WO2020100366A1 - Refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus Download PDF

Info

Publication number
WO2020100366A1
WO2020100366A1 PCT/JP2019/032778 JP2019032778W WO2020100366A1 WO 2020100366 A1 WO2020100366 A1 WO 2020100366A1 JP 2019032778 W JP2019032778 W JP 2019032778W WO 2020100366 A1 WO2020100366 A1 WO 2020100366A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
accumulator
refrigeration cycle
outlet temperature
Prior art date
Application number
PCT/JP2019/032778
Other languages
French (fr)
Japanese (ja)
Inventor
大和 江島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020556610A priority Critical patent/JP7031010B2/en
Publication of WO2020100366A1 publication Critical patent/WO2020100366A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present invention relates to a refrigeration cycle device including an accumulator.
  • a refrigeration cycle device including a refrigerant circuit in which a compressor, a four-way valve, an outdoor heat exchanger, an expansion section, a use side heat exchanger, and an accumulator are connected by piping.
  • the refrigeration cycle device performs heating operation or cooling operation by switching the four-way valve.
  • the refrigeration cycle apparatus temporarily suspends the heating operation when the outdoor heat exchanger acting as the evaporator is cooled and frosted during the heating operation. Then, the refrigeration cycle apparatus switches the four-way valve to the cooling operation side to supply the hot gas discharged from the compressor to the outdoor heat exchanger to thaw the ice.
  • the refrigeration cycle device suppresses freezing of the accumulator.
  • Patent Document 1 discloses an air conditioner including a bypass circuit that connects a discharge side of a compressor and an accumulator.
  • a valve provided in the bypass circuit is opened, and the high temperature and high pressure refrigerant discharged from the compressor is caused to flow into the accumulator.
  • the liquid-state refrigerant accumulated in the accumulator evaporates and is sucked into the compressor.
  • Patent Document 1 does not detect whether or not the refrigerant is accumulated in the accumulator. Therefore, the timing of flowing hot gas to the accumulator needs to be monitored at any time, which is complicated.
  • the present invention has been made to solve the above problems, and provides a refrigeration cycle apparatus that automatically recognizes the timing of flowing hot gas into an accumulator and eliminates the complexity of monitoring from time to time. is there.
  • the refrigeration cycle apparatus a refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion section, a use side heat exchanger and an accumulator are connected by a pipe, and a discharge side of the compressor and an accumulator are connected by a bypass pipe.
  • Bypass circuit a flow rate adjusting device provided in the bypass circuit for adjusting the flow rate of the refrigerant flowing in the bypass circuit, an intake temperature detecting section for detecting the intake temperature of the refrigerant flowing to the intake side of the compressor, and an intake temperature detecting section.
  • a control unit that adjusts the opening degree of the flow rate adjusting device based on the refrigerant suction temperature detected by.
  • the control unit adjusts the opening degree of the flow rate adjusting device based on the suction temperature of the refrigerant detected by the suction temperature detection unit.
  • the control unit can determine whether or not the accumulator is frozen by grasping the intake temperature, and can supply hot gas to the accumulator when the accumulator is frozen. In this way, the refrigeration cycle apparatus automatically recognizes the timing of supplying hot gas to the accumulator. Therefore, since it is not necessary to monitor the timing of flowing hot gas through the accumulator as needed, the complexity can be eliminated.
  • FIG. 6 is a circuit diagram showing a refrigerant flow in an outdoor hot water supply operation mode according to the first embodiment of the present invention. It is a circuit diagram which shows the flow of the refrigerant in the defrosting operation mode which concerns on Embodiment 1 of this invention. It is a block diagram which shows the control part 50 which concerns on Embodiment 1 of this invention.
  • 5 is a flowchart showing an operation of the control unit 50 according to the first embodiment of the present invention. It is a circuit diagram which shows the bypass circuit 11 of the refrigeration cycle device 100 which concerns on Embodiment 2 of this invention. It is a schematic diagram which shows the wiring of the bypass piping 11a which concerns on Embodiment 2 of this invention. It is a block diagram which shows the control part 150 which concerns on Embodiment 2 of this invention. 5 is a flowchart showing an operation of the control unit 150 according to the second embodiment of the present invention.
  • FIG. 1 is a circuit diagram showing a refrigeration cycle device 1 according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 1 includes a compressor 3, a flow path switching device 4, an outdoor heat exchanger 5, an outdoor blower 6, an expansion section 7, a use side heat exchanger 8, a geothermal side heat exchanger 9. , An accumulator 10 and a controller 50.
  • the compressor 3, the flow path switching device 4, the outdoor heat exchanger 5, the expansion part 7, the use side heat exchanger 8, the geothermal side heat exchanger 9 and the accumulator 10 are connected by piping to form the refrigerant circuit 2. ..
  • the compressor 3 sucks a low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges the high-temperature and high-pressure refrigerant.
  • the flow path switching device 4 switches the direction in which the refrigerant flows in the refrigerant circuit 2, and is, for example, a four-way valve.
  • the flow path switching device 4 is connected to the compressor 3 and switches the direction of the refrigerant flowing through the refrigerant circuit 2 to the heating operation side or the cooling operation side.
  • the flow path switching device 4 switches the direction of the refrigerant flowing through the refrigerant circuit 2 so that either the outdoor heat exchanger 5 or the geothermal side heat exchanger 9 acts as an evaporator.
  • the outdoor heat exchanger 5 is, for example, an air heat exchanger that exchanges heat between outdoor air and a refrigerant, and functions as an evaporator during heating operation and as a condenser during cooling operation.
  • the outdoor blower 6 sends air to the outdoor heat exchanger 5.
  • the expansion section 7 is a pressure reducing valve or expansion valve that decompresses and expands the refrigerant, and is, for example, an electronic expansion valve whose opening is adjusted.
  • the expansion section 7 includes an outdoor expansion valve 7a, an indoor expansion valve 7b, and a geothermal expansion valve 7c.
  • the outdoor expansion valve 7a is connected to the outdoor heat exchanger 5
  • the indoor expansion valve 7b is connected to the utilization side heat exchanger 8
  • the geothermal expansion valve 7c is connected to the geothermal side heat exchanger 9.
  • the utilization side heat exchanger 8 is, for example, a plate heat exchanger, and exchanges heat between the water flowing through the water pipe 13 and the refrigerant.
  • the heat exchanger 8 on the use side acts as a condenser during heating operation and as an evaporator during cooling operation.
  • the utilization side heat exchanger 8 has a part of a water circuit in which a water pump (not shown) and a hot water storage tank (not shown) are connected by a water pipe 13, and water as a heat medium circulates. ing.
  • the usage-side heat exchanger 8 exchanges heat between the refrigerant flowing through the refrigerant circuit 2 and the water flowing through the water pipe 13.
  • the utilization side heat exchanger 8 is connected in parallel with the outdoor heat exchanger 5 when the direction of the refrigerant is switched to the heating operation side by the flow path switching device 4.
  • refrigeration cycle apparatus 1 has a function as a hot water supply apparatus during heating operation.
  • the geothermal side heat exchanger 9 is provided in the ground, for example, and exchanges heat between the ground and the refrigerant.
  • the geothermal side heat exchanger 9 functions as an evaporator during heating operation and as a condenser during cooling operation.
  • the geothermal side heat exchanger 9 is connected to a water pump (not shown) and an underground heat collection pipe (not shown), and constitutes a part of a water circuit in which an antifreeze solution as a heat medium circulates. ..
  • the geothermal heat exchanger 9 exchanges heat between the refrigerant flowing in the refrigerant circuit 2 and the antifreeze liquid flowing in the water circuit.
  • the accumulator 10 is provided on the suction side of the compressor 3 and stores the liquid state refrigerant of the refrigerant sucked into the compressor 3 so that only the gas state refrigerant flows into the compressor 3. is there.
  • the discharge-side pipe of the compressor 3 is branched into two pipes, each of which includes a main pipe 2a connected to the flow path switching device 4 and a sub-pipe 2b connected to the usage-side heat exchanger 8.
  • the main pipe 2a sequentially connects the compressor 3, the flow path switching device 4, the outdoor heat exchanger 5, the outdoor expansion valve 7a, the geothermal expansion valve 7c, the geothermal side heat exchanger 9, and the accumulator 10.
  • the auxiliary pipe 2b sequentially connects the use side heat exchanger 8 and the indoor expansion valve 7b, and is connected between the outdoor expansion valve 7a and the geothermal expansion valve 7c in the main pipe 2a.
  • the accumulator 10 and the outdoor heat exchanger 5 are connected by an extension pipe 2c.
  • the refrigeration cycle device 1 includes a main solenoid valve 21, a sub solenoid valve 22, and an extension solenoid valve 23.
  • the main solenoid valve 21 is provided between the compressor 3 and the flow path switching device 4 in the main pipe 2a, and the sub solenoid valve 22 is provided in the sub pipe 2b.
  • the main electromagnetic valve 21 and the sub electromagnetic valve 22 are provided in parallel on the downstream side of the compressor 3, the refrigerant discharged from the compressor 3 has the main electromagnetic valve 21 or the sub electromagnetic valve 22.
  • the extension solenoid valve 23 is provided in the extension pipe 2c.
  • the refrigeration cycle apparatus 1 includes six strainers 24a to 24f, and the strainers 24a to 24f are net-like devices used to remove solid components from a liquid.
  • the strainer 24a is provided in the accumulator 10.
  • the strainer 24b is provided between the outdoor heat exchanger 5 and the outdoor expansion valve 7a.
  • the strainers 24c and 24d are provided on both sides of the utilization side heat exchanger 8 in the auxiliary pipe 2b.
  • the strainers 24e and 24f are provided on both sides of the geothermal side heat exchanger 9 in the main pipe 2a.
  • the refrigeration cycle apparatus 1 is provided with four stop valves 25a to 25d, and the stop valves 25a to 25d stop the flow of the refrigerant by being closed at the time of pipe connection or the like.
  • the stop valves 25a and 25b are provided on both sides of the utilization side heat exchanger 8 in the auxiliary pipe 2b.
  • the stop valves 25c and 25d are provided on both sides of the geothermal side heat exchanger 9 in the main
  • the refrigeration cycle apparatus 1 is provided with four service ports 26a to 26d.
  • the service ports 26a to 26d are provided adjacent to the stop valves 25a to 25d, respectively, and are used for inspections such as when connecting pipes.
  • the refrigeration cycle apparatus 1 is provided with two check valves 27a and 27b, and the check valves 27a and 27b are used for checking when there is an abnormality.
  • the check valves 27a and 27b are provided on the discharge side of the compressor 3 and on the upstream side of the accumulator 10, respectively.
  • the refrigeration cycle apparatus 1 is provided with a muffler 29, and the muffler 29 is provided on the protruding side of the compressor 3 and suppresses the sound generated from the refrigerant discharged from the compressor 3.
  • the refrigeration cycle apparatus 1 includes a pressure sensor 30, and the pressure sensor 30 detects the pressure of the refrigerant on the discharge side of the compressor 3.
  • the refrigeration cycle apparatus 1 includes a high pressure switch 31, and the high pressure switch 31 is provided on the discharge side of the compressor 3 and stops the refrigeration cycle apparatus 1 when the pressure is equal to or higher than a certain pressure.
  • the refrigeration cycle apparatus 1 includes a check valve 28, and the check valve 28 is provided in the auxiliary pipe 2b and prevents the refrigerant from flowing backward from the utilization side heat exchanger 8 toward the compressor 3.
  • the refrigeration cycle device 1 includes temperature sensors 40a to 40g, an intake temperature detection unit 41, a two-phase temperature detection unit 42, and an outside air temperature detection unit 43.
  • the temperature sensors 40a to 40g respectively include the discharge side of the compressor 3, the outdoor heat exchanger 5, the geothermal side heat exchanger 9 and the geothermal expansion valve 7c, the geothermal side heat exchanger 9, and the geothermal side heat exchanger 9. It is provided in the vicinity of the ground, between the use side heat exchanger 8 and the indoor expansion valve 7b, and in the water pipe 13.
  • the suction temperature detector 41 is provided on the suction side of the compressor 3 and detects the suction temperature of the refrigerant flowing to the suction side of the compressor 3.
  • the two-phase temperature detector 42 is provided in the outdoor heat exchanger 5 and detects the two-phase temperature of the refrigerant flowing through the outdoor heat exchanger 5.
  • the outside air temperature detection unit 43 is provided outside the room and detects the outside air temperature.
  • FIG. 2 is a circuit diagram showing the bypass circuit 11 of the refrigeration cycle device 1 according to the first embodiment of the present invention.
  • the refrigeration cycle device 1 includes a bypass circuit 11 and a flow rate adjusting device 12.
  • the bypass circuit 11 connects the discharge side of the compressor 3 and the accumulator 10 by a bypass pipe 11 a, and is connected between the outdoor heat exchanger 5 and the flow path switching device 4.
  • the bypass pipe 11a is, for example, a copper pipe.
  • the bypass circuit 11 passes over the surface of the accumulator 10.
  • the flow rate adjusting device 12 is provided in the bypass circuit 11 and adjusts the flow rate of the refrigerant flowing through the bypass circuit 11.
  • the control unit 50 controls the operation of the entire refrigeration cycle apparatus 1, and is composed of, for example, a CPU.
  • the refrigeration cycle apparatus 1 has a geothermal hot water supply operation mode and an outdoor hot water supply operation mode as the heating operation mode.
  • the controller 50 executes the geothermal hot water supply operation mode when the outside air temperature is equal to or lower than the geothermal side temperature.
  • control unit 50 executes the outdoor hot water supply operation mode.
  • the refrigeration cycle device 1 also has a defrosting operation mode.
  • the defrosting operation mode is a mode in which, when frost adheres to the outdoor heat exchanger 5, hot gas is supplied to the outdoor heat exchanger 5 to remove the frost.
  • the refrigeration cycle apparatus 1 has a hot gas bypass operation mode.
  • the hot gas bypass operation mode is a mode in which when the accumulator 10 is frozen, hot gas is supplied to the accumulator 10 to remove freezing.
  • the refrigeration cycle apparatus 1 may have a cooling operation mode.
  • FIG. 3 is a circuit diagram showing a refrigerant flow in the geothermal hot water supply operation mode according to Embodiment 1 of the present invention.
  • the control unit 50 switches the flow path switching device 4 so that the compressor 3 and the outdoor heat exchanger 5 are connected. Moreover, the control unit 50 stops the outdoor blower 6.
  • the refrigerant sucked into the compressor 3 is compressed by the compressor 3 and is discharged in a high temperature and high pressure gas state.
  • the high-temperature, high-pressure gas-state refrigerant discharged from the compressor 3 is branched into a refrigerant flowing in the main pipe 2a and a refrigerant flowing in the auxiliary pipe 2b.
  • the refrigerant flowing through the auxiliary pipe 2b passes through the auxiliary electromagnetic valve 22 and flows into the usage-side heat exchanger 8, where it is heat-exchanged with the water flowing through the water pipe 13 to condense and liquefy. To do. At this time, the water is heated and becomes hot water. Thereby, hot water is supplied to the hot water supply target.
  • the condensed refrigerant in the liquid state flows into the indoor expansion valve 7b, is expanded and depressurized in the indoor expansion valve 7b, and joins the main pipe 2a.
  • the refrigerant that has joined the main pipe 2a flows into the geothermal expansion valve 7c, is expanded and depressurized in the geothermal expansion valve 7c, and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the geothermal-side heat exchanger 9 that functions as an evaporator, and in the geothermal-side heat exchanger 9, it is heat-exchanged with the antifreeze liquid flowing in the water circuit to be evaporated and gasified. ..
  • the evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 4, flows into the accumulator 10, and is then sucked into the compressor 3.
  • the refrigerant flowing through the main pipe 2a passes through the main electromagnetic valve 21 and the flow path switching device 4 and flows into the outdoor heat exchanger 5.
  • the amount of heat exchange in the outdoor heat exchanger 5 is small.
  • the refrigerant flowing out of the outdoor heat exchanger 5 passes through the outdoor expansion valve 7a and merges with the refrigerant flowing out of the indoor expansion valve 7b.
  • FIG. 4 is a circuit diagram showing the flow of the refrigerant in the outdoor hot water supply operation mode according to the first embodiment of the present invention.
  • control unit 50 switches flow path switching device 4 so that accumulator 10 and outdoor heat exchanger 5 are connected.
  • the control unit 50 also closes the main solenoid valve 21.
  • the refrigerant sucked into the compressor 3 is compressed by the compressor 3 and discharged in a high temperature and high pressure gas state.
  • the high-temperature, high-pressure gas-state refrigerant discharged from the compressor 3 flows to the sub electromagnetic valve 22 because the main electromagnetic valve 21 is closed.
  • the refrigerant flowing through the sub solenoid valve 22 flows into the usage-side heat exchanger 8 and is heat-exchanged with the water flowing through the water pipe 13 in the usage-side heat exchanger 8 to be condensed and liquefied. At this time, the water is heated and becomes hot water. Thereby, hot water is supplied to the hot water supply target.
  • the condensed refrigerant in the liquid state flows into the indoor expansion valve 7b, is expanded and decompressed in the indoor expansion valve 7b, and flows into the main pipe 2a.
  • the refrigerant flowing into the main pipe 2a flows into the outdoor expansion valve 7a, is expanded and depressurized in the outdoor expansion valve 7a, and becomes a low-temperature low-pressure refrigerant in a gas-liquid two-phase state. Then, the refrigerant in the gas-liquid two-phase state flows into the outdoor heat exchanger 5 that functions as an evaporator, and in the outdoor heat exchanger 5, the refrigerant exchanges heat with the outdoor air sent by the outdoor blower 6 and evaporates. Turn into.
  • the evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 4, flows into the accumulator 10, and is then sucked into the compressor 3.
  • FIG. 5 is a circuit diagram showing the flow of the refrigerant in the defrosting operation mode according to Embodiment 1 of the present invention.
  • the control unit 50 switches the flow path switching device 4 so that the compressor 3 and the outdoor heat exchanger 5 are connected. Further, the control unit 50 closes the sub electromagnetic valve 22 and stops the outdoor blower 6. As shown in FIG. 5, the refrigerant sucked into the compressor 3 is compressed by the compressor 3 and discharged in a high temperature and high pressure gas state.
  • the high-temperature, high-pressure gas-state refrigerant discharged from the compressor 3 flows to the main solenoid valve 21 because the sub solenoid valve 22 is closed.
  • the high-temperature, high-pressure gas-state refrigerant flowing through the main solenoid valve 21 flows into the outdoor heat exchanger 5. Thereby, the refrigerant melts the frost attached to the outdoor heat exchanger 5.
  • the refrigerant flowing out of the outdoor heat exchanger 5 passes through the outdoor expansion valve 7a, the geothermal expansion valve 7c, the geothermal side heat exchanger 9, the flow path switching device 4 and the accumulator 10, and is sucked into the compressor 3.
