WO2020098576A1 - 低温等离子处理垃圾焚烧锅炉烟气一体化装置 - Google Patents

低温等离子处理垃圾焚烧锅炉烟气一体化装置 Download PDF

Info

Publication number
WO2020098576A1
WO2020098576A1 PCT/CN2019/116673 CN2019116673W WO2020098576A1 WO 2020098576 A1 WO2020098576 A1 WO 2020098576A1 CN 2019116673 W CN2019116673 W CN 2019116673W WO 2020098576 A1 WO2020098576 A1 WO 2020098576A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
unit
temperature plasma
low
plate
Prior art date
Application number
PCT/CN2019/116673
Other languages
English (en)
French (fr)
Inventor
翁林钢
施小东
申秋德
戚科技
汤宣林
Original Assignee
浙江大维高新技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大维高新技术股份有限公司 filed Critical 浙江大维高新技术股份有限公司
Publication of WO2020098576A1 publication Critical patent/WO2020098576A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the invention relates to the technical field of flue gas purification of waste incineration boilers, in particular to a low temperature plasma treatment flue gas integrated device for waste incineration boilers.
  • the secondary pollution will be generated during the waste incineration, mainly due to the generation of dust, acid gas (mainly SO 2 , NO x, etc.), heavy metals and dioxins during the combustion process.
  • NO x , SO 2 , dioxins and mercury are the main components of air pollution, which bring great harm to the ecological environment and human health.
  • FGD wet limestone / gypsum desulfurization
  • the SCR and SNCR technologies are widely used in the denitration technology, and its process maturity is high, which can meet the current needs of various flue gas denitrification.
  • it is difficult to remove dioxin and Hg0 generated in the process of waste incineration by general technology.
  • the individual pollutant treatment system has complicated processes, large installation space, and high investment and operating costs. Therefore, the development of an integrated device that can simultaneously remove multiple pollutants has become a research hotspot in recent years.
  • the low-temperature plasma removal technology mainly oxidizes SO 2 and NO x in the flue gas through the free radicals and active particles generated in the plasma reactor, such as ⁇ O, ⁇ OH, ⁇ O 3 , and then removes them by lye absorption. . Due to the strong oxidizing properties of free radicals such as ⁇ O, ⁇ OH, ⁇ O 3 , dioxins and heavy metals in the flue gas will also be oxidized into organic molecules and higher-order oxides. Therefore, the low temperature plasma technology can realize the simultaneous removal of multiple pollutants, and the low temperature plasma removal technology saves space, has low investment and operating costs, and has no advantages of secondary pollution. It is considered to be the most promising flue gas purification technology. Has become one of the key technological development directions supported by China.
  • the purpose of the present invention is to provide a low-temperature plasma treatment garbage incineration boiler flue gas integrated device, which can save installation space, simultaneously remove a variety of pollutants, without secondary pollution, realize water recycling, and save resources.
  • a low-temperature plasma treatment garbage incineration boiler flue gas integrated device including a housing with an air inlet and an air outlet, along the direction of flue gas movement, the housing is sequentially separated Low temperature plasma reaction unit, spray cooling unit and wet pollutant collection unit;
  • the housing is provided with a gas inlet on one side of the air inlet; the bottom of the housing corresponding to the wet pollutant collection unit is provided with a collection portion, and the collection portion communicates with an alkaline liquid supply unit;
  • the spray cooling unit is provided with a plurality of first spray heads; the wet pollutant collection unit is provided with a plurality of second spray heads; the first spray head and the second spray head are respectively connected to the liquid output of the alkaline liquid supply unit One end.
  • a gas flow distribution plate is installed in the housing between the gas inlet and the low-temperature plasma reaction unit.
  • the air flow distribution plate plays a certain role in blocking a large amount of gas concentrated into the casing from the air inlet and the gas inlet.
  • Part of the flue gas directly passes through the air flow distribution plate, and the other part of the flue gas flows along the air flow distribution plate toward the edge of the air flow distribution plate Moving, the flue gas passes through the air flow distribution plate during the moving process, before the flue gas enters the low temperature plasma reaction unit, the distribution of the flue gas is uniform, the flow rate of the flue gas is stabilized, and the flue gas is reacted in the low temperature plasma reaction unit .
  • the airflow distribution plate includes a plate body provided with air holes; the aperture ratio of the plate body is 40% to 60%;
  • the side of the air flow distribution plate facing the low-temperature plasma reaction unit is also provided with a plurality of guide plates arranged from top to bottom, the guide plate includes a horizontal plate located in the middle of the plate body and located at the horizontal A plurality of inclined plates on both sides of the plate, the inclined plates located on the same side of the horizontal plate are inclined toward the plate body at an equal angle.
  • the uppermost and lowermost inclined plates cooperate with the inclined side walls of the air intake end of the housing.
  • the evenly distributed guide plates ensure that the flue gas is evenly distributed, the flow rate is stable, and the flow direction is horizontal to the low temperature plasma unit, which is conducive to improving the low temperature.
  • Plasma reaction unit removal efficiency compared with no airflow distribution plate, the efficiency of removing pollutants in the present invention is increased by 10% to 15%.
  • two air flow distribution plates with different aperture ratios can be provided for use together.
  • the air holes of the plate body include a first air hole and a second air hole, the area of the first air hole for transmitting flue gas is smaller than that of the second air hole; along the horizontal direction, the The first air holes are located in the middle of the plate body, and the second air holes are located on both sides of the first air hole.
  • the area of the first air hole located in the middle of the plate body through the flue gas is larger than the area of the second air holes located on both sides of the plate body, a large amount of flue gas cannot pass from the first air hole located in the plate body directly opposite the air inlet Passing, the smoke that cannot pass in time will move along the plate body, so that it passes through the second air holes that are easier to pass through the left and right sides of the body; the amount of smoke at the first air hole is large, but the penetration area is small; the smoke at the second air hole The air volume is relatively small, but the transmission area is large; therefore, the entire air distribution plate passes through the flue gas evenly and evenly.
  • the area of the air holes through the flue gas gradually increases from the center position of the plate body to the edge position of the plate body.
  • the area of the air holes through the flue gas is S
  • the distance between the air holes on the plate and the center of the plate is D
  • S is proportional to D; that is, the area of the air through the flue gas through the air holes will enter the low temperature plasma reaction unit The smoke is balanced.
  • the spray cooling unit corresponding to the bottom of the housing is inclined from the low temperature plasma reaction unit to the wet pollutant collecting unit; the bottom of the housing corresponding to the spraying unit of the collecting part connection;
  • the alkaline liquid supply unit includes a circulating water tank, a first water pump, and a second water pump, the first water pump pipeline communicates with the first spray head, and the second water pump pipeline communicates with the second spray head;
  • the water collecting tank is respectively connected to the collecting part corresponding to the wet pollutant collecting unit and the circulating water tank of the alkaline liquid supply unit.
  • the present invention simultaneously supplies the alkaline solution required by the spray cooling unit and the wet pollutant collection unit through the same alkaline liquid supply unit, on the one hand, the integration of the present invention is improved, the volume of the equipment is reduced, and the equipment is convenient
  • the solution sprayed by the first spray head in the spray cooling unit flows into the collection part through the inclined bottom of the casing corresponding to the spray unit, and the wet pollutant collection unit
  • the alkaline solution sprayed by the second nozzle is washed through the anode plate and then flows into the collection part.
  • the alkaline solution in the collection part flows into the water collection tank.
  • the water collection tank is connected to the circulating water tank.
