WO2020098217A1 - 一种燃料电池导流板 - Google Patents

一种燃料电池导流板 Download PDF

Info

Publication number
WO2020098217A1
WO2020098217A1 PCT/CN2019/082997 CN2019082997W WO2020098217A1 WO 2020098217 A1 WO2020098217 A1 WO 2020098217A1 CN 2019082997 W CN2019082997 W CN 2019082997W WO 2020098217 A1 WO2020098217 A1 WO 2020098217A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
channel
flow
channels
fuel cell
Prior art date
Application number
PCT/CN2019/082997
Other languages
English (en)
French (fr)
Inventor
高勇
Original Assignee
上海恒劲动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海恒劲动力科技有限公司 filed Critical 上海恒劲动力科技有限公司
Priority to JP2021517980A priority Critical patent/JP7079996B2/ja
Priority to US17/041,314 priority patent/US20210083303A1/en
Priority to EP19884961.4A priority patent/EP3751649A4/en
Publication of WO2020098217A1 publication Critical patent/WO2020098217A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell, in particular to a fuel cell deflector.
  • a fuel cell is a device that directly converts the chemical energy of hydrogen and oxygen into electrical energy through an electrode reaction.
  • a fuel cell is usually composed of a plurality of battery cells, each of which includes two electrodes (anode and cathode), which are separated by an electrolyte element, and are assembled in series with each other to form a fuel cell stack.
  • an appropriate reactant that is, supplying fuel to one electrode and oxidizing agent to the other, an electrochemical reaction is achieved, thereby forming a potential difference between the electrodes, and thus generating electrical energy.
  • bipolar plates In order to supply reactants to each electrode, specific interface elements commonly referred to as "bipolar plates" and provided on both sides of each individual cell are used. These bipolar plates are usually in the form of individual elements placed adjacent to the anode or cathode support. The bipolar plate is an important element of the fuel cell stack.
  • the bipolar plates perform the following functions to maintain the optimal working condition and service life of the fuel cell stack: (1) battery conductors, cathodes and anodes are formed on both sides of the plates, and battery cells are connected in series To form a fuel cell stack; (2) Provide reaction gas (mass transfer) to the electrode through the flow channel; (3) Coordinate the management of water and heat to prevent the leakage of cooling medium and reaction gas; (4) Membrane electrode assembly (MEA) ) Provide structural strength support.
  • the structure of the "bipolar plate” is generally a fluid inlet and outlet provided at both ends of the polar plate, and a flow channel connecting the fluid inlet and outlet.
  • Each fluid flows in from the fluid inlet and generally needs to be bent along more than one diversion groove
  • the winding goes around the entire diversion field, and each diversion channel merges and flows out from the fluid outlet. Because more than one diversion groove is very flexible, and the length of the diversion groove is long, the product water generated by the fuel cell easily appears on the cathode side of the electrode to block the air diversion groove, and the product water generated by the fuel cell is also It is easy to appear on the anode side of the electrode through reverse osmosis, blocking the hydrogen diversion tank.
  • a diversion groove and The connection groove connecting the diversion groove, the diversion groove and the connection groove are both designed as a DC groove or a near DC groove;
  • the fluid holes for entering and exiting the cooling fluid are single holes or double holes or porous inlets, double holes or porous outlets, the Between the fluid holes entering and exiting the cooling fluid, a diversion groove and a connection groove connecting the diversion groove are provided, and the diversion groove and the connection groove are both designed as a DC groove or a near DC groove.
  • This design is to set the diversion channel as a DC channel or near DC channel as much as possible by setting several fluid inlets and outlets. Compared with the traditional serpentine channel, it does reduce the water blocking situation. The size of the flow plate is limited.
  • the design of this DC channel makes the hydrogen and air be discharged from the stack before the reaction. A large amount of air is wasted or excessive hydrogen is circulated and transported, which will inevitably cause the mechanical work of transporting air or hydrogen. The power consumption increases, thereby reducing the efficiency of the fuel cell system.
  • the purpose of the present invention is to provide a method for overcoming the above-mentioned defects in the prior art by changing the flow velocity and pressure of fluid at various locations in the fluid channel, forcing the fluid to enter the diffusion layer along the fluid channel, forming a three-dimensional flow, and bringing in time A fuel cell deflector that generates water to avoid water blockage and improve reaction efficiency.
  • a fuel cell deflector the deflector (1) is provided with a plurality of fluid channels (3), characterized in that a single fluid channel merges through multiple alternate bifurcations to form a wavy diffusion and convergent flow
  • the channel structure changes the width and depth of each section of the same fluid channel, adjusts the fluid flow rate, flow direction and pressure, and forces the fluid to enter the diffusion layer to form a flow while flowing along the fluid channel.
  • Multi-layer three-dimensional flow including the porous space of the diffusion layer is formed.
  • a plurality of shunt islands (7) are provided in the middle of each fluid channel (3), and the interval between the shunt islands can be the same or different depending on the design, so that the fluid channel is divided into at least when passing through each shunt island (7)
  • the two flow channels merge together after passing through the diverter island (7) to form a wave-like expansion and convergence fluid channel.
  • the same fluid channel (3) is composed of multiple continuous expansion and convergence units, each expansion and convergence unit includes an expansion segment (A) and a convergence segment (B), and the fluid channel (3) before and after each expansion and convergence unit is a merged segment Channel, the fluid channel at the expansion and convergence unit is a split channel of at least two flow channels split into the merged section, the flow velocity S L and the flow rate S P of the fluid in the merged section channel cross section (L, P) and the cross section in the split channel ( N)
  • the relationship of the flow rate S N is that S L and S P are less than or equal to S N.
  • the flow velocity and direction of the fluid at various positions of the fluid channel (3) are adjusted.
  • scheme one make the diameter or width D of the merged channel of the fluid channel (3) greater than or equal to the sum of the diameters or widths of the multiple flow distribution channels.