  • the control unit 50 opens the flow rate adjusting device 12.
  • the refrigerant sucked into the compressor 3 is compressed by the compressor 3 and discharged in a high temperature and high pressure gas state.
  • the high-temperature, high-pressure gas-state refrigerant discharged from the compressor 3 flows into the bypass circuit 11 because the flow rate adjusting device 12 is open.
  • the high-temperature, high-pressure gas-state refrigerant flowing in the bypass circuit 11 flows to the surface of the accumulator 10.
  • the refrigerant removes the freezing generated on the surface of the accumulator 10.
  • the refrigerant flowing on the surface of the accumulator 10 returns to the main pipe 2a. Note that the other operations can be the same as those in the defrosting operation mode.
  • FIG. 6 is a block diagram showing the control unit 50 according to the first embodiment of the present invention.
  • the control unit 50 adjusts the opening degree of the flow rate adjusting device 12 based on the detection results of the intake temperature detection unit 41, the two-phase temperature detection unit 42, and the outside air temperature detection unit 43.
  • the control unit 50 adjusts the opening degree of the flow rate adjustment device 12 based on the suction temperature of the refrigerant detected by the suction temperature detection unit 41.
  • the control unit 50 opens the flow rate adjusting device 12 when the suction temperature of the refrigerant detected by the suction temperature detection unit 41 is lower than the lower limit suction temperature threshold value.
  • the lower limit intake temperature threshold is, for example, ⁇ 5 ° C.
  • the control unit 50 opens the flow rate adjusting device 12.
  • the outside air temperature threshold value is 0 ° C., for example.
  • the control unit 50 opens the flow rate adjusting device 12, and the hot gas bypass operation mode and the defrosting operation. Run the mode.
  • the control unit 50 only executes the defrosting operation of defrosting the outdoor heat exchanger 5. That is, the control unit 50 does not execute the hot gas bypass operation mode.
  • the control unit 50 closes the flow rate adjustment device 12 when the suction temperature of the refrigerant detected by the suction temperature detection unit 41 exceeds the upper limit suction temperature threshold value.
  • the upper limit intake temperature threshold is, for example, 2 ° C.
  • the control unit 50 closes the flow rate adjusting device 12.
  • the upper limit two-phase temperature threshold is, for example, 5 ° C.
  • the control unit 50 closes the flow rate adjusting device 12 and sets the hot gas bypass operation mode. To finish. In this case, the control unit 50 also ends the defrosting operation mode.
  • FIG. 7 is a flowchart showing the operation of the control unit 50 according to the first embodiment of the present invention. Next, the operation of the control unit 50 will be described.
  • control unit 50 determines whether or not to perform defrosting determination. It is determined whether or not (step S2).
  • step S3 the control unit 50 determines whether the outside air temperature is above the outside air temperature threshold value 0 ° C. and the intake temperature is below the lower limit intake temperature threshold value ⁇ 5 ° C. (step S3).
  • the controller 50 executes only the defrosting operation mode when the outside air temperature is lower than the outside air temperature threshold value 0 ° C. or the suction temperature is equal to or more than the lower limit suction temperature threshold ⁇ 5 ° C. (step S4).
  • the control unit 50 executes both the defrosting operation mode and the hot gas bypass operation mode when the outside air temperature exceeds the outside air temperature threshold value 0 ° C. and the intake temperature falls below the lower limit intake temperature threshold ⁇ 5 ° C. (step S5). Then, the control unit 50 determines whether the two-phase temperature exceeds the upper limit two-phase temperature threshold value 5 ° C. and the suction temperature exceeds the upper limit suction temperature threshold value 2 ° C. (step S6). When the two-phase temperature is the upper limit two-phase temperature threshold value 5 ° C. or lower or the suction temperature is the upper limit suction temperature threshold value 2 ° C. or lower, the control unit 50 repeats step S6.
  • control unit 50 ends the defrosting operation mode and the hot gas bypass operation mode when the two-phase temperature exceeds the upper limit two-phase temperature threshold value 5 ° C. and the intake temperature exceeds the upper limit intake temperature threshold value 2 ° C. ( Step S7). Then, the control unit 50 shifts to the heating operation mode.
  • the control unit 50 adjusts the opening degree of the flow rate adjusting device 12 based on the refrigerant suction temperature detected by the suction temperature detection unit 41.
  • the surface of the accumulator 10 may freeze, and the ice on the surface may gradually grow to press the surrounding pipes.
  • the control unit 50 can determine whether or not the accumulator 10 is frozen by grasping the intake temperature, and can supply hot gas to the accumulator 10 when the accumulator 10 is frozen. In this way, the refrigeration cycle apparatus 1 automatically recognizes the timing of supplying hot gas to the accumulator 10. Therefore, since it is not necessary to monitor the timing of flowing hot gas through the accumulator 10 as needed, the complexity can be eliminated.
  • the refrigeration cycle apparatus 1 causes the ice grown on the surface of the accumulator 10 to exchange heat with the hot gas to thaw the ice. Thereby, the continuous operation time of the heating operation mode can be extended and the deformation of the pipe due to the grown ice can be suppressed. Therefore, it is possible to realize the refrigeration cycle apparatus 1 that maintains the high quality of the piping.
  • an air conditioner temporarily stops heating operation when frost adheres to the outdoor heat exchanger that acts as an evaporator during heating operation, switches the four-way valve to the cooling operation side, and compresses the outdoor heat exchanger. Defrost operation is performed to supply the hot gas discharged from the machine.
  • the flow of the refrigerant in the refrigerant circuit is switched, the high-temperature refrigerant that has been flowing in the usage-side heat exchanger that functions as a condenser during the heating operation temporarily flows into the suction pipe and the accumulator on the suction side of the compressor. Therefore, freezing of the accumulator is suppressed.
  • the refrigeration cycle apparatus including the geothermal side heat exchanger, when performing hot water supply operation using the geothermal side heat exchanger, so that the refrigerant flows to the outdoor heat exchanger instead of the geothermal side heat exchanger,
  • the flow switching device switches the flow of the refrigerant to defrost the outdoor heat exchanger.
  • the high-temperature refrigerant flowing in the utilization side heat exchanger acting as a condenser during the hot water supply operation does not flow into the suction side suction pipe of the compressor and the accumulator. Therefore, the accumulator may freeze.
  • the hot gas flowing in the bypass circuit 11 can be supplied to the accumulator 10. Therefore, freezing of the accumulator 10 can be suppressed.
  • FIG. 8 is a circuit diagram showing bypass circuit 11 of refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention.
  • the second embodiment is different from the first embodiment in the winding of the bypass pipe 11a and the operation of the control unit 150.
  • the same parts as those in the first embodiment will be designated by the same reference numerals, and the description thereof will be omitted. Differences from the first embodiment will be mainly described.
  • the refrigeration cycle device 100 includes a bypass circuit 11 and a flow rate adjusting device 12.
  • the bypass circuit 11 connects the discharge side of the compressor 3 and the accumulator 10 by a bypass pipe 11 a, and is connected between the outdoor heat exchanger 5 and the flow path switching device 4.
  • the bypass pipe 11a is, for example, a copper pipe.
  • the bypass circuit 11 passes over the surface of the accumulator 10.
  • the bypass pipe 11a connected to the flow rate adjusting device 12 is spirally wound around the surface of the accumulator 10. This allows hot gas to flow over the entire surface of the accumulator 10.
  • the upstream side of the bypass pipe 11 a is wound around the lower part of the accumulator 10, and the downstream side of the bypass pipe 11 a is wound around the upper part of the accumulator 10.
  • the hot gas discharged from the compressor 3 heats the lower portion of the accumulator 10 in which the liquid state refrigerant is initially accumulated.
  • the lower portion of the accumulator 10 accumulates the liquid state refrigerant, and thus is easily frozen.
  • the hot gas discharged from the compressor 3 first heats the lower portion of the accumulator 10 in which the liquid state refrigerant is accumulated, so that the freezing of the accumulator 10 can be further suppressed.
  • the refrigeration cycle apparatus 100 also includes an inlet temperature detection unit 10a and an outlet temperature detection unit 10b.
  • the inlet temperature detector 10a is provided in the bypass circuit 11 between the flow rate adjusting device 12 and the accumulator 10 and detects the inlet temperature T1 of the refrigerant flowing into the accumulator 10.
  • the outlet temperature detection unit 10b is provided in the bypass circuit 11 between the accumulator 10 and the flow path switching device 4, and detects the outlet temperature T2 of the refrigerant flowing out from the accumulator 10.
  • the outlet temperature detection unit 10b detects the outlet temperature T2 at predetermined intervals.
  • the predetermined interval is, for example, 1 minute, but can be changed as appropriate.
  • FIG. 9 is a schematic diagram showing wiring of the bypass pipe 11a according to the second embodiment of the present invention.
  • the density of the bypass pipe 11a wound around the upper part and the lower part of the accumulator 10 is higher than the density of the bypass pipe 11a wound around the central part of the accumulator 10. That is, the density of the bypass pipe 11a is a dense portion 61 in the upper and lower portions of the accumulator 10 and a sparse portion 62 in the central portion of the accumulator 10. Condensed liquid droplets are likely to accumulate on the upper part of the accumulator 10 and easily freeze. In addition, the liquid-state refrigerant is accumulated in the lower part of the accumulator 10 and easily freezes. In the second embodiment, since the density of the bypass pipe 11a is high in the upper portion and the lower portion of the accumulator 10, it is possible to intensively heat the portion that easily freezes. Therefore, the defrosting of the accumulator 10 can be promoted.
  • FIG. 10 is a block diagram showing the control unit 150 according to the second embodiment of the present invention.
  • the control unit 150 adjusts the opening degree of the flow rate adjusting device 12 based on the refrigerant suction temperature Ts, the refrigerant inlet temperature T1, and the refrigerant outlet temperature T2.
  • the suction temperature Ts is detected by the suction temperature detection unit 41.
  • the inlet temperature T1 is detected by the inlet temperature detection unit 10a.
  • the outlet temperature T2 is detected by the outlet temperature detector 10b.
  • the control unit 150 includes a first determination unit 151, a second determination unit 152, a third determination unit 153, a fourth determination unit 154, and an opening adjustment unit 155. have.
  • the first determining means 151, the second determining means 152, the third determining means 153, the fourth determining means 154 and the opening degree adjusting means 155 are algorithms.
  • the control part 150 implements the 1st determination means 151 after 10 hours have passed after the driving
  • the first determination means 151 determines whether the refrigerant suction temperature Ts detected by the suction temperature detector 41 is lower than the lower limit suction temperature threshold Tsth (Ts ⁇ Tsth).
  • the lower limit intake temperature threshold Tsth is set as a temperature at which the accumulator 10 is likely to be frozen, and is 0 ° C., for example.
  • the outlet temperature T2 of the refrigerant detected by the outlet temperature detecting unit 10b is detected by the inlet temperature detecting unit 10a after the flow rate adjusting device 12 is opened by the opening degree adjusting unit 155. Is lower than the inlet temperature T1 (T2 ⁇ T1).
  • the control unit 150 determines that the accumulator 10 is frozen and the refrigerant that has exchanged heat with ice in the accumulator 10 is cooled.
  • the third determination unit 153 determines that the refrigerant outlet temperature T2 detected by the outlet temperature detection unit 10b is the outlet temperature threshold T2th. Is exceeded (T2> T2th).
  • the outlet temperature threshold T2th is set as a temperature at which the accumulator 10 is unlikely to be frozen, and is 0 ° C., for example.
  • the fourth determination unit 154 determines that the outlet temperature T2 of the refrigerant detected this time by the outlet temperature detection unit 10b is the added value or more. determines whether or not the (T2_ j ⁇ T2_ j-1 + T2th2).
  • the added value is obtained by adding the second outlet temperature threshold value T2th2 to the outlet temperature T2 of the refrigerant that was previously detected by the outlet temperature detection unit 10b.
  • the second outlet temperature threshold T2th2 is, for example, 2 ° C.
  • the opening adjustment means 155 opens the flow rate adjusting device 12 when the first determination means 151 determines that the intake temperature Ts is lower than the lower limit intake temperature threshold Tsth.
  • the control unit 150 determines that the accumulator 10 is likely to be frozen. In this case, since the opening adjustment means 155 opens the flow rate adjusting device 12, hot gas flows into the accumulator 10 and the freezing of the accumulator 10 is eliminated. In this case, the opening adjustment means 155 opens the opening of the flow rate adjusting device 20 by 20 pulses. Then, the control unit 150 causes the hot gas to flow to the bypass circuit 11 for 5 minutes.
  • the opening adjustment means 155 closes the flow rate adjusting device 12 when the second determination means 152 determines that the outlet temperature T2 is equal to or higher than the inlet temperature T1.
  • the control unit 150 determines that the accumulator 10 is unlikely to be frozen.
  • the opening adjusting means 155 closes the flow rate adjusting device 12, so that hot gas does not flow into the accumulator 10. That is, it is possible to prevent excessive hot gas from flowing through the accumulator 10.
  • the opening degree adjusting means 155 increases the opening degree of the flow rate adjusting device 12 when the outlet temperature T2 is determined to be equal to or lower than the outlet temperature threshold value T2th by the third determining means 153.
  • the control unit 150 determines that the flow rate of the hot gas flowing through the accumulator 10 is insufficient.
  • the opening degree adjusting means 155 further opens the flow rate adjusting device 12, hot gas further flows into the accumulator 10, and the freezing of the accumulator 10 is eliminated.
  • the opening adjustment means 155 maintains the opening of the flow rate adjusting device 12 when the fourth determination means 154 determines that the outlet temperature T2 is less than the added value. When the outlet temperature T2 is less than the added value, the control unit 150 determines that the freezing of the accumulator 10 has not been eliminated. In this case, since the opening degree adjusting means 155 maintains the opening degree of the flow rate adjusting device 12, the hot gas continues to flow into the accumulator 10 and the freezing of the accumulator 10 is eliminated.
  • the opening adjustment means 155 lowers the opening of the flow rate adjusting device 12 when the fourth determination means 154 determines that the outlet temperature T2 is equal to or higher than the added value.
  • the control unit 150 determines that the freezing of the accumulator 10 has been eliminated.
  • the opening adjusting means 155 lowers the opening of the flow rate adjusting device 12, so that the amount of hot gas flowing through the accumulator 10 is reduced. That is, it is possible to prevent excessive hot gas from flowing into the accumulator 10.
  • FIG. 11 is a flowchart showing the operation of the control unit 150 according to the second embodiment of the present invention.
  • the control unit 150 starts counting the operating time of the compressor 3 (step S11).
  • the first determination means 151 determines whether the refrigerant suction temperature Ts detected by the suction temperature detection unit 41 is lower than the lower limit suction temperature threshold Tsth ( It is determined whether Ts ⁇ Tsth (step S13).
  • the control unit 150 continues the operation of the refrigeration cycle device 100 (step S14). Then, it returns to step S13.
  • the opening adjustment means 155 opens the flow rate adjusting device 12 by 20 pulses (step S15).
  • the second determination means 152 determines whether the refrigerant outlet temperature T2 detected by the outlet temperature detecting unit 10b is lower than the refrigerant inlet temperature T1 detected by the inlet temperature detecting unit 10a (T2 ⁇ T1). The determination is made (step S16).
  • the opening degree adjusting unit 155 closes the flow rate adjusting device 12 (step S17). Then, it returns to step S13.
  • the deicing control of the accumulator 10 is performed (step S18). Specifically, the third determination unit 153 determines whether the outlet temperature T2 of the refrigerant detected by the outlet temperature detection unit 10b exceeds the outlet temperature threshold T2th (T2> T2th) (step S19). When the outlet temperature T2 is equal to or lower than the outlet temperature threshold T2th (No in step S19), the opening degree adjusting unit 155 increases the opening degree of the flow rate adjusting device 12 by 5 pulses (step S20).
  • the fourth determination unit 154 determines whether the outlet temperature T2 of the refrigerant detected this time by the outlet temperature detection unit 10b is equal to or higher than the added value (T2_ j ⁇ T2_ j ⁇ 1 +2) is determined (step S21).
  • the added value is a value obtained by adding the second outlet temperature threshold value T2th2 to the outlet temperature T2 of the refrigerant previously detected by the outlet temperature detection unit 10b.
  • the opening degree control means maintains the opening degree of the flow rate adjusting device 12 (step S22). Then, it returns to step S16.
  • the opening degree control unit lowers the opening degree of the flow rate adjusting device 12 by 5 pulses (step S23). Then, it returns to step S16.
  • the control unit 150 performs the primary determination of freezing of the accumulator 10 by thresholding the intake temperature Ts. Then, after the primary determination, the secondary determination of the freezing of the accumulator 10 is performed by thresholding the outlet temperature T2 and the inlet temperature T1. As described above, according to the second embodiment, since the freezing of the accumulator 10 is determined in two stages, it is easy to detect the freezing of the accumulator 10. Therefore, the freezing of the accumulator 10 can be immediately eliminated.
  • the bypass pipe 11a connected to the flow rate adjusting device 12 is spirally wound around the surface of the accumulator 10. Therefore, hot gas can be flowed over the entire surface of the accumulator 10. Further, the density of the bypass pipe 11a wound around the upper and lower parts of the accumulator 10 is higher than the density of the bypass pipe 11a wound around the central part of the accumulator 10. Therefore, in the second embodiment, it is possible to intensively heat the portion that is likely to freeze. Therefore, the defrosting of the accumulator 10 can be promoted.
  • 1 refrigeration cycle device 2 refrigerant circuit, 2a main pipe, 2b auxiliary pipe, 2c extension pipe, 3 compressor, 4 flow path switching device, 5 outdoor heat exchanger, 6 outdoor blower, 7 expansion section, 7a outdoor expansion valve, 7b Indoor expansion valve, 7c Geothermal expansion valve, 8 Utilization side heat exchanger, 9 Geothermal side heat exchanger, 10 Accumulator, 10a Inlet temperature detecting part, 10b Outlet temperature detecting part, 11 Bypass circuit, 11a Bypass piping, 12 Flow rate adjusting device , 13 water piping, 21 main solenoid valve, 22 sub solenoid valve, 23 extension solenoid valve, 24a, 24b, 24c, 24d, 24e, 24f strainer, 25a, 25b, 25c, 25d stop valve, 26a, 26b, 26c, 26d Service port, 27a, 27b check valve, 28 check valve, 29 muffler, 30 pressure sensor, 31 high pressure switch, 40a, 40b, 40c, 40d, 40e, 40f, 40g temperature