  • Operation such as value can be reused for the alkaline solution used by the alkaline liquid supply unit to flow into the circulating water tank.
  • the first water pump and the second water pump respectively pump the alkaline solution in the circulating water tank into the first spray head and the second spray head.
  • the recycling of lye is sufficient to reduce the use of water resources, reduce the use of raw materials and energy, and reduce costs.
  • a chimney blocking device is also installed in the housing, and the chimney blocking device is located between the outlet side of the low-temperature plasma reaction unit and the spray cooling unit.
  • the invention is directly connected to the flue of the garbage incinerator, and needs to continuously and stably process the flue gas.
  • the first nozzle in the spray cooling unit will also continuously spray the alkali solution into the casing for the smoke discharged from the low temperature plasma reaction unit
  • the temperature of the gas is reduced; the temperature of the flue gas discharged from the low temperature plasma reaction unit is 110 °C, and the temperature of the flue gas after the spray cooling unit is reduced to the saturated flue gas temperature, generally 60-68 °C; in order to prevent the alkali sprayed by the first nozzle
  • the liquid is sprayed into the low-temperature plasma reaction unit, and the saturated flue gas after spraying is prevented from flowing back into the low-temperature plasma reaction unit, causing corrosion and damage to the equipment in the low-temperature plasma reaction unit, and equipped with a flue flow blocking device.
  • the flue blocking device is a vertically arranged baffle plate, the baffle plates are provided with through holes in a row, and an obliquely arranged baffle plate is fixedly attached to the upper part of each row of through holes;
  • the upper end of the shielding baffle plate is fixed to the baffle plate, and the lower end of the shielding baffle plate extends to the free end of the spray cooling unit.
  • the alkali solution sprayed by the first spray head at a wide angle and the saturated flue gas obtained by the spray cooling unit prevent the saturated flue gas from flowing back and the alkali liquid sprayed by the first spray head from entering the low-temperature plasma reaction unit due to the protection of the baffle plate.
  • the wet pollutant collection unit further includes a high-frequency power supply, a cathode line and an anode plate electrically connected to the high-frequency power supply, wherein the cathode line and the anode plate are arranged in parallel; the second spray head is evenly distributed in the housing The top is located above the anode plate; in the present invention, the cathode wire and anode plate cooperate with the high-frequency power supply, and the droplets, dust, mercury oxide, etc. are collected on the surface of the anode plate by the action of the electric field force; the wet pollutant collection unit is sprayed The removal of shower and electric field force can realize the capture of sub-micron substances, and it also has good absorption capacity for dust and mercury oxide.
  • the distance between two adjacent second nozzles is 500 to 800 mm.
  • the second nozzles are distributed in a rectangular lattice, and the distance between the two adjacent second nozzles in the front, rear, or left and right is 500 to 800 mm, to achieve no dead angle spray, the water used for spray cooling is
  • the weakly alkaline circulating water achieves the purpose of absorbing a part of the acid gas, and also ensures that the anode plate and the cathode line are not corroded by the acid gas. After the anode plate forms a water film, the deposited various pollutants spray the alkali through the second nozzle The washing of the solution prevents the collection effect of the wet pollutant collection unit from being affected.
  • the dosing unit includes a storage tank, an air compressor, and an air tank, the storage tank is connected to the injection port through a two-fluid atomizing spray gun.
  • Atomized ammonia or hydrocarbon gas can be introduced into the flue gas through the dosing unit.
  • the atomized ammonia water is put into the invention through the dosing unit, and the temperature of the flue gas is reduced to 110-120 ° C after the ammonia water is atomized and sprayed.
  • the reduction of flue gas temperature reduces the amount of flue gas treated, and at the same time atomizes the sprayed ammonia to create conditions for the subsequent plasma excitation to produce more O, OH, and NH 2 etc.
  • the atomized ammonia will interact with the flue gas Acid gases such as SO 2 and NO 2 in the reaction react to produce by-products such as ammonium sulfate and ammonium nitrate.
  • Acid gases such as SO 2 and NO 2 in the reaction react to produce by-products such as ammonium sulfate and ammonium nitrate.
  • NH 2 excited by NH 3 generated in the plasma unit can realize partial reduction of NO x . Therefore, the efficiency of the low-temperature plasma reaction unit is improved.
  • the invention can be provided with two dosing units, which are respectively used for adding atomized ammonia water and hydrocarbon gas.
  • the equivalent ratio of ammonia to SO 2 and NO x added to the flue gas through the dosing unit is 0.8 to 1, ammonia is incompletely reacted with SO 2 and NO x , and then through the spray cooling unit and wet pollutant collection unit Collecting can greatly reduce the escape of ammonia; the flue gas with atomized ammonia liquid, the flue gas with increased humidity, after entering the low-temperature plasma reaction unit, is beneficial to increase the production of OH, and improves the oxidation efficiency of the low-temperature plasma reaction unit .
  • the housing is provided with a gas inlet on the side of the air inlet; through the gas inlet, a certain substance conducive to the purification of flue gas is passed into the flue gas and mixed with the flue gas evenly before entering the low temperature plasma reaction unit
  • the first nozzle of the spray cooling unit sprays the alkali solution to cool the flue gas, while the flue gas transforms from unsaturated to saturated, a large number of tiny mist droplets are precipitated.
  • the flue gas and the saturated mist droplets are in contact with the sprayed alkali solution.
  • the alkaline solution effectively absorbs part of the acid gas and saturated mist droplets, so the present invention completes the low-temperature plasma reaction of flue gas, flue gas cooling, and wet pollutant collection in the same casing.
  • the flue gas incineration garbage flue gas from the casing The intake air enters at one end, and the flue gas purified to meet the emission standard is discharged from the exhaust end of the housing.
  • the integration of the device of the invention is improved. All the processing steps are completed in each unit in the housing, reducing the piping between the units Connection, saving installation, preventing the escape of flue gas and added gas in the process and the process, with good air tightness and safety;
  • the lye supply unit in the present invention provides a spray cooling unit for cooling and absorbing the alkaline solution of acidic substances and a wet pollutant collection unit for absorbing the alkaline solution used by the acidic substances.
  • the spray cooling unit and wet pollution in the housing The alkaline solution used for cooling and pollutant collection in the material collection unit is collected in the collection part of the housing and returned to the alkaline solution supply unit to realize the recycling of the alkaline solution, reduce the amount of alkaline solution used, and reduce the operation Cost, reduce equipment occupation space, easy to install and use;
  • FIG. 1 is a schematic structural view of an integrated device for low-temperature plasma treatment of waste incineration boiler flue gas of the present invention
  • FIG. 2 is a perspective view of a housing of an integrated device for low temperature plasma treatment of waste incineration boiler flue gas
  • FIG. 3 is a cross-sectional view of a housing of an integrated device for low-temperature plasma treatment of waste incineration boiler smoke
  • FIG. 4 is a front view of an airflow distribution plate of an integrated device for low-temperature plasma treatment of waste incineration boiler smoke
  • FIG. 5 is a perspective view of the air distribution plate in the present invention.
  • FIG. 6 is a schematic diagram of the distribution of flue gas entering the casing after passing through the air flow distribution plate in the present invention.
  • FIG. 7 is an enlarged view at A in FIG. 1.
  • Housing 100 air inlet 101; air outlet 102; gas inlet 103; collection part 104; low temperature plasma reaction unit 110; spray cooling unit 120; first nozzle 121; wet pollutant collection unit 130; second nozzle 131 High-frequency power supply 132; cathode line 133; anode plate 134; lye supply unit 140; circulating water tank 141; first water pump 142; second water pump 143; air distribution plate 150; plate body 151; air holes 152; first air holes 1521 The second air hole 1522; the deflector 153; the horizontal plate 1531; the inclined plate 1532; the sump 160; the flue baffle device 170; the baffle plate 171; the baffle plate 172; the dosing unit 180.
