WO2020098574A1 - 一种垃圾焚烧烟气净化方法及装置 - Google Patents

一种垃圾焚烧烟气净化方法及装置 Download PDF

Info

Publication number
WO2020098574A1
WO2020098574A1 PCT/CN2019/116665 CN2019116665W WO2020098574A1 WO 2020098574 A1 WO2020098574 A1 WO 2020098574A1 CN 2019116665 W CN2019116665 W CN 2019116665W WO 2020098574 A1 WO2020098574 A1 WO 2020098574A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
gas
temperature plasma
waste incineration
unit
Prior art date
Application number
PCT/CN2019/116665
Other languages
English (en)
French (fr)
Inventor
翁林钢
施小东
申秋德
戚科技
汤宣林
Original Assignee
浙江大维高新技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大维高新技术股份有限公司 filed Critical 浙江大维高新技术股份有限公司
Publication of WO2020098574A1 publication Critical patent/WO2020098574A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds

Definitions

  • the invention relates to the technical field of air pollution purification, in particular to a method and device for purification of waste incineration flue gas.
  • WFGD wet limestone / gypsum desulfurization
  • SCR and SNCR are widely used in denitration technology. SCR has a high degree of process maturity and can meet the needs of various flue gas denitrification. Due to the characteristics of flue gas from waste incinerators, fouling is prone to occur. SNCR has certain limitations on removal efficiency. For the dioxin and Hg0 produced in the process of waste incineration, it is difficult to remove it by general technology.
  • the carbon adsorption process has the problems of high cost and a large amount of solid waste.
  • the treatment of waste incinerator flue gas adopts multi-stage treatment equipment technology, and the treatment technology of each stage equipment mainly removes individual pollutants; the treatment system process is complex, the installation space is large, and the investment and operating costs are high.
  • the ultra-clean emission of waste incinerator flue gas has become a technically feasible difficulty and an important issue. Therefore, developing technologies that can simultaneously remove multiple pollutants from waste incinerator flue gas to achieve deep purification of flue gas has become a research hotspot in recent years.
  • the purpose of the present invention is to provide a waste incineration flue gas purification method, which comprehensively purifies and treats various pollutants by the method of the present invention without secondary pollution.
  • the technical solution of the present invention is: a method for purifying waste incineration flue gas, including the following steps
  • step B Use the low temperature plasma to purify the mixed flue gas discharged from step A;
  • the mixed flue gas enters the low temperature plasma reactor, and the pollutants in the flue gas undergo redox reaction or decomposition reaction under the action of low temperature plasma;
  • Step B discharges the flue gas to cool down and convert from unsaturated flue gas to saturated flue gas. As the spraying progresses, the saturated flue gas precipitates the droplet solution and the spray liquid contacts and mixes ;
  • step D The combination of electric field force and alkaline solution spraying removes the chargeable substances and acid gases in the flue gas discharged in step C to obtain a deep comprehensive purification of flue gas;
  • Step C discharges the chargeable substances in the flue gas and gathers them under the action of the electric field force, sprays the alkaline solution to wash the accumulated chargeable substances and drains them out, and the alkaline solution neutralizes the acid gas in the flue gas to form salts Substances are directly dissolved in the solution to obtain comprehensive purification of flue gas.
  • the time of the low-temperature plasma treatment in the step B is 1.5 s to 3 s, and the voltage is 70 kV to 82 kV.
  • the reaction time in the low-temperature plasma reactor refers to the action time of pollutants in the reaction zone. The longer the time, the higher the efficiency, the higher the reactor voltage, the higher the energy that can be injected, and the higher the injected energy, the higher the removal efficiency.
  • the most preferred process parameters of step B in the present invention are: time 2s, voltage 80kV; the above process parameters cooperate with other processes to achieve the best purification effect on flue gas. In the present invention, all flue gas is affected by strong pulse corona, and no flue gas escapes.
  • the pollutants to be removed in the flue gas are either converted into harmless substances, or removable particulates or aerosols, or gaseous substances soluble in water.
  • the reactor does not require an oxygen preparation system, reducing equipment access.
  • the solution for cooling the flue gas in step C is an alkaline solution.
  • Use an alkaline solution to cool the flue gas after the low-temperature plasma is used in step C.
  • the sprayed saturated alkaline solution can dissolve and absorb the acid gas in the flue gas, such as NO 2 , SO 2 , HCl, HF ,
  • the acid gas dissolved in the saturated alkaline solution reacts with the alkaline solution to promote the purification and absorption of the acid gas in the flue gas.
  • the spray cooling in step C is equivalent to pre-cooling the flue gas, which is beneficial to improve the removal of chargeable substances and acid gases in the flue gas discharged in step C by combining electric field force and alkaline solution spraying Way to achieve the efficiency of wet absorption.
  • the alkaline solution in step C and step D is provided by the same alkaline solution supply system; the pH value of the alkaline solution is 9 to 10.5; the alkaline solution is a NaOH solution or a NaHCO 3 solution.
  • the alkaline solution is a NaOH solution or a NaHCO 3 solution.
  • the liquid-gas ratio of the alkaline solution sprayed in step D to flue gas is 6L / m 3 to 9.5L / m 3 ; the flue gas step D treatment time is 2 to 4s; by using the above process conditions, after Step D sprays the flue gas to lower the temperature and absorb acid gas.
  • the flue gas temperature after step D is 50 ° C to 65 ° C.
  • the flue gas is separated from the 100 ° C unsaturated flue gas to saturated flue gas during the process.
  • step D through continuous alkaline solution spraying and electric field defogging and particle removal, aerosols, particulate matter, acid mist droplets, salt-containing mist droplets, mercury oxide, etc. in the flue gas are removed by electric field adsorption to achieve deep integration of flue gas Purification.
  • the waste liquid generated in steps C and D is collected in step D.
  • the waste liquid generated in step C and step D is processed together, thereby reducing the waste liquid treatment process and improving the efficiency of waste liquid treatment.
  • the synergistic gas is atomized ammonia; the equivalent ratio of ammonia to NO x and SO 2 in step A is 0.6 to 1.
  • Ammonia water is atomized into the flue gas through the two-fluid nozzle, the atomized ammonia water is quickly gasified and mixed with the flue gas, and the humidity and temperature of the flue gas are adjusted and tempered; at the same time, a small amount of ammonia gas and acid gas NO 2 , SO
  • the second- class reaction produces powdery ammonium salt particles, which makes the acid gas that is polluting the environment and difficult to capture and collect converted into salt particles.
  • the salt particles are dissolved and collected through steps C and C; a large amount of ammonia gas passes through the flue gas In the low-temperature plasma reactor in step B, a part of it generates ammonia radicals to achieve a reduction reaction for nitrogen oxides, and the other part in step B continues to react with NO 2 and SO 2 into ammonium salts to continuously purify the flue gas.
  • the ammonia gas by adding atomized ammonia gas to the flue gas, the ammonia gas vaporizes and absorbs the heat of the flue gas during the flue gas contact process to achieve flue gas temperature reduction and appropriately reduce the temperature, free radicals and O 3 of the low temperature plasma reaction unit The higher the ambient temperature, the faster the decomposition rate.
  • atomizing ammonia also adjusts the humidity of the flue gas and increases the number of water molecules in the flue gas, which is beneficial to More hydroxyl radicals ( ⁇ OH) are generated in the low-temperature plasma reactor, increasing the plasma concentration, promoting the redox reaction of NO, SO 2 and elemental mercury in the flue gas, and dioxins are decomposed into small molecules , Improve the flue gas purification effect of the present invention.
  • the beneficial effects of the present invention are: the above technical solutions achieve the simultaneous removal of pollutants such as NO X , SO 2 , dioxins and elemental mercury; reduce the pollutant emission concentration to meet ultra-low emission standards; investment And operating costs are lower than conventional low-temperature SCR; stable operation and simple maintenance.
  • pollutants such as NO X , SO 2 , dioxins and elemental mercury
  • the present invention contains NO x in the flue, SO 2, dioxins, elemental mercury garbage incinerator flue dust and gas mixing efficiency, a mixed gas added efficiency flue gas temperature is adjusted to 100 deg.] C to 120 deg.] C, into the cryogenic facilitate
  • the plasma reaction unit produces low-temperature plasma, which includes oxygen radicals, hydroxyl radicals, O 3 and NH 2 radicals, nitrogen radicals and so on. Oxygen free radicals, hydroxyl free radicals, and O 3 have strong oxidizing properties and produce strong oxidation reactions. NH 2 radicals and nitrogen radicals have a strong reducibility to NO.
  • NO is converted into NO 2 , ammonium nitrate, or reduced to nitrogen, etc .
  • SO 2 is oxidized to SO 3 or reacted with NH 3 to be converted to ammonium sulfate
  • dioxin is converted to CO 2.
  • Small inorganic molecules such as H 2 O and HCl; elemental Hg is oxidized to HgO or HgCl 2 respectively;
  • the flue gas containing the above substances is sprayed and cooled by the alkaline solution, part of the pollutants in the flue gas are dissolved in the liquid; the charged pollutants in the flue gas are captured by the electric field force to the dust collecting plate, followed by The droplets flow into the circulating liquid, and at the same time, the sprayed alkaline solution absorbs the acid gas in the flue gas, and some compounds soluble in the alkaline solution are also dissolved through the alkaline solution to achieve the capture of harmful substances At the same time, the alkaline solution sprayed can also prevent the acid gas in the flue gas from corroding the equipment.
  • the present invention reduces the temperature of the flue gas entering the low-temperature plasma reaction unit by mixing the synergistic gas into the flue gas, which is equivalent to appropriately lowering the temperature of the low-temperature plasma reaction unit.
  • the higher the temperature of free radicals and O 3 the faster the decomposition rate.
  • Properly lowering the temperature of the low-temperature plasma reaction unit can extend the survival time of free radicals and O 3 and enhance the effect of low-temperature plasma on the decomposition of various pollutants.
  • Another object of the present invention is to provide a garbage incineration flue gas purification device.
  • the invention can save installation space and simultaneously remove various pollutants without secondary pollution.
  • the technical solution of the present invention is: a device for realizing the method for purifying waste incineration flue gas in the above invention, which includes a housing with an air inlet and an air outlet, along the direction of flue gas movement, inside the housing The low-temperature plasma reaction unit, the spray cooling unit and the wet pollutant collection unit are sequentially separated;
  • the housing is provided with a gas inlet on one side of the air inlet; the bottom of the housing corresponding to the wet pollutant collection unit is provided with a collection portion, and the collection portion communicates with an alkaline liquid supply unit;
  • the spray cooling unit is provided with a plurality of first spray heads; the wet pollutant collection unit is provided with a plurality of second spray heads; the first spray head and the second spray head are respectively connected to the liquid output of the alkaline liquid supply unit One end.
  • a gas flow distribution plate is installed in the housing between the gas inlet and the low-temperature plasma reaction unit; the air flow distribution plate is also provided with a plurality of pieces from above on the side facing the low-temperature plasma reaction unit
  • a deflector plate arranged downward, the deflector plate includes a horizontal plate located in the middle of the plate body and a plurality of inclined plates located on both sides of the horizontal plate, the inclined plates located on the same side of the horizontal plate, etc. The angle is inclined toward the board.
  • the air flow distribution plate plays a certain role in blocking a large amount of gas concentrated into the casing from the air inlet and the gas inlet.
  • the flue gas passes through the air flow distribution plate during the moving process, before the flue gas enters the low temperature plasma reaction unit, the distribution of the flue gas is uniform, the flow rate of the flue gas is stabilized, and the flue gas is reacted in the low temperature plasma reaction unit .
  • the uppermost and lowermost inclined plates cooperate with the inclined side walls of the air intake end of the housing.
  • the evenly distributed guide plates ensure that the flue gas is evenly distributed, the flow rate is stable, and the flow direction is horizontal to the low temperature plasma unit, which is conducive to improving the low temperature.
  • Plasma reaction unit removal efficiency compared with no airflow distribution plate, the efficiency of removing pollutants in the present invention is increased by 10% to 15%.
  • two air flow distribution plates with different aperture ratios can be provided for use together.
  • a chimney blocking device is also installed in the housing, and the chimney blocking device is located between the outlet side of the low-temperature plasma reaction unit and the spray cooling unit;
  • the chimney blocking device It is a vertically arranged baffle plate, the baffle plates are provided with through holes in a row, and an obliquely arranged baffle plate is fixed on the upper part of each row of through holes; the upper end of the baffle plate is fixedly connected to the For the baffle plate, the lower end of the shielding baffle is a free end extending toward the spray cooling unit.
  • the upper end of the shielding baffle is fixed to the baffle plate, and the lower end of the shielding baffle is a free end extending toward the spray cooling unit.
  • the alkali solution sprayed by the first spray head at a wide angle and the saturated flue gas obtained by the spray cooling unit prevent the saturated flue gas from flowing back and the alkali liquid sprayed by the first spray head from entering the low-temperature plasma reaction unit due to the protection of the baffle plate.
  • the housing is provided with a gas inlet on the side of the air inlet; through the gas inlet, a certain substance conducive to the purification of flue gas is passed into the flue gas and mixed with the flue gas evenly before entering the low temperature plasma reaction unit
  • the first nozzle of the spray cooling unit sprays the alkali solution to cool the flue gas, while the flue gas transforms from unsaturated to saturated, a large number of tiny mist droplets are precipitated.
  • the flue gas and the saturated mist droplets are in contact with the sprayed alkali solution And the reaction, the alkaline solution effectively absorbs part of the acid gas and saturated mist droplets, so the present invention completes the low-temperature plasma reaction of flue gas, flue gas cooling, and wet pollutant collection in the same casing.
  • the flue gas incineration garbage flue gas from the casing The intake air enters at one end, and the flue gas purified to meet the emission standard is discharged from the exhaust end of the housing.
  • the integration of the device of the invention is improved. All the processing steps are completed in each unit in the housing, reducing the piping between the units Connection, saving installation, preventing the escape of flue gas and added gas in the process and the process, with good air tightness and safety;
  • the lye supply unit in the present invention provides a spray cooling unit for cooling and absorbing the alkaline solution of acidic substances and a wet pollutant collection unit for absorbing the alkaline solution used by the acidic substances.
  • the spray cooling unit and wet pollution in the housing The alkaline solution used for cooling and pollutant collection in the material collection unit is collected in the collection part of the housing and returned to the alkaline solution supply unit to realize the recycling of the alkaline solution, reduce the amount of alkaline solution used, and reduce the operation Cost, reduce equipment occupation space, easy to install and use;
  • Figure 1 is a process flow diagram of the present invention
  • FIG. 2 is a schematic structural view of the device of the present invention.
  • FIG. 3 is a perspective view of the device housing of the present invention.
  • FIG. 4 is a cross-sectional view of the device housing in the present invention.
  • FIG. 5 is a front view of the air distribution plate in the device of the present invention.
  • FIG. 6 is a perspective view of the air distribution plate in the device of the present invention.
  • FIG. 7 is a schematic view of the distribution of flue gas after entering the casing through the air flow distribution plate in the present invention.
  • FIG. 8 is an enlarged view at A in FIG. 2.
  • Housing 100 air inlet 101; air outlet 102; gas inlet 103; collection part 104; low temperature plasma reaction unit 110; spray cooling unit 120; first nozzle 121; wet pollutant collection unit 130; second nozzle 131 High-frequency power supply 132; cathode line 133; anode plate 134; lye supply unit 140; circulating water tank 141; first water pump 142; second water pump 143; air distribution plate 150; plate body 151; air holes 152; first air holes 1521 The second air hole 1522; the deflector 153; the horizontal plate 1531; the inclined plate 1532; the sump 160; the flue baffle device 170; the baffle plate 171; the baffle plate 172; the dosing unit 180.
  • This embodiment discloses a waste incineration flue gas purification method, as shown in FIG. 1, including the following steps
  • the waste incineration flue gas containing NO x , SO 2 , dioxins, elemental mercury and dust in the flue is mixed with atomized ammonia water with a mass fraction of 22%, and the equivalent ratio of ammonia to NO x and SO 2 in the flue gas is 0.8, Before adding atomized ammonia, the temperature of flue gas is 133 °C, and after adding atomized ammonia, the temperature of mixed flue gas is 110 °C;
  • step B Use the low temperature plasma to purify the mixed flue gas discharged from step A;
  • the mixed flue gas enters the low-temperature plasma reactor, and the pollutants in the flue gas undergo oxidation-reduction reaction or decomposition reaction under the action of low-temperature plasma; the processing time of the low-temperature plasma generator is 2s, the voltage is 82kV, and the pulse width is 800ns.
  • step B Spray alkaline liquid to reduce the temperature of the flue gas discharged in step B;