  • the diameters or widths of the flow distribution channels are designed to be the same or different as required, such as As shown in Figure 3.
  • Option 2 Make the depth of the fluid channel (3) in the merged section channel different from the depth of the multiple branch channels, as shown in FIG. 11.
  • the shunt island (7) is a convex protrusion in the middle of the fluid channel (3), and the side of the shunt island (7) is a streamlined surface.
  • Different fluid flows can be designed to be the same or different.
  • R ⁇ r as shown in FIG. 4.
  • the shunt island (7) is also provided with multiple auxiliary micro-channels (8), and the fluid channels composed of the multiple auxiliary micro-channels (8) include arc, I-shaped, Y-shaped, T-shaped, etc. As shown in Figure 2-5
  • the depth of the auxiliary micro-fluid channel (8) is smaller than the depth of the merge channel of the fluid channel and the depth of the split channel, as shown in FIG. 6.
  • the fluid When the fluid flows out of the merged flow channel, it will face the split island (7) and form a stagnation zone at the front end of the island, and introduce the fluid into the fluid diffusion layer below the split island, forming a multi-layer three-dimensional flow, which not only improves the transfer of the reaction medium in the diffusion layer. It can also effectively drain the water produced in the diffusion layer.
  • the upper end surface of the diverging island (7) on the windward side contacting the fluid diffusion layer is provided with a drainage groove or a drainage slope (14).
  • a drainage groove or a drainage slope 14
  • the structure of the drainage groove or drainage slope can be designed in various shapes according to needs. The main purpose is to better introduce the oncoming fluid into the fluid diffusion layer.
  • the drainage groove can be a plurality of surface micro-chute grooves, or it can be It is not limited to a slope with a triangular cross section.
  • the area where the flow channel of each fluid channel is located is the diffusion zone (A), the area where the merged channel is located is the convergence zone (B), the diffusion zone (A) of one fluid channel (3) and the convergence zone of the adjacent flow channel ( B) Adjacent, the fluid pressure in the diffusion zone (A) tends to increase and the fluid pressure in the convergence zone (B) tends to decrease, this pressure change will form a pressure difference on both sides of the sidewalls of the adjacent diffusion zone and the convergence zone , The pressure difference promotes the fluid to diffuse and flow in the diffusion layer at the lower end of the side wall, flows from the end with high pressure through the diffusion layer at the bottom of the side wall to the adjacent fluid channel with low pressure, and enters the adjacent fluid channel, which not only improves
  • the transfer of the reaction medium in the diffusion layer can also help to discharge the water generated in the diffusion layer at the bottom of the side wall to prevent the porous diffusion layer from forming fouling, as shown by the double arrow in FIG.
  • the double arrow in Figure 7 also clearly indicates that the total pressure difference between the main fluids between adjacent flow channels may also be different from the local pressure difference in the diffusion convergence interval due to the difference in flow channel layout, so it may cancel, reverse or expand the side walls.
  • the pressure difference on the side and the direction of fluid flow depend on the size of the above two pressure differences. The possibility of complete cancellation is extremely small. Depending on the design, it can be allowed to exist or can be completely avoided. Which of the other two causes the fluid to The diffusion and flow in the diffusion layer at the lower end of the side wall, from the end with high pressure through the diffusion layer at the bottom of the side wall to the adjacent fluid channel with low pressure, and into the adjacent fluid channel, will improve the transfer of the reaction medium in the diffusion layer. It also helps to drain the generated water from the diffusion layer at the bottom of the side wall to prevent the porous diffusion layer from forming fouling.
  • the present invention has the following beneficial effects:
  • the shunt island has a streamlined design. By changing the streamline curvature radius of the shunt island, a vortex flow is formed in the fluid channel to prevent the generated water from sticking to the side wall of the fluid channel.
  • auxiliary micro-channels in the shunt island.
  • the auxiliary micro-channels are small in diameter and shallow in depth, which further changes the flow velocity and pressure of each point in the fluid channel, forming a pressure difference, forcing the fluid to better enter the fluid diffusion layer. flow.
  • the shunt islands of adjacent fluid channels are staggered to form a pressure difference between the fluids in the adjacent fluid channels, forcing the fluid to flow from the diffusion layer at the bottom of the side wall between the fluid channels, so that the diffusion layers that are attached to the deflector There is fluid flow in all areas, completely changing the phenomenon of the dead corner area where there is no fluid flow at the bottom of the side wall of the existing fluid channel, so that the fluid can enter any area of the diffusion layer, and participate in the reaction. occur.
  • the deflector of the present invention can be applied to fuel cell deflectors of any shape and structure, including various deflectors such as direct current channels, serpentine deflectors, etc. At the same time, it can also be used as fuel deflectors and oxidant deflectors 1. Cooling fluid deflector.
  • Figure 1 is a schematic structural view of an existing deflector
  • FIG. 2 is a schematic diagram of the structure of the first expansion and convergence unit in the deflector
  • FIG. 3 is a schematic diagram of the structure of the second expansion and convergence unit in the deflector
  • FIG. 5 is a schematic diagram of the structure of the fourth expansion and convergence unit in the deflector
  • FIG. 6 is a perspective schematic view of fluid flowing through an expansion and convergence unit
  • FIG. 8 is a schematic perspective view of fluid flowing through adjacent fluid channels
  • FIG. 9 is a three-dimensional schematic diagram of fluid flowing through a diverter island
  • FIG. 10 is a schematic structural view of the fifth expansion and convergence unit in the deflector
  • FIG. 11 is a cross-sectional view taken along the line I-I of FIG. 10
  • FIG. 1 it is a schematic structural view of a conventional DC deflector.
  • the deflector 1 is provided with a linear fluid channel 3, and the deflector 1 is provided with fuel inlets 4 and cooling fluid inlets 5 at both ends.