  • This embodiment discloses a low-temperature plasma treatment garbage incineration boiler flue gas integrated device. As shown in FIGS. 1 to 7, it includes a housing 100 having an air inlet 101 and an air outlet 102. Along the direction of flue gas movement, the housing Within 100, a low temperature plasma reaction unit 110, a spray cooling unit 120, and a wet pollutant collection unit 130 are sequentially separated;
  • the housing 100 is provided with a gas inlet 103 on one side of the air inlet 101; the bottom of the housing 100 corresponding to the wet pollutant collection unit 130 is provided with a collection part 104, and the collection part 104 is in communication A lye supply unit 140; the spray cooling unit 120 is provided with a plurality of first spray heads 121; the wet pollutant collection unit 130 is provided with a plurality of second spray heads 131; the first spray head 121 and the first The two spray heads 131 are respectively connected to the outlet end of the alkaline liquid supply unit 140.
  • the housing 100 is provided with a gas inlet 103 on one side of the air inlet 101; it is used to pass a certain substance that is conducive to the purification of flue gas and flue gas into the low temperature plasma reaction unit 110, and the spray
  • the first nozzle 121 of the shower cooling unit 120 sprays the alkali solution to cool the flue gas, and the flue gas transforms from unsaturated to saturated to precipitate a large number of tiny mist droplets; at the same time, the flue gas and the saturated mist droplets neutralize with the sprayed alkali solution,
  • the alkaline solution effectively absorbs a part of acid gas and saturated mist droplets, so this embodiment completes the low-temperature plasma reaction of flue gas, flue gas cooling, and wet pollutant collection in the same casing 100.
  • the gas enters at one end, and the flue gas purified to meet the emission standard is discharged from the outlet end of the housing 100.
  • the integration of the device of this embodiment is improved. All processing steps are completed in each unit in the housing 100, reducing the number of units.
  • Pipeline connection saving installation and preventing the escape of flue gas and added gas in the process and the process, this embodiment has good airtightness and safety;
  • the lye supply unit 140 provides the spray cooling unit 120 for
  • the alkali solution for cooling and absorbing acidic substances and the wet pollutant collection unit 130 are used to absorb the alkali solution used for the acidic substances, and the cooling unit 120 and the wet pollutant collection unit 130 are sprayed in the housing 100 for cooling and pollutant collection
  • the alkaline solution is collected in the collection part 104 of the housing 100 and returned to the alkaline solution supply unit 140 to realize the recycling of the alkaline solution, reduce the amount of alkaline solution used, reduce the operating cost, and reduce the equipment footprint , Easy to install and use; there is no pipe connection between the units in this embodiment, a large amount of flue gas flows continuously and smoothly in the housing 100 of this embodiment, which is beneficial to achieve large flue gas treatment and flue gas treatment in this embodiment
  • the capacity is above 6000m 3 /
  • a gas flow distribution plate 150 is installed between the gas inlet 103 and the low temperature plasma reaction unit 110 in the housing 100.
  • the airflow distribution plate 150 plays a certain role in blocking a large amount of gas concentrated into the housing 100 from the air inlet 101 and the gas injection port 103, part of the flue gas directly passes through the airflow distribution plate 150, and the other part of the flue gas flows along the airflow distribution plate 150 moves toward the surface of the air flow distribution plate 150 toward its edge, and the flue gas passes through the air flow distribution plate 150 during the movement process.
  • the flue gas Before the flue gas enters the low temperature plasma reaction unit 110, the flue gas is uniformly distributed to stabilize the flow rate of the flue gas. This facilitates the reaction of flue gas in the low-temperature plasma reaction unit 110.
  • the flue gas uniformly includes movement along the height direction of the plate body 151, as shown by the upward and downward arrows on the left side of the plate body 151, and also includes the direction along the length direction of the plate body 151. Both ends of the length of the body 151 move, as shown by ⁇ in FIG. 6.
  • the air flow distribution plate 150 includes a plate body 151, and the plate body 151 is provided with air holes 152; the aperture ratio of the plate body 151 is 40% to 60%;
  • the side of the air flow distribution plate 150 facing the low temperature plasma reaction unit 110 is further provided with a plurality of guide plates 153 arranged from top to bottom, the guide plate 153 includes a horizontal plate located in the middle of the plate body 151 1531 and a plurality of inclined plates 1532 on both sides of the horizontal plate 1531, the inclined plates 1532 on the same side of the horizontal plate 1531 are inclined at an equal angle toward the plate body 151, and the inclined angle of the inclined plate 1532 can be equal It is 10 ° or 20 ° or 30 °.
  • the uppermost and lowermost inclined plates 1532 cooperate with the inclined sidewalls of the air intake of the housing 100, and the uniformly distributed deflector 153 ensures uniform distribution of flue gas, stable flow rate, and horizontal flow to the low-temperature plasma reaction unit 110, which is beneficial to The removal efficiency of the low-temperature plasma reaction unit 110 is improved; compared with the absence of the air flow distribution plate 150, the efficiency of removing pollutants in this embodiment is increased by 10% to 15%.
  • two air flow distribution plates 150 with an aperture ratio of 40% and 60% can be provided for use. For example, when the flue gas passes through the two air flow distribution plates 150, the flue gas flows through the air flow distribution plate 150 and its vertical direction in the housing 100.
  • the space is evenly distributed, that is, the flue gas is evenly distributed in the low-temperature plasma reaction unit 110.
  • the air flow distribution plate 150 since the air flow distribution plate 150 is provided, once the flow rate of the flue gas entering the housing 100 is too fast, the air flow distribution plate 150 will hinder the amount of flue gas entering the low temperature plasma reaction unit 110 to a certain extent, thereby achieving Adjustment of the flue gas flow rate in the housing 100.
  • the air holes 152 of the plate body 151 include a first air hole 1521 and a second air hole 1522.
  • the area of the first air hole 1521 for transmitting smoke is smaller than that of the second air hole 1522;
  • the first air holes 1521 are located in the middle of the plate body 151, and the second air holes 1522 are distributed on both sides of the first air hole 1521.
  • the flue gas moves up and down along the airflow distribution plate 150 while moving on the vertical drawing surface, thereby Pass through the second air holes 1522 that are easier to pass through the left and right sides of the body; the amount of smoke at the first air hole 1521 is large, but the transmission area is small; the amount of smoke at the second air hole 1522 is relatively small, but the transmission area is large; therefore
  • the entire air distribution plate 150 is uniform and balanced by the flue gas.
  • the opening rate of the plate body 151 is between 40% and 60%, and the opening rate of the plate body 151 is preferably used to adjust the flow rate of the gas smoke.
  • the area of the air holes 152 through the flue gas gradually increases from the center position of the plate body 151 to the edge position of the plate body 151.
  • the area of the air holes 152 through the flue gas is S
  • the distance between the air holes 152 on the plate 151 and the center point of the plate 151 is D
  • S is proportional to D; That is, the area of the air holes 152 through the flue gas will be
  • the flue gas entering the low-temperature plasma reaction unit 110 adjusts the flow velocity and balances the distribution on the entire air flow distribution plate 150.
  • the spray cooling unit 120 corresponds to the bottom of the housing 100 inclined from the low temperature plasma reaction unit 110 toward the wet pollutant collection unit 130; the collection unit 104 corresponds to the spray unit
  • the bottom of the housing 100 is connected; it also includes a water collecting tank 160;
  • the lye supply unit 140 includes a circulating water tank 141, a first water pump 142 and a second water pump 143, the first water pump 142 pipeline communicates with the first A spray head 121, the second water pump 143 pipeline communicates with the second spray head 131;
  • the water collection tank 160 respectively communicates with the collection part 104 corresponding to the wet pollutant collection unit 130 and the position of the alkaline liquid supply unit 140 ⁇ Circulating water tank 141.