  • step B Use the atomizing liquid spraying step B to discharge the flue gas, spraying a sodium hydroxide solution with a pH value of 10.0, the liquid-gas ratio of the sodium hydroxide solution to the flue gas is 8.0L / m 3 , and the temperature of the flue gas discharged from step B is reduced to 51 At °C, the flue gas is converted from unsaturated flue gas to saturated flue gas. As the spraying progresses, the saturated flue gas precipitates droplet solution and the spray liquid contacts and mixes;
  • step D The combination of electric field force and spraying of sodium hydroxide solution with a pH value of 10.0 removes the chargeable substances and acid gases in the flue gas discharged in step C to obtain deep comprehensive purification of flue gas.
  • the sodium hydroxide solution sprayed in step D The liquid-to-gas ratio of the flue gas is 8L / m 3 and the spraying time is 4s;
  • Step C discharges the chargeable substances in the flue gas to gather under the action of the electric field force, spraying the alkaline solution to wash the accumulated chargeable substances After discharge, at the same time, the alkaline solution neutralizes the acid gas in the flue gas to form salts, and then directly dissolves in the solution to obtain a comprehensive purified flue gas.
  • step C and step D are provided by the same alkaline solution supply system.
  • the waste liquid generated in steps C and D is collected and processed in step D.
  • the synergistic gas is replaced with atomized ammonia water or a mixture of atomized ammonia water and a hydrocarbon gas.
  • the flue gas in the garbage incinerator passes through SNCR, semi-dry deacidification, dry method, activated carbon adsorption, bag dust removal, low temperature plasma reaction, and alkali method after absorption through the chimney.
  • the process parameters of each step are shown in Table 1 , Its specific purification effect is also shown in Table 1.
  • This embodiment is used to implement the device for purifying flue gas of Examples 1 to 6, as shown in FIGS. 2 to 8, including a housing 100 having an air inlet 101 and an air outlet 102, along the direction of flue gas movement In the housing 100, a low temperature plasma reaction unit 110, a spray cooling unit 120 and a wet pollutant collection unit 130 are sequentially separated;
  • the housing 100 is provided with a gas inlet 103 on one side of the air inlet 101; the bottom of the housing 100 corresponding to the wet pollutant collection unit 130 is provided with a collection part 104, and the collection part 104 is in communication A lye supply unit 140; the spray cooling unit 120 is provided with a plurality of first spray heads 121; the wet pollutant collection unit 130 is provided with a plurality of second spray heads 131; the first spray head 121 and the first The two spray heads 131 are respectively connected to the outlet end of the alkaline liquid supply unit 140.
  • the housing 100 is provided with a gas inlet 103 on one side of the air inlet 101; it is used to pass a certain substance that is conducive to the purification of flue gas and flue gas into the low temperature plasma reaction unit 110, and the spray
  • the first nozzle 121 of the shower cooling unit 120 sprays the alkali solution to cool the flue gas, and the flue gas transforms from unsaturated to saturated to precipitate a large number of tiny mist droplets; at the same time, the flue gas and the saturated mist droplets neutralize with the sprayed alkali solution,
  • the alkaline solution effectively absorbs a part of acid gas and saturated mist droplets, so this embodiment completes the low-temperature plasma reaction of flue gas, flue gas cooling, and wet pollutant collection in the same casing 100.
  • the gas enters at one end, and the flue gas purified to meet the emission standard is discharged from the outlet end of the housing 100.
  • the integration of the device of this embodiment is improved. All processing steps are completed in each unit in the housing 100, reducing the number of units.
  • Pipeline connection saving installation and preventing the escape of flue gas and added gas in the process and the process, this embodiment has good airtightness and safety;
  • the lye supply unit 140 provides the spray cooling unit 120 for
  • the alkali solution for cooling and absorbing acidic substances and the wet pollutant collection unit 130 are used to absorb the alkali solution used for the acidic substances, and the cooling unit 120 and the wet pollutant collection unit 130 are sprayed in the housing 100 for cooling and pollutant collection
  • the alkaline solution is collected in the collection part 104 of the housing 100 and returned to the alkaline solution supply unit 140 to realize the recycling of the alkaline solution, reduce the amount of alkaline solution used, reduce the operating cost, and reduce the equipment footprint , Easy to install and use; there is no pipe connection between the units in this embodiment, a large amount of flue gas flows continuously and smoothly in the housing 100 of this embodiment, which is beneficial to achieve large flue gas treatment and flue gas treatment in this embodiment
  • the capacity is above 600,000m 3 /
  • a gas flow distribution plate 150 is installed between the gas inlet 103 and the low temperature plasma reaction unit 110 in the housing 100.
  • the airflow distribution plate 150 plays a certain role in blocking a large amount of gas concentrated into the housing 100 from the air inlet 101 and the gas injection port 103, part of the flue gas directly passes through the airflow distribution plate 150, and the other part of the flue gas flows along the airflow distribution plate 150 moves toward the surface of the air flow distribution plate 150 toward its edge, and the flue gas passes through the air flow distribution plate 150 during the movement process.
  • the flue gas Before the flue gas enters the low temperature plasma reaction unit 110, the flue gas is uniformly distributed to stabilize the flow rate of the flue gas. This facilitates the reaction of flue gas in the low-temperature plasma reaction unit 110.
  • the flue gas uniformly includes movement along the height direction of the plate body 151, as shown by the upward and downward arrows on the left side of the plate body 151, and also includes the direction along the length direction of the plate body 151. Both ends of the length of the body 151 move, as shown by ⁇ in FIG. 6.
  • the air flow distribution plate 150 includes a plate body 151, and the plate body 151 is provided with air holes 152; the aperture ratio of the plate body 151 is 40% to 60%;
  • the side of the air flow distribution plate 150 facing the low temperature plasma reaction unit 110 is further provided with a plurality of guide plates 153 arranged from top to bottom, the guide plate 153 includes a horizontal plate located in the middle of the plate body 151 1531 and a plurality of inclined plates 1532 on both sides of the horizontal plate 1531, the inclined plates 1532 on the same side of the horizontal plate 1531 are inclined at an equal angle toward the plate body 151, and the inclined angle of the inclined plate 1532 can be equal It is 10 ° or 20 ° or 30 °.
  • the uppermost and lowermost inclined plates 1532 cooperate with the inclined sidewalls of the air intake of the housing 100, and the uniformly distributed deflector 153 ensures uniform distribution of flue gas, stable flow rate, and horizontal flow to the low-temperature plasma reaction unit 110, which is beneficial to The removal efficiency of the low-temperature plasma reaction unit 110 is improved; compared with the absence of the air flow distribution plate 150, the efficiency of removing pollutants in this embodiment is increased by 10% to 15%.
  • two air flow distribution plates 150 with an aperture ratio of 40% and 60% can be provided for use. For example, when the flue gas passes through the two air flow distribution plates 150, the flue gas flows through the air flow distribution plate 150 and its vertical direction in the housing 100.
  • the space is evenly distributed, that is, the flue gas is evenly distributed in the low-temperature plasma reaction unit 110.
  • the air flow distribution plate 150 since the air flow distribution plate 150 is provided, once the flow rate of the flue gas entering the housing 100 is too fast, the air flow distribution plate 150 will hinder the amount of flue gas entering the low temperature plasma reaction unit 110 to a certain extent, thereby achieving Adjustment of the flue gas flow rate in the housing 100.
  • the air holes 152 of the plate body 151 include a first air hole 1521 and a second air hole 1522.
  • the area of the first air hole 1521 for transmitting smoke is smaller than that of the second air hole 1522;
  • the first air holes 1521 are located in the middle of the plate body 151, and the second air holes 1522 are distributed on both sides of the first air hole 1521.
  • the flue gas moves up and down along the airflow distribution plate 150 while moving on the vertical drawing surface, thereby Pass through the second air holes 1522 that are easier to pass through the left and right sides of the body; the amount of smoke at the first air hole 1521 is large, but the transmission area is small; the amount of smoke at the second air hole 1522 is relatively small, but the transmission area is large; therefore
  • the entire air distribution plate 150 is uniform and balanced by the flue gas.
  • the opening rate of the plate body 151 is between 40% and 60%, and the opening rate of the plate body 151 is preferably used to adjust the flow rate of the gas smoke.
  • the area of the air holes 152 through the flue gas gradually increases from the center position of the plate body 151 to the edge position of the plate body 151.
  • the area of the air holes 152 through the flue gas is S
  • the distance between the air holes 152 on the plate 151 and the center point of the plate 151 is D
