WO2020098477A1 - 一种低频耦合吸声结构 - Google Patents

一种低频耦合吸声结构 Download PDF

Info

Publication number
WO2020098477A1
WO2020098477A1 PCT/CN2019/113918 CN2019113918W WO2020098477A1 WO 2020098477 A1 WO2020098477 A1 WO 2020098477A1 CN 2019113918 W CN2019113918 W CN 2019113918W WO 2020098477 A1 WO2020098477 A1 WO 2020098477A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
cavity
sound
frequency
micro
Prior art date
Application number
PCT/CN2019/113918
Other languages
English (en)
French (fr)
Inventor
李登科
蒋忠城
叶彪
刘晓波
王先锋
蒋济雄
郭冰彬
江大发
李旺
陈晶晶
袁文辉
段华东
周礼
张俊
张波
陈诗文
刘国云
施柱
Original Assignee
中车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车有限公司 filed Critical 中车株洲电力机车有限公司
Priority to EP19884417.7A priority Critical patent/EP3706114B1/en
Publication of WO2020098477A1 publication Critical patent/WO2020098477A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials

Definitions

  • the embodiments of the present invention relate to the technical field of noise reduction, and particularly to a low-frequency coupling sound absorption structure.
  • sound-absorbing materials can be roughly divided into porous sound-absorbing materials and resonance sound-absorbing materials according to the principle of sound absorption.
  • thin-plate resonance sound-absorbing structure, thin-film resonance sound-absorbing structure, micro-perforated plate resonance sound-absorbing structure, and micro-perforated plate sound-absorbing Sound and micro-slit sound absorption structures are all resonance sound absorption structures.
  • Micro-perforated plate resonance, micro-perforated plate sound absorption structure and double-layer micro-perforated plate sound absorption structure have many superior characteristics in terms of sound absorption characteristics, flow resistance, moisture resistance, corrosion resistance, sanitation and cleaning, etc. It is still unable to meet the actual needs of some noise control, especially in the occasions where the sound absorption space is strictly restricted, it is difficult to control low-frequency noise.
  • the sound-absorbing material Since sound waves with large wavelengths in the low-frequency range cannot be effectively controlled, low-frequency sound waves are not easily attenuated in the air, have a long propagation distance, and have a large influence range, so in order to effectively reduce low-frequency noise in the prior art, the sound-absorbing material must be greatly increased
  • the thickness of the sound-absorbing structure or the depth of the cavity of the sound-absorbing structure increases the volume of the sound-absorbing structure, which is not conducive to the development of product miniaturization. Reduce product performance.
  • the purpose of the embodiments of the present invention is to provide a low-frequency coupling sound absorption structure, which is beneficial to improve the sound absorption coefficient and widen the sound absorption frequency band during use, and shift the sound absorption frequency band to a low frequency, thereby realizing low frequency sound absorption and helping Improve product performance.
  • an embodiment of the present invention provides a low-frequency coupled sound absorption structure, including:
  • the peripheral cavity includes a micro-perforated plate, a back plate, a first side plate, and a second side plate.
  • the micro-perforated plate is provided with a plurality of micro-hole structures, and the micro-perforated plate is corresponding to the back plate.
  • the first side plate and the second side plate are correspondingly provided.
  • each of the resonance cavities is provided on the backplane.
  • the orientation of the extension tube structure on each of the resonance chambers is the same.
  • the extension tube structure on each of the resonance chambers includes multiple extension tubes.
  • the length of the extension tube structure on each of the resonance chambers is different.
  • it also includes an isolation layer disposed between two adjacent resonant cavities.
  • the isolation layer is an isolation layer made based on melamine foam.
  • the isolation layer is an isolation layer made of metal.
  • the resonance cavity is a spherical resonance cavity.
  • the parameter information of the low-frequency coupled sound-absorbing structure is set according to a preset method, where the preset method is:
  • a simulated annealing optimization algorithm is used to optimize the target function to obtain the optimal solution of the target function
  • Each value in the optimal solution is used as parameter information of each parameter.
  • An embodiment of the present invention provides a low-frequency coupled sound-absorbing structure, including a peripheral cavity, a resonance cavity disposed in the peripheral cavity, and an extension tube structure disposed inside the resonance cavity.
  • One end of the extension tube structure passes through a corresponding through hole and resonates
  • the cavity walls of the cavity are connected;
  • the peripheral cavity includes a micro-perforated plate, a back plate, a first side plate and a second side plate, the micro-perforated plate is provided with a plurality of micro-hole structures, the micro-perforated plate and the back plate are provided correspondingly, the first The side plate and the second side plate are set correspondingly.
  • the low-frequency coupled sound-absorbing structure in this application can increase the acoustic impedance of the sound-absorbing structure by providing a resonant cavity with an extended tube structure in the peripheral cavity with a microporous structure, which is beneficial to improve the sound absorption coefficient and broaden the sound absorption.
  • the sound frequency band shifts the sound absorption frequency band to a low frequency, thereby realizing low frequency sound absorption and helping to improve product performance.
  • FIG. 1 is a schematic structural diagram of a low-frequency coupled sound absorption structure provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another low-frequency coupled sound-absorbing structure provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another low-frequency coupled sound-absorbing structure provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another low-frequency coupling sound absorption structure provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another low-frequency coupled sound absorption structure provided by an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a simulated annealing optimization algorithm provided by an embodiment of the present invention.
  • FIG. 7 is a graph of frequency-sound absorption coefficients corresponding to the structure of a conventional micro-perforated plate sound absorption structure and the structure of a low-frequency coupled sound absorption structure in this application, respectively;
  • FIG. 9 is a graph of frequency-sound absorption coefficient corresponding to the structure of a low-frequency coupled sound absorption structure provided by an embodiment of the present invention.
  • the embodiment of the present invention provides a low-frequency coupled sound absorption structure, which is beneficial to improve the sound absorption coefficient and widen the sound absorption frequency band during use, and shift the sound absorption frequency band to low frequency, thereby realizing low frequency sound absorption and helping to improve the product performance.
  • FIG. 1 is a schematic structural diagram of a low-frequency coupled sound absorption structure according to an embodiment of the present invention.
  • the low-frequency coupled sound-absorbing structure includes:
  • the peripheral cavity 1 includes a micro-perforated plate 11, a back plate 12, a first side plate 13 and a second side plate 14.
  • the micro-perforated plate 11 is provided with a plurality of micro-pore structures 111, and the micro-perforated plate 11 corresponds to the back plate 12 ,
  • the first side plate 13 and the second side plate 14 are correspondingly provided.
  • the embodiment of the present invention realizes the optimization of the acoustic impedance of the cavity by providing a resonance cavity 2 in the cavity surrounded by the peripheral cavity 1 and an extension tube structure 3 on the resonance cavity 2, thereby making the present application
  • the low-frequency coupling sound-absorbing structure in the middle can realize the absorption of low-frequency sound waves.
