JPH0368740A - Thick and small-diameter electric welded steel tube having uniform width of white layer and production thereof - Google Patents

Thick and small-diameter electric welded steel tube having uniform width of white layer and production thereof

Info

Publication number
JPH0368740A
JPH0368740A JP20240389A JP20240389A JPH0368740A JP H0368740 A JPH0368740 A JP H0368740A JP 20240389 A JP20240389 A JP 20240389A JP 20240389 A JP20240389 A JP 20240389A JP H0368740 A JPH0368740 A JP H0368740A
Authority
JP
Japan
Prior art keywords
diameter
thick
small
white layer
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20240389A
Other languages
Japanese (ja)
Inventor
Takuo Hosoda
細田 卓夫
Hakobu Shiyukuhisa
宿久 運
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20240389A priority Critical patent/JPH0368740A/en
Publication of JPH0368740A publication Critical patent/JPH0368740A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformize the width of the white layer at the cross section of a weld zone and to produce the thick and small-diameter electric welded steel tube having excellent cold workability and fatigue characteristic by specifying the groove shape and the ratio between the vertical diameter and horizontal diameter of an open pipe prior to welding at the time of producing the thick and small-diameter electric welded steel tube. CONSTITUTION:A steel sheet contg., by weight %, 0.01 to 0.40% C, 0.01 to 0.50% Si, 0.20 to 1.80% Mn, 0.01 to 0.10% Al, or further one or two kinds of 0.015 to 0.1% Nb, 0.01 to 0.10% Ti, 0.02 to 0.10% V, and 0.0005 to 0.005% Ca is used as the stock steel sheet at the time of producing the thick and small-diameter electric welded steel tube having 2 to 10mm thickness (t), 20 to 65mm outside diameter D and 0.10 to 0.25 t/D. The groove height X1 (X2) of the open pipe prior to the production of the electric welded steel tube by welding is specified to 0.80 to 0.95 of the thickness (t) the groove angle theta1 (theta2) to 20 to 45 deg. and the ratio Y/X between the vertical diameter Y and the horizontal diameter X to 0.85 to 0.97. The ratio WS/WM between the width WS in the front and rear part of the white layer at the cross section of the weld zone after the groove welding and the width WM of the central part is made into the uniform width of 1 to 4. The thick and small-diameter electric welded steel tube having the excellent cold workability and fatigue characteristic is thus produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷間加工性、疲労特性が要求される自動車用
、機械構造用等に適する厚肉小径電縫鋼管およびその製
造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a thick-walled small-diameter electric resistance welded steel pipe suitable for automobiles, machine structures, etc. that require good cold workability and fatigue properties, and a method for manufacturing the same. It is.

(従来の技術) 最近、自動車用あるいは機械構造用に供される棒状鋼材
に対してはつぎのような要求が益々高まっている。すな
わち、一つは機器の高出力化にともない各部品に従来以
上の高剛性と高耐久力が要求されるようになってきた。
(Prior Art) Recently, the following requirements have been increasing for bar-shaped steel materials used in automobiles or machine structures. Specifically, as the output of equipment increases, each component is required to have higher rigidity and durability than ever before.

二つは機器の多機能化の進捗が著しく部品数が多くなる
傾向にあり、重量軽減の要求がされるようになってきた
。これらの要求を満足させるものとして、厚肉小径鋼管
の適用が広く検討され始められている。
Second, as equipment becomes more multi-functional, the number of parts tends to increase significantly, and there is a growing demand for weight reduction. In order to meet these demands, wide consideration has begun to be given to the application of thick-walled, small-diameter steel pipes.

この分野での厚肉小径鋼管とは、板厚tは2〜10開、
外径りは20〜65+am、 t/D比は10〜25%
のものをいう。厚肉小径鋼管には、シームレス鋼管と電
縫溶接鋼管とがあるが、偏肉が少ない、表面性状が良好
であるという品質上の理由と、安価であるという経済上
の理由とから電縫溶接による厚肉小径鋼管の製造が進め
られてきた。
In this field, thick-walled small-diameter steel pipes have a plate thickness of 2 to 10 mm,
Outer diameter is 20~65+am, t/D ratio is 10~25%
It refers to something. There are two types of thick-walled, small-diameter steel pipes: seamless steel pipes and ERW welded steel pipes, but ERW welding is used for quality reasons such as less uneven wall thickness and good surface quality, and for economical reasons that it is inexpensive. The production of thick-walled, small-diameter steel pipes has been progressing.

しかしながら、従来の小径電縫鋼管の開先形状は、オー
ブン管の相対する端面ば平行か、または僅かに外側(表
面側)へ開いたV字形であったため、これと同し開先形
状で、実際に厚肉小径電縫鋼管の製造を行ったところ、
新しい現象が出現してきた。すなわち、同一開先形状で
は、薄肉小径電縫鋼管と厚肉小径電縫鋼管とでは溶接部
の白色層の形状が大きく異なるということである。以下
に、この現象について説明する。
However, the groove shape of conventional small-diameter ERW steel pipes was such that the opposite end surfaces of the oven tube were parallel or V-shaped with a slight opening outward (toward the surface side). When we actually manufactured thick-walled small-diameter ERW steel pipes, we found that
A new phenomenon has emerged. That is, with the same groove shape, the shape of the white layer of the welded portion is significantly different between a thin-walled small-diameter ERW steel pipe and a thick-walled small-diameter ERW steel pipe. This phenomenon will be explained below.