Abstract

This refrigeration cycle apparatus comprises: a refrigerant circuit obtained by connecting, by pipes, a compressor, an outdoor heat exchanger, an expansion unit, a usage-side heat exchanger and an accumulator; a bypass circuit which connects, by means of a bypass pipe, the output side of the compressor and the accumulator; a flowrate adjustment device which is provided to the bypass circuit and adjusts the flowrate of refrigerant which flows through the bypass circuit; an intake temperature detection unit which detects the intake temperature of refrigerant which flows to the intake side of the compressor; and a control unit which adjusts the degree of opening of the flowrate adjustment device on the basis of the intake temperature of the refrigerant detected by the intake temperature detection unit.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、アキュムレータを備える冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle device including an accumulator.
 従来、圧縮機、四方弁、室外熱交換器、膨張部、利用側熱交換器及びアキュムレータが配管により接続された冷媒回路を備える冷凍サイクル装置が知られている。冷凍サイクル装置は、四方弁を切り替えることによって暖房運転又は冷房運転を行う。冷凍サイクル装置は、暖房運転時に蒸発器として作用する室外熱交換器が冷却されて着霜した場合、一時的に暖房運転を中止する。そして、冷凍サイクル装置は、四方弁を冷房運転側に切り替えることによって、圧縮機から吐出されたホットガスを室外熱交換器に供給して解氷する。ここで、四方弁が冷房運転側に切り替えられる際、暖房運転時に凝縮器として作用する利用側熱交換器に流れていた高温の冷媒が、吸入配管及びアキュムレータに一時的に流入する。これにより、冷凍サイクル装置は、アキュムレータが凍結することを抑制している。 Conventionally, there is known a refrigeration cycle device including a refrigerant circuit in which a compressor, a four-way valve, an outdoor heat exchanger, an expansion section, a use side heat exchanger, and an accumulator are connected by piping. The refrigeration cycle device performs heating operation or cooling operation by switching the four-way valve. The refrigeration cycle apparatus temporarily suspends the heating operation when the outdoor heat exchanger acting as the evaporator is cooled and frosted during the heating operation. Then, the refrigeration cycle apparatus switches the four-way valve to the cooling operation side to supply the hot gas discharged from the compressor to the outdoor heat exchanger to thaw the ice. Here, when the four-way valve is switched to the cooling operation side, the high-temperature refrigerant flowing in the utilization side heat exchanger that functions as a condenser during the heating operation temporarily flows into the suction pipe and the accumulator. As a result, the refrigeration cycle device suppresses freezing of the accumulator.
 ここで、アキュムレータにホットガスを供給する冷凍サイクル装置として、特許文献1には、圧縮機の吐出側とアキュムレータとを接続するバイパス回路を備える空気調和機が開示されている。特許文献1は、アキュムレータに液状態の冷媒が溜まったときに、バイパス回路に設けられた弁を開き、圧縮機から吐出された高温且つ高圧の冷媒をアキュムレータに流す。これにより、アキュムレータに溜まった液状態の冷媒が蒸発して、圧縮機に吸入される。 Here, as a refrigeration cycle device that supplies hot gas to an accumulator, Patent Document 1 discloses an air conditioner including a bypass circuit that connects a discharge side of a compressor and an accumulator. In Patent Document 1, when a refrigerant in a liquid state is accumulated in the accumulator, a valve provided in the bypass circuit is opened, and the high temperature and high pressure refrigerant discharged from the compressor is caused to flow into the accumulator. As a result, the liquid-state refrigerant accumulated in the accumulator evaporates and is sucked into the compressor.
特開平8-136067号公報JP-A-8-136067
 しかしながら、特許文献1に開示された空気調和機は、アキュムレータに冷媒が溜まっているか否かを検出していない。従って、アキュムレータにホットガスを流すタイミングを、随時モニタする必要があるため、煩雑である。 However, the air conditioner disclosed in Patent Document 1 does not detect whether or not the refrigerant is accumulated in the accumulator. Therefore, the timing of flowing hot gas to the accumulator needs to be monitored at any time, which is complicated.
 本発明は、上記のような課題を解決するためになされたもので、アキュムレータにホットガスを流すタイミングを自動的に認識して、随時モニタする煩雑さを解消する冷凍サイクル装置を提供するものである。 The present invention has been made to solve the above problems, and provides a refrigeration cycle apparatus that automatically recognizes the timing of flowing hot gas into an accumulator and eliminates the complexity of monitoring from time to time. is there.
 本発明に係る冷凍サイクル装置は、圧縮機、室外熱交換器、膨張部、利用側熱交換器及びアキュムレータが配管により接続された冷媒回路と、圧縮機の吐出側とアキュムレータとをバイパス配管により接続するバイパス回路と、バイパス回路に設けられ、バイパス回路に流れる冷媒の流量を調整する流量調整装置と、圧縮機の吸入側に流れる冷媒の吸入温度を検出する吸入温度検出部と、吸入温度検出部によって検出された冷媒の吸入温度に基づいて、流量調整装置の開度を調整する制御部と、を備える。 The refrigeration cycle apparatus according to the present invention, a refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion section, a use side heat exchanger and an accumulator are connected by a pipe, and a discharge side of the compressor and an accumulator are connected by a bypass pipe. Bypass circuit, a flow rate adjusting device provided in the bypass circuit for adjusting the flow rate of the refrigerant flowing in the bypass circuit, an intake temperature detecting section for detecting the intake temperature of the refrigerant flowing to the intake side of the compressor, and an intake temperature detecting section. And a control unit that adjusts the opening degree of the flow rate adjusting device based on the refrigerant suction temperature detected by.
 本発明によれば、制御部は、吸入温度検出部によって検出された冷媒の吸入温度に基づいて、流量調整装置の開度を調整する。制御部は、吸入温度を把握することによって、アキュムレータが凍結しているか否かを判断して、アキュムレータが凍結している場合にアキュムレータにホットガスを供給することができる。このように、冷凍サイクル装置は、アキュムレータにホットガスを供給するタイミングを自動的に認識している。従って、アキュムレータにホットガスを流すタイミングを、随時モニタする必要がないため、煩雑さを解消することができる。 According to the present invention, the control unit adjusts the opening degree of the flow rate adjusting device based on the suction temperature of the refrigerant detected by the suction temperature detection unit. The control unit can determine whether or not the accumulator is frozen by grasping the intake temperature, and can supply hot gas to the accumulator when the accumulator is frozen. In this way, the refrigeration cycle apparatus automatically recognizes the timing of supplying hot gas to the accumulator. Therefore, since it is not necessary to monitor the timing of flowing hot gas through the accumulator as needed, the complexity can be eliminated.
本発明の実施の形態1に係る冷凍サイクル装置1を示す回路図である。It is a circuit diagram which shows the refrigerating-cycle apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置1のバイパス回路11を示す回路図である。It is a circuit diagram which shows the bypass circuit 11 of the refrigeration cycle device 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る地熱給湯運転モード時の冷媒の流れを示す回路図である。It is a circuit diagram which shows the flow of the refrigerant in the geothermal hot water supply operation mode which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る室外給湯運転モード時の冷媒の流れを示す回路図である。FIG. 6 is a circuit diagram showing a refrigerant flow in an outdoor hot water supply operation mode according to the first embodiment of the present invention. 本発明の実施の形態1に係る除霜運転モード時の冷媒の流れを示す回路図である。It is a circuit diagram which shows the flow of the refrigerant in the defrosting operation mode which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る制御部50を示すブロック図である。It is a block diagram which shows the control part 50 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る制御部50の動作を示すフローチャートである。5 is a flowchart showing an operation of the control unit 50 according to the first embodiment of the present invention. 本発明の実施の形態2に係る冷凍サイクル装置100のバイパス回路11を示す回路図である。It is a circuit diagram which shows the bypass circuit 11 of the refrigeration cycle device 100 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るバイパス配管11aの配線を示す模式図である。It is a schematic diagram which shows the wiring of the bypass piping 11a which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る制御部150を示すブロック図である。It is a block diagram which shows the control part 150 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る制御部150の動作を示すフローチャートである。5 is a flowchart showing an operation of the control unit 150 according to the second embodiment of the present invention.
実施の形態1.
 以下、本発明に係る冷凍サイクル装置の実施の形態について、図面を参照しながら説明する。図1は、本発明の実施の形態1に係る冷凍サイクル装置1を示す回路図である。図1に示すように、冷凍サイクル装置1は、圧縮機3、流路切替装置4、室外熱交換器5、室外送風機6、膨張部7、利用側熱交換器8、地熱側熱交換器9、アキュムレータ10及び制御部50を備えている。
Embodiment 1.
Hereinafter, embodiments of a refrigeration cycle apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing a refrigeration cycle device 1 according to Embodiment 1 of the present invention. As shown in FIG. 1, the refrigeration cycle apparatus 1 includes a compressor 3, a flow path switching device 4, an outdoor heat exchanger 5, an outdoor blower 6, an expansion section 7, a use side heat exchanger 8, a geothermal side heat exchanger 9. , An accumulator 10 and a controller 50.
 圧縮機3、流路切替装置4、室外熱交換器5、膨張部7、利用側熱交換器8、地熱側熱交換器9及びアキュムレータ10が配管により接続されて冷媒回路2が構成されている。圧縮機3は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。流路切替装置4は、冷媒回路2において冷媒が流れる方向を切り替えるものであり、例えば四方弁である。流路切替装置4は、圧縮機3に接続され、冷媒回路2に流れる冷媒の向きを暖房運転側又は冷房運転側に切り替える。流路切替装置4は、室外熱交換器5又は地熱側熱交換器9のいずれかが蒸発器として作用するように冷媒回路2に流れる冷媒の向きを切り替える。室外熱交換器5は、例えば室外空気と冷媒との間で熱交換する空気熱交換器であり、暖房運転時には蒸発器として作用し、冷房運転時には凝縮器として作用する。室外送風機6は、室外熱交換器5に空気を送るものである。 The compressor 3, the flow path switching device 4, the outdoor heat exchanger 5, the expansion part 7, the use side heat exchanger 8, the geothermal side heat exchanger 9 and the accumulator 10 are connected by piping to form the refrigerant circuit 2. .. The compressor 3 sucks a low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges the high-temperature and high-pressure refrigerant. The flow path switching device 4 switches the direction in which the refrigerant flows in the refrigerant circuit 2, and is, for example, a four-way valve. The flow path switching device 4 is connected to the compressor 3 and switches the direction of the refrigerant flowing through the refrigerant circuit 2 to the heating operation side or the cooling operation side. The flow path switching device 4 switches the direction of the refrigerant flowing through the refrigerant circuit 2 so that either the outdoor heat exchanger 5 or the geothermal side heat exchanger 9 acts as an evaporator. The outdoor heat exchanger 5 is, for example, an air heat exchanger that exchanges heat between outdoor air and a refrigerant, and functions as an evaporator during heating operation and as a condenser during cooling operation. The outdoor blower 6 sends air to the outdoor heat exchanger 5.
 膨張部7は、冷媒を減圧して膨張する減圧弁又は膨張弁であり、例えば開度が調整される電子式膨張弁である。膨張部7は、室外膨張弁7aと室内膨張弁7bと地熱膨張弁7cとから構成されている。室外膨張弁7aは、室外熱交換器5に接続されており、室内膨張弁7bは、利用側熱交換器8に接続されており、地熱膨張弁7cは、地熱側熱交換器9に接続されている。利用側熱交換器8は、例えばプレート式熱交換器であり、水配管13に流れる水と冷媒との間で熱交換するものである。 The expansion section 7 is a pressure reducing valve or expansion valve that decompresses and expands the refrigerant, and is, for example, an electronic expansion valve whose opening is adjusted. The expansion section 7 includes an outdoor expansion valve 7a, an indoor expansion valve 7b, and a geothermal expansion valve 7c. The outdoor expansion valve 7a is connected to the outdoor heat exchanger 5, the indoor expansion valve 7b is connected to the utilization side heat exchanger 8, and the geothermal expansion valve 7c is connected to the geothermal side heat exchanger 9. ing. The utilization side heat exchanger 8 is, for example, a plate heat exchanger, and exchanges heat between the water flowing through the water pipe 13 and the refrigerant.
 利用側熱交換器8は、暖房運転時には凝縮器として作用し、冷房運転時には蒸発器として作用する。利用側熱交換器8は、水ポンプ(図示せず)と貯湯タンク(図示せず)とが水配管13により接続されて、熱媒体である水が循環する水回路の一部の構成となっている。利用側熱交換器8は、冷媒回路2に流れる冷媒と水配管13に流れる水との間で熱交換する。利用側熱交換器8は、流路切替装置4によって冷媒の向きが暖房運転側に切り替えられているとき、室外熱交換器5と並列に接続される。本実施の形態1において、冷凍サイクル装置1は、暖房運転時において、給湯装置としての機能を有する。 -The heat exchanger 8 on the use side acts as a condenser during heating operation and as an evaporator during cooling operation. The utilization side heat exchanger 8 has a part of a water circuit in which a water pump (not shown) and a hot water storage tank (not shown) are connected by a water pipe 13, and water as a heat medium circulates. ing. The usage-side heat exchanger 8 exchanges heat between the refrigerant flowing through the refrigerant circuit 2 and the water flowing through the water pipe 13. The utilization side heat exchanger 8 is connected in parallel with the outdoor heat exchanger 5 when the direction of the refrigerant is switched to the heating operation side by the flow path switching device 4. In Embodiment 1, refrigeration cycle apparatus 1 has a function as a hot water supply apparatus during heating operation.
 地熱側熱交換器9は、例えば地中に設けられており、大地と冷媒との間で熱交換するものである。地熱側熱交換器9は、暖房運転時には蒸発器として作用し、冷房運転時には凝縮器として作用する。地熱側熱交換器9は、水ポンプ(図示せず)と地下採熱パイプ(図示せず)とが接続されて、熱媒体である不凍液が循環する水回路の一部を構成となっている。地熱側熱交換器9は、冷媒回路2に流れる冷媒と水回路に流れる不凍液との間で熱交換する。アキュムレータ10は、圧縮機3の吸入側に設けられており、ガス状態の冷媒のみが圧縮機3に流入するように、圧縮機3に吸入される冷媒のうち液状態の冷媒を貯留するものである。 The geothermal side heat exchanger 9 is provided in the ground, for example, and exchanges heat between the ground and the refrigerant. The geothermal side heat exchanger 9 functions as an evaporator during heating operation and as a condenser during cooling operation. The geothermal side heat exchanger 9 is connected to a water pump (not shown) and an underground heat collection pipe (not shown), and constitutes a part of a water circuit in which an antifreeze solution as a heat medium circulates. .. The geothermal heat exchanger 9 exchanges heat between the refrigerant flowing in the refrigerant circuit 2 and the antifreeze liquid flowing in the water circuit. The accumulator 10 is provided on the suction side of the compressor 3 and stores the liquid state refrigerant of the refrigerant sucked into the compressor 3 so that only the gas state refrigerant flows into the compressor 3. is there.
 ここで、冷媒回路2について詳細に説明する。圧縮機3の吐出側の配管は、2つに分岐しており、それぞれ流路切替装置4に接続される主管2aと、利用側熱交換器8に接続される副管2bとからなる。主管2aは、圧縮機3、流路切替装置4、室外熱交換器5、室外膨張弁7a、地熱膨張弁7c、地熱側熱交換器9及びアキュムレータ10を順次接続している。副管2bは、利用側熱交換器8及び室内膨張弁7bを順次接続し、主管2aにおける室外膨張弁7aと地熱膨張弁7cとの間に接続されている。なお、アキュムレータ10と室外熱交換器5とは延長配管2cによって接続されている。 Here, the refrigerant circuit 2 will be described in detail. The discharge-side pipe of the compressor 3 is branched into two pipes, each of which includes a main pipe 2a connected to the flow path switching device 4 and a sub-pipe 2b connected to the usage-side heat exchanger 8. The main pipe 2a sequentially connects the compressor 3, the flow path switching device 4, the outdoor heat exchanger 5, the outdoor expansion valve 7a, the geothermal expansion valve 7c, the geothermal side heat exchanger 9, and the accumulator 10. The auxiliary pipe 2b sequentially connects the use side heat exchanger 8 and the indoor expansion valve 7b, and is connected between the outdoor expansion valve 7a and the geothermal expansion valve 7c in the main pipe 2a. The accumulator 10 and the outdoor heat exchanger 5 are connected by an extension pipe 2c.
 冷凍サイクル装置1は、主電磁弁21、副電磁弁22及び延長電磁弁23を備えている。主電磁弁21は、主管2aにおける圧縮機3と流路切替装置4との間に設けられており、副電磁弁22は、副管2bに設けられている。このように、主電磁弁21と副電磁弁22とは、圧縮機3の下流側において並列に設けられているため、圧縮機3から吐出された冷媒は、主電磁弁21又は副電磁弁22を通過して流れる。延長電磁弁23は、延長配管2cに設けられている。 The refrigeration cycle device 1 includes a main solenoid valve 21, a sub solenoid valve 22, and an extension solenoid valve 23. The main solenoid valve 21 is provided between the compressor 3 and the flow path switching device 4 in the main pipe 2a, and the sub solenoid valve 22 is provided in the sub pipe 2b. As described above, since the main electromagnetic valve 21 and the sub electromagnetic valve 22 are provided in parallel on the downstream side of the compressor 3, the refrigerant discharged from the compressor 3 has the main electromagnetic valve 21 or the sub electromagnetic valve 22. Flow through. The extension solenoid valve 23 is provided in the extension pipe 2c.
 冷凍サイクル装置1は、6個のストレーナ24a~24fを備えており、ストレーナ24a~24fは、液体から固体成分を取り除くために用いられる網状の器具である。ストレーナ24aは、アキュムレータ10内に設けられている。ストレーナ24bは、室外熱交換器5と室外膨張弁7aとの間に設けられている。ストレーナ24c,24dは、副管2bにおいて、利用側熱交換器8の両側に設けられている。ストレーナ24e,24fは、主管2aにおいて、地熱側熱交換器9の両側に設けられている。冷凍サイクル装置1は、4個のストップバルブ25a~25dを備えており、ストップバルブ25a~25dは、配管接続時等に閉止されることによって冷媒の流れを止める。ストップバルブ25a,25bは、副管2bにおいて、利用側熱交換器8の両側に設けられている。ストップバルブ25c,25dは、主管2aにおいて、地熱側熱交換器9の両側に設けられている。 The refrigeration cycle apparatus 1 includes six strainers 24a to 24f, and the strainers 24a to 24f are net-like devices used to remove solid components from a liquid. The strainer 24a is provided in the accumulator 10. The strainer 24b is provided between the outdoor heat exchanger 5 and the outdoor expansion valve 7a. The strainers 24c and 24d are provided on both sides of the utilization side heat exchanger 8 in the auxiliary pipe 2b. The strainers 24e and 24f are provided on both sides of the geothermal side heat exchanger 9 in the main pipe 2a. The refrigeration cycle apparatus 1 is provided with four stop valves 25a to 25d, and the stop valves 25a to 25d stop the flow of the refrigerant by being closed at the time of pipe connection or the like. The stop valves 25a and 25b are provided on both sides of the utilization side heat exchanger 8 in the auxiliary pipe 2b. The stop valves 25c and 25d are provided on both sides of the geothermal side heat exchanger 9 in the main pipe 2a.
 冷凍サイクル装置1は、4個のサービスポート26a~26dを備えており、各サービスポート26a~26dは、それぞれストップバルブ25a~25dに隣接して設けられ、配管接続時等の点検に用いられる。冷凍サイクル装置1は、2個のチェックバルブ27a,27bを備えており、チェックバルブ27a,27bは、異常時等の点検に用いられる。チェックバルブ27a,27bは、それぞれ圧縮機3の吐出側と、アキュムレータ10の上流側とに設けられている。 The refrigeration cycle apparatus 1 is provided with four service ports 26a to 26d. The service ports 26a to 26d are provided adjacent to the stop valves 25a to 25d, respectively, and are used for inspections such as when connecting pipes. The refrigeration cycle apparatus 1 is provided with two check valves 27a and 27b, and the check valves 27a and 27b are used for checking when there is an abnormality. The check valves 27a and 27b are provided on the discharge side of the compressor 3 and on the upstream side of the accumulator 10, respectively.
 冷凍サイクル装置1は、マフラー29を備えており、マフラー29は、圧縮機3の突出側に設けられ圧縮機3から吐出される冷媒から発生する音を抑制する。冷凍サイクル装置1は、圧力センサ30を備えており、圧力センサ30は、圧縮機3の吐出側の冷媒の圧力を検出する。冷凍サイクル装置1は、高圧スイッチ31を備えており、高圧スイッチ31は、圧縮機3の吐出側に設けられ一定圧力以上の場合、冷凍サイクル装置1を停止する。冷凍サイクル装置1は、逆止弁28を備えており、逆止弁28は、副管2bに設けられ利用側熱交換器8から圧縮機3に向けて冷媒が逆流することを防止する。 The refrigeration cycle apparatus 1 is provided with a muffler 29, and the muffler 29 is provided on the protruding side of the compressor 3 and suppresses the sound generated from the refrigerant discharged from the compressor 3. The refrigeration cycle apparatus 1 includes a pressure sensor 30, and the pressure sensor 30 detects the pressure of the refrigerant on the discharge side of the compressor 3. The refrigeration cycle apparatus 1 includes a high pressure switch 31, and the high pressure switch 31 is provided on the discharge side of the compressor 3 and stops the refrigeration cycle apparatus 1 when the pressure is equal to or higher than a certain pressure. The refrigeration cycle apparatus 1 includes a check valve 28, and the check valve 28 is provided in the auxiliary pipe 2b and prevents the refrigerant from flowing backward from the utilization side heat exchanger 8 toward the compressor 3.
 冷凍サイクル装置1は、温度センサ40a~40g、吸入温度検出部41、二相温度検出部42及び外気温度検出部43を備えている。温度センサ40a~40gは、それぞれ圧縮機3の吐出側、室外熱交換器5、地熱側熱交換器9と地熱膨張弁7cとの間、地熱側熱交換器9、地熱側熱交換器9の近傍の地中、利用側熱交換器8と室内膨張弁7bとの間及び水配管13に設けられる。吸入温度検出部41は、圧縮機3の吸入側に設けられ、圧縮機3の吸入側に流れる冷媒の吸入温度を検出する。二相温度検出部42は、室外熱交換器5に設けられ、室外熱交換器5に流れる冷媒の二相温度を検出する。外気温度検出部43は、室外に設けられ、外気温度を検出する。 The refrigeration cycle device 1 includes temperature sensors 40a to 40g, an intake temperature detection unit 41, a two-phase temperature detection unit 42, and an outside air temperature detection unit 43. The temperature sensors 40a to 40g respectively include the discharge side of the compressor 3, the outdoor heat exchanger 5, the geothermal side heat exchanger 9 and the geothermal expansion valve 7c, the geothermal side heat exchanger 9, and the geothermal side heat exchanger 9. It is provided in the vicinity of the ground, between the use side heat exchanger 8 and the indoor expansion valve 7b, and in the water pipe 13. The suction temperature detector 41 is provided on the suction side of the compressor 3 and detects the suction temperature of the refrigerant flowing to the suction side of the compressor 3. The two-phase temperature detector 42 is provided in the outdoor heat exchanger 5 and detects the two-phase temperature of the refrigerant flowing through the outdoor heat exchanger 5. The outside air temperature detection unit 43 is provided outside the room and detects the outside air temperature.
 図2は、本発明の実施の形態1に係る冷凍サイクル装置1のバイパス回路11を示す回路図である。図2に示すように、冷凍サイクル装置1は、バイパス回路11と流量調整装置12とを備えている。バイパス回路11は、圧縮機3の吐出側とアキュムレータ10とをバイパス配管11aにより接続し、室外熱交換器5と流路切替装置4との間に接続される。ここで、バイパス配管11aは、例えば銅配管である。なお、バイパス回路11は、アキュムレータ10の表面を通過する。流量調整装置12は、バイパス回路11に設けられ、バイパス回路11に流れる冷媒の流量を調整する。 FIG. 2 is a circuit diagram showing the bypass circuit 11 of the refrigeration cycle device 1 according to the first embodiment of the present invention. As shown in FIG. 2, the refrigeration cycle device 1 includes a bypass circuit 11 and a flow rate adjusting device 12. The bypass circuit 11 connects the discharge side of the compressor 3 and the accumulator 10 by a bypass pipe 11 a, and is connected between the outdoor heat exchanger 5 and the flow path switching device 4. Here, the bypass pipe 11a is, for example, a copper pipe. The bypass circuit 11 passes over the surface of the accumulator 10. The flow rate adjusting device 12 is provided in the bypass circuit 11 and adjusts the flow rate of the refrigerant flowing through the bypass circuit 11.
 制御部50は、冷凍サイクル装置1全体の動作を制御するものであり、例えばCPUからなる。本実施の形態1では、冷凍サイクル装置1は、暖房運転モードとして、地熱給湯運転モード及び室外給湯運転モードを有する。制御部50は、外気温度が地熱側温度以下の場合、地熱給湯運転モードを実行する。制御部50は、外気温度が地熱側温度よりも高い場合、室外給湯運転モードを実行する。また、冷凍サイクル装置1は、除霜運転モードを有する。除霜運転モードは、室外熱交換器5に霜が付着したときに、室外熱交換器5にホットガスを供給して霜を除去するモードである。更に、冷凍サイクル装置1は、ホットガスバイパス運転モードを有する。ホットガスバイパス運転モードは、アキュムレータ10が凍結したときに、アキュムレータ10にホットガスを供給して氷結を除去するモードである。なお、冷凍サイクル装置1は、冷房運転モードを有していてもよい。 The control unit 50 controls the operation of the entire refrigeration cycle apparatus 1, and is composed of, for example, a CPU. In Embodiment 1, the refrigeration cycle apparatus 1 has a geothermal hot water supply operation mode and an outdoor hot water supply operation mode as the heating operation mode. The controller 50 executes the geothermal hot water supply operation mode when the outside air temperature is equal to or lower than the geothermal side temperature. When the outside air temperature is higher than the geothermal side temperature, control unit 50 executes the outdoor hot water supply operation mode. The refrigeration cycle device 1 also has a defrosting operation mode. The defrosting operation mode is a mode in which, when frost adheres to the outdoor heat exchanger 5, hot gas is supplied to the outdoor heat exchanger 5 to remove the frost. Further, the refrigeration cycle apparatus 1 has a hot gas bypass operation mode. The hot gas bypass operation mode is a mode in which when the accumulator 10 is frozen, hot gas is supplied to the accumulator 10 to remove freezing. The refrigeration cycle apparatus 1 may have a cooling operation mode.
 (地熱給湯運転モード)
 図3は、本発明の実施の形態1に係る地熱給湯運転モード時の冷媒の流れを示す回路図である。次に、地熱給湯運転モードにおける冷媒の流れについて説明する。地熱給湯運転モードでは、制御部50は、圧縮機3と室外熱交換器5とが接続されるように流路切替装置4を切り替える。また、制御部50は、室外送風機6を停止している。図3に示すように、圧縮機3に吸入された冷媒は、圧縮機3によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機3から吐出された高温且つ高圧のガス状態の冷媒は、主管2aに流れる冷媒と副管2bに流れる冷媒とに分岐する。
(Geothermal hot water supply operation mode)
FIG. 3 is a circuit diagram showing a refrigerant flow in the geothermal hot water supply operation mode according to Embodiment 1 of the present invention. Next, the flow of the refrigerant in the geothermal hot water supply operation mode will be described. In the geothermal hot water supply operation mode, the control unit 50 switches the flow path switching device 4 so that the compressor 3 and the outdoor heat exchanger 5 are connected. Moreover, the control unit 50 stops the outdoor blower 6. As shown in FIG. 3, the refrigerant sucked into the compressor 3 is compressed by the compressor 3 and is discharged in a high temperature and high pressure gas state. The high-temperature, high-pressure gas-state refrigerant discharged from the compressor 3 is branched into a refrigerant flowing in the main pipe 2a and a refrigerant flowing in the auxiliary pipe 2b.
 副管2bに流れる冷媒は、副電磁弁22を通過して、利用側熱交換器8に流入し、利用側熱交換器8において、水配管13に流れる水と熱交換されて凝縮して液化する。このとき、水が暖められて湯となる。これにより、給湯対象に湯が供給される。凝縮された液状態の冷媒は、室内膨張弁7bに流入し、室内膨張弁7bにおいて膨張及び減圧されて主管2aに合流する。主管2aに合流した冷媒は、地熱膨張弁7cに流入し、地熱膨張弁7cにおいて膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する地熱側熱交換器9に流入し、地熱側熱交換器9において、水回路に流れる不凍液と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置4を通過して、アキュムレータ10に流入し、その後、圧縮機3に吸入される。 The refrigerant flowing through the auxiliary pipe 2b passes through the auxiliary electromagnetic valve 22 and flows into the usage-side heat exchanger 8, where it is heat-exchanged with the water flowing through the water pipe 13 to condense and liquefy. To do. At this time, the water is heated and becomes hot water. Thereby, hot water is supplied to the hot water supply target. The condensed refrigerant in the liquid state flows into the indoor expansion valve 7b, is expanded and depressurized in the indoor expansion valve 7b, and joins the main pipe 2a. The refrigerant that has joined the main pipe 2a flows into the geothermal expansion valve 7c, is expanded and depressurized in the geothermal expansion valve 7c, and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the geothermal-side heat exchanger 9 that functions as an evaporator, and in the geothermal-side heat exchanger 9, it is heat-exchanged with the antifreeze liquid flowing in the water circuit to be evaporated and gasified. .. The evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 4, flows into the accumulator 10, and is then sucked into the compressor 3.
 一方、主管2aに流れる冷媒は、主電磁弁21及び流路切替装置4を通過して、室外熱交換器5に流入する。ここで、室外送風機6は停止しているため、室外熱交換器5における熱交換量は少ない。室外熱交換器5から流出した冷媒は、室外膨張弁7aを通過して、室内膨張弁7bから流出した冷媒と合流する。 On the other hand, the refrigerant flowing through the main pipe 2a passes through the main electromagnetic valve 21 and the flow path switching device 4 and flows into the outdoor heat exchanger 5. Here, since the outdoor blower 6 is stopped, the amount of heat exchange in the outdoor heat exchanger 5 is small. The refrigerant flowing out of the outdoor heat exchanger 5 passes through the outdoor expansion valve 7a and merges with the refrigerant flowing out of the indoor expansion valve 7b.
 (室外給湯運転モード)
 図4は、本発明の実施の形態1に係る室外給湯運転モード時の冷媒の流れを示す回路図である。次に、室外給湯運転モードにおける冷媒の流れについて説明する。室外給湯運転モードでは、制御部50は、アキュムレータ10と室外熱交換器5とが接続されるように流路切替装置4を切り替える。また、制御部50は、主電磁弁21を閉止している。図4に示すように、圧縮機3に吸入された冷媒は、圧縮機3によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機3から吐出された高温且つ高圧のガス状態の冷媒は、主電磁弁21が閉止しているため、副電磁弁22に流れる。
(Outdoor hot water supply operation mode)
FIG. 4 is a circuit diagram showing the flow of the refrigerant in the outdoor hot water supply operation mode according to the first embodiment of the present invention. Next, the flow of the refrigerant in the outdoor hot water supply operation mode will be described. In the outdoor hot water supply operation mode, control unit 50 switches flow path switching device 4 so that accumulator 10 and outdoor heat exchanger 5 are connected. The control unit 50 also closes the main solenoid valve 21. As shown in FIG. 4, the refrigerant sucked into the compressor 3 is compressed by the compressor 3 and discharged in a high temperature and high pressure gas state. The high-temperature, high-pressure gas-state refrigerant discharged from the compressor 3 flows to the sub electromagnetic valve 22 because the main electromagnetic valve 21 is closed.
 副電磁弁22に流れる冷媒は、利用側熱交換器8に流入し、利用側熱交換器8において、水配管13に流れる水と熱交換されて凝縮して液化する。このとき、水が暖められて湯となる。これにより、給湯対象に湯が供給される。凝縮された液状態の冷媒は、室内膨張弁7bに流入し、室内膨張弁7bにおいて膨張及び減圧されて主管2aに流れる。主管2aに流れた冷媒は、室外膨張弁7aに流入し、室外膨張弁7aにおいて膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室外熱交換器5に流入し、室外熱交換器5において、室外送風機6によって送られた室外空気と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置4を通過して、アキュムレータ10に流入し、その後、圧縮機3に吸入される。 The refrigerant flowing through the sub solenoid valve 22 flows into the usage-side heat exchanger 8 and is heat-exchanged with the water flowing through the water pipe 13 in the usage-side heat exchanger 8 to be condensed and liquefied. At this time, the water is heated and becomes hot water. Thereby, hot water is supplied to the hot water supply target. The condensed refrigerant in the liquid state flows into the indoor expansion valve 7b, is expanded and decompressed in the indoor expansion valve 7b, and flows into the main pipe 2a. The refrigerant flowing into the main pipe 2a flows into the outdoor expansion valve 7a, is expanded and depressurized in the outdoor expansion valve 7a, and becomes a low-temperature low-pressure refrigerant in a gas-liquid two-phase state. Then, the refrigerant in the gas-liquid two-phase state flows into the outdoor heat exchanger 5 that functions as an evaporator, and in the outdoor heat exchanger 5, the refrigerant exchanges heat with the outdoor air sent by the outdoor blower 6 and evaporates. Turn into. The evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 4, flows into the accumulator 10, and is then sucked into the compressor 3.
 (除霜運転モード)
 図5は、本発明の実施の形態1に係る除霜運転モード時の冷媒の流れを示す回路図である。次に、除霜運転モードにおける冷媒の流れについて説明する。除霜運転モードでは、制御部50は、圧縮機3と室外熱交換器5とが接続されるように流路切替装置4を切り替える。また、制御部50は、副電磁弁22を閉止し、室外送風機6を停止している。図5に示すように、圧縮機3に吸入された冷媒は、圧縮機3によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機3から吐出された高温且つ高圧のガス状態の冷媒は、副電磁弁22が閉止しているため、主電磁弁21に流れる。主電磁弁21に流れる高温且つ高圧のガス状態の冷媒は、室外熱交換器5に流入する。これにより、冷媒は、室外熱交換器5に付着する霜を融かす。室外熱交換器5から流出した冷媒は、室外膨張弁7a、地熱膨張弁7c、地熱側熱交換器9、流路切替装置4及びアキュムレータ10を通過して、圧縮機3に吸入される。
(Defrosting operation mode)
FIG. 5 is a circuit diagram showing the flow of the refrigerant in the defrosting operation mode according to Embodiment 1 of the present invention. Next, the flow of the refrigerant in the defrosting operation mode will be described. In the defrosting operation mode, the control unit 50 switches the flow path switching device 4 so that the compressor 3 and the outdoor heat exchanger 5 are connected. Further, the control unit 50 closes the sub electromagnetic valve 22 and stops the outdoor blower 6. As shown in FIG. 5, the refrigerant sucked into the compressor 3 is compressed by the compressor 3 and discharged in a high temperature and high pressure gas state. The high-temperature, high-pressure gas-state refrigerant discharged from the compressor 3 flows to the main solenoid valve 21 because the sub solenoid valve 22 is closed. The high-temperature, high-pressure gas-state refrigerant flowing through the main solenoid valve 21 flows into the outdoor heat exchanger 5. Thereby, the refrigerant melts the frost attached to the outdoor heat exchanger 5. The refrigerant flowing out of the outdoor heat exchanger 5 passes through the outdoor expansion valve 7a, the geothermal expansion valve 7c, the geothermal side heat exchanger 9, the flow path switching device 4 and the accumulator 10, and is sucked into the compressor 3.
 (ホットガスバイパス運転モード)
 次に、ホットガスバイパス運転モードにおける冷媒の流れについて説明する。ホットガスバイパス運転モードでは、制御部50は、流量調整装置12を開く。圧縮機3に吸入された冷媒は、圧縮機3によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機3から吐出された高温且つ高圧のガス状態の冷媒は、流量調整装置12が開いているため、バイパス回路11に流れる。バイパス回路11に流れる高温且つ高圧のガス状態の冷媒は、アキュムレータ10の表面に流れる。これにより、冷媒は、アキュムレータ10の表面に発生した氷結を除去する。アキュムレータ10の表面に流れた冷媒は、主管2aに戻る。なお、それ以外の運転は、除霜運転モードと同様とすることができる。
(Hot gas bypass operation mode)
Next, the flow of the refrigerant in the hot gas bypass operation mode will be described. In the hot gas bypass operation mode, the control unit 50 opens the flow rate adjusting device 12. The refrigerant sucked into the compressor 3 is compressed by the compressor 3 and discharged in a high temperature and high pressure gas state. The high-temperature, high-pressure gas-state refrigerant discharged from the compressor 3 flows into the bypass circuit 11 because the flow rate adjusting device 12 is open. The high-temperature, high-pressure gas-state refrigerant flowing in the bypass circuit 11 flows to the surface of the accumulator 10. As a result, the refrigerant removes the freezing generated on the surface of the accumulator 10. The refrigerant flowing on the surface of the accumulator 10 returns to the main pipe 2a. Note that the other operations can be the same as those in the defrosting operation mode.
 図6は、本発明の実施の形態1に係る制御部50を示すブロック図である。図6に示すように、制御部50は、吸入温度検出部41、二相温度検出部42及び外気温度検出部43の検出結果に基づいて、流量調整装置12の開度を調整する。制御部50は、吸入温度検出部41によって検出された冷媒の吸入温度に基づいて、流量調整装置12の開度を調整する。具体的には、制御部50は、吸入温度検出部41によって検出された冷媒の吸入温度が、下限吸入温度閾値を下回った場合、流量調整装置12を開く。下限吸入温度閾値は、例えば-5℃である。ここで、制御部50は、外気温度検出部43によって検出された外気温度が、外気温度閾値を上回った場合、流量調整装置12を開く。外気温度閾値は、例えば0℃である。本実施の形態1では、制御部50は、吸入温度が下限吸入温度閾値を下回り、且つ外気温度が外気温度閾値を上回った場合、流量調整装置12を開き、ホットガスバイパス運転モード及び除霜運転モードを実行する。 FIG. 6 is a block diagram showing the control unit 50 according to the first embodiment of the present invention. As shown in FIG. 6, the control unit 50 adjusts the opening degree of the flow rate adjusting device 12 based on the detection results of the intake temperature detection unit 41, the two-phase temperature detection unit 42, and the outside air temperature detection unit 43. The control unit 50 adjusts the opening degree of the flow rate adjustment device 12 based on the suction temperature of the refrigerant detected by the suction temperature detection unit 41. Specifically, the control unit 50 opens the flow rate adjusting device 12 when the suction temperature of the refrigerant detected by the suction temperature detection unit 41 is lower than the lower limit suction temperature threshold value. The lower limit intake temperature threshold is, for example, −5 ° C. Here, when the outside air temperature detected by the outside air temperature detecting unit 43 exceeds the outside air temperature threshold value, the control unit 50 opens the flow rate adjusting device 12. The outside air temperature threshold value is 0 ° C., for example. In the first embodiment, when the intake temperature is below the lower limit intake temperature threshold and the outside air temperature is above the outside air temperature threshold, the control unit 50 opens the flow rate adjusting device 12, and the hot gas bypass operation mode and the defrosting operation. Run the mode.
 一方、制御部50は、外気温度検出部43によって検出された外気温度が外気温度閾値以下の場合、室外熱交換器5を除霜する除霜運転のみを実行する。即ち、制御部50は、ホットガスバイパス運転モードを実行しない。 On the other hand, when the outside air temperature detected by the outside air temperature detecting unit 43 is equal to or lower than the outside air temperature threshold, the control unit 50 only executes the defrosting operation of defrosting the outdoor heat exchanger 5. That is, the control unit 50 does not execute the hot gas bypass operation mode.
 制御部50は、吸入温度検出部41によって検出された冷媒の吸入温度が、上限吸入温度閾値を上回った場合、流量調整装置12を閉じる。上限吸入温度閾値は、例えば2℃である。ここで、制御部50は、二相温度検出部42によって検出された冷媒の二相温度が、上限二相温度閾値を上回った場合、流量調整装置12を閉じる。上限二相温度閾値は、例えば5℃である。本実施の形態1では、制御部50は、吸入温度が上限吸入温度閾値を上回り、且つ、二相温度が上限二相温度閾値を上回った場合、流量調整装置12を閉じ、ホットガスバイパス運転モードを終了する。また、この場合、制御部50は、除霜運転モードも終了する。 The control unit 50 closes the flow rate adjustment device 12 when the suction temperature of the refrigerant detected by the suction temperature detection unit 41 exceeds the upper limit suction temperature threshold value. The upper limit intake temperature threshold is, for example, 2 ° C. Here, when the two-phase temperature of the refrigerant detected by the two-phase temperature detecting unit 42 exceeds the upper limit two-phase temperature threshold, the control unit 50 closes the flow rate adjusting device 12. The upper limit two-phase temperature threshold is, for example, 5 ° C. In the first embodiment, when the intake temperature exceeds the upper limit intake temperature threshold and the two-phase temperature exceeds the upper limit two-phase temperature threshold, the control unit 50 closes the flow rate adjusting device 12 and sets the hot gas bypass operation mode. To finish. In this case, the control unit 50 also ends the defrosting operation mode.
 図7は、本発明の実施の形態1に係る制御部50の動作を示すフローチャートである。次に、制御部50の動作について説明する。図7に示すように、制御部50が、地熱給湯運転モード又は室外給湯運転モードといった暖房運転モードを実行している場合(ステップS1)、制御部50は、除霜の判定を実施するか否かを判断する(ステップS2)。制御部50は、除霜の判定を実施する場合、外気温度が外気温度閾値0℃を上回り、且つ吸入温度が下限吸入温度閾値-5℃を下回ったかを判定する(ステップS3)。制御部50は、外気温度が外気温度閾値0℃を下回るか又は吸入温度が下限吸入温度閾値-5℃以上の場合、除霜運転モードのみを実行する(ステップS4)。 FIG. 7 is a flowchart showing the operation of the control unit 50 according to the first embodiment of the present invention. Next, the operation of the control unit 50 will be described. As shown in FIG. 7, when control unit 50 is executing a heating operation mode such as a geothermal hot water supply operation mode or an outdoor hot water supply operation mode (step S1), control unit 50 determines whether or not to perform defrosting determination. It is determined whether or not (step S2). When performing the defrosting determination, the control unit 50 determines whether the outside air temperature is above the outside air temperature threshold value 0 ° C. and the intake temperature is below the lower limit intake temperature threshold value −5 ° C. (step S3). The controller 50 executes only the defrosting operation mode when the outside air temperature is lower than the outside air temperature threshold value 0 ° C. or the suction temperature is equal to or more than the lower limit suction temperature threshold −5 ° C. (step S4).
 制御部50は、外気温度が外気温度閾値0℃を上回り、且つ吸入温度が下限吸入温度閾値-5℃を下回った場合、除霜運転モードとホットガスバイパス運転モードとをいずれも実行する(ステップS5)。その後、制御部50は、二相温度が上限二相温度閾値5℃を上回り、且つ吸入温度が上限吸入温度閾値2℃を上回ったかを判定する(ステップS6)。制御部50は、二相温度が上限二相温度閾値5℃以下か又は吸入温度が上限吸入温度閾値2℃以下の場合、ステップS6を繰り返す。一方、制御部50は、二相温度が上限二相温度閾値5℃を上回り、且つ吸入温度が上限吸入温度閾値2℃を上回った場合、除霜運転モード及びホットガスバイパス運転モードを終了する(ステップS7)。そして、制御部50は、暖房運転モードに移行する。 The control unit 50 executes both the defrosting operation mode and the hot gas bypass operation mode when the outside air temperature exceeds the outside air temperature threshold value 0 ° C. and the intake temperature falls below the lower limit intake temperature threshold −5 ° C. (step S5). Then, the control unit 50 determines whether the two-phase temperature exceeds the upper limit two-phase temperature threshold value 5 ° C. and the suction temperature exceeds the upper limit suction temperature threshold value 2 ° C. (step S6). When the two-phase temperature is the upper limit two-phase temperature threshold value 5 ° C. or lower or the suction temperature is the upper limit suction temperature threshold value 2 ° C. or lower, the control unit 50 repeats step S6. On the other hand, the control unit 50 ends the defrosting operation mode and the hot gas bypass operation mode when the two-phase temperature exceeds the upper limit two-phase temperature threshold value 5 ° C. and the intake temperature exceeds the upper limit intake temperature threshold value 2 ° C. ( Step S7). Then, the control unit 50 shifts to the heating operation mode.
 本実施の形態1によれば、制御部50は、吸入温度検出部41によって検出された冷媒の吸入温度に基づいて、流量調整装置12の開度を調整する。長期間にわたり、暖房運転が行われる場合、アキュムレータ10の表面が凍結して、表面の氷が徐々に成長して周囲の配管を圧迫するおそれがある。制御部50は、吸入温度を把握することによって、アキュムレータ10が凍結しているか否かを判断して、アキュムレータ10が凍結している場合にアキュムレータ10にホットガスを供給することができる。このように、冷凍サイクル装置1は、アキュムレータ10にホットガスを供給するタイミングを自動的に認識している。従って、アキュムレータ10にホットガスを流すタイミングを、随時モニタする必要がないため、煩雑さを解消することができる。 According to the first embodiment, the control unit 50 adjusts the opening degree of the flow rate adjusting device 12 based on the refrigerant suction temperature detected by the suction temperature detection unit 41. When the heating operation is performed for a long period of time, the surface of the accumulator 10 may freeze, and the ice on the surface may gradually grow to press the surrounding pipes. The control unit 50 can determine whether or not the accumulator 10 is frozen by grasping the intake temperature, and can supply hot gas to the accumulator 10 when the accumulator 10 is frozen. In this way, the refrigeration cycle apparatus 1 automatically recognizes the timing of supplying hot gas to the accumulator 10. Therefore, since it is not necessary to monitor the timing of flowing hot gas through the accumulator 10 as needed, the complexity can be eliminated.
 また、冷凍サイクル装置1は、アキュムレータ10の表面において成長した氷とホットガスとの間で熱交換させて、解氷する。これにより、暖房運転モードの継続運転時間を伸ばすと共に、成長した氷に起因する配管の変形を抑制することができる。従って、配管の高品質性を維持する冷凍サイクル装置1を実現することができる。 Further, the refrigeration cycle apparatus 1 causes the ice grown on the surface of the accumulator 10 to exchange heat with the hot gas to thaw the ice. Thereby, the continuous operation time of the heating operation mode can be extended and the deformation of the pipe due to the grown ice can be suppressed. Therefore, it is possible to realize the refrigeration cycle apparatus 1 that maintains the high quality of the piping.
 概して、空気調和機は、暖房運転時に蒸発器として作用する室外熱交換器に霜が付着すると、一時的に暖房運転を中止し、四方弁を冷房運転側に切り替えて、室外熱交換器に圧縮機から吐出されたホットガスを供給する除霜運転を実施する。冷媒回路における冷媒の流れが切り替わる際、暖房運転時に凝縮器として作用する利用側熱交換器に流れていた高温の冷媒が、一時的に圧縮機の吸入側の吸入配管及びアキュムレータに流れ込む。従って、アキュムレータが凍結することが抑制される。一方、地熱側熱交換器を備える冷凍サイクル装置は、地熱側熱交換器を使用した給湯運転を実施している場合、地熱側熱交換器ではなく室外熱交換器に冷媒が流れるように、流路切替装置によって冷媒の流れを切り替えて、室外熱交換器を除霜する。この場合、給湯運転時に凝縮器として作用する利用側熱交換器に流れていた高温の冷媒は、圧縮機の吸入側の吸入配管及びアキュムレータに流れない。従って、アキュムレータが凍結するおそれがある。 In general, an air conditioner temporarily stops heating operation when frost adheres to the outdoor heat exchanger that acts as an evaporator during heating operation, switches the four-way valve to the cooling operation side, and compresses the outdoor heat exchanger. Defrost operation is performed to supply the hot gas discharged from the machine. When the flow of the refrigerant in the refrigerant circuit is switched, the high-temperature refrigerant that has been flowing in the usage-side heat exchanger that functions as a condenser during the heating operation temporarily flows into the suction pipe and the accumulator on the suction side of the compressor. Therefore, freezing of the accumulator is suppressed. On the other hand, the refrigeration cycle apparatus including the geothermal side heat exchanger, when performing hot water supply operation using the geothermal side heat exchanger, so that the refrigerant flows to the outdoor heat exchanger instead of the geothermal side heat exchanger, The flow switching device switches the flow of the refrigerant to defrost the outdoor heat exchanger. In this case, the high-temperature refrigerant flowing in the utilization side heat exchanger acting as a condenser during the hot water supply operation does not flow into the suction side suction pipe of the compressor and the accumulator. Therefore, the accumulator may freeze.
 これに対し、本実施の形態1は、アキュムレータ10が凍結している場合にアキュムレータ10に対して、バイパス回路11に流れるホットガスを供給することができる。このため、アキュムレータ10の凍結を抑制することができる。 On the other hand, in the first embodiment, when the accumulator 10 is frozen, the hot gas flowing in the bypass circuit 11 can be supplied to the accumulator 10. Therefore, freezing of the accumulator 10 can be suppressed.
 また、従来、低温時の冷房運転及び低温時の暖房運転において、アキュムレータに溜まった液状態の冷媒を蒸発させて、冷房能力及び暖房能力を改善しようとする空気調和機が知られている。しかし、この従来の空気調和機は、圧縮機の吸入側の吸入管が凍結することに関して何ら配慮されていない。また、この従来の空気調和機は、アキュムレータ内の冷媒を加熱するものであるため、アキュムレータ内に配管を通す必要がある。これに対し、本実施の形態1は、加熱対象がアキュムレータ10の表面に成長した氷であるため、アキュムレータ10内に配管を通す必要がない。 Also, conventionally, there are known air conditioners that try to improve the cooling capacity and the heating capacity by evaporating the liquid state refrigerant accumulated in the accumulator in the cooling operation at low temperature and the heating operation at low temperature. However, in this conventional air conditioner, no consideration is given to freezing of the suction pipe on the suction side of the compressor. Further, since this conventional air conditioner heats the refrigerant in the accumulator, it is necessary to pass the pipe through the accumulator. On the other hand, in the first embodiment, since the object to be heated is ice that has grown on the surface of the accumulator 10, it is not necessary to pass the pipe through the accumulator 10.
実施の形態2.
 図8は、本発明の実施の形態2に係る冷凍サイクル装置100のバイパス回路11を示す回路図である。本実施の形態2は、バイパス配管11aの巻き付けと、制御部150の動作とが、実施の形態1と相違する。本実施の形態2では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2.
FIG. 8 is a circuit diagram showing bypass circuit 11 of refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention. The second embodiment is different from the first embodiment in the winding of the bypass pipe 11a and the operation of the control unit 150. In the second embodiment, the same parts as those in the first embodiment will be designated by the same reference numerals, and the description thereof will be omitted. Differences from the first embodiment will be mainly described.
 図8に示すように、冷凍サイクル装置100は、バイパス回路11と流量調整装置12とを備えている。バイパス回路11は、圧縮機3の吐出側とアキュムレータ10とをバイパス配管11aにより接続し、室外熱交換器5と流路切替装置4との間に接続される。ここで、バイパス配管11aは、例えば銅配管である。なお、バイパス回路11は、アキュムレータ10の表面を通過する。本実施の形態2では、流量調整装置12に接続されるバイパス配管11aは、アキュムレータ10の表面に螺旋状に巻き付けられている。これにより、アキュムレータ10の表面全体にホットガスを流すことができる。また、バイパス配管11aの上流側がアキュムレータ10の下部に巻き付けられ、バイパス配管11aの下流側がアキュムレータ10の上部に巻き付けられている。これにより、圧縮機3から吐出されたホットガスは、最初に液状態の冷媒が溜まっているアキュムレータ10の下部を加熱する。アキュムレータ10の下部は、液状態の冷媒が溜まっているため、凍結し易い。本実施の形態2は、圧縮機3から吐出されたホットガスが、液状態の冷媒が溜まっているアキュムレータ10の下部を最初に加熱するため、よりアキュムレータ10の凍結を抑制することができる。 As shown in FIG. 8, the refrigeration cycle device 100 includes a bypass circuit 11 and a flow rate adjusting device 12. The bypass circuit 11 connects the discharge side of the compressor 3 and the accumulator 10 by a bypass pipe 11 a, and is connected between the outdoor heat exchanger 5 and the flow path switching device 4. Here, the bypass pipe 11a is, for example, a copper pipe. The bypass circuit 11 passes over the surface of the accumulator 10. In the second embodiment, the bypass pipe 11a connected to the flow rate adjusting device 12 is spirally wound around the surface of the accumulator 10. This allows hot gas to flow over the entire surface of the accumulator 10. The upstream side of the bypass pipe 11 a is wound around the lower part of the accumulator 10, and the downstream side of the bypass pipe 11 a is wound around the upper part of the accumulator 10. As a result, the hot gas discharged from the compressor 3 heats the lower portion of the accumulator 10 in which the liquid state refrigerant is initially accumulated. The lower portion of the accumulator 10 accumulates the liquid state refrigerant, and thus is easily frozen. In the second embodiment, the hot gas discharged from the compressor 3 first heats the lower portion of the accumulator 10 in which the liquid state refrigerant is accumulated, so that the freezing of the accumulator 10 can be further suppressed.
 (入口温度検出部10a及び出口温度検出部10b)
 また、冷凍サイクル装置100は、入口温度検出部10aと出口温度検出部10bとを備えている。入口温度検出部10aは、バイパス回路11において流量調整装置12とアキュムレータ10との間に設けられ、アキュムレータ10に流入する冷媒の入口温度T1を検出する。出口温度検出部10bは、バイパス回路11においてアキュムレータ10と流路切替装置4との間に設けられ、アキュムレータ10から流出する冷媒の出口温度T2を検出する。出口温度検出部10bは、予め定められた間隔で出口温度T2を検出するものである。予め定められた間隔は、例えば1分であるが、適宜変更することができる。
(Inlet temperature detector 10a and outlet temperature detector 10b)
The refrigeration cycle apparatus 100 also includes an inlet temperature detection unit 10a and an outlet temperature detection unit 10b. The inlet temperature detector 10a is provided in the bypass circuit 11 between the flow rate adjusting device 12 and the accumulator 10 and detects the inlet temperature T1 of the refrigerant flowing into the accumulator 10. The outlet temperature detection unit 10b is provided in the bypass circuit 11 between the accumulator 10 and the flow path switching device 4, and detects the outlet temperature T2 of the refrigerant flowing out from the accumulator 10. The outlet temperature detection unit 10b detects the outlet temperature T2 at predetermined intervals. The predetermined interval is, for example, 1 minute, but can be changed as appropriate.
 図9は、本発明の実施の形態2に係るバイパス配管11aの配線を示す模式図である。図9に示すように、アキュムレータ10の上部及び下部に巻き付けられたバイパス配管11aの密度は、アキュムレータ10の中央部に巻き付けられたバイパス配管11aの密度よりも高い。即ち、バイパス配管11aの密度は、アキュムレータ10の上部及び下部において密部61となっており、アキュムレータ10の中央部において疎部62となっている。アキュムレータ10の上部には、結露した液滴が溜まり易く、凍結し易い。また、アキュムレータ10の下部には、液状態の冷媒が溜まっており、凍結し易い。本実施の形態2は、バイパス配管11aの密度が、アキュムレータ10の上部及び下部において高くなっているため、凍結し易い部分を集中的に加熱することができる。従って、アキュムレータ10の解氷を促進することができる。 FIG. 9 is a schematic diagram showing wiring of the bypass pipe 11a according to the second embodiment of the present invention. As shown in FIG. 9, the density of the bypass pipe 11a wound around the upper part and the lower part of the accumulator 10 is higher than the density of the bypass pipe 11a wound around the central part of the accumulator 10. That is, the density of the bypass pipe 11a is a dense portion 61 in the upper and lower portions of the accumulator 10 and a sparse portion 62 in the central portion of the accumulator 10. Condensed liquid droplets are likely to accumulate on the upper part of the accumulator 10 and easily freeze. In addition, the liquid-state refrigerant is accumulated in the lower part of the accumulator 10 and easily freezes. In the second embodiment, since the density of the bypass pipe 11a is high in the upper portion and the lower portion of the accumulator 10, it is possible to intensively heat the portion that easily freezes. Therefore, the defrosting of the accumulator 10 can be promoted.
 図10は、本発明の実施の形態2に係る制御部150を示すブロック図である。制御部150は、冷媒の吸入温度Tsと、冷媒の入口温度T1と、冷媒の出口温度T2とに基づいて、流量調整装置12の開度を調整するものである。吸入温度Tsは、吸入温度検出部41によって検出されたものである。入口温度T1は、入口温度検出部10aによって検出されたものである。出口温度T2は、出口温度検出部10bによって検出されたものである。図10に示すように、制御部150は、第1の判定手段151と、第2の判定手段152と、第3の判定手段153と、第4の判定手段154と、開度調整手段155とを有している。なお、第1の判定手段151、第2の判定手段152、第3の判定手段153、第4の判定手段154及び開度調整手段155は、アルゴリズムからなる。なお、制御部150は、第1の判定手段151を、圧縮機3の運転が開始されてから10時間経過した後に実施し、その後は10時間毎に定期的に実施する。 FIG. 10 is a block diagram showing the control unit 150 according to the second embodiment of the present invention. The control unit 150 adjusts the opening degree of the flow rate adjusting device 12 based on the refrigerant suction temperature Ts, the refrigerant inlet temperature T1, and the refrigerant outlet temperature T2. The suction temperature Ts is detected by the suction temperature detection unit 41. The inlet temperature T1 is detected by the inlet temperature detection unit 10a. The outlet temperature T2 is detected by the outlet temperature detector 10b. As shown in FIG. 10, the control unit 150 includes a first determination unit 151, a second determination unit 152, a third determination unit 153, a fourth determination unit 154, and an opening adjustment unit 155. have. The first determining means 151, the second determining means 152, the third determining means 153, the fourth determining means 154 and the opening degree adjusting means 155 are algorithms. In addition, the control part 150 implements the 1st determination means 151 after 10 hours have passed after the driving | operation of the compressor 3 started, and after that, implements it regularly every 10 hours.
 (第1の判定手段151)
 第1の判定手段151は、吸入温度検出部41によって検出された冷媒の吸入温度Tsが、下限吸入温度閾値Tsthを下回るか(Ts<Tsth)を判定する。ここで、下限吸入温度閾値Tsthは、アキュムレータ10が凍結している可能性が高い温度として設定されるものであり、例えば0℃である。
(First determination means 151)
The first determination means 151 determines whether the refrigerant suction temperature Ts detected by the suction temperature detector 41 is lower than the lower limit suction temperature threshold Tsth (Ts <Tsth). Here, the lower limit intake temperature threshold Tsth is set as a temperature at which the accumulator 10 is likely to be frozen, and is 0 ° C., for example.
 (第2の判定手段152)
 第2の判定手段152は、開度調整手段155によって流量調整装置12が開かれた後、出口温度検出部10bによって検出された冷媒の出口温度T2が、入口温度検出部10aによって検出された冷媒の入口温度T1を下回るか(T2<T1)を判定する。制御部150は、冷媒の出口温度T2が冷媒の入口温度T1を下回っている場合、アキュムレータ10が凍結しており、アキュムレータ10において氷と熱交換された冷媒が冷却されたと判断する。
(Second determination means 152)
In the second determination unit 152, the outlet temperature T2 of the refrigerant detected by the outlet temperature detecting unit 10b is detected by the inlet temperature detecting unit 10a after the flow rate adjusting device 12 is opened by the opening degree adjusting unit 155. Is lower than the inlet temperature T1 (T2 <T1). When the outlet temperature T2 of the refrigerant is lower than the inlet temperature T1 of the refrigerant, the control unit 150 determines that the accumulator 10 is frozen and the refrigerant that has exchanged heat with ice in the accumulator 10 is cooled.
 (第3の判定手段153)
 第3の判定手段153は、第2の判定手段152によって出口温度T2が入口温度T1を下回ると判定された場合、出口温度検出部10bによって検出された冷媒の出口温度T2が、出口温度閾値T2thを上回るか(T2>T2th)を判定する。ここで、出口温度閾値T2thは、アキュムレータ10が凍結している可能性が低い温度として設定されるものであり、例えば0℃である。
(Third determination means 153)
When the second determination unit 152 determines that the outlet temperature T2 is lower than the inlet temperature T1, the third determination unit 153 determines that the refrigerant outlet temperature T2 detected by the outlet temperature detection unit 10b is the outlet temperature threshold T2th. Is exceeded (T2> T2th). Here, the outlet temperature threshold T2th is set as a temperature at which the accumulator 10 is unlikely to be frozen, and is 0 ° C., for example.
 (第4の判定手段154)
 第4の判定手段154は、第3の判定手段153によって出口温度T2が出口温度閾値T2thを上回ると判定された場合、出口温度検出部10bによって今回検出された冷媒の出口温度T2が加算値以上か(T2_≧T2_j-1+T2th2)を判定する。加算値は、出口温度検出部10bによって前回検出された冷媒の出口温度T2に第2の出口温度閾値T2th2を加算したものである。第2の出口温度閾値T2th2は、例えば2℃である。
(Fourth determination means 154)
When the third determination unit 153 determines that the outlet temperature T2 exceeds the outlet temperature threshold T2th, the fourth determination unit 154 determines that the outlet temperature T2 of the refrigerant detected this time by the outlet temperature detection unit 10b is the added value or more. determines whether or not the (T2_ j ≧ T2_ j-1 + T2th2). The added value is obtained by adding the second outlet temperature threshold value T2th2 to the outlet temperature T2 of the refrigerant that was previously detected by the outlet temperature detection unit 10b. The second outlet temperature threshold T2th2 is, for example, 2 ° C.
 (開度調整手段155)
 開度調整手段155は、第1の判定手段151によって吸入温度Tsが下限吸入温度閾値Tsthを下回ると判定された場合、流量調整装置12を開く。制御部150は、吸入温度Tsが下限吸入温度閾値Tsthを下回る場合、アキュムレータ10が凍結している可能性が高いと判断する。この場合、開度調整手段155が流量調整装置12を開くため、アキュムレータ10にホットガスが流れて、アキュムレータ10の凍結が解消される。なお、この場合、開度調整手段155は、流量調整装置12の開度を20pulse開く。そして、制御部150は、ホットガスを5分間、バイパス回路11に流す。
(Opening degree adjusting means 155)
The opening adjustment means 155 opens the flow rate adjusting device 12 when the first determination means 151 determines that the intake temperature Ts is lower than the lower limit intake temperature threshold Tsth. When the intake temperature Ts is lower than the lower limit intake temperature threshold Tsth, the control unit 150 determines that the accumulator 10 is likely to be frozen. In this case, since the opening adjustment means 155 opens the flow rate adjusting device 12, hot gas flows into the accumulator 10 and the freezing of the accumulator 10 is eliminated. In this case, the opening adjustment means 155 opens the opening of the flow rate adjusting device 20 by 20 pulses. Then, the control unit 150 causes the hot gas to flow to the bypass circuit 11 for 5 minutes.
 開度調整手段155は、第2の判定手段152によって出口温度T2が入口温度T1以上と判定された場合、流量調整装置12を閉じるものである。制御部150は、冷媒の出口温度T2が冷媒の入口温度T1以上の場合、アキュムレータ10が凍結している可能性が低いと判断する。この場合、開度調整手段155が流量調整装置12を閉じるため、アキュムレータ10にホットガスは流れない。即ち、アキュムレータ10に過剰にホットガスが流れることを抑制することができる。 The opening adjustment means 155 closes the flow rate adjusting device 12 when the second determination means 152 determines that the outlet temperature T2 is equal to or higher than the inlet temperature T1. When the outlet temperature T2 of the refrigerant is equal to or higher than the inlet temperature T1 of the refrigerant, the control unit 150 determines that the accumulator 10 is unlikely to be frozen. In this case, the opening adjusting means 155 closes the flow rate adjusting device 12, so that hot gas does not flow into the accumulator 10. That is, it is possible to prevent excessive hot gas from flowing through the accumulator 10.
 開度調整手段155は、第3の判定手段153によって出口温度T2が出口温度閾値T2th以下と判定された場合、流量調整装置12の開度を上げるものである。制御部150は、冷媒の出口温度T2が出口温度閾値T2th以下の場合、アキュムレータ10に流れるホットガスの流量が不足していると判断する。この場合、開度調整手段155が流量調整装置12を更に開くため、アキュムレータ10にホットガスが更に流れて、アキュムレータ10の凍結が解消される。なお、この場合、開度調整手段155は、流量調整装置12の開度を5pulse開く(pulse_=pulse_j-1+5)。 The opening degree adjusting means 155 increases the opening degree of the flow rate adjusting device 12 when the outlet temperature T2 is determined to be equal to or lower than the outlet temperature threshold value T2th by the third determining means 153. When the outlet temperature T2 of the refrigerant is equal to or lower than the outlet temperature threshold T2th, the control unit 150 determines that the flow rate of the hot gas flowing through the accumulator 10 is insufficient. In this case, since the opening degree adjusting means 155 further opens the flow rate adjusting device 12, hot gas further flows into the accumulator 10, and the freezing of the accumulator 10 is eliminated. In this case, the opening adjustment means 155 opens the opening of the flow rate adjusting device 5 by 5 pulses (pulse_ j = pulse_ j-1 +5).
 開度調整手段155は、第4の判定手段154によって出口温度T2が加算値未満と判定された場合、流量調整装置12の開度を維持するものである。制御部150は、出口温度T2が加算値未満の場合、未だ、アキュムレータ10の凍結が解消されていないと判断する。この場合、開度調整手段155が流量調整装置12の開度を維持するため、アキュムレータ10にホットガスが流れ続けて、アキュムレータ10の凍結が解消される。 The opening adjustment means 155 maintains the opening of the flow rate adjusting device 12 when the fourth determination means 154 determines that the outlet temperature T2 is less than the added value. When the outlet temperature T2 is less than the added value, the control unit 150 determines that the freezing of the accumulator 10 has not been eliminated. In this case, since the opening degree adjusting means 155 maintains the opening degree of the flow rate adjusting device 12, the hot gas continues to flow into the accumulator 10 and the freezing of the accumulator 10 is eliminated.
 開度調整手段155は、第4の判定手段154によって出口温度T2が加算値以上と判定された場合、流量調整装置12の開度を下げるものである。制御部150は、出口温度T2が加算値以上の場合、アキュムレータ10の凍結が解消されてきていると判断する。この場合、開度調整手段155が流量調整装置12の開度を下げるため、アキュムレータ10に流れるホットガスの量が減る。即ち、アキュムレータ10に過剰にホットガスが流れることを抑制することができる。なお、この場合、開度調整手段155は、流量調整装置12の開度を5pulse閉じる(pulse_=pulse_j-1-5)。 The opening adjustment means 155 lowers the opening of the flow rate adjusting device 12 when the fourth determination means 154 determines that the outlet temperature T2 is equal to or higher than the added value. When the outlet temperature T2 is equal to or higher than the added value, the control unit 150 determines that the freezing of the accumulator 10 has been eliminated. In this case, the opening adjusting means 155 lowers the opening of the flow rate adjusting device 12, so that the amount of hot gas flowing through the accumulator 10 is reduced. That is, it is possible to prevent excessive hot gas from flowing into the accumulator 10. In this case, the opening degree adjusting unit 155 closes the opening degree of the flow rate adjusting device 12 by 5 pulses (pulse_ j = pulse_ j-1 -5).
 図11は、本発明の実施の形態2に係る制御部150の動作を示すフローチャートである。次に、本実施の形態2の制御部150の動作について説明する。図11に示すように、制御部150は、冷凍サイクル装置100が運転を開始する(ステップS10)と、圧縮機3の運転時間のカウントを開始する(ステップS11)。圧縮機3の運転時間が10時間を経過すると(ステップS12)、第1の判定手段151は、吸入温度検出部41によって検出された冷媒の吸入温度Tsが、下限吸入温度閾値Tsthを下回るか(Ts<Tsth)を判定する(ステップS13)。吸入温度Tsが下限吸入温度閾値Tsth以上の場合(ステップS13のNo)、制御部150は、冷凍サイクル装置100の運転を継続する(ステップS14)。その後、ステップS13に戻る。 FIG. 11 is a flowchart showing the operation of the control unit 150 according to the second embodiment of the present invention. Next, the operation of the control unit 150 according to the second embodiment will be described. As shown in FIG. 11, when the refrigeration cycle apparatus 100 starts operating (step S10), the control unit 150 starts counting the operating time of the compressor 3 (step S11). When the operating time of the compressor 3 has passed 10 hours (step S12), the first determination means 151 determines whether the refrigerant suction temperature Ts detected by the suction temperature detection unit 41 is lower than the lower limit suction temperature threshold Tsth ( It is determined whether Ts <Tsth (step S13). When the intake temperature Ts is equal to or higher than the lower limit intake temperature threshold Tsth (No in step S13), the control unit 150 continues the operation of the refrigeration cycle device 100 (step S14). Then, it returns to step S13.
 一方、吸入温度Tsが下限吸入温度閾値Tsthを下回る場合(ステップS13のYes)、開度調整手段155は流量調整装置12を20pulse開く(ステップS15)。次に、第2の判定手段152は、出口温度検出部10bによって検出された冷媒の出口温度T2が、入口温度検出部10aによって検出された冷媒の入口温度T1を下回るか(T2<T1)を判定する(ステップS16)。出口温度T2が入口温度T1以上の場合(ステップS16のNo)、開度調整手段155は流量調整装置12を閉じる(ステップS17)。その後、ステップS13に戻る。一方、出口温度T2が入口温度T1を下回る場合(ステップS16のYes)、アキュムレータ10の解氷制御が行われる(ステップS18)。具体的には、第3の判定手段153は、出口温度検出部10bによって検出された冷媒の出口温度T2が、出口温度閾値T2thを上回るか(T2>T2th)を判定する(ステップS19)。出口温度T2が出口温度閾値T2th以下の場合(ステップS19のNo)、開度調整手段155は流量調整装置12の開度を5pulse上げる(ステップS20)。 On the other hand, when the intake temperature Ts is lower than the lower limit intake temperature threshold Tsth (Yes in step S13), the opening adjustment means 155 opens the flow rate adjusting device 12 by 20 pulses (step S15). Next, the second determination means 152 determines whether the refrigerant outlet temperature T2 detected by the outlet temperature detecting unit 10b is lower than the refrigerant inlet temperature T1 detected by the inlet temperature detecting unit 10a (T2 <T1). The determination is made (step S16). When the outlet temperature T2 is equal to or higher than the inlet temperature T1 (No in step S16), the opening degree adjusting unit 155 closes the flow rate adjusting device 12 (step S17). Then, it returns to step S13. On the other hand, when the outlet temperature T2 is lower than the inlet temperature T1 (Yes in step S16), the deicing control of the accumulator 10 is performed (step S18). Specifically, the third determination unit 153 determines whether the outlet temperature T2 of the refrigerant detected by the outlet temperature detection unit 10b exceeds the outlet temperature threshold T2th (T2> T2th) (step S19). When the outlet temperature T2 is equal to or lower than the outlet temperature threshold T2th (No in step S19), the opening degree adjusting unit 155 increases the opening degree of the flow rate adjusting device 12 by 5 pulses (step S20).
 一方、出口温度T2が出口温度閾値T2thを上回る場合(ステップS19のYes)、第4の判定手段154は、出口温度検出部10bによって今回検出された冷媒の出口温度T2が加算値以上か(T2_≧T2_j-1+2)を判定する(ステップS21)。加算値は、出口温度検出部10bによって前回検出された冷媒の出口温度T2に第2の出口温度閾値T2th2を加算したものである。出口温度T2が加算値を下回る場合(ステップS21のNo)、開度制御手段は流量調整装置12の開度を維持する(ステップS22)。その後、ステップS16に戻る。一方、出口温度T2が加算値以上の場合(ステップS21のYes)、開度制御手段は流量調整装置12の開度を5pulse下げる(ステップS23)。その後、ステップS16に戻る。 On the other hand, when the outlet temperature T2 exceeds the outlet temperature threshold T2th (Yes in step S19), the fourth determination unit 154 determines whether the outlet temperature T2 of the refrigerant detected this time by the outlet temperature detection unit 10b is equal to or higher than the added value (T2_ j ≧ T2_ j−1 +2) is determined (step S21). The added value is a value obtained by adding the second outlet temperature threshold value T2th2 to the outlet temperature T2 of the refrigerant previously detected by the outlet temperature detection unit 10b. When the outlet temperature T2 is lower than the added value (No in step S21), the opening degree control means maintains the opening degree of the flow rate adjusting device 12 (step S22). Then, it returns to step S16. On the other hand, when the outlet temperature T2 is equal to or higher than the added value (Yes in step S21), the opening degree control unit lowers the opening degree of the flow rate adjusting device 12 by 5 pulses (step S23). Then, it returns to step S16.
 本実施の形態2によれば、制御部150は、吸入温度Tsを閾値処理することにより、アキュムレータ10の凍結の1次判定を行う。そして、1次判定の後、出口温度T2及び入口温度T1を閾値処理することにより、アキュムレータ10の凍結の2次判定を行う。このように、本実施の形態2は、アキュムレータ10の凍結を2段階判定するため、アキュムレータ10の凍結を察知し易い。このため、アキュムレータ10の凍結を直ちに解消することができる。 According to the second embodiment, the control unit 150 performs the primary determination of freezing of the accumulator 10 by thresholding the intake temperature Ts. Then, after the primary determination, the secondary determination of the freezing of the accumulator 10 is performed by thresholding the outlet temperature T2 and the inlet temperature T1. As described above, according to the second embodiment, since the freezing of the accumulator 10 is determined in two stages, it is easy to detect the freezing of the accumulator 10. Therefore, the freezing of the accumulator 10 can be immediately eliminated.
 また、流量調整装置12に接続されるバイパス配管11aは、アキュムレータ10の表面に螺旋状に巻き付けられている。このため、アキュムレータ10の表面全体にホットガスを流すことができる。更に、アキュムレータ10の上部及び下部に巻き付けられたバイパス配管11aの密度は、アキュムレータ10の中央部に巻き付けられたバイパス配管11aの密度よりも高い。このため、本実施の形態2は、凍結し易い部分を集中的に加熱することができる。従って、アキュムレータ10の解氷を促進することができる。 The bypass pipe 11a connected to the flow rate adjusting device 12 is spirally wound around the surface of the accumulator 10. Therefore, hot gas can be flowed over the entire surface of the accumulator 10. Further, the density of the bypass pipe 11a wound around the upper and lower parts of the accumulator 10 is higher than the density of the bypass pipe 11a wound around the central part of the accumulator 10. Therefore, in the second embodiment, it is possible to intensively heat the portion that is likely to freeze. Therefore, the defrosting of the accumulator 10 can be promoted.
 1 冷凍サイクル装置、2 冷媒回路、2a 主管、2b 副管、2c 延長配管、3 圧縮機、4 流路切替装置、5 室外熱交換器、6 室外送風機、7 膨張部、7a 室外膨張弁、7b 室内膨張弁、7c 地熱膨張弁、8 利用側熱交換器、9 地熱側熱交換器、10 アキュムレータ、10a 入口温度検出部、10b 出口温度検出部、11 バイパス回路、11a バイパス配管、12 流量調整装置、13 水配管、21 主電磁弁、22 副電磁弁、23 延長電磁弁、24a,24b,24c,24d,24e,24f ストレーナ、25a,25b,25c,25d ストップバルブ、26a,26b,26c,26d サービスポート、27a,27b チェックバルブ、28 逆止弁、29 マフラー、30 圧力センサ、31 高圧スイッチ、40a,40b,40c,40d,40e,40f,40g 温度センサ、41 吸入温度検出部、42 二相温度検出部、43 外気温度検出部、50 制御部、61 密部、62 疎部、100 冷凍サイクル装置、150 制御部、151 第1の判定手段、152 第2の判定手段、153 第3の判定手段、154 第4の判定手段、155 開度調整手段。 1 refrigeration cycle device, 2 refrigerant circuit, 2a main pipe, 2b auxiliary pipe, 2c extension pipe, 3 compressor, 4 flow path switching device, 5 outdoor heat exchanger, 6 outdoor blower, 7 expansion section, 7a outdoor expansion valve, 7b Indoor expansion valve, 7c Geothermal expansion valve, 8 Utilization side heat exchanger, 9 Geothermal side heat exchanger, 10 Accumulator, 10a Inlet temperature detecting part, 10b Outlet temperature detecting part, 11 Bypass circuit, 11a Bypass piping, 12 Flow rate adjusting device , 13 water piping, 21 main solenoid valve, 22 sub solenoid valve, 23 extension solenoid valve, 24a, 24b, 24c, 24d, 24e, 24f strainer, 25a, 25b, 25c, 25d stop valve, 26a, 26b, 26c, 26d Service port, 27a, 27b check valve, 28 check valve, 29 muffler, 30 pressure sensor, 31 high pressure switch, 40a, 40b, 40c, 40d, 40e, 40f, 40g temperature sensor, 41 suction temperature detection part, 42 two-phase Temperature detection unit, 43 outside air temperature detection unit, 50 control unit, 61 dense unit, 62 sparse unit, 100 refrigeration cycle device, 150 control unit, 151 first determination unit, 152 second determination unit, 153 third determination Means, 154 fourth judgment means, 155 opening adjustment means.

Claims (13)

  1.  圧縮機、室外熱交換器、膨張部、利用側熱交換器及びアキュムレータが配管により接続された冷媒回路と、
     前記圧縮機の吐出側と前記アキュムレータとをバイパス配管により接続するバイパス回路と、
     前記バイパス回路に設けられ、前記バイパス回路に流れる冷媒の流量を調整する流量調整装置と、
     前記圧縮機の吸入側に流れる冷媒の吸入温度を検出する吸入温度検出部と、
     前記吸入温度検出部によって検出された冷媒の吸入温度に基づいて、前記流量調整装置の開度を調整する制御部と、
     を備える冷凍サイクル装置。
    A refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion section, a use side heat exchanger and an accumulator are connected by piping,
    A bypass circuit connecting the discharge side of the compressor and the accumulator by bypass piping,
    A flow rate adjusting device that is provided in the bypass circuit and adjusts the flow rate of the refrigerant flowing in the bypass circuit,
    An intake temperature detection unit for detecting the intake temperature of the refrigerant flowing to the intake side of the compressor,
    Based on the suction temperature of the refrigerant detected by the suction temperature detection unit, a control unit for adjusting the opening of the flow rate adjusting device,
    A refrigeration cycle apparatus including.
  2.  前記制御部は、
     前記吸入温度検出部によって検出された冷媒の吸入温度が、下限吸入温度閾値を下回った場合、前記流量調整装置を開くものである
     請求項1記載の冷凍サイクル装置。
    The control unit is
    The refrigeration cycle apparatus according to claim 1, wherein when the suction temperature of the refrigerant detected by the suction temperature detection unit falls below a lower limit suction temperature threshold value, the flow rate adjustment device is opened.
  3.  前記制御部は、
     前記吸入温度検出部によって検出された冷媒の吸入温度が、上限吸入温度閾値を上回った場合、前記流量調整装置を閉じるものである
     請求項1又は2記載の冷凍サイクル装置。
    The control unit is
    The refrigeration cycle apparatus according to claim 1, wherein when the suction temperature of the refrigerant detected by the suction temperature detection unit exceeds an upper limit suction temperature threshold, the flow rate control device is closed.
  4.  前記バイパス回路に設けられ、前記アキュムレータに流入する冷媒の入口温度を検出する入口温度検出部と、
     前記バイパス回路に設けられ、前記アキュムレータから流出する冷媒の出口温度を検出する出口温度検出部と、を更に備え、
     前記制御部は、
     前記吸入温度検出部によって検出された冷媒の吸入温度と、前記入口温度検出部によって検出された冷媒の入口温度と、前記出口温度検出部によって検出された冷媒の出口温度とに基づいて、前記流量調整装置の開度を調整するものである
     請求項1~3のいずれか1項に記載の冷凍サイクル装置。
    An inlet temperature detection unit provided in the bypass circuit, for detecting an inlet temperature of the refrigerant flowing into the accumulator,
    An outlet temperature detection unit, which is provided in the bypass circuit and detects the outlet temperature of the refrigerant flowing out of the accumulator,
    The control unit is
    Based on the refrigerant suction temperature detected by the suction temperature detection section, the refrigerant inlet temperature detected by the inlet temperature detection section, and the refrigerant outlet temperature detected by the outlet temperature detection section, the flow rate The refrigeration cycle apparatus according to any one of claims 1 to 3, which adjusts an opening degree of the adjustment device.
  5.  前記制御部は、
     前記吸入温度検出部によって検出された冷媒の吸入温度が、下限吸入温度閾値を下回るかを判定する第1の判定手段と、
     前記第1の判定手段によって吸入温度が下限吸入温度閾値を下回ると判定された場合、前記流量調整装置を開く開度調整手段と、
     前記開度調整手段によって前記流量調整装置が開かれた後、前記出口温度検出部によって検出された冷媒の出口温度が、前記入口温度検出部によって検出された冷媒の入口温度を下回るかを判定する第2の判定手段と、を有し、
     前記開度調整手段は、
     前記第2の判定手段によって出口温度が入口温度以上と判定された場合、前記流量調整装置を閉じるものである
     請求項4記載の冷凍サイクル装置。
    The control unit is
    First determining means for determining whether the suction temperature of the refrigerant detected by the suction temperature detection unit is below a lower limit suction temperature threshold value;
    When it is determined by the first determination means that the intake temperature is below the lower limit intake temperature threshold value, an opening degree adjustment means for opening the flow rate adjustment device,
    After the flow rate adjusting device is opened by the opening degree adjusting means, it is determined whether the outlet temperature of the refrigerant detected by the outlet temperature detecting section is lower than the inlet temperature of the refrigerant detected by the inlet temperature detecting section. A second determination means,
    The opening adjustment means,
    The refrigeration cycle apparatus according to claim 4, wherein the flow rate control device is closed when the outlet temperature is determined to be equal to or higher than the inlet temperature by the second determination means.
  6.  前記制御部は、
     前記第2の判定手段によって出口温度が入口温度を下回ると判定された場合、前記出口温度検出部によって検出された冷媒の出口温度が、出口温度閾値を上回るかを判定する第3の判定手段を更に有し、
     前記開度調整手段は、
     前記第3の判定手段によって出口温度が出口温度閾値以下と判定された場合、前記流量調整装置の開度を上げるものである
     請求項5記載の冷凍サイクル装置。
    The control unit is
    When it is determined that the outlet temperature is lower than the inlet temperature by the second determining means, a third determining means that determines whether the outlet temperature of the refrigerant detected by the outlet temperature detecting unit exceeds an outlet temperature threshold value is provided. Have more,
    The opening adjustment means,
    The refrigeration cycle apparatus according to claim 5, wherein when the outlet temperature is determined to be equal to or lower than the outlet temperature threshold value by the third determining means, the opening degree of the flow rate adjusting device is increased.
  7.  前記出口温度検出部は、
     予め定められた間隔で出口温度を検出するものであり、
     前記制御部は、
     前記第3の判定手段によって出口温度が出口温度閾値を上回ると判定された場合、前記出口温度検出部によって今回検出された冷媒の出口温度が、前記出口温度検出部によって前回検出された冷媒の出口温度に第2の出口温度閾値を加算した加算値以上かを判定する第4の判定手段を更に有し、
     前記開度調整手段は、
     前記第4の判定手段によって出口温度が加算値未満と判定された場合、前記流量調整装置の開度を維持するものである
     請求項6記載の冷凍サイクル装置。
    The outlet temperature detection unit,
    It is to detect the outlet temperature at a predetermined interval,
    The control unit is
    When the outlet temperature is determined to be higher than the outlet temperature threshold value by the third determining means, the outlet temperature of the refrigerant currently detected by the outlet temperature detecting unit is the outlet of the refrigerant previously detected by the outlet temperature detecting unit. A fourth determination means for determining whether or not the temperature is equal to or greater than the sum of the second outlet temperature threshold and
    The opening adjustment means,
    The refrigeration cycle apparatus according to claim 6, wherein the opening degree of the flow rate adjusting device is maintained when the outlet temperature is determined to be less than the added value by the fourth determining means.
  8.  前記開度調整手段は、
     前記第4の判定手段によって出口温度が加算値以上と判定された場合、前記流量調整装置の開度を下げるものである
     請求項7記載の冷凍サイクル装置。
    The opening adjustment means,
    The refrigeration cycle apparatus according to claim 7, wherein when the fourth determination means determines that the outlet temperature is equal to or higher than the added value, the opening degree of the flow rate adjusting device is decreased.
  9.  前記流量調整装置に接続される前記バイパス配管は、
     前記アキュムレータの表面に螺旋状に巻き付けられている
     請求項1~8のいずれか1項に記載の冷凍サイクル装置。
    The bypass pipe connected to the flow rate adjusting device,
    The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein the refrigeration cycle apparatus is spirally wound around the surface of the accumulator.
  10.  前記アキュムレータの上部及び下部に巻き付けられた前記バイパス配管の密度は、
     前記アキュムレータの中央部に巻き付けられた前記バイパス配管の密度よりも高い
     請求項9記載の冷凍サイクル装置。
    The density of the bypass pipe wound around the upper and lower parts of the accumulator is
    The refrigeration cycle apparatus according to claim 9, wherein the refrigeration cycle has a density higher than that of the bypass pipe wound around the center of the accumulator.
  11.  前記圧縮機に接続され、前記冷媒回路に流れる冷媒の向きを暖房運転側又は冷房運転側に切り替える流路切替装置を更に備える
     請求項1~10のいずれか1項に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to any one of claims 1 to 10, further comprising a flow path switching device that is connected to the compressor and switches a direction of a refrigerant flowing in the refrigerant circuit to a heating operation side or a cooling operation side.
  12.  前記流路切替装置によって冷媒の向きが前記暖房運転側に切り替えられているとき、前記室外熱交換器に流れる冷媒の二相温度を検出する二相温度検出部を更に備え、
     前記制御部は、
     前記二相温度検出部によって検出された冷媒の二相温度が、上限二相温度閾値を上回った場合、前記流量調整装置を閉じるものである
     請求項11記載の冷凍サイクル装置。
    When the direction of the refrigerant is switched to the heating operation side by the flow path switching device, further comprising a two-phase temperature detection unit for detecting the two-phase temperature of the refrigerant flowing to the outdoor heat exchanger,
    The control unit is
    The refrigeration cycle apparatus according to claim 11, wherein when the two-phase temperature of the refrigerant detected by the two-phase temperature detection unit exceeds an upper limit two-phase temperature threshold value, the flow rate adjusting device is closed.
  13.  大地と冷媒とを熱交換させる地熱側熱交換器を更に備え、
     前記流路切替装置によって冷媒の向きが前記暖房運転側に切り替えられているとき、前記室外熱交換器と前記利用側熱交換器とが並列に接続されるものであり、
     前記流路切替装置は、
     前記室外熱交換器又は前記地熱側熱交換器のいずれかが蒸発器として作用するように前記冷媒回路に流れる冷媒の向きを切り替える
     請求項11又は12記載の冷凍サイクル装置。
    Further comprising a geothermal side heat exchanger for exchanging heat between the ground and the refrigerant,
    When the direction of the refrigerant is switched to the heating operation side by the flow path switching device, the outdoor heat exchanger and the use side heat exchanger are connected in parallel,
    The flow path switching device,
    The refrigeration cycle apparatus according to claim 11 or 12, wherein the direction of the refrigerant flowing through the refrigerant circuit is switched so that either the outdoor heat exchanger or the geothermal heat exchanger acts as an evaporator.
PCT/JP2019/032778 2018-11-13 2019-08-22 Refrigeration cycle apparatus WO2020100366A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020556610A JP7031010B2 (en) 2018-11-13 2019-08-22 Refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/041960 WO2020100210A1 (en) 2018-11-13 2018-11-13 Refrigeration cycle apparatus
JPPCT/JP2018/041960 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020100366A1 true WO2020100366A1 (en) 2020-05-22

Family

ID=70730483

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/041960 WO2020100210A1 (en) 2018-11-13 2018-11-13 Refrigeration cycle apparatus
PCT/JP2019/032778 WO2020100366A1 (en) 2018-11-13 2019-08-22 Refrigeration cycle apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041960 WO2020100210A1 (en) 2018-11-13 2018-11-13 Refrigeration cycle apparatus

Country Status (2)

Country Link
JP (1) JP7031010B2 (en)
WO (2) WO2020100210A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286435A (en) * 1978-10-02 1981-09-01 Carrier Corporation Hot gas defrost system
JPH08136067A (en) * 1994-11-07 1996-05-31 Matsushita Seiko Co Ltd Air conditioner
KR20100061184A (en) * 2008-11-28 2010-06-07 엘지전자 주식회사 Refrigeration cycle
JP2015143599A (en) * 2014-01-31 2015-08-06 三菱電機株式会社 refrigeration cycle apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286435A (en) * 1978-10-02 1981-09-01 Carrier Corporation Hot gas defrost system
JPH08136067A (en) * 1994-11-07 1996-05-31 Matsushita Seiko Co Ltd Air conditioner
KR20100061184A (en) * 2008-11-28 2010-06-07 엘지전자 주식회사 Refrigeration cycle
JP2015143599A (en) * 2014-01-31 2015-08-06 三菱電機株式会社 refrigeration cycle apparatus

Also Published As

Publication number Publication date
WO2020100210A1 (en) 2020-05-22
JPWO2020100366A1 (en) 2021-06-10
JP7031010B2 (en) 2022-03-07

Similar Documents

Publication Publication Date Title
US9631826B2 (en) Combined air-conditioning and hot-water supply system
JP4069947B2 (en) Refrigeration equipment
EP1659348A1 (en) Freezing apparatus
CN113959010B (en) One-driving-multiple refrigerating and heating air conditioner
JP2017142038A (en) Refrigeration cycle device
JP5274174B2 (en) Air conditioner
JP5971377B1 (en) Refrigeration equipment
US11725855B2 (en) Air conditioning apparatus
JP5334554B2 (en) Air conditioner
JP6142896B2 (en) Refrigeration equipment
JP5313774B2 (en) Air conditioner
JP2018080899A (en) Refrigeration unit
WO2020100366A1 (en) Refrigeration cycle apparatus
JP6641791B2 (en) Engine driven air conditioner
JP4375393B2 (en) Refrigeration equipment
KR100821729B1 (en) Air conditioning system
JP2011127778A (en) Fluid utilization system and operation control method of the same
JP4380293B2 (en) Air conditioner
JP2002081778A (en) Refrigerating apparatus
JP2018173194A5 (en)
JP2634267B2 (en) Anti-freezing device for air conditioners
JP3048658B2 (en) Refrigeration equipment
JP6052316B2 (en) Refrigeration equipment
AU2014335574C1 (en) Air-conditioning apparatus
JP2021055955A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884876

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020556610

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884876

Country of ref document: EP

Kind code of ref document: A1