  • the present application makes full use of the space behind the plate of the micro-perforated plate 11 and can absorb the low-frequency sound waves without increasing the length of the peripheral cavity or the thickness of the material. .
  • the acoustic impedance of the sound absorption structure in this application by adjusting the parameters such as the tube length, tube diameter, and perforation rate of the extension tube in the extension tube structure, improve the sound absorption coefficient, and widen the sound absorption band to make sound absorption
  • the frequency band shifts to low frequencies to achieve low frequency sound absorption.
  • the combination of the resonance cavity 2 and the extension tube structure 3 may be called an extension tube resonance structure.
  • the extension tube structure 3 is provided with an extension tube, and one end of the extension tube passes through the through hole of the resonance cavity 2 and the cavity wall of the resonance cavity 2
  • the micro-perforated plate 11, the back plate 12, the first side plate 13 and the second side plate 14 in the embodiment of the present invention can all be made of stainless steel, aluminum plate, plastic plate and other materials, without specific limitation. Further, there are multiple resonance cavities 2, and each resonance cavity 2 is disposed on the back plate 12.
  • the coupling resonance is formed by the micro-perforated plate 11 and a plurality of extension tube resonance structures.
  • the micro-perforated plate 11 and the extension tube resonance structure are in series Noise reduction, to achieve a double-layer structure of noise reduction processing, a parallel resonance circuit is formed between each extension tube structure, the low-frequency coupling sound absorption structure in the embodiment of the present invention adopts a parallel and series composite sound absorption structure, so as to achieve a wide frequency noise control.
  • the specific parameters of the resonant cavity 2 and the extension tube structure 3 in the embodiment of the present invention can be set according to the frequency of the noise source, so as to achieve accurate noise reduction.
  • the sound-absorbing matching layer of the micro-perforated plate 11 can enable medium and low frequency sound waves to enter the resonant structure of the extension tube without reflection. Due to the sound scattering on the surface of the resonance cavity 2 Acoustic waves can reach the resonance cavity 2 of each extension tube structure 3, and push the air column of the extension tube to reciprocate vibration, and dissipate through viscous damping to achieve low-frequency resonance sound absorption, while the micro-perforated plate 11 and multiple extension tube resonance structures It further widens the dissipation of the combined structure to mid and high frequency sound waves.
  • the sound wave when the sound wave is radiated into the low-frequency coupling sound-absorbing structure in this embodiment, the sound wave first reaches the surface of the micro-perforated plate 11, and the sound wave pushes the air column in the hole on the peripheral cavity 1 to reciprocate, due to the micro-hole structure
  • the viscous damping effect of 111 when passing through the micropore structure 111, part of the sound energy is converted into heat energy, and then the sound wave continues to propagate along the cavity to form acoustic scattering on the surface of the extension tube resonance structure.
  • the air column also reciprocates under the excitation of sound waves.
  • the orientation of the extended tube structure 3 of each resonant cavity 2 in the embodiment of the present invention is the same.
  • the specific orientation of the extended tube structure 3 on each resonant cavity 2 may be based on the actual application
  • the design of the incident direction is not specifically limited in this application.
  • the extension tube structure 3 of the resonance cavity 2 faces the through hole of the micro-perforated plate 11; as shown in FIG. 3, the extension tube structure 3 of the resonance cavity 2 is disposed parallel to the micro-perforated plate 11.
  • extension tube structure 3 on each resonance cavity 2 includes a plurality of extension tubes.
  • the extension tube structure 3 on each resonance cavity 2 includes two extension tubes.
  • the number of extension tubes included in each extension tube structure 3 in FIG. 2 varies.
  • the extension tube structure 3 in 2 includes three extension tubes, wherein the length of each extension tube in each extension tube structure 3 may be equal or unequal, and can be set according to actual needs.
  • the diameter of the resonant cavity 2 in the embodiment of the present invention may be 60 mm
  • the inner diameter of the hole of the extension tube may be 2 to 8 mm
  • the perforation rate of the extension tube may be 1% to 5%.
  • the specific parameters of the extension tube It can be set according to the actual situation, this application does not make special restrictions.
  • the length of the extension tube structure 3 on each resonance cavity 2 is different.
  • the length of the extension tube structure of the first resonance cavity, the extension tube structure of the second resonance cavity, and the extension tube structure of the third resonance cavity may all be different.
  • the lengths of the extension tubes in the extension tube structure of a resonance cavity may be equal or different.
  • the length of the extension tube structure 3 in the first resonance cavity and the length of the extension tube structure 3 in the third resonance cavity can be 3 cm, and the extension tube structure 3 in the other two resonance cavity
  • the length can be 2cm.
  • the length of the extension pipe structure should be determined according to the actual situation. The specific data of this application is not subject to special restrictions.
  • the low-frequency coupled sound-absorbing structure in the embodiment of the present invention may further include an isolation layer disposed between two adjacent resonance chambers.
  • the isolation layer in the embodiment of the present invention may be an isolation layer made based on melamine foam.
  • a melamine foam layer 41 with a thickness of 10 mm may be provided between two adjacent resonant cavities 2 to isolate the two adjacent resonant cavities 2.
  • the isolation layer in the embodiment of the present invention may be an isolation layer made of metal, thereby separating each resonant cavity 2 , Has formed multiple independent work units.
  • a metal separator 42 with a thickness of 2 mm can be provided between two adjacent resonant cavities 2 to isolate the two adjacent resonant cavities 2 to form a pair of independent working units.
  • the resonant cavity 2 in each working unit works independently without interfering with each other.
  • the specific thickness value of the isolation layer in the embodiment of the present invention can be set according to the actual situation, and the application is not particularly limited.
  • the resonance cavity 2 is a spherical resonance cavity.
  • the diameter of the resonant cavity 2 may be 60 mm, and the thickness of the cavity wall may be 1 mm.
  • the specific parameters should be set according to the actual situation, and this application does not make special limitations.
  • each micropore structure 11 is uniformly distributed.
  • the depth of the peripheral cavity 1 (that is, the distance between the micro-perforated plate 11 and the back plate 2) in the embodiment of the present invention may be 70 mm
  • the micro-perforated plate 11 may be a square with a side length of 100 mm and a thickness It can be 0.5 to 1 mm
  • the diameter of the microporous structure 111 can be 0.4 to 0.9 mm
  • the perforation rate of the microporous structure 111 is 1 to 4%
  • the microporous structure 111 on the microperforated plate 11 can be evenly distributed, for example, in a regular pattern
  • the arrangement of the squares is conducive to improving the absorption efficiency of sound waves.
  • the parameter information of the low-frequency coupled sound-absorbing structure is set according to a preset method, where the preset method is:
  • the simulated annealing optimization algorithm is used to optimize the objective function to obtain the optimal solution of the objective function
  • Each value in the optimal solution is used as parameter information of each parameter.