第2図に薄肉小径電縫鋼管と厚肉小径電縫鋼管の溶接部
白色層の概略図を示す0図中(a)は薄肉小径電縫鋼管
の例を、(b)は厚肉小径電縫鋼管の例を示し、lは白
色層を、2は溶接熱影響部を示す、(a)の薄肉小径電
縫鋼管では溶接部白色層の幅は板厚方向にほぼ均一であ
るが、(b)の厚肉小径電縫鋼管では溶接部白色層の形
状は著しく板厚中心部がくびれた鼓状を呈している。こ
の鼓状の形状を数値で示すと次のようになる。第3図は
厚肉小径電縫鋼管の溶接部白色層の形状を数値化するた
めの模式図である。口中WSは表裏面側の白色層の幅を
、WHは肉厚中心部の白色層の幅をそれぞれ示す、ここ
で白色層の形状をW。
Figure 2 shows a schematic diagram of the white layer of the weld between a thin-walled small-diameter ERW steel pipe and a thick-walled small-diameter ERW steel pipe. An example of a welded steel pipe is shown, where l indicates a white layer and 2 indicates a weld heat-affected zone. In the thin-walled small-diameter ERW steel pipe in (a), the width of the welded white layer is almost uniform in the plate thickness direction, but ( In the thick-walled small-diameter ERW steel pipe b), the white layer of the welded portion has a conspicuously constricted central portion of the plate thickness. This drum-shaped shape is expressed numerically as follows. FIG. 3 is a schematic diagram for quantifying the shape of the welded white layer of a thick-walled, small-diameter electric resistance welded steel pipe. WS in the mouth indicates the width of the white layer on the front and back sides, and WH indicates the width of the white layer at the center of the thickness, where W represents the shape of the white layer.

とWイの比δで表すと厚肉小径!縫鋼管のδは5以上に
達する。ちなみに薄肉小径電縫鋼管のδは2以下である
When expressed as the ratio δ of and W, it is thick and small diameter! The δ of the sewn steel pipe reaches 5 or more. Incidentally, the δ of a thin-walled small-diameter electric resistance welded steel pipe is 2 or less.

(発明が解決しようとする課題) 上記のようにδが4を超えると表裏面の軟化域が増加す
るとともに、溶接時に生じる酸化物の排出が不十分にな
る。また、従来の溶接条件の延長線上でW、を小さくす
るとWMが0になり健全な溶接部が得られない。したが
って、厚肉小径1を縫鋼管のδが4を超えると溶接時に
生しる酸化物の影響で冷間加工性が、また、表裏面の軟
化域が増加するために疲労特性が劣化し上記用途には使
用できないという問題点があった。
(Problems to be Solved by the Invention) As described above, when δ exceeds 4, the softened regions on the front and back surfaces increase, and the oxides generated during welding become insufficiently discharged. Furthermore, if W is made smaller as an extension of conventional welding conditions, WM becomes 0 and a sound weld cannot be obtained. Therefore, if the δ of a thick-walled small-diameter welded steel pipe exceeds 4, the cold workability will be affected by the effects of oxides generated during welding, and the fatigue properties will deteriorate due to the increase in the softened area on the front and back surfaces, which is described above. There was a problem that it could not be used for this purpose.

(課題を解決するための手段) そこで、本発明者らは、新しく用途が開けてきた厚肉小
径電縫鋼管を工業用素材として有効に活用すべく広範囲
な研究を重ねた結果、開先形状とオーブン管の形状を調
整することによって、δを小さくすることができるとい
う知見を得て本発明に至ったもので、その第1発明は、
C:0.01〜0.40%、Sj:0.01〜0.50
%、Mr+:0.20〜1.8%、AI:0、O1〜0
.1%を含有し、残部がFeおよび不可避不純物からな
る鋼帯を厚肉小径電縫鋼管に製造するに際し、溶接部横
断面の白色層において、鋼管表裏面側と肉厚中心部の白
色層幅を各々W5、W、lとし、その比δ=Ws / 
W、lを1〜4とする白色層幅の均一な厚肉小径fi縫
鋼管である。
(Means for Solving the Problems) Therefore, as a result of extensive research in order to effectively utilize thick-walled small-diameter ERW steel pipes, which are newly finding new uses, as an industrial material, the present inventors have developed a groove shape. The present invention was developed based on the knowledge that δ can be reduced by adjusting the shape of the oven tube.
C: 0.01-0.40%, Sj: 0.01-0.50
%, Mr+: 0.20-1.8%, AI: 0, O1-0
.. When manufacturing a steel strip containing 1% Fe and unavoidable impurities into a thick-walled small-diameter ERW steel pipe, the width of the white layer on the front and back sides of the steel pipe and at the center of the wall thickness in the white layer on the cross section of the welded part. are respectively W5, W, and l, and the ratio δ=Ws/
It is a thick-walled small-diameter fi-sewn steel pipe with a uniform white layer width and W and l of 1 to 4.

第2発明は、Nb:0.045〜0.1%、Ti:0.
01〜O01%、V:0.02〜0.1%およびCa:
0.0005〜0.005%の内から選んだ1種または
2種以上を含有する請求項(1)の厚肉小径電縫鋼管で
ある。
The second invention has Nb: 0.045 to 0.1%, Ti: 0.
01-001%, V: 0.02-0.1% and Ca:
The thick-walled small-diameter electric resistance welded steel pipe according to claim 1, which contains one or more selected from 0.0005 to 0.005%.

第3発明は、請求項(1)または(2)の厚肉小径電縫
鋼管を溶接するに際し、溶接直前のオーブン管での開先
高さを肉厚tの0.80〜0.95、開先角度を20〜
45度に制御する厚肉小径電縫鋼管の製造方法である。
A third aspect of the invention is that when welding the thick-walled small-diameter ERW steel pipe of claim (1) or (2), the groove height in the oven pipe immediately before welding is set to 0.80 to 0.95 of the wall thickness t. Bevel angle 20~
This is a method for manufacturing thick-walled small-diameter electric resistance welded steel pipes that is controlled at 45 degrees.