  • S is proportional to D; That is, the area of the air holes 152 through the flue gas will be
  • the flue gas entering the low-temperature plasma reaction unit 110 adjusts the flow velocity and balances the distribution on the entire air flow distribution plate 150.
  • the spray cooling unit 120 corresponds to the bottom of the housing 100 inclined from the low temperature plasma reaction unit 110 toward the wet pollutant collection unit 130; the collection unit 104 corresponds to the spray unit
  • the bottom of the housing 100 is connected; it also includes a water collecting tank 160;
  • the lye supply unit 140 includes a circulating water tank 141, a first water pump 142 and a second water pump 143, the first water pump 142 pipeline communicates with the first A spray head 121, the second water pump 143 pipeline communicates with the second spray head 131;
  • the water collection tank 160 respectively communicates with the collection part 104 corresponding to the wet pollutant collection unit 130 and the position of the alkaline liquid supply unit 140 ⁇ Circulating water tank 141.
  • the alkali solution required by the spray cooling unit 120 and the wet pollutant collection unit 130 is simultaneously supplied by the same lye supply unit 140.
  • the equipment integration of this embodiment is improved, and the equipment is reduced.
  • the volume is convenient for equipment installation; on the other hand, the solution sprayed by the first spray head 121 in the spray cooling unit 120 flows into the collection part 104 through the inclined bottom of the spray unit corresponding to the housing 100, The alkaline solution sprayed by the second spray head 131 in the wet pollutant collecting unit 130 is washed through the anode plate 134 for collecting pollutants, and then flows into the collecting part 104.
  • the alkaline solution in the collecting part 104 flows into the water collecting tank 160, and the water collecting tank 160 Connected to the circulating water tank 141, the sewage collected in the collecting part 104 can be decontaminated in the water collecting tank 160, adjust the PH value, etc., and the alkaline solution that can be reused for the alkaline liquid supply unit 140 flows into the circulating water tank 141, the first The water pump 142 and the second water pump 143 pump the alkaline solution in the circulating water tank 141 into the first spray head 121 and the second spray head 131, respectively, to achieve sufficient recycling of the alkaline liquid, reduce the use of water resources, and reduce the use of raw materials and energy ,reduce costs.
  • the housing 100 is further provided with a flue blocking device 170, and the flue blocking device 170 is located between the outlet side of the low temperature plasma reaction unit 110 and the spray cooling unit 120.
  • This embodiment is directly connected to the flue of the garbage incinerator, which requires continuous and stable treatment of flue gas.
  • the first nozzle 121 in the spray cooling unit 120 will also continuously spray the alkali solution into the housing 100 for low temperature plasma
  • the chimney blocking device 170 is a vertically arranged baffle plate 171, the baffle plates 171 are provided with through holes in a row, and an obliquely arranged The baffle 172; the upper end of the baffle 172 is fixed to the baffle plate 171, and the lower end of the baffle 172 is a free end extending toward the spray cooling unit 120.
  • the alkaline solution sprayed by the first spray head 121 at a wide angle and the saturated flue gas obtained by the spray cooling unit 120 are blocked by the shielding plate 172 to prevent the saturated flue gas from flowing back and the alkaline liquid sprayed by the first spray head 121 from entering the low-temperature plasma reaction unit 110.
  • the wet pollutant collection unit 130 in this embodiment further includes a high-frequency power supply 132, a cathode line 133 and an anode plate 134 electrically connected to the high-frequency power supply 132, wherein the cathode line 133 and the anode plate 134 are arranged in parallel; the second The spray head 131 is evenly distributed on the top of the housing 100, above the anode plate 134; in this embodiment, the cathode wire 133, the anode plate 134 cooperate with the high-frequency power supply 132, and mist, dust, mercury oxide, etc.
  • the force is collected on the surface of the anode plate 134; the wet pollutant collection unit 130 is removed by spraying and electric field force to achieve the capture of sub-micron substances, and also has good absorption capacity for dust and mercury oxide.
  • the distance between two adjacent second shower heads 131 is 500 to 800 mm.
  • the second nozzles are distributed in a rectangular lattice, and the distance between the two adjacent second nozzles 131 in front, rear, or left and right is 500 to 800 mm, to achieve spraying without dead angles.
  • Water is used as weakly alkaline circulating water to achieve the purpose of absorbing a part of acid gas, and at the same time ensure that the anode plate 134 and the cathode line 133 are not corroded by acid gas. After the anode plate 134 forms a water film, the deposited multiple pollutants pass through the second The shower head 131 sprays the alkali solution for washing to prevent the collection effect of the wet pollutant collection unit 130 from being affected.
  • a dosing unit 180 is further included.
  • the dosing unit 180 includes a storage tank, an air compressor, and an air tank.
  • the storage tank is connected to the injection port through a two-fluid atomizing spray gun.
  • Atomizing ammonia water or hydrocarbon gas can be introduced into the flue gas through the dosing unit 180.
  • Atomized ammonia water is added to the present embodiment through the dosing unit 180, and the temperature of the flue gas is reduced to 110-120 ° C after the ammonia water is atomized and sprayed.
  • the reduction of flue gas temperature reduces the amount of flue gas treated, and at the same time atomizes the sprayed ammonia to create conditions for the subsequent plasma excitation to produce more O, OH, and NH 2 etc.
  • the atomized ammonia will interact with the flue gas Acid gases such as SO 2 and NO 2 in the reaction react to produce by-products such as ammonium sulfate and ammonium nitrate.
  • NH 2 excited by NH 3 generated in the plasma unit can realize partial reduction of NO x .
  • the efficiency of the low-temperature plasma reaction unit 110 is improved.
  • hydrocarbon gas may be a low temperature plasma reactor unit 110 in a high-energy electrons excite strong oxidizing radicals can improve the efficiency of removal of NO x, thereby reducing the plasma low temperature reaction unit to the present embodiment can be Consume.
  • two dosing units 180 may be provided for adding atomized ammonia and hydrocarbon gas.
  • the equivalent ratio of ammonia to SO 2 and NO x added to the flue gas by the dosing unit 180 is 0.8-1, ammonia and SO 2 and NO x are incompletely reacted, and then collected by the spray cooling unit 120 and wet pollutants
  • the collection of unit 130 can greatly reduce the escape of ammonia gas; the flue gas with atomized ammonia liquid, the flue gas with increased humidity, after entering the low-temperature plasma reaction unit 110, is beneficial to increase the production of OH and improve the low-temperature plasma reaction The oxidation efficiency of unit 110.
  • the flue gas generated in the incineration boiler enters the housing 100 through the air inlet 101, and is mixed with the atomized ammonia water and the hydrocarbon gas added to the housing 100 through the dosing unit 180.
  • the mixed flue gas passes through a Two air distribution plates 150 evenly distribute the smoke in the three-dimensional space in the housing 100;
  • the evenly distributed flue gas flows to the low-temperature plasma reaction unit 110, and the low-temperature plasma reaction unit 110 mainly includes a plasma power source, a reaction electrode, and a discharge electrode.
  • the low-temperature plasma reaction unit 110 generates high-energy electrons through plasma power discharge to produce an inelastic collision with oxygen, water molecules and NH 3 in the mixed flue gas, and stimulates the production of ⁇ O, ⁇ OH and ⁇ NH 2 etc.
  • the spray cooling unit 120 absorbs acidic substances and salt particles in the flue gas, and on the other hand, realizes the cooling of the flue gas; After spray cooling, the temperature drops rapidly, transforming from unsaturated flue gas to saturated flue gas, and a large number of tiny water droplets are precipitated; at the same time, SO 3 is converted from gaseous state to mist droplets. Unreacted NO 2 and NH 3 etc. quickly dissolve in water and are absorbed by the weak alkaline solution.
  • the flue gas passing through the spray cooling unit 120 passes through the wet pollutant collection unit 130, and the cathode and anode systems of the wet pollutant collection unit 130 are combined with a high-efficiency high-frequency power supply 132. It is absorbed by the weak alkaline solution of the unit water treatment circulation system.
  • the purified flue gas is discharged into the atmosphere through the chimney through the induced draft fan.
  • This embodiment can realize the treatment of various flue gas amounts, covering 4000-8000m 3 / h flue gas treatment volume, basically covering all the flue gas volume of garbage incineration boilers and biomass burning furnaces; this embodiment can realize the oxidation of sulfur dioxide and nitrogen Simultaneous and efficient removal of various pollutants such as substances, dust, dioxins and HCl, with high removal efficiency, which can achieve removal efficiency of more than 90%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种垃圾焚烧烟气净化方法及装置,该方法包括垃圾焚烧烟气预处理;使用低温等离子体净化预处理排出的混合烟气;喷淋液体降低低温等离子处理排出烟气的温度;电场力与碱性溶液喷淋相结合去除喷淋液体后排出烟气中的可荷电物质和酸性气体获得净化烟气。方法和装置能够综合净化处理多种污染物,无二次污染。

Description

一种垃圾焚烧烟气净化方法及装置 技术领域
本发明涉及大气污染净化技术领域,特别是涉及一种垃圾焚烧烟气净化方法及装置。
背景技术
随着我国经济的高速发展,人民生活水平迅速提高,城市化进程不断提高,各类垃圾的产生量也在急剧增加。根据国家环保部公布的《2017年全国大、中城市固体废物污染环境防治年报》数据显示,2016年,214个大、中城市生活垃圾产生量18850.5万吨,而且以后会以每年8-10%的增长率增加。城市垃圾的大量排放,如果处置不当会造成渗滤液泄露,对土壤、地下水、大气造成严重污染,甚至影响人体健康和环境卫生。垃圾焚烧技术是目前处理固体废弃物的有效途径之一,具有垃圾适应范围广、能量利用率高、占地小和无害化程度高的优点。目前,垃圾焚烧发电技术在我国也得到了越来越广泛的重视。
垃圾焚烧过程中会产生二次污染,主要是燃烧过程中会产生粉尘、酸性气体(主要为SO 2、NO x、HCl等)、重金属和二噁英等。而NO X、SO 2、二噁英、汞是大气污染的主要成分,给生态环境和人体健康带来巨大危害。由于垃圾焚烧炉烟气成分复杂,污染物多,因此去除工艺复杂,成本高。且很多去除工艺存在较大的局限性。目前,烟气脱硫技术中,湿法石灰石/石膏脱硫(WFGD)是应用最广泛、效率最高的技术,但是在垃圾焚烧炉烟气处理中,适用性不高。半干法脱硫技术则难以保证较高的脱除效率。脱硝技术广泛采用的是SCR和SNCR。SCR其工艺成熟度高,能够满足目前各种烟气脱硝的需求,由于垃圾焚烧炉烟气的特点,易发生污堵。SNCR则存在一定的脱除效率限制。对于垃圾焚烧过程中产生的二噁英及 Hg0等,一般的技术很难将其脱除。碳吸附工艺存在成本高、产生大量固废的问题。目前垃圾焚烧炉烟气的处理,采用多级处理设备工艺,每级设备处理工艺主要去除单独的污染物;处理系统工艺复杂,安装空间大,投资和运行费用高。目前随着环保要求的进一步提高,垃圾焚烧炉烟气的超净排放,成为技术可行的难点和重要课题。因此,开发能同时脱除多种垃圾焚烧炉烟气污染物的技术,实现烟气深度净化,成为近年来研究的热点。
发明内容
本发明的目的在于提供一种垃圾焚烧烟气净化方法,通过本发明中的方法综合净化处理多种污染物,无二次污染。
为解决此技术问题,本发明的技术方案是:一种垃圾焚烧烟气净化方法,包括以下步骤
A、垃圾焚烧烟气预处理;
向烟道中含有NO x、SO 2、二噁英、单质汞和灰尘的垃圾焚烧烟气混入增效气体,加入增效气体的混合烟气温度为100℃至120℃;
B、使用低温等离子体净化步骤A排出的混合烟气;
混合烟气进入低温等离子反应器,烟气中的污染物在低温等离子体的作用下发生氧化还原反应或者分解反应;
C、喷淋液体降低步骤B排出烟气温度;
使用雾化液体喷淋步骤B排出烟气,步骤B排出烟气降温并从不饱和烟气转化为饱和烟气,随着喷淋的进行,饱和烟气析出液滴溶液与喷淋液体接触混合;
D、电场力与碱性溶液喷淋相结合去除C步骤排出烟气中的可荷电物质和酸 性气体获得深度综合净化烟气;
C步骤排出烟气中可荷电物质在电场力的作用下聚集,喷淋碱性溶液将聚集的可荷电物质冲洗后外排,同时碱液溶液将烟气中的酸性气体中和生成盐类物质后直接溶解在溶液中,获得综合净化烟气。
优选所述步骤B中低温等离子处理的时间为1.5s至3s,电压为70kV至82kV。低温等离子体反应器中的反应时间是指污染物在反应区的作用时间,时间越长作用效率越高,反应器电压越高可以注入的能量越高,注入能量越高去除效率越高。本发明中步骤B最优选的工艺参数为:时间2s,电压80kV;上述工艺参数配合其他工艺对烟气的净化效果最佳。本发明中所有烟气均被强烈脉冲电晕作用,无烟气逃逸。烟气经脉冲电晕作用后,烟气中须去除的污染物,或转化为无害物质,或转化为可去除的颗粒物或气溶胶,或转化为可溶于水的气态物质。反应器无需氧气制备系统,减少设备的通入。
优选所述步骤C中用于烟气降温的溶液为碱性溶液。使用碱性溶液在步骤C中对低温等离子体作用后的烟气进行降温,同时喷淋的雾状饱和碱性溶液能够溶解吸收烟气中的酸性气体,如NO 2、SO 2、HCl、HF,被溶解在饱和碱性溶液中的酸性气体与碱性溶液发生中和反应,促进烟气中酸性气体的净化和吸收。同时步骤C中的喷淋降温相当于对烟气进行了预降温,利于提高步骤D中通过使用电场力与碱性溶液喷淋相结合去除C步骤排出烟气中的可荷电物质和酸性气体方式实现湿法吸收的效率。
优选所述步骤C和步骤D中的碱性溶液由同一碱性溶液供应系统提供;所述碱性溶液的PH值为9至10.5;所述碱性溶液为NaOH溶液或者NaHCO 3溶液。通过由同一碱性溶液供应系统供应碱性溶液,节省设备,降低投入;同时使用弱碱 性的NaOH溶液或者NaHCO 3能够防止设备被酸性物质腐蚀,同时提高在后续处理进行碱性溶液时的安全性;另一方面,上述NaOH和NaHCO 3溶解性较好,不会引入沉淀的离子,方便本发明收集废液的处理。
优选所述步骤D中喷淋的碱性溶液与烟气的液气比为6L/m 3至9.5L/m 3;烟气步骤D的处理时间为2至4s;通过使用上述工艺条件,经过D步骤喷淋降温并吸收酸性气体的烟气,经过步骤D的烟气温度为50℃至65℃,利用烟气从100℃的不饱和烟气转化为饱和烟气过程析出。步骤D中通过连续碱性溶液喷淋及电场除雾和除颗粒物,烟气中的气溶胶、颗粒物、酸性雾滴、含盐雾滴、氧化汞等通过电场吸附去除,实现烟气的深度综合净化。
优选所述步骤C和步骤D产生的废液,在步骤D中进行收集处理。通过上述设置共同处理步骤C和步骤D中所产生的废液,减少了废液处理工序,提高废液处理的效率。
优选所述增效气体为雾化氨气;所述步骤A中氨与NO x和SO 2的当量比为0.6至1。通过双流体喷嘴将氨水雾化喷入烟气中,雾化氨水快速气化与烟气混合,同时对烟气的湿度、温度进行调节调质;同时,少量氨气与酸性气体NO 2、SO 2等反应,产生粉状铵盐颗粒物,使得对环境有污染且难以捕获收集的酸性气体转化为盐类颗粒,盐类颗粒通过C步骤和C步骤进行溶解和收集;大量氨气随烟气经过步骤B中的低温等离子体反应器,一部分产生氨自由基,对氮氧化物实现还原反应,另一部分在步骤B中继续与NO 2、SO 2反应为铵盐,持续对烟气进行净化。本发明中通过向烟气中加入雾化氨气,氨气在烟气接触的过程中汽化吸收烟气的热量实现烟气降温与适当降低低温等离子体反应单元的温度,自由基和O 3所处环境温度越高,分解速度越快,适当降低反应区温度,可延长自由基和O 3的存活时 间;同时雾化氨水也调节了烟气湿度,增加烟气中水分子的数量,有利于低温等离子体反应器中产生更多的羟基自由基(·OH),提高等离子体的浓度,促进烟气中的NO、SO 2、和单质汞等发生氧化还原反应,二噁英分解为小分子,提高本发明烟气净化的效果。
通过采用上述技术方案,本发明的有益效果是:上述技术方案实现NO X、SO 2、二噁英和单质汞等污染物的同时去除;降低污染物排放浓度,使其满足超低排放标准;投资和运行费用较常规低温SCR低;运行稳定、维护简单。
本发明向烟道中含有NO x、SO 2、二噁英、单质汞和灰尘的垃圾焚烧烟气混入增效气体,加入增效气体的混合烟气温度调节为100℃至120℃,利于进入低温等离子反应单元的生产低温等离子体,低温等离子体包括氧自由基、羟基自由基、O 3和NH 2自由基、氮自由基等。氧自由基、羟基自由基、O 3具有很强的氧化性,产生强烈的氧化反应。NH 2自由基、氮自由基对NO又具有很强的还原性。烟气经脉冲电晕放电强烈作用后,NO转化为NO 2、硝酸铵,或被还原为氮气等;SO 2氧化为SO 3或与NH 3反应后转化为硫酸铵;二噁英转化为CO 2、H 2O、HCl等无机小分子;单质Hg分别氧化成HgO或者HgCl 2等;
含有上述物质的烟气经碱液喷淋降温的同时,烟气中的部分污染物溶解于液体中;烟气中的荷电污染物在电场力的作用下捕集到收尘极板,随液滴流入到循环液中,与此同时,喷淋的碱性溶液将烟气中的酸性气体吸收,将部分可以溶于碱性溶液的化合物也通过碱性溶液溶解,实现对有害物质的捕获;同时喷淋的碱性溶液还能防止烟气中的酸性气体腐蚀设备,在实现烟气中污染物捕集的同时,保护设备,且利用较少的设备和工艺步骤完成了多种污染物的处理,实现烟气的净化,通过本发明净化的烟气中NO X<50mg/Nm 3,SO 2<35mg/Nm 3,二噁英TEQ< 0.08ng/Nm 3,汞及其化合物<0.05mg/m 3,净化效果好,净化效率好。
本发明通过向烟气中混入增效气体降低进入低低温等离子反应单元的烟气的温度,相当于适当降低低温等离子反应单元温度,由于自由基和O 3温度越高,分解速度越快,因此适当降低低温等离子反应单元温度,可延长自由基和O 3的存活时间,增强低温等离子体对各种污染物分解的效果。
从而实现本发明的上述目的。
本发明的另一目的在于提供一种垃圾焚烧烟气净化装置,该发明能够节省安装空间,同时脱除多种污染物,无二次污染。
为解决此技术问题,本发明的技术方案是:一种实现上述发明中垃圾焚烧烟气净化方法的装置,包括具有进气口和出气口的壳体,沿着烟气移动的方向,壳体内依次分隔有低温等离子反应单元、喷淋降温单元和湿式污染物收集单元;
所述壳体位于所述进气口的一侧设有一气体投放口;所述湿式污染物收集单元对应的所述壳体底部设有收集部,所述收集部连通一碱液供应单元;所述喷淋降温单元设有多个第一喷头;所述湿式污染物收集单元设有多个第二喷头;所述第一喷头和所述第二喷头分别连通所述碱液供应单元的出液一端。
进一步改进,所述壳体内在所述气体投放口和所述低温等离子反应单元之间装有一气流分布板;所述气流分布板朝向所述低温等离子反应单元的一侧还设有多片从上至下设置的导流板,所述导流板包括位于所述板体中间的水平板和位于所述水平板两侧的多片倾斜板,位于所述水平板同一侧的所述倾斜板等角度向着所述板体倾斜设置。气流分布板对从进气口和气体投放口集中进入壳体内的大量气体起到一定的阻挡作用,一部分烟气直接通过气流分布板,另一部分烟气沿着气流分布板向着气流分布板的边缘移动,烟气在移动的过程中通过所述气流分布 板,在烟气进入低温等离子反应单元之前,均匀烟气的分布,稳定了烟气的流速,利于烟气在低温等离子反应单元中的反应。最上端和最下端的倾斜板与壳体进气端倾斜的侧壁相配合,均匀分布的导流板保证了烟气分布均匀、流速稳定、流向水平向低温等离子单元流动,利于提高所述低温等离子反应单元去除效率;相比较于不安装气流分布板,本发明去除污染物的效率提高10%至15%。本发明中可设置有不同开口率的两气流分布板连用。
进一步改进,所述壳体内还装有一烟道阻流装置,所述烟道阻流装置位于所述低温等离子反应单元的出气侧和所述喷淋降温单元之间;所述烟道阻流装置为一竖直设置的阻流板,所述阻流板成行设有透过孔,在每一行透过孔的上部固连有一倾斜设置的遮挡板;所述遮挡板的上端固连于所述阻流板,所述遮挡板下端为伸向所述喷淋降温单元的自由端。所述遮挡板的上端固连于所述阻流板,所述遮挡板下端为伸向所述喷淋降温单元的自由端。第一喷头广角喷射出的碱溶液和经过喷淋降温单元获得的饱和烟气由于遮挡板的保护,防止饱和烟气回流和第一喷头喷出的碱液进入至低温等离子反应单元。
通过采用上述技术方案,本发明的有益效果是:
1、壳体位于所述进气口的一侧设有一气体投放口;通过所述气体投放口向烟气中通入一定利于烟气净化的物质与烟气混合均匀后进入至低温等离子反应单元,所述喷淋降温单元的第一喷头喷射碱溶液对烟气降温的同时,烟气由不饱和向饱和转化析出大量微小雾滴,烟气和饱和雾滴分别与喷淋的碱溶液发生中和反应,碱溶液有效吸收一部分酸性气体和饱和雾滴,因此本发明在同一壳体内完成了烟气的低温等离子反应、烟气降温、湿式污染物收集,烟气焚烧垃圾烟气从壳体的进气一端进入,净化达到排放标准的烟气从壳体的出气一端排出,一方面 提高了本发明设备的集成性,所有的处理步骤在壳体内各单元完成,减少各单元之间的管路连接,节省安装,防止待处理和处理过程中烟气及添加气体的逸出,具有良好的气密性和安全性;
2、本发明中碱液供应单元提供喷淋降温单元用于降温和吸收酸性物质的碱溶液和湿式污染物收集单元用于吸收酸性物质所使用的碱溶液,壳体内喷淋降温单元和湿式污染物收集单元用于降温和污染物收集的碱溶液在所述壳体的收集部集中收集,并重新回流至碱液供应单元,实现碱溶液的循环重复利用,减少碱溶液的使用量,降低运行成本,减小设备占用空间,方便安装和使用;
3、本发明壳体单元之间无需管道连接,大量烟气在本发明的壳体中连续顺畅流动通过各功能单元,利于本发明实现大烟气量处理,处理烟气能力在600000m 3/h以上,基本覆盖全部的垃圾焚烧锅炉、生物质燃烧炉烟气量。
从而实现本发明的上述目的。
附图说明
图1为本发明工艺流程图;
图2为本发明中装置的结构示意图;
图3为本发明中装置壳体的立体图;
图4为本发明中装置壳体的剖视图;
图5为本发明装置中气流分布板的主视图;
图6是本发明装置中气流分布板的立体图;
图7为本发明中进入壳体中的烟气经过气流分布板后烟气的分布情况示意图;
图8是图2中A处放大图。
图中:
壳体100;进气口101;出气口102;气体投放口103;收集部104;低温等离子反应单元110;喷淋降温单元120;第一喷头121;湿式污染物收集单元130;第二喷头131;高频电源132;阴极线133;阳极板134;碱液供应单元140;循环水箱141;第一水泵142;第二水泵143;气流分布板150;板体151;气孔152;第一气孔1521;第二气孔1522;导流板153;水平板1531;倾斜板1532;集水箱160;烟道阻流装置170;阻流板171;遮挡板172;投加单元180。
具体实施方式
为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。
实施例1
本实施例公开一种垃圾焚烧烟气净化方法,如图1所示,包括以下步骤
A、垃圾焚烧烟气预处理;
向烟道中含有NO x、SO 2、二噁英、单质汞和灰尘的垃圾焚烧烟气混入质量分数为22%的雾化氨水,氨与烟气中NO x和SO 2的当量比为0.8,加入雾化氨水前,烟气的温度为133℃,加入雾化氨水后混合烟气温度为110℃;
B、使用低温等离子体净化步骤A排出的混合烟气;
混合烟气进入低温等离子反应器,烟气中的污染物在低温等离子体的作用下发生氧化还原反应或者分解反应;低温等离子体发生器的处理时间为2s,电压为82kV,脉宽为800ns。
C、喷淋碱性液体降低步骤B排出烟气温度;
使用雾化液体喷淋步骤B排出烟气,喷淋pH值为10.0的氢氧化钠溶液,氢氧化钠溶液与烟气的液气比为8.0L/m 3,步骤B排出烟气降温至51℃,烟气从不饱和烟气转化为饱和烟气,随着喷淋的进行,饱和烟气析出液滴溶液与喷淋液体接触混合;
D、电场力与pH值为10.0的氢氧化钠溶液喷淋相结合去除C步骤排出烟气中的可荷电物质和酸性气体获得深度综合净化烟气,步骤D中喷淋的氢氧化钠溶液与烟气的液气比为8L/m 3,喷淋时间为4s;C步骤排出烟气中可荷电物质在电场力的作用下聚集,喷淋碱性溶液将聚集的可荷电物质冲洗后外排,同时碱液溶液将烟气中的酸性气体中和生成盐类物质后直接溶解在溶液中,获得综合净化烟气。
本实施例中步骤C与步骤D通过同一同一碱性溶液供应系统提供。
所述步骤C和步骤D产生的废液,在步骤D中进行收集处理。
经过本实施例净化前后垃圾焚烧烟气的各项参数详见表1所示;
实施例2
本实施例与实施例1的主要差别详见表1所示。
实施例3
本实施例与实施例1的主要差别详见表1所示。
实施例4
本实施例与实施例1的主要差别详见表1所示。
实施例5
本实施例与实施例1的主要差别详见表1所示。
实施例6
本实施例与实施例1的主要差别详见表1所示。
本实施例中增效气体使用雾化氨水或者是雾化氨水和烃类气体的混合物代替。
对比例
垃圾焚烧炉中的烟气依次经过SNCR,半干法脱酸,干法,活性炭吸附,布袋除尘,低温等离子反应,碱法吸收后经烟囱外排,各个步骤的工艺参数详见表1所示,其具体的净化效果也见表1。
表1 实施例1至6与对比例净化烟气的工艺步骤、参数以及净化效果表
Figure PCTCN2019116665-appb-000001
实施例7
本实施例用于实施实施例1至实施例6净化烟气的装置,如图2至图8所示,包括具有进气口101和出气口102的壳体100,沿着烟气移动的方向,壳体100内依次分隔有低温等离子反应单元110、喷淋降温单元120和湿式污染物收集单元130;
所述壳体100位于所述进气口101的一侧设有一气体投放口103;所述湿式污染物收集单元130对应的所述壳体100底部设有收集部104,所述收集部104连通一碱液供应单元140;所述喷淋降温单元120设有多个第一喷头121;所述湿式污染物收集单元130设有多个第二喷头131;所述第一喷头121和所述第二喷头131分别连通所述碱液供应单元140的出液一端。
本实施例壳体100位于所述进气口101的一侧设有一气体投放口103;用于通入一定利于烟气净化的物质与烟气混合均匀进入至低温等离子反应单元110,所述喷淋降温单元120的第一喷头121喷射碱溶液对烟气降温,烟气由不饱和向饱和转化析出大量微小雾滴;同时,烟气和饱和雾滴与喷淋的碱溶液发生中和反应,碱溶液有效吸收一部分酸性气体和饱和雾滴,因此本实施例在同一壳体100内完成了烟气的低温等离子反应、烟气降温、湿式污染物收集,焚烧垃圾烟气从壳体100的进气一端进入,净化达到排放标准的烟气从壳体100的出气一端排出,一方面提高了本实施例设备的集成性,所有的处理步骤在壳体100内各单元完成,减少各单元之间的管路连接,节省安装,防止待处理和处理过程中烟气以及添加气体的逸出,本实施例具有良好的气密性和安全性;碱液供应单元140提供喷淋降温单元120用于降温和吸收酸性物质的碱溶液和湿式污染物收集单元130用于吸收酸性物质所使用的碱溶液,在壳体100内喷淋降温单元120和湿式污染物收 集单元130用于降温和污染物收集的碱溶液在所述壳体100的收集部104集中收集,并重新回流至碱液供应单元140,实现碱溶液的循环重复利用,减少碱溶液的使用量,降低运行成本,减小设备占用空间,方便安装和使用;本实施例各单元之间连接不存在管道连接,大量烟气在本实施例的壳体100中连续顺畅的流动,利于本实施例实现大烟气量处理,处理烟气能力在600000m 3/h以上,基本覆盖全部的垃圾焚烧锅炉、生物质燃烧炉烟气量。
本实施例中所述壳体100内在所述气体投放口103和所述低温等离子反应单元110之间装有一气流分布板150。气流分布板150对从进气口101和气体投放口103集中进入壳体100内的大量气体起到一定的阻挡作用,一部分烟气直接通过气流分布板150,另一部分烟气沿着气流分布板150向着气流分布板150表面向着其边缘移动,烟气在移动的过程中通过所述气流分布板150,在烟气进入低温等离子反应单元110之前,均匀烟气的分布,稳定烟气的流速,利于烟气在低温等离子反应单元110中的反应。如图6所示,烟气均匀包括沿着板体151的高度方向的移动,如图中板体151左侧向上和向下的箭头所示,还包括沿着板体151的长度方向向板体151长度的两端移动,如图6中的○所示。
本实施例中所述气流分布板150包括板体151,板体151设有气孔152;所述板体151的开孔率为40%至60%;
所述气流分布板150朝向所述低温等离子反应单元110的一侧还设有多片从上至下设置的导流板153,所述导流板153包括位于所述板体151中间的水平板1531和位于所述水平板1531两侧的多片倾斜板1532,位于所述水平板1531同一侧的所述倾斜板1532等角度向着所述板体151倾斜设置,倾斜板1532的等角度倾斜可以为10°或者20°或者30°。最上端和最下端的倾斜板1532与壳体 100进气倾斜的侧壁相配合,均匀分布的导流板153保证了烟气分布均匀、流速稳定、流向水平向低温等离子反应单元110流动,利于提高所述低温等离子反应单元110去除效率;相比较于不安装气流分布板150,本实施例去除污染物的效率提高10%至15%。本实施例中可设置有开孔率为40%和60%的两气流分布板150连用,如烟气经过两气流分布板150使得烟气在壳体100中气流分布板150以及其垂直方向所构成的空间内均匀分布,即烟气在低温等离子反应单元110中分布均匀。本实施例中由于设置有气流分布板150,一旦进入壳体100中的烟气流速过快,则气流分布板150会在一定程度上阻碍进入低温等离子反应单元110中的烟气量,从而实现对壳体100中烟气流速的调节。
本实施例中所述板体151的气孔152包括第一气孔1521和第二气孔1522,所述第一气孔1521用于透过烟气的面积较第二气孔1522透过烟气的面积小;沿着水平方向,所述第一气孔1521位于所述板体151的中部位置,所述第二气孔1522分布于所述第一气孔1521的两侧。本实施例中由于位于板体151中部的第一气孔1521通过烟气的面积较位于板体151两侧的第二气孔1522的面积大,大量的烟气不能从位于正对进气口101位置板体151的第一气孔1521通过,不能及时通过的烟气会沿着板体151移动,如图6所示,烟气沿着气流分布板150上下移动的同时在垂直图纸表面的移动,从而从本体左右两侧更易通过的第二气孔1522通过;第一气孔1521处烟气量较大,但是透过面积小;第二气孔1522处烟气量相对较小,但是透过面积大;因此整个气流分布板150通过烟气均匀且均衡。优选板体151的开孔率在40%至60%之间,优选板体151的开孔率用于调节气体烟气的流速。
本实施例中所述气孔152透过烟气的面积从所述板体151的中心位置向所述 板体151的边缘位置逐渐增大。所述气孔152透过烟气的面积为S,所述板体151上气孔152与板体151中心点的距离为D,S与D呈正比;即用气孔152的透过烟气的面积将进入低温等离子反应单元110的烟气在整个气流分布板150上进行流速的调节和分布的均衡。
本实施例中所述喷淋降温单元120对应所述壳体100的底部由所述低温等离子反应单元110向所述湿式污染物收集单元130倾斜;所述收集部104与所述喷淋单元对应的所述壳体100底部连接;还包括一集水箱160;所述碱液供应单元140包括循环水箱141、第一水泵142和第二水泵143,所述第一水泵142管路连通所述第一喷头121,所述第二水泵143管路连通所述第二喷头131;所述集水箱160分别连通所述湿式污染物收集单元130对应的收集部104和所述碱液供应单元140的所述循环水箱141。本实施例通过同一个碱液供应单元140同时供应所述喷淋降温单元120和所述湿式污染物收集单元130所需要的碱溶液,一方面提高了本实施例设备集成度高,减小设备体积,方便设备安装;另一方面,所述喷淋降温单元120中第一喷头121喷淋出的溶液经所述喷淋单元对应所述壳体100的倾斜底部流入至所述收集部104,所述湿式污染物收集单元130中第二喷头131喷淋的碱溶液冲洗过用于收集污染物的阳极板134后流入收集部104,收集部104中的碱溶液流入集水箱160,集水箱160连通循环水箱141,可以在集水箱160中对收集部104收集的污水进行除杂,调节PH值等操作,能够重新用于碱液供应单元140使用的碱溶液流入至循环水箱141中,第一水泵142和第二水泵143分别将循环水箱141中的碱溶液泵入至第一喷头121和第二喷头131中,实现碱液的够循环利用,减少水资源的使用,减少原料和能源的使用,降低成本。
本实施例中所述壳体100内还装有一烟道阻流装置170,所述烟道阻流装置 170位于所述低温等离子反应单元110的出气侧和所述喷淋降温单元120之间。本实施例直接连接在垃圾焚烧炉的烟道上,需要连续稳定的处理烟气,因此喷淋降温单元120中的第一喷头121也会持续向壳体100内喷淋碱溶液,用于低温等离子反应单元110排出烟气的降温;低温等离子反应单元110排出的烟气温度在110℃,经过喷淋降温单元120后烟气降温至60-68℃的范围内,烟气中形成了一定量的饱和烟气;为了防止第一喷头121喷出的碱液喷入至低温等离子反应单元110,也防止经过喷淋后的饱和烟气回流进入至低温等离子反应单元110,对低温等离子反应单元110中的设备产生腐蚀和损害,设有烟道阻流装置170。
本实施例中所述烟道阻流装置170为一竖直设置的阻流板171,所述阻流板171成行设有透过孔,在每一行透过孔的上部固连有一倾斜设置的遮挡板172;所述遮挡板172的上端固连于所述阻流板171,所述遮挡板172下端为伸向所述喷淋降温单元120的自由端。第一喷头121广角喷射出的碱溶液和经过喷淋降温单元120获得的饱和烟气由于遮挡板172的遮挡,防止饱和烟气回流和第一喷头121喷出的碱液进入至低温等离子反应单元110。
本实施例中所述湿式污染物收集单元130还包括高频电源132、与高频电源132电连接的阴极线133和阳极板134,其中阴极线133和阳极板134平行设置;所述第二喷头131均匀分布在所述壳体100内顶部,位于所述阳极板134的上方;本实施例中阴极线133、阳极板134与高频电源132配合,雾滴、尘、氧化汞等经电场力作用后收集在阳极板134表面;湿式污染物收集单元130通过喷淋、电场力脱除,实现亚微米级物质的捕捉,同时对尘、氧化汞等也具有良好的吸收能力。相邻两第二喷头131之间的距离为500至800mm。本实施例中为了提高净化效果,第二喷嘴呈矩形点阵分布,前后或者左右两相邻两第二喷头131之间的距 离为500至800mm,实现无死角喷淋,所述喷淋降温所用水为弱碱性循环水,达到吸收一部分酸性气体的目的,同时也保证阳极板134、阴极线133不被酸性气体腐蚀,在阳极板134形成水膜后,沉积的多种污染物经第二喷头131喷淋出碱溶液的冲洗,防止影响湿式污染物收集单元130的收集效果。
本实施例中还包括投加单元180,所述投加单元180包括储罐、空压机和气罐,所述储罐通过双流体雾化喷枪与所述投放口连接。可通过投加单元180向烟气中通入雾化氨水或者是烃类气体。经过投加单元180向本实施例中投入雾化氨水,经氨水雾化喷淋后烟气温度降低至110-120℃。烟气温度的降低减少了处理烟气量,同时雾化喷淋加入的氨水,为后续等离子激发生产更多的·O、·OH和·NH 2等创造了条件,雾化氨水会与烟气中的SO 2、NO 2等酸性气体反应生成硫酸铵和硝酸铵等副产物,另外,NH 3在等离子单元中被激发生成的·NH 2可以实现NO x的部分还原。从而提高了低温等离子反应单元110的效率。向本实施例中投入烃类气体,烃类气体可以被低温等离子反应单元110中的高能电子激发出强氧化性的自由基,可以提高NO x的去除效率,从而降低低温等离子体反应单元的能耗。本实施例可设置有两个投加单元180,分别用于投加雾化氨水和烃类气体。通过投加单元180向烟气中添加的氨与SO 2、NO x的当量比为0.8-1,氨与SO 2、NO x为不完全反应,再通过喷淋降温单元120和湿式污染物收集单元130的收集,能大幅降低氨气的逃逸;通入有雾化氨液的烟气,湿度提高的烟气在进入低温等离子反应单元110后利于提高·OH的生成量,提高了低温等离子反应单元110的氧化效率。
本实施例的工作过程为:
焚烧锅炉中产生的烟气经进气口101进入至壳体100中,与经过投加单元180加入至壳体100中的雾化氨水和烃类气体进行混合,混合后的烟气经过一块至两 块气流分布板150均匀壳体100中烟气在立体空间内的分布;
经过均匀分布的烟气流动至低温等离子反应单元110,低温等离子反应单元110主要包括等离子电源、反应极和放电极等。低温等离子反应单元110通过等离子电源放电产生高能电子与混合烟气中的氧气、水分子和NH 3发生非弹性碰撞,激发产生·O、·OH和·NH 2等,一方面二噁英气体分子因高能电子撞击发生分子键断裂而分解;另一方面,·O和·OH具有很强的氧化性,实现二噁英、SO 2、NO x、Hg0的氧化。氧化后的酸性气体等物质进一步与过量的氨气反应生成铵盐混合在烟气中;
上述烟气从低温等离子反应单元110中排出后经过喷淋降温单元120,喷淋降温单元120一方面吸收烟气中的酸性物质和盐颗粒,另一方面实现对烟气的降温;烟气经喷淋降温后,温度迅速降低,由不饱和烟气向饱和烟气转化,析出大量微小水雾滴;同时SO 3由气态转化为雾滴。未反应的NO 2和NH 3等迅速溶于水并被弱碱性溶液吸收。
经过喷淋降温单元120的烟气通过湿式污染物收集单元130,湿式污染物收集单元130的阴阳极系统和高效高频电源132组合成,将雾滴、尘、氧化汞等经电场力作用后再由所述单元水处理循环系统的弱碱性溶液吸收。
净化后的烟气经过引风机通过烟囱排入大气中。
本实施例能够实现各种烟气量的处理,覆盖4000~8000m 3/h烟气处理量,基本覆盖全部的垃圾焚烧锅炉、生物质燃烧炉烟气量;本实施例可实现二氧化硫、氮氧化物、尘、二噁英及HCl等多种污染物的同步、高效脱除,脱除效率高,可实现脱除效率90%以上。
上述实施例和图式并非限定本发明的产品形态和式样,任何所属技术领域的 普通技术人员对其所做的适当变化或修饰,皆应视为不脱离本发明的专利范畴。

Claims (10)

  1. 一种垃圾焚烧烟气净化方法,其特征在于:包括以下步骤
    A、垃圾焚烧烟气预处理;
    向烟道中含有NO x、SO 2、二噁英、单质汞和灰尘的垃圾焚烧烟气混入增效气体,加入增效气体的混合烟气温度为100℃至120℃;
    B、使用低温等离子体净化步骤A排出的混合烟气;
    混合烟气进入低温等离子反应器,烟气中的污染物在低温等离子体的作用下发生氧化还原反应或者分解反应;
    C、喷淋液体降低步骤B排出烟气温度;
    使用雾化液体喷淋步骤B排出烟气,步骤B排出烟气降温并从不饱和烟气转化为饱和烟气,随着喷淋的进行,饱和烟气析出液滴溶液与喷淋液体接触混合;
    D、电场力与碱性溶液喷淋相结合去除C步骤排出烟气中的可荷电物质和酸性气体获得深度综合净化烟气;
    C步骤排出烟气中可荷电物质在电场力的作用下聚集,喷淋碱性溶液将聚集的可荷电物质冲洗后外排,同时碱液溶液将烟气中的酸性气体中和生成盐类物质后直接溶解在溶液中,获得综合净化烟气。
  2. 如权利要求1所述的一种垃圾焚烧烟气净化方法,其特征在于:所述步骤B中低温等离子处理的时间为1.5s至3s,电压为70kV至82kV。
  3. 如权利要求1所述的一种垃圾焚烧烟气净化方法,其特征在于:所述步骤C中用于烟气降温的溶液为碱性溶液。
  4. 如权利要求3所述的一种垃圾焚烧烟气净化方法,其特征在于:所述步骤C和步骤D中的碱性溶液由同一碱性溶液供应系统提供;所述碱性溶液的pH 值为9至10.5;所述碱性溶液为NaOH溶液或者NaHCO 3溶液。
  5. 如权利要求1所述的一种垃圾焚烧烟气净化方法,其特征在于:所述步骤D中喷淋的碱性溶液与烟气的液气比为6L/m 3至9.5L/m 3;烟气步骤D的处理时间为2至4s。
  6. 如权利要求1所述的一种垃圾焚烧烟气净化方法,其特征在于:8、如权利要求1所述的一种垃圾焚烧烟气净化方法,其特征在于:所述步骤C和步骤D产生的废液,在步骤D中进行收集处理。
  7. 如权利要求1所述的一种垃圾焚烧烟气净化方法,其特征在于:所述增效气体为雾化氨气;所述步骤A中氨与NO x和SO 2的当量比为0.6至1。
  8. 一种实现权1所述的一种垃圾焚烧烟气净化方法的装置,其特征在于:包括具有进气口和出气口的壳体,沿着烟气移动的方向,壳体内依次分隔有低温等离子反应单元、喷淋降温单元和湿式污染物收集单元;
    所述壳体位于所述进气口的一侧设有一气体投放口;所述湿式污染物收集单元对应的所述壳体底部设有收集部,所述收集部连通一碱液供应单元;所述喷淋降温单元设有多个第一喷头;所述湿式污染物收集单元设有多个第二喷头;所述第一喷头和所述第二喷头分别连通所述碱液供应单元的出液一端。
  9. 如权利要求8所述的装置,其特征在于:所述壳体内在所述气体投放口和所述低温等离子反应单元之间装有一气流分布板;所述气流分布板朝向所述低温等离子反应单元的一侧还设有多片从上至下设置的导流板,所述导流板包括位于所述板体中间的水平板和位于所述水平板两侧的多片倾斜板,位于所述水平板同一侧的所述倾斜板等角度向着所述板体倾斜设置。
  10. 如权利要求8所述的装置,其特征在于:所述壳体内还装有一烟道阻 流装置,所述烟道阻流装置位于所述低温等离子反应单元的出气侧和所述喷淋降温单元之间;所述烟道阻流装置为一竖直设置的阻流板,所述阻流板成行设有透过孔,在每一行透过孔的上部固连有一倾斜设置的遮挡板;所述遮挡板的上端固连于所述阻流板,所述遮挡板下端为伸向所述喷淋降温单元的自由端。
PCT/CN2019/116665 2018-09-08 2019-11-08 一种垃圾焚烧烟气净化方法及装置 WO2020098574A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811046698 2018-09-08
CN201811358877.2 2018-11-15
CN201811358877.2A CN110193275A (zh) 2018-09-08 2018-11-15 一种垃圾焚烧烟气净化方法及装置

Publications (1)

Publication Number Publication Date
WO2020098574A1 true WO2020098574A1 (zh) 2020-05-22

Family

ID=67751363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116665 WO2020098574A1 (zh) 2018-09-08 2019-11-08 一种垃圾焚烧烟气净化方法及装置

Country Status (2)

Country Link
CN (1) CN110193275A (zh)
WO (1) WO2020098574A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109621665A (zh) * 2018-09-08 2019-04-16 浙江大维高新技术股份有限公司 低温等离子处理垃圾焚烧锅炉烟气一体化装置
CN110193275A (zh) * 2018-09-08 2019-09-03 浙江大维高新技术股份有限公司 一种垃圾焚烧烟气净化方法及装置
WO2021203708A1 (zh) * 2020-04-08 2021-10-14 浙江大维高新技术股份有限公司 一种垃圾渗滤液臭气净化装置及其工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140065025A1 (en) * 2010-09-29 2014-03-06 Naresh J. Suchak Gas stream purification apparatus
CN106422715A (zh) * 2016-07-12 2017-02-22 湖南商学院 一种集成湿法烟气净化系统与烟气净化方法
CN209271171U (zh) * 2018-09-08 2019-08-20 浙江大维高新技术股份有限公司 低温等离子处理垃圾焚烧锅炉烟气一体化装置
CN110193275A (zh) * 2018-09-08 2019-09-03 浙江大维高新技术股份有限公司 一种垃圾焚烧烟气净化方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102059050B (zh) * 2010-11-30 2013-10-30 浙江大学 低温等离子体烟气复合污染物控制方法
CN202605999U (zh) * 2012-05-16 2012-12-19 绍兴文理学院 燃煤烟气等离子体净化装置
CN203525871U (zh) * 2013-11-05 2014-04-09 金华华东环保设备有限公司 一种静电除尘器气流分布均匀性装置
CN103990359B (zh) * 2014-06-06 2016-08-17 北京航空航天大学 利用低温等离子体净化湿法脱硫气雾中氮氧化物和雾粒的方法与装置
CN107281913A (zh) * 2017-08-15 2017-10-24 浙江大学 一种有机废气的处理系统及处理方法
CN207857132U (zh) * 2018-03-28 2018-09-14 西安建筑科技大学 用于电除尘器斜气流循环装置
CN108722141A (zh) * 2018-04-26 2018-11-02 浙江大维高新技术股份有限公司 一种脱硫脱硝除尘一体化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140065025A1 (en) * 2010-09-29 2014-03-06 Naresh J. Suchak Gas stream purification apparatus
CN106422715A (zh) * 2016-07-12 2017-02-22 湖南商学院 一种集成湿法烟气净化系统与烟气净化方法
CN209271171U (zh) * 2018-09-08 2019-08-20 浙江大维高新技术股份有限公司 低温等离子处理垃圾焚烧锅炉烟气一体化装置
CN110193275A (zh) * 2018-09-08 2019-09-03 浙江大维高新技术股份有限公司 一种垃圾焚烧烟气净化方法及装置

Also Published As

Publication number Publication date
CN110193275A (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
CN101716463B (zh) 电催化氧化联合石灰-石膏法的多种污染物同时脱除装置及方法
WO2020098574A1 (zh) 一种垃圾焚烧烟气净化方法及装置
CN109876585B (zh) 一种中药膏药生产废气处理系统
CN109569228A (zh) 垃圾焚烧炉烟气的排放系统及工艺
CN109985505B (zh) 一种中药膏药生产废气处理工艺
CN104759192A (zh) 一种低成本燃煤烟气多种污染物超低排放系统及方法
CN103506002B (zh) 二段式双循环喷淋填料复合吸收塔
CN105214465A (zh) 一体化湿法烟气脱硫除尘的装置和方法
WO2020098573A1 (zh) 一种使用低温等离子体净化垃圾焚烧炉烟气的工艺
CN112121614A (zh) 一种固废焚烧烟气稳定超低排放装置及方法
CN107469580A (zh) 一种湿法烟气脱硫脱汞除尘一体化装置及工艺
CN209271171U (zh) 低温等离子处理垃圾焚烧锅炉烟气一体化装置
CN102274680A (zh) 流光放电氨法烟气脱硫脱硝除雾一体化方法
CN113941238A (zh) 低温烟气污染物一体化控制方法
CN204582930U (zh) 一种低成本燃煤烟气多种污染物超低排放系统
CN208809774U (zh) 一种烟气超净净化系统
CN106474886A (zh) 一种低温等离子体联合两级动力波的工业废气净化装置
WO2020098576A1 (zh) 低温等离子处理垃圾焚烧锅炉烟气一体化装置
CN209934440U (zh) 民用取暖锅炉脱硫脱硝系统
CN205032080U (zh) 一种干式烟气脱硫脱硝除尘一体化净化系统
CN104075335B (zh) 一种利用耦合技术实现锅炉烟气达标排放的工艺及其装置
CN110064294A (zh) 一种高压静电除尘氧化脱硫脱硝的方法
CN202620997U (zh) 一种垃圾焚烧烟气净化一体化装置
CN110115916A (zh) 煤气锅炉烟气的排放装置及工艺
CN209865669U (zh) 中药膏药生产废气处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885857

Country of ref document: EP

Kind code of ref document: A1