  • the simulated annealing optimization algorithm shown in FIG. 6 is used to optimize the parameter information of the low-frequency coupled sound-absorbing structure in FIG. 2.
  • the objective function corresponding to each parameter of the low-frequency coupled sound-absorbing structure is established. In the case of, solve the Helmholtz equation of sound waves propagating inside the low-frequency coupled sound-absorbing structure:
  • p is the surface acoustic pressure
  • is the angular frequency
  • ⁇ eq is the equivalent density of the structure
  • K eq is the equivalent bulk modulus of the structure.
  • the micro-perforated plate constant is r is the relative acoustic resistance, m is the relative acoustic quality, pc is the acoustic impedance of air, ⁇ is the angular frequency, t is the thickness of the micro-perforated plate, d is the diameter of the perforation, p is the perforation rate, and f 0 is the sound wave frequency.
  • the surface acoustic impedance rate of the combined structure of the four extension tube resonance structures and the surrounding air layer in parallel is:
  • ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , and ⁇ 5 are the area ratios occupied by each unit, and Za1 is the acoustic impedance of the air layer around the resonance structure of the extension tube.
  • Z P ′ from the surface of the resonance structure of the extension tube to the surface of the micro-perforated plate can be obtained as:
  • Z a ⁇ c air characteristic acoustic reactance
  • k a constant air Song acoustic wave propagation
  • t ' the thickness of the air layer between the resonator and the microperforated plate.
  • the sound absorption coefficient is determined by the joint action of the parameters of the micro-perforated plate layer, the air layer, and the resonance structure.
  • the global optimization parameters of the low-frequency coupled sound absorption structure can be approximated to achieve the most optimal combination structure Excellent design. As shown in FIG.
  • the low-frequency coupled sound-absorbing structure in which the sound-absorbing layer of the micro-perforated plate 11 has (d, t, D, p) 4 parameters (D represents the depth of the peripheral cavity 1, that is, low-frequency coupled sound absorption The thickness of the acoustic structure), and each extension tube resonance structure has four variables, and the four extension tube resonance structures have a total of 16 variables, so the objective function includes 20 variables.
  • the simulated annealing optimization algorithm is used to seek the optimal objective function After the solution, the parameter information of each variable is determined according to the optimal solution, that is, the specific value corresponding to each parameter is determined, and the low-frequency coupling sound absorption structure is set according to the specific value of each parameter.
  • the objective function is to obtain a set of parameter solutions to maximize the average sound absorption coefficient of the objective function in the frequency range of 80-2000 Hz:
  • ⁇ in the above formula represents the sound absorption coefficient
  • ⁇ > represents the average sound absorption coefficient
  • N represents the number of sound wave frequencies in the optimized frequency interval
  • i is the subscript of the sound wave frequency
  • f i represents the i-th sound wave frequency.
  • low-frequency coupled sound absorption structures such as the low-frequency coupled sound absorption structures shown in FIGS. 3-5
  • the relationship between the sound absorption coefficient that is, the objective function
  • optimize the objective function through the simulated annealing optimization algorithm, and then find the optimal parameter information corresponding to the corresponding low-frequency coupled sound absorption structure, and then set the sound absorption effect Optimal low-frequency coupling sound absorption structure.
  • the above structural parameter optimization algorithm in the embodiment of the present invention can make the low-frequency coupled sound-absorbing structure have a low-frequency broadband noise reduction effect in the low-frequency band of 80-2000 Hz, and realize the effect on rail transportation equipment and high-speed delivery platforms. Efficient noise reduction of low-frequency broadband noise.
  • curve 61 in FIG. 7 represents a frequency-sound absorption coefficient curve corresponding to a conventional micro-perforated plate sound-absorbing structure
  • curve 62 represents low-frequency coupling in an embodiment of the present invention.
  • the frequency-sound absorption coefficient curve corresponding to the sound absorption structure that is, the frequency-sound absorption coefficient curve corresponding to the frequency-sound absorption structure provided with the extension tube resonance structure in the peripheral cavity, as can be seen from FIG.
  • the sound absorption coefficient of the traditional micro-perforated plate structure is not greater than 0.15 at 100 to 250 Hz, and the sound absorption effect is poor, and based on the present invention
  • the resonance peak of the sound absorption structure provided with the extension tube resonance structure in the peripheral cavity of the embodiment reaches 0.91 at 170 Hz, and the sound absorption coefficient between 150 and 200 Hz reaches more than 0.5, which can be seen in the sound absorption provided in this application
  • the sound absorption effect of the sound structure is obviously superior to that of the traditional sound absorption structure.
  • curve 71 in FIG. 8 represents a frequency-sound absorption coefficient curve corresponding to a conventional microperforated plate sound absorption structure with a cavity depth of 150 mm
  • curve 72 represents a cavity depth of 150 mm provided in an embodiment of the present invention.
  • the frequency-absorption coefficient curve of the low-frequency coupled sound-absorbing structure of the present invention shows that the sound-absorbing effect of the sound-absorbing structure in the embodiment of the present invention is obviously superior to the traditional sound-absorbing structure, and the implementation of the present invention can be seen from FIGS. 7 and 8
  • the size of the entire sound absorbing structure in the example is only 1/28 of the wavelength of the control sound wave.
  • curve 81 represents the frequency-absorption coefficient curve corresponding to the sound absorption structure with 4 extension tube resonance structures in the peripheral wall
  • curve 82 represents 3 with the peripheral wall
  • the cavity depth of the two sound absorption structures is 150mm. From FIG. 8, it can be seen that the sound absorption of the four extension tube resonance structures is provided.
  • the structure has a wider sound absorption band than the sound absorption structure with 3 extension tube resonance structures, and the resonance peak-to-peak sound absorption coefficient of the sound absorption structure with 4 extension tube resonance structures reaches more than 0.8, which shows that the peripheral empty
  • An embodiment of the present invention provides a low-frequency coupled sound-absorbing structure, including a peripheral cavity, a resonance cavity disposed in the peripheral cavity, and an extension tube structure disposed inside the resonance cavity.
  • One end of the extension tube structure passes through a corresponding through hole and resonates
  • the cavity walls of the cavity are connected;
  • the peripheral cavity includes a micro-perforated plate, a back plate, a first side plate and a second side plate, the micro-perforated plate is provided with a plurality of micro-hole structures, the micro-perforated plate and the back plate are provided correspondingly, the first The side plate and the second side plate are set correspondingly.
  • the low-frequency coupled sound-absorbing structure in the embodiment of the present invention can increase the sound resistance of the sound-absorbing structure by providing a resonant cavity with an extended tube structure in the peripheral cavity with the micro-porous structure, which is beneficial to improve the sound absorption coefficient and Broaden the sound absorption frequency band, shift the sound absorption frequency band to low frequency, so as to achieve low frequency sound absorption, which is conducive to improving product performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

