WO2020100272A1 - 制御・監視信号伝送システム - Google Patents

制御・監視信号伝送システム Download PDF

Info

Publication number
WO2020100272A1
WO2020100272A1 PCT/JP2018/042399 JP2018042399W WO2020100272A1 WO 2020100272 A1 WO2020100272 A1 WO 2020100272A1 JP 2018042399 W JP2018042399 W JP 2018042399W WO 2020100272 A1 WO2020100272 A1 WO 2020100272A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
slave station
signal
transmission line
transmission
Prior art date
Application number
PCT/JP2018/042399
Other languages
English (en)
French (fr)
Inventor
井谷一夫
錦戸憲治
Original Assignee
株式会社エニイワイヤ
株式会社ハーモリンク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エニイワイヤ, 株式会社ハーモリンク filed Critical 株式会社エニイワイヤ
Priority to PCT/JP2018/042399 priority Critical patent/WO2020100272A1/ja
Priority to JP2020556545A priority patent/JP6853916B2/ja
Publication of WO2020100272A1 publication Critical patent/WO2020100272A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks

Definitions

  • the present invention reduces wiring of signal lines between a master station provided on the control side and a plurality of slave stations provided on the controlled side, connects with a common transmission line, and superimposes a transmission signal on a power supply.
  • the present invention relates to a control / monitoring signal transmission system that simultaneously transmits and receives data and supplies power.
  • wiring saving which reduces the number of wires, is widely practiced.
  • a general method for reducing the wiring instead of parallel connection in which each of a plurality of devices provided on the controlled side is directly connected to a control unit provided on the control side, conversion of a parallel signal and a serial signal is performed.
  • a transmission synchronization method such as synchronization with a transmission clock, is known as a method for exchanging data with a serial signal via a common transmission line.
  • a power source is superimposed on the transmission signal to transfer data.
  • a method of simultaneously transmitting and receiving and supplying power has been proposed.
  • 1-bit display based on voltage level display of logical data “1” and “0” depending on high and low with respect to a predetermined level
  • the power supply voltage area the area of the transmission signal used as the power supply voltage
  • the power supply voltage area becomes the power supply of the slave station, it is necessary to maintain a constant voltage, and 1-bit display based on the voltage level is performed. I can't. Therefore, when data is transmitted using the power supply voltage area, 1-bit display is performed depending on the presence or absence of a current signal superimposed on the data.
  • the frequency signal when the frequency became a high frequency of about 1 MHz, the amplitude of the current change sometimes decreased due to the inductance of the transmission line. Furthermore, the frequency signal may have an unstable amplitude due to a transient phenomenon. Therefore, it may not be possible to determine whether or not the current value has changed due to the frequency signal, and it may not be possible to detect that the current signal is superimposed.
  • a branch line is used when there is no change in current.
  • the electric charge accumulated in the terminal becomes a current source other than the master station for the slave station connected to the main line for an extremely short time when the current changes. Therefore, when the cycle of current change is short, the current value detected by the master station may decrease, and it may not be possible to detect that the current signal has been superimposed despite the current signal being superimposed. ..
  • an object of the present invention is to provide a control / monitoring signal transmission system capable of superimposing a transmission signal on a power source to improve the reliability of data transmission for transmitting / receiving data and supplying power at the same time.
  • a control / monitoring signal transmission system includes a plurality of slave stations that transmit and receive data by an asynchronous method via a transmission line common to a control side device, and start synchronization from the control side device.
  • a start signal is transmitted via the transmission line, each of the control side device and the slave station internally generates a virtual transmission clock based on the start signal, and the next start from the end of the start signal.
  • the period until the start of the signal is time-divided into a plurality of periods corresponding to one period of the virtual transmission clock, and one period of the virtual transmission clock is time-divided into a first setting period and a second setting period.
  • Data is extracted based on the difference between the current values in the one setting period and the second setting period.
  • the transmission line is composed of two lines having a potential difference
  • the control side device is provided with a current signal modulation means for lowering the voltage of the negative side of the transmission line
  • the slave station the line voltage in the normal state of the transmission line May be provided with slave station current signal demodulating means for preventing the current from flowing and allowing the current to flow when the line voltage of the transmission line becomes larger than the normal state.
  • the transmission line is composed of two lines having a potential difference
  • the control side device is provided with a current signal modulation means for increasing the voltage on the positive side of the transmission line
  • the slave station the line voltage in the normal state of the transmission line May be provided with slave station current signal demodulating means for preventing the current from flowing and allowing the current to flow when the line voltage of the transmission line becomes larger than the normal state.
  • each of the control-side device and the slave station generates a virtual transmission clock based on the start signal inside itself, and the slave station exchanges data with the control-side device by an asynchronous method. If the start signal for synchronizing the slave device and the slave device is transmitted from the controller device, it is not necessary to form a transmission signal by connecting voltage pulse signals of a plurality of power supply voltage levels. That is, the power supply voltage level can be maintained.
  • This control / monitoring signal transmission system is for centralized control in a control unit of a large number of devices arranged in a facility such as a factory.
  • the control unit 1 and the master station 2 connected to the two wires Dp and Dn (hereinafter referred to as transmission lines) having a potential difference and the master station 2 connected to the transmission line arranged in the controlled facility. It is composed of a plurality of input slave stations 4, output slave stations 5 and input / output slave stations 6.
  • each slave station is shown one by one for convenience of illustration, but there is no limitation on the type or number of slave stations connected to the transmission line.
  • the transmission line can be used as a power source.
  • the input section 7 to which the input slave station 4 is connected, the output section 8 to which the output slave station 5 is connected, and the input / output section 9 to which the input / output slave station 6 is connected are arranged in the facility on the controlled side. It is a device
  • a reed switch for example, a reed switch, a micro switch, a push button switch, a photoelectric switch, and various other sensors can be cited, but the invention is not limited thereto.
  • Examples of the output unit 8 include, but are not limited to, an actuator, a (stepping) motor, a solenoid, a solenoid valve, a relay, a thyristor, and a lamp.
  • the input / output unit 9 is a device having both functions of the input unit 7 and the output unit 8.
  • a device such as a temperature controller, a timer, and a counter that has both a function of transmitting information to the master station 2 and a function of performing an output operation based on the data transmitted from the master station 2 may be mentioned. it can.
  • the input unit 7 may be the input unit-integrated slave station 70 integrated with the input slave station 4.
  • the output unit 8 may be an output unit-integrated slave station 80 integrated with the output slave station 5.
  • the control unit 1 includes a management determination unit 11 having an arithmetic processing function and an input / output unit 12.
  • the management determination means 11 receives data from the master station 2 via the input / output unit 12 and performs necessary arithmetic processing based on the program stored inside.
  • the master station 2 includes an output data section 21, a timing generation section 23, a master station output section 24, a master station input section 25, and an input data section 26. Then, the control signal connected to the transmission line and including the control data is transmitted to the output slave station 5 and the input / output slave station 6 through the transmission line, and the transmission line is transmitted from the input slave station 4 and the input / output slave station 6. Upon receiving the monitor signal transmitted via the control unit 1, the monitor data is extracted and sent to the input / output unit 12 of the control unit 1.
  • the output data unit 21 passes the data received from the control unit 1 to the master station output unit 24 as serial data.
  • the timing generation unit 23 includes an oscillation circuit (OSC) 31 and a timing generation unit 32. Based on the oscillation circuit (OSC) 31, the timing generation unit 32 includes an input slave station 4, an output slave station 5, and an input / output slave. A virtual transmission clock for synchronizing with the station 6 is generated and delivered to the master station output unit 24 and the master station input unit 25.
  • OSC oscillation circuit
  • a virtual transmission clock for synchronizing with the station 6 is generated and delivered to the master station output unit 24 and the master station input unit 25.
  • the master station output unit 24 has a control data generating means 33 and a master station current signal modulating means 34. Based on the data received from the output data section 21 and the virtual transmission clock received from the timing generation section 23, the control data generating means 33 transmits the start signal ST and the control signal via the master station current signal modulating means 34 and the transmission line. Send.
  • the master station current signal modulation means 34 of this embodiment configures the transmission line by changing the voltage VDn on the negative side of the transmission line at the timing of transmitting the start signal ST or the control signal.
  • the current modulation signal between the two wires Dp and Dn is changed.
  • the rate of changing the negative voltage VDn is smaller than the normal line voltage, it does not hinder the power supply.
  • the circuit configuration of the master station current signal modulation means 34 is not limited and can be made suitable according to the situation. For example, the voltage VDp on the positive side may be increased.
  • the start signal ST is in a state in which a current is maintained for a time longer than the time width of one cycle of the virtual transmission clock (in a current-carrying state), and for a time longer than the time width of one cycle of the virtual transmission clock that follows. It is composed of a state where no current is maintained (no current state).
  • the lengths of the current-carrying state and the non-current-carrying state can be appropriately determined within a range that can be distinguished from one period of the virtual transmission clock in consideration of usage conditions and the like.
  • the period from the end of the start signal ST to the start of the next start signal ST is time-divided into a plurality of periods corresponding to one cycle of the virtual transmission clock, and one or more of these time-divided periods are input.
  • Each of the slave station 4, the output slave station 5, and the input / output slave station 6 is assigned as a period for transmitting and receiving with the master station 2.
  • an address number is given to each of the plurality of time-divided periods, and using this address number, the input slave station 4, the output slave station 5, and the input / output slave station 6 are assigned to each. Is associated with the period.
  • absolute address numbers # 1 and # 3 are assigned to the output slave station 5, and the control signal is transmitted during the period of absolute address numbers # 1 and # 3.
  • the monitor signal is transmitted from the input slave station 4 or the input / output slave station 6.
  • the diagonal lines to the right indicate the currents that are the control signals transmitted from the master station 2
  • the diagonal lines to the left indicate the currents that are the monitor signals transmitted from the input slave station 4 or the input / output slave station 6. Has become.
  • One cycle of the virtual transmission clock is time-divided into a first setting period (first half of one cycle in this embodiment) and a second setting period (second half of one cycle in this embodiment).
  • the current value is different between the first setting period and the second setting period, and the difference between the current values represents the data included in the signal.
  • the difference between the current values when the current is flowing during the first setting period and the current is not flowing during the second setting period is associated with the logical data “1”. Further, the difference between the current values when the current flows during the second setting period and the current does not flow during the first setting period is associated with the logical data “0”.
  • both the first setting period and the second setting period are set to half the length of one cycle of the virtual transmission clock, but the lengths of the first setting period and the second setting period are set. Is not limited, and can be appropriately set according to the usage situation and usage environment as long as it is within a period of the virtual transmission clock.
  • a current flows in the first setting period and a current value difference in a state in which the current does not flow in the second setting period is made to correspond to the logical data “0”, and the current flows in the second setting period and in the first setting period.
  • the difference between the current values when no current is flowing may be associated with the logical data “1”.
  • the master station input unit 25 has a monitoring data extracting means 35 and a master station current signal demodulating means 36.
  • the master station current signal demodulation means 36 detects the monitor signal transmitted from the input slave station 4 or the input / output slave station 6, and delivers the digital value of the current value to the monitor data extracting means 35.
  • the master station current signal demodulating means 36 of this embodiment determines the digital value of the current value in the first setting period at the timing when the first setting period ends and delivers it to the monitoring data extracting means 35. Further, at the end of the second setting period, the digital value of the current value in the second setting period is confirmed and passed to the monitoring data extracting means 35.
  • the timing for determining the digital value of the current value in the first setting period and the second setting period can be determined according to the usage state or usage environment.
  • the monitoring data extraction means 35 delivers a corresponding data value to the input data unit 26 based on the digital value of the current value delivered from the master station current signal demodulation means 36.
  • the digital value of the current value of the first setting period delivered from the master station current signal demodulating unit 36 is temporarily stored, and the digital value of the current value of the second setting period is output from the parent station current signal demodulating unit 36.
  • the difference between the digital values of the current values is compared and calculated. If the digital value of the current value in the first setting period is larger than the digital value of the current value in the second setting period and the difference value is within the preset judgment width, the logical data “1” is set. , To the input data unit 26. If the digital value of the current value in the first setting period is smaller than the digital value of the current value in the second setting period and the difference is within the judgment width, logical data “0” is set to the input data section 26. Hand over to.
  • the judgment width is the amount of change in the current value that is assumed when the signal is transmitted normally, and can be determined according to the usage condition and usage environment.
  • the digital value of the current value in the first setting period and the digital value of the current value in the second setting period are smaller than the lower limit value of this determination width. That is, it means an abnormal state in which no current is flowing due to a break or the like, or a current continues to flow due to a short circuit. Therefore, when the difference between the digital value of the current value in the first setting period and the digital value of the current value in the second setting period is smaller than the lower limit value of the determination width, the monitoring data extracting unit 35 determines that the transmission is abnormal. The data shown is delivered to the input data unit 26.
  • the monitoring data extraction unit 35 also has a transmission error when the difference between the digital value of the current value in the first setting period and the digital value of the current value in the second setting period becomes larger than the upper limit value of the determination width. The data indicating that is passed to the input data unit 26.
  • the input data unit 26 converts serial input data received from the monitoring data extraction unit 35 into parallel data and sends it as monitoring data to the input / output unit 12 of the control unit 1.
  • the input slave station 4 includes a transmission / reception means 41, a slave station timing generating means 42, an address extracting means 43, an address setting means 44, a monitoring data transmitting means 45, and an input means 46.
  • the input unit 40 is provided. Further, a slave station current signal demodulating means 48 and a slave station current signal modulating means 49 arranged between the slave station input section 40 and the transmission line are provided.
  • the input slave station 4 of this embodiment is provided with an MCU, which is a microcomputer control unit, as an internal circuit, and this MCU functions as the slave station input unit 40.
  • the calculation and storage required in the processing are executed using the CPU, RAM and ROM provided in this MCU, and the CPU, RAM and ROM in the respective processing of each of the above means constituting the slave station input unit 40 For convenience of description, the relationship is not shown.
  • the slave station current signal demodulation means 48 detects the start signal ST and the control signal output from the master station 2 to the transmission line, and delivers the digital value of the current value to the transmission and reception means 41.
  • a shunt resistance of the transmission line is provided with a current limiter 47 (a Zener diode in this embodiment) that prevents a current from flowing at a normal line voltage. Therefore, in the master station 2, when the voltage VDn on the negative side of the transmission line is lowered, that is, when the line voltage difference between the transmission lines becomes larger than the normal state, the current is allowed to flow. ing.
  • the transmission / reception means 41 delivers the digital value of the current value delivered from the slave station current demodulation means 48 to the slave station timing generation means 42 and the address extraction means 43.
  • the slave station timing generation means 42 detects the start signal ST based on the digital value of the current value delivered from the transmission / reception means 41, generates a virtual transmission clock, and starts synchronization. Then, the synchronization signal is delivered to the address extracting means 43 for each cycle of the virtual transmission clock.
  • the address extracting means 43 counts the synchronization signal.
  • the timing at which this count value matches the own station address data set by the address setting means 44 is the timing at which the period allocated to the own station for transmission to the master station 2 starts (hereinafter, "the own station”).
  • the address extracting means 43 which has received the start timing of the transmission period of its own station enables the monitoring data transmitting means 45 for the period allocated to the own station for transmission to the master station 2.
  • the input unit 46 delivers the data based on the input from the input unit 7 to the monitoring data transmission unit 45.
  • the monitoring data transmitting means 45 transmits the data delivered from the input means 46 to the master station 2 via the slave station current signal modulating means 49 and the transmission line when the address extracting means 43 validates the data. To do.
  • the slave station current signal modulating means 49 switches between a state in which a current is flowing and a state in which no current is flowing by turning on / off the transistor.
  • the circuit configuration of the slave station current signal modulation means 49 is not limited and can be made suitable according to the situation.
  • the output slave station 5 has a slave station output section having a transmission / reception means 41, a slave station timing generation means 42, an address extraction means 43, an address setting means 44, a control data extraction means 51 and an output means 52. Equipped with 50.
  • the output slave station 5 also includes an MCU, which is a microcomputer control unit, as an internal circuit, and this MCU functions as the slave station output section 50. Then, similar to the MCU of the input slave station 4, the calculation and storage required in the processing of the output slave station 5 are executed using the CPU, RAM and ROM of this MCU.
  • MCU microcomputer control unit
  • the address extracting means 43 in the output slave station 5 starts timing of a period assigned to the local station for receiving the control signal transmitted from the master station 2 (hereinafter, referred to as "local station reception period start timing"). Then, the timing signal for extracting the control data is delivered to the control data extracting means 51. Note that the start timing of the reception period of the own station is set by the address setting means 44 by counting the synchronization signals passed from the slave station timing generation means 42 in each cycle of the virtual transmission clock, as in the case of the input slave station 4. It is obtained as a timing that coincides with the generated local station address data.
  • the control data extraction means 51 is transmitted to the own station address set in the own station address setting means 44 based on the timing signal delivered from the address extraction means 43 and the digital value of the current value delivered from the transmission reception means 41.
  • the data value of the control signal is extracted and passed to the output means 52. Since the data extraction method is the same as that of the monitoring data extraction means 35 of the master station 2, description thereof will be omitted.
  • the output unit 52 outputs information based on the control data delivered from the control data extraction unit 51 to the output unit 8 to operate or stop the output unit 8.
  • the input / output slave station 6 also has an MCU, which is a microcomputer control unit, as an internal circuit, and this MCU functions as a slave station input / output section. ing. As with the MCU of the input slave station 4 and the MCU of the output slave station 5, calculations and storage required in the processing of the input / output slave station 6 are executed using the CPU, RAM and ROM of this MCU. It has become one.
  • the slave station input / output unit includes both configurations of the slave station input unit 40 and the slave station output unit 50, but these configurations are substantially the same as the slave station input unit 40 and the slave station output unit 50. Since they are the same, illustration and description thereof will be omitted.
  • the start signal ST is a current signal that is a combination of a current-carrying state and a non-current-carrying state.
  • the signal may be of any suitable shape.
  • a line voltage may be a voltage signal having a potential different from the normal state.
  • the input slave station 4, the output slave station 5, and the input / output slave station 6 need to be provided with means for demodulating the voltage signal.
  • the master station 2 needs to be provided with voltage signal modulating means instead of the master station current signal modulating means 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Selective Calling Equipment (AREA)
  • Small-Scale Networks (AREA)

Abstract

本発明にかかる制御・監視信号伝送システムは、制御側装置と共通の伝送線を介して調歩同期方式によりデータの授受を行う子局の複数を備え、前記制御側装置から同期を開始するためのスタート信号が前記伝送線を介し送信され、前記制御側装置と前記子局の各々が前記スタート信号を基点とする仮想伝送クロックを自局内部で発生させ、前記スタート信号の終わりから次の前記スタート信号の開始までの期間が、前記仮想伝送クロックの1周期に対応する期間の複数に時分割され、前記仮想伝送クロックの1周期が第一設定期間と第二設定期間に時分割され、前記第一設定期間と前記第二設定期間の電流値の差に基づきデータが抽出される。

Description

制御・監視信号伝送システム
 本発明は、制御側に設けられた親局と被制御側に設けられた複数の子局との間の信号線を省配線化し、共通の伝送線で接続し、電源に伝送信号を重畳しデータ授受と電力供給を同時に行う制御・監視信号伝送システムに関する。
 施設内に配置された多数の装置を集中制御するシステムにおいて、配線の数を減らす、所謂省配線化が広く実施されている。そして、その省配線化の一般的な手法として、被制御側に設けられた複数の機器の各々を制御側に設けられた制御部に直接繋ぐパラレル接続に代えて、パラレル信号とシリアル信号の変換機能を備えた親局と複数の子局を、制御部と複数の装置にそれぞれ接続し、親局と複数の子局との間で共通の伝送線を介してシリアル信号によりデータ授受を行う方式が広く採用されている。
 また、共通の伝送線を介してシリアル信号によりデータ授受を行う方式として、伝送クロックで同期させるなどの伝送同期方式が知られているが、その伝送同期方式において、伝送信号に電源を重畳しデータ授受と電力供給を同時に行う手法が提案されている。
 例えば、特開2002-16621号公報には、クロックの1周期の後半が電源電圧とされ前半の電圧レベルが電源電圧と異なるものとされた直列のパルス状電圧信号に、クロックの1周期毎に、クロックより高い周波数の信号(以下、周波数信号という)を重畳する制御・監視信号伝送システムが提案されている。
特開2002-16621号公報
 伝送同期方式では、電圧レベルによる1ビット表示(所定のレベルに対する高低による論理データ“1”および“0”の表示)が採用される場合もある。しかしながら、伝送信号において電源電圧とされる領域(以下、電源電圧エリアとする)は、子局の電源となることから、一定の電圧を維持する必要があり、電圧レベルによる1ビット表示を行うことができない。そのため、電源電圧エリアを利用してデータの伝送を行う場合、そこに重畳される電流信号の有無による1ビット表示が行われている。
 ただし、電流値は、接続される子局の個数変化や子局に接続されている装置の動作により変化するため、電流信号の有無を判断するための基準値の設定が難しい。
 そこで、電流値と所定の判断基準値との比較による判断手法に代えて、電流値の変化の有無により電流信号の重畳の有無を判断する手法が提案されている。すなわち、電流値を周期的に変化させる周波数信号を用いる手法である。
 ところが、周波数信号は、周波数が1MHz程度の高周波になると、伝送線のインダクタンスにより、電流変化の振幅が減少することがあった。更に、周波数信号は、過渡現象により振幅が不安定なものになることがあった。そのため、周波数信号による電流値の変化の有無が不明となり、電流信号が重畳されたことを検出できない場合があった。
 また、親局とデータの伝送を行う子局が接続されている伝送線(本線とする)から別の伝送線(分岐線とする)が分岐している場合、電流変化が無いときに分岐線に溜まった電荷は、電流が変化する極短い時間、本線に接続された子局に対する親局以外の電流源となってしまう。そのため、電流変化の周期が短い場合には、親局で検出される電流値が減少し、電流信号が重畳されているにも関わらず、電流信号が重畳されたことを検出できない場合があった。
 そこで、本発明は、電源に伝送信号を重畳しデータ授受と電力供給を同時に行うデータ伝送の信頼性を高めることを可能とする制御・監視信号伝送システムを提供することを目的とする。
 本発明にかかる制御・監視信号伝送システムは、制御側装置と共通の伝送線を介して調歩同期方式によりデータの授受を行う子局の複数を備え、前記制御側装置から同期を開始するためのスタート信号が前記伝送線を介し送信され、前記制御側装置と前記子局の各々が前記スタート信号を基点とする仮想伝送クロックを自局内部で発生させ、前記スタート信号の終わりから次の前記スタート信号の開始までの期間が、前記仮想伝送クロックの1周期に対応する期間の複数に時分割され、前記仮想伝送クロックの1周期が第一設定期間と第二設定期間に時分割され、前記第一設定期間と前記第二設定期間の電流値の差に基づきデータが抽出される。
 前記伝送線は電位差のある二線で構成され、前記制御側装置は、前記伝送線の負側の電圧を下げる電流信号変調手段を備え、前記子局は、前記伝送線の常態における線間電圧で電流が流れることを防止し、前記伝送線の線間電圧が常態より大きくなった場合に電流が流れることを許容する子局電流信号復調手段を備えるものであってもよい。
 前記伝送線は電位差のある二線で構成され、前記制御側装置は、前記伝送線の正側の電圧を上げる電流信号変調手段を備え、前記子局は、前記伝送線の常態における線間電圧で電流が流れることを防止し、前記伝送線の線間電圧が常態より大きくなった場合に電流が流れることを許容する子局電流信号復調手段を備えるものであってもよい。
 本発明では、制御側装置と子局の各々がスタート信号を基点とする仮想伝送クロックを自局内部で発生させ、子局は、制御側装置と調歩同期方式によりデータの授受を行うため、制御側装置と子局が同期をとるためのスタート信号が制御側装置から送信されれば、複数の電源電圧レベルの電圧パルス信号を連ねて伝送信号を構成する必要がない。すなわち、電源電圧レベルを維持することができる。
 また、第一設定期間と第二設定期間の電流を変調し、伝送線の分岐など設置状態により電流値が変化する場合でも、第一設定期間と第二設定期間の電流値に差異を生じさせることにより、伝送信号が意図するデータを抽出することができる。
 従って、本発明によれば、電源に伝送信号を重畳しデータ授受と電力供給を同時に行うデータ伝送の信頼性を高めることができる。
本発明に係る制御・監視信号伝送システムの実施形態における伝送信号のタイムチャート図である。 同実施形態のシステム構成図である。 親局の機能ブロック図である。 親局電流信号変調手段及び親局電流信号復調手段の実施形態を示す機能ブロック図である。 入力子局の機能ブロック図である。 子局電流信号復調手段の実施形態を示す機能ブロック図である。 子局電流信号変調手段の実施形態を示す機能ブロック図である。 出力子局の機能ブロック図である。
 本発明に係る制御・監視信号伝送システムの実施形態を説明する。
 この制御・監視信号伝送システムは、工場などの施設内に配置された多数の装置機器を制御部において集中制御するためのものである。図2に示すように、制御部1および電位差のある二線Dp、Dn(以下、伝送線とする)に接続された親局2と、被制御側となる施設内に配置され伝送線に接続された入力子局4、出力子局5および入出力子局6の複数で構成される。なお、図2においては、図示の便宜上、各々の子局が一つずつ示されているが、伝送線に接続される子局の種類や数に制限は無い。なお、伝送線は、電源としての使用が可能となっている。
 入力子局4が接続される入力部7、出力子局5が接続される出力部8、および、入出力子局6が接続される入出力部9は、被制御側となる施設内に配置された装置である。
 入力部7に相当するものとして、例えば、リードスイッチ、マイクロスイッチ、押釦スイッチ、光電スイッチ、その他各種センサを挙げることができるが、これらに限定されるものではない。
 出力部8に相当するものとして、例えば、アクチュエータ、(ステッピング)モータ、ソレノイド、電磁弁、リレー、サイリスタ、ランプを挙げることができるが、これらに限定されるものではない。
 入出力部9は、入力部7と出力部8の双方の機能を備える装置機器である。例えば、温調、タイマ、カウンタ等の装置機器で、親局2に対し情報を送信する機能と、親局2から送信されたデータに基づき出力動作を行う機能の双方を備えるものを挙げることができる。
 なお、入力部7は、入力子局4と一体化された入力部一体型子局70であってもよい。また、出力部8は、出力子局5と一体化された出力部一体型子局80であってもよい。
 制御部1は、演算処理機能を持つ管理判断手段11と入出力ユニット12を備える。管理判断手段11は、入出力ユニット12を介して親局2からデータを受け取り、内部に記憶されたプログラムに基づいて必要な演算処理を行う。
<親局の構成>
 親局2は、図3に示すように、出力データ部21、タイミング発生部23、親局出力部24、親局入力部25、入力データ部26を備える。そして、伝送線に接続され、制御データを含む制御信号を、伝送線を介して出力子局5および入出力子局6に送信するとともに、入力子局4および入出力子局6から伝送線を介して送信された監視信号を受け監視データを抽出し制御部1の入出力ユニット12へ送出する。
 出力データ部21は、制御部1から受けたデータをシリアルデータとして親局出力部24へ引き渡す。
 タイミング発生部23は、発振回路(OSC)31とタイミング発生手段32からなり、発振回路(OSC)31を基にタイミング発生手段32が、入力子局4、出力子局5、および、入出力子局6と同期をとるための仮想伝送クロックを生成し親局出力部24、親局入力部25に引き渡す。
 親局出力部24は、制御データ発生手段33および親局電流信号変調手段34を有している。制御データ発生手段33が、出力データ部21から受けたデータと、タイミング発生部23から受けた仮想伝送クロックに基づき、親局電流信号変調手段34と伝送線を介し、スタート信号STおよび制御信号を送信する。
 この実施形態の親局電流信号変調手段34は、図4に示すように、スタート信号STまたは制御信号を送信するタイミングで、伝送線の負側の電圧VDnを変化させることにより、伝送線を構成する二線Dp、Dn間の電流変調信号を変化させるものとなっている。ただし、負側の電圧VDnを変化させる割合は、常態の線間電圧に対し小さいため、電源供給を妨げるものとはなっていない。なお、親局電流信号変調手段34の回路構成に制限はなく、状況に応じて適したものとすることができる。例えば、正側の電圧VDpを上げるものであってもよい。
 スタート信号STは、仮想伝送クロックの1周期の時間幅より長い時間維持される電流の流れている状態(有電流状態とする)と、それに続く、仮想伝送クロックの1周期の時間幅より長い時間維持される電流の流れていない状態(無電流状態とする)とで構成される。なお、有電流状態および無電流状態の長さは使用条件等を考慮し、仮想伝送クロックの1周期と区別できる範囲で適宜決めることができる。
 スタート信号STの終わりから次のスタート信号STの開始までの期間は、仮想伝送クロックの1周期に対応する複数の期間に時分割され、これら時分割された複数の期間の1つ以上が、入力子局4、出力子局5および入出力子局6の各々に対し、親局2と送受信するための期間として割り当てられている。
 更に、時分割された複数の期間の各々にはアドレス番号が付与されており、このアドレス番号を利用し、入力子局4、出力子局5、および入出力子局6が、各々に割り当てられた期間に対応付けられている。例えば、図1において、絶対アドレス番号#1、#3は出力子局5に付与されており、制御信号は、絶対アドレス番号#1、#3の期間に送信されている。また、絶対アドレス番号#2、#4の期間には、入力子局4或いは入出力子局6から監視信号が送信される。なお、図1において、右下がり斜線は親局2から送信される制御信号となる電流を、左下がり斜線は入力子局4或いは入出力子局6から送信される監視信号となる電流を示すものとなっている。
 仮想伝送クロックの1周期は第一設定期間(この実施形態では1周期の前半)と第二設定期間(この実施形態では1周期の後半)に時分割されている。そして、これら第一設定期間と第二設定期間では電流値が異なるものとされ、その電流値の差が信号に含まれるデータを表すものとなっている。
 この実施形態では、第一設定期間に電流が流れ、第二設定期間に電流が流れていない状態の電流値の差を、論理データ“1”に対応させている。また、第二設定期間に電流が流れ、第一設定期間に電流が流れていない状態の電流値の差を、論理データ“0”に対応させている。
 なお、この実施形態において、第一設定期間と第二設定期間はいずれも、仮想伝送クロックの1周期の半分の長さに設定されているが、第一設定期間および第二設定期間の長さに制限はなく、仮想伝送クロックの1周期内に収まる範囲であれば、使用状況や使用環境に応じて適宜設定することができる。
 また、第一設定期間と第二設定期間の電流値の差と論理データの関係に制限はない。第一設定期間に電流が流れ、第二設定期間に電流が流れていない状態の電流値の差を、論理データ“0”に対応させ、第二設定期間に電流が流れ、第一設定期間に電流が流れていない状態の電流値の差を、論理データ“1”に対応させてもよい。
 親局入力部25は監視データ抽出手段35および親局電流信号復調手段36を有している。親局電流信号復調手段36は、入力子局4或いは入出力子局6から送信された監視信号を検出し、電流値のデジタル値を監視データ抽出手段35に引き渡す。
 この実施形態の親局電流信号復調手段36では、第一設定期間が終了するタイミングで第一設定期間における電流値のデジタル値を確定し、監視データ抽出手段35に引き渡す。また、第二設定期間の終了時に第二設定期間における電流値のデジタル値を確定し、監視データ抽出手段35に引き渡す。ただし、第一設定期間および第二設定期間の電流値のデジタル値を確定するタイミングに制限はなく、使用状態や使用環境に応じて決めることができる。
 監視データ抽出手段35は、親局電流信号復調手段36から引き渡された電流値のデジタル値に基づき、対応するデータ値を入力データ部26に引き渡す。この実施形態では、親局電流信号復調手段36から引き渡された第一設定期間の電流値のデジタル値を一時記憶し、親局電流信号復調手段36から第二設定期間の電流値のデジタル値が引き渡されたとき、それら電流値のデジタル値の差を比較演算する。そして、第一設定期間の電流値のデジタル値が第二設定期間の電流値のデジタル値より大きく、その差分値が、予め設定された判定幅の中にある場合には論理データ“1”を、入力データ部26に引き渡す。また、第一設定期間の電流値のデジタル値が第二設定期間の電流値のデジタル値より小さく、その差分が前記判定幅の中にある場合には論理データ“0”を、入力データ部26に引き渡す。
 判定幅とは、信号が正常に伝送されている状態において想定される電流値の変化分であり、使用状態や使用環境に応じて決めることができる。
 なお、第一設定期間の電流値のデジタル値と第二設定期間の電流値のデジタル値の差分がこの判定幅の下限値より小さくなる場合は、第一設定期間の電流値のデジタル値と第二設定期間の電流値のデジタル値に実質的な差異の無いことを意味する。すなわち、断線などにより電流が流れていない、或いは短絡により電流が流れ続ける等の異常状態を意味する。そこで、監視データ抽出手段35は、第一設定期間の電流値のデジタル値と第二設定期間の電流値のデジタル値の差分がこの判定幅の下限値より小さくなるとき、伝送異常であることを示すデータを、入力データ部26に引き渡す。
 また、第一設定期間の電流値のデジタル値と第二設定期間の電流値のデジタル値の差分がこの判定幅の上限値より大きくなる場合は、意図しない電流変調が生じていることを意味する。すなわち、ノイズの発生や設定誤り等の意図しない状態である可能性を意味する。そこで、監視データ抽出手段35は、第一設定期間の電流値のデジタル値と第二設定期間の電流値のデジタル値の差分がこの判定幅の上限値より大きくなるときにも、伝送異常であることを示すデータを、入力データ部26に引き渡す。
 入力データ部26は、監視データ抽出手段35から受け取った直列の入力データを並列(パラレル)データに変換し、監視データとして制御部1の入出力ユニット12へ送出する。
<入力子局の構成>
 入力子局4は、図5に示すように、伝送受信手段41、子局タイミング発生手段42、アドレス抽出手段43、アドレス設定手段44、監視データ送信手段45、および、入力手段46を有する子局入力部40を備える。また、子局入力部40と伝送線の間に配置される子局電流信号復調手段48および子局電流信号変調手段49を備える。
 なお、この実施形態の入力子局4は、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが子局入力部40として機能するものとなっている。
 処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるが、子局入力部40を構成する上記各手段のそれぞれの処理におけるCPU、RAMおよびROMとの関係は、説明の便宜上、図示を省略するものとする。
 子局電流信号復調手段48は、親局2から伝送線に出力されたスタート信号STおよび制御信号を検出し、電流値のデジタル値を伝送受信手段41に引き渡す。なお、伝送線のシャント抵抗には常態の線間電圧で電流が流れることを防止する電流制限器47(この実施形態では、ツェナーダイオード)が配置されている。そのため、親局2において、伝送線の負側の電圧VDnが下げられたときに、すなわち、伝送線の線間電圧差が常態より大きくなった場合に電流の流れることが許容されるものとなっている。
 伝送受信手段41は、子局電流復調手段48から引き渡された電流値のデジタル値を子局タイミング発生手段42、および、アドレス抽出手段43に引き渡す。
 子局タイミング発生手段42は、伝送受信手段41から引き渡された電流値のデジタル値に基づきスタート信号STを検出し、仮想伝送クロックを発生させ同期を開始する。そして、仮想伝送クロックの1周期毎に同期信号をアドレス抽出手段43に引き渡す。
 アドレス抽出手段43では、同期信号のカウントが行われる。なお、このカウント値がアドレス設定手段44で設定された自局アドレスデータと一致するタイミングは、親局2への送信のために自局に割り当てられた期間が開始するタイミング(以下、「自局送信期間開始タイミング」とする)となる。
 自局送信期間開始タイミングを得たアドレス抽出手段43は、親局2への送信のために自局に割り当てられた期間、監視データ送信手段45を有効にする。
 入力手段46は、入力部7からの入力に基づくデータを監視データ送信手段45に引き渡す。
 監視データ送信手段45は、アドレス抽出手段43により有効とされた場合に、入力手段46から引き渡されたデータを、子局電流信号変調手段49と伝送線を介し、親局2に監視信号を送信する。
 この実施形態において、子局電流信号変調手段49は、図7に示すように、トランジスタのオンオフにより、電流が流れた状態と電流が流れていない状態を切り替えるものとなっている。ただし、子局電流信号変調手段49の回路構成に制限はなく、状況に応じて適したものとすることができる。
<出力子局の構成>
 出力子局5は、図8に示すように、伝送受信手段41、子局タイミング発生手段42、アドレス抽出手段43、アドレス設定手段44、制御データ抽出手段51および出力手段52を有する子局出力部50を備える。
 出力子局5も、また、前記入力子局4と同様、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが子局出力部50として機能するものとなっている。そして、入力子局4のMCUと同様に、出力子局5の処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるものとなっている。
 なお、子局出力部50を構成する上記各手段のそれぞれの処理におけるCPU、RAMおよびROMとの関係は、説明の便宜上、図示を省略するものとする。また、図6において、入力子局4と実質的に同じ部分には同符号を付し、その説明を簡略化または省略する。
 出力子局5におけるアドレス抽出手段43は、親局2から送信された制御信号を受信するために自局に割り当てられた期間が開始するタイミング(以下、「自局受信期間開始タイミング」とする)を得たときに、制御データを抽出するタイミング信号を制御データ抽出手段51に引き渡す。なお、自局受信期間開始タイミングは、入力子局4におけるものと同様に、子局タイミング発生手段42から、仮想伝送クロックの1周期毎に引き渡される同期信号をカウントし、アドレス設定手段44で設定された自局アドレスデータと一致するタイミングとして得る。
 制御データ抽出手段51は、アドレス抽出手段43から引き渡されたタイミング信号と伝送受信手段41から引き渡された電流値のデジタル値に基づき、自局アドレス設定手段44に設定された自局アドレスに送信された制御信号のデータ値を抽出し、これを出力手段52に引き渡す。なお、データ抽出方式は、親局2の監視データ抽出手段35と同様であるため、説明を省略する。
 出力手段52は、制御データ抽出手段51から引き渡された制御データに基づいた情報を出力部8に出力し、出力部8を動作させ、或いは停止させる。
<入出力子局の構成>
 入出力子局6には、対応関係にある入力部7と出力部8の双方が接続されている。入出力子局6も、入力子局4および出力子局5と同様、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが子局入出力部として機能するものとなっている。そして、入力子局4のMCUおよび出力子局5のMCUと同様に、入出力子局6の処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるものとなっている。
 なお、子局入出力部を構成する上記各手段のそれぞれの処理におけるCPU、RAMおよびROMとの関係は、説明の便宜上、図示を省略するものとする。また、子局入出力部は、子局入力部40および子局出力部50の双方の構成を備えるものであるが、これら各構成は子局入力部40および子局出力部50と実質的に同じものであるため、図示およびその説明は省略する。
 この実施形態において、スタート信号STは有電流状態と無電流状態の組合せによる電流信号となっているが、仮想伝送クロックの1周期と区別できる形であれば制限はなく、使用状況等に応じて適した形の信号としてもよい。例えば、線間電圧が常態と異なる電位の電圧信号としてもよい。ただし、その場合、入力子局4、出力子局5、および、入出力子局6には、電圧信号を復調する手段を備えることが必要となる。また、親局2は親局電流信号変調手段34に代わる、電圧信号変調手段を備えることが必要となる。
1  制御部
2  親局
4  入力子局
5  出力子局
6  入出力子局
7  入力部
8  出力部
9  入出力部
11 管理判断手段
12 入出力ユニット
21 出力データ部
23 タイミング発生部
24 親局出力部
25 親局入力部
26 入力データ部
31 発振回路(OSC)
32 タイミング発生手段
33 制御データ発生手段
34 親局電流信号変調手段
35 監視データ抽出手段
36 親局電流信号復調手段
40 子局入力部
41 伝送受信手段
42 子局タイミング発生手段
43 アドレス抽出手段
44 アドレス設定手段
45 監視データ送信手段
46 入力手段
47 電流制限器
48 子局電流信号復調手段
49 子局電流信号変調手段
50 子局出力部
51 制御データ抽出手段
52 出力手段
70 入力部一体型子局
80 出力部一体型子局

Claims (3)

  1.  制御側装置と伝送線を介して調歩同期方式によりデータの授受を行う子局の複数を備え、
     前記制御側装置から同期を開始するためのスタート信号が前記伝送線を介し送信され、
     前記制御側装置と前記子局の各々が前記スタート信号を基点とする仮想伝送クロックを自局内部で発生させ、
     前記スタート信号の終わりから次の前記スタート信号の開始までの期間が、前記仮想伝送クロックの1周期に対応する期間の複数に時分割され、
     前記仮想伝送クロックの1周期が第一設定期間と第二設定期間に時分割され、前記第一設定期間と前記第二設定期間の電流値の差に基づきデータが抽出されることを特徴とする制御・監視信号伝送システム。
  2.  前記伝送線は電位差のある二線で構成され、前記制御側装置は、前記伝送線の負側の電圧を下げる電流信号変調手段を備え、前記子局は、前記伝送線の常態における線間電圧で電流が流れることを防止し、前記伝送線の線間電圧が常態より大きくなった場合に電流が流れることを許容する子局電流信号復調手段を備える請求項1に記載の制御・監視信号伝送システム。
  3.  前記伝送線は電位差のある二線で構成され、前記制御側装置は、前記伝送線の正側の電圧を上げる電流信号変調手段を備え、前記子局は、前記伝送線の常態における線間電圧で電流が流れることを防止し、前記伝送線の線間電圧が常態より大きくなった場合に電流が流れることを許容する子局電流信号復調手段を備える請求項1に記載の制御・監視信号伝送システム。
     
PCT/JP2018/042399 2018-11-16 2018-11-16 制御・監視信号伝送システム WO2020100272A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/042399 WO2020100272A1 (ja) 2018-11-16 2018-11-16 制御・監視信号伝送システム
JP2020556545A JP6853916B2 (ja) 2018-11-16 2018-11-16 制御・監視信号伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/042399 WO2020100272A1 (ja) 2018-11-16 2018-11-16 制御・監視信号伝送システム

Publications (1)

Publication Number Publication Date
WO2020100272A1 true WO2020100272A1 (ja) 2020-05-22

Family

ID=70730442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042399 WO2020100272A1 (ja) 2018-11-16 2018-11-16 制御・監視信号伝送システム

Country Status (2)

Country Link
JP (1) JP6853916B2 (ja)
WO (1) WO2020100272A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523645B2 (ja) * 1975-08-29 1980-06-24
JPS6042585B2 (ja) * 1976-04-09 1985-09-24 古河電池株式会社 蓄電池電極用焼結基板の製造方法
JPH02260844A (ja) * 1989-03-31 1990-10-23 Toshiba Lighting & Technol Corp 信号伝送システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523645B2 (ja) * 1975-08-29 1980-06-24
JPS6042585B2 (ja) * 1976-04-09 1985-09-24 古河電池株式会社 蓄電池電極用焼結基板の製造方法
JPH02260844A (ja) * 1989-03-31 1990-10-23 Toshiba Lighting & Technol Corp 信号伝送システム

Also Published As

Publication number Publication date
JPWO2020100272A1 (ja) 2021-02-15
JP6853916B2 (ja) 2021-03-31

Similar Documents

Publication Publication Date Title
JP4879312B2 (ja) リモート配線チェックシステムおよびそのシステムに使用する接続コネクタ
CN110959141B (zh) 用于工业技术过程的控制方法和控制系统
JP2007135181A (ja) 通信システム及び通信装置
WO2014147705A1 (ja) 制御・監視信号伝送システム
WO2020100272A1 (ja) 制御・監視信号伝送システム
GB2471078A (en) Digitally sharing of power converter stress
CN109274564B (zh) Can总线网络控制方法及can总线网络
JP2007267517A (ja) 配電監視制御システム
WO2019003287A1 (ja) 制御・監視信号伝送システム
JP6720417B2 (ja) 制御・監視信号伝送システム
JP6637635B2 (ja) 制御・監視信号伝送システム
JPH02184199A (ja) 端末機器インターフェイス
JP2002503438A (ja) 低電位レベルと高電圧変換機端末内の高電圧電位上に配置されたバルブの間の通信方法および通信装置
WO2013108392A1 (ja) 伝送クロック信号異常検出方式、およびその方式に使用する子局ターミナル
JP5599533B1 (ja) 制御・監視信号伝送システム
US11736318B2 (en) Initialization of data bus subscribers
CN112202573B (zh) 一种二线制的供电、组网通信系统
WO2013111279A1 (ja) 断線検出方式およびその方式に使用する子局ターミナル
WO2022264201A1 (ja) 制御・監視信号伝送システム
WO2023242938A1 (ja) 制御・監視信号伝送システム
WO2013161029A1 (ja) 寿命検出方式およびその方式に使用する子局ターミナル
JP2010141621A (ja) 出力ターミナル及び制御・監視信号伝送システム
WO2011108136A1 (ja) 制御・監視信号伝送システムにおける信号伝送方式
WO2020240811A1 (ja) 短絡位置検出システム
WO2015145582A1 (ja) 制御・監視信号伝送システムおよび制御・監視信号伝送システムに使用する子局ターミナル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556545

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940087

Country of ref document: EP

Kind code of ref document: A1