第4発明は、請求項(1)または(2)の厚肉小径電縫
鋼管を溶接するに際し、溶接直前のオーブン管での開先
高さを肉厚tの0.80〜0.95、開先角度を20〜
45度、オーブン管の縦径y、横径xの比γ=y/Xを
0.85〜0.97に制御する厚肉小径電縫鋼管の製造
方法である。
A fourth aspect of the invention is that when welding the thick-walled small-diameter ERW steel pipe of claim (1) or (2), the groove height in the oven pipe immediately before welding is set to 0.80 to 0.95 of the wall thickness t. Bevel angle 20~
45 degrees, and the ratio γ=y/X of the vertical diameter y and the horizontal diameter x of the oven tube is controlled to 0.85 to 0.97.

(作用) 以下、本発明の作用について詳述していくことにする。(effect) Hereinafter, the effects of the present invention will be explained in detail.

先ずは、本発明における化学成分の限定理由について説
明する。
First, the reasons for limiting the chemical components in the present invention will be explained.

Cは綱の強度を高めるに有効な元素であり、添油量が0
.01%未満では所要の強度を確保することができず、
一方、0.40%を超えると延性の低下を招いて冷間加
工性を損なうとともに、溶接性をも低下させる。したが
って、Cの添加量は0.01〜0゜40%の範囲とする
C is an effective element for increasing the strength of steel, and the amount of oil added is 0.
.. If it is less than 0.01%, the required strength cannot be secured,
On the other hand, if it exceeds 0.40%, ductility decreases, impairing cold workability and weldability. Therefore, the amount of C added is in the range of 0.01 to 0.40%.

Siは製鋼時の脱酸に必要な元素であるとともに、固溶
強化による綱の強度上昇に有用な元素である。添加量が
0.01%未満では脱酸が不十分となり清浄な鋼を得る
ことができず、電!!溶接の際にも酸化物を生威し易い
、添加量が0.50%を超えると冷間加工性を低下させ
るとともに、熱間圧延時に所謂Si赤スケールが発生し
易くなり、電縫鋼管表面の性状を劣化させ疲労強度を低
下させる原因にもなる。したがって、Siの添加量は0
、O1〜0.50%の範囲とする。
Si is an element necessary for deoxidation during steel manufacturing, and is also an element useful for increasing the strength of steel through solid solution strengthening. If the amount added is less than 0.01%, deoxidation will be insufficient and clean steel will not be obtained. ! It is easy to produce oxides during welding, and if the amount added exceeds 0.50%, cold workability decreases, and so-called Si red scale is likely to occur during hot rolling, which deteriorates the surface of ERW steel pipes. It also causes deterioration of the properties and decrease of fatigue strength. Therefore, the amount of Si added is 0
, O1 to 0.50%.

Mnは焼入れ性を高め、強度を上昇させる基本元素であ
り、同時に熱間圧延時のSによる熱間脆性を防止する元
素として有用である。添加量が0620%未満では強度
の上昇は不十分で、添加量が1.8%を超えると鋳造時
の偏析が大きくなり冷間加工性を損なうことになる。し
たがって、Mnの添加量は0.20〜1.8%の範囲と
する。
Mn is a basic element that improves hardenability and strength, and at the same time is useful as an element that prevents hot embrittlement caused by S during hot rolling. If the amount added is less than 0.620%, the increase in strength will be insufficient, and if the amount added exceeds 1.8%, segregation during casting will increase, impairing cold workability. Therefore, the amount of Mn added is in the range of 0.20 to 1.8%.

A1は脱酸元素として少なくとも0.01%の添加が必
要である。しかし、0.1%を超えて過剰に添加すると
非金属介在物の増加をもたらす。したがって、AIの添
加量は0.O1〜0.1%の範囲とする。
A1 needs to be added in an amount of at least 0.01% as a deoxidizing element. However, excessive addition of more than 0.1% results in an increase in nonmetallic inclusions. Therefore, the amount of AI added is 0. The range is O1 to 0.1%.

Nbは熱間圧延条件との組合せによって、強度、靭性を
向上させるに有効な元素である。添加量が0.015%
未満では十分な強度上昇は得られない。
Nb is an effective element for improving strength and toughness in combination with hot rolling conditions. Addition amount is 0.015%
If it is less than that, a sufficient increase in strength cannot be obtained.

一方、0,1%を超えて過多に添加すると溶接部の硬さ
が高くなり冷間加工性が低下する。したかっ。
On the other hand, if added in excess of more than 0.1%, the hardness of the weld will increase and cold workability will decrease. I wanted to.

て、Nbの添加量はo、ois〜0.1%の範囲とする
Therefore, the amount of Nb added is in the range of o, ois to 0.1%.

TiはNbと同様に、強度、靭性を向上させるに有効な
元素であり、また、硫化物を展伸状から球状に形態制御
する元素でもある。添加量が0.01%未満では十分な
強度と硫化物形態制御能を得ることができず、他方、0
.1%を超えて過剰に添加すると溶接部の非金属介在物
が増加し冷間加工性を低下させる。このため、Tiの添
加量は0.01〜0.1%の範囲とする。
Like Nb, Ti is an element effective in improving strength and toughness, and is also an element that controls the shape of sulfide from an elongated shape to a spherical shape. If the amount added is less than 0.01%, sufficient strength and ability to control sulfide morphology cannot be obtained;
.. If added in excess of more than 1%, nonmetallic inclusions in the weld zone will increase and cold workability will deteriorate. Therefore, the amount of Ti added is in the range of 0.01 to 0.1%.

Vは鋼の強度を高めるに有効な元素である。添加量が0
.02%未満では所要の強度を確保することができず、
一方、添加量が0.1%を超えると延性の低下を招き冷
間加工性を損なうことになる。したがって、Vの添加量
は0.02〜0.1%の範囲とする。
V is an element effective in increasing the strength of steel. Added amount is 0
.. If it is less than 0.02%, the required strength cannot be secured,
On the other hand, if the amount added exceeds 0.1%, ductility will decrease and cold workability will be impaired. Therefore, the amount of V added is in the range of 0.02 to 0.1%.