一种低频耦合吸声结构,包括外围腔体(1)、设置于外围腔体(1)内的共振腔(2)及设置于共振腔(2)内部的延长管结构(3),延长管结构(3)的一端通过相应的通孔与共振腔(2)的腔壁连接;外围腔体(1)包括微穿孔板(11)、背板(12)、第一侧板(13)和第二侧板(14),微穿孔板(11)上设有多个微孔结构(111),微穿孔板(11)与背板(12)对应设置,第一侧板(13)和第二侧板(14)对应设置。低频耦合吸声结构通过在带有微孔结构(111)的外围腔体(1)内设置设有延长管结构(3)的共振腔(2),能够增加吸声结构的声阻抗,有利于提高吸声系数和拓宽吸声频带,使吸声频带向低频偏移,从而实现低频吸声,有助于提高产品性能。

Description

一种低频耦合吸声结构
本申请要求于2018年11月15日提交至中国专利局、申请号为201811359437.9、发明名称为“一种低频耦合吸声结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及降噪技术领域,特别是涉及一种低频耦合吸声结构。
背景技术
目前,吸声材料按照吸声原理大致可以分为多孔性吸声材料和共振吸声材料,其中,薄板共振吸声结构、薄膜共振吸声结构、微穿孔板共振吸声结构、微穿孔板吸声和微缝板吸声结构等都属于共振吸声结构。微穿孔板共振、微穿孔板吸声结构以及双层微穿孔板吸声结构较多孔性吸声材料在吸声特性、流阻、抗潮湿、耐腐蚀、卫生清洁等方面具有许多优越特点,但是仍无法满足一些噪声控制的实际需要,特别是在吸声空间受到严格限制的场合下,难以对低频噪声进行控制。
由于,低频范围内大波长的声波无法得到有效控制,低频声波在空气中又不易衰减,传播距离远,影响范围大,所以现有技术中若要有效降低低频噪声就必须大幅增大吸声材料的厚度或吸声结构的空腔深度,造成吸声结构的体积增加,不利于产品小型化发展,另外,吸声结构的空腔深度的增加还会在一定程度上导致吸声频带变窄,降低产品性能。
鉴于此,如何提供一种解决上述技术问题的低频耦合吸声结构成为本领域技术人员需要解决的问题。
发明内容
本发明实施例的目的是提供一种低频耦合吸声结构,在使用过程中有利于提高吸声系数和拓宽吸声频带,使吸声频带向低频偏移,从而实现低频吸声,有助于提高产品性能。
为解决上述技术问题,本发明实施例提供了一种低频耦合吸声结构, 包括:
外围腔体、设置于所述外围腔体内的共振腔及设置于所述共振腔内部的延长管结构,所述延长管结构的一端通过相应的通孔与所述共振腔的腔壁连接;
所述外围腔体包括微穿孔板、背板、第一侧板和第二侧板,所述微穿孔板上设有多个微孔结构,所述微穿孔板与所述背板对应设置,所述第一侧板和所述第二侧板对应设置。
可选的,所述共振腔为多个,各个所述共振腔均设置于所述背板上。
可选的,各个所述共振腔上的延长管结构的朝向一致。
可选的,每个所述共振腔上的延长管结构包括多个延长管。
可选的,每个所述共振腔上的延长管结构的长度不同。
可选的,还包括设置于相邻两个所述共振腔之间的隔离层。
可选的,所述隔离层为基于三聚氰胺泡沫制作而成的隔离层。
可选的,所述隔离层为基于金属制作而成的隔离层。
可选的,所述共振腔为球形共振腔。
可选的,所述低频耦合吸声结构的参数信息依据预设方法进行设置,其中,所述预设方法为:
依据所述低频耦合吸声结构的各个参数建立目标函数;
采用模拟退火优化算法对所述目标函数进行寻优处理,得到所述目标函数的最优解;
将所述最优解中的各个数值分别作为各个所述参数的参数信息。
本发明实施例提供了一种低频耦合吸声结构,包括外围腔体、设置于外围腔体内的共振腔及设置于共振腔内部的延长管结构,延长管结构的一端通过相应的通孔与共振腔的腔壁连接;外围腔体包括微穿孔板、背板、第一侧板和第二侧板,微穿孔板上设有多个微孔结构,微穿孔板与背板对应设置,第一侧板和第二侧板对应设置。
可见,本申请中的低频耦合吸声结构通过在带有微孔结构的外围腔体内设置设有延长管结构的共振腔,能够增加吸声结构的声阻抗,有利于提高吸声系数和拓宽吸声频带,使吸声频带向低频偏移,从而实现低频吸声, 有助于提高产品性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种低频耦合吸声结构的结构示意图;
图2为本发明实施例提供的另一种低频耦合吸声结构的结构示意图;
图3为本发明实施例提供的另一种低频耦合吸声结构的结构示意图;
图4为本发明实施例提供的另一种低频耦合吸声结构的结构示意图;
图5为本发明实施例提供的另一种低频耦合吸声结构的结构示意图;
图6为本发明实施例提供的一种模拟退火优化算法的流程示意图;
图7为本发明实施例提供的一种传统微穿孔板吸声结构与本申请中的低频耦合吸声结构的结构分别对应的频率-吸声系数的曲线图;
图8为本发明实施例提供的另一种传统微穿孔板吸声结构与本申请中的低频耦合吸声结构的结构分别对应的频率-吸声系数的曲线图;
图9为本发明实施例提供的一种低频耦合吸声结构的结构对应的频率-吸声系数的曲线图。
具体实施方式
本发明实施例提供了一种低频耦合吸声结构,在使用过程中有利于提高吸声系数和拓宽吸声频带,使吸声频带向低频偏移,从而实现低频吸声,有助于提高产品性能。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图1,图1为本发明实施例提供的一种低频耦合吸声结构的结构示意图。
该低频耦合吸声结构,包括:
外围腔体1、设置于外围腔体1内的共振腔2及设置于共振腔2内部的延长管结构3,延长管结构3的一端通过相应的通孔与共振腔2的腔壁连接;
外围腔体1包括微穿孔板11、背板12、第一侧板13和第二侧板14,微穿孔板11上设有多个微孔结构111,微穿孔板11与背板12对应设置,第一侧板13和第二侧板14对应设置。
需要说的是,本发明实施例通过在外围腔体1包围的空腔内设置共振腔2,并且在共振腔2上设置延长管结构3实现对空腔的声阻抗进行优化,从而使本申请中的低频耦合吸声结构能够实现对低频声波的吸收,本申请充分利用了微穿孔板11的板后空间,不需要增加外围腔体的长度或材料的厚度,即可实现对低频声波的吸收。具体可以通过调节延长管结构中的延长管的管长、管直径和穿孔率等参数,增加本申请中的吸声结构的声阻抗,提高吸声系数,并能够拓宽吸声频带,使吸声频带向低频偏移,实现低频吸声。
其中,可以将共振腔2和延长管结构3的组合体称为延长管共振结构,延长管结构3设有延长管,并且延长管的一端通过共振腔2的通孔与共振腔2的腔壁结合,并且本发明实施例中的微穿孔板11、背板12、第一侧板13和第二侧板14均可以采用不锈钢、铝板、塑料板等材料制作而成,具体不做特殊限定。进一步的,共振腔2为多个,各个共振腔2均设置于背板12上。
可以理解的是,在外围腔体1内设置多个带有延长管结构3的共振腔2,例如图1-3所示,均包括4个共振腔2,也即在外围腔体1内设置多个延长管共振结构,从而将空腔分为多个延长管共振系统,以进一步提高低频吸声效率。本发明实施例中通过微穿孔板11和多个延长管共振结构构成形成耦合共振,从“电-力-声”的等效电路,可以确定设有微穿孔板11和延 长管共振结构属于串联消声,实现双层结构的消声处理,各个延长管结构之间构成并联谐振电路,本发明实施例中的低频耦合吸声结构采用并联和串联的复合吸声结构,从而实现对宽频率噪声的控制。另外,可以根据噪声源的频率对本发明实施例中的共振腔2和延长管结构3的具体参数进行设置,以实现精准降噪。
具体的,基于微穿孔板11和延长管共振结构,微穿孔板11的吸声匹配层可以使得中低频声波在没有发生反射的情况下进入延长管共振结构,由于共振腔2表面的声散射使得声波能够到达每一个延长管结构3的共振腔2,并推动延长管的空气柱做往复振动,通过粘滞阻尼耗散,实现低频共振吸声,同时微穿孔板11和多个延长管共振结构进一步拓宽了组合结构对中高频声波的耗散。
也即,当声波辐射到本实施例中的低频耦合吸声结构中时,声波首先到达微穿孔板11表面,声波推动外围腔体1上的孔洞内的空气柱做往复振动,由于微孔结构111的粘滞阻尼作用,在经过微孔结构111时部分声能转化为热能消耗掉了,接着声波沿着空腔继续向前传播在延长管共振结构表面形成声散射,延长管共振结构内的空气柱同样在声波的激励下做往复振动,通过优化延长管共振结构的声阻抗可以实现复合结构对低频声波的高效吸收。
更进一步的,各个共振腔2上的延长管结构3的朝向一致。
具体的,如图1-3所示,本发明实施例中的各个共振腔2延长管结构3的朝向一致,当然,各个共振腔2上的延长管结构3的具体朝向可以根据实际应用中声波入射方向进行设计,本申请不做具体限定。
例如,图1和图2所示,共振腔2的延长管结构3正对微穿孔板11的通孔处;图3所示,共振腔2的延长管结构3平行于微穿孔板11设置。
更进一步的,每个共振腔2上的延长管结构3包括多个延长管。
其中,如图1所示,每个共振腔2上的延长管结构3均包括两个延长管,图2中的每个延长管结构3所包括的延长管数量不等,第三个共振腔2中的延长管结构3包括三个延长管,其中,每个延长管结构3中的各个延长管的长度可以相等,也可以不相等,可以根据实际需要进行设定。
具体的,本发明实施例中的共振腔2的直径可以为60mm,延长管的孔内直径可以为2~8mm,延长管的穿孔率可以为1%~5%,当然,延长管的具体参数可以根据实际情况进行设定,本申请不做特殊限定。
当然,每个共振腔2上的延长管结构3的长度不同。例如,对于包括4个共振腔2的吸声结构,第一个共振腔的延长管结构、第二个共振腔的延长管结构、第三个共振腔的延长管结构的长度可以均不相同,当然,对于一个共振腔的延长管结构中的各个延长管的长度可以相等,也可以不相等。如图2所示,其中,第一个共振腔中的延长管结构3的长度和第三个共振腔中的延长管结构3的长度可以为3cm,另外两个共振腔中的延长管结构3的长度可以为2cm。在实际应用中,应根据实际情况确定延长管结构的长度,其具体数据本申请不做特殊限定。
进一步的,本发明实施例中的低频耦合吸声结构还可以包括设置于相邻两个共振腔之间的隔离层。
具体的,为了提高对高频声波的进一步吸收,本发明实施例中的隔离层可以为基于三聚氰胺泡沫制作而成的隔离层。
如图4所示,其中,相邻两个共振腔2之间可以设置厚度为10mm的三聚氰胺泡沫层41,从而将相邻两个共振腔2隔离开。
另外,为了进一步提高对声波的低频吸收效率,并有效对无规则入射的声波进行吸收,本发明实施例中的隔离层可以为基于金属制作而成的隔离层,从而将每个共振腔2分开,已形成多个独立的工作单元。
如图5所示,其中,相邻两个共振腔2之间可以设置厚度为2mm的金属隔板42,从而将相邻两个共振腔2隔离开,已形成对个独立的工作单元,使每个工作单元中的共振腔2独立工作,相互之间没有干涉。
当然,对于本发明实施例中的隔离层的具体厚度值可以根据实际情况进行设定,本申请不做特殊限定。
进一步的,共振腔2为球形共振腔。
具体的,共振腔2的直径可以为60mm,其腔壁厚度可以为1mm,当然,其具体参数应根据实际情况进行设置,本申请不做特殊限定。
进一步的,各个微孔结构11呈均匀分布。
具体的,本发明实施例中的外围腔体1的深度(也即微穿孔板11和背板2之间的间距)可以为70mm,微穿孔板11可以为边长可以为100mm的正方形,厚度可以为0.5~1mm,微孔结构111的直径可以为0.4~0.9mm,微孔结构111的穿孔率为1~4%,微穿孔板11上的微孔结构111可以均匀分布,例如,呈规则的正方形排列分布,有利于提高对声波的吸收效率。
更进一步的,低频耦合吸声结构的参数信息依据预设方法进行设置,其中,预设方法为:
依据低频耦合吸声结构的各个参数建立目标函数;
采用模拟退火优化算法对目标函数进行寻优处理,得到目标函数的最优解;
将最优解中的各个数值分别作为各个参数的参数信息。
需要说明的是,在利用模拟退火优化算法对目标函数进行寻优处理的过程具体如图6所示,其中,f(X)为目标函数,X为变量,算法开始后,初始温度设为T=0、初始解设为X,在每次迭代过程中在当前X的领域内随机生成一组可能的解X',如果满足条件Δf=f(X')-f(X)≤0,则接受新解X'作为当前解,反之,如果条件Δf=f(X')-f(X)>0成立,则将以一定的概率
Figure PCTCN2019113918-appb-000001
接受新的解X′作为新的当前解,C和T分别是玻尔兹曼常数和当前迭代的温度值、
Figure PCTCN2019113918-appb-000002
是0和1之间的随机数。也即,如果Δf=f(X')-f(X)>0成立,则判断rand(0,1)≤esp(-Δf/CT)是否成立,当成立时接收X′作为新的当前解。在模拟退火过程中,温度T是控制迭代寻找最优化解的重要参数,当T=0之时且Δf=f(X')-f(X)>0,此时有Pb(X')=exp(-Δf/CT)=0,概率永远小于
Figure PCTCN2019113918-appb-000003
因此新的解永远都不会被接受。当Δf≤0的时候,新的解X′总是被接受,而Δf>0可以防止目标函数被限制在局域最优值,算法内循环的终止条件是经过次迭代,同时每次内循环结束后,都会伴随着降温过程T i+1=εT i,其中,ε∈(0,1)是一个降温常数,算法的终止条件是达到终止温度T min并且外循环经过ω max次迭代搜索没有找到新解,从而寻找出目标函数的最优解X。
以本发明实施例中的图2所示的低频耦合吸声结构为例进行详细说明:
采用图6中所示的模拟退火优化算法对图2中的低频耦合吸声结构的参数信息进行优化,首先,建立该低频耦合吸声结构的各个参数对应的目标函数,其中,假设声波正入射的情形下,求解出声波在低频耦合吸声结构内部传播的亥姆霍兹方程:
Figure PCTCN2019113918-appb-000004
其中,p为结构表面声压,ω为角频率,ρ eq为结构等效密度,K eq为结构的等效体积模量。
根据声波方程计算得到单层微穿孔结构的声阻抗 Zmpp为Z mpp=ρc(r p+jωm p),其中:
Figure PCTCN2019113918-appb-000005
其中,微穿孔板常数为
Figure PCTCN2019113918-appb-000006
r为相对声阻率,m为相对声质量,pc为空气的声阻抗率,ω为角频率,t为微穿孔板厚度,d是穿孔的直径;p为穿孔率;f 0为声波频率。
同样也可以求解延长管共振结构内部的声波方程,进而得到图2中四个延长管共振器的表面声阻分别为Z P1、Z P2、Z P3和Z P4,则根据并联结构的等效电路的理论,四个延长管共振结构与周围空气层并联组合结构的表面声阻抗率为:
Figure PCTCN2019113918-appb-000007
其中,φ 1、φ 2、φ 3、φ 4、φ 5分别是每个单元占有的面积比,Z a1为延长管共振结构周围空气层的声阻抗。根据阻抗转移理论,可以得到延长管共振结构表面到微穿孔板表面的阻抗转移值Z P′为:
Figure PCTCN2019113918-appb-000008
其中,Z a=ρc为空气特性声抗,k a为空气中宋声波的传播常数,t'为共振器与微穿孔板间空气层的厚度。
则图2中的低频耦合吸声结构的总的表面声阻抗率为Z=Z mpp+Z p′,根据材料表面阻抗Z得到材料的反射系数为
Figure PCTCN2019113918-appb-000009
从而,得到图2中的低频耦合吸声结构的吸声系数为α=1-|R| 2,该吸声系数即为与低频耦合吸声结构中的各个参数对应的目标函数。
其中,该吸声系数由微穿孔板层、空气层、共振结构的参数共同作用决定,结合上述的模拟退火优化算法可以近似寻找到低频耦合吸声结构的全局优化参数,进而实现组合结构的最优设计。如图2所示的低频耦合吸声结构,其中,微穿孔板11的吸声层有(d、t、D、p)4个参数(D表示外围腔体1的深度,也即低频耦合吸声结构的厚度),而每个延长管共振结构有四个变量,四个延长管共振结构共有16个变量,所以目标函数中包括20个变量,在采用模拟退火优化算法寻求目标函数的最优解后,根据该最优解确定出各个变量的参数信息,也即确定出与各个参数对应的具体数值,并根据各个参数的具体数值进行低频耦合吸声结构的设置。其中,在实际优化问题中目标函数是得到一组参数解使得目标函数在频率区间80-2000Hz的平均吸声系数最大:
Figure PCTCN2019113918-appb-000010
其中,上式中的α代表吸声系数,<α>代表平均吸声系数,N表示所优化的频率区间内声波频率的个数,i为声波频率的下标,f i表示第i个声波频率。
需要说明的是,本发明实施例中的其他的低频耦合吸声结构(如图3-5所示的低频耦合吸声结构)也可以采用上述方法计算出与各个低频耦合吸声结构分别对应的吸声系数关系式(即目标函数),然后在通过模拟退火优化算法对该目标函数进行寻优,进而找到与相应的低频耦合吸声结构对应的各个最优参数信息,进而设置出吸声效果最优的低频耦合吸声结构。
还需要说明的是,本发明实施例中的上述结构参数优化算法可以使得低频耦合吸声结构在低频80-2000Hz的频段内具有低频宽带的降噪效果,实现对轨道交通装备、高速运载平台的低频宽带噪声的高效降噪。
另外,请参照图7-图9,其中,图7中的曲线61表示与传统的微穿孔板吸声结构对应的频率-吸声系数曲线图,曲线62表示与本发明实施例中的低频耦合吸声结构对应的频率-吸声系数曲线图,也即在外围腔体中设置了延 长管共振结构的频率-吸声结构对应的吸声系数曲线图,由图7可以看出,在相同的空腔深度(也即外围腔体1的深度)70mm的限制条件下,传统的微穿孔板结构的吸声系数分别在100~250Hz处均不大于0.15,吸声效果较差,而基于本发明实施例提供的在外围腔体中设置了延长管共振结构的吸声结构的共振峰在170Hz处达到0.91,在150~200Hz之间的吸声系数均达到0.5以上,可见本申请中提供的吸声结构的吸声效果明显优于传统的吸声结构的吸声效果。
另外,图8中的曲线71表示空腔深度为150mm的传统的微穿孔板吸声结构对应的频率-吸声系数曲线图,曲线72表示本发明实施例中提供的一种空腔深度为150mm的低频耦合吸声结构的频率-吸声系数曲线图,可见,本发明实施例中的吸声结构的吸声效果明显优于传统的吸声结构,并且由图7和图8可知本发明实施例中的整个吸声结构的尺寸仅仅是控制声波波长的1/28。
当低频耦合吸声结构的空腔深度相同时,其内部不同数量的延长管共振结构所产生的吸声效果不同。具体请参照图9,其中,曲线81表示与外围墙体内设有4个延长管共振结构的吸声结构对应的频率-吸声系数曲线图,曲线82表示与外围墙体内设有3个延长管共振结构的吸声结构对应的频率-吸声系数曲线图,具体的,两种吸声结构的空腔深度均为150mm,则由图8可知设有4个延长管共振结构的吸声结构比设有3个延长管共振结构的吸声结构的吸声频带更宽,设有4个延长管共振结构的吸声结构的共振峰峰值吸声系数均达到0.8以上,由此可见外围空腔1内所设置的延长管共振结构越多,整个吸声结构的低频、宽频的吸声性能就越好。
本发明实施例提供了一种低频耦合吸声结构,包括外围腔体、设置于外围腔体内的共振腔及设置于共振腔内部的延长管结构,延长管结构的一端通过相应的通孔与共振腔的腔壁连接;外围腔体包括微穿孔板、背板、第一侧板和第二侧板,微穿孔板上设有多个微孔结构,微穿孔板与背板对应设置,第一侧板和第二侧板对应设置。
可见,本发明实施例中的低频耦合吸声结构通过在带有微孔结构的外围腔体内设置设有延长管结构的共振腔,能够增加吸声结构的声阻,有利 于提高吸声系数和拓宽吸声频带,使吸声频带向低频偏移,从而实现低频吸声,有利于提高产品性能。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种低频耦合吸声结构,其特征在于,包括:
    外围腔体、设置于所述外围腔体内的共振腔及设置于所述共振腔内部的延长管结构,所述延长管结构的一端通过相应的通孔与所述共振腔的腔壁连接;
    所述外围腔体包括微穿孔板、背板、第一侧板和第二侧板,所述微穿孔板上设有多个微孔结构,所述微穿孔板与所述背板对应设置,所述第一侧板和所述第二侧板对应设置。
  2. 根据权利要求1所述的低频耦合吸声结构,其特征在于,所述共振腔为多个,各个所述共振腔均设置于所述背板上。
  3. 根据权利要求2所述的低频耦合吸声结构,其特征在于,各个所述共振腔上的延长管结构的朝向一致。
  4. 根据权利要求3所述的低频耦合吸声结构,其特征在于,每个所述共振腔上的延长管结构包括多个延长管。
  5. 根据权利要求3所述的低频耦合吸声结构,其特征在于,每个所述共振腔上的延长管结构的长度不同。
  6. 根据权利要求2-5任意一项所述的低频耦合吸声结构,其特征在于,还包括设置于相邻两个所述共振腔之间的隔离层。
  7. 根据权利要求6所述的低频耦合吸声结构,其特征在于,所述隔离层为基于三聚氰胺泡沫制作而成的隔离层。
  8. 根据权利要求6所述的低频耦合吸声结构,其特征在于,所述隔离层为基于金属制作而成的隔离层。
  9. 根据权利要求1-5任意一项所述的低频耦合吸声结构,其特征在于,所述共振腔为球形共振腔。
  10. 根据权利要求9所述的低频耦合吸声结构,其特征在于,所述低频耦合吸声结构的参数信息依据预设方法进行设置,其中,所述预设方法为:
    依据所述低频耦合吸声结构的各个参数建立目标函数;
    采用模拟退火优化算法对所述目标函数进行寻优处理,得到所述目标 函数的最优解;
    将所述最优解中的各个数值分别作为各个所述参数的参数信息。
PCT/CN2019/113918 2018-11-15 2019-10-29 一种低频耦合吸声结构 WO2020098477A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19884417.7A EP3706114B1 (en) 2018-11-15 2019-10-29 Low-frequency coupling sound absorbing structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811359437.9 2018-11-15
CN201811359437.9A CN109147750A (zh) 2018-11-15 2018-11-15 一种低频耦合吸声结构

Publications (1)

Publication Number Publication Date
WO2020098477A1 true WO2020098477A1 (zh) 2020-05-22

Family

ID=64805809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113918 WO2020098477A1 (zh) 2018-11-15 2019-10-29 一种低频耦合吸声结构

Country Status (3)

Country Link
EP (1) EP3706114B1 (zh)
CN (1) CN109147750A (zh)
WO (1) WO2020098477A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739500A (zh) * 2020-06-01 2020-10-02 南京航空航天大学 阻尼层修饰的穿孔夹层板水下宽带吸声结构
CN112185326A (zh) * 2020-08-25 2021-01-05 西安交通大学 一种双螺旋耦合水下吸声超表面结构
CN112487562A (zh) * 2020-12-14 2021-03-12 西安交通大学 一种基于二次剩余序列的宽频吸声结构设计方法
CN114139411A (zh) * 2021-10-19 2022-03-04 西安交通大学 一种通过软材料增强低频宽带吸声性能的方法
WO2023028813A1 (zh) * 2021-08-31 2023-03-09 大连理工大学 一种低通声滤波器组宽频吸声体

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109147750A (zh) * 2018-11-15 2019-01-04 中车株洲电力机车有限公司 一种低频耦合吸声结构
CN110085205B (zh) * 2019-04-26 2022-10-25 江苏师范大学 最大化平均吸声系数的微穿孔板吸声体设计方法
CN110189736B (zh) * 2019-05-09 2022-11-04 江苏师范大学 最大化超阈值采样点数的双层串联微穿孔板结构设计方法
US20200388265A1 (en) * 2019-06-10 2020-12-10 Toyota Motor Engineering & Manufacturing North America, Inc. Sound isolation device
CN110397505A (zh) * 2019-07-11 2019-11-01 上海交通大学 一种延长管型穿孔板蜂窝夹层吸声结构
CN110517659B (zh) * 2019-08-20 2022-07-12 西安交通大学 一种多单元耦合式微穿孔板低频宽带吸声结构及其设计方法
CN110763085A (zh) * 2019-09-17 2020-02-07 南京航空航天大学 一种微穿孔正交排布矩形管夹芯吸声吸能复合结构
CN110626364B (zh) * 2019-09-24 2021-10-22 中车株洲电力机车有限公司 一种轨道车辆冷却系统隔声结构及其制作方法
CN111105774A (zh) * 2019-10-29 2020-05-05 同济大学 亥姆霍兹共振器及基于其的低频宽带吸声降噪结构
CN111270621B (zh) * 2019-12-04 2021-09-28 华东交通大学 一种新型二维声子晶体声屏障结构
CN111926933B (zh) * 2019-12-24 2021-06-15 南京林业大学 一种基于亥姆霍兹共鸣器的可调频吸声板
CN112509544A (zh) * 2020-11-06 2021-03-16 北京朗新明环保科技有限公司 一种轻质金属低频降噪结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069840A (en) * 1999-02-18 2000-05-30 The United States Of America As Represented By The Secretary Of The Air Force Mechanically coupled helmholtz resonators for broadband acoustic attenuation
JP2008233793A (ja) * 2007-03-23 2008-10-02 Yamaha Corp 多孔板吸音体及びその製造方法
US20150090526A1 (en) * 2012-06-04 2015-04-02 3M Innovative Properties Company Sound absorbing (acoustic) board
CN107437411A (zh) * 2016-05-27 2017-12-05 北京市劳动保护科学研究所 一种低频复合吸声装置
CN108399911A (zh) * 2017-02-06 2018-08-14 北京市劳动保护科学研究所 一种低频宽带的通风散热隔声结构
CN109147750A (zh) * 2018-11-15 2019-01-04 中车株洲电力机车有限公司 一种低频耦合吸声结构

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3734234A (en) * 1971-11-08 1973-05-22 Lockheed Aircraft Corp Sound absorption structure
US3819007A (en) * 1973-04-27 1974-06-25 Lockheed Aircraft Corp Controllable laminar sound absorptive structure
GB1470036A (en) * 1975-01-17 1977-04-14 Lockheed Aircraft Corp Dual range sound absorber
GB2005384A (en) * 1977-10-04 1979-04-19 Rolls Royce Multi-layer acoustic lining
US4600078A (en) * 1983-12-12 1986-07-15 Lockheed Corporation Sound barrier
JP2555832B2 (ja) * 1992-05-01 1996-11-20 日東紡績株式会社 吸音体
CN101645263B (zh) * 2009-02-27 2011-05-11 中国科学院声学研究所 一种管束穿孔板复合共振吸声装置
CN101727894B (zh) * 2010-01-08 2012-05-23 中国科学院声学研究所 一种内置共振腔体的复合吸声装置
CN201622837U (zh) * 2010-01-08 2010-11-03 中国科学院声学研究所 一种多腔复合吸声装置
DE102011120979A1 (de) * 2011-12-13 2013-06-13 Rolls-Royce Deutschland Ltd & Co Kg Akustischer Absorber
JP6092658B2 (ja) * 2013-02-27 2017-03-08 大成建設株式会社 共鳴型吸音体
CN103700366B (zh) * 2013-12-24 2016-06-15 江苏大学 复合共振腔的机械阻抗与微穿孔板结合的宽频吸声结构
CN107514066B (zh) * 2016-06-16 2019-05-17 中国科学院声学研究所 一种基于延长管共振结构的轻质低频隔声装置
CN107610688B (zh) * 2017-09-05 2024-04-26 同济大学 一种腔管复合隔声结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069840A (en) * 1999-02-18 2000-05-30 The United States Of America As Represented By The Secretary Of The Air Force Mechanically coupled helmholtz resonators for broadband acoustic attenuation
JP2008233793A (ja) * 2007-03-23 2008-10-02 Yamaha Corp 多孔板吸音体及びその製造方法
US20150090526A1 (en) * 2012-06-04 2015-04-02 3M Innovative Properties Company Sound absorbing (acoustic) board
CN107437411A (zh) * 2016-05-27 2017-12-05 北京市劳动保护科学研究所 一种低频复合吸声装置
CN108399911A (zh) * 2017-02-06 2018-08-14 北京市劳动保护科学研究所 一种低频宽带的通风散热隔声结构
CN109147750A (zh) * 2018-11-15 2019-01-04 中车株洲电力机车有限公司 一种低频耦合吸声结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3706114A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739500A (zh) * 2020-06-01 2020-10-02 南京航空航天大学 阻尼层修饰的穿孔夹层板水下宽带吸声结构
CN112185326A (zh) * 2020-08-25 2021-01-05 西安交通大学 一种双螺旋耦合水下吸声超表面结构
CN112185326B (zh) * 2020-08-25 2024-05-24 西安交通大学 一种双螺旋耦合水下吸声超表面结构
CN112487562A (zh) * 2020-12-14 2021-03-12 西安交通大学 一种基于二次剩余序列的宽频吸声结构设计方法
CN112487562B (zh) * 2020-12-14 2024-05-07 西安交通大学 一种基于二次剩余序列的宽频吸声结构设计方法
WO2023028813A1 (zh) * 2021-08-31 2023-03-09 大连理工大学 一种低通声滤波器组宽频吸声体
CN114139411A (zh) * 2021-10-19 2022-03-04 西安交通大学 一种通过软材料增强低频宽带吸声性能的方法
CN114139411B (zh) * 2021-10-19 2024-04-02 西安交通大学 一种通过软材料增强低频宽带吸声性能的方法

Also Published As

Publication number Publication date
EP3706114A1 (en) 2020-09-09
EP3706114B1 (en) 2023-05-31
EP3706114A4 (en) 2021-07-28
CN109147750A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2020098477A1 (zh) 一种低频耦合吸声结构
WO2021082706A1 (zh) 亥姆霍兹共振器及基于其的低频宽带吸声降噪结构
Peng et al. Composite honeycomb metasurface panel for broadband sound absorption
JP6970880B2 (ja) 音響メタマテリアル騒音制御法およびダクトシステムにおける装置
Wang et al. On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths
Park Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption
Tang Narrow sidebranch arrays for low frequency duct noise control
US11929053B2 (en) Broadband sound absorber based on inhomogeneous-distributed Helmholtz resonators with extended necks
Yu et al. Hybrid silencers with micro-perforated panels and internal partitions
JP4417489B2 (ja) 導波管による電気音響的変換
Sanada et al. Extension of the frequency range of resonant sound absorbers using two-degree-of-freedom Helmholtz-based resonators with a flexible panel
Cai et al. Noise control zone for a periodic ducted Helmholtz resonator system
US10621966B2 (en) Sound absorbing and insulating structures by tailoring sound velocities, and method of designing the sound absorbing and insulating structures
JP6822643B2 (ja) 吸収音響メタマテリアル
Guo et al. An extra-broadband compact sound-absorbing structure composing of double-layer resonator with multiple perforations
Van der Aa et al. Scattering by an array of perforated cylinders with a porous core
Chiang et al. Acoustic behaviors of the microperforated panel absorber array in nonlinear regime under moderate acoustic pressure excitation
Qu et al. Minimizing indoor sound energy with tunable metamaterial surfaces
Zhao et al. A turned double-layer microperforated panel for low frequency sound absorption in enclosures with limited cavity space
Zhu et al. Multilayer structures for high-intensity sound energy absorption in low-frequency range
Basirjafari Innovative solution to enhance the Helmholtz resonator sound absorber in low-frequency noise by nature inspiration
Červenka et al. Optimized reactive silencers with narrow side-branch tubes
Li et al. Noise control in enclosures: Modeling and experiments with T-shaped acoustic resonators
CN109119059A (zh) 一种基于Helmholtz共鸣器耦合的双负声学超材料结构
Yu et al. Effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in enclosures

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019884417

Country of ref document: EP

Effective date: 20200605

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE