WO2023152906A1 - Electric resistance welded steel pipe for automobile component, and method for manufacturing automobile component - Google Patents

Electric resistance welded steel pipe for automobile component, and method for manufacturing automobile component Download PDF

Info

Publication number
WO2023152906A1
WO2023152906A1 PCT/JP2022/005451 JP2022005451W WO2023152906A1 WO 2023152906 A1 WO2023152906 A1 WO 2023152906A1 JP 2022005451 W JP2022005451 W JP 2022005451W WO 2023152906 A1 WO2023152906 A1 WO 2023152906A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric resistance
resistance welded
content
steel pipe
hardness
Prior art date
Application number
PCT/JP2022/005451
Other languages
French (fr)
Japanese (ja)
Inventor
優輝 茂手木
幸伸 永田
文彦 新山
康浩 篠原
敬久 小川
侑正 上田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to PCT/JP2022/005451 priority Critical patent/WO2023152906A1/en
Priority to JP2022532161A priority patent/JP7188649B1/en
Publication of WO2023152906A1 publication Critical patent/WO2023152906A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the present disclosure relates to an electric resistance welded steel pipe for automobile parts and a method for manufacturing automobile parts.
  • Patent Documents 1 to 5 disclose electric resistance welded steel pipes for automobile parts or machine structures, which are for cold working.
  • Patent Document 8 discloses, as a high-carbon steel pipe for automobile parts, a high-carbon steel pipe having a structure in which cementite particles are finely dispersed in a matrix phase that is a ferrite phase.
  • Patent Document 1 JP-A-2003-094140 Patent Document 2: JP-A-2007-253190 Patent Document 3: JP-A-2008-044533 Patent Document 4: Japanese Patent No. 4798674 Patent Document 5: JP-A-2004- Patent Document 6: Japanese Patent No. 3999915 Patent Document 7: Japanese Patent No. 4486516 Patent Document 8: Japanese Patent No. 5679115
  • the cold workability of electric resistance welded steel pipes for automobile parts is And there are cases where it is required to be excellent in mold life. Furthermore, from the viewpoint of ensuring the hardness and machinability of the manufactured automobile parts, the electric resistance welded steel pipes for automobile parts are required to have an appropriate hardness after quenching (that is, neither too high nor too low). may be
  • excellent mold life means that the life of the mold used when cold working electric resistance welded steel pipes for automobile parts can be extended.
  • An object of the present disclosure is to provide electric resistance welded steel pipes for automotive parts that are excellent in cold workability and mold life and have moderate hardness after quenching, and to manufacture automobile parts using the electric resistance welded steel pipes for automotive parts. To provide a method for manufacturing automobile parts.
  • Means for solving the above problems include the following aspects. ⁇ 1> Including the base metal portion and the electric resistance welded portion,
  • the chemical composition of the base material portion is, in mass %, C: 0.42 to 0.48%, Si: 0.01 to 0.20%, Mn: 0.10-0.70%, P: 0 to 0.030%, S: 0 to 0.030%, Al: 0.005 to 0.050%, Ti: 0.005 to 0.040%, B: 0.0005 to 0.0050%, N: 0 to 0.005%, O: 0 to 0.005%, Ca: 0 to 0.0050%, Mg: 0-0.0050%, REM: 0 to 0.0050%, Cr: 0 to 0.50%, Ni: 0 to 0.50%, Cu: 0-0.50%, Nb: 0 to 0.10%, Mo: 0-0.50%, V: 0 to 0.20%, and Balance: Fe and impurities,
  • the steel structure of the base material portion is a ferrite-pearlite mixed structure,
  • the chemical composition of the base material portion is, in mass %, Ca: 0.0005 to 0.0050%, Mg: 0.0005-0.0050%, REM: 0.0005 to 0.0050%, Cr: 0.01 to 0.50%, Ni: 0.01 to 0.50%, Cu: 0.01-0.50%, Nb: 0.01 to 0.10%, Mo: 0.01 to 0.50%, and V: 0.01-0.20% containing one or more of
  • the electric resistance welded steel pipe for automobile parts according to ⁇ 1>.
  • the heating temperature is 900 ° C.
  • the heating time is 1 minute
  • the cooling rate after heating is 30 ° C./s
  • the cooling temperature at the cooling rate is within the range of 50 ° C. to 0 ° C.
  • the hardness when quenching under certain conditions is 650 to 800 Hv
  • ⁇ 4> A method for manufacturing an automobile part, comprising a step of subjecting the electric resistance welded steel pipe for automobile parts according to any one of ⁇ 1> to ⁇ 3> to cold working and quenching in this order to obtain the automobile part. .
  • an electric resistance welded steel pipe for automobile parts that is excellent in cold workability and mold life and has an appropriate hardness after quenching, and an electric resistance welded steel pipe for automobile parts is used to manufacture automobile parts.
  • a method for manufacturing an automotive component is provided.
  • a numerical range represented using “to” means a range including the numerical values described before and after “to” as lower and upper limits.
  • “%” indicating the content of a component (element) means “% by mass”.
  • the content of C (carbon) may be referred to as “C content”. Contents of other elements may also be expressed similarly.
  • the term “step” includes not only independent steps, but also if the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps. .
  • the base metal portion refers to a portion of an electric resistance welded steel pipe other than the electric resistance welded portion and the heat affected zone.
  • the heat affected zone (sometimes referred to as "HAZ") is the area near the electric resistance welded part that is affected by heat due to electric resistance welding and seam heat treatment. Point.
  • “as-rolled electric resistance welded steel pipe” refers to an electric resistance welded steel pipe that has not been subjected to heat treatment other than seam heat treatment after pipe making.
  • “Tube-making” refers to the process of forming an open pipe by roll-forming a hot-rolled steel sheet unwound from a hot coil, and forming an electric-resistance welded portion by electric resistance welding of the butt portions of the obtained open pipe.
  • Hot coil means a hot-rolled steel sheet produced using a hot strip mill and wound into a coil.
  • “Roll forming” refers to continuously bending a hot-rolled steel sheet unwound from a hot coil into an open tubular shape.
  • Hot-rolled steel sheet manufactured using a hot strip mill is a continuous steel sheet. It differs from the steel plate that is produced. Steel plate cannot be used for roll forming, which is a continuous bending process, because it is not a continuous steel sheet. Electric resistance welded steel pipes are clearly distinguished from welded steel pipes (for example, UOE steel pipes) manufactured using thick steel plates in the above points.
  • the electric resistance welded steel pipe for automobile parts of the present disclosure (hereinafter also simply referred to as "electric resistance welded steel pipe”) is Including the base material part and the electric resistance welding part,
  • the chemical composition of the base material is % by mass, C: 0.42 to 0.48%, Si: 0.01 to 0.20%, Mn: 0.10-0.70%, P: 0 to 0.030%, S: 0 to 0.030%, Al: 0.005 to 0.050%, Ti: 0.005 to 0.040%, B: 0.0005 to 0.0050%, N: 0 to 0.005%, O: 0 to 0.005%, Ca: 0 to 0.0050%, Mg: 0-0.0050%, REM: 0 to 0.0050%, Cr: 0 to 0.50%, Ni: 0 to 0.50%, Cu: 0-0.50%, Nb: 0 to 0.10%, Mo: 0-0.50%, V: 0 to 0.20%, and Balance: Fe and impurities,
  • the steel structure is % by
  • the electric resistance welded steel pipe of the present disclosure is excellent in cold workability and mold life, and has an appropriate hardness after quenching (that is, neither too high nor too low).
  • the effect that the hardness after quenching is appropriate includes the chemical composition of the base material (for example, the C content is 0.42% or more to make the hardness of the base material appropriate, and B content is 0.0005% or more in order to reduce the hardness difference ⁇ Hv in the thickness direction described later), and the hardness of the base material (that is, the hardness before quenching) is 110 to 150 Hv is contributing.
  • the hardness of the base material that is, the hardness before quenching
  • the preferred range of hardness of the quenched electric resistance welded steel pipe will be described later.
  • the fact that the hardness of the base material is 110 to 150 Hv means that the chemical composition of the base material has a Si content of 0.20% or less and a Mn content of 0.70%.
  • C 0.42-0.48% C is an effective element for enhancing the cold workability of the steel structure and ensuring the hardness after quenching required for automobile parts. If the C content is less than 0.42%, the hardness after quenching may be insufficient. Therefore, the C content is 0.42% or more. The C content is preferably 0.43% or more. On the other hand, when the C content exceeds 0.48%, the cold workability may deteriorate. In addition, the hardness after quenching may become too hard and the toughness may decrease. Therefore, the C content is 0.48% or less. The C content is preferably 0.47% or less.
  • Si 0.01-0.20% Si is an element that contributes to the improvement of hardness and controls the precipitation of carbides to contribute to the improvement of cold workability.
  • the Si content is less than 0.01%, the refining cost will increase significantly, and the addition effect may not be sufficiently exhibited. Therefore, the Si content is 0.01% or more.
  • the Si content is preferably 0.05% or more.
  • the Si content exceeds 0.20%, the hardness may become too high and the cold workability may deteriorate. Therefore, the Si content is 0.20% or less.
  • the Si content is preferably 0.15% or less.
  • Mn 0.10-0.70% Mn is an element that contributes to the improvement of hardness and can contribute to the improvement of cold workability by controlling the precipitation of carbides.
  • Mn is 0.10% or more.
  • the Mn content is preferably 0.25% or more.
  • the Mn content is 0.70% or less.
  • the Mn content is preferably 0.55 or less.
  • P 0-0.030%
  • P is an element that segregates at grain boundaries and can impair cold workability and toughness. If the P content exceeds 0.030%, cold workability and toughness may deteriorate. Therefore, the P content is 0.030% or less. The P content is preferably 0.020% or less.
  • the P content may be 0% or more than 0%. From the viewpoint of manufacturing cost, the P content may be 0.0001% or more.
  • S is an element that forms MnS and can impair cold workability and toughness. When the S content exceeds 0.030%, cold workability and toughness may deteriorate. Therefore, the S content is 0.030% or less. The S content is preferably 0.020% or less.
  • the S content may be 0% or more than 0%. From the viewpoint of manufacturing cost, the S content may be 0.0001% or more.
  • Al 0.005-0.050%
  • Al is an element effective for deoxidation. If the Al content is less than 0.005%, the effect of addition may not be sufficiently exhibited. Therefore, the Al content is 0.005% or more.
  • the Al content is preferably 0.03% or more.
  • the Al content is 0.050% or less.
  • the Al content is preferably 0.040% or less.
  • Ti 0.005-0.040% Ti is an element that forms TiN to contribute to the refinement of the steel structure, and suppresses the formation of BN to ensure the effect of improving the hardenability of B.
  • the Ti content is less than 0.005%, the effect of addition may not be sufficiently exhibited. Therefore, the Ti content is 0.005% or more.
  • the Ti content is preferably 0.008% or more.
  • the Ti content is 0.040% or less.
  • the Ti content is preferably 0.003% or less.
  • B 0.0005 to 0.0050% B is an element that can improve hardenability and contribute to an improvement in hardness. If the B content is less than 0.0005%, the effect of addition may not be sufficiently exhibited, and quenching unevenness may occur. As a result, a hardness difference ⁇ Hv in the thickness direction, which will be described later, may increase. Therefore, the B content is 0.0005% or more. The B content is preferably 0.0008% or more.
  • the B content is 0.0050% or less.
  • the B content is preferably 0.040% or less.
  • N 0-0.005%
  • N is an element that forms fine nitrides and can contribute to refinement of the steel structure.
  • the N content exceeds 0.005%, coarse nitrides are formed, which may deteriorate cold workability and toughness. Therefore, the N content is 0.005% or less.
  • the N content is preferably 0.003% or less.
  • the N content may be 0% or greater than 0%. From the viewpoint of manufacturing cost, the N content may be 0.0001% or more.
  • O 0 to 0.005%
  • O is an element that can form oxide-based inclusions and impair cold workability and toughness.
  • the O content exceeds 0.005%, coarse oxide-based inclusions are formed, which may deteriorate cold workability and toughness. Therefore, the O content is 0.005% or less.
  • the O content is preferably 0.003% or less.
  • the O content may be 0% or greater than 0%. From the viewpoint of production cost, the O content may be 0.0001% or more.
  • Ca 0-0.0050% Ca is an optional element. Therefore, the Ca content may be 0% or greater than 0%. Ca is an element that can control the shape of inclusions, homogenize the steel structure, and contribute to the improvement of the cold workability of the steel structure. From the viewpoint of such effects, the Ca content is preferably 0.0005% or more, more preferably 0.0008% or more. On the other hand, when the Ca content exceeds 0.0050%, inclusions may be excessively formed and the cold workability may deteriorate. Therefore, the Ca content is preferably 0.0050% or less, more preferably 0.0035% or less.
  • Mg 0-0.0050% Mg is an optional element. Therefore, the Mg content may be 0% or greater than 0%. Mg is an element that can control the shape of inclusions, homogenize the steel structure, and contribute to the improvement of the cold workability of the steel structure. From the viewpoint of such effects, the Mg content is preferably 0.0005% or more, more preferably 0.0008% or more. On the other hand, if the Mg content exceeds 0.005%, inclusions may be excessively formed and the cold workability of the steel structure may deteriorate. Therefore, the Mg content is preferably 0.0050% or less, more preferably 0.0035% or less.
  • REM 0-0.0050% REM is an optional element. Therefore, the REM content may be 0% or greater than 0%. wherein REM is selected from the group consisting of the rare earth elements, i.e. Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu means at least one element Also, the REM content means the total content of rare earth elements. REM is an element that can control the shape of inclusions, homogenize the steel structure, and contribute to the improvement of the cold workability of the annealed structure. From the viewpoint of such effects, the REM content is preferably 0.0005% or more, more preferably 0.0008% or more.
  • the REM content is preferably 0.0050% or less, more preferably 0.0035% or less.
  • the Cr content may be 0% or greater than 0%.
  • Cr is an element that can contribute to improving the strength of the steel structure. From the viewpoint of such effects, the Cr content is preferably 0.01% or more, more preferably 0.03% or more.
  • the Cr content is preferably 0.50% or less, more preferably 0.10% or less, and still more preferably 0.07% or less.
  • Ni is an optional element. Therefore, the Ni content may be 0% or more than 0%. Ni is an element that can contribute to improving the strength of the steel structure. From the viewpoint of such effects, the Ni content is preferably 0.01% or more, more preferably 0.03% or more. On the other hand, if the Ni content exceeds 0.50%, it may segregate at grain boundaries and the homogeneity of the steel structure may deteriorate, resulting in deterioration of cold workability and toughness. Therefore, the Ni content is preferably 0.50% or less, more preferably 0.10% or less, and even more preferably 0.07% or less.
  • Cu 0-0.50% Cu is an optional element. Therefore, the Cu content may be 0% or greater than 0%. Cu is an element that can contribute to improving the strength of the steel structure. From the viewpoint of such effects, the Cu content is preferably 0.01% or more, more preferably 0.03% or more. On the other hand, if the Cu content exceeds 0.50%, the weldability of the steel may deteriorate, and the mechanical properties of the electric resistance weld may deteriorate. Therefore, the Cu content is preferably 0.50% or less, more preferably 0.10% or less, and even more preferably 0.07% or less.
  • Nb 0-0.10%