Caは鋼中の硫化物を展伸状から球状にする形態制御を
iIじて機械的異方性を小さくし、延性および靭性を改
善する効果を有する元素である。かかる効果を有効に得
るためにはo、ooos%以上の添加が必要であるが、
0.005%を超えて添加すると、かえって鋼中の非金
属介在物の増大を招き、延性、靭性が低下する。したが
って、Caの添加量は0゜0005〜o、oos%の範
囲とする。
Ca is an element that has the effect of controlling the shape of sulfides in steel to change them from an elongated shape to a spherical shape, thereby reducing mechanical anisotropy and improving ductility and toughness. In order to effectively obtain such effects, it is necessary to add o, oos% or more, but
If it is added in an amount exceeding 0.005%, non-metallic inclusions in the steel will increase, resulting in a decrease in ductility and toughness. Therefore, the amount of Ca added is in the range of 0°0005 to 0.000%.

なお、鋼中の不純物として、P、S、0、N等は冷間加
工性に有害であるため可及的低いことが望ましい。
Note that impurities in steel such as P, S, 0, N, etc. are harmful to cold workability, so it is desirable that they be as low as possible.

つぎに、溶接部の白色層幅の限定理由について述べる。Next, the reason for limiting the width of the white layer in the welded portion will be described.

溶接部横断面の白色層幅において、鋼管表裏面側W、お
よび肉厚中心部WMの比、δ−W、 / W8を1〜4
に限定した理由は、厚肉小径電縫鋼管においてはδが4
を超えると鋼管の表裏面の軟化域が増加するとともに、
溶接時の酸化物の排出が不十分になる。このため健全な
溶接部は得られず冷間加工性、疲労特性が劣化すること
になる。また、δは通常の電縫溶接ではl未満になるこ
とはない、したがって、δは1〜4の範囲に限定するさ
らに、製造方法の限定理由について説明する本発明法の
要点は電縫溶接を施されるオープン管の相対する端面に
開先加工を行うことにある。
In the white layer width of the weld cross section, the ratio of the steel pipe front and back sides W and the wall thickness center WM, δ-W, / W8, is 1 to 4.
The reason for limiting this is that δ is 4 in thick wall small diameter ERW steel pipes.
If the
Oxide emissions during welding become insufficient. As a result, a sound weld cannot be obtained, and cold workability and fatigue properties deteriorate. In addition, δ is never less than 1 in normal electric resistance welding, so δ is limited to a range of 1 to 4.Furthermore, the main point of the present invention method, which explains the reason for the limitation of the manufacturing method, is that electric resistance welding The purpose of this method is to create a bevel on the opposing end faces of the open pipe.

厚肉小径電縫鋼管において、先に述べたδが大きくなる
理由は、オープン管の相対する端面が平行またはわずか
に外側へ開いた状態では、溶接待溶接電流がオープン管
の端面コーナ部に集中し、コーナ部の優先溶融が進行し
表裏面の白色層の生成を助長するためである。さらに、
厚肉のため中心部の溶融金属は排出されにくくなり、溶
接時に生成した酸化物を中心部に残存させることになる
。このような現象を防止するため、オーブン管の相対す
る端面に開先を施すものである。
The reason why δ becomes large in thick-walled small-diameter ERW steel pipes is that when the opposing end faces of the open pipe are parallel or slightly opened outward, the welding current during welding is concentrated at the corner of the end face of the open pipe. This is because preferential melting at the corners progresses, promoting the formation of white layers on the front and back surfaces. moreover,
The thick wall makes it difficult for the molten metal in the center to be discharged, causing oxides generated during welding to remain in the center. In order to prevent such a phenomenon, grooves are provided on opposing end surfaces of the oven tube.

第4図に溶接前のオーブン管端面の開先形状を示す。図
中tは鋼管の肉厚を、X、 、X、は開先高さを、θ5
、θ2は開先角度をそれぞれ示す。
Figure 4 shows the groove shape of the end face of the oven tube before welding. In the figure, t is the wall thickness of the steel pipe, X, , X is the groove height, θ5
, θ2 respectively indicate the groove angle.

開先角度θ1、θ2を20〜45度に限定する理由は、
20度未満ではコーナ部の優先溶融を防止できないため
である。また、45度を超えるとビード生成が不十分と
なり健全な溶接部が得られないためである。したがって
、開先角度は20〜45度とする開先高さX、 、X、
を肉厚tの0980〜0,95に限定する理由は、0.
80未満ではビード生成が不十分となり健全な溶接部が
得られないためである。また、0.95を超えるとコー
ナ部の優先溶融を防止できないためと溶接時に生成する
酸化物を排出できないためである。したがって、開先高
さX、、X2は肉厚tの0.80〜0.95とする。
The reason why the groove angles θ1 and θ2 are limited to 20 to 45 degrees is as follows.
This is because if the angle is less than 20 degrees, preferential melting of the corner portions cannot be prevented. Furthermore, if the angle exceeds 45 degrees, bead formation will be insufficient and a sound welded part will not be obtained. Therefore, the groove angle is 20 to 45 degrees and the groove height X, ,X,
The reason for limiting the wall thickness t to 0980 to 0.95 is that 0.
This is because if it is less than 80, bead formation is insufficient and a sound weld cannot be obtained. Moreover, if it exceeds 0.95, preferential melting of the corner portions cannot be prevented and oxides generated during welding cannot be discharged. Therefore, the groove heights X, X2 are set to 0.80 to 0.95 of the wall thickness t.

つぎに、オーブン管の縦径yと横移Xとの比γの限定理
由について説明する。
Next, the reason for limiting the ratio γ between the longitudinal diameter y and the lateral displacement X of the oven tube will be explained.