  • the oxidant inlet and outlet 6 are also provided with a sealing groove 2.
  • the fluid channel 3 is changed to the structure shown in FIG. 2, and a plurality of shunt islands 7 are provided in the middle of each fluid channel 3, so that the fluid channel is divided into two when passing the shunt island 7 (as shown in FIG. 2-5 It is shown that the fluid channel 3 is divided into two paths at the L section: the shunt channel 3a and the shunt channel 3b), and after passing through the shunt island 7, the P section is merged into one at the P section to form a wavy continuous expansion and convergence fluid channel.
  • the same fluid channel 3 is composed of a plurality of continuous expansion and convergence units. Each expansion and convergence unit includes an expansion segment A and a convergence segment B.
  • the fluid channels 3 before and after each expansion and convergence unit are merged segment channels.
  • the fluid channel is a shunt channel that is divided into two in the merging section.
  • the relationship between the flow velocity S L of the fluid in the merging section channel and the flow velocity S N in the shunt channel is S L ⁇ S N.
  • the flow velocity of the fluid at each position of the fluid channel 3 is adjusted. For example, while keeping the depth of the flow channel at each position of the fluid channel 3 the same, change the relationship between the diameter D of the combined channel of the fluid channel 3 and the diameters d1 and d2 of the two split channels, so that D ⁇ d1 + d2, the two split streams
  • the diameters d1 and d2 of the channel are the same or different.
  • the fluid flow rate can also be adjusted by adjusting the depth H of the fluid channel 3 in the merged section channel and the depth h in the two split channels, as shown in Figure 10-11, the depth of the fluid channel 3 is wavy, and the cross section in the merged section
  • the depth H at L gradually decreases to the depth h at the interface N, and then gradually increases from the depth at the interface N to the depth at the interface P.
  • the shunt island 7 is a convex protrusion in the middle of the fluid channel 3.
  • the side of the shunt island 7 is a streamlined surface.
  • the relationship between the radius of curvature R of the streamline surface at the front end and the radius of curvature r of the streamline surface at the rear end is R ⁇ r As shown in Fig. 4, a vortex will form at the rear end of the splitter island 7.
  • the shunt island 7 is also provided with a plurality of auxiliary micro-channels 8.
  • the fluid channels composed of the plurality of auxiliary micro-channels 8 are arc-shaped (as shown in FIG. 2) and I-shaped (as shown in FIG. 3) , Y-shaped (as shown in Figure 4), T-shaped (as shown in Figure 5), can also be designed into other shapes as needed.
  • the design of the auxiliary micro-channel 8 is also to further change the flow velocity and pressure of each point in the fluid channel to form a pressure difference, forcing the fluid to flow into the fluid diffusion layer better.
  • the depth of the auxiliary micro-channel 8 is smaller than the depth of the merged channel of the fluid channel and the depth of the split channel, as shown in FIG. 6.
  • the bottom of the deflector 7 is provided with a MEA membrane electrode, including a diffusion layer 9, a membrane electrode 11 and a catalyst layer 10 coated on both sides thereof, wherein the diffusion layer 9 is attached to the deflector 1, fluid From the fluid inlet into the fluid channel 3 of the deflector 1, when flowing along the fluid channel 3 through the merged section channel and the split channel, the change in the flow rate brings about a change in the fluid pressure, and the resulting pressure difference forces the fluid to enter the deflector 1 In the diffusion layer 9 bonded together, water is generated on the catalyst layer 10. Realize three-dimensional circulation in three directions of xyz.
  • a drainage groove or drainage slope 14 may be provided on the upper end surface of the shunt island 7 on the windward side contacting the fluid diffusion layer, as shown in FIG. 9, when the fluid is in the combined flow When the outflow of the channel will impact the splitter island 7 head-on, it will be introduced into the fluid diffusion layer 9 under the splitter island through the drainage groove or the drainage slope 14.
  • the shunt islands 7 in adjacent fluid channels 3 are staggered, and at the same time, the shunt channel of one fluid channel 3 is adjacent to the merged section channel of the adjacent flow channel, and the area of the shunt channel of each fluid channel is In the diffusion zone A, the area where the merged section channel is located is the convergence zone B.
  • the diffusion zone A of one fluid channel 3 is adjacent to the convergence zone B of the adjacent flow channel.
  • the fluid pressure in the diffusion zone A tends to increase while the fluid pressure in the convergence zone B
  • This pressure change will form a pressure difference on both sides of the side wall 12 of the adjacent diffusion area and the convergence area, and this pressure difference causes the fluid to diffuse and flow in the diffusion layer 9 at the lower end of the side wall 12 (as shown in FIG.
  • the double arrow in Figure 7 also clearly indicates that the overall pressure difference between the main fluids between adjacent flow channels may also be different from the local pressure difference in the diffusion convergence interval due to the difference in flow channel layout, so it may cancel, reverse or expand the side walls 12
  • the pressure difference between the two sides, the direction of fluid flow depends on the size of the above two pressure differences, the possibility of complete cancellation is extremely small, depending on the design, it can be allowed to exist or can be completely avoided, which of the other two promotes fluid Diffusion and flow in the diffusion layer at the lower end of the side wall 12, from the end with high pressure through the diffusion layer at the bottom of the side wall to the adjacent fluid channel with low pressure, into the adjacent fluid channel, will improve the reaction medium in the diffusion layer It transfers and helps to drain the generated water from the diffusion layer at the bottom of the side wall to avoid fouling of the porous diffusion layer.
  • a plurality of flow islands 7 are provided in the middle of each fluid channel 3, so that the fluid channel is divided into three flow channels when passing through each flow island 7, and after passing through the flow island 7, there is a combined path, forming a wavy expansion and convergence Fluid channel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明涉及一种燃料电池导流板,该导流板(1)上设有多条流体通道(3),单个流体通道有分叉有汇合,有扩散有收敛,同一流体通道各截面的宽度和深度变化,调节流体流速和压力,改善流动品质并迫使流体在沿流体通道变速度流动的同时,能够进入扩散层,形成三维多层次流动。与现有技术相比,本发明通过改变流体通道内各位置点的流体流速和压力,更有效地传递反应介质并能更有效地排出生成水,具有提高电堆性能,改善反应效率,延长电堆寿命等优点。