  • the alkali solution required by the spray cooling unit 120 and the wet pollutant collection unit 130 is simultaneously supplied by the same lye supply unit 140.
  • the equipment integration of this embodiment is improved, and the equipment is reduced.
  • the volume is convenient for equipment installation; on the other hand, the solution sprayed by the first spray head 121 in the spray cooling unit 120 flows into the collection part 104 through the inclined bottom of the spray unit corresponding to the housing 100, The alkaline solution sprayed by the second spray head 131 in the wet pollutant collecting unit 130 is washed through the anode plate 134 for collecting pollutants, and then flows into the collecting part 104.
  • the alkaline solution in the collecting part 104 flows into the water collecting tank 160, and the water collecting tank 160 Connected to the circulating water tank 141, the sewage collected in the collecting part 104 can be decontaminated in the water collecting tank 160, adjust the PH value, etc., and the alkaline solution that can be reused for the alkaline liquid supply unit 140 flows into the circulating water tank 141, the first The water pump 142 and the second water pump 143 pump the alkaline solution in the circulating water tank 141 into the first spray head 121 and the second spray head 131, respectively, to achieve sufficient recycling of the alkaline liquid, reduce the use of water resources, and reduce the use of raw materials and energy ,reduce costs.
  • a flue blocking device 170 is also installed in the housing 100, and the flue blocking device 170 is located between the outlet side of the low-temperature plasma reaction unit 110 and the spray cooling unit 120.
  • This embodiment is directly connected to the flue of the garbage incinerator, which requires continuous and stable treatment of flue gas.
  • the first nozzle 121 in the spray cooling unit 120 will also continuously spray the alkali solution into the housing 100 for low temperature plasma
  • the chimney blocking device 170 is a vertically arranged baffle plate 171, the baffle plates 171 are provided with through holes in a row, and an obliquely arranged The baffle 172; the upper end of the baffle 172 is fixed to the baffle plate 171, and the lower end of the baffle 172 is a free end extending toward the spray cooling unit 120.
  • the alkaline solution sprayed by the first spray head 121 at a wide angle and the saturated flue gas obtained by the spray cooling unit 120 are blocked by the shielding plate 172 to prevent the saturated flue gas from flowing back and the alkaline liquid sprayed by the first spray head 121 from entering the low-temperature plasma reaction unit 110.
  • the wet pollutant collection unit 130 in this embodiment further includes a high-frequency power supply 132, a cathode line 133 and an anode plate 134 electrically connected to the high-frequency power supply 132, wherein the cathode line 133 and the anode plate 134 are arranged in parallel; the second The spray head 131 is evenly distributed on the top of the housing 100, above the anode plate 134; in this embodiment, the cathode wire 133, the anode plate 134 cooperate with the high-frequency power supply 132, and mist, dust, mercury oxide, etc.
  • the force is collected on the surface of the anode plate 134; the wet pollutant collection unit 130 is removed by spraying and electric field force to achieve the capture of sub-micron substances, and also has good absorption capacity for dust and mercury oxide.
  • the distance between two adjacent second shower heads 131 is 500 to 800 mm.
  • the second nozzles are distributed in a rectangular lattice, and the distance between the two adjacent second nozzles 131 in front, rear, or left and right is 500 to 800 mm, to achieve spraying without dead angles.
  • Water is used as weakly alkaline circulating water to achieve the purpose of absorbing a part of acid gas, and at the same time ensure that the anode plate 134 and the cathode line 133 are not corroded by acid gas. After the anode plate 134 forms a water film, the deposited multiple pollutants pass through the second The shower head 131 sprays the alkali solution for washing to prevent the collection effect of the wet pollutant collection unit 130 from being affected.
  • a dosing unit 180 is further included.
  • the dosing unit 180 includes a storage tank, an air compressor, and an air tank.
  • the storage tank is connected to the injection port through a two-fluid atomizing spray gun.
  • Atomizing ammonia water or hydrocarbon gas can be introduced into the flue gas through the dosing unit 180.
  • Atomized ammonia water is added to the present embodiment through the dosing unit 180, and the temperature of the flue gas is reduced to 110-120 ° C after the ammonia water is atomized and sprayed.
  • the reduction of flue gas temperature reduces the amount of flue gas treated, and at the same time atomizes the sprayed ammonia to create conditions for the subsequent plasma excitation to produce more O, OH, and NH 2 etc.
  • the atomized ammonia will interact with the flue gas Acid gases such as SO 2 and NO 2 in the reaction react to produce by-products such as ammonium sulfate and ammonium nitrate.
  • NH 2 excited by NH 3 generated in the plasma unit can realize partial reduction of NO x .
  • the efficiency of the low-temperature plasma reaction unit 110 is improved.
  • hydrocarbon gas may be a low temperature plasma reactor unit 110 in a high-energy electrons excite strong oxidizing radicals can improve the efficiency of removal of NO x, thereby reducing the plasma low temperature reaction unit to the present embodiment can be Consume.
  • two dosing units 180 may be provided for adding atomized ammonia and hydrocarbon gas.
  • the equivalent ratio of ammonia to SO 2 and NO x added to the flue gas by the dosing unit 180 is 0.8-1, ammonia and SO 2 and NO x are incompletely reacted, and then collected by the spray cooling unit 120 and wet pollutants
  • the collection of unit 130 can greatly reduce the escape of ammonia gas; the flue gas with atomized ammonia liquid, the flue gas with increased humidity, after entering the low-temperature plasma reaction unit 110, is beneficial to increase the production of OH and improve the low-temperature plasma reaction The oxidation efficiency of unit 110.
  • the flue gas generated in the incineration boiler enters the housing 100 through the air inlet 101, and is mixed with the atomized ammonia water and the hydrocarbon gas added to the housing 100 through the dosing unit 180.
  • the mixed flue gas passes through a Two air distribution plates 150 evenly distribute the smoke in the three-dimensional space in the housing 100;
  • the evenly distributed flue gas flows to the low-temperature plasma reaction unit 110, and the low-temperature plasma reaction unit 110 mainly includes a plasma power source, a reaction electrode, and a discharge electrode.
  • the low-temperature plasma reaction unit 110 generates high-energy electrons through plasma power discharge to produce an inelastic collision with oxygen, water molecules and NH 3 in the mixed flue gas, and stimulates the production of ⁇ O, ⁇ OH and ⁇ NH 2 etc.
  • the spray cooling unit 120 absorbs acidic substances and salt particles in the flue gas, and on the other hand, realizes the cooling of the flue gas; After spray cooling, the temperature drops rapidly, transforming from unsaturated flue gas to saturated flue gas, and a large number of tiny water droplets are precipitated; at the same time, SO 3 is converted from gaseous state to mist droplets. Unreacted NO 2 and NH 3 etc. quickly dissolve in water and are absorbed by the weak alkaline solution.
  • the flue gas passing through the spray cooling unit 120 passes through the wet pollutant collection unit 130, and the cathode and anode systems of the wet pollutant collection unit 130 are combined with a high-efficiency high-frequency power supply 132. It is absorbed by the weak alkaline solution of the unit water treatment circulation system.
  • the purified flue gas is discharged into the atmosphere through the chimney through the induced draft fan.
  • This embodiment can realize the treatment of various flue gas amounts, covering 4000-8000m 3 / h flue gas treatment volume, basically covering all the flue gas volume of garbage incineration boilers and biomass burning furnaces; this embodiment can realize the oxidation of sulfur dioxide and nitrogen Simultaneous and efficient removal of various pollutants such as substances, dust, dioxins and HCl, with high removal efficiency, which can achieve removal efficiency of more than 90%.
  • a domestic waste incineration power plant was selected for the test.
  • the existing flue gas treatment process is semi-dry method + activated carbon + bag dust removal + chimney discharge.
  • the 600,000m 3 / h flue gas is introduced from the back end of the bag dust removal into the integrated device of this embodiment, wherein the equivalent ratio of ammonia added to the flue gas by the dosing unit 180 to SO 2 and NO x is 0.8, and the hydrocarbons
  • the amount input into the flue gas according to the imported flue gas NO X concentration molar ratio is 0.6.
  • the distance between the second heads 131 is 500 mm.
  • Table 1 The data of the treatment of pollutants in flue gas in this example

