less.
 (V)
 V(バナジウム)は、鋼の靭性向上に有効な元素である。しかし、Vを過剰に添加してもコストに見合った靭性向上効果は期待できない。そのため、鋼管1におけるVの含有量は、1.5質量%以下であることが好ましい。
(V)
V (vanadium) is an element effective in improving the toughness of steel. However, even if V is excessively added, a toughness improving effect commensurate with the cost cannot be expected. Therefore, the V content in the steel pipe 1 is preferably 1.5 mass% or less.
 (B)
 B(ホウ素)は、鋼管の熱間加工性を向上させ、熱延時の割れ防止に有効な元素である。しかし、鋼管は、過剰量のBを含有すると、却って熱間加工性が低下する。そのため、鋼管1におけるBの含有量は、0.01質量%以下であることが好ましい。
(B)
B (boron) is an element that improves the hot workability of the steel pipe and is effective in preventing cracks during hot rolling. However, if the steel pipe contains an excessive amount of B, the hot workability is rather deteriorated. Therefore, the content of B in the steel pipe 1 is preferably 0.01% by mass or less.
 <鋼管1の製造方法>
 本実施形態における鋼管1の製造方法は、鋼帯2を成形する工程および鋼帯2の端部同士を溶接する工程を含む。これらの工程は、それぞれ上述のロール成形処理および溶接処理と同様である。換言すれば、鋼管1は、上記鋼板または鋼帯2を曲げて、上記鋼板又は鋼帯2の端部同士を接触させる工程と、加熱によって上記端部が溶融することで形成されるボンド部4の幅が、上記板厚に対し0.2%以上1.2%以下となるように、上記端部同士を互いに押圧した状態で、1200℃以上1700℃以下の温度で溶接する工程と、を含む製造方法により製造される。
<Method of manufacturing steel pipe 1>
The method for manufacturing the steel pipe 1 in the present embodiment includes a step of forming the steel strip 2 and a step of welding the ends of the steel strip 2 to each other. These steps are similar to the roll forming process and the welding process described above, respectively. In other words, the steel pipe 1 includes a step of bending the steel plate or the steel strip 2 to bring the ends of the steel plate or the steel strip 2 into contact with each other, and a bond portion 4 formed by melting the end portion by heating. A width of 0.2% or more and 1.2% or less with respect to the plate thickness, and welding at a temperature of 1200 ° C. or more and 1700 ° C. or less in a state in which the ends are pressed against each other. It is manufactured by a manufacturing method including.
 <軸受用鋼管>
 本実施形態に係る軸受用鋼管は、上述の本実施形態に係る鋼管1を含む。換言すれば、鋼管1は、特定の成分を特定の量だけ含み、不純物の含有量が少ないため、硬度および清浄度が高いことから、軸受用鋼管に好適に利用することができる。
 〔まとめ〕
<Bearing steel pipe>
The steel pipe for bearing according to the present embodiment includes the steel pipe 1 according to the present embodiment described above. In other words, the steel pipe 1 has a high hardness and cleanliness because it contains a specific component in a specific amount and contains a small amount of impurities. Therefore, the steel pipe 1 can be suitably used as a bearing steel pipe.
[Summary]
 本発明の一態様に係る鋼管は、C:0.4質量%以上1.5質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含む鋼板または鋼帯の端部を溶接することにより形成され、上記端部同士は、1200℃以上1700℃以下の溶接温度で溶接されており、加熱によって上記端部が溶融することで形成されるボンド部の幅は、上記鋼板または鋼帯の板厚に対し0.2%以上1.2%以下である。 A steel pipe according to an aspect of the present invention is a steel plate or steel strip containing C: 0.4 mass% or more and 1.5 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less. The end portions are formed by welding, the end portions are welded at a welding temperature of 1200 ° C. or higher and 1700 ° C. or lower, and the width of the bond portion formed by melting the end portions by heating is: It is 0.2% or more and 1.2% or less with respect to the plate thickness of the above steel plate or steel strip.
 本発明の一態様に係る鋼管は、上記鋼管における上記Cの含有量は、0.6質量%以上1.2質量%以下であってもよい。 In the steel pipe according to one aspect of the present invention, the C content in the steel pipe may be 0.6% by mass or more and 1.2% by mass or less.