Description

一种燃料电池导流板 技术领域
本发明涉及燃料电池,尤其是涉及一种燃料电池导流板。
背景技术
燃料电池是一种将氢和氧的化学能通过电极反应直接转换成电能的装置。燃料电池通常由多个电池单元构成,每个电池单元包括两个电极(阳极和阴极),该两个电极被电解质元件隔开,并且彼此串联地组装,形成燃料电池堆。通过给每个电极供给适当的反应物,即给一个电极供给燃料而另一个供给氧化剂,实现电化学反应,从而在电极之间形成电位差,并且因此产生电能。
为了给每个电极供给反应物,使用通常称为“双极板”并且设置在每个单个电池的两侧的特定界面元件。这些双极板通常是邻近阳极或阴极支撑体放置的单个元件的形式。双极板是燃料电池组的重要元件。燃料电池堆在运行过程中,双极板执行如下功能以维持燃料电池堆的最佳工作状态以及使用寿命:(1)电池导电体,极板两侧分别形成阴极阳极,将一个个电池单元串联以组成燃料电池堆;(2)通过流道向电极提供反应气(传质);(3)协调水与热的管理,防止冷却介质及反应气体外漏;(4)向膜电极组件(MEA)提供结构强度支持。
“双极板”的结构一般为设置在极板两端的流体进出口,以及连接流体进出口的流道,每种流体从流体进口流进,一般需要沿着多于一条的导流槽弯弯曲曲绕遍整个导流场,各条导流槽合并后从流体出口流出。由于多于一条的导流槽弯曲性很大,而且导流槽长度较长,燃料电池生成的产物水很容易在电极阴极侧出现而将空气导流槽堵塞,而且燃料电池生成的产物水也很容易通过反渗透在电极阳极侧出现,将氢气导流槽堵塞。特别是燃料电池作为车、船动力系统或可移式发电装置应用时,由于动力系统的工况变化很大,燃料电池的输出功率也变化很大,这样燃料电池生成的水更容易将空气、氢气导流槽堵塞。中国专利CN200610027547.6公开了一种不易堵水的燃料电池导流极板,该导流极板为导流双极板,所述的导流双极板由正面导空气流槽板、反面导氢气流槽板、中间导冷却流体夹层组成,所述的进出空气或进出氢气的流体孔为单孔 进、双孔或多孔出,该进出空气或氢气流体孔之间的设有导流槽及连接导流槽的连接槽,导流槽和连接槽均设计成直流槽或近直流槽;所述的进出冷却流体的流体孔为单孔或双孔或多孔进、双孔或多孔出,该进出冷却流体的流体孔之间的设有导流槽及连接导流槽的连接槽,导流槽和连接槽均设计成直流槽或近直流槽。
这种设计是通过多设置几个流体进出口,将导流槽尽可能设计成直流槽或近直流槽,相比于传统的蛇形流道,的确降低了堵水的情况,但是,由于导流极板的大小的限制,这种直流道的设计使氢气和空气来不及反应就被排出了电堆,大量的空气被浪费或过量的氢气被循环输送,必然造成输送空气或循环氢气的机械功耗增加,从而降低了燃料电池系统效率。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种通过改变流体通道内各位置点的流体流速和压力,迫使流体沿流体通道的同时,进入扩散层,形成三维流动,及时带走生成水,避免堵水,提高反应效率的燃料电池导流板。
本发明的目的可以通过以下技术方案来实现:
一种燃料电池导流板,该导流板(1)上设有多条流体通道(3),其特征在于,单个流体通道通过多次交替分叉汇合,形成波浪状的扩散和收敛的流道结构,使同一流体通道各截面的宽度和深度变化,调节流体流速、流向和压力,迫使流体在沿流体通道流动的同时,进入扩散层形成流动。形成包括扩散层多孔空间在内的多层次的三维流动。
各流体通道(3)中间设有多个分流岛(7),各个分流岛之间的间隔根据设计的不同,可以选择相同或不同,使流体通道在经过每个分流岛(7)时至少分成两个流道,并在经过分流岛(7)后合为一路,形成波浪状的扩张和收敛的流体通道。
同一条流体通道(3)由多个连续的扩张收敛单元组成,每个扩张收敛单元包括扩张段(A)和收敛段(B),在各扩张收敛单元前后的流体通道(3)为合并段通道,在扩张收敛单元处的流体通道为合并段分流成的至少两个流道的分 流通道,流体在合并段通道截面(L、P)的流速S L和流速S P与在分流通道截面(N)的流速S N的关系为S L和S P小于或等于S N
通过控制流体通道(3)在合并段通道和分流通道的宽度和/或深度,来调整流体在流体通道(3)各位置处的流速和流向。
例如,方案一:使流体通道(3)合并段通道的直径或宽度D大于或等于多条分流通道的直径或宽度之和,各条分流通道的直径或宽度根据需要设计成相同或不同,如图3所示。
方案二:使流体通道(3)在合并段通道的深度与在多条分流通道的深度不同,如图11所示。