  • the Nb content may be 0%, may be greater than 0%, or may be greater than 0%.
  • Nb is an element that can contribute to refinement of the steel structure and improvement of strength. From the viewpoint of such effects, the Nb content is preferably 0.01% or more, more preferably 0.03% or more.
  • the Nb content is preferably 0.10% or less, more preferably 0.05% or less, and still more preferably 0.03% or less.
  • Mo 0-0.50% Mo is an optional element. Therefore, the Mo content may be 0% or greater than 0%. Mo is an element that can contribute to improving the strength of the steel structure. From the viewpoint of such effects, the Mo content is preferably 0.01% or more, more preferably 0.03% or more. On the other hand, if the Mo content exceeds 0.50%, the weldability of the steel may deteriorate, and the mechanical properties of the electric resistance welded joint may deteriorate. Therefore, the Mo content is preferably 0.50% or less, more preferably 0.35% or less.
  • V 0-0.20%
  • V is an arbitrary element. Therefore, the V content may be 0% or greater than 0%.
  • V is an element that can contribute to refining the steel structure and improving strength. From the viewpoint of such effects, the V content is preferably 0.01% or more, more preferably 0.03% or more.
  • the V content is preferably 0.20% or less, more preferably 0.10% or less.
  • Impurities refer to components contained in raw materials (e.g., ore, scrap, etc.) or components mixed in during the manufacturing process and not intentionally included in steel.
  • Impurities include all elements other than those mentioned above. Only one element or two or more elements may be used as impurities.
  • Impurities include, for example, Sb, Sn, W, Co, As, Pb, Bi, H, and the like.
  • Sb, Sn, Co, and As are mixed in a content of 0.1% or less
  • Pb and Bi are mixed in a content of 0.005% or less, for example.
  • contamination with a content of 0.0004% or less is possible.
  • There is no particular need to control the contents of other elements as long as they are within normal ranges.
  • the chemical composition of the base material is Ca: 0.0005 to 0.0050%, Mg: 0.0005-0.0050%, REM: 0.0005 to 0.0050%, Cr: 0.01 to 0.50%, Ni: 0.01 to 0.50%, Cu: 0.01-0.50%, Nb: 0.01 to 0.10%, Mo: 0.01 to 0.50%, and V: 0.01-0.20%
  • the steel structure of the base material portion is a ferrite-pearlite mixed structure.
  • the steel structure of the base material is confirmed as follows.
  • the center of the wall thickness at the 180° position of the base material in the C cross section of the electric resistance welded steel pipe (that is, the position shifted by 180° in the pipe circumferential direction from the electric resistance welded part) is used as an observation surface, and this observation surface is observed with an optical microscope at a magnification of 100 times. Observe at and confirm the steel structure.
  • the cementite in the pearlite in the ferrite-pearlite mixed structure may be lamellar cementite or cementite obtained by dividing lamellar cementite.
  • the hardness of the base metal portion of the electric resistance welded steel pipe of the present disclosure (that is, the hardness before quenching) is 110 to 150 Hv. If the hardness before quenching is less than 110 Hv, the hardness required for automotive parts may not be obtained after quenching. Therefore, the hardness of the base material portion before quenching is 110 Hv or more, preferably 120 Hv or more. On the other hand, if the hardness before quenching exceeds 150 Hv, the cold workability of the steel structure may be impaired, and the life of the mold may be shortened. Therefore, the hardness of the base material before quenching is 150 Hv or less, preferably 140 Hv or less.
  • hardness means Vickers hardness measured according to JIS Z 2244 (2009) with a test force of 0.98N.
  • the hardness (that is, Vickers hardness) of the base metal portion of the electric resistance welded steel pipe of the present disclosure is obtained as follows.
  • the electric resistance welded portion is set at 0°, and clockwise, 90°, 180°, and 270° in the circumferential direction from the electric resistance welded portion.
  • ° position that is, base material 90 ° position, base material 180 ° position, and base material 270 ° position
  • a Vickers hardness test according to JIS Z 2244 (2009) is performed at each of the six measurement positions to obtain Vickers hardness (Hv).
  • the test force shall be 0.98N.
  • the arithmetic mean value of the obtained six Vickers hardnesses (measured values) is defined as "hardness of base material”.
  • ⁇ Size of ERW steel pipe> There is no particular limitation on the size of the electric resistance welded steel pipe of the present disclosure.
  • the outer diameter of the electric resistance welded steel pipe of the present disclosure is, for example, 19.0 to 114.3 mm.
  • the value (t/D value) obtained by dividing the wall thickness (t) of the base material portion by the outer diameter (D) of the electric resistance welded steel pipe is, for example, 0.02 to 0.30.
  • the thickness of the base material portion is, for example, 2.0 to 10.0 mm.
  • the electric resistance welded steel pipe of the present disclosure has moderate hardness after quenching.
  • a preferable range of hardness of the quenched electric resistance welded steel pipe of the present disclosure will be described.
  • the electric resistance welded steel pipe of the present disclosure has a heating temperature of 900 ° C., a heating time of 1 minute, a cooling rate after heating of 30 ° C./s, and a cooling ultimate temperature at the cooling rate of 50 ° C. to 0
  • the hardness that is, the hardness after quenching
  • the hardness after quenching is 650 to 800 Hv when quenching is performed under conditions within the range of °C.
  • the hardness after quenching is preferably 700 Hv or more.
  • the hardness after quenching is 800 Hv or less, it is advantageous in terms of machinability when further machining automobile parts manufactured by subjecting the electric resistance welded steel pipe of the present disclosure to cold working and quenching. .
  • the hardness after quenching is preferably 770 Hv or less.
  • the hardness of the electric resistance welded steel pipe of the present disclosure after quenching is obtained in the same manner as the hardness of the base metal portion (that is, the hardness before quenching) of the electric resistance welded steel pipe of the present disclosure described above.
  • the hardness at the position of 1/4 thickness from the outer surface of the electric resistance welded steel pipe at the base material 180 ° position The absolute value of the difference between the maximum and minimum values of the hardness at the position of 1/2 thickness from the outer surface of the electric resistance welded steel pipe and the hardness at the position of 3/4 thickness from the outer surface of the electric resistance welded steel pipe (hereinafter referred to as the thickness
  • the hardness difference ⁇ Hv in the thickness direction) is preferably 50 Hv or less.
  • Manufacturing method X An example of a manufacturing method (hereinafter referred to as “manufacturing method X”) for manufacturing the electric resistance welded steel pipe of the present disclosure will be described below.
  • the following manufacturing method X is a manufacturing method of an electric resistance welded steel pipe of an example described later.
  • Manufacturing method X is Including the base material portion A and the electric resistance welded portion A, the chemical composition of the base material portion A is the “chemical composition in the present disclosure” described above, and the steel structure of the base material portion A is a ferrite-pearlite mixed structure.
  • the "chemical composition in the present disclosure” in which the Si content is reduced to 0.20% or less and the Mn content is reduced to 0.70% or less, and the heat treatment under the conditions described later.
  • the electric resistance welded steel pipe of the present disclosure having a hardness of the base material portion of 110 to 150 Hv can be produced.
  • the as-rolled electric resistance welded steel pipe preparation step in manufacturing method X is a step of preparing the above-described as-rolled electric resistance welded steel pipe. This step may be a step of simply preparing the pre-manufactured as-rolled electric resistance welded steel pipe, or may be a step of manufacturing the above-described as-rolled electric resistance welded steel pipe.
  • Azroll ERW steel pipe Prepare a hot coil made of a hot-rolled steel sheet having the chemical composition in the present disclosure, A hot-rolled steel sheet is unwound from the hot coil, and the hot-rolled steel sheet unwound from the hot coil is roll-formed to form an open pipe, It can be produced by forming an electric resistance welded portion A by electric resistance welding the butt portion of the obtained open pipe.
  • the seam heat treatment may be applied to the electric resistance welded portion after the electric resistance welded portion is formed.
  • Manufacturing method X includes a heat treatment step of heat treating the as-rolled electric resistance welded steel pipe under the following heat treatment conditions.
  • the heat treatment temperature (heating temperature) to 720°C or higher, it can be realized that the hardness of the base metal portion is 150 Hv or lower in the manufactured electric resistance welded steel pipe.
  • the hardness of the base metal portion of the manufactured electric resistance welded steel pipe can be realized to be 150 Hv or less.
  • the hardness of the base metal portion of the manufactured electric resistance welded steel pipe can be realized to be 150 Hv or less.
  • the heat treatment time (holding time at the heating temperature) is preferably 10 minutes or less.
  • the hardness of the base metal portion of the manufactured electric resistance welded steel pipe can be realized to be 150 Hv or less.
  • the heat treatment time (holding time at the heating temperature) is preferably 5 minutes or longer.
  • the hardness of the base metal portion of the manufactured electric resistance welded steel pipe is 150 Hv or less by cooling at a cooling rate of 1.0° C./s or less when cooling from the heat treatment temperature to “heat treatment temperature ⁇ 100° C.” can be realized.
  • the lower limit of the cooling rate when cooling from the heat treatment temperature to "heat treatment temperature -100°C” is not particularly limited, but the lower limit is, for example, 0.01°C/s.
  • Cooling methods for cooling from the heat treatment temperature to "heat treatment temperature -100°C" include, for example, air cooling and furnace cooling.
  • the cooling rate after reaching the "heat treatment temperature -100°C" by cooling for example air cooling.
  • Manufacturing method X may include other steps than the steps described above.
  • a pipe drawing step of drawing an electric resistance welded steel pipe may be included between the preparation step and the heat treatment step.
  • Conditions for tube drawing in the tube drawing step include, for example, a condition that the area reduction rate is 20 to 50%.
  • the manufacturing method of the automobile part of the present disclosure includes the step of subjecting the electric resistance welded steel pipe of the present disclosure described above to cold working and quenching in this order to obtain the automobile part. According to the manufacturing method of the automobile component of the present disclosure, the same effects as those of the electric resistance welded steel pipe of the present disclosure are exhibited.
  • tempering may be further performed after quenching.
  • cold working is performed using a dedicated mold.
  • the manufacturing method of the automobile part of the present disclosure uses the electric resistance welded steel pipe of the present disclosure to produce the automobile part, so that the life of the mold can be extended.
  • Automotive parts include, for example, rack bars, drive shafts, transmission shaft stators, and the like.
  • Hot coils made of hot-rolled steel sheets (thickness 2.0 to 10.0 mm) having the chemical compositions of steel grades A to N shown in Table 1 were prepared. Specifically, REM in steel types B, D, G, and J is Ce.
  • the hot-rolled steel sheet is unwound from the hot coil, the hot-rolled steel sheet unwound from the hot coil is roll-formed to form an open pipe, and the butt portions of the obtained open pipe are electric resistance welded to form an electric resistance welded portion A.
  • As-rolled electric resistance welded steel pipes having the wall thicknesses and outer diameters shown in Table 2 were manufactured by forming.
  • the steel structure of the base metal portion of the electric resistance welded steel pipe for automobile parts was confirmed by the method described above, the steel structure was a ferrite-pearlite mixed structure in all of the examples and comparative examples.
  • ⁇ Quenching of electric resistance welded steel pipes for automobile parts For electric resistance welded steel pipes for automobile parts, a heating temperature of 900 ° C., a heating time of 1 minute, a cooling rate (A) after heating of 30 ° C./s, and a cooling ultimate temperature of 50 ° C. to 0 ° C. at the above cooling rate (A) Quenching conditions were applied.
  • the chemical composition of the base metal portion is the chemical composition in the present disclosure
  • the steel structure of the base metal portion is a ferrite-pearlite mixed structure
  • the hardness of the base metal portion is 110.
  • the electric resistance welded steel pipes for automobile parts of each example having a hardness of up to 150 Hv had an appropriate hardness after quenching.
  • the electric resistance welded steel pipe for automotive parts of each example has a hardness of 150 Hv or less in the base material portion, so it is considered to be excellent in cold workability and also excellent in the life of the mold used for cold working.
  • the results of the comparative examples were as follows.
  • Comparative Example 1 in which the C content was too small in the chemical composition of the base material portion, the hardness after quenching was insufficient.
  • Comparative Example 2 in which the B content was too small in the chemical composition of the base material portion, the hardness difference ⁇ Hv in the thickness direction was excessive.
  • Comparative Example 3 in which the Si content and Mn content were too high in the chemical composition of the base material, the hardness of the base material exceeded 150 Hv.
  • Comparative Example 4 in which the C content was too high in the chemical composition of the base material the hardness of the base material exceeded 150 Hv.
  • the chemical composition of the base material is the chemical composition in the present disclosure
  • the hardness of the base material exceeded 150 Hv in Comparative Examples 5 to 7 in which the heating temperature in the heat treatment step was too low.
  • Comparative Example 8 in which the chemical composition of the base material contained too much Si, the hardness of the base material exceeded 150 Hv.
  • Comparative Example 9 in which the Mn content was too high in the chemical composition of the base material, the hardness of the base material exceeded 150 Hv.
  • Comparative Example 10 in which the Ti content was too low in the chemical composition of the base material portion, the hardness after quenching was insufficient.
  • the chemical composition of the base material is the chemical composition in the present disclosure
  • Comparative Example 11 in which the heat treatment process was not performed
  • the hardness of the base material exceeded 150 Hv.
  • the chemical composition of the base material is the chemical composition in the present disclosure
  • Comparative Example 12 in which the heating temperature in the heat treatment step was too high, the hardness of the base material exceeded 150 Hv.
  • the chemical composition of the base metal part is the chemical composition in the present disclosure, and the as-rolled electric resistance welded steel pipe was subjected to heating at 900 ° C. for 10 minutes, air cooling, 23% drawing, heating at 720 ° C. for 10 minutes, and air cooling.
  • the hardness of the base material portion was over 150 Hv.
  • Comparative Example 14 in which the heating time in the heat treatment step was too long, the hardness of the base material exceeded 150 Hv.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

The present invention is an electric resistance welded steel pipe for an automobile component including a base material part and an electric resistance welded part. The chemical composition of the base material part includes, by mass, 0.42-0.48% of C, 0.01-0.20% of Si, 0.10-0.70% of Mn, 0-0.030% of P, 0-0.030% of S, 0.005-0.050% of Al, 0.005-0.040% of Ti, and 0.0005-0.0050% of B, with the remainder made up by Fe and impurities. The steel structure of the base material part is a ferrite-pearlite mixed structure, and the hardness of the base material part is 110-150 Hv.

Description

自動車部品用電縫鋼管、及び、自動車部品の製造方法Electric resistance welded steel pipe for automobile parts, and method for manufacturing automobile parts
 本開示は、自動車部品用電縫鋼管、及び、自動車部品の製造方法に関する。 The present disclosure relates to an electric resistance welded steel pipe for automobile parts and a method for manufacturing automobile parts.
 従来より、素材として鋼管を用い、ラックバー等の自動車部品を製造する技術が知られている(例えば、特許文献1~5参照)。
 特許文献6及び7には、自動車部品用又は機械構造用の電縫鋼管であって、冷間加工用の電縫鋼管が開示されている。
 特許文献8には、自動車部品用の高炭素鋼管として、フェライト相である基地相中にセメンタイト粒子が微細分散した組織を有する高炭素鋼管が開示されている。
2. Description of the Related Art Conventionally, techniques for manufacturing automobile parts such as rack bars using steel pipes as materials have been known (see, for example, Patent Documents 1 to 5).
Patent Documents 6 and 7 disclose electric resistance welded steel pipes for automobile parts or machine structures, which are for cold working.
Patent Document 8 discloses, as a high-carbon steel pipe for automobile parts, a high-carbon steel pipe having a structure in which cementite particles are finely dispersed in a matrix phase that is a ferrite phase.
 特許文献1:特開2003-094140号公報
 特許文献2:特開2007-253190号公報
 特許文献3:特開2008-044533号公報
 特許文献4:特許第4798674号公報
 特許文献5:特開2004-190086号公報
 特許文献6:特許第3999915号公報
 特許文献7:特許第4486516号公報
 特許文献8:特許第5679115号公報
Patent Document 1: JP-A-2003-094140 Patent Document 2: JP-A-2007-253190 Patent Document 3: JP-A-2008-044533 Patent Document 4: Japanese Patent No. 4798674 Patent Document 5: JP-A-2004- Patent Document 6: Japanese Patent No. 3999915 Patent Document 7: Japanese Patent No. 4486516 Patent Document 8: Japanese Patent No. 5679115
 自動車部品用電縫鋼管を金型を用いて冷間加工し、次いで焼入れして自動車部品(例えばラックバー)を製造することを想定した場合、自動車部品用電縫鋼管に対し、冷間加工性及び金型寿命に優れることが要求される場合がある。
 更に、製造される自動車部品の硬度及び機械加工性を確保する観点から、自動車部品用電縫鋼管に対し、焼入れ後の硬度が適度であること(即ち、高すぎず低すぎないこと)が要求される場合がある。
Assuming that electric resistance welded steel pipes for automobile parts are cold-worked using a mold and then quenched to manufacture automobile parts (for example, rack bars), the cold workability of electric resistance welded steel pipes for automobile parts is And there are cases where it is required to be excellent in mold life.
Furthermore, from the viewpoint of ensuring the hardness and machinability of the manufactured automobile parts, the electric resistance welded steel pipes for automobile parts are required to have an appropriate hardness after quenching (that is, neither too high nor too low). may be
 ここで、「金型寿命に優れる」とは、自動車部品用電縫鋼管を冷間加工する際に用いる金型の寿命を長くすることができることを意味する。 Here, "excellent mold life" means that the life of the mold used when cold working electric resistance welded steel pipes for automobile parts can be extended.
 本開示の課題は、冷間加工性及び金型寿命に優れ、かつ、焼入れ後の硬さが適度である自動車部品用電縫鋼管、並びに、この自動車部品用電縫鋼管を用いて自動車部品を製造するための、自動車部品の製造方法を提供することである。 An object of the present disclosure is to provide electric resistance welded steel pipes for automotive parts that are excellent in cold workability and mold life and have moderate hardness after quenching, and to manufacture automobile parts using the electric resistance welded steel pipes for automotive parts. To provide a method for manufacturing automobile parts.
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 母材部及び電縫溶接部を含み、
 前記母材部の化学組成が、質量%で、
C :0.42~0.48%、
Si:0.01~0.20%、
Mn:0.10~0.70%、
P :0~0.030%、
S :0~0.030%、
Al:0.005~0.050%、
Ti:0.005~0.040%、
B :0.0005~0.0050%、
N :0~0.005%、
O :0~0.005%、
Ca:0~0.0050%、
Mg:0~0.0050%、
REM:0~0.0050%、
Cr:0~0.50%、
Ni:0~0.50%、
Cu:0~0.50%、
Nb:0~0.10%、
Mo:0~0.50%、
V:0~0.20%、並びに、
残部:Fe及び不純物
からなり、
前記母材部の鋼組織が、フェライト-パーライト混合組織であり、
前記母材部の硬さが、110~150Hvである、
自動車部品用電縫鋼管。
<2> 前記母材部の化学組成が、質量%で、
Ca:0.0005~0.0050%、
Mg:0.0005~0.0050%、
REM:0.0005~0.0050%、
Cr:0.01~0.50%、
Ni:0.01~0.50%、
Cu:0.01~0.50%、
Nb:0.01~0.10%、
Mo:0.01~0.50%、並びに、
V:0.01~0.20%
の1種又は2種以上を含有する、
<1>に記載の自動車部品用電縫鋼管。
<3> 加熱温度が900℃であり、加熱時間が1分であり、加熱後の冷却速度が30℃/sであり、前記冷却速度での冷却到達温度が50℃~0℃の範囲内である条件の焼入れを施した場合の硬さが、650~800Hvである、
<1>又は<2>に記載の自動車部品用電縫鋼管。
<4> <1>~<3>のいずれか1つに記載の自動車部品用電縫鋼管に対し、冷間加工及び焼入れをこの順に施して自動車部品を得る工程を含む、自動車部品の製造方法。
Means for solving the above problems include the following aspects.
<1> Including the base metal portion and the electric resistance welded portion,
The chemical composition of the base material portion is, in mass %,
C: 0.42 to 0.48%,
Si: 0.01 to 0.20%,
Mn: 0.10-0.70%,
P: 0 to 0.030%,
S: 0 to 0.030%,
Al: 0.005 to 0.050%,
Ti: 0.005 to 0.040%,
B: 0.0005 to 0.0050%,
N: 0 to 0.005%,
O: 0 to 0.005%,
Ca: 0 to 0.0050%,
Mg: 0-0.0050%,
REM: 0 to 0.0050%,
Cr: 0 to 0.50%,
Ni: 0 to 0.50%,
Cu: 0-0.50%,
Nb: 0 to 0.10%,
Mo: 0-0.50%,
V: 0 to 0.20%, and
Balance: Fe and impurities,
The steel structure of the base material portion is a ferrite-pearlite mixed structure,
The hardness of the base material portion is 110 to 150 Hv,
Electric resistance welded steel pipes for automobile parts.
<2> The chemical composition of the base material portion is, in mass %,
Ca: 0.0005 to 0.0050%,
Mg: 0.0005-0.0050%,
REM: 0.0005 to 0.0050%,
Cr: 0.01 to 0.50%,
Ni: 0.01 to 0.50%,
Cu: 0.01-0.50%,
Nb: 0.01 to 0.10%,
Mo: 0.01 to 0.50%, and
V: 0.01-0.20%
containing one or more of
The electric resistance welded steel pipe for automobile parts according to <1>.
<3> The heating temperature is 900 ° C., the heating time is 1 minute, the cooling rate after heating is 30 ° C./s, and the cooling temperature at the cooling rate is within the range of 50 ° C. to 0 ° C. The hardness when quenching under certain conditions is 650 to 800 Hv,
The electric resistance welded steel pipe for automobile parts according to <1> or <2>.
<4> A method for manufacturing an automobile part, comprising a step of subjecting the electric resistance welded steel pipe for automobile parts according to any one of <1> to <3> to cold working and quenching in this order to obtain the automobile part. .
 本開示によれば、冷間加工性及び金型寿命に優れ、かつ、焼入れ後の硬さが適度である自動車部品用電縫鋼管、並びに、この自動車部品用電縫鋼管を用いて自動車部品を製造するための、自動車部品の製造方法が提供される。 According to the present disclosure, an electric resistance welded steel pipe for automobile parts that is excellent in cold workability and mold life and has an appropriate hardness after quenching, and an electric resistance welded steel pipe for automobile parts is used to manufacture automobile parts. A method for manufacturing an automotive component is provided.
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本開示において、成分(元素)の含有量を示す「%」は、「質量%」を意味する。
 本開示において、C(炭素)の含有量を、「C含有量」と表記することがある。他の元素の含有量についても同様に表記することがある。
 本開示において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
In the present disclosure, a numerical range represented using "to" means a range including the numerical values described before and after "to" as lower and upper limits.
In the present disclosure, "%" indicating the content of a component (element) means "% by mass".
In the present disclosure, the content of C (carbon) may be referred to as "C content". Contents of other elements may also be expressed similarly.
In the present disclosure, the term "step" includes not only independent steps, but also if the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps. .
 本開示において、母材部(base metal portion)とは、電縫鋼管における、電縫溶接部及び熱影響部以外の部分を指す。ここで、熱影響部(heat affected zone;「HAZ」と称されることがある)とは、電縫溶接部の近傍であって、電縫溶接及びシーム熱処理による熱の影響を受けた部分を指す。 In the present disclosure, the base metal portion refers to a portion of an electric resistance welded steel pipe other than the electric resistance welded portion and the heat affected zone. Here, the heat affected zone (sometimes referred to as "HAZ") is the area near the electric resistance welded part that is affected by heat due to electric resistance welding and seam heat treatment. Point.
 本開示において、「アズロール電縫鋼管(As-rolled electric resistance welded steel pipe)」とは、造管後、シーム熱処理以外の熱処理が施されていない電縫鋼管を指す。
 「造管」とは、ホットコイルから巻き出された熱延鋼板をロール成形することによりオープン管とし、得られたオープン管の突合せ部を電縫溶接して電縫溶接部を形成するまでの過程を指す。
 「ホットコイル」とは、ホットストリップミルを用いて製造され、コイル状に巻き取られた熱延鋼板を意味する。
 「ロール成形」とは、ホットコイルから巻き出された熱延鋼板を、連続的に曲げ加工してオープン管状に成形することを指す。
In the present disclosure, "as-rolled electric resistance welded steel pipe" refers to an electric resistance welded steel pipe that has not been subjected to heat treatment other than seam heat treatment after pipe making.
“Tube-making” refers to the process of forming an open pipe by roll-forming a hot-rolled steel sheet unwound from a hot coil, and forming an electric-resistance welded portion by electric resistance welding of the butt portions of the obtained open pipe. refers to the process
"Hot coil" means a hot-rolled steel sheet produced using a hot strip mill and wound into a coil.
“Roll forming” refers to continuously bending a hot-rolled steel sheet unwound from a hot coil into an open tubular shape.
 ホットストリップミル(Hot strip mill)を用いて製造される熱延鋼板(Hot-rolled steel sheet)は、長尺の鋼板(continuous steel sheet)である点で、厚板ミル(plate mill)を用いて製造される厚鋼板(steel plate)とは異なる。
 厚鋼板(steel plate)は、長尺の鋼板(continuous steel sheet)ではないため、連続的な曲げ加工である、ロール成形に使用することはできない。
 電縫鋼管は、以上の点で、厚鋼板を用いて製造される溶接鋼管(例えば、UOE鋼管)とは明確に区別される。
Hot-rolled steel sheet manufactured using a hot strip mill is a continuous steel sheet. It differs from the steel plate that is produced.
Steel plate cannot be used for roll forming, which is a continuous bending process, because it is not a continuous steel sheet.
Electric resistance welded steel pipes are clearly distinguished from welded steel pipes (for example, UOE steel pipes) manufactured using thick steel plates in the above points.
〔自動車部品用電縫鋼管〕
 本開示の自動車部品用電縫鋼管(以下、単に「電縫鋼管」ともいう)は、
 母材部及び電縫溶接部を含み、
 母材部の化学組成が、質量%で、
C :0.42~0.48%、
Si:0.01~0.20%、
Mn:0.10~0.70%、
P :0~0.030%、
S :0~0.030%、
Al:0.005~0.050%、
Ti:0.005~0.040%、
B :0.0005~0.0050%、
N :0~0.005%、
O :0~0.005%、
Ca:0~0.0050%、
Mg:0~0.0050%、
REM:0~0.0050%、
Cr:0~0.50%、
Ni:0~0.50%、
Cu:0~0.50%、
Nb:0~0.10%、
Mo:0~0.50%、
V:0~0.20%、並びに、
残部:Fe及び不純物
からなり、
母材部の鋼組織が、フェライト-パーライト混合組織であり、
母材部の硬さ(以下、「焼入れ前の硬さ」ともいう)が、110~150Hvである。
[ERW steel pipes for automobile parts]
The electric resistance welded steel pipe for automobile parts of the present disclosure (hereinafter also simply referred to as "electric resistance welded steel pipe") is
Including the base material part and the electric resistance welding part,
The chemical composition of the base material is % by mass,
C: 0.42 to 0.48%,
Si: 0.01 to 0.20%,
Mn: 0.10-0.70%,
P: 0 to 0.030%,
S: 0 to 0.030%,
Al: 0.005 to 0.050%,
Ti: 0.005 to 0.040%,
B: 0.0005 to 0.0050%,
N: 0 to 0.005%,
O: 0 to 0.005%,
Ca: 0 to 0.0050%,
Mg: 0-0.0050%,
REM: 0 to 0.0050%,
Cr: 0 to 0.50%,
Ni: 0 to 0.50%,
Cu: 0-0.50%,
Nb: 0 to 0.10%,
Mo: 0-0.50%,
V: 0 to 0.20%, and
Balance: Fe and impurities,
The steel structure of the base material is a ferrite-pearlite mixed structure,
The hardness of the base material portion (hereinafter also referred to as “hardness before quenching”) is 110 to 150 Hv.
 本開示の電縫鋼管は、冷間加工性及び金型寿命に優れ、かつ、焼入れ後の硬さが適度である(即ち、高すぎず低すぎない)。 The electric resistance welded steel pipe of the present disclosure is excellent in cold workability and mold life, and has an appropriate hardness after quenching (that is, neither too high nor too low).
 上述した冷間加工性及び金型寿命の効果には、母材部の硬さ(即ち、焼入れ前の硬さ)が硬すぎないこと、具体的には150Hv以下であることが寄与している。 The effects of cold workability and mold life described above are contributed by the fact that the hardness of the base material (that is, the hardness before quenching) is not too hard, specifically 150 Hv or less. .
 焼入れ後の硬さが適度であるという効果には、母材部の化学組成(例えば、母材部の硬さを適正にするためにC含有量が0.42%以上であること、及び、後述の肉厚方向の硬さ差ΔHvを小さくするためにB含有量が0.0005%以上であること)、及び、母材部の硬さ(即ち、焼入れ前の硬さ)が110~150Hvであることが寄与している。
 本開示の電縫鋼管を焼入れした場合の、焼入れされた電縫鋼管の硬さの好ましい範囲については後述する。
The effect that the hardness after quenching is appropriate includes the chemical composition of the base material (for example, the C content is 0.42% or more to make the hardness of the base material appropriate, and B content is 0.0005% or more in order to reduce the hardness difference ΔHv in the thickness direction described later), and the hardness of the base material (that is, the hardness before quenching) is 110 to 150 Hv is contributing.
When the electric resistance welded steel pipe of the present disclosure is quenched, the preferred range of hardness of the quenched electric resistance welded steel pipe will be described later.
 本開示の電縫鋼管において、母材部の硬さが110~150Hvであることは、母材部の化学組成において、Si含有量が0.20%以下に、Mn含有量が0.70%以下に、それぞれ低減され、かつ、Bが適度に含有されているアズロール電縫鋼管に対し、一般的な焼ならしを施すことなく、所定の条件で熱処理することによって実現される(例えば、後述の製法X参照)。 In the electric resistance welded steel pipe of the present disclosure, the fact that the hardness of the base material is 110 to 150 Hv means that the chemical composition of the base material has a Si content of 0.20% or less and a Mn content of 0.70%. Below, it is realized by heat-treating the as-rolled electric resistance welded steel pipe in which B is appropriately reduced and B is appropriately contained under predetermined conditions without performing general normalizing (for example, (see manufacturing method X).
<母材部の化学組成>
 以下、本開示の電縫鋼管における母材部の化学組成(以下、「本開示における化学組成」ともいう)における各元素の含有量について説明する。
<Chemical Composition of Base Material>
The content of each element in the chemical composition of the base metal portion of the electric resistance welded steel pipe of the present disclosure (hereinafter also referred to as the “chemical composition of the present disclosure”) will be described below.
 C:0.42~0.48%
 Cは、鋼組織の冷間加工性を高め、かつ、自動車部品に要求される焼入れ後の硬さを確保するのに有効な元素である。
 C含有量が0.42%未満である場合には、焼入れ後の硬さが不足する場合がある。従って、C含有量は0.42%以上である。C含有量は、好ましくは0.43%以上である。
 一方、C含有量が0.48%を超えると、冷間加工性が低下する場合もある。また、焼入れ後の硬さが硬くなりすぎ、靱性が低下する場合がある。従って、C含有量は0.48%以下である。C含有量は、好ましくは0.47%以下である。
C: 0.42-0.48%
C is an effective element for enhancing the cold workability of the steel structure and ensuring the hardness after quenching required for automobile parts.
If the C content is less than 0.42%, the hardness after quenching may be insufficient. Therefore, the C content is 0.42% or more. The C content is preferably 0.43% or more.
On the other hand, when the C content exceeds 0.48%, the cold workability may deteriorate. In addition, the hardness after quenching may become too hard and the toughness may decrease. Therefore, the C content is 0.48% or less. The C content is preferably 0.47% or less.
 Si:0.01~0.20%
 Siは、硬さの向上に寄与するとともに、炭化物の析出を制御して冷間加工性の向上に寄与し得る元素である。
Si: 0.01-0.20%
Si is an element that contributes to the improvement of hardness and controls the precipitation of carbides to contribute to the improvement of cold workability.
 Si含有量が0.01%未満であると、精錬コストが大幅に増加するとともに、添加効果が十分に発現しない場合がある。従って、Si含有量は0.01%以上である。Si含有量は、好ましくは0.05%以上である。
 一方、Si含有量が0.20%を超えると、硬さが硬くなりすぎて冷間加工性が低下する場合がある。従って、Si含有量は0.20%以下である。Si含有量は、好ましくは0.15%以下である。
If the Si content is less than 0.01%, the refining cost will increase significantly, and the addition effect may not be sufficiently exhibited. Therefore, the Si content is 0.01% or more. The Si content is preferably 0.05% or more.
On the other hand, if the Si content exceeds 0.20%, the hardness may become too high and the cold workability may deteriorate. Therefore, the Si content is 0.20% or less. The Si content is preferably 0.15% or less.
 Mn:0.10~0.70%
 Mnは、硬さの向上に寄与するとともに、炭化物の析出を制御して冷間加工性の向上に寄与し得る元素である。
Mn: 0.10-0.70%
Mn is an element that contributes to the improvement of hardness and can contribute to the improvement of cold workability by controlling the precipitation of carbides.
 Mn含有量が0.10%未満であると、添加効果が十分に発現しない場合がある。従って、Mnは0.10%以上である。Mn含有量は、好ましくは0.25%以上である。
 一方、Mn含有量が0.70%を超えると、硬さが硬くなりすぎて冷間加工性が低下する場合がある。従って、Mn含有量は0.70%以下である。Mn含有量は、好ましくは0.55以下である。
If the Mn content is less than 0.10%, the effect of addition may not be sufficiently exhibited. Therefore, Mn is 0.10% or more. The Mn content is preferably 0.25% or more.
On the other hand, if the Mn content exceeds 0.70%, the hardness may become too high and the cold workability may deteriorate. Therefore, the Mn content is 0.70% or less. The Mn content is preferably 0.55 or less.
 P:0~0.030%
 Pは、粒界に偏析して、冷間加工性や靱性を阻害し得る元素である。
 P含有量が0.030%を超えると、冷間加工性や靭性が低下する場合がある。従って、P含有量は0.030%以下である。P含有量は、好ましくは0.020%以下である。
P: 0-0.030%
P is an element that segregates at grain boundaries and can impair cold workability and toughness.
If the P content exceeds 0.030%, cold workability and toughness may deteriorate. Therefore, the P content is 0.030% or less. The P content is preferably 0.020% or less.
 P含有量は、0%であってもよいし0%超であってもよい。
 製造コストの観点から、P含有量は、0.0001%以上であってもよい。
The P content may be 0% or more than 0%.
From the viewpoint of manufacturing cost, the P content may be 0.0001% or more.
 S:0~0.030%
 Sは、MnSを形成して、冷間加工性や靱性を阻害し得る元素である。
 S含有量が0.030%を超えると、冷間加工性や靭性が低下する場合がある。従って、S含有量は0.030%以下である。S含有量は、好ましくは0.020%以下である。
S: 0-0.030%
S is an element that forms MnS and can impair cold workability and toughness.
When the S content exceeds 0.030%, cold workability and toughness may deteriorate. Therefore, the S content is 0.030% or less. The S content is preferably 0.020% or less.
 S含有量は、0%であってもよいし0%超であってもよい。
 製造コストの観点から、S含有量は、0.0001%以上であってもよい。
The S content may be 0% or more than 0%.
From the viewpoint of manufacturing cost, the S content may be 0.0001% or more.
 Al:0.005~0.050%
 Alは、脱酸に有効な元素である。
 Al含有量が0.005%未満であると、添加効果が十分に発現しない場合がある。従って、Al含有量は0.005%以上である。Al含有量は、好ましくは0.03%以上である。
 一方、Al含有量が0.050%を超えると、粗大なAl酸化物が生成し、冷間加工性や靭性が低下する場合がある。従って、Al含有量は0.050%以下である。Al含有量は、好ましくは0.040%以下である。
Al: 0.005-0.050%
Al is an element effective for deoxidation.
If the Al content is less than 0.005%, the effect of addition may not be sufficiently exhibited. Therefore, the Al content is 0.005% or more. The Al content is preferably 0.03% or more.
On the other hand, when the Al content exceeds 0.050%, coarse Al oxides are formed, which may deteriorate cold workability and toughness. Therefore, the Al content is 0.050% or less. The Al content is preferably 0.040% or less.
 Ti:0.005~0.040%
 Tiは、TiNを形成して、鋼組織の微細化に寄与するとともに、BNの生成を抑制して、Bの焼入れ性向上効果を確保する元素である。
Ti: 0.005-0.040%
Ti is an element that forms TiN to contribute to the refinement of the steel structure, and suppresses the formation of BN to ensure the effect of improving the hardenability of B.
 Ti含有量が0.005%未満であると、添加効果が十分に発現しない場合がある。従って、Ti含有量は0.005%以上である。Ti含有量は、好ましくは0.008%以上である。
 一方、Ti含有量が0.040%を超えると、粗大なTi化合物が生成して、冷間加工性や靭性が低下する場合がある。従って、Ti含有量は0.040%以下である。Ti含有量は、好ましくは0.003%以下である。
If the Ti content is less than 0.005%, the effect of addition may not be sufficiently exhibited. Therefore, the Ti content is 0.005% or more. The Ti content is preferably 0.008% or more.
On the other hand, when the Ti content exceeds 0.040%, coarse Ti compounds are formed, which may deteriorate cold workability and toughness. Therefore, the Ti content is 0.040% or less. The Ti content is preferably 0.003% or less.
 B:0.0005~0.0050%
 Bは、焼入れ性を高めて、硬さの向上に寄与し得る元素である。
 B含有量が0.0005%未満であると、添加効果が十分に発現せず、焼入れ斑が発生する場合がある。その結果、後述の肉厚方向の硬さ差ΔHvが大きくなる場合がある。
 従って、B含有量は0.0005%以上である。B含有量は、好ましくは0.0008%以上である。
B: 0.0005 to 0.0050%
B is an element that can improve hardenability and contribute to an improvement in hardness.
If the B content is less than 0.0005%, the effect of addition may not be sufficiently exhibited, and quenching unevenness may occur. As a result, a hardness difference ΔHv in the thickness direction, which will be described later, may increase.
Therefore, the B content is 0.0005% or more. The B content is preferably 0.0008% or more.
 一方、B含有量が0.0050%を超えると、結晶粒界にB化合物が析出して、冷間加工性や靭性が低下する場合がある。従って、B含有量は0.0050%以下である。B含有量は、好ましくは0.040%以下である。 On the other hand, if the B content exceeds 0.0050%, the B compound may precipitate at the grain boundaries, degrading cold workability and toughness. Therefore, the B content is 0.0050% or less. The B content is preferably 0.040% or less.
 N:0~0.005%
 Nは、微細な窒化物を形成し、鋼組織の微細化に寄与し得る元素である。
 Nが0.005%を超えると、粗大な窒化物が生成し、冷間加工性や靭性が低下する場合がある。従って、N含有量は0.005%以下である。N含有量は、好ましくは0.003%以下である。
N: 0-0.005%
N is an element that forms fine nitrides and can contribute to refinement of the steel structure.
When the N content exceeds 0.005%, coarse nitrides are formed, which may deteriorate cold workability and toughness. Therefore, the N content is 0.005% or less. The N content is preferably 0.003% or less.
 N含有量は、0%であってもよいし0%超であってもよい。
 製造コストの観点から、N含有量は、0.0001%以上であってもよい。
The N content may be 0% or greater than 0%.
From the viewpoint of manufacturing cost, the N content may be 0.0001% or more.
 O:0~0.005%
 Oは、酸化物系介在物を形成して、冷間加工性や靭性を阻害し得る元素である。O含有量が0.005%を超えると、粗大な酸化物系介在物が生成して、冷間加工性や靭性が低下する場合がある。従って、O含有量は0.005%以下である。O含有量は、好ましくは0.003%以下である。
O: 0 to 0.005%
O is an element that can form oxide-based inclusions and impair cold workability and toughness. When the O content exceeds 0.005%, coarse oxide-based inclusions are formed, which may deteriorate cold workability and toughness. Therefore, the O content is 0.005% or less. The O content is preferably 0.003% or less.
 O含有量は、0%であってもよいし0%超であってもよい。
 製造コストの観点から、O含有量は、0.0001%以上であってもよい。
The O content may be 0% or greater than 0%.
From the viewpoint of production cost, the O content may be 0.0001% or more.
 Ca:0~0.0050%
 Caは、任意元素である。
 従って、Ca含有量は0%であってもよいし0%超であってもよい。
 Caは、介在物の形状を制御して、鋼組織を均質化し、鋼組織の冷間加工性の向上に寄与し得る元素である。かかる効果の観点から、Ca含有量は、好ましくは0.0005%以上であり、より好ましくは0.0008%以上である。
 一方、Ca含有量が0.0050%を超えると、介在物が過剰に生成して冷間加工性が低下する場合がある。従って、Ca含有量は、好ましくは0.0050%以下であり、より好ましくは0.0035%以下である。
Ca: 0-0.0050%
Ca is an optional element.
Therefore, the Ca content may be 0% or greater than 0%.
Ca is an element that can control the shape of inclusions, homogenize the steel structure, and contribute to the improvement of the cold workability of the steel structure. From the viewpoint of such effects, the Ca content is preferably 0.0005% or more, more preferably 0.0008% or more.
On the other hand, when the Ca content exceeds 0.0050%, inclusions may be excessively formed and the cold workability may deteriorate. Therefore, the Ca content is preferably 0.0050% or less, more preferably 0.0035% or less.
 Mg:0~0.0050%
 Mgは、任意元素である。
 従って、Mg含有量は0%であってもよいし0%超であってもよい。
 Mgは、介在物の形状を制御して鋼組織を均質化し、鋼組織の冷間加工性の向上に寄与し得る元素である。かかる効果の観点から、Mg含有量は、好ましくは0.0005%以上であり、より好ましくは0.0008%以上である。
 一方、Mg含有量が0.005%を超えると、介在物が過剰に生成して、鋼組織の冷間加工性が低下する場合がある。従って、Mg含有量は、好ましくは0.0050%以下であり、より好ましくは0.0035%以下である。
Mg: 0-0.0050%
Mg is an optional element.
Therefore, the Mg content may be 0% or greater than 0%.
Mg is an element that can control the shape of inclusions, homogenize the steel structure, and contribute to the improvement of the cold workability of the steel structure. From the viewpoint of such effects, the Mg content is preferably 0.0005% or more, more preferably 0.0008% or more.
On the other hand, if the Mg content exceeds 0.005%, inclusions may be excessively formed and the cold workability of the steel structure may deteriorate. Therefore, the Mg content is preferably 0.0050% or less, more preferably 0.0035% or less.
 REM:0~0.0050%
 REMは、任意元素である。
 従って、REM含有量は0%であってもよいし0%超であってもよい。
 ここで、REMは、希土類元素、即ち、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選択される少なくとも1種の元素を意味する。また、REM含有量は、希土類元素の総含有量を意味する。
 REMは、介在物の形状を制御して、鋼組織を均質化し、焼鈍組織の冷間加工性の向上に寄与し得る元素である。かかる効果の観点から、REM含有量は、好ましくは0.0005%以上であり、より好ましくは0.0008%以上である。
 一方、REM含有量が0.0050%を超えると、介在物が過剰に生成し、鋼組織の冷間加工性が低下する場合がある。従って、REM含有量は、好ましくは0.0050%以下であり、より好ましくは0.0035%以下である。
REM: 0-0.0050%
REM is an optional element.
Therefore, the REM content may be 0% or greater than 0%.
wherein REM is selected from the group consisting of the rare earth elements, i.e. Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu means at least one element Also, the REM content means the total content of rare earth elements.
REM is an element that can control the shape of inclusions, homogenize the steel structure, and contribute to the improvement of the cold workability of the annealed structure. From the viewpoint of such effects, the REM content is preferably 0.0005% or more, more preferably 0.0008% or more.
On the other hand, if the REM content exceeds 0.0050%, inclusions may be excessively formed and the cold workability of the steel structure may deteriorate. Therefore, the REM content is preferably 0.0050% or less, more preferably 0.0035% or less.
 Cr:0~0.50%
 Crは、任意元素である。
 従って、Cr含有量は0%であってもよいし0%超であってもよい。
 Crは、鋼組織の強度の向上に寄与し得る元素である。かかる効果の観点から、Cr含有量は、好ましくは0.01%以上であり、より好ましくは0.03%以上である。
 一方、Cr含有量が0.50%を超えると、粗大なCr化合物が生成して、鋼組織の均質性が低下し、冷間加工性や靭性が低下する場合がある。従って、Cr含有量は、好ましくは0.50%以下であり、より好ましくは0.10%以下であり、更に好ましくは0.07%以下である。
Cr: 0-0.50%
Cr is an optional element.
Therefore, the Cr content may be 0% or greater than 0%.
Cr is an element that can contribute to improving the strength of the steel structure. From the viewpoint of such effects, the Cr content is preferably 0.01% or more, more preferably 0.03% or more.
On the other hand, when the Cr content exceeds 0.50%, coarse Cr compounds are formed, and the homogeneity of the steel structure may deteriorate, resulting in deterioration of cold workability and toughness. Therefore, the Cr content is preferably 0.50% or less, more preferably 0.10% or less, and still more preferably 0.07% or less.
 Ni:0~0.50%
 Niは、任意元素である。
 従って、Ni含有量は0%であってもよいし0%超であってもよい。
 Niは、鋼組織の強度の向上に寄与し得る元素である。かかる効果の観点から、Ni含有量は、好ましくは0.01%以上であり、より好ましくは0.03%以上である。
 一方、Ni含有量が0.50%を超えると、結晶粒界に偏析して鋼組織の均質性が低下し、冷間加工性や靭性が低下する場合がある。従って、Ni含有量は、好ましくは0.50%以下であり、より好ましくは0.10%以下であり、更に好ましくは0.07%以下である。
Ni: 0-0.50%
Ni is an optional element.
Therefore, the Ni content may be 0% or more than 0%.
Ni is an element that can contribute to improving the strength of the steel structure. From the viewpoint of such effects, the Ni content is preferably 0.01% or more, more preferably 0.03% or more.
On the other hand, if the Ni content exceeds 0.50%, it may segregate at grain boundaries and the homogeneity of the steel structure may deteriorate, resulting in deterioration of cold workability and toughness. Therefore, the Ni content is preferably 0.50% or less, more preferably 0.10% or less, and even more preferably 0.07% or less.
 Cu:0~0.50%
 Cuは、任意元素である。
 従って、Cu含有量は0%であってもよいし0%超であってもよい。
 Cuは、鋼組織の強度の向上に寄与し得る元素である。かかる効果の観点から、Cu含有量は、好ましくは0.01%以上であり、より好ましくは0.03%以上である。
 一方、Cu含有量が0.50%を超えると、鋼の溶接性が低下し、電縫溶接部の機械特性が低下する場合がある。従って、Cu含有量は、好ましくは0.50%以下であり、より好ましくは0.10%以下であり、更に好ましくは0.07%以下である。
Cu: 0-0.50%
Cu is an optional element.
Therefore, the Cu content may be 0% or greater than 0%.
Cu is an element that can contribute to improving the strength of the steel structure. From the viewpoint of such effects, the Cu content is preferably 0.01% or more, more preferably 0.03% or more.
On the other hand, if the Cu content exceeds 0.50%, the weldability of the steel may deteriorate, and the mechanical properties of the electric resistance weld may deteriorate. Therefore, the Cu content is preferably 0.50% or less, more preferably 0.10% or less, and even more preferably 0.07% or less.
 Nb:0~0.10%
 Nbは、任意元素である。
 従って、Nb含有量は0%であってもよいし0%超であってもよいし0%超であってもよい。
 Nbは、鋼組織の微細化及び強度向上に寄与し得る元素である。かかる効果の観点から、Nb含有量は、好ましくは0.01%以上であり、より好ましくは0.03%以上である。
 一方、Nb含有量が0.10%を超えると、粗大なNb化合物が生成して、鋼組織の均質性が低下し、冷間加工性や靭性が低下する場合がある。従って、Nb含有量は、好ましくは0.10%以下であり、より好ましくは0.05%以下であり、更に好ましくは0.03%以下である。
Nb: 0-0.10%
Nb is an arbitrary element.
Therefore, the Nb content may be 0%, may be greater than 0%, or may be greater than 0%.
Nb is an element that can contribute to refinement of the steel structure and improvement of strength. From the viewpoint of such effects, the Nb content is preferably 0.01% or more, more preferably 0.03% or more.
On the other hand, when the Nb content exceeds 0.10%, coarse Nb compounds are formed, and the homogeneity of the steel structure may deteriorate, resulting in deterioration of cold workability and toughness. Therefore, the Nb content is preferably 0.10% or less, more preferably 0.05% or less, and still more preferably 0.03% or less.
 Mo:0~0.50%
 Moは、任意元素である。
 従って、Mo含有量は0%であってもよいし0%超であってもよい。
 Moは、鋼組織の強度向上に寄与し得る元素である。かかる効果の観点から、Mo含有量は、好ましくは0.01%以上であり、より好ましくは0.03%以上である。
 一方、Mo含有量が0.50%を超えると、鋼の溶接性が低下し、電縫溶接部の機械特性が低下する場合がある。従って、Mo含有量は、好ましくは0.50%以下であり、より好ましくは0.35%以下である。
Mo: 0-0.50%
Mo is an optional element.
Therefore, the Mo content may be 0% or greater than 0%.
Mo is an element that can contribute to improving the strength of the steel structure. From the viewpoint of such effects, the Mo content is preferably 0.01% or more, more preferably 0.03% or more.
On the other hand, if the Mo content exceeds 0.50%, the weldability of the steel may deteriorate, and the mechanical properties of the electric resistance welded joint may deteriorate. Therefore, the Mo content is preferably 0.50% or less, more preferably 0.35% or less.
 V:0~0.20%
 Vは、任意元素である。
 従って、V含有量は0%であってもよいし0%超であってもよい。
 Vは、鋼組織の微細化及び強度向上に寄与し得る元素である。かかる効果の観点から、V含有量は、好ましくは0.01%以上であり、より好ましくは0.03%以上である。
 一方、V含有量が0.20%を超えると、粗大なV化合物が生成して、鋼組織の均質性が低下し、冷間加工性や靭性が低下する場合がある。従って、V含有量は、好ましくは0.20%以下であり、より好ましくは0.10%以下である。
V: 0-0.20%
V is an arbitrary element.
Therefore, the V content may be 0% or greater than 0%.
V is an element that can contribute to refining the steel structure and improving strength. From the viewpoint of such effects, the V content is preferably 0.01% or more, more preferably 0.03% or more.
On the other hand, if the V content exceeds 0.20%, coarse V compounds are formed, and the homogeneity of the steel structure may deteriorate, resulting in deterioration of cold workability and toughness. Therefore, the V content is preferably 0.20% or less, more preferably 0.10% or less.
 残部:Fe及び不純物
 母材部の化学組成において、上述した各元素を除いた残部は、Fe及び不純物である。
 ここで、不純物とは、原材料(例えば、鉱石、スクラップ、等)に含まれる成分、または、製造の工程で混入する成分であって、意図的に鋼に含有させたものではない成分を指す。
 不純物としては、上述した元素以外のあらゆる元素が挙げられる。不純物としての元素は、1種のみであっても2種以上であってもよい。
 不純物として、例えば、Sb、Sn、W、Co、As、Pb、Bi、H、等が挙げられる。
 上述した元素のうち、例えば、Sb、Sn、Co、及びAsについては、例えば含有量0.1%以下の混入が、Pb及びBiについては、例えば含有量0.005%以下の混入が、Hについては、例えば含有量0.0004%以下の混入が、それぞれあり得る。
 その他の元素の含有量については、通常の範囲であれば、特に制御する必要はない。
Balance: Fe and Impurities In the chemical composition of the base material portion, the balance excluding the above elements is Fe and impurities.
Here, impurities refer to components contained in raw materials (e.g., ore, scrap, etc.) or components mixed in during the manufacturing process and not intentionally included in steel.
Impurities include all elements other than those mentioned above. Only one element or two or more elements may be used as impurities.
Impurities include, for example, Sb, Sn, W, Co, As, Pb, Bi, H, and the like.
Among the above elements, for example, Sb, Sn, Co, and As are mixed in a content of 0.1% or less, and Pb and Bi are mixed in a content of 0.005% or less, for example. With respect to, for example, contamination with a content of 0.0004% or less is possible.
There is no particular need to control the contents of other elements as long as they are within normal ranges.
 母材部の化学組成が、以下の元素の効果の観点から、
Ca:0.0005~0.0050%、
Mg:0.0005~0.0050%、
REM:0.0005~0.0050%、
Cr:0.01~0.50%、
Ni:0.01~0.50%、
Cu:0.01~0.50%、
Nb:0.01~0.10%、
Mo:0.01~0.50%、並びに、
V:0.01~0.20%
の1種又は2種以上を含有してもよい。
 これらの元素の含有量のより好ましい範囲は、それぞれ前述したとおりである。
From the viewpoint of the effect of the following elements, the chemical composition of the base material is
Ca: 0.0005 to 0.0050%,
Mg: 0.0005-0.0050%,
REM: 0.0005 to 0.0050%,
Cr: 0.01 to 0.50%,
Ni: 0.01 to 0.50%,
Cu: 0.01-0.50%,
Nb: 0.01 to 0.10%,
Mo: 0.01 to 0.50%, and
V: 0.01-0.20%
You may contain 1 type, or 2 or more types.
More preferable ranges for the contents of these elements are as described above.
<鋼組織>
 本開示の電縫鋼管において、母材部の鋼組織は、フェライト-パーライト混合組織である。
 母材部の鋼組織は、以下のようにして確認する。
 電縫鋼管のC断面における母材180°位置(即ち、電縫溶接部から管周方向に180°ずれた位置)の肉厚中央部を観察面とし、この観察面を光学顕微鏡により倍率100倍にて観察し、鋼組織を確認する。
 本開示の電縫鋼管において、フェライト-パーライト混合組織におけるパーライト中のセメンタイトは、ラメラーセメンタイトであってもよいし、ラメラーセメンタイトが分断されてなるセメンタイトであってもよい。
<Steel structure>
In the electric resistance welded steel pipe of the present disclosure, the steel structure of the base material portion is a ferrite-pearlite mixed structure.
The steel structure of the base material is confirmed as follows.
The center of the wall thickness at the 180° position of the base material in the C cross section of the electric resistance welded steel pipe (that is, the position shifted by 180° in the pipe circumferential direction from the electric resistance welded part) is used as an observation surface, and this observation surface is observed with an optical microscope at a magnification of 100 times. Observe at and confirm the steel structure.
In the electric resistance welded steel pipe of the present disclosure, the cementite in the pearlite in the ferrite-pearlite mixed structure may be lamellar cementite or cementite obtained by dividing lamellar cementite.
<母材部の硬さ>
 本開示の電縫鋼管における母材部の硬さ(即ち、焼入れ前の硬さ)は、110~150Hvである。
 焼入れ前の硬さが110Hv未満であると、焼入れ後に自動車部品として必要な硬さが得られない場合がある。従って、母材部の焼入れ前の硬さは110Hv以上であり、好ましくは120Hv以上である。
 一方、焼入れ前の硬さが150Hv超であると、鋼組織の冷間加工性が損なわれる場合や、金型寿命が低下する場合がある。従って、母材部の焼入れ前の硬さは150Hv以下であり、好ましくは140Hv以下である。
<Hardness of Base Material>
The hardness of the base metal portion of the electric resistance welded steel pipe of the present disclosure (that is, the hardness before quenching) is 110 to 150 Hv.
If the hardness before quenching is less than 110 Hv, the hardness required for automotive parts may not be obtained after quenching. Therefore, the hardness of the base material portion before quenching is 110 Hv or more, preferably 120 Hv or more.
On the other hand, if the hardness before quenching exceeds 150 Hv, the cold workability of the steel structure may be impaired, and the life of the mold may be shortened. Therefore, the hardness of the base material before quenching is 150 Hv or less, preferably 140 Hv or less.
 本開示において、硬さ(Hv)は、試験力を0.98Nとし、JIS Z 2244(2009)に準拠して測定されたビッカース硬さを意味する。 In the present disclosure, hardness (Hv) means Vickers hardness measured according to JIS Z 2244 (2009) with a test force of 0.98N.
 本開示の電縫鋼管における母材部の硬さ(即ち、ビッカース硬さ)は、以下のようにして求める。
 電縫鋼管のC断面(即ち、管軸方向に対して垂直な断面)において、電縫溶接部を0°とし、時計回りに、電縫溶接部から周方向に90°、180°、及び270°の各位置(即ち、母材90°位置、母材180°位置、及び母材270°位置)における、内表面から深さ0.5mmの位置(計3か所)と、外表面から深さ0.5mmの位置(計3か所)と、を測定位置(計6か所)とする。
 上記6か所の測定位置の各々において、JIS Z 2244(2009)に準拠したビッカース硬さ試験を実施して、ビッカース硬さ(Hv)を得る。試験力は0.98Nとする。
 得られた6つのビッカース硬さ(測定値)の算術平均値を、「母材部の硬さ」とする。
The hardness (that is, Vickers hardness) of the base metal portion of the electric resistance welded steel pipe of the present disclosure is obtained as follows.
In the C section of the electric resistance welded steel pipe (that is, the cross section perpendicular to the pipe axis direction), the electric resistance welded portion is set at 0°, and clockwise, 90°, 180°, and 270° in the circumferential direction from the electric resistance welded portion. ° position (that is, base material 90 ° position, base material 180 ° position, and base material 270 ° position), a position of 0.5 mm deep from the inner surface (three places in total) and a depth from the outer surface The position of 0.5 mm (three places in total) and the position of measurement (six places in total).
A Vickers hardness test according to JIS Z 2244 (2009) is performed at each of the six measurement positions to obtain Vickers hardness (Hv). The test force shall be 0.98N.
The arithmetic mean value of the obtained six Vickers hardnesses (measured values) is defined as "hardness of base material".
<電縫鋼管のサイズ>
 本開示の電縫鋼管のサイズには特に限定はない。
 本開示の電縫鋼管の外径は、例えば19.0~114.3mmである。
 本開示の電縫鋼管において、母材部の肉厚(t)を電縫鋼管の外径(D)で除した値(t/D値)は、例えば0.02~0.30である。
 本開示の電縫鋼管において、母材部の肉厚は、例えば2.0~10.0mmである。
<Size of ERW steel pipe>
There is no particular limitation on the size of the electric resistance welded steel pipe of the present disclosure.
The outer diameter of the electric resistance welded steel pipe of the present disclosure is, for example, 19.0 to 114.3 mm.
In the electric resistance welded steel pipe of the present disclosure, the value (t/D value) obtained by dividing the wall thickness (t) of the base material portion by the outer diameter (D) of the electric resistance welded steel pipe is, for example, 0.02 to 0.30.
In the electric resistance welded steel pipe of the present disclosure, the thickness of the base material portion is, for example, 2.0 to 10.0 mm.
<電縫鋼管の焼入れ後の好ましい硬さ>
 前述したとおり、本開示の電縫鋼管は、焼入れ後の硬さが適度である。
 以下、本開示の電縫鋼管を焼入れした場合の、焼入れされた電縫鋼管の硬さの好ましい範囲について説明する。
<Preferred hardness of electric resistance welded steel pipe after quenching>
As described above, the electric resistance welded steel pipe of the present disclosure has moderate hardness after quenching.
Hereinafter, a preferable range of hardness of the quenched electric resistance welded steel pipe of the present disclosure will be described.
 本開示の電縫鋼管は、加熱温度が900℃であり、加熱時間が1分であり、加熱後の冷却速度が30℃/sであり、上記冷却速度での冷却到達温度が50℃~0℃の範囲内である条件の焼入れを施した場合の硬さ(即ち、焼入れ後の硬さ)が、650~800Hvであることが好ましい。
 焼入れ後の硬さが650Hv以上であると、本開示の電縫鋼管に対して冷間加工及び焼入れを施して製造される自動車部品の硬さ及び耐摩耗性が確保され得る。焼入れ後の硬さは、好ましくは700Hv以上である。
 焼入れ後の硬さが800Hv以下であると、本開示の電縫鋼管に対して冷間加工及び焼入れを施して製造される自動車部品を更に機械加工する際の機械加工性の点で有利である。焼入れ後の硬さは、好ましくは770Hv以下である。
The electric resistance welded steel pipe of the present disclosure has a heating temperature of 900 ° C., a heating time of 1 minute, a cooling rate after heating of 30 ° C./s, and a cooling ultimate temperature at the cooling rate of 50 ° C. to 0 It is preferable that the hardness (that is, the hardness after quenching) is 650 to 800 Hv when quenching is performed under conditions within the range of °C.
When the hardness after quenching is 650 Hv or more, the hardness and wear resistance of automobile parts manufactured by subjecting the electric resistance welded steel pipe of the present disclosure to cold working and quenching can be ensured. The hardness after quenching is preferably 700 Hv or more.
When the hardness after quenching is 800 Hv or less, it is advantageous in terms of machinability when further machining automobile parts manufactured by subjecting the electric resistance welded steel pipe of the present disclosure to cold working and quenching. . The hardness after quenching is preferably 770 Hv or less.
 本開示の電縫鋼管の焼入れ後の硬さは、前述した、本開示の電縫鋼管における母材部の硬さ(即ち、焼入れ前の硬さ)と同様にして求める。 The hardness of the electric resistance welded steel pipe of the present disclosure after quenching is obtained in the same manner as the hardness of the base metal portion (that is, the hardness before quenching) of the electric resistance welded steel pipe of the present disclosure described above.
 また、上記焼入れ後の電縫鋼管では、厚さ方向の歪みをより抑制する観点から、母材180°位置における、電縫鋼管の外面から1/4肉厚の位置の硬さ、電縫鋼管の外面から1/2肉厚の位置の硬さ、及び、電縫鋼管の外面から3/4肉厚の位置硬さの中での最大値と最小値との差の絶対値(以下、肉厚方向の硬さ差ΔHvともいう)が、50Hv以下であることが好ましい。 In addition, in the electric resistance welded steel pipe after quenching, from the viewpoint of further suppressing distortion in the thickness direction, the hardness at the position of 1/4 thickness from the outer surface of the electric resistance welded steel pipe at the base material 180 ° position The absolute value of the difference between the maximum and minimum values of the hardness at the position of 1/2 thickness from the outer surface of the electric resistance welded steel pipe and the hardness at the position of 3/4 thickness from the outer surface of the electric resistance welded steel pipe (hereinafter referred to as the thickness The hardness difference ΔHv in the thickness direction) is preferably 50 Hv or less.
<電縫鋼管の製造方法の一例(製法X)>
 以下、本開示の電縫鋼管を製造するための製造方法の一例(以下、「製法X」とする)について説明する。
 以下の製法Xは、後述する実施例の電縫鋼管の製造方法である。
<Example of manufacturing method of electric resistance welded steel pipe (manufacturing method X)>
An example of a manufacturing method (hereinafter referred to as “manufacturing method X”) for manufacturing the electric resistance welded steel pipe of the present disclosure will be described below.
The following manufacturing method X is a manufacturing method of an electric resistance welded steel pipe of an example described later.
 製法Xは、
 母材部A及び電縫溶接部Aを含み、母材部Aの化学組成が、前述した「本開示における化学組成」であり、母材部Aの鋼組織が、フェライト-パーライト混合組織であるアズロール電縫鋼管を準備する準備工程と、
 アズロール電縫鋼管に対し、後述の条件の熱処理を施す熱処理工程と、
を含む。
Manufacturing method X is
Including the base material portion A and the electric resistance welded portion A, the chemical composition of the base material portion A is the “chemical composition in the present disclosure” described above, and the steel structure of the base material portion A is a ferrite-pearlite mixed structure. A preparatory step of preparing an as-rolled electric resistance welded steel pipe;
A heat treatment step of subjecting the as-rolled electric resistance welded steel pipe to heat treatment under the conditions described below;
including.
 製法Xによれば、Si含有量が0.20%以下に、Mn含有量が0.70%以下に、それぞれ低減されている「本開示における化学組成」と、後述の条件の熱処理と、の組み合わせにより、母材部の硬さが110~150Hvである本開示の電縫鋼管が製造され得る。 According to manufacturing method X, the "chemical composition in the present disclosure" in which the Si content is reduced to 0.20% or less and the Mn content is reduced to 0.70% or less, and the heat treatment under the conditions described later. By combining, the electric resistance welded steel pipe of the present disclosure having a hardness of the base material portion of 110 to 150 Hv can be produced.
 以下、製法Xに含まれ得る各工程について説明する。 Each step that can be included in manufacturing method X will be described below.
(アズロール電縫鋼管準備工程)
 製法Xにおけるアズロール電縫鋼管準備工程は、上記アズロール電縫鋼管を準備する工程である。
 本工程は、予め製造してあった上記アズロール電縫鋼管を単に準備するだけの工程であってもよいし、上記アズロール電縫鋼管を製造する工程であってもよい。
(Azroll ERW steel pipe preparation process)
The as-rolled electric resistance welded steel pipe preparation step in manufacturing method X is a step of preparing the above-described as-rolled electric resistance welded steel pipe.
This step may be a step of simply preparing the pre-manufactured as-rolled electric resistance welded steel pipe, or may be a step of manufacturing the above-described as-rolled electric resistance welded steel pipe.
 アズロール電縫鋼管は、
 本開示における化学組成を有する熱延鋼板からなるホットコイルを準備し、
 このホットコイルから熱延鋼板を巻き出し、ホットコイルから巻き出された熱延鋼板をロール成形することによりオープン管とし、
 得られたオープン管の突合せ部を電縫溶接して電縫溶接部Aを形成する
ことによって製造できる。
 準備工程では、電縫溶接部の形成後、電縫溶接部に対し、シーム熱処理を施してよい。
Azroll ERW steel pipe
Prepare a hot coil made of a hot-rolled steel sheet having the chemical composition in the present disclosure,
A hot-rolled steel sheet is unwound from the hot coil, and the hot-rolled steel sheet unwound from the hot coil is roll-formed to form an open pipe,
It can be produced by forming an electric resistance welded portion A by electric resistance welding the butt portion of the obtained open pipe.
In the preparation step, the seam heat treatment may be applied to the electric resistance welded portion after the electric resistance welded portion is formed.
(熱処理工程)
 製法Xは、アズロール電縫鋼管に対し、以下の熱処理条件での熱処理を施す熱処理工程を含む。
(Heat treatment process)
Manufacturing method X includes a heat treatment step of heat treating the as-rolled electric resistance welded steel pipe under the following heat treatment conditions.
-製法Xにおける熱処理工程での熱処理条件-
・加熱温度:720~780℃
・加熱温度での保持時間:1~20分
・加熱温度から「加熱温度-100℃」まで冷却する際の冷却速度: 1.0℃/s以下
-Heat treatment conditions in the heat treatment step in manufacturing method X-
・Heating temperature: 720-780℃
・Holding time at heating temperature: 1 to 20 minutes ・Cooling rate when cooling from heating temperature to “heating temperature -100 ° C”: 1.0 ° C/s or less
 熱処理温度(加熱温度)が720℃以上であることにより、製造される電縫鋼管において、母材部の硬さが150Hv以下であることが実現され得る。 By setting the heat treatment temperature (heating temperature) to 720°C or higher, it can be realized that the hardness of the base metal portion is 150 Hv or lower in the manufactured electric resistance welded steel pipe.
 熱処理温度(加熱温度)が780℃以下であることにより、製造される電縫鋼管において、母材部の硬さが150Hv以下であることが実現され得る。 By setting the heat treatment temperature (heating temperature) to 780°C or less, the hardness of the base metal portion of the manufactured electric resistance welded steel pipe can be realized to be 150 Hv or less.
 熱処理時間(加熱温度での保持時間)が20分以下であることにより、製造される電縫鋼管において、母材部の硬さが150Hv以下であることが実現され得る。
 熱処理時間(加熱温度での保持時間)は、好ましくは10分以下である。
By setting the heat treatment time (holding time at the heating temperature) to 20 minutes or less, the hardness of the base metal portion of the manufactured electric resistance welded steel pipe can be realized to be 150 Hv or less.
The heat treatment time (holding time at the heating temperature) is preferably 10 minutes or less.
 熱処理時間(加熱温度での保持時間)が1分以上であることにより、製造される電縫鋼管において、母材部の硬さが150Hv以下であることが実現され得る。
 熱処理時間(加熱温度での保持時間)は、5分以上であることが好ましい。
By setting the heat treatment time (holding time at the heating temperature) to 1 minute or more, the hardness of the base metal portion of the manufactured electric resistance welded steel pipe can be realized to be 150 Hv or less.
The heat treatment time (holding time at the heating temperature) is preferably 5 minutes or longer.
 熱処理温度から「熱処理温度-100℃」まで冷却する際の冷却速度が1.0℃/s以下であることにより、製造される電縫鋼管において、母材部の硬さが150Hv以下であることが実現され得る。 The hardness of the base metal portion of the manufactured electric resistance welded steel pipe is 150 Hv or less by cooling at a cooling rate of 1.0° C./s or less when cooling from the heat treatment temperature to “heat treatment temperature −100° C.” can be realized.
 熱処理温度から「熱処理温度-100℃」まで冷却する際の冷却速度の下限には特に制限はないが、下限は、例えば、0.01℃/sである。 The lower limit of the cooling rate when cooling from the heat treatment temperature to "heat treatment temperature -100°C" is not particularly limited, but the lower limit is, for example, 0.01°C/s.
 熱処理温度から「熱処理温度-100℃」まで冷却する際の冷却方法としては、例えば、空冷や炉冷が挙げられる。 Cooling methods for cooling from the heat treatment temperature to "heat treatment temperature -100°C" include, for example, air cooling and furnace cooling.
 熱処理工程において、冷却により「熱処理温度-100℃」に到達した後の冷却速度には特に制限はなく、例えば、空冷が挙げられる。 In the heat treatment process, there is no particular limitation on the cooling rate after reaching the "heat treatment temperature -100°C" by cooling, for example air cooling.
(その他の工程)
 製法Xは、上述した工程以外のその他の工程を含んでいてもよい。
 例えば、準備工程と熱処理工程との間に、電縫鋼管を伸管する伸管工程を含んでもよい。
 伸管工程における伸管の条件としては、例えば、減面率が20~50%である条件が挙げられる。
(Other processes)
Manufacturing method X may include other steps than the steps described above.
For example, a pipe drawing step of drawing an electric resistance welded steel pipe may be included between the preparation step and the heat treatment step.
Conditions for tube drawing in the tube drawing step include, for example, a condition that the area reduction rate is 20 to 50%.
〔自動車部品の製造方法〕
 本開示の自動車部品の製造方法は、前述した本開示の電縫鋼管に対し、冷間加工及び焼入れをこの順に施して自動車部品を得る工程を含む。
 本開示の自動車部品の製造方法によれば、本開示の電縫鋼管による効果と同様の効果が発揮される。
[Manufacturing method of automobile parts]
The manufacturing method of the automobile part of the present disclosure includes the step of subjecting the electric resistance welded steel pipe of the present disclosure described above to cold working and quenching in this order to obtain the automobile part.
According to the manufacturing method of the automobile component of the present disclosure, the same effects as those of the electric resistance welded steel pipe of the present disclosure are exhibited.
 本開示の自動車部品の製造方法は、焼入れ後、更に焼戻しを行ってもよい。
 本開示の自動車部品の製造方法は、冷間加工は、専用の金型を用いて行う。
 本開示の自動車部品の製造方法は、本開示の電縫鋼管を用いて自動車部品を製造するので、金型の寿命を長くすることができる。
 自動車部品としては、例えば、ラックバー、ドライブシャフト、トランスミッションシャフトステータ等が挙げられる。
In the method for manufacturing an automobile component of the present disclosure, tempering may be further performed after quenching.
In the method for manufacturing an automobile part of the present disclosure, cold working is performed using a dedicated mold.
The manufacturing method of the automobile part of the present disclosure uses the electric resistance welded steel pipe of the present disclosure to produce the automobile part, so that the life of the mold can be extended.
Automotive parts include, for example, rack bars, drive shafts, transmission shaft stators, and the like.
 以下、本開示の実施例を示すが、本開示は以下の実施例には限定されない。
 表1~表2中の下線は、本開示の範囲外か、又は、好ましい製造条件の範囲外であることを示す。
Examples of the present disclosure are shown below, but the present disclosure is not limited to the following examples.
Underlines in Tables 1 and 2 indicate outside the scope of the present disclosure or outside the range of preferred manufacturing conditions.
〔実施例1~9、比較例1~14〕
 前述した製法Xにより、自動車部品用電縫鋼管を製造した。
 以下、詳細を示す。
[Examples 1 to 9, Comparative Examples 1 to 14]
An electric resistance welded steel pipe for automobile parts was manufactured by the manufacturing method X described above.
Details are shown below.
<アズロール電縫鋼管準備工程>
 表1に示す鋼種A~Nの化学組成を有する熱延鋼板(板厚2.0~10.0mm)からなるホットコイルを準備した。
 鋼種B、D、G、及びJにおけるREMは、具体的にはCeである。
<Azroll ERW steel pipe preparation process>
Hot coils made of hot-rolled steel sheets (thickness 2.0 to 10.0 mm) having the chemical compositions of steel grades A to N shown in Table 1 were prepared.
Specifically, REM in steel types B, D, G, and J is Ce.
 上記ホットコイルから熱延鋼板を巻き出し、ホットコイルから巻き出された熱延鋼板をロール成形することによりオープン管とし、得られたオープン管の突合せ部を電縫溶接して電縫溶接部Aを形成することにより、表2に示す肉厚及び外径を有するアズロール電縫鋼管を製造した。 The hot-rolled steel sheet is unwound from the hot coil, the hot-rolled steel sheet unwound from the hot coil is roll-formed to form an open pipe, and the butt portions of the obtained open pipe are electric resistance welded to form an electric resistance welded portion A. As-rolled electric resistance welded steel pipes having the wall thicknesses and outer diameters shown in Table 2 were manufactured by forming.
<伸管工程>
 表2中、伸管欄に「あり」と記載されている実施例では、アズロール電縫鋼管に対し、減面率が23%となる伸管を施し、伸管が施されたアズロール電縫鋼管に対し、次の熱処理工程における熱処理を施した。
 その他の実施例及び比較例では、アズロール電縫鋼管に対し、この伸管を施さず、次の熱処理工程における熱処理を施した。
<Pipe drawing process>
In Table 2, in the examples described as "yes" in the stretched column, the azurol electric resistance welded steel pipe was stretched so that the area reduction rate was 23%, and the azurol electric resistance welded steel pipe was stretched. was subjected to heat treatment in the following heat treatment step.
In other examples and comparative examples, the as-rolled electric resistance welded steel pipes were not subjected to this drawing but were subjected to heat treatment in the following heat treatment step.
<熱処理工程>
 アズロール電縫鋼管に対し、表2に示す条件の熱処理を施した。
 但し、比較例11では、アズロール電縫鋼管に対し熱処理を施さなかった。この比較例11は、前述の特許文献8(即ち、特許第5679115号公報)に記載の鋼管を模した例である。
 また、比較例13では、アズロール電縫鋼管に対し、900℃×10分の加熱、空冷、23%伸管、720℃×10分の加熱、及び空冷を施した。この比較例13及び比較例12(いずれも加熱温度900℃)は、前述の特許文献5(即ち、特開2004-190086号公報)に記載の鋼管を模した例である。
 以上により、自動車部品用電縫鋼管を得た。
<Heat treatment process>
Heat treatment under the conditions shown in Table 2 was performed on the as-rolled electric resistance welded steel pipe.
However, in Comparative Example 11, no heat treatment was applied to the as-rolled electric resistance welded steel pipe. This Comparative Example 11 is an example imitating the steel pipe described in the aforementioned Patent Document 8 (that is, Japanese Patent No. 5679115).
In Comparative Example 13, the as-rolled electric resistance welded steel pipe was subjected to heating at 900°C for 10 minutes, air cooling, 23% drawing, heating at 720°C for 10 minutes, and air cooling. Comparative Examples 13 and 12 (heating temperature: 900° C. in both cases) are examples imitating the steel pipe described in the aforementioned Patent Document 5 (that is, JP-A-2004-190086).
As described above, an electric resistance welded steel pipe for automobile parts was obtained.
 自動車部品用電縫鋼管の母材部の鋼組織を前述した方法によって確認したところ、いずれの実施例及び比較例においても、鋼組織は、フェライト-パーライト混合組織であった。 When the steel structure of the base metal portion of the electric resistance welded steel pipe for automobile parts was confirmed by the method described above, the steel structure was a ferrite-pearlite mixed structure in all of the examples and comparative examples.
<自動車部品用電縫鋼管の母材部の硬さ>
 自動車部品用電縫鋼管の母材部の硬さ(焼入れ前の硬さ)を、前述した方法によって測定した。
 結果を表2に示す。
<Hardness of base material of electric resistance welded steel pipe for automobile parts>
The hardness (hardness before quenching) of the base metal portion of the electric resistance welded steel pipe for automobile parts was measured by the method described above.
Table 2 shows the results.
<自動車部品用電縫鋼管に対する焼入れ>
 自動車部品用電縫鋼管に対し、加熱温度900℃、加熱時間1分、及び加熱後の冷却速度(A)30℃/s、上記冷却速度(A)での冷却到達温度50℃~0℃の条件の焼入れを施した。
<Quenching of electric resistance welded steel pipes for automobile parts>
For electric resistance welded steel pipes for automobile parts, a heating temperature of 900 ° C., a heating time of 1 minute, a cooling rate (A) after heating of 30 ° C./s, and a cooling ultimate temperature of 50 ° C. to 0 ° C. at the above cooling rate (A) Quenching conditions were applied.
<焼入れ後の硬さ>
 焼入れが施された自動車部品用電縫鋼管について、前述した方法により、焼入れ後の硬さ、及び、肉厚方向の硬さ差を測定した。
 結果を表2に示す。
 
<Hardness after quenching>
The hardness after quenching and the hardness difference in the wall thickness direction of the quenched electric resistance welded steel pipe for automobile parts were measured by the method described above.
Table 2 shows the results.

 

 
 表1及び表2に示すように、母材部の化学組成が本開示における化学組成であり、母材部の鋼組織が、フェライト-パーライト混合組織であり、母材部の硬さが、110~150Hvである各実施例の自動車部品用電縫鋼管は、焼入れ後の硬さが適度であった。
 各実施例の自動車部品用電縫鋼管は、母材部の硬さが150Hv以下であることから、冷間加工性に優れ、かつ、冷間加工に用いる金型寿命にも優れると考えられる。
As shown in Tables 1 and 2, the chemical composition of the base metal portion is the chemical composition in the present disclosure, the steel structure of the base metal portion is a ferrite-pearlite mixed structure, and the hardness of the base metal portion is 110. The electric resistance welded steel pipes for automobile parts of each example having a hardness of up to 150 Hv had an appropriate hardness after quenching.
The electric resistance welded steel pipe for automotive parts of each example has a hardness of 150 Hv or less in the base material portion, so it is considered to be excellent in cold workability and also excellent in the life of the mold used for cold working.
 これに対し、比較例の結果は以下のとおりであった。
 母材部の化学組成においてC含有量が少なすぎる比較例1では、焼入れ後の硬さが不足していた。
 母材部の化学組成においてB含有量が少なすぎる比較例2では、肉厚方向の硬さ差ΔHvが過剰であった。
 母材部の化学組成においてSi含有量及びMn含有量が多すぎる比較例3では、母材部の硬さが150Hv超であった。
 母材部の化学組成においてC含有量が多すぎる比較例4では、母材部の硬さが150Hv超であった。
 母材部の化学組成が本開示における化学組成であるが、熱処理工程における加熱温度が低すぎる比較例5~7では、母材部の硬さが150Hv超であった。
 母材部の化学組成においてSi含有量が多すぎる比較例8では、母材部の硬さが150Hv超であった。
 母材部の化学組成においてMn含有量が多すぎる比較例9では、母材部の硬さが150Hv超であった。
 母材部の化学組成においてTi含有量が少なすぎる比較例10では、焼入れ後の硬さが不足していた。
 母材部の化学組成が本開示における化学組成であるが、熱処理工程を行わなかった比較例11では、母材部の硬さが150Hv超であった。
 母材部の化学組成が本開示における化学組成であるが、熱処理工程における加熱温度が高すぎる比較例12では、母材部の硬さが150Hv超であった。
 母材部の化学組成が本開示における化学組成であるが、アズロール電縫鋼管に対し、900℃×10分の加熱、空冷、23%伸管、720℃×10分の加熱、及び空冷を施した比較例13では、母材部の硬さが150Hv超であった。
 母材部の化学組成が本開示における化学組成であるが、熱処理工程における加熱時間が長すぎた比較例14では、母材部の硬さが150Hv超であった。
On the other hand, the results of the comparative examples were as follows.
In Comparative Example 1, in which the C content was too small in the chemical composition of the base material portion, the hardness after quenching was insufficient.
In Comparative Example 2 in which the B content was too small in the chemical composition of the base material portion, the hardness difference ΔHv in the thickness direction was excessive.
In Comparative Example 3 in which the Si content and Mn content were too high in the chemical composition of the base material, the hardness of the base material exceeded 150 Hv.
In Comparative Example 4 in which the C content was too high in the chemical composition of the base material, the hardness of the base material exceeded 150 Hv.
Although the chemical composition of the base material is the chemical composition in the present disclosure, the hardness of the base material exceeded 150 Hv in Comparative Examples 5 to 7 in which the heating temperature in the heat treatment step was too low.
In Comparative Example 8 in which the chemical composition of the base material contained too much Si, the hardness of the base material exceeded 150 Hv.
In Comparative Example 9 in which the Mn content was too high in the chemical composition of the base material, the hardness of the base material exceeded 150 Hv.
In Comparative Example 10, in which the Ti content was too low in the chemical composition of the base material portion, the hardness after quenching was insufficient.
Although the chemical composition of the base material is the chemical composition in the present disclosure, in Comparative Example 11 in which the heat treatment process was not performed, the hardness of the base material exceeded 150 Hv.
Although the chemical composition of the base material is the chemical composition in the present disclosure, in Comparative Example 12 in which the heating temperature in the heat treatment step was too high, the hardness of the base material exceeded 150 Hv.
The chemical composition of the base metal part is the chemical composition in the present disclosure, and the as-rolled electric resistance welded steel pipe was subjected to heating at 900 ° C. for 10 minutes, air cooling, 23% drawing, heating at 720 ° C. for 10 minutes, and air cooling. In Comparative Example 13, the hardness of the base material portion was over 150 Hv.
Although the chemical composition of the base material is the chemical composition in the present disclosure, in Comparative Example 14 in which the heating time in the heat treatment step was too long, the hardness of the base material exceeded 150 Hv.

Claims (4)

  1.  母材部及び電縫溶接部を含み、
     前記母材部の化学組成が、質量%で、
    C :0.42~0.48%、
    Si:0.01~0.20%、
    Mn:0.10~0.70%、
    P :0~0.030%、
    S :0~0.030%、
    Al:0.005~0.050%、
    Ti:0.005~0.040%、
    B :0.0005~0.0050%、
    N :0~0.005%、
    O :0~0.005%、
    Ca:0~0.0050%、
    Mg:0~0.0050%、
    REM:0~0.0050%、
    Cr:0~0.50%、
    Ni:0~0.50%、
    Cu:0~0.50%、
    Nb:0~0.10%、
    Mo:0~0.50%、
    V:0~0.20%、並びに、
    残部:Fe及び不純物
    からなり、
    前記母材部の鋼組織が、フェライト-パーライト混合組織であり、
    前記母材部の硬さが、110~150Hvである、
    自動車部品用電縫鋼管。
    Including the base material part and the electric resistance welding part,
    The chemical composition of the base material portion is, in mass %,
    C: 0.42 to 0.48%,
    Si: 0.01 to 0.20%,
    Mn: 0.10-0.70%,
    P: 0 to 0.030%,
    S: 0 to 0.030%,
    Al: 0.005 to 0.050%,
    Ti: 0.005 to 0.040%,
    B: 0.0005 to 0.0050%,
    N: 0 to 0.005%,
    O: 0 to 0.005%,
    Ca: 0 to 0.0050%,
    Mg: 0-0.0050%,
    REM: 0 to 0.0050%,
    Cr: 0 to 0.50%,
    Ni: 0 to 0.50%,
    Cu: 0-0.50%,
    Nb: 0 to 0.10%,
    Mo: 0-0.50%,
    V: 0 to 0.20%, and
    Balance: Fe and impurities,
    The steel structure of the base material portion is a ferrite-pearlite mixed structure,
    The hardness of the base material portion is 110 to 150 Hv,
    Electric resistance welded steel pipes for automobile parts.
  2.  前記母材部の化学組成が、質量%で、
    Ca:0.0005~0.0050%、
    Mg:0.0005~0.0050%、
    REM:0.0005~0.0050%、
    Cr:0.01~0.50%、
    Ni:0.01~0.50%、
    Cu:0.01~0.50%、
    Nb:0.01~0.10%、
    Mo:0.01~0.50%、並びに、
    V:0.01~0.20%
    の1種又は2種以上を含有する、
    請求項1に記載の自動車部品用電縫鋼管。
    The chemical composition of the base material portion is, in mass %,
    Ca: 0.0005 to 0.0050%,
    Mg: 0.0005-0.0050%,
    REM: 0.0005 to 0.0050%,
    Cr: 0.01 to 0.50%,
    Ni: 0.01 to 0.50%,
    Cu: 0.01-0.50%,
    Nb: 0.01 to 0.10%,
    Mo: 0.01 to 0.50%, and
    V: 0.01-0.20%
    containing one or more of
    The electric resistance welded steel pipe for automobile parts according to claim 1.
  3.  加熱温度が900℃であり、加熱時間が1分であり、加熱後の冷却速度が30℃/sであり、前記冷却速度での冷却到達温度が50℃~0℃の範囲内である条件の焼入れを施した場合の硬さが、650~800Hvである、
    請求項1又は請求項2に記載の自動車部品用電縫鋼管。
    The heating temperature is 900 ° C., the heating time is 1 minute, the cooling rate after heating is 30 ° C./s, and the cooling temperature at the cooling rate is within the range of 50 ° C. to 0 ° C. The hardness when quenched is 650 to 800Hv,
    The electric resistance welded steel pipe for automobile parts according to claim 1 or 2.
  4.  請求項1~請求項3のいずれか1項に記載の自動車部品用電縫鋼管に対し、冷間加工及び焼入れをこの順に施して自動車部品を得る工程を含む、自動車部品の製造方法。 A method for manufacturing automobile parts, comprising the step of subjecting the electric resistance welded steel pipe for automobile parts according to any one of claims 1 to 3 to cold working and quenching in this order to obtain automobile parts.
PCT/JP2022/005451 2022-02-10 2022-02-10 Electric resistance welded steel pipe for automobile component, and method for manufacturing automobile component WO2023152906A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/005451 WO2023152906A1 (en) 2022-02-10 2022-02-10 Electric resistance welded steel pipe for automobile component, and method for manufacturing automobile component
JP2022532161A JP7188649B1 (en) 2022-02-10 2022-02-10 Electric resistance welded steel pipe for automobile parts, and method for manufacturing automobile parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005451 WO2023152906A1 (en) 2022-02-10 2022-02-10 Electric resistance welded steel pipe for automobile component, and method for manufacturing automobile component

Publications (1)

Publication Number Publication Date
WO2023152906A1 true WO2023152906A1 (en) 2023-08-17

Family

ID=84441430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005451 WO2023152906A1 (en) 2022-02-10 2022-02-10 Electric resistance welded steel pipe for automobile component, and method for manufacturing automobile component

Country Status (2)

Country Link
JP (1) JP7188649B1 (en)
WO (1) WO2023152906A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487795A (en) * 1993-07-02 1996-01-30 Dong Won Metal Ind. Co., Ltd. Method for heat treating an impact beam of automotive vehicle door and a system of the same
JP2001131702A (en) * 1999-11-04 2001-05-15 Nippon Steel Corp Electric welded tube for cold forging excellent in workability and producing method therefor
JP2003193198A (en) * 2001-12-26 2003-07-09 Sumitomo Pipe & Tube Co Ltd Electric resistance welded tube for machine structure and heat treatment method therefor
JP2004190086A (en) * 2002-12-10 2004-07-08 Sumitomo Pipe & Tube Co Ltd Resistance welded steel tube to be induction-hardened
JP2006009141A (en) * 2004-05-21 2006-01-12 Nippon Steel Corp Electric resistance welded tube having excellent cold workability and hardenability and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487795A (en) * 1993-07-02 1996-01-30 Dong Won Metal Ind. Co., Ltd. Method for heat treating an impact beam of automotive vehicle door and a system of the same
JP2001131702A (en) * 1999-11-04 2001-05-15 Nippon Steel Corp Electric welded tube for cold forging excellent in workability and producing method therefor
JP2003193198A (en) * 2001-12-26 2003-07-09 Sumitomo Pipe & Tube Co Ltd Electric resistance welded tube for machine structure and heat treatment method therefor
JP2004190086A (en) * 2002-12-10 2004-07-08 Sumitomo Pipe & Tube Co Ltd Resistance welded steel tube to be induction-hardened
JP2006009141A (en) * 2004-05-21 2006-01-12 Nippon Steel Corp Electric resistance welded tube having excellent cold workability and hardenability and its production method

Also Published As

Publication number Publication date
JP7188649B1 (en) 2022-12-13
JPWO2023152906A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
EP1371743B1 (en) Electric welded steel tube for hollow stabilizer
KR101668546B1 (en) High strength steel plate having low yield ratio excellent in terms of strain ageing resistance, method for manufacturing the same and high strength welded steel pipe made of the same
EP2853615B1 (en) Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe, and method for manufacturing the same
WO2018179169A1 (en) As-rolled type electric-resistance-welded steel pipe for line pipes
EP2484792A1 (en) Steel plate with low yield ratio, high strength, and high toughness and process for producing same
EP2484791A1 (en) Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same
KR20140138932A (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
JP5765497B1 (en) ERW steel pipe with excellent weld quality and manufacturing method thereof
JP6455650B1 (en) AZROLL ERW Steel Pipe for Torsion Beam
JP6048621B1 (en) High strength ERW steel pipe, method for manufacturing steel sheet for high strength ERW steel pipe, and method for manufacturing high strength ERW steel pipe
JP4858286B2 (en) Full hard cold rolled steel sheet
CN109642284B (en) Electric welding steel pipe for torsion beam
JP2009287081A (en) High-tension steel and producing method therefor
JP7188649B1 (en) Electric resistance welded steel pipe for automobile parts, and method for manufacturing automobile parts
JP7070696B2 (en) Electric resistance sewn steel pipe for hollow stabilizer
JP3932821B2 (en) ERW steel pipe excellent in strength and toughness and method for producing the same
JP6544497B1 (en) ERW pipe for torsion beam
WO2018139671A1 (en) Steel pipe for underbody components of automobiles, and underbody component of automobiles
WO2018139672A1 (en) Steel pipe for underbody components of automobiles, and underbody component of automobiles
JP2005256023A (en) Method for producing high carbon steel rail excellent in ductility
JP7001213B1 (en) Electric resistance sewn steel pipe for machine structural parts and its manufacturing method
JP7160235B1 (en) Hot shrinking ERW pipe
WO2022085152A1 (en) Electric resistance welded steel pipe for mechanical structure component and manufacturing method therefor
JP2004076101A (en) High-strength high-toughness steel pipe material excellent in weldability and its production method
JP2021130830A (en) Bent steel tube

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022532161

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925927

Country of ref document: EP

Kind code of ref document: A1