Abstract

低温等离子处理垃圾焚烧锅炉烟气一体化装置,包括具有进气口(101)和出气口(102)的壳体(100),沿着烟气移动的方向,壳体(100)内依次分隔有低温等离子反应单元(110)、喷淋降温单元(120)和湿式污染物收集单元(130);所述壳体(100)位于所述进气口(101)的一侧设有一气体投放口(103);所述湿式污染物收集单元(130)对应的所述壳体(100)底部设有收集部(104),所述收集部(104)连通一碱液供应单元(140);所述喷淋降温单元(120)设有多个第一喷头(121);所述湿式污染物收集单元(130)设有多个第二喷头(131);所述第一喷头(121)和所述第二喷头(131)分别连通所述碱液供应单元(140)的出液一端;该装置能够节省安装空间,同时脱除多种污染物,无二次污染,实现水的循环利用,节约资源。

Description

低温等离子处理垃圾焚烧锅炉烟气一体化装置 技术领域
本发明涉及垃圾焚烧锅炉烟气净化技术领域,特别是涉及低温等离子处理垃圾焚烧锅炉烟气一体化装置。
背景技术
随着我国经济的高速发展,人民生活水平迅速提高,城市化进程不断提高,各类垃圾的产生量也在急剧增加。根据国家环保部公布的《2017年全国大、中城市固体废物污染环境防治年报》数据显示,2016年,214个大、中城市生活垃圾产生量18850.5万吨,而且以后会以每年8-10%的增长率增加。城市垃圾的大量排放,如果处置不当会造成渗滤液泄露,对土壤、地下水、大气造成严重污染,甚至影响人体健康和环境卫生。垃圾焚烧技术是目前处理固体废弃物的有效途径之一,具有垃圾适应范围广、能量利用率高、占地小和无害化程度高的优点。目前,垃圾焚烧发电技术在我国也得到了越来越广泛的重视。
垃圾焚烧过程中会产生二次污染,主要是燃烧过程中会产生粉尘、酸性气体(主要为SO 2、NO x等)、重金属和二噁英等。而NO x、SO 2、二噁英、汞是大气污染的主要成分,给生态环境和人体健康带来巨大危害。目前,烟气脱硫技术中,湿法石灰石/石膏脱硫(FGD)是应用最广泛、效率最高的技术。该方法具有反应速度快、设备简单、脱硫效率高等优点。但是普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。脱硝技术广泛采用的是SCR和SNCR技术,其工艺成熟度高,能够满足目前各种烟气脱硝的需求。但是对于垃圾焚烧过程中产生的二噁英及Hg0等,一般的技术很难将其脱除。此外,单独的污染物处理系统工艺复杂,安装空间大,投资和运行费用高。因此,开发能同时脱除多种污染物的一体化装置成为近年来研究的热点。
低温等离子脱除技术主要是通过等离子反应器中生成的·O,·OH,·O 3等自由基和活性粒子将烟气中的SO 2、NO x氧化,再通过碱液吸收等方式脱除。由于·O,·OH,·O 3等自由基的强氧化性,烟气中的二噁英和重金属也会被氧化成有机分子和高阶氧化物。因此,低温等离子技术能够实现多种污染物的同时脱除,且低温等离子脱除技术节省空间,投资和运行成本低,无二次污染的优点,被认为是最具发展前景的烟气净化技术,已成为我国重点支持的科技发展方向之一。
发明内容
本发明的目的在于提供低温等离子处理垃圾焚烧锅炉烟气一体化装置,该装置能够节省安装空间,同时脱除多种污染物,无二次污染,实现水的循环利用,节约资源。
为解决此技术问题,本发明的技术方案是:低温等离子处理垃圾焚烧锅炉烟气一体化装置,包括具有进气口和出气口的壳体,沿着烟气移动的方向,壳体内依次分隔有低温等离子反应单元、喷淋降温单元和湿式污染物收集单元;
所述壳体位于所述进气口的一侧设有一气体投放口;所述湿式污染物收集单元对应的所述壳体底部设有收集部,所述收集部连通一碱液供应单元;所述喷淋降温单元设有多个第一喷头;所述湿式污染物收集单元设有多个第二喷头;所述第一喷头和所述第二喷头分别连通所述碱液供应单元的出液一端。
进一步改进,所述壳体内在所述气体投放口和所述低温等离子反应单元之间装有一气流分布板。气流分布板对从进气口和气体投放口集中进入壳体内的大量气体起到一定的阻挡作用,一部分烟气直接通过气流分布板,另一部分烟气沿着气流分布板向着气流分布板的边缘移动,烟气在移动的过程中通过所述气流分布板,在烟气进入低温等离子反应单元之前,均匀烟气的分布,稳定了 烟气的流速,利于烟气在低温等离子反应单元中的反应。
进一步改进,所述气流分布板包括板体,板体设有气孔;所述板体的开孔率为40%至60%;
所述气流分布板朝向所述低温等离子反应单元的一侧还设有多片从上至下设置的导流板,所述导流板包括位于所述板体中间的水平板和位于所述水平板两侧的多片倾斜板,位于所述水平板同一侧的所述倾斜板等角度向着所述板体倾斜设置。最上端和最下端的倾斜板与壳体进气端倾斜的侧壁相配合,均匀分布的导流板保证了烟气分布均匀、流速稳定、流向水平向低温等离子单元流动,利于提高所述低温等离子反应单元去除效率;相比较于不安装气流分布板,本发明去除污染物的效率提高10%至15%。本发明中可设置有不同开口率的两气流分布板连用。
进一步改进,所述板体的气孔包括第一气孔和第二气孔,所述第一气孔用于透过烟气的面积较第二气孔透过烟气的面积小;沿着水平方向,所述第一气孔位于所述板体的中部位置,所述第二气孔位于所述第一气孔的两侧。本发明中由于位于板体中部的第一气孔通过烟气的面积较位于板体两侧的第二气孔的面积大,大量的烟气不能从位于正对进气口位置板体的第一气孔通过,不能及时通过的烟气会沿着板体移动,从而从本体左右两侧更易通过的第二气孔通过;第一气孔处烟气量较大,但是透过面积小;第二气孔处烟气量相对较小,但是透过面积大;因此整个气流分布板通过烟气均匀且均衡。
进一步改进,所述气孔透过烟气的面积从所述板体的中心位置向所述板体的边缘位置逐渐增大。所述气孔透过烟气的面积为S,所述板体上气孔与板体中心点的距离为D,S与D呈正比;即用气孔的透过烟气的面积将进入低温等离子反应单元的烟气进行均衡。
进一步改进,所述喷淋降温单元对应所述壳体的底部由所述低温等离子反应单元向所述湿式污染物收集单元倾斜;所述收集部与所述喷淋单元对应的所述壳体底部连接;
还包括一集水箱;
所述碱液供应单元包括循环水箱、第一水泵和第二水泵,所述第一水泵管路连通所述第一喷头,所述第二水泵管路连通所述第二喷头;
所述集水箱分别连通所述湿式污染物收集单元对应的收集部和所述碱液供应单元的所述循环水箱。
本发明通过同一个碱液供应单元同时供应所述喷淋降温单元和所述湿式污染物收集单元所需要的碱溶液,一方面提高了本发明的集成性,减少了设备的体积,方便设备的安装,另一方面,所述喷淋降温单元中第一喷头喷淋的溶液经所述喷淋单元对应的所述壳体的倾斜底部流入至所述收集部,所述湿式污染物收集单元中第二喷头喷淋的碱溶液冲洗过阳极板后流入收集部,收集部中的碱溶液流入集水箱,集水箱连通循环水箱,可以在集水箱中对收集部收集的污水进行除杂,调节PH值等操作,能够重新用于碱液供应单元使用的碱溶液流入至循环水箱中,第一水泵和第二水泵分别将循环水箱中的碱溶液泵入至第一喷头和第二喷头中,实现碱液的够循环利用,减少水资源的使用,减少原料和能源的使用,降低成本。
进一步改进,所述壳体内还装有一烟道阻流装置,所述烟道阻流装置位于所述低温等离子反应单元的出气侧和所述喷淋降温单元之间。本发明直接连接在垃圾焚烧炉的烟道上,需要连续稳定的处理烟气,因此喷淋降温单元中的第一喷头也会持续向壳体内喷淋碱溶液,用于低温等离子反应单元排出的烟气的降温;低温等离子反应单元排出的烟气温度在110℃,经过喷淋降温单元后烟气 的温度降低为饱和烟气温度,一般在60-68℃;为了防止第一喷头喷出的碱液喷入至低温等离子反应单元,也防止经过喷淋后的饱和烟气回流进入至低温等离子反应单元,对低温等离子反应单元中的设备产生腐蚀和损害,设有烟道阻流装置。
进一步改进,所述烟道阻流装置为一竖直设置的阻流板,所述阻流板成行设有透过孔,在每一行透过孔的上部固连有一倾斜设置的遮挡板;所述遮挡板的上端固连于所述阻流板,所述遮挡板下端为伸向所述喷淋降温单元的自由端。第一喷头广角喷射出的碱溶液和经过喷淋降温单元获得的饱和烟气由于遮挡板的保护,防止饱和烟气回流和第一喷头喷出的碱液进入至低温等离子反应单元。
进一步改进,所述湿式污染物收集单元还包括高频电源、与高频电源电连接的阴极线和阳极板,其中阴极线和阳极板平行设置;所述第二喷头均匀分布在所述壳体内顶部,位于所述阳极板的上方;本发明中阴极线、阳极板与高频电源配合,雾滴、尘、氧化汞等经电场力作用后收集在阳极板表面;湿式污染物收集单元通过喷淋、电场力脱除,实现亚微米级物质的捕捉,同时对尘、氧化汞等也具有良好的吸收能力。相邻两第二喷头之间的距离为500至800mm。本发明中为了提高净化效果,第二喷嘴呈矩形点阵分布,前后或者左右两相邻两第二喷头之间的距离为500至800mm,实现无死角喷淋,所述喷淋降温所用水为弱碱性循环水,达到吸收一部分酸性气体的目的,同时也保证阳极板、阴极线不被酸性气体腐蚀,在阳极板形成水膜后,沉积的多种污染物经第二喷头喷淋出碱溶液的冲洗,防止影响湿式污染物收集单元的收集效果。
进一步改进,还包括投加单元,所述投加单元包括储罐、空压机和气罐,所述储罐通过双流体雾化喷枪与所述投放口连接。可通过投加单元向烟气中通入雾化氨水或者是烃类气体。经过投加单元向本发明中投入雾化氨水,经氨水 雾化喷淋后烟气温度降低至110-120℃。烟气温度的降低减少了处理烟气量,同时雾化喷淋加入的氨水,为后续等离子激发生产更多的·O、·OH和·NH 2等创造了条件,雾化氨水会与烟气中的SO 2、NO 2等酸性气体反应生成硫酸铵和硝酸铵等副产物,另外,NH 3在等离子单元中被激发生成的·NH 2可以实现NO x的部分还原。从而提高了低温等离子反应单元的效率。向本发明中投入烃类气体,烃类气体可以被低温等离子反应单元中的高能电子激发出强氧化性的自由基,可以提高NO x的去除效率,从而降低低温等离子体反应单元的能耗。本发明可设置有两个投加单元,分别用于投加雾化氨水和烃类气体。通过投加单元向烟气中添加的氨与SO 2、NO x的当量比为0.8~1,氨与SO 2、NO x为不完全反应,再通过喷淋降温单元和湿式污染物收集单元的收集,能大幅降低氨气的逃逸;通入有雾化氨液的烟气,湿度提高的烟气在进入低温等离子反应单元后利于提高·OH的生成量,提高了低温等离子反应单元的氧化效率。
本发明的有益效果:
1、壳体位于所述进气口的一侧设有一气体投放口;通过所述气体投放口向烟气中通入一定利于烟气净化的物质与烟气混合均匀后进入至低温等离子反应单元,所述喷淋降温单元的第一喷头喷射碱溶液对烟气降温的同时,烟气由不饱和向饱和转化析出大量微小雾滴,烟气和饱和雾滴分别与喷淋的碱溶液发生中和反应,碱溶液有效吸收一部分酸性气体和饱和雾滴,因此本发明在同一壳体内完成了烟气的低温等离子反应、烟气降温、湿式污染物收集,烟气焚烧垃圾烟气从壳体的进气一端进入,净化达到排放标准的烟气从壳体的出气一端排出,一方面提高了本发明设备的集成性,所有的处理步骤在壳体内各单元完成,减少各单元之间的管路连接,节省安装,防止待处理和处理过程中烟气及添加气体的逸出,具有良好的气密性和安全性;
2、本发明中碱液供应单元提供喷淋降温单元用于降温和吸收酸性物质的碱溶液和湿式污染物收集单元用于吸收酸性物质所使用的碱溶液,壳体内喷淋降温单元和湿式污染物收集单元用于降温和污染物收集的碱溶液在所述壳体的收集部集中收集,并重新回流至碱液供应单元,实现碱溶液的循环重复利用,减少碱溶液的使用量,降低运行成本,减小设备占用空间,方便安装和使用;
3、本发明壳体单元之间无需管道连接,大量烟气在本发明的壳体中连续顺畅流动通过各功能单元,利于本发明实现大烟气量处理,处理烟气能力在6000m 3/h以上,基本覆盖全部的垃圾焚烧锅炉、生物质燃烧炉烟气量。
从而实现本发明的上述目的。
附图说明
图1为本发明一种低温等离子处理垃圾焚烧锅炉烟气的一体化装置的结构示意图;
图2为本发明一种低温等离子处理垃圾焚烧锅炉烟气的一体化装置壳体的立体图;
图3为本发明一种低温等离子处理垃圾焚烧锅炉烟气的一体化装置的壳体剖视图;
图4为本发明一种低温等离子处理垃圾焚烧锅炉烟气的一体化装置的气流分布板的主视图;
图5是本发明中气流分布板的立体图;
图6为本发明中进入壳体中的烟气经过气流分布板后烟气的分布情况示意图;
图7是图1中A处放大图。
图中:
壳体100;进气口101;出气口102;气体投放口103;收集部104;低温等离子 反应单元110;喷淋降温单元120;第一喷头121;湿式污染物收集单元130;第二喷头131;高频电源132;阴极线133;阳极板134;碱液供应单元140;循环水箱141;第一水泵142;第二水泵143;气流分布板150;板体151;气孔152;第一气孔1521;第二气孔1522;导流板153;水平板1531;倾斜板1532;集水箱160;烟道阻流装置170;阻流板171;遮挡板172;投加单元180。
具体实施方式
为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。
本实施例公开低温等离子处理垃圾焚烧锅炉烟气一体化装置,如图1至图7所示,包括具有进气口101和出气口102的壳体100,沿着烟气移动的方向,壳体100内依次分隔有低温等离子反应单元110、喷淋降温单元120和湿式污染物收集单元130;
所述壳体100位于所述进气口101的一侧设有一气体投放口103;所述湿式污染物收集单元130对应的所述壳体100底部设有收集部104,所述收集部104连通一碱液供应单元140;所述喷淋降温单元120设有多个第一喷头121;所述湿式污染物收集单元130设有多个第二喷头131;所述第一喷头121和所述第二喷头131分别连通所述碱液供应单元140的出液一端。
本实施例壳体100位于所述进气口101的一侧设有一气体投放口103;用于通入一定利于烟气净化的物质与烟气混合均匀进入至低温等离子反应单元110,所述喷淋降温单元120的第一喷头121喷射碱溶液对烟气降温,烟气由不饱和向饱和转化析出大量微小雾滴;同时,烟气和饱和雾滴与喷淋的碱溶液发生中和反应,碱溶液有效吸收一部分酸性气体和饱和雾滴,因此本实施例在同一壳体100内完成了烟气的低温等离子反应、烟气降温、湿式污染物收集,焚烧垃 圾烟气从壳体100的进气一端进入,净化达到排放标准的烟气从壳体100的出气一端排出,一方面提高了本实施例设备的集成性,所有的处理步骤在壳体100内各单元完成,减少各单元之间的管路连接,节省安装,防止待处理和处理过程中烟气以及添加气体的逸出,本实施例具有良好的气密性和安全性;碱液供应单元140提供喷淋降温单元120用于降温和吸收酸性物质的碱溶液和湿式污染物收集单元130用于吸收酸性物质所使用的碱溶液,在壳体100内喷淋降温单元120和湿式污染物收集单元130用于降温和污染物收集的碱溶液在所述壳体100的收集部104集中收集,并重新回流至碱液供应单元140,实现碱溶液的循环重复利用,减少碱溶液的使用量,降低运行成本,减小设备占用空间,方便安装和使用;本实施例各单元之间连接不存在管道连接,大量烟气在本实施例的壳体100中连续顺畅的流动,利于本实施例实现大烟气量处理,处理烟气能力在6000m 3/h以上,基本覆盖全部的垃圾焚烧锅炉、生物质燃烧炉烟气量。
本实施例中所述壳体100内在所述气体投放口103和所述低温等离子反应单元110之间装有一气流分布板150。气流分布板150对从进气口101和气体投放口103集中进入壳体100内的大量气体起到一定的阻挡作用,一部分烟气直接通过气流分布板150,另一部分烟气沿着气流分布板150向着气流分布板150表面向着其边缘移动,烟气在移动的过程中通过所述气流分布板150,在烟气进入低温等离子反应单元110之前,均匀烟气的分布,稳定烟气的流速,利于烟气在低温等离子反应单元110中的反应。如图6所示,烟气均匀包括沿着板体151的高度方向的移动,如图中板体151左侧向上和向下的箭头所示,还包括沿着板体151的长度方向向板体151长度的两端移动,如图6中的○所示。
本实施例中所述气流分布板150包括板体151,板体151设有气孔152;所述板体151的开孔率为40%至60%;
所述气流分布板150朝向所述低温等离子反应单元110的一侧还设有多片从上至下设置的导流板153,所述导流板153包括位于所述板体151中间的水平板1531和位于所述水平板1531两侧的多片倾斜板1532,位于所述水平板1531同一侧的所述倾斜板1532等角度向着所述板体151倾斜设置,倾斜板1532的等角度倾斜可以为10°或者20°或者30°。最上端和最下端的倾斜板1532与壳体100进气倾斜的侧壁相配合,均匀分布的导流板153保证了烟气分布均匀、流速稳定、流向水平向低温等离子反应单元110流动,利于提高所述低温等离子反应单元110去除效率;相比较于不安装气流分布板150,本实施例去除污染物的效率提高10%至15%。本实施例中可设置有开孔率为40%和60%的两气流分布板150连用,如烟气经过两气流分布板150使得烟气在壳体100中气流分布板150以及其垂直方向所构成的空间内均匀分布,即烟气在低温等离子反应单元110中分布均匀。本实施例中由于设置有气流分布板150,一旦进入壳体100中的烟气流速过快,则气流分布板150会在一定程度上阻碍进入低温等离子反应单元110中的烟气量,从而实现对壳体100中烟气流速的调节。
本实施例中所述板体151的气孔152包括第一气孔1521和第二气孔1522,所述第一气孔1521用于透过烟气的面积较第二气孔1522透过烟气的面积小;沿着水平方向,所述第一气孔1521位于所述板体151的中部位置,所述第二气孔1522分布于所述第一气孔1521的两侧。本实施例中由于位于板体151中部的第一气孔1521通过烟气的面积较位于板体151两侧的第二气孔1522的面积大,大量的烟气不能从位于正对进气口101位置板体151的第一气孔1521通过,不能及时通过的烟气会沿着板体151移动,如图6所示,烟气沿着气流分布板150上下移动的同时在垂直图纸表面的移动,从而从本体左右两侧更易通过的第二气孔1522通过;第一气孔1521处烟气量较大,但是透过面积小;第二气孔 1522处烟气量相对较小,但是透过面积大;因此整个气流分布板150通过烟气均匀且均衡。优选板体151的开孔率在40%至60%之间,优选板体151的开孔率用于调节气体烟气的流速。
本实施例中所述气孔152透过烟气的面积从所述板体151的中心位置向所述板体151的边缘位置逐渐增大。所述气孔152透过烟气的面积为S,所述板体151上气孔152与板体151中心点的距离为D,S与D呈正比;即用气孔152的透过烟气的面积将进入低温等离子反应单元110的烟气在整个气流分布板150上进行流速的调节和分布的均衡。
本实施例中所述喷淋降温单元120对应所述壳体100的底部由所述低温等离子反应单元110向所述湿式污染物收集单元130倾斜;所述收集部104与所述喷淋单元对应的所述壳体100底部连接;还包括一集水箱160;所述碱液供应单元140包括循环水箱141、第一水泵142和第二水泵143,所述第一水泵142管路连通所述第一喷头121,所述第二水泵143管路连通所述第二喷头131;所述集水箱160分别连通所述湿式污染物收集单元130对应的收集部104和所述碱液供应单元140的所述循环水箱141。本实施例通过同一个碱液供应单元140同时供应所述喷淋降温单元120和所述湿式污染物收集单元130所需要的碱溶液,一方面提高了本实施例设备集成度高,减小设备体积,方便设备安装;另一方面,所述喷淋降温单元120中第一喷头121喷淋出的溶液经所述喷淋单元对应所述壳体100的倾斜底部流入至所述收集部104,所述湿式污染物收集单元130中第二喷头131喷淋的碱溶液冲洗过用于收集污染物的阳极板134后流入收集部104,收集部104中的碱溶液流入集水箱160,集水箱160连通循环水箱141,可以在集水箱160中对收集部104收集的污水进行除杂,调节PH值等操作,能够重新用于碱液供应单元140使用的碱溶液流入至循环水箱141中,第一水泵 142和第二水泵143分别将循环水箱141中的碱溶液泵入至第一喷头121和第二喷头131中,实现碱液的够循环利用,减少水资源的使用,减少原料和能源的使用,降低成本。
本实施例中所述壳体100内还装有一烟道阻流装置170,所述烟道阻流装置170位于所述低温等离子反应单元110的出气侧和所述喷淋降温单元120之间。本实施例直接连接在垃圾焚烧炉的烟道上,需要连续稳定的处理烟气,因此喷淋降温单元120中的第一喷头121也会持续向壳体100内喷淋碱溶液,用于低温等离子反应单元110排出烟气的降温;低温等离子反应单元110排出的烟气温度在110℃,经过喷淋降温单元120后烟气降温至60-68℃的范围内,烟气中形成了一定量的饱和烟气;为了防止第一喷头121喷出的碱液喷入至低温等离子反应单元110,也防止经过喷淋后的饱和烟气回流进入至低温等离子反应单元110,对低温等离子反应单元110中的设备产生腐蚀和损害,设有烟道阻流装置170。
本实施例中所述烟道阻流装置170为一竖直设置的阻流板171,所述阻流板171成行设有透过孔,在每一行透过孔的上部固连有一倾斜设置的遮挡板172;所述遮挡板172的上端固连于所述阻流板171,所述遮挡板172下端为伸向所述喷淋降温单元120的自由端。第一喷头121广角喷射出的碱溶液和经过喷淋降温单元120获得的饱和烟气由于遮挡板172的遮挡,防止饱和烟气回流和第一喷头121喷出的碱液进入至低温等离子反应单元110。
本实施例中所述湿式污染物收集单元130还包括高频电源132、与高频电源132电连接的阴极线133和阳极板134,其中阴极线133和阳极板134平行设置;所述第二喷头131均匀分布在所述壳体100内顶部,位于所述阳极板134的上方;本实施例中阴极线133、阳极板134与高频电源132配合,雾滴、尘、氧化 汞等经电场力作用后收集在阳极板134表面;湿式污染物收集单元130通过喷淋、电场力脱除,实现亚微米级物质的捕捉,同时对尘、氧化汞等也具有良好的吸收能力。相邻两第二喷头131之间的距离为500至800mm。本实施例中为了提高净化效果,第二喷嘴呈矩形点阵分布,前后或者左右两相邻两第二喷头131之间的距离为500至800mm,实现无死角喷淋,所述喷淋降温所用水为弱碱性循环水,达到吸收一部分酸性气体的目的,同时也保证阳极板134、阴极线133不被酸性气体腐蚀,在阳极板134形成水膜后,沉积的多种污染物经第二喷头131喷淋出碱溶液的冲洗,防止影响湿式污染物收集单元130的收集效果。
本实施例中还包括投加单元180,所述投加单元180包括储罐、空压机和气罐,所述储罐通过双流体雾化喷枪与所述投放口连接。可通过投加单元180向烟气中通入雾化氨水或者是烃类气体。经过投加单元180向本实施例中投入雾化氨水,经氨水雾化喷淋后烟气温度降低至110-120℃。烟气温度的降低减少了处理烟气量,同时雾化喷淋加入的氨水,为后续等离子激发生产更多的·O、·OH和·NH 2等创造了条件,雾化氨水会与烟气中的SO 2、NO 2等酸性气体反应生成硫酸铵和硝酸铵等副产物,另外,NH 3在等离子单元中被激发生成的·NH 2可以实现NO x的部分还原。从而提高了低温等离子反应单元110的效率。向本实施例中投入烃类气体,烃类气体可以被低温等离子反应单元110中的高能电子激发出强氧化性的自由基,可以提高NO x的去除效率,从而降低低温等离子体反应单元的能耗。本实施例可设置有两个投加单元180,分别用于投加雾化氨水和烃类气体。通过投加单元180向烟气中添加的氨与SO 2、NO x的当量比为0.8-1,氨与SO 2、NO x为不完全反应,再通过喷淋降温单元120和湿式污染物收集单元130的收集,能大幅降低氨气的逃逸;通入有雾化氨液的烟气,湿度提高的烟气在进入低温等离子反应单元110后利于提高·OH的生成量,提高了低温等离子反应单元110 的氧化效率。
本实施例的工作过程为:
焚烧锅炉中产生的烟气经进气口101进入至壳体100中,与经过投加单元180加入至壳体100中的雾化氨水和烃类气体进行混合,混合后的烟气经过一块至两块气流分布板150均匀壳体100中烟气在立体空间内的分布;
经过均匀分布的烟气流动至低温等离子反应单元110,低温等离子反应单元110主要包括等离子电源、反应极和放电极等。低温等离子反应单元110通过等离子电源放电产生高能电子与混合烟气中的氧气、水分子和NH 3发生非弹性碰撞,激发产生·O、·OH和·NH 2等,一方面二噁英气体分子因高能电子撞击发生分子键断裂而分解;另一方面,·O和·OH具有很强的氧化性,实现二噁英、SO 2、NO x、Hg0的氧化。氧化后的酸性气体等物质进一步与过量的氨气反应生成铵盐混合在烟气中;
上述烟气从低温等离子反应单元110中排出后经过喷淋降温单元120,喷淋降温单元120一方面吸收烟气中的酸性物质和盐颗粒,另一方面实现对烟气的降温;烟气经喷淋降温后,温度迅速降低,由不饱和烟气向饱和烟气转化,析出大量微小水雾滴;同时SO 3由气态转化为雾滴。未反应的NO 2和NH 3等迅速溶于水并被弱碱性溶液吸收。
经过喷淋降温单元120的烟气通过湿式污染物收集单元130,湿式污染物收集单元130的阴阳极系统和高效高频电源132组合成,将雾滴、尘、氧化汞等经电场力作用后再由所述单元水处理循环系统的弱碱性溶液吸收。
净化后的烟气经过引风机通过烟囱排入大气中。
本实施例能够实现各种烟气量的处理,覆盖4000~8000m 3/h烟气处理量,基 本覆盖全部的垃圾焚烧锅炉、生物质燃烧炉烟气量;本实施例可实现二氧化硫、氮氧化物、尘、二噁英及HCl等多种污染物的同步、高效脱除,脱除效率高,可实现脱除效率90%以上。
选取某地一生活垃圾焚烧电厂做试验,现有的烟气处理工艺为半干法+活性炭+布袋除尘+烟囱外排。从布袋除尘后端引600000m 3/h烟气通入本实施例的一体化装置中,其中通过投加单元180向烟气中添加的氨与SO 2、NO x的当量比为0.8,烃类投入烟气中的量根据进口烟气NO X浓度摩尔比为0.6。第二喷头131之间的距离为500mm。
经过本实施例处理的烟气中各污染物的数据如表1所示
表1 本实施例处理烟气中污染物情况数据
污染物 进气口 经过喷淋降温单元 出气口
SO 2(mg/Nm 3) 26.4 2.0 1.3
NO X(mg/Nm 3) 105.7 65.3 42.1
二噁英(ng-TEQ) 0.105 0.042 0.040
HCl(mg/Nm 3) 15.2 3.1 2.0
颗粒物 12.3 8.1 2.3
Hg及其化合物 126 35 14
可实现垃圾焚烧烟气的深度综合净化,可实现垃圾焚烧烟气的深度综合净化,NO X<50mg/Nm 3,SO 2<35mg/Nm 3,二噁英TEQ<0.08ng/Nm 3,净化效果好,净化效率高。
上述实施例并非限定本实施例的产品形态和式样,任何所属技术领域的普通技术人员对其所做的适当变化或修饰,皆应视为不脱离本实施例的专利范畴。

Claims (10)

  1. 低温等离子处理垃圾焚烧锅炉烟气一体化装置,其特征在于:包括具有进气口(101)和出气口(102)的壳体(100),沿着烟气移动的方向,壳体(100)内依次分隔有低温等离子反应单元(110)、喷淋降温单元(120)和湿式污染物收集单元(130);
    所述壳体(100)位于所述进气口(101)的一侧设有一气体投放口(103);所述湿式污染物收集单元(130)对应的所述壳体(100)底部设有收集部(104),所述收集部(104)连通一碱液供应单元(140);所述喷淋降温单元(120)设有多个第一喷头(121);所述湿式污染物收集单元(130)设有多个第二喷头(131);所述第一喷头(121)和所述第二喷头(131)分别连通所述碱液供应单元(140)的出液一端。
  2. 如权利要求1所述的低温等离子处理垃圾焚烧锅炉烟气一体化装置,其特征在于:所述壳体(100)内在所述气体投放口(103)和所述低温等离子反应单元(110)之间装有一气流分布板(150)。
  3. 如权利要求2所述的低温等离子处理垃圾焚烧锅炉烟气一体化装置,其特征在于:所述气流分布板(150)包括板体(151),板体(151)设有气孔(152);所述板体(151)的开孔率为40%至60%;
    所述气流分布板(150)朝向所述低温等离子反应单元(110)的一侧还设有多片从上至下设置的导流板(153),所述导流板(153)包括位于所述板体(151)中间的水平板(1531)和位于所述水平板(1531)两侧的多片倾斜板(1532),位于所述水平板(1531)同一侧的所述倾斜板(1532)等角度向着所述板体(151)倾斜设置。
  4. 如权利要求3所述的低温等离子处理垃圾焚烧锅炉烟气一体化装置,其 特征在于:所述板体(151)的气孔(152)包括第一气孔(1521)和第二气孔(1522),所述第一气孔(1521)用于透过烟气的面积较第二气孔(1522)透过烟气的面积小;沿着水平方向,所述第一气孔(1521)位于所述板体(151)的中部位置,所述第二气孔(1522)位于所述第一气孔(1521)的两侧。
  5. 如权利要求4所述的低温等离子处理垃圾焚烧锅炉烟气一体化装置,其特征在于:所述气孔(152)透过烟气的面积从所述板体(151)的中心位置向所述板体(151)的边缘位置逐渐增大。
  6. 如权利要求1所述的低温等离子处理垃圾焚烧锅炉烟气一体化装置,其特征在于:所述喷淋降温单元(120)对应所述壳体(100)的底部由所述低温等离子反应单元(110)向所述湿式污染物收集单元(130)倾斜;所述收集部(104)与所述喷淋单元对应的所述壳体(100)底部连接;
    还包括一集水箱(160);
    所述碱液供应单元(140)包括循环水箱(141)、第一水泵(142)和第二水泵(143),所述第一水泵(142)管路连通所述第一喷头(121),所述第二水泵(143)管路连通所述第二喷头(131);
    所述集水箱(160)分别连通所述湿式污染物收集单元(130)对应的收集部(104)和所述碱液供应单元(140)的所述循环水箱(141)。
  7. 如权利要求1所述的低温等离子处理垃圾焚烧锅炉烟气一体化装置,其特征在于:所述壳体(100)内还装有一烟道阻流装置(170),所述烟道阻流装置(170)位于所述低温等离子反应单元(110)的出气侧和所述喷淋降温单元(120)之间。
  8. 如权利要求7所述的低温等离子处理垃圾焚烧锅炉烟气一体化装置,其 特征在于:所述烟道阻流装置(170)为一竖直设置的阻流板(171),所述阻流板(171)成行设有透过孔,在每一行透过孔的上部固连有一倾斜设置的遮挡板(172);所述遮挡板(172)的上端固连于所述阻流板(171),所述遮挡板(172)下端为伸向所述喷淋降温单元(120)的自由端。
  9. 如权利要求1所述的低温等离子处理垃圾焚烧锅炉烟气一体化装置,其特征在于:所述湿式污染物收集单元(130)还包括高频电源(132)、与高频电源(132)电连接的阴极线(133)和阳极板(134),其中阴极线(133)和阳极板(134)平行设置;所述第二喷头(131)均匀分布在所述壳体(100)内顶部,位于所述阳极板(134)的上方;相邻两第二喷头(131)之间的距离为500至800mm。
  10. 如权利要求1所述的低温等离子处理垃圾焚烧锅炉烟气一体化装置,其特征在于:还包括投加单元(180),所述投加单元(180)包括储罐、空压机和气罐,所述储罐通过双流体雾化喷枪与所述投放口连接。
PCT/CN2019/116673 2018-09-08 2019-11-08 低温等离子处理垃圾焚烧锅炉烟气一体化装置 WO2020098576A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811046701 2018-09-08
CN201811358669.2A CN109621665A (zh) 2018-09-08 2018-11-15 低温等离子处理垃圾焚烧锅炉烟气一体化装置
CN201811358669.2 2018-11-15

Publications (1)

Publication Number Publication Date
WO2020098576A1 true WO2020098576A1 (zh) 2020-05-22

Family

ID=66068101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116673 WO2020098576A1 (zh) 2018-09-08 2019-11-08 低温等离子处理垃圾焚烧锅炉烟气一体化装置

Country Status (2)

Country Link
CN (1) CN109621665A (zh)
WO (1) WO2020098576A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109621665A (zh) * 2018-09-08 2019-04-16 浙江大维高新技术股份有限公司 低温等离子处理垃圾焚烧锅炉烟气一体化装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716648A (zh) * 2012-05-16 2012-10-10 北京航空航天大学 基于pH值和ORP值自动控制的烟气脱硫脱硝方法及其装置
KR20140045794A (ko) * 2012-10-09 2014-04-17 한국기계연구원 정전 복합형 통합 오염가스 처리 시스템
CN204563918U (zh) * 2015-04-16 2015-08-19 大连海顺重工环保设备有限公司 脱硫塔烟气均流装置
CN108722141A (zh) * 2018-04-26 2018-11-02 浙江大维高新技术股份有限公司 一种脱硫脱硝除尘一体化方法
CN109621665A (zh) * 2018-09-08 2019-04-16 浙江大维高新技术股份有限公司 低温等离子处理垃圾焚烧锅炉烟气一体化装置
CN209271171U (zh) * 2018-09-08 2019-08-20 浙江大维高新技术股份有限公司 低温等离子处理垃圾焚烧锅炉烟气一体化装置
CN110193275A (zh) * 2018-09-08 2019-09-03 浙江大维高新技术股份有限公司 一种垃圾焚烧烟气净化方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716648A (zh) * 2012-05-16 2012-10-10 北京航空航天大学 基于pH值和ORP值自动控制的烟气脱硫脱硝方法及其装置
KR20140045794A (ko) * 2012-10-09 2014-04-17 한국기계연구원 정전 복합형 통합 오염가스 처리 시스템
CN204563918U (zh) * 2015-04-16 2015-08-19 大连海顺重工环保设备有限公司 脱硫塔烟气均流装置
CN108722141A (zh) * 2018-04-26 2018-11-02 浙江大维高新技术股份有限公司 一种脱硫脱硝除尘一体化方法
CN109621665A (zh) * 2018-09-08 2019-04-16 浙江大维高新技术股份有限公司 低温等离子处理垃圾焚烧锅炉烟气一体化装置
CN209271171U (zh) * 2018-09-08 2019-08-20 浙江大维高新技术股份有限公司 低温等离子处理垃圾焚烧锅炉烟气一体化装置
CN110193275A (zh) * 2018-09-08 2019-09-03 浙江大维高新技术股份有限公司 一种垃圾焚烧烟气净化方法及装置

Also Published As

Publication number Publication date
CN109621665A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN101337153B (zh) 超声波一体化脱硫脱硝脱汞方法及其装置
CN101716463B (zh) 电催化氧化联合石灰-石膏法的多种污染物同时脱除装置及方法
WO2005028082A1 (fr) Procede de nettoyage a sec de gaz de combstion et systeme correspondant pour les operations simultanees de desulfuration et de denitruration
CN104759192A (zh) 一种低成本燃煤烟气多种污染物超低排放系统及方法
WO2020098574A1 (zh) 一种垃圾焚烧烟气净化方法及装置
CN103506002B (zh) 二段式双循环喷淋填料复合吸收塔
CN105214465A (zh) 一体化湿法烟气脱硫除尘的装置和方法
CN102274680A (zh) 流光放电氨法烟气脱硫脱硝除雾一体化方法
CN103776042A (zh) 一种具有防尘脱硝功能的co锅炉
CN113941238A (zh) 低温烟气污染物一体化控制方法
CN102008882A (zh) 对电厂烟气进行脱硝的Fenton试剂及利用其进行脱硝的方法
CN103776013B (zh) 具有除灰功能的co锅炉
CN204582930U (zh) 一种低成本燃煤烟气多种污染物超低排放系统
CN106474886A (zh) 一种低温等离子体联合两级动力波的工业废气净化装置
WO2020098576A1 (zh) 低温等离子处理垃圾焚烧锅炉烟气一体化装置
CN209271171U (zh) 低温等离子处理垃圾焚烧锅炉烟气一体化装置
CN209934440U (zh) 民用取暖锅炉脱硫脱硝系统
CN205032080U (zh) 一种干式烟气脱硫脱硝除尘一体化净化系统
CN105126591B (zh) 一种基于动态反应区的高效半干法脱硫工艺
CN115090091B (zh) 一种利用柠檬酸脱除垃圾焚烧烟气中逃逸氨的装置及方法
CN202845023U (zh) 一种scr脱硝催化剂的热处理再生装置
CN205055799U (zh) 一体化湿法烟气脱硫除尘的装置
CN212440689U (zh) 一种整流格栅式脱硫脱硝、酸雾脱除装置
CN109529575B (zh) 民用取暖锅炉脱硫脱硝系统
CN212369887U (zh) 一种高能电子束辐照处理反应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883429

Country of ref document: EP

Kind code of ref document: A1