所述的分流岛(7)为在流体通道(3)中间凸起的凸块,分流岛(7)侧面为流线型曲面,其前端的流线型曲面曲率半径R与后端流线型曲面曲率半径r根据具体流体流量不同可以设计得相同或不同。优选R≥r,如图4所示。
所述的分流岛(7)内还设有多条辅助微流道(8),多条辅助微流道(8)组成的流体通道包括弧形、工字型、Y型、T型等,如图2-图5所示
所述的辅助微流道(8)的直径或宽度d小于流体通道合并段通道的直径或宽度D,也小于各分流通道的直径或宽度,优选d=(1/5~1/10)D。
所述的辅助微流道(8)的深度小于流体通道合并段通道的深度,也小于分流通道的深度,如图6所示。
当流体在合并流道流出将迎面冲击分流岛(7)形成岛前端滞流区并将流体导入分流岛下方的流体扩散层,形成多层次三维流动,不仅改善了扩散层中反应介质的传递,还能有效排出扩散层的生成水。
优选方案:所述的分流岛(7)的迎风面一侧接触流体扩散层的上端表面设有引流槽或引流斜面(14),当流体在合并流道流出将迎面冲击分流岛(7)时,会通过引流槽或引流斜面(14)引入分流岛下的流体扩散层。该引流槽或引流斜面的结构可以根据需要设计各种形状,主要目的在于将迎面冲击而来的流体更好地导入流体扩散层,如引流槽可为多个表面微斜槽,也可以是但不限于截面呈三角状的斜面等。
各流体通道的分流通道所在的区域为扩散区(A),合并段通道所在的区域为收敛区(B),一条流体通道(3)的扩散区(A)与相邻流通通道的收敛区(B) 相邻,扩散区(A)的流体压力趋于增加与收敛区(B)流体压力趋于减少,这种压力变化会在相邻的扩散区和收敛区的侧壁两侧形成压差,该压差促使流体在侧壁下端的扩散层中扩散和流动,从压力高的一端穿过侧壁底部扩散层向相邻的压力低的流体通道流动,进入相邻流体通道,不仅改善了扩散层中反应介质的传递,还能有助于排出侧壁底部扩散层的生成水避免多孔扩散层在形成淤塞,如图7中的双箭头所示。图7中的双箭头还明确表示相邻流道间主流体间的总体压差由于流道布局的不同也可能不同于扩散收敛区间的局部压差,因此可能抵消,反向或扩大侧壁两侧的压差,流体的流动方向取决于上述两种压差的大小,完全抵消的可能性极小,根据设计不同,可以允许存在也可彻底避免,其余两者的哪一种,促使流体在侧壁下端的扩散层中扩散和流动,从压力高的一端穿过侧壁底部扩散层向相邻的压力低的流体通道流动,进入相邻流体通道,都会改善扩散层中反应介质的传递,并有助于排出侧壁底部扩散层的生成水避免多孔扩散层在形成淤塞。
与现有技术相比,本发明具有以下有益效果:
1.在常规的导流板流体通道内设置多个分流岛,将常规流体通道改成由多个扩张收敛单元组成的流体通道,通过调节流体通道内各位点的宽度、和深度,改变流体的流速,使以前的均一的流速改为变流速,形成压力差,迫使流体在水平xy方向流动的同时,进入与导流板向贴合的流体扩散层形成流动,实现了Z方向的流动,从而形成了三维多层次流动,能及时带走膜电极处反应生成的水,避免堵水现象。
2.分流岛呈流线型设计,通过改变分流岛流线型的曲率半径,使流体通道内形成涡流,避免生成水粘滞在流体通道侧壁。
3.分流岛内设有多个辅助微流道,辅助微流道的直径小、深度浅,进一步改变流体通道内各位点的流速和压力,形成压力差,迫使流体更好的进入流体扩散层流动。
4.相邻流体通道的分流岛交错设置,使相邻流体通道内流体形成压力差,迫使流体从流体通道之间的侧壁底部扩散层流通,使与导流板相贴合的扩散层各区域均有流体流动,彻底改变了现有流体通道侧壁底部无流体流动的死角区 域现象,使流体可以进入扩散层的任何区域,参与反应的同时,一旦生成水立刻带走,彻底避免了堵塞发生。
5.本发明导流板可适用于任何形状结构的燃料电池导流板,包括直流道、蛇形导流板等各种导流板,同时,也可作为燃料导流板、氧化剂导流板、冷却流体导流板。
附图说明
图1为现有导流板的结构示意图;
图2为导流板内第一种扩张收敛单元结构示意图;
图3为导流板内第二种扩张收敛单元结构示意图;
图4为导流板内第三种扩张收敛单元结构示意图;
图5为导流板内第四种扩张收敛单元结构示意图;
图6为流体经过扩张收敛单元流通的立体示意图;
图7为多条相邻流体通道的结构示意图;
图8为流体流经相邻流体通道的立体示意图;
图9为流体流经分流岛的立体示意图;
图10为导流板内第五种扩张收敛单元结构示意图;
图11为图10的I-I剖视图
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