 本発明の一態様に係る鋼管は、Si:2.0質量%以下、Mn:0.1質量%以上2.0質量%以下、S:0.02質量%以下、およびAl:0.2質量%以下のうちの少なくとも1つの条件をさらに満たしていてもよい。 The steel pipe which concerns on 1 aspect of this invention has Si: 2.0 mass% or less, Mn: 0.1 mass% or more and 2.0 mass% or less, S: 0.02 mass% or less, and Al: 0.2 mass%. At least one of the following conditions may be further satisfied.
 本発明の一態様に係る鋼管は、Cr:5.0質量%以下およびMo:0.5質量%以下のうち少なくとも1つの条件をさらに満たしていてもよい。 The steel pipe according to one aspect of the present invention may further satisfy at least one condition of Cr: 5.0 mass% or less and Mo: 0.5 mass% or less.
 本発明の一態様に係る鋼管は、Ti:0.3質量%以下、Nb:0.5質量%以下、V:1.5質量%以下、およびB:0.01質量%以下のうち少なくとも1つの条件をさらに満たしていてもよい。 At least 1 of Ti: 0.3 mass% or less, Nb: 0.5 mass% or less, V: 1.5 mass% or less, and B: 0.01 mass% or less. The two conditions may be further satisfied.
 本発明の一態様に係る鋼管は、上記溶接は、高周波溶接であってもよい。 In the steel pipe according to one aspect of the present invention, the above welding may be high frequency welding.
 本発明の一態様に係る鋼管は、上記端部同士が加熱され、上記板厚に対し20%以上30%以下の押し潰し量となるように互いに押圧されることで形成されてもよい。 The steel pipe according to one aspect of the present invention may be formed by heating the ends and pressing each other so that the crushing amount is 20% or more and 30% or less with respect to the plate thickness.
 本発明の一態様に係る鋼管は、上記端部は、角が押し潰されており、上記鋼板または鋼帯の板幅方向における、押し潰された部分に対応する長さは、上記板厚に対し5%以上40%以下であり、上記鋼板または鋼帯の上面または下面を含む平面と、上記押し潰しによって形成された面とがなす角度のうちの小さい方の角度は、20度以上60度以下であってもよい。 In the steel pipe according to one aspect of the present invention, the end is crushed at a corner, and the length corresponding to the crushed portion in the plate width direction of the steel plate or the steel strip is equal to the plate thickness. On the other hand, it is 5% or more and 40% or less, and the smaller one of the angles formed by the plane including the upper surface or the lower surface of the steel plate or steel strip and the surface formed by the crushing is 20 degrees or more and 60 degrees. It may be the following.
 本発明の一態様に係る鋼管は、丸管、角管、または異形管であってもよい。 The steel pipe according to one aspect of the present invention may be a round pipe, a square pipe, or a deformed pipe.
 本発明の一態様に係る軸受用鋼管は、上記の何れかに記載の鋼管を含む。 A bearing steel pipe according to an aspect of the present invention includes the steel pipe according to any one of the above.
 本発明の一態様に係る鋼管の製造方法は、C:0.4質量%以上1.5質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含む、鋼板または鋼帯の端部同士が溶接された鋼管の製造方法であって、上記鋼板または鋼帯を曲げて上記端部同士を接触させる工程と、加熱によって上記端部が溶融することで形成されるボンド部の幅が、上記鋼板または鋼帯の板厚に対し0.2%以上1.2%以下となるように、上記端部同士を互いに押圧した状態で、1200℃以上1700℃以下の温度で溶接する工程と、を含む。 A method for manufacturing a steel pipe according to one aspect of the present invention includes a steel sheet containing C: 0.4 mass% or more and 1.5 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less. Alternatively, a method for manufacturing a steel pipe in which ends of steel strips are welded to each other is formed by bending the steel plate or steel strip to bring the ends into contact with each other, and by melting the ends by heating. A temperature of 1200 ° C. or more and 1700 ° C. or less in a state where the ends are pressed against each other such that the width of the bond portion is 0.2% or more and 1.2% or less with respect to the plate thickness of the steel plate or steel strip. And the step of welding with.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Appendix]
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
 <実施例および比較例>
 〔鋼の製造〕
 まず、表1に示す成分組成の鋼を製造した。なお、備考欄において、本発明の一実施形態に係る鋼管は「本発明例」とし、比較例に係る鋼管は「比較例」とした。また表1において、本発明の一実施形態に含まれる数値範囲外となる数値および比較例に係る鋼種には、下線を付している。また、表1中の数値の単位は質量%である。
<Examples and Comparative Examples>
[Manufacturing of steel]
First, steels having the chemical compositions shown in Table 1 were manufactured. In the remarks column, the steel pipe according to one embodiment of the present invention is referred to as “invention example”, and the steel pipe according to comparative example is referred to as “comparative example”. In Table 1, numerical values outside the numerical range included in one embodiment of the present invention and steel types according to comparative examples are underlined. The unit of the numerical values in Table 1 is% by mass.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 〔溶接鋼管の製造〕
 表1の各種鋼のスラブを1250~1300℃に加熱し熱間圧延することにより、厚さ6.0mmの熱延コイル(鋼帯)を製造した。得られた熱延コイルを酸洗し、すべての鋼種に対して750℃の条件下で10時間の焼鈍を施した。その後、熱延コイルを長手方向にスリットし、ロール成形した。ロール成形後、相対する熱延コイルの端面同士を種々の溶接温度(加熱温度)、クラッシング量、およびアプセット量により高周波溶接して、直径34mm、厚さ6.0mmの鋼管を製造した。溶接後の鋼管に、焼鈍処理を施した。焼鈍処理は、700℃で均熱保持後、空冷した。
[Manufacture of welded steel pipe]
Hot rolling coils (steel strips) having a thickness of 6.0 mm were manufactured by heating the slabs of various steels in Table 1 to 1250 to 1300 ° C. and hot rolling. The obtained hot-rolled coils were pickled, and all steel types were annealed at 750 ° C. for 10 hours. Then, the hot rolled coil was slit in the longitudinal direction and roll-formed. After roll forming, the end faces of the hot-rolled coils facing each other were high-frequency welded at various welding temperatures (heating temperatures), crushing amounts, and upset amounts to manufacture steel pipes having a diameter of 34 mm and a thickness of 6.0 mm. The steel pipe after welding was annealed. In the annealing treatment, after soaking at 700 ° C., air cooling was performed.
 〔鋼管の評価〕
 (焼鈍試験)
 鋼の炭素がすべて球状炭化物として析出した場合、鋼の含有炭素量c(mass%)と球状炭化物の面積率fは以下の式で表される。
[Evaluation of steel pipe]
(Annealing test)
When all the carbon of the steel is precipitated as spherical carbides, the carbon content c (mass%) of the steel and the area ratio f of the spherical carbides are expressed by the following formulas.
 f=15.3c (式1)
 球状炭化物析出量について、上記溶接後の鋼管を、700℃で50時間均熱保持後、空冷した際に球状炭化物面積率(球状炭化物析出率)がfの90%以上の場合を○、90%未満の場合を×と評価した。
f = 15.3c (Formula 1)
Regarding the amount of spherical carbide precipitation, when the steel pipe after the above-mentioned welding was soaked at 700 ° C. for 50 hours and then air-cooled, the spherical carbide area ratio (spherical carbide precipitation ratio) was 90% or more of f, ○, 90% When less than, it was evaluated as x.
 ボンド部の幅であるボンド幅の測定は、ボンド部を100mmおきに5箇所測定し、最も幅の広い箇所を最大ボンド幅とした。 For the measurement of the bond width, which is the width of the bond portion, the bond portion was measured at 5 locations every 100 mm, and the widest portion was defined as the maximum bond width.
 球状炭化物面積率を求めるために、最大ボンド幅の位置で20箇所、走査型電子顕微鏡(SEM)を用いて倍率5000倍にて写真撮影した。当該写真におけるボンド部の球状炭化物面積を測定し、当該球状炭化物面積の測定値を平均化することにより、球状炭化物面積率を求めた。 In order to obtain the spherical carbide area ratio, a photograph was taken at a maximum bond width of 20 locations using a scanning electron microscope (SEM) at a magnification of 5000 times. The spherical carbide area area of the bond portion in the photograph was measured and the spherical carbide area ratio was determined by averaging the measured values of the spherical carbide area.
 (結果)
 各鋼種において、種々の溶接条件にて製造された鋼管における球状炭化物析出量を評価した結果を表2に示す。表2において、比較例に係る鋼種には下線を付している。
(result)
Table 2 shows the results of evaluating the amount of spherical carbide precipitation in steel pipes manufactured under various welding conditions in each steel type. In Table 2, the steel types according to the comparative examples are underlined.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 このように、本発明例はいずれの条件においても、球状炭化物の面積率がfの90%以上となり、良好な球状炭化物の析出量が得られた。一方、比較例においては、本発明例のような良好な球状炭化物の析出量が得られなかった。以下にその理由について考察した。 As described above, in any of the examples of the present invention, the area ratio of the spherical carbides was 90% or more of f, and a good amount of the precipitated spherical carbides was obtained. On the other hand, in the comparative example, the good precipitation amount of the spherical carbide as in the example of the present invention was not obtained. The reason for this is discussed below.
 溶接温度が1700℃よりも高い条件では(No.2,7,9,17,19,23,27,31,35)、溶接部に生じる溶融金属の量が増加し、ボンド幅は広くなった。なお、「ボンド幅が広い」とは、ボンド幅が、鋼帯の板厚6mmの1.2%である72μmよりも広い場合を指す。 Under conditions where the welding temperature is higher than 1700 ° C (No. 2, 7, 9, 17, 19, 23, 27, 31, 35), the amount of molten metal generated in the weld increases and the bond width widens. .. In addition, "the bond width is wide" refers to the case where the bond width is wider than 72 μm, which is 1.2% of the plate thickness 6 mm of the steel strip.
 クラッシング量が、鋼帯の板厚に対して0.3%未満である場合(No.4,7,10,12,23,29,35)、または2.4%より大きい場合(No.21)、加熱時における溶接部の温度に斑が発生し、ボンド部においてボンド幅が広い個所が形成された。 When the crushing amount is less than 0.3% with respect to the plate thickness of the steel strip (No. 4, 7, 10, 12, 23, 29, 35) or more than 2.4% (No. 21), unevenness was generated in the temperature of the welded portion during heating, and a portion having a wide bond width was formed in the bonded portion.
 アプセット量が、上記板厚に対して1.2%未満である場合(No.12,15,17,23,25,31,33,35)、溶接部において溶融メタル排出量が少なくなり、ボンド幅が広くなった。 When the upset amount is less than 1.2% of the above plate thickness (No. 12, 15, 17, 23, 25, 31, 33, 35), the molten metal discharge amount in the weld is small, and the bond The width has become wider.
 上述した種々の理由からボンド幅が広くなった場合、球状炭化物析出率が90%未満となった。そのため、球状炭化物の析出量は×と評価された。 When the bond width was widened for various reasons described above, the spherical carbide precipitation rate was less than 90%. Therefore, the precipitation amount of spherical carbide was evaluated as x.
 (まとめ)
 以上のように、本発明例においては、いずれも球状炭化物の面積率がfの90%以上となり、良好な球状炭化物の析出量が得られた。すなわち、50時間の焼鈍処理により、良好な加工性を備えるボンド部が得られた。一方、比較例においては、いずれも球状炭化物の面積率がfの90%未満となり、50時間の焼鈍処理では十分な球状炭化物の析出が得られなかった。すなわち、比較例に係る鋼管において、良好な加工性を備えるボンド部を得るためには、より長時間の焼鈍処理が必要であることが示唆された。
(Summary)
As described above, in each of the examples of the present invention, the area ratio of the spherical carbide was 90% or more of f, and a good amount of the precipitated spherical carbide was obtained. That is, a bond part having good workability was obtained by the annealing treatment for 50 hours. On the other hand, in each of the comparative examples, the area ratio of the spherical carbides was less than 90% of f, and sufficient precipitation of the spherical carbides could not be obtained by the annealing treatment for 50 hours. That is, it was suggested that in the steel pipe according to the comparative example, a longer annealing treatment was required in order to obtain a bond part having good workability.
 1 鋼管
 2 鋼帯
 2A 下面
 2B クラッシングによって形成された面
 3 溶接部
 4 ボンド部
 5 熱影響部
1 Steel pipe 2 Steel strip 2A Lower surface 2B Surface formed by crushing 3 Welded portion 4 Bonded portion 5 Heat affected zone

Claims (11)

  1.  C:0.4質量%以上1.5質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含む鋼板または鋼帯の端部を溶接することにより形成され、
     上記端部同士は、1200℃以上1700℃以下の溶接温度で溶接されており、
     加熱によって上記端部が溶融することで形成されるボンド部の幅は、上記鋼板または鋼帯の板厚に対し0.2%以上1.2%以下であることを特徴とする鋼管。
    C: 0.4 mass% or more and 1.5 mass% or less, P: 0.03 mass% or less, and Cu: formed by welding the ends of a steel strip or steel strip containing 0.3 mass% or less,
    The ends are welded at a welding temperature of 1200 ° C. or higher and 1700 ° C. or lower,
    A width of a bond portion formed by melting the end portion by heating is 0.2% or more and 1.2% or less with respect to the plate thickness of the steel plate or steel strip.
  2.  上記鋼管における上記Cの含有量は、0.6質量%以上1.2質量%以下であることを特徴とする請求項1に記載の鋼管。 The steel pipe according to claim 1, wherein the content of C in the steel pipe is 0.6% by mass or more and 1.2% by mass or less.
  3.  Si:2.0質量%以下、Mn:0.1質量%以上2.0質量%以下、S:0.02質量%以下、およびAl:0.2質量%以下のうちの少なくとも1つの条件をさらに満たすことを特徴とする請求項1または2に記載の鋼管。 At least one condition of Si: 2.0 mass% or less, Mn: 0.1 mass% or more and 2.0 mass% or less, S: 0.02 mass% or less, and Al: 0.2 mass% or less. The steel pipe according to claim 1 or 2, wherein the steel pipe is further filled.
  4.  Cr:5.0質量%以下およびMo:0.5質量%以下のうち少なくとも1つの条件をさらに満たすことを特徴とする請求項3に記載の鋼管。 The steel pipe according to claim 3, further satisfying at least one condition of Cr: 5.0 mass% or less and Mo: 0.5 mass% or less.
  5.  Ti:0.3質量%以下、Nb:0.5質量%以下、V:1.5質量%以下、およびB:0.01質量%以下のうち少なくとも1つの条件をさらに満たすことを特徴とする請求項4に記載の鋼管。 Ti: 0.3% by mass or less, Nb: 0.5% by mass or less, V: 1.5% by mass or less, and B: 0.01% by mass or less, further satisfying at least one condition. The steel pipe according to claim 4.
  6.  上記溶接は、高周波溶接であることを特徴とする請求項1~5のいずれか1項に記載の鋼管。 The steel pipe according to any one of claims 1 to 5, wherein the welding is high frequency welding.
  7.  上記端部同士が加熱され、上記板厚に対し20%以上30%以下の押し潰し量となるように互いに押圧されることで形成されることを特徴とする請求項1~6のいずれか1項に記載の鋼管。 7. The end portions are formed by being heated to each other and pressed against each other so as to have a crushing amount of 20% or more and 30% or less with respect to the plate thickness. The steel pipe according to the item.
  8.  上記端部は、角が押し潰されており、上記鋼板または鋼帯の板幅方向における、押し潰された部分に対応する長さは、上記板厚に対し5%以上40%以下であり、
     上記鋼板または鋼帯の上面または下面を含む平面と、上記押し潰しによって形成された面とがなす角度のうちの小さい方の角度は、20度以上60度以下であることを特徴とする請求項1~7のいずれか1項に記載の鋼管。
    The edge is crushed at the corner, and the length corresponding to the crushed portion in the plate width direction of the steel plate or steel strip is 5% or more and 40% or less with respect to the plate thickness,
    The smaller one of the angles formed by the plane including the upper surface or the lower surface of the steel plate or the steel strip and the surface formed by the crushing is 20 degrees or more and 60 degrees or less. The steel pipe according to any one of 1 to 7.
  9.  丸管、角管、または異形管であることを特徴とする請求項1~8のいずれか1項に記載の鋼管。 The steel pipe according to any one of claims 1 to 8, which is a round pipe, a square pipe, or a deformed pipe.
  10.  請求項1~9の何れか1項に記載の鋼管を含むことを特徴とする軸受用鋼管。 A bearing steel pipe comprising the steel pipe according to any one of claims 1 to 9.
  11.  C:0.4質量%以上1.5質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含む、鋼板または鋼帯の端部同士が溶接された鋼管の製造方法であって、
     上記鋼板または鋼帯を曲げて上記端部同士を接触させる工程と、
     加熱によって上記端部が溶融することで形成されるボンド部の幅が、上記鋼板または鋼帯の板厚に対し0.2%以上1.2%以下となるように、上記端部同士を互いに押圧した状態で、1200℃以上1700℃以下の温度で溶接する工程と、を含むことを特徴とする鋼管の製造方法。
    C: 0.4% by mass or more and 1.5% by mass or less, P: 0.03% by mass or less, and Cu: 0.3% by mass or less, of a steel pipe in which end portions of steel plates or steel strips are welded A manufacturing method,
    A step of bending the steel plate or steel strip to bring the ends into contact with each other,
    The ends are joined to each other such that the width of the bond formed by melting the ends by heating is 0.2% or more and 1.2% or less of the plate thickness of the steel plate or steel strip. And a step of welding at a temperature of 1200 ° C. or more and 1700 ° C. or less in a pressed state.
PCT/JP2019/042661 2018-11-13 2019-10-30 Steel pipe, steel pipe for bearing, and method for producing steel pipe WO2020100603A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018212955A JP7196549B2 (en) 2018-11-13 2018-11-13 Steel pipe manufacturing method
JP2018-212955 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020100603A1 true WO2020100603A1 (en) 2020-05-22

Family

ID=70731570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042661 WO2020100603A1 (en) 2018-11-13 2019-10-30 Steel pipe, steel pipe for bearing, and method for producing steel pipe

Country Status (3)

Country Link
JP (1) JP7196549B2 (en)
TW (1) TW202028490A (en)
WO (1) WO2020100603A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368740A (en) * 1989-08-03 1991-03-25 Kobe Steel Ltd Thick and small-diameter electric welded steel tube having uniform width of white layer and production thereof
JPH11197850A (en) * 1998-01-16 1999-07-27 Sumitomo Metal Ind Ltd Electric resistance welded tube and its manufacture
JP2008208417A (en) * 2007-02-26 2008-09-11 Jfe Steel Kk Resistance welded steel tube for heat treatment, and its manufacturing method
JP2009197327A (en) * 2008-01-21 2009-09-03 Jfe Steel Corp Hollow member and method for production thereof
JP2013234348A (en) * 2012-05-08 2013-11-21 Jfe Steel Corp Electrical resistance welded steel tube for automotive component with excellent fatigue-resistant characteristics, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368740A (en) * 1989-08-03 1991-03-25 Kobe Steel Ltd Thick and small-diameter electric welded steel tube having uniform width of white layer and production thereof
JPH11197850A (en) * 1998-01-16 1999-07-27 Sumitomo Metal Ind Ltd Electric resistance welded tube and its manufacture
JP2008208417A (en) * 2007-02-26 2008-09-11 Jfe Steel Kk Resistance welded steel tube for heat treatment, and its manufacturing method
JP2009197327A (en) * 2008-01-21 2009-09-03 Jfe Steel Corp Hollow member and method for production thereof
JP2013234348A (en) * 2012-05-08 2013-11-21 Jfe Steel Corp Electrical resistance welded steel tube for automotive component with excellent fatigue-resistant characteristics, and method for manufacturing the same

Also Published As

Publication number Publication date
JP7196549B2 (en) 2022-12-27
JP2020079434A (en) 2020-05-28
TW202028490A (en) 2020-08-01

Similar Documents

Publication Publication Date Title
JP5303842B2 (en) Manufacturing method of ERW welded steel pipe for heat treatment with excellent flatness
JP5516785B2 (en) Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
JP5423324B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
CA2657518C (en) Hot bend pipe and a process for its manufacture
KR101247089B1 (en) Steel plate for line pipes and steel pipes
JP4102195B2 (en) ERW welded steel pipe for hollow stabilizer
JP5423323B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
JP5765497B1 (en) ERW steel pipe with excellent weld quality and manufacturing method thereof
CN113015815A (en) Hot-rolled steel strip and method for producing same
JP5375981B2 (en) Wear-resistant welded steel pipe with excellent weld crack resistance and method for producing the same
JP2009197327A (en) Hollow member and method for production thereof
JP2010111931A (en) High-tensile welded steel pipe for automotive member, and method for producing the same
JP5874402B2 (en) Welded steel pipe excellent in weld crack resistance and slurry corrosion wear resistance and method for producing the same
JP5573003B2 (en) High tensile welded steel pipe for automobile parts
JPH1017980A (en) Welded steel pipe with low yield ratio, and its production
JP5516780B2 (en) ERW welded steel pipe for heat treatment with excellent flatness
WO2020100603A1 (en) Steel pipe, steel pipe for bearing, and method for producing steel pipe
CN111183238A (en) High-strength steel sheet for acid-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for acid-resistant line pipe
JP7200588B2 (en) ERW steel pipe for oil well and manufacturing method thereof
EP1378580A1 (en) Structural Fe-Cr steel sheet, manufacturing method thereof, and structural shaped steel
JP6630870B1 (en) Steel pipe and method of manufacturing steel pipe
JP2020152966A (en) Steel pipe having excellent transportability and method for manufacturing the same
WO2023152906A1 (en) Electric resistance welded steel pipe for automobile component, and method for manufacturing automobile component
JP2010174298A (en) Steel sheet to be die-quenched superior in hot-punchability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885466

Country of ref document: EP

Kind code of ref document: A1