第5図に裏面側の開先加工をしない場合のオーブン管の
断面形状を示す0図中Xは横様を、yは縦径を示す、こ
こで、縦径yと横移Xとの比をγとする。
Figure 5 shows the cross-sectional shape of the oven tube when the back side is not beveled. Let be γ.

裏面側の開先については、開先がインビーダ支持用マン
ドレルの傷害になり実際問題として、開先加工が困難な
場合がある0発明者らは、このような場合、裏面側の開
先を加工する代替としてオープン管の断面形状を楕円形
状にすればよいという知見を各種の試験結果から得てい
る。第6図にその結果の一例を示す。
Regarding the groove on the back side, the groove may damage the mandrel for supporting the invider, and as a practical matter, it may be difficult to process the groove. We have obtained knowledge from various test results that as an alternative to this, the cross-sectional shape of the open tube may be made elliptical. FIG. 6 shows an example of the results.

第6図の横軸は縦径と横様との比Tを示し、縦軸は白色
層の裏面側幅と肉厚中心部幅との比δを示す、同図から
明らかなように縦径と横様との比Tを0.97以下に管
理することにより白色層の裏面側幅と肉厚中心部幅との
比δを4以下にすることできる。すなわち、δを4以下
にするためには第5図に示す縦径yと横移Xとの比Tを
0.97以下にすればよいわけである。
The horizontal axis in FIG. 6 shows the ratio T between the vertical diameter and the horizontal width, and the vertical axis shows the ratio δ between the back side width of the white layer and the thickness center width. By controlling the ratio T between the width and width to 0.97 or less, the ratio δ between the back side width of the white layer and the thickness center width can be made 4 or less. That is, in order to make δ 4 or less, the ratio T between the vertical diameter y and the lateral shift X shown in FIG. 5 should be 0.97 or less.

γ=y/xを0.85〜0.97に限定する理由は、T
が0.85未満では、表面側の溶接部のメタルフローの
立ち上がりが急角度となり、延性、靭性が低下し、0.
97を超えると上述のように裏面側の白色層幅が広くな
るためである。したがって、縦径yと横移Xとの比γは
0.85〜0.97とする。
The reason for limiting γ=y/x to 0.85 to 0.97 is that T
is less than 0.85, the rise of the metal flow at the weld on the surface side becomes steep, ductility and toughness decrease, and 0.85 is less than 0.85.
This is because if it exceeds 97, the width of the white layer on the back side becomes wider as described above. Therefore, the ratio γ between the vertical diameter y and the lateral shift X is set to 0.85 to 0.97.

溶接条件については、健全な電縫溶接の前提である白色
層の出現が認められるかぎり、待には限定しない、しか
し、溶接速度(造管速度)は20〜80m/winが好
ましい。
The welding conditions are not limited to long as long as the appearance of a white layer, which is a prerequisite for sound electric resistance welding, is observed, but the welding speed (pipe making speed) is preferably 20 to 80 m/win.

なお、上記開先加工を施す方法は特に限定せず切削、研
磨、圧延等の何れの方法を用いても良い。
Note that the method for performing the groove processing is not particularly limited, and any method such as cutting, polishing, rolling, etc. may be used.

(実施例) 実施例1 第1表に示す化学成分を含有する厚み3.0−10.0
m陶の#i4帯を用いて外径25.4〜65.0m−の
厚肉小径電縫鋼管を製造した。製造条件の詳細を第2表
に示す、また、溶接部の白色層幅の観察結果を第2表に
併記する。
(Example) Example 1 Thickness 3.0-10.0 containing the chemical components shown in Table 1
A thick-walled small-diameter electric resistance welded steel pipe with an outer diameter of 25.4 to 65.0 m was manufactured using #i4 band of m-porcelain. The details of the manufacturing conditions are shown in Table 2, and the observation results of the white layer width of the welded part are also shown in Table 2.

第 1   表 第2表に示すように、実施例1は表裏面側とも開先加工
を施した例で、何れも縦径と横様との比Tは1.0であ
る。製造No、1〜9は本発明法によるもので、表裏面
側と肉厚中心部との白色層幅の比δは、何れも1〜4の
範囲内である。一方、製造No、10〜15は比較法に
よるもので、製造No、 10.13.14は開先高さ
と開先角度が、製造No、11は開先高さが、製造No
、12.15は開先角度がそれぞれ本発明法の限定範囲
を外れているため、表裏面側と肉厚中心部との白色層幅
の比δは何れも4を超えている。
As shown in Table 1 and Table 2, Example 1 is an example in which grooves were formed on both the front and back surfaces, and the ratio T of the longitudinal diameter to the lateral diameter was 1.0 in both cases. Production Nos. 1 to 9 were made by the method of the present invention, and the ratio δ of the white layer width between the front and back sides and the thick center portion was all within the range of 1 to 4. On the other hand, production numbers 10 to 15 are based on the comparative method; production numbers 10, 13, and 14 have groove height and groove angle; production numbers 11 and 11 have groove height;
, 12.15, the groove angles are outside the limited range of the method of the present invention, so the ratio δ of the white layer width between the front and back sides and the thickness center portion is all over 4.

さらに、製造No、1〜15の各鋼管から試験片を採取
し捩じり疲労試験を行った。その結果を第1図に示す0
図中の横軸は白色層の表裏面側幅と肉厚中心部幅との比
(δ)を、縦軸は10’サイクルの疲労強度を示し、O
は本発明法を、・は比較法をそれぞれ示す。
Furthermore, test pieces were taken from each of the steel pipes with manufacturing numbers 1 to 15 and subjected to a torsional fatigue test. The results are shown in Figure 1.
The horizontal axis in the figure represents the ratio (δ) of the width of the front and back surfaces of the white layer to the thickness center width, and the vertical axis represents the fatigue strength of 10' cycles.
. indicates the method of the present invention, and . indicates the comparative method.

同図から明らかなように、δが4を超えると表裏面側の
白色層幅が大きくなり疲労強度が極端に低下している。
As is clear from the figure, when δ exceeds 4, the width of the white layer on the front and back sides becomes large and the fatigue strength is extremely reduced.

実施例2 第1表に示す化学成分を含有する厚み3.0〜10.0
ms+のI帯を用いて外径25.4〜65.O開の厚肉
小径電縫鋼管を製造した。製造条件の詳細を第3表に示
す。また、溶接部の白色層幅の観察結果を第3表に併記
する。
Example 2 Thickness 3.0-10.0 containing chemical components shown in Table 1
Using the I band of ms+, the outer diameter is 25.4 to 65. A thick-walled small-diameter ERW steel pipe with an O-opening was manufactured. Details of the manufacturing conditions are shown in Table 3. Table 3 also shows the observation results of the white layer width of the welded portion.

(以下余白) 第3表に示すように、実施例2の製造No、16〜23
は本発明法によるもので、表面側のみ開先加工を施した
例で、何れも、表裏面側と肉厚中心部との白色層幅の比
δは何れも1〜4の範囲内である一方、製造No、24
〜26は比較法で、表裏面側とも開先加工を施さない例
で、開先高さX、 、X。
(The following is a margin) As shown in Table 3, production numbers 16 to 23 of Example 2
These are examples in which groove processing was performed only on the front side by the method of the present invention, and in both cases, the ratio δ of the white layer width between the front and back sides and the thickness center part is within the range of 1 to 4. On the other hand, production No. 24
~26 is a comparative method, and is an example in which no beveling is performed on both the front and back sides, and the groove heights are X, , and X.

は1.0、開先角度θ1、θ2は0度、縦径と横移との
比Tは1.05〜1.10の範囲で、開先形状および縦
径と横移との比Tが本発明法の限定箱間を外れているた
め、表裏面側と肉厚中心部との白色層幅の比δは何れも
4を超えている。
is 1.0, the groove angles θ1 and θ2 are 0 degrees, the ratio T between the longitudinal diameter and the lateral shift is in the range of 1.05 to 1.10, and the groove shape and the ratio T between the longitudinal diameter and the lateral shift are in the range of 1.05 to 1.10. Since the method of the present invention is out of the limit range, the ratio δ of the white layer width between the front and back sides and the thickness center portion is both greater than 4.

以上の二つの実施例からも明らかなように、本発明に係
わる白色層幅の均一な厚肉小径型111鋼管およびその
製造方法は表裏面側と肉厚中心部との白色層幅の比δを
1から4の範囲にすることによって疲労強度を向上させ
ることができる。
As is clear from the above two examples, the thick-walled, small-diameter 111 steel pipe with a uniform white layer width and the method for manufacturing the same according to the present invention are as follows: The fatigue strength can be improved by setting the value in the range of 1 to 4.

(発明の効果) 以上説明したように、本発明に係わる白色層幅の均一な
厚肉小径電縫鋼管およびその製造方法は、上記の構成で
あるから溶接部の白色層の幅を均一にすることができ、
冷間加工性および疲労特性を向上させた厚肉小径電縫鋼
管を製造できるという優れた効果を有するものである。
(Effects of the Invention) As explained above, the thick-walled small-diameter ERW steel pipe with a uniform white layer width and the method for manufacturing the same according to the present invention have the above configuration, so that the width of the white layer at the welded portion is made uniform. It is possible,
This has the excellent effect of producing thick-walled, small-diameter electric resistance welded steel pipes with improved cold workability and fatigue properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は白色層の表裏面側幅と肉厚中心部幅との比と疲
労強度との関係を示すグラフである。 第2図は溶接部の白色層の概略図を示し、(a)は薄肉
小径電縫鋼管の例を、(b)は厚肉小径電縫鋼管の例を
それぞれ示す図である。 第3図は厚肉小径電縫鋼管の溶接部白色層の形状を数値
化するための模式図である。 第4図は溶接前のオープン管端面の開先形状を示す図で
ある。 第5図は裏面側の開先加工をしない場合の溶接前のオー
ブン管の断面形状を示す図である。 第6図は縦径と横移との比と、白色層の裏面側幅と肉厚
中心部幅との比との関係を示すグラフである。 1−白色層、2・−熱影響部、W、・−表裏面側白色層
の幅、w、−肉厚中心部の白色層の幅、XXt・・−開
先高さ、 θ1 θ2−開先角度、  −−− 肉厚、 y −縦径、 X−・・横移。
FIG. 1 is a graph showing the relationship between the ratio of the front and back side widths to the thickness center width of the white layer and the fatigue strength. FIG. 2 shows a schematic diagram of a white layer of a welded part, in which (a) shows an example of a thin-walled small-diameter ERW steel pipe, and (b) shows an example of a thick-walled, small-diameter ERW steel pipe. FIG. 3 is a schematic diagram for quantifying the shape of the welded white layer of a thick-walled, small-diameter electric resistance welded steel pipe. FIG. 4 is a diagram showing the groove shape of the open tube end face before welding. FIG. 5 is a diagram showing the cross-sectional shape of the oven tube before welding when the back side is not beveled. FIG. 6 is a graph showing the relationship between the ratio of the longitudinal diameter and the lateral shift and the ratio of the back side width of the white layer to the thickness center width. 1 - white layer, 2 - heat affected zone, W, - width of front and back white layer, w, - width of white layer at center of wall thickness, XXt - groove height, θ1 θ2 - opening Tip angle, --- wall thickness, y - longitudinal diameter, X - lateral displacement.

Claims (4)

【特許請求の範囲】[Claims] (1)C:0.01〜0.40%、Si:0.01〜0
.50%、Mn:0.20〜1.8%、Al:0.01
〜0.1%を含有し、残部がFeおよび不可避不純物か
らなる鋼帯を厚肉小径電縫鋼管に製造するに際し、溶接
部横断面の白色層において、鋼管表裏面側と肉厚中心部
の白色層幅を各々W_S、W_Mとし、その比δ=W_
S/W_Mを1〜4とすることを特徴とする白色層幅の
均一な厚肉小径電縫鋼管。
(1) C: 0.01-0.40%, Si: 0.01-0
.. 50%, Mn: 0.20-1.8%, Al: 0.01
When manufacturing a steel strip containing ~0.1% and the balance consisting of Fe and unavoidable impurities into a thick-walled small-diameter ERW steel pipe, in the white layer of the cross section of the weld, the front and back sides of the steel pipe and the center of the wall thickness are Let the white layer widths be W_S and W_M, respectively, and the ratio δ=W_
A thick-walled small-diameter electric resistance welded steel pipe with a uniform white layer width, characterized in that S/W_M is 1 to 4.
(2)Nb:0.015〜0.1%、Ti:0.01〜
0.1%、V:0.02〜0.1%およびCa:0.0
005〜0.005%の内から選んだ1種または2種以
上を含有する請求項(1)の厚肉小径電縫鋼管。
(2) Nb: 0.015~0.1%, Ti: 0.01~
0.1%, V: 0.02-0.1% and Ca: 0.0
The thick-walled small-diameter electric resistance welded steel pipe according to claim 1, containing one or more selected from 0.005% to 0.005%.
(3)請求項(1)または(2)の厚肉小径電縫鋼管を
溶接するに際し、溶接直前のオープン管での開先高さを
肉厚tの0.80〜0.95、開先角度を20〜45度
に制御することを特徴とする厚肉小径電縫鋼管の製造方
法。
(3) When welding the thick-walled small-diameter ERW steel pipe of claim (1) or (2), the groove height of the open pipe immediately before welding is set to 0.80 to 0.95 of the wall thickness t, and the groove height A method for producing a thick-walled, small-diameter electric resistance welded steel pipe, the method comprising controlling the angle between 20 and 45 degrees.
(4)請求項(1)または(2)の厚肉小径電縫鋼管を
溶接するに際し、溶接直前のオープン管での開先高さを
肉厚をtの0.80〜0.95、開先角度を20〜45
度、オープン管の縦径y、横径xの比γ=y/xを0.
85〜0.97に制御することを特徴とする厚肉小径電
縫鋼管の製造方法。
(4) When welding the thick-walled, small-diameter ERW steel pipe of claim (1) or (2), the groove height of the open pipe immediately before welding is set so that the wall thickness is 0.80 to 0.95 of t, and the open pipe is Tip angle 20-45
degree, the ratio γ = y/x of the vertical diameter y and the horizontal diameter x of the open pipe is 0.
85 to 0.97. A method for manufacturing a thick-walled small-diameter electric resistance welded steel pipe.
JP20240389A 1989-08-03 1989-08-03 Thick and small-diameter electric welded steel tube having uniform width of white layer and production thereof Pending JPH0368740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20240389A JPH0368740A (en) 1989-08-03 1989-08-03 Thick and small-diameter electric welded steel tube having uniform width of white layer and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20240389A JPH0368740A (en) 1989-08-03 1989-08-03 Thick and small-diameter electric welded steel tube having uniform width of white layer and production thereof

Publications (1)

Publication Number Publication Date
JPH0368740A true JPH0368740A (en) 1991-03-25

Family

ID=16456930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20240389A Pending JPH0368740A (en) 1989-08-03 1989-08-03 Thick and small-diameter electric welded steel tube having uniform width of white layer and production thereof

Country Status (1)

Country Link
JP (1) JPH0368740A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000874A (en) * 2005-06-21 2007-01-11 Jfe Steel Kk Method for producing electric resistance welded tube for high strength thick line pipe having excellent weld zone toughness
JP2007090414A (en) * 2005-09-30 2007-04-12 Jfe Steel Kk Method for manufacturing electric resistance welded tube with excellent weld part characteristic
JP2007090416A (en) * 2005-09-30 2007-04-12 Jfe Steel Kk Method for manufacturing electric resistance welded tube with excellent weld part characteristic
JP2007160382A (en) * 2005-12-16 2007-06-28 Jfe Steel Kk Method for manufacturing electric resistance welded tube having excellent weld characteristic
JP2007296539A (en) * 2006-04-28 2007-11-15 Jfe Steel Kk Highly efficient method of manufacturing electric resistance welded tube excellent in weld zone characteristic
JP2007307566A (en) * 2006-05-16 2007-11-29 Jfe Steel Kk Method for producing electric resistance welded tube for high-strength thick line pipe having excellent weld zone toughness
JP2007319900A (en) * 2006-06-01 2007-12-13 Jfe Steel Kk Method of producing electric resistance welded tube having good weld zone characteristic
JP2007330982A (en) * 2006-06-13 2007-12-27 Jfe Steel Kk Method for manufacturing electric resistance welded tube having excellent weld characteristic
JP2008030115A (en) * 2006-07-07 2008-02-14 Jfe Steel Kk Method for manufacturing electric resistance welded tube with excellent weld part characteristic
JP2008093703A (en) * 2006-10-12 2008-04-24 Jfe Steel Kk Apparatus for manufacturing seam welded pipe having excellent welded characteristic
JP2008100277A (en) * 2006-10-23 2008-05-01 Jfe Steel Kk Method for producing low yield-ratio thick electric resistance welded pipe having weld zone excellent in toughness
JP2008105062A (en) * 2006-10-26 2008-05-08 Jfe Steel Kk Manufacturing method of electric welded tube having excellent characteristic of weld zone
KR101246935B1 (en) * 2006-10-12 2013-03-25 제이에프이 스틸 가부시키가이샤 Apparatus for manufacturing seam-welded pipe excelling in welded portion characteristic
JP2016107298A (en) * 2014-12-05 2016-06-20 Jfeスチール株式会社 Manufacturing method for high-strength thick-walled electro-resistance welded steel tube
WO2020100603A1 (en) * 2018-11-13 2020-05-22 日鉄日新製鋼株式会社 Steel pipe, steel pipe for bearing, and method for producing steel pipe
WO2023181523A1 (en) * 2022-03-25 2023-09-28 Jfeスチール株式会社 Electric resistance welded pipe and method for manufacturing same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000874A (en) * 2005-06-21 2007-01-11 Jfe Steel Kk Method for producing electric resistance welded tube for high strength thick line pipe having excellent weld zone toughness
JP4687268B2 (en) * 2005-06-21 2011-05-25 Jfeスチール株式会社 Manufacturing method of ERW steel pipe for high-strength thick-walled pipe with excellent weld toughness
JP4682780B2 (en) * 2005-09-30 2011-05-11 Jfeスチール株式会社 ERW pipe manufacturing method with good weld characteristics
JP2007090414A (en) * 2005-09-30 2007-04-12 Jfe Steel Kk Method for manufacturing electric resistance welded tube with excellent weld part characteristic
JP2007090416A (en) * 2005-09-30 2007-04-12 Jfe Steel Kk Method for manufacturing electric resistance welded tube with excellent weld part characteristic
JP2007160382A (en) * 2005-12-16 2007-06-28 Jfe Steel Kk Method for manufacturing electric resistance welded tube having excellent weld characteristic
JP2007296539A (en) * 2006-04-28 2007-11-15 Jfe Steel Kk Highly efficient method of manufacturing electric resistance welded tube excellent in weld zone characteristic
JP2007307566A (en) * 2006-05-16 2007-11-29 Jfe Steel Kk Method for producing electric resistance welded tube for high-strength thick line pipe having excellent weld zone toughness
JP2007319900A (en) * 2006-06-01 2007-12-13 Jfe Steel Kk Method of producing electric resistance welded tube having good weld zone characteristic
JP2007330982A (en) * 2006-06-13 2007-12-27 Jfe Steel Kk Method for manufacturing electric resistance welded tube having excellent weld characteristic
JP2008030115A (en) * 2006-07-07 2008-02-14 Jfe Steel Kk Method for manufacturing electric resistance welded tube with excellent weld part characteristic
JP2008093703A (en) * 2006-10-12 2008-04-24 Jfe Steel Kk Apparatus for manufacturing seam welded pipe having excellent welded characteristic
KR101246935B1 (en) * 2006-10-12 2013-03-25 제이에프이 스틸 가부시키가이샤 Apparatus for manufacturing seam-welded pipe excelling in welded portion characteristic
JP2008100277A (en) * 2006-10-23 2008-05-01 Jfe Steel Kk Method for producing low yield-ratio thick electric resistance welded pipe having weld zone excellent in toughness
JP2008105062A (en) * 2006-10-26 2008-05-08 Jfe Steel Kk Manufacturing method of electric welded tube having excellent characteristic of weld zone
JP2016107298A (en) * 2014-12-05 2016-06-20 Jfeスチール株式会社 Manufacturing method for high-strength thick-walled electro-resistance welded steel tube
WO2020100603A1 (en) * 2018-11-13 2020-05-22 日鉄日新製鋼株式会社 Steel pipe, steel pipe for bearing, and method for producing steel pipe
JP2020079434A (en) * 2018-11-13 2020-05-28 日鉄日新製鋼株式会社 Steel pipe, steel pipe for bearing, and method for producing steel pipe
WO2023181523A1 (en) * 2022-03-25 2023-09-28 Jfeスチール株式会社 Electric resistance welded pipe and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPH0368740A (en) Thick and small-diameter electric welded steel tube having uniform width of white layer and production thereof
JP6874913B2 (en) Square steel pipe and its manufacturing method and building structure
TWI534271B (en) Steel for a welded structure
EP1746175A1 (en) Super high strength uoe steel pipe and method for production thereof
CN103194678B (en) A kind of UOE welded tube and manufacture method thereof
JP2022033802A (en) Square steel tube and building structure
CN111118401A (en) High-performance large-thickness easy-to-weld bridge structural steel and manufacturing method thereof
JP3814112B2 (en) Super high strength steel pipe excellent in low temperature toughness of seam welded portion and manufacturing method thereof
US4842816A (en) High toughness steel
JP7306494B2 (en) Rectangular steel pipe, manufacturing method thereof, and building structure
US11674194B2 (en) Cold rolled steel sheet for flux-cored wire, and manufacturing method therefor
JP2001140040A (en) Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance
JPH0512421B2 (en)
JPS6261798A (en) Composite wire for multi-electrode submerged arc welding
JP3266093B2 (en) High toughness UOE steel pipe and method of manufacturing the same
JP2001205351A (en) Manufacturing method for steel bent tube
JPS63295070A (en) Manufacture of high strength welded steel pipe
JPH04187742A (en) Electric resistance welded steel tube for machine structure excellent in machinability
JP2008007843A (en) Steel sheet for cold-worked steel pipe
JPH06145791A (en) Production of plate of low alloy high tensile strength steel excellent in characteritic in resistance weld zone
JPH04147917A (en) Production of thick steel plate having high young's modulus
JPS6149364B2 (en)
JPH04224623A (en) Manufacture of thick 50kg class low yield ratio-high tensile strength steel plate small in difference of hardness in plate thickness direction
JPH0514782B2 (en)
JPS6333544A (en) Structural resistance welded tube having two-layer structure and its production