如图1所示,为一种常规直流导流板的结构示意图,导流板1上设有直线型流体通道3,导流板1两端设有燃料进出口4、冷却流体进出口5和氧化剂进出口6,还设有密封槽2。
本发明将流体通道3改成如图2所示的结构,在各流体通道3中间设有多个分流岛7,使流体通道在经过分流岛7时一分为二(如图2-5所示,流体通道3在L截面时,分成两路:分流通道3a和分流通道3b),并在经过分流岛7后,在P截面合二为一,形成波浪状的连续扩张收敛的流体通道。同一条流体 通道3由多个连续的扩张收敛单元组成,每个扩张收敛单元包括扩张段A和收敛段B,在各扩张收敛单元前后的流体通道3为合并段通道,在扩张收敛单元处的流体通道为合并段一分为二的分流通道,流体在合并段通道的流速S L与在分流通道的流速S N的关系为S L<S N
通过控制流体通道3在合并段通道和分流通道的宽度和/或深度,来调整流体在流体通道3各位置处的流速。如在保持流体通道3各位置点流道深度相同的情况下,改变流体通道3合并段通道的直径D与两条分流通道的直径d1、d2的关系,使D≥d1+d2,两条分流通道的直径d1与d2相同或不同。这样流体从合并段通道进入分流通道后,由于流道面积缩小,必然导致流速提高,使S L<S N,后分流岛7后面P处两条分流通道合并,流速恢复为S L
也可以通过调整流体通道3在合并段通道的深度H与在两条分流通道的深度h,来调整流体流速,如图10-11所示,流体通道3的深度呈波浪状,在合并段截面L处的深度H,到界面N处的深度h逐渐减小,然后从界面N处的深度到界面P处的深度逐渐增加。
所述的分流岛7为在流体通道3中间凸起的凸块,分流岛7侧面为流线型曲面,其前端的流线型曲面曲率半径R与后端流线型曲面曲率半径r的关系为R≥r,如图4所示,这样在分流岛7后端将会形成涡流。
所述的分流岛7内还设有多条辅助微流道8,多条辅助微流道8组成的流体通道呈弧形(如图2所示)、工字型(如图3所示)、Y型(如图4所示)、T型(如图5所示),还可以根据需要设计成其他形状。所述的辅助微流道8的直径d与流体通道合并段通道的直径D的关系为d=1/5~1/10D。辅助微流道8的设计,也是为了进一步改变流体通道内各位点的流速和压力,形成压力差,迫使流体更好的进入流体扩散层流动。辅助微流道8的深度小于流体通道合并段通道的深度,也小于分流通道的深度,如图6所示。
如图6所示,导流板7底部设有MEA膜电极,包括扩散层9,膜电极11和其两侧涂覆的催化剂层10,其中扩散层9贴合在导流板1上,流体从流体进口进入导流板1的流体通道3,在沿流体通道3流经合并段通道和分流通道时,流速的变化带来流体压力的变化,形成的压差迫使流体进入与导流板1贴合的扩散层9中,带走在催化剂层10上生成水。实现xyz三个方向上的三维流通。 为了使流体更好地进入扩散层9中,还可以在分流岛7的迎风面一侧接触流体扩散层的上端表面设有引流槽或引流斜面14,如图9所示,当流体在合并流道流出将迎面冲击分流岛7时,会通过引流槽或引流斜面14引入分流岛下的流体扩散层9中。
如图7所示,相邻流体通道3内的分流岛7交错设置,同时,一条流体通道3的分流通道与相邻流通通道的合并段通道相邻,各流体通道的分流通道所在的区域为扩散区A,合并段通道所在的区域为收敛区B,一条流体通道3的扩散区A与相邻流通通道的收敛区B相邻,扩散区A的流体压力趋于增加而收敛区B流体压力趋于减少,这种压力变化会在相邻的扩散区和收敛区的侧壁12两侧形成压差,该压差促使流体在侧壁12下端的扩散层9中扩散和流动(如图8所示),从压力高的一端穿过侧壁12底部扩散层向相邻的压力低的流体通道流动,进入相邻流体通道,不仅改善了扩散层中反应介质的传递,还能有助于排出侧壁底部扩散层的生成水避免多孔扩散层在形成淤塞,如图7中的双箭头13所示。图7中的双箭头还明确表示相邻流道间主流体间的总体压差由于流道布局的不同也可能不同于扩散收敛区间的局部压差,因此可能抵消,反向或扩大侧壁12两侧的压差,流体的流动方向取决于上述两种压差的大小,完全抵消的可能性极小,根据设计不同,可以允许存在也可彻底避免,其余两者的哪一种,促使流体在侧壁12下端的扩散层中扩散和流动,从压力高的一端穿过侧壁底部扩散层向相邻的压力低的流体通道流动,进入相邻流体通道,都会改善扩散层中反应介质的传递,并有助于排出侧壁底部扩散层的生成水避免多孔扩散层在形成淤塞。
实施例2
各流体通道3中间设有多个分流岛7,使流体通道在经过每个分流岛7时分成三个流道,并在经过分流岛7后有合为一路,形成波浪状的扩张和收敛的流体通道。其余同实施例1。

Claims (9)

  1. 一种燃料电池导流板,该导流板(1)上设有多条流体通道(3),其特征在于,单个流体通道通过多次交替的分叉汇合,形成波浪状的扩散和收敛的流道结构,使同一流体通道各截面的宽度和深度变化,调节流体流速、流向和压力,迫使流体在沿流体通道流动的同时,进入扩散层形成流动,形成三维多层次流动。
  2. 根据权利要求1所述的一种燃料电池导流板,其特征在于,各流体通道(3)中间设有多个分流岛(7),使流体通道在经过每个分流岛(7)时至少分成两个流道,并在经过分流岛(7)后合为一路,形成波浪状的扩张和收敛的流体通道。
  3. 根据权利要求2所述的一种燃料电池导流板,其特征在于,同一条流体通道(3)由多个交替的扩张收敛单元组成,每个扩张收敛单元包括扩张段(A)和收敛段(B),在各扩张收敛单元前后的流体通道(3)为合并段通道,在扩张收敛单元处的流体通道为合并段分流成的至少两个流道的分流通道,流体在合并段通道截面(L、P)的流速S L和流速S P与在分流通道截面(N)的流速S N的关系为S L和S P小于或等于S N
  4. 根据权利要求3所述的一种燃料电池导流板,其特征在于,流体通道(3)在合并段通道和分流通道的深度不同,来调整流体在流体通道(3)各位置处的流速。
  5. 根据权利要求3所述的一种燃料电池导流板,其特征在于,流体通道(3)合并段通道的直径或宽度D大于或等于多条分流通道的直径或宽度之和,各条分流通道的直径或宽度根据需要设计成相同或不同。6.根据权利要求2所述的一种燃料电池导流板,其特征在于,所述的分流岛(7)为在流体通道(3)中间凸起的凸块,分流岛(7)侧面为流线型曲面,其前端的流线型曲面曲率半径R与后端流线型曲面曲率半径r根据具体流体流量不同可以设计得相同或不同。
  6. 根据权利要求6所述的一种燃料电池导流板,其特征在于,所述的分流岛(7)内还设有多条辅助微流道(8),多条辅助微流道(8)组成的不同形状和流动方向的通道包括弧形、工字型、Y型、T型,所述的辅助微流道(8)的 深度和宽度小于流体通道合并段通道的深度和宽度,也小于分流通道的深度和宽度。
  7. 根据权利要求1所述的一种燃料电池导流板,其特征在于,当流体在合并流道流出将迎面冲击分流岛(7)形成岛前端滞流区并将流体导入分流岛下的流体扩散层,形成多层次三维流动,不仅改善了扩散层中反应介质的传递,还能有效排出扩散层的生成水。
  8. 根据权利要求9所述的一种燃料电池导流板,其特征在于,所述的分流岛(7)的迎风面设有引流斜面或引流槽(14),当流体在合并流道流出将迎面冲击分流岛(7)时,通过引流斜面槽(14)引入分流岛下的流体扩散层。
  9. 根据权利要求1所述的一种燃料电池导流板,其特征在于,各流体通道的分流通道所在的区域为扩散区(A),合并段通道所在的区域为收敛区(B),一条流体通道(3)的扩散区(A)与相邻流通通道的收敛区(B)相邻,扩散区(A)的流体压力与收敛区(B)流体压力不同形成压差,该压差促使流体从压力高的一端穿过侧壁底部扩散层向相邻的压力低的流体通道流动,进入相邻流体通道,不仅改善了扩散层中反应介质的传递,还能有助于排出流道侧壁底部扩散层的生成水避免多孔的扩散层被淤塞。
PCT/CN2019/082997 2018-11-16 2019-04-17 一种燃料电池导流板 WO2020098217A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021517980A JP7079996B2 (ja) 2018-11-16 2019-04-17 燃料電池案内バッフル
US17/041,314 US20210083303A1 (en) 2018-11-16 2019-04-17 Flow field plate for fuel cell
EP19884961.4A EP3751649A4 (en) 2018-11-16 2019-04-17 FLOW DEFLECTOR FOR FUEL CELLS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811372401.4 2018-11-16
CN201811372401.4A CN111200137B (zh) 2018-11-16 2018-11-16 一种燃料电池导流板

Publications (1)

Publication Number Publication Date
WO2020098217A1 true WO2020098217A1 (zh) 2020-05-22

Family

ID=70731221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082997 WO2020098217A1 (zh) 2018-11-16 2019-04-17 一种燃料电池导流板

Country Status (5)

Country Link
US (1) US20210083303A1 (zh)
EP (1) EP3751649A4 (zh)
JP (1) JP7079996B2 (zh)
CN (2) CN111200137B (zh)
WO (1) WO2020098217A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220985A (zh) * 2021-12-14 2022-03-22 清华大学 一种可变进气式燃料电池流场及其控制方法
CN117577871A (zh) * 2024-01-19 2024-02-20 浙江海盐力源环保科技股份有限公司 高性能燃料电池的双极板结构及高性能燃料电池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220276008A1 (en) * 2021-02-26 2022-09-01 Teradyne, Inc. Thermal plate having a fluid channel
CN113054291B (zh) * 2021-03-11 2022-11-29 北京临近空间飞艇技术开发有限公司 一种电池模组或系统用冷板
CN113101090A (zh) * 2021-04-21 2021-07-13 殷仲伟 一种重症监护室用隔离装置
CN114388837A (zh) * 2021-12-03 2022-04-22 西安交通大学 基于翼形导流的燃料电池流道结构
CN114050284B (zh) * 2021-12-06 2023-06-02 山东科技大学 一种在阴极流道中加装涡流发生器的燃料电池
CN114759217B (zh) * 2022-04-07 2024-03-19 上海电气集团股份有限公司 流体通道、包含该流体通道的端板以及包含该流体通道的电堆
CN115020737A (zh) * 2022-05-31 2022-09-06 上海电气集团股份有限公司 燃料电池的导流极板
CN114695912B (zh) * 2022-06-01 2022-09-02 季华实验室 一种流场流道、双极板、质子交换膜燃料电池
CN115920687B (zh) * 2023-02-22 2023-05-09 四川省玖鼎石油有限责任公司 一种润滑油输送装置及调和方法
CN117174982B (zh) * 2023-11-02 2024-01-23 四川荣创新能动力系统有限公司 一种燃料电池的空气出入堆分配结构及其出入堆总成

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080182140A1 (en) * 2003-06-30 2008-07-31 Paul Scherrer Institut Method and apparatus for humidification of the membrane of a fuel cell
CN101267042B (zh) * 2007-03-12 2011-11-09 通用汽车环球科技运作公司 双极板流场中的流动通道的分叉
CN103119766A (zh) * 2010-09-16 2013-05-22 丰田自动车株式会社 燃料电池用隔板、燃料电池、燃料电池的制造方法
US20170117558A1 (en) * 2015-10-22 2017-04-27 Honda Motor Co., Ltd. Fuel cell

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283639A (ja) * 1998-03-27 1999-10-15 Toyota Motor Corp 燃料電池用セパレータおよび燃料電池
US6586128B1 (en) * 2000-05-09 2003-07-01 Ballard Power Systems, Inc. Differential pressure fluid flow fields for fuel cells
EP1264360B1 (en) * 2001-02-12 2006-06-07 The Morgan Crucible Company Plc Flow field plate geometries
KR20040031697A (ko) 2001-02-27 2004-04-13 이 아이 듀폰 디 네모아 앤드 캄파니 전기화학 장치를 위한 유체 유동장
GB2387476B (en) * 2002-06-24 2004-03-17 Morgan Crucible Co Flow field plate geometries
CN100397692C (zh) * 2003-06-18 2008-06-25 摩根坩埚有限公司 流场板几何结构
GB2413001A (en) * 2004-04-02 2005-10-12 Morgan Crucible Co Flow field plate geometries
JP2006004702A (ja) 2004-06-16 2006-01-05 Nisshin Steel Co Ltd 固体高分子型燃料電池用セパレータ
JP2006120587A (ja) 2004-09-24 2006-05-11 Toyota Motor Corp 燃料電池
JP2008103197A (ja) * 2006-10-19 2008-05-01 Nissan Motor Co Ltd 燃料電池
TW200840128A (en) * 2007-03-30 2008-10-01 Coretronic Corp Direct oxide fuel cell
CN101373836A (zh) * 2007-08-20 2009-02-25 中强光电股份有限公司 流道板
US8236461B2 (en) * 2008-02-26 2012-08-07 Yong Gao Type of fuel cell bipolar plates constructed with multiple pass flow channels that contract, expand, deflect and split reactant flows for improving reactant flow distribution, diffusion and water management
JP2012523089A (ja) * 2009-04-03 2012-09-27 ユーティーシー パワー コーポレイション 流体供給のための燃料電池および流れ場プレート
CN201845825U (zh) * 2010-08-03 2011-05-25 上海恒劲动力科技有限公司 燃料电池的双极板及其燃料电池
JP5682778B2 (ja) 2010-12-27 2015-03-11 日産自動車株式会社 燃料電池
EP2557621A1 (en) * 2011-08-10 2013-02-13 The European Union, represented by the European Commission Fuel cell
JP6658486B2 (ja) * 2016-12-09 2020-03-04 トヨタ自動車株式会社 燃料電池用セパレータ及び燃料電池
CN107123820B (zh) * 2017-06-22 2024-02-13 天津中德应用技术大学 新型燃料电池堆冷却水流道板及其电池组
CN107681175B (zh) * 2017-09-21 2020-03-31 天津大学 质子交换膜燃料电池分体式阴极流道的优化结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080182140A1 (en) * 2003-06-30 2008-07-31 Paul Scherrer Institut Method and apparatus for humidification of the membrane of a fuel cell
CN101267042B (zh) * 2007-03-12 2011-11-09 通用汽车环球科技运作公司 双极板流场中的流动通道的分叉
CN103119766A (zh) * 2010-09-16 2013-05-22 丰田自动车株式会社 燃料电池用隔板、燃料电池、燃料电池的制造方法
US20170117558A1 (en) * 2015-10-22 2017-04-27 Honda Motor Co., Ltd. Fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3751649A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220985A (zh) * 2021-12-14 2022-03-22 清华大学 一种可变进气式燃料电池流场及其控制方法
CN117577871A (zh) * 2024-01-19 2024-02-20 浙江海盐力源环保科技股份有限公司 高性能燃料电池的双极板结构及高性能燃料电池

Also Published As

Publication number Publication date
US20210083303A1 (en) 2021-03-18
CN113611890A (zh) 2021-11-05
JP7079996B2 (ja) 2022-06-03
EP3751649A4 (en) 2021-12-08
EP3751649A1 (en) 2020-12-16
JP2022502822A (ja) 2022-01-11
CN111200137A (zh) 2020-05-26
CN111200137B (zh) 2021-08-03
CN113611890B (zh) 2023-02-21

Similar Documents

Publication Publication Date Title
WO2020098217A1 (zh) 一种燃料电池导流板
JP5027695B2 (ja) 双極板の流れ場における流路の二叉分岐
EP1754271B1 (en) Fuel cell stack with even distributing gas manifolds
US20170110739A1 (en) Bipolar plate and fuel cell comprising a bipolar plate of this type
CN110444783A (zh) 一种燃料电池单元及具有其的燃料电池电堆结构
KR20160136588A (ko) 연료전지용 분리판
US11682775B2 (en) Bipolar plate, fuel cell, and motor vehicle
US8101313B2 (en) Flow field plate module for fuel cell system
WO2020228131A1 (zh) 双极板及包含该双极板的燃料电池电堆和发电系统
CN108417856B (zh) 一种排水及时方便的燃料电池导流双极板及燃料电池系统
CN113707902A (zh) 一种氢燃料电池的双极板及氢燃料电池
JP2011076973A (ja) 燃料電池
KR102579354B1 (ko) 연료전지용 분리판
JP4578997B2 (ja) 燃料電池用セパレータ及び燃料電池
CN211743309U (zh) 一种氢燃料电池膜电极发电性能测试用双极板
CN114759208A (zh) 燃料电池双极板及具有其的燃料电池
CN108417857B (zh) 一种燃料电池导流极板及燃料电池堆和系统
CN113948734A (zh) 燃料电池电堆
JP5358473B2 (ja) 燃料電池構造及びこの構造内で使用するためのセパレータ・プレート
US20080318115A1 (en) Flow channel plate
CN219260221U (zh) 一种双极板阳极结构及电解槽双极板
CN219286457U (zh) 一种燃料电池双极板冷却流场结构
CN220253276U (zh) 燃料电池双极板和燃料电池
CN214477553U (zh) 一种燃料电池双极板
KR102025749B1 (ko) 연료전지용 다공체 및 이를 포함하는 연료전지 스택

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884961

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019884961

Country of ref document: EP

Effective date: 20200907

ENP Entry into the national phase

Ref document number: 2021517980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE