WO2020228131A1 - 双极板及包含该双极板的燃料电池电堆和发电系统 - Google Patents

双极板及包含该双极板的燃料电池电堆和发电系统 Download PDF

Info

Publication number
WO2020228131A1
WO2020228131A1 PCT/CN2019/096756 CN2019096756W WO2020228131A1 WO 2020228131 A1 WO2020228131 A1 WO 2020228131A1 CN 2019096756 W CN2019096756 W CN 2019096756W WO 2020228131 A1 WO2020228131 A1 WO 2020228131A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
flow channel
flow
bipolar plate
electrode plate
Prior art date
Application number
PCT/CN2019/096756
Other languages
English (en)
French (fr)
Inventor
张国胜
张知劲
Original Assignee
张国胜
张知劲
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张国胜, 张知劲 filed Critical 张国胜
Publication of WO2020228131A1 publication Critical patent/WO2020228131A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of fuel cells, and particularly relates to a bipolar plate used in a fuel cell stack, and a fuel cell stack and a power generation system containing the bipolar plate.
  • Fuel cell is an electrochemical reaction device that can convert chemical energy into electrical energy. It has the advantages of high energy conversion efficiency, zero emission, and no mechanical noise. It is favored in military and civilian fields.
  • Proton exchange membrane fuel cells (PEMFC) use solid polymer membranes as electrolytes, which have the advantages of simple structure and low operating temperature, and have unique advantages as a mobile power source.
  • Internationally renowned automobile companies such as Toyota Motor Corporation of Japan and Hyundai Motor Corporation of South Korea have developed mass-produced fuel cell electric vehicles (FCEV or FCV) powered by PEMFC.
  • Each PEMFC cell consists of two polar plates (an anode plate and a cathode plate) and membrane electrodes sandwiched between the two polar plates.
  • a fuel flow channel is provided on the anode plate of the PEMFC.
  • the fuel flow channel is a place where the fuel flows and is transported through which the fuel is transported to the anode catalyst.
  • the cathode plate of the PEMFC is provided with an oxidant flow channel.
  • the oxidant flow channel is a place where the oxidant (oxygen or air) flows and transmits through which the oxidant reaches the cathode catalyst.
  • a fuel cell stack In order to increase the total power generation of the fuel cell, multiple single cells are usually connected in series to form a fuel cell stack (Fuel Cell Stack).
  • the anode plate of any single cell inside the stack and the cathode plate of the adjacent single cell are closely attached to each other.
  • the anode plate and the cathode plate are fixedly connected to form a single component, which can simplify the structure of the fuel cell stack and improve the reliability of the fuel cell stack operation. This is fixedly connected by the anode plate and the cathode plate.
  • the individual components formed are called bipolar plates.
  • the bipolar plate is one of the key components in the fuel cell stack. In the fuel cell stack, it plays multiple functions such as supporting the membrane electrode assembly, distributing reaction gas, transmitting current, conducting heat, and discharging reaction product water. Under the existing technical level, the manufacturing cost of the bipolar plate accounts for 40-50% of the total manufacturing cost of the entire fuel cell stack.
  • the hydrogen It is difficult to adjust the pressure drop and the pressure drop of air (or oxygen) to the optimal value at the same time, because hydrogen has better fluidity than air and oxygen.
  • the pressure drop of hydrogen reaches the optimal value on the PEMFC anode side, The pressure drop of air or oxygen on the cathode side of the PEMFC will inevitably be too large, which will increase the parasitic power and lead to poor drainage.
  • the purpose of the present invention is to provide a bipolar plate whose anode plate and cathode plate have different flow fields so as to simultaneously reduce the pressure drop of hydrogen on the anode side of PEMFC and the pressure drop of air (or oxygen) on the cathode side of PEMFC. All are adjusted to the optimal value, which can also make the PEMFC cathode side have good drainage.
  • Another object of the present invention is to provide a fuel cell stack and power generation system including the above-mentioned bipolar plate, which has many advantages such as high power generation efficiency, good drainage, easy temperature control, etc., and has a wide application prospect.
  • a bipolar plate includes a first electrode plate and a second electrode plate.
  • the first electrode plate has a first surface and a second surface.
  • the second electrode plate has a third surface and a fourth surface.
  • the second surface of the first electrode plate is attached to the fourth surface of the second electrode plate;
  • the first surface of the first electrode plate has a first flow channel and a first reference surface;
  • the third surface has a third flow channel and a third reference surface;
  • the first flow channel is a groove formed in the thickness direction relative to the first reference surface, and the third flow channel is relative to the third reference surface in the thickness direction
  • the thickness direction is parallel to the stacking direction of the bipolar plate in the fuel cell stack, the first flow channel on the first surface of the first plate includes a U-shaped section, and the second
  • the third flow channel on the third surface of the electrode plate does not include a U-shaped section;
  • the U-shaped section includes a first section, a second section and a third section, and the fluid in the fuel cell stack is
  • the flow direction of the fluid in the first section of the U-shaped section is opposite to the flow direction in the third section of the U-shaped section, and the flow direction in the first section of the U-shaped section is
  • the flow direction in the second section of the U-shaped section is vertical, and the flow direction in the second section of the U-shaped section is vertical to the flow direction in the third section of the U-shaped section.
  • the second surface has a second flow passage and a second reference surface
  • the fourth surface has a fourth flow passage and a fourth reference surface
  • the second flow passage is located relative to the second reference surface.
  • a groove formed in the thickness direction, the fourth flow channel is a groove formed in the thickness direction relative to the fourth reference plane;
  • the second flow channel includes a transverse section and a longitudinal section, and the fluid in the fuel cell stack The angle formed by the flow direction of the transverse section and the flow direction in the longitudinal section is in the interval [60°, 120°], and the total length of the longitudinal section is greater than the total length of the transverse section;
  • the bipolar plate includes at least two synchronous undulating regions; the synchronous undulating region includes a second flow channel, a second reference plane, a fourth flow channel, and a fourth reference plane corresponding to the lateral section of the second flow channel, and The second reference surface and the fourth reference surface are not in contact.
  • a coolant diversion bank is provided on the second electrode plate, and the coolant diversion bank is a fourth reference plane formed by blocking a part of the fourth flow channel.
  • two opposite corners of the bipolar plate are respectively provided with a coolant inlet and a coolant outlet, which are respectively communicated with the coolant flow channels corresponding to the two U-shaped sections located at the opposite corners.
  • a coolant inlet and a coolant outlet are respectively provided at adjacent inner corners of the same side of the bipolar plate, which are respectively communicated with the corresponding coolant flow passages of two U-shaped sections located at the adjacent inner corners of the same side.
  • the upper support platform is a second reference plane formed by blocking a part of the second flow channel
  • the lower support platform is A fourth reference plane formed by blocking a part of the fourth flow path.
  • first electrode plate and the second electrode plate are made of metal or alloy thin plates with a thickness of less than 0.5 mm through a pressure processing method.
  • a bipolar plate includes a first electrode plate and a second electrode plate.
  • the first electrode plate has a first surface and a second surface.
  • the second electrode plate has a third surface and a fourth surface.
  • the second surface of the first electrode plate is attached to the fourth surface of the second electrode plate;
  • the first surface of the first electrode plate has a first flow channel and a first reference surface;
  • the third surface has a third flow channel and a third reference surface;
  • the first flow channel is a groove formed in the thickness direction relative to the first reference surface, and the third flow channel is relative to the third reference surface in the thickness direction
  • the thickness direction is parallel to the stacking direction of the bipolar plate in the fuel cell stack,
  • the first flow channel on the first surface of the first plate includes an S-shaped section, and the second
  • the third flow channel on the third surface of the electrode plate does not include an S-shaped section;
  • the S-shaped section includes a fourth section, a fifth section, and a sixth section, and the length of the fifth section is
  • the flow direction of the fluid in the fourth section of the S-shaped section is the same as the flow direction in the sixth section of the S-shaped section, and the flow direction in the fourth section of the S-shaped section is the same as that in the The flow direction in the fifth section of the S-shaped section is vertical, and the flow direction in the fourth section of the S-shaped section is vertical to the flow direction in the sixth section of the S-shaped section.
  • the second surface has a second flow passage and a second reference surface
  • the fourth surface has a fourth flow passage and a fourth reference surface
  • the second flow passage is located relative to the second reference surface.
  • a groove formed in the thickness direction, the fourth flow channel is a groove formed in the thickness direction relative to the fourth reference plane;
  • the second flow channel includes a transverse section and a longitudinal section, and the fluid in the fuel cell stack The angle formed by the flow direction of the transverse section and the flow direction in the longitudinal section is in the interval [60°, 120°], and the total length of the longitudinal section is greater than the total length of the transverse section;
  • the bipolar plate includes at least two synchronous undulating regions; the synchronous undulating region includes a second flow channel, a second reference plane, a fourth flow channel, and a fourth reference plane corresponding to the lateral section of the second flow channel, and The second reference surface and the fourth reference surface are not in contact.
  • a coolant diversion bank is provided on the second electrode plate, and the coolant diversion bank is a fourth reference plane formed by blocking a part of the fourth flow channel.
  • the upper support platform is a second reference plane formed by blocking a part of the second flow channel
  • the lower support platform is A fourth reference plane formed by blocking a part of the fourth flow path.
  • first electrode plate and the second electrode plate are made of metal or alloy thin plates with a thickness of less than 0.5 mm through a pressure processing method.
  • a fuel cell stack includes the bipolar plate.
  • a fuel cell power generation system includes the fuel cell stack.
  • a flow channel with a U-shaped section (usually a serpentine flow channel) is arranged on the anode side to make fluidity Hydrogen, which is better than air and oxygen, requires multiple turns during the flow process to produce a larger pressure drop, which is beneficial to the diffusion of hydrogen to the gas diffusion layer and catalyst; there will be no U-shaped flow channel (straight-through flow channel) ) Is arranged on the side of the cathode, so that air or oxygen, which is less fluid than hydrogen, does not need to be turned during the flow, so that a suitable pressure drop can be obtained and the reaction product water can be discharged.
  • the present invention allows the coolant to flow through the entire reaction zone without increasing the thickness of the bipolar plate by setting the synchronous undulating zone, which is convenient for controlling the temperature of the fuel cell stack.
  • the present invention can control the flow route of the coolant by setting the coolant diversion bank, which can eliminate the dead angle of the coolant flow channel and control the flow rate of the coolant, thereby reducing the parasitic power generated by the coolant pump.
  • the transverse plate ribs forming the first flow channel on the first electrode plate and the longitudinal plate ribs forming the third flow channel on the second electrode plate of the present invention can cross pressure the membrane electrodes, thereby reducing the internal resistance of the fuel cell.
  • Fig. 1 is a schematic diagram of the structure of the first electrode plate of the bipolar plate embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the second electrode plate of the bipolar plate embodiment 1 of the present invention.
  • Fig. 3 is a schematic diagram of the combined state of Embodiment 1 of the bipolar plate of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the second electrode plate of the bipolar plate embodiment 2 of the present invention.
  • Fig. 5 is a schematic diagram of the combined state of Embodiment 2 of the bipolar plate of the present invention.
  • Fig. 6 is a cross-sectional view along the A1-A1 direction in Figs. 3 and 5.
  • Fig. 7 is a cross-sectional view in the direction of A2-A2 in Figs. 3 and 5.
  • Fig. 8 is a cross-sectional view in the direction of B1-B1 in Fig. 5.
  • Fig. 9 is a cross-sectional view in the direction of B2-B2 in Fig. 5.
  • Fig. 10 is a schematic diagram of the flow direction of the coolant in the embodiment 2 of the bipolar plate of the present invention.
  • FIG. 11 is a schematic diagram of the structure of the first electrode plate of Embodiment 3 of the bipolar plate of the present invention.
  • Fig. 12 is a schematic diagram of the structure of the second electrode plate of the bipolar plate embodiment 3 of the present invention.
  • Fig. 13 is a schematic diagram of the combined state of Embodiment 3 of the bipolar plate of the present invention.
  • FIG. 14 is a schematic diagram of the structure of the first electrode plate of the bipolar plate embodiment 4 of the present invention.
  • Embodiment 15 is a schematic diagram of the combined state of Embodiment 4 of the bipolar plate of the present invention.
  • FIG. 16 is a schematic diagram of the combined state of Embodiment 5 of the bipolar plate of the present invention.
  • Fig. 17 is a cross-sectional view in the direction of A3-A3 in Figs. 15 and 16.
  • Fig. 18 is a cross-sectional view in the direction of A4-A4 in Figs. 15 and 16.
  • Fig. 19 is a cross-sectional view in the direction of B3-B3 in Fig. 16.
  • Fig. 20 is a cross-sectional view in the direction of B4-B4 in Fig. 16.
  • the present invention provides a bipolar plate, the first surface of the first electrode plate and the third surface of the second electrode plate have different flow fields, so that the flow direction of fuel (hydrogen) in the fuel flow channel is changed at least four times,
  • the flow direction of the oxidant in the oxidant flow channel is straight-through without change, so that air or oxygen, which is less fluid than hydrogen, does not need to be turned during the flow, which can obtain a suitable pressure drop and facilitate the discharge of reaction product water.
  • the present invention provides a bipolar plate, which is embodiment 1 of the present invention, comprising a first plate 1 and a second plate 2, the first plate 1 has a first surface 11 and a second surface 12, the second electrode plate 2 has a third surface 21 and a fourth surface 22, the second surface 12 of the first electrode plate 1 and the fourth surface 22 of the second electrode plate 2 are bonded together ,
  • the coolant flow channel 3 is formed between the two.
  • the first surface 11 of the first electrode plate 1 has a first flow channel 111 and a first reference surface 112, and the second surface 12 has a second flow channel 121 and a second reference surface 122.
  • the third surface 21 of the second electrode plate 2 has a third flow channel 211 and a third reference surface 212
  • the fourth surface 22 has a fourth flow channel 221 and a fourth reference surface 222.
  • the first flow passage 111 is a groove formed in the thickness direction with respect to the first reference surface 112
  • the second flow passage 121 is a groove formed in the thickness direction with respect to the second reference surface 122
  • the third flow passage 211 is a groove formed in the thickness direction with respect to the third reference surface 212
  • the fourth runner 221 is a groove formed in the thickness direction with respect to the fourth reference surface 222.
  • the thickness direction is parallel to the stacking direction of the bipolar plate when the bipolar plate is installed in the fuel cell stack
  • the first flow channel 111 includes the U-shaped section 4
  • the third flow channel does not include the U-shaped section.
  • the U-shaped section 4 includes a first section 41, a second section 42, and a third section 43 connected in sequence.
  • the flow directions of the fluid or the product of the electrochemical reaction participating in the electrochemical reaction in the first section 41, the second section 42 and the third section 43 are respectively a first direction, a second direction and a third direction, and the first direction and
  • the third direction is opposite, the first direction is perpendicular to the second direction, and the second direction is perpendicular to the third direction.
  • the angle between the first direction, the second direction, and the third direction is a preferred solution, but is not limited to this.
  • the second flow channel (corresponding to the unevenness of the first flow channel) includes a transverse section H and a longitudinal section Z.
  • the flow direction of the fluid in the transverse section H and the longitudinal section Z in the fuel cell stack The included angle formed by the direction of the flow channel is in the interval [60°, 120°], and the total length of the longitudinal section Z is greater than the total length of the transverse section H.
  • the bipolar plate of the present invention includes at least two synchronous undulating regions, the synchronous undulating region is located between the second surface 12 and the fourth surface 22 and corresponds to the position of the transverse section H (second section 42).
  • the second reference surface 122 and the fourth reference surface 222 are not in contact, as shown in FIGS. 6 and 7.
  • the coolant flows into one of the synchronous undulations from the coolant inlet channel, and then flows longitudinally along the second flow channel while flowing laterally along the fourth flow channel to flow through the entire reaction zone, and then flows out of the other synchronous undulation zone into the coolant Exit channel.
  • the direction of the arrow in FIG. 3 indicates the flow path of the coolant.
  • the second embodiment of the bipolar plate of the present invention As shown in Figures 4 to 10, it is the second embodiment of the bipolar plate of the present invention.
  • the two opposite corners of the bipolar plate are provided with a coolant inlet 5 and a coolant outlet 6, respectively.
  • the coolant flow passages 3 corresponding to the two U-shaped sections are connected.
  • the structure of the first electrode plate 1 of this embodiment is the same as that of the first embodiment.
  • the second electrode plate 2 is provided with a coolant diversion bank 7 which is a fourth reference plane formed on the fourth surface 22 by blocking the fourth flow channel 221 and is disposed on Corresponds between adjacent longitudinal sections Z of the second runner.
  • the coolant diversion bank 7 is perpendicular or nearly perpendicular to the fourth flow channel 221, and the length of the coolant diversion bank 7 is less than the total width of all the fourth flow channels 221.
  • a coolant diversion bank 7 is provided inside the coolant inlet 5 and the coolant outlet 6 respectively, so that the coolant flow channel 3 has a serpentine shape.
  • the arrow direction in FIG. 10 indicates the flow path of the coolant.
  • the second section 42 has a plurality of support platforms 44, each of which 44 blocks the first flow passage 111.
  • FIG. 11-13 it is the embodiment 3 of the bipolar plate of the present invention.
  • the adjacent inner corners of the bipolar plate on the same side are respectively provided with a coolant inlet 5 and a coolant outlet 6, which are opposite to those on the same side.
  • the coolant flow channels 3 corresponding to the two U-shaped sections at adjacent inner corners are connected.
  • the structure of the first electrode plate 1 of this embodiment is shown in FIG. 11, and the structure of the second electrode plate 2 of this embodiment is shown in FIG.
  • the second electrode plate 2 is provided with a coolant diversion bank 7 which is a long strip-shaped fourth reference plane formed on the fourth surface 22 by blocking the fourth flow channel 221 , And set between adjacent longitudinal sections Z corresponding to the second flow channel.
  • the coolant diversion bank 7 is perpendicular or nearly perpendicular to the fourth flow channel 221, and the length of the coolant diversion bank 7 is less than the total width of all the fourth flow channels 221.
  • a coolant diversion bank 7 is provided inside the coolant inlet 5 and the coolant outlet 6 respectively, so that the coolant flow channel 3 has a serpentine shape.
  • Fig. 13 is an assembly diagram of the first electrode plate and the second electrode plate, and the arrow direction in the figure indicates the flow path of the coolant.
  • the first flow channel 111 includes an S-shaped section 4', and the third flow channel does not include an S-shaped section.
  • the S-shaped section 4' includes a fourth section 41', a fifth section 42', and a sixth section 43', and the length of the fifth section 42' is greater than 3 times the width of the sixth section 43'.
  • the fluid in the stack sequentially flows through the fourth section 41', the fifth section 42' and the sixth section 43' and the flow direction in the fourth section 41' and the flow direction in the sixth section 43'
  • the formed included angle is located in the interval [0°, 30°] (preferably 0°)
  • the included angle formed by the flow direction in the fourth section 41' and the flow direction in the fifth section 42' is located in [ 60°, 120°] interval (preferably 90°)
  • the angle formed by the flow direction in the fifth section 42' and the flow direction in the sixth section 43' is located in the [60°, 120°] interval (Preferably 90°).
  • the structure of the first electrode plate is shown in Figure 14.
  • the structure of the second electrode plate is the same as that of the second electrode plate in Example 1.
  • Figure 15 is an assembly diagram of the first electrode plate and the second electrode plate.
  • the flow of coolant The route is basically the same as the coolant flow route shown in FIG. 3.
  • the second flow channel (corresponding to the unevenness of the first flow channel) includes a transverse section H and a longitudinal section Z.
  • the flow direction of the fluid in the transverse section H and the longitudinal section Z in the fuel cell stack The included angle formed by the direction of the flow channel is in the interval [60°, 120°], and the total length of the longitudinal section Z is greater than the total length of the transverse section H.
  • the bipolar plate of this embodiment also includes at least two synchronous undulating regions, which are located between the second surface 12 and the fourth surface 22 and correspond to the position of the transverse section H (fifth section 42') . In the synchronous fluctuation region, the second reference surface 122 and the fourth reference surface 222 are not in contact.
  • the coolant flows into one of the synchronous undulations from the coolant inlet channel, and then flows longitudinally along the second flow channel while flowing laterally along the fourth flow channel to flow through the entire reaction zone, and then flows out of the other synchronous undulation zone into the coolant Exit channel.
  • the fifth section 42' has a plurality of support platforms 44', and each support platform 44' blocks the second First class road 111.
  • Figs. 16-20 it is the embodiment 5 of the bipolar plate of the present invention.
  • the structure of the first plate is the same as that of embodiment 4.
  • the structure of the second plate is the same as that of embodiment 2.
  • the second electrode plate is the same, and the diversion bank 7'is provided, as shown in Fig. 4, the flow route of the coolant is basically the same as that shown in Fig. 10.
  • the first electrode plate 1 and the second electrode plate 2 of the various embodiments of the present invention are formed by a metal or alloy thin plate with a thickness of less than 0.5 mm through a press working method.
  • the bipolar plate of each embodiment of the present invention further includes a conventional fuel inlet channel, a fuel outlet channel, an oxidant inlet channel, and an oxidant outlet channel, which are through holes provided on the edge of the bipolar plate.
  • the present invention also provides a fuel cell stack, which includes the bipolar plate.
  • the present invention also provides a fuel cell power generation system, including the fuel cell stack.

Abstract

一种双极板及包含该双极板的燃料电池电堆和发电系统,双极板包括第一极板和第二极板,该第一极板具有第一面和第二面,该第二极板具有第三面和第四面,该第一极板的第一面上具有第一流道和第一基准面;该第二极板的第三面上具有第三流道和第三基准面;在该双极板中该第一极板的第二面和第二极板的第四面贴合在一起;该第一极板的第一面和第二极板的第三面具有不同的流场。其上还包括至少两个同步起伏区,是冷却剂导入和导出双极板夹层的通道。所述第二极板上设置有冷却剂导流堤,可引导冷却剂按照设定的路线流动。上述特征使得该双极板具有排水性好、冷却效果好等诸多优点。

Description

双极板及包含该双极板的燃料电池电堆和发电系统 技术领域
本发明属于燃料电池技术领域,特别涉及一种燃料电池电堆中所用的双极板以及包含该双极板的燃料电池电堆和发电系统。
背景技术
燃料电池是一种能够将化学能转化为电能的电化学反应装置,具有能量转换效率高、零排放、无机械噪声等优点,在军事和民用领域备受青睐。质子交换膜燃料电池(PEMFC)采用固体聚合物膜作为电解质,具有结构简单、工作温度低等优点,作为移动电源具有得天独厚的优势。日本丰田汽车公司、韩国现代汽车公司等国际知名的汽车公司已经开发出以PEMFC为动力的量产化的燃料电池电动汽车(FCEV或FCV)。
每个PEMFC单电池由两个极板(一个阳极板和一个阴极板)以及夹在两个极板之间的膜电极组成。PEMFC的阳极板上设置有燃料流道,该燃料流道是燃料流动和传输的场所,燃料经由其而传输至阳极催化剂。PEMFC的阴极板上设置有氧化剂流道,该氧化剂流道是氧化剂(氧气或空气)流动和传输的场所,氧化剂经由其而到达阴极催化剂。借助于所述燃料流道和氧化剂流道,燃料和氧化剂可以被源源不断地输送到燃料电池内从而使燃料电池可以连续地输出电能。
为了提高燃料电池的总的发电功率,通常将多个单电池串联在一起而组成一个燃料电池电堆(Fuel Cell Stack)。在燃料电池电堆中,除了最外侧的两个单电池之外,电堆内部的任一单电池的阳极板和与之相邻的单电池的阴极板紧贴在一起。将紧贴在一起的阳极板和阴极板固定连接而形成一个单独的部件则可以简化燃料电池电堆的结构并提高燃料电池电堆运行的可靠性,这个由阳极板和阴极板固定连接在一起而形成的单独的部件被称为双极板(bipolar plate)。
双极板是燃料电池电堆中的关键部件之一,在燃料电池电堆中发挥着支撑膜电极组件、分配反应气体、传输电流、传导热量和排出反应产物水等多种功能。在现有的技术水平条件下,双极板的制造成本占整个燃料电池电堆总的制造成本的40~50%。
双极板上的燃料流道和氧化剂流道有很多种样式,目前采用较多的是直通式流道和多条平行的蛇形流道。直通式流道结构简单,流动阻力小,但是燃料电池电堆的发电功率对气体压力的波动比较敏感。多条平行的蛇形流道压降较大,便于气体向气体扩散层和电极催化剂扩散,但是在PEMFC的阴极一侧如果采用蛇形流道则不利于反应产物水的排出。现有的技术中阳极板上的燃料流道和阴极板上的氧化剂流道往往采用相同的样式,要么同为蛇形流道,要么同为直通式流道,在这种情况下将氢气的压降和空气(或氧气)的压降同时调整至最佳值具有一定的难度,因为氢气的流动性比空气和氧气好,在PEMFC阳极一侧将氢气的压降达到至最佳值时,在PEMFC阴极一侧的空气或氧气的压降必然会偏大,这会导致寄生功率增大并导致排水性不佳。
发明内容
本发明的目的是提供一种双极板,其阳极板和阴极板具有不同的流场,从而能够同时将PEMFC阳极一侧的氢气压降和PEMFC阴极一侧的空气(或氧气)的压降均调整至最佳值,还能够使得PEMFC阴极一侧具有良好排水性。
本发明的另一目的是提供一种包含上述双极板的燃料电池电堆和发电系统,具有发电效率高、排水性好、易于温度控制等诸多优点,应用前景广泛。
为实现上述目的,本发明采取以下技术方案:
一种双极板,包括第一极板和第二极板,该第一极板具有第一面和第二面,该第二极板具有第三面和第四面,在该双极板中该第一极板的第二面和第二极板的第四面贴合在一起;该第一极板的第一面上具有第一流道和第一基准面;该第二极板的第三面上具有第三流道和第三基准面;该第一流道是相对于第一基准面在厚度方向上形成的沟槽,该第三流道是相对于第三基准面在厚度方向上形成的沟槽;所述的厚度方向与该双极板在燃料电池电堆中的堆叠方向平行,该第一极板的第一面上的第一流道包含有U形段,该第二极板的第三面上的第三流道不包含有U形段;所述U形段包括第一段、第二段和第三段,在燃料电池电堆中流体在该第一段内的流动方向和在该第三段内的流动方向所构成的夹角位于[150°,180°]区间、在该第一段内的流动方向和在该第二段内的流动方向所构成的夹角位于[60°,120°]区间、在该第二段内的流动方向和在该第三段内的流动方向所构成的夹角位于[60°,120°]区间。
优选的,流体在所述U形段的第一段内的流动方向和在该U形段的第三段内的流动方向相反、在该U形段的第一段内的流动方向和在该U形段的第二段内的流动方向垂直、在该U形段的第二段内的流动方向和在该U形段的第三段内的流动方向垂直。
进一步的,所述第二面上具有第二流道和第二基准面,所述第四面上具有第四流道和第四基准面,该第二流道是相对于第二基准面在厚度方向上形成的沟槽,该第四流道是相对于第四基准面在厚度方向上形成的沟槽;该第二流道包括横向段和纵向段,在燃料电池电堆中流体在该横向段的流动方向和在该纵向段的流动方向所构成的夹角位于[60°,120°]区间,该纵向段的总长度大于该横向段的总长度;
该双极板包括至少两个同步起伏区;在该同步起伏区包括与该第二流道的横向段对应的第二流道、第二基准面、第四流道、第四基准面,并且所述第二基准面和所述第四基准面不相接触。
进一步的,所述第二极板上设置有冷却剂导流堤,该冷却剂导流堤是阻断一部分所述第四流道而形成的第四基准面。
进一步的,所述双极板异侧两个对角处分别开设有冷却剂入口和冷却剂出口,分别与位于对角的两个U型段对应的冷却剂流道连通。
进一步的,所述双极板同侧相邻内角处分别开设有冷却剂入口和冷却剂出口,分别与位于同侧相邻内角处的两个U型段对应的冷却剂流道连通。
进一步的,所述同步起伏区内具有若干上支撑台或下支撑台;所述的上支撑台是阻断一部分所述第二流道而形成的第二基准面,所述的下支撑台是阻断一部分所述第四流道而形成的第四基准面。
进一步的,所述第一极板和第二极板是用厚度小于0.5mm的金属或合金薄板通过压力加工的方法制作成型。
一种双极板,包括第一极板和第二极板,该第一极板具有第一面和第二面,该第二极板具有第三面和第四面,在该双极板中该第一极板的第二面和第二极板的第四面贴合在一起;该第一极板的第一面上具有第一流道和第一基准面;该第二极板的第三面上具有第三流道和第三基准面;该第一流道是相对于第一基准面在厚度方向上形成的沟槽,该第三流道是相对于第三基准面在厚度方向 上形成的沟槽;所述的厚度方向与该双极板在燃料电池电堆中的堆叠方向平行,该第一极板的第一面上的第一流道包含有S形段,该第二极板的第三面上的第三流道不包含有S形段;所述S形段包括第四段、第五段和第六段且该第五段的长度大于该第六段的宽度的3倍,在燃料电池电堆中流体依次流过该第四段、该第五段和该第六段且在该第四段内的流动方向和在该第六段内的流动方向所构成的夹角位于[0°,30°]区间、在该第四段内的流动方向和在该第五段内的流动方向所构成的夹角位于[60°,120°]区间、在该第五段内的流动方向和在该第六段内的流动方向所构成的夹角位于[60°,120°]区间。
优选的,流体在所述S形段的第四段内的流动方向和在该S形段的第六段内的流动方向相同、在该S形段的第四段内的流动方向和在该S形段的第五段内的流动方向垂直、在该S形段的第四段内的流动方向和在该S形段的第六段内的流动方向垂直。
进一步的,所述第二面上具有第二流道和第二基准面,所述第四面上具有第四流道和第四基准面,该第二流道是相对于第二基准面在厚度方向上形成的沟槽,该第四流道是相对于第四基准面在厚度方向上形成的沟槽;该第二流道包括横向段和纵向段,在燃料电池电堆中流体在该横向段的流动方向和在该纵向段的流动方向所构成的夹角位于[60°,120°]区间,该纵向段的总长度大于该横向段的总长度;
该双极板包括至少两个同步起伏区;在该同步起伏区包括与该第二流道的横向段对应的第二流道、第二基准面、第四流道、第四基准面,并且所述第二基准面和所述第四基准面不相接触。
进一步的,所述第二极板上设置有冷却剂导流堤,该冷却剂导流堤是阻断一部分所述第四流道而形成的第四基准面。
进一步的,所述同步起伏区内具有若干上支撑台或下支撑台;所述的上支撑台是阻断一部分所述第二流道而形成的第二基准面,所述的下支撑台是阻断一部分所述第四流道而形成的第四基准面。
进一步的,所述第一极板和第二极板是用厚度小于0.5mm的金属或合金薄板通过压力加工的方法制作成型。
一种燃料电池电堆,包括所述的双极板。
一种燃料电池发电系统,包括所述的燃料电池电堆。
本发明的有益效果是:
(1)当把本发明所述的双极板安装在质子交换膜燃料电池电堆中时,将具有U形段的流道(通常为蛇形流道)设置在阳极一侧,使得流动性比空气和氧气好的氢气在流动过程中需要多次转弯而产生较大的压降,从而有利于氢气向气体扩散层和催化剂的扩散;将不具有U形段的流道(直通式流道)设置在阴极一侧,使得流动性比氢气差的空气或氧气在流动过程中无需转弯,这样既能得到适宜的压降又有利于反应产物水的排出。
(2)本发明通过设置同步起伏区可以在不增加双极板的厚度的前提下使冷却剂流遍整个反应区,便于对燃料电池电堆的温度进行控制。
(3)本发明通过设置冷却剂导流堤可以控制冷却剂的流动路线,既能消除冷却剂流道死角,又能控制冷却剂流动速率,从而减小冷却剂泵所产生的寄生功率。
(4)本发明第一极板上形成第一流道的横向板筋和第二极板上形成第三流道的纵向板筋可以对膜电极交叉施压,从而减小燃料电池的内部电阻。
附图说明
图1是本发明双极板实施例1的第一极板的结构示意图。
图2是本发明双极板实施例1的第二极板的结构示意图。
图3是本发明双极板实施例1的组合状态示意图。
图4是本发明双极板实施例2的第二极板的结构示意图。
图5是本发明双极板实施例2的组合状态示意图。
图6是图3和图5中A1-A1方向的剖视图。
图7是图3和图5中A2-A2方向的剖视图。
图8是图5中B1-B1方向的剖视图。
图9是图5中B2-B2方向的剖视图。
图10是本发明双极板实施例2的冷却剂流动方向示意图。
图11是本发明双极板实施例3的第一极板的结构示意图。
图12是本发明双极板实施例3的第二极板的结构示意图。
图13是本发明双极板实施例3的组合状态示意图。
图14是本发明双极板实施例4的第一极板的结构示意图。
图15是本发明双极板实施例4的组合状态示意图。
图16是本发明双极板实施例5的组合状态示意图。
图17是图15和图16中A3-A3方向的剖视图。
图18是图15和图16中A4-A4方向的剖视图。
图19是图16中B3-B3方向的剖视图。
图20是图16中B4-B4方向的剖视图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
本发明提供一种双极板,其第一极板的第一面和第二极板的第三面具有不同的流场,使燃料流道内燃料(氢气)的流动方向至少发生四次变化,而氧化剂流道内的氧化剂流动方向为直通式,无变化,使得流动性比氢气差的空气或氧气在流动过程中无需转弯,这样既能得到适宜的压降又有利于反应产物水的排出。
如图1-图3所示,本发明提供一种双极板,其为本发明的实施例1,包括第一极板1和第二极板2,该第一极板1具有第一面11和第二面12,该第二极板2具有第三面21和第四面22,该第一极板1的第二面12和第二极板2的第四面22贴合在一起,二者之间形成冷却剂流道3。该第一极板1的第一面11上具有第一流道111和第一基准面112,第二面12上具有第二流道121和第二基准面122。该第二极板2的第三面21上具有第三流道211和第三基准面212,该第四面22上具有第四流道221和第四基准面222。该第一流道111是相对于第一基准面112在厚度方向上形成的沟槽,该第二流道121是相对于第二基准面122在厚度方向上形成的沟槽,该第三流道211是相对于第三基准面212在厚度方向上形成的沟槽,该第四流道221是相对于第四基准面222在厚度方向上形成的沟槽。该厚度方向与该双极板被设置在燃料电池电堆中时该双极板的堆叠方向平行,该第一流道111包含有U形段4,该第三流道不包含有U形段。该U形段4包括依次连接的第一段41、第二段42、和第三段43。该 第一段41、第二段42和第三段43内参与电化学反应的流体或电化学反应的产物的流动方向分别为第一方向、第二方向和第三方向,该第一方向和第三方向相反,该第一方向和第二方向垂直,该第二方向和第三方向垂直。第一方向、第二方向、第三方向之间的角度为优选方案,但不限于此。
该第二流道(与第一流道凹凸对应)包括横向段H和纵向段Z,与该第一流道对应,在燃料电池电堆中流体在该横向段H的流动方向和在该纵向段Z的流道方向所构成的夹角位于[60°,120°]区间,该纵向段Z的总长度大于该横向段H的总长度。
本发明的双极板,包括至少两个同步起伏区,该同步起伏区位于该第二面12和第四面22之间,并对应该横向段H(第二段42)的位置。在该同步起伏区内,该第二基准面122和该第四基准面222不相接触,见图6和图7所示。冷却剂从冷却剂入口通道流入其中一个同步起伏区,然后沿着第二流道纵向流动同时沿着第四流道横向流动从而流遍整个反应区,然后从另一个同步起伏区流出进入冷却剂出口通道。图3中的箭头方向表示冷却剂的流动路线。
如图4-图10所示,其为本发明双极板的实施例2,该双极板异侧两个对角处分别开设有冷却剂入口5和冷却剂出口6,分别与位于对角的两个U型段对应的冷却剂流道3连通。本实施例的第一极板1结构与实施例1相同。
该第二极板2上设置有冷却剂导流堤7,该冷却剂导流堤7为阻断该第四流道221而在该第四面22上形成的第四基准面,且设置在对应该第二流道的相邻的纵向段Z之间。该冷却剂导流堤7与该第四流道221垂直或者接近垂直,该冷却剂导流堤7长度小于所有第四流道221的总宽度。该冷却剂入口5内侧和该冷却剂出口6内侧分别设有一个冷却剂导流堤7,使该冷却剂流道3呈蛇形。图10中的箭头方向表示冷却剂的流动路线。
如图6、图7所示,为了防止在该第二段42因上下双极板的挤压产生变形,阻挡冷却剂流道3,该第二段42具有若干支撑台44,各该支撑台44阻断该第一流道111。
如图11-图13所示,其为本发明双极板的实施例3,该双极板同侧相邻内角处分别开设有冷却剂入口5和冷却剂出口6,分别与位于同侧相邻内角处的两个U型段对应的冷却剂流道3连通。本实施例的第一极板1的结构见图11 所示,本实施例的第二极板2的结构见图12所示。
该第二极板2上设置有冷却剂导流堤7,该冷却剂导流堤7为阻断该第四流道221而在该第四面22上形成的长条状的第四基准面,且设置在对应该第二流道的相邻的纵向段Z之间。该冷却剂导流堤7与该第四流道221垂直或者接近垂直,该冷却剂导流堤7长度小于所有第四流道221的总宽度。该冷却剂入口5内侧和该冷却剂出口6内侧分别设有一个冷却剂导流堤7,使该冷却剂流道3呈蛇形。图13是第一极板和第二极板的组装图,该图中的箭头方向表示冷却剂的流动路线。
如图14-图15所示,其为本发明双极板的实施例4,本实施例中,该第一流道111包含有S形段4’,该第三流道不包含有S形段。该S形段4’包括第四段41’、第五段42’和第六段43’且该第五段42’的长度大于该第六段43’的宽度的3倍,在燃料电池电堆中流体依次流过该第四段41’、该第五段42’和该第六段43’且在该第四段41’内的流动方向和在该第六段43’内的流动方向所构成的夹角位于[0°,30°]区间(优选0°)、在该第四段41’内的流动方向和在该第五段42’内的流动方向所构成的夹角位于[60°,120°]区间(优选90°)、在该第五段42’内的流动方向和在该第六段43’内的流动方向所构成的夹角位于[60°,120°]区间(优选90°)。第一极板的结构见图14所示,第二极板的结构与实施例1中的第二极板相同,图15是第一极板和第二极板的组装图,冷却剂的流动路线与图3所示的冷却剂流动路线基本相同。
该第二流道(与第一流道凹凸对应)包括横向段H和纵向段Z,与该第一流道对应,在燃料电池电堆中流体在该横向段H的流动方向和在该纵向段Z的流道方向所构成的夹角位于[60°,120°]区间,该纵向段Z的总长度大于该横向段H的总长度。本实施例的双极板,同样包括至少两个同步起伏区,该同步起伏区位于该第二面12和第四面22之间,并对应该横向段H(第五段42’)的位置。在该同步起伏区内,该第二基准面122和该第四基准面222不相接触。冷却剂从冷却剂入口通道流入其中一个同步起伏区,然后沿着第二流道纵向流动同时沿着第四流道横向流动从而流遍整个反应区,然后从另一个同步起伏区流出进入冷却剂出口通道。为了防止在该第五段42’因上下双极板的挤压产生变形,阻挡冷却剂流道3,该第五段42’具有若干支撑台44’,各该支撑台44’ 阻断该第一流道111。
如图16-图20所示,其为本发明双极板的实施例5,第一极板的结构与实施例4相同,见图14所示,第二极板的结构与实施例2中的第二极板相同,设置导流堤7’,见图4所示,冷却剂的流动路线与图10所示的冷却剂流动路线基本相同。
优选的,本发明各实施例的第一极板1和第二极板2是用厚度小于0.5mm的金属或合金薄板通过压力加工的方法制作成形。本发明各实施例的双极板还包括常规的燃料入口通道、燃料出口通道、氧化剂入口通道、氧化剂出口通道,是设置在该双极板边缘的透孔。
本发明还提供一种燃料电池电堆,包括所述的双极板。另外,本发明还提供一种燃料电池发电系统,包括所述的燃料电池电堆。
上述实施例仅示例性说明本发明的原理及其功效,而非用于限制本发明。本发明还有许多方面可以在不违背总体思想的前提下进行改进,任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (14)

  1. 一种双极板,包括第一极板和第二极板,该第一极板具有第一面和第二面,该第二极板具有第三面和第四面,在该双极板中该第一极板的第二面和第二极板的第四面贴合在一起;该第一极板的第一面上具有第一流道和第一基准面;该第二极板的第三面上具有第三流道和第三基准面;该第一流道是相对于第一基准面在厚度方向上形成的沟槽,该第三流道是相对于第三基准面在厚度方向上形成的沟槽;该厚度方向与该双极板在燃料电池电堆中的堆叠方向平行,其特征在于,该第一极板的第一面上的第一流道包含有U形段,该第二极板的第三面上的第三流道不包含有U形段;所述U形段包括第一段、第二段和第三段,在燃料电池电堆中流体在该第一段内的流动方向和在该第三段内的流动方向所构成的夹角位于[150°,180°]区间、在该第一段内的流动方向和在该第二段内的流动方向所构成的夹角位于[60°,120°]区间、在该第二段内的流动方向和在该第三段内的流动方向所构成的夹角位于[60°,120°]区间。
  2. 根据权利要求1所述的双极板,其特征在于,流体在所述U形段的第一段内的流动方向和在该U形段的第三段内的流动方向相反、在该U形段的第一段内的流动方向和在该U形段的第二段内的流动方向垂直、在该U形段的第二段内的流动方向和在该U形段的第三段内的流动方向垂直。
  3. 根据权利要求1或2所述的双极板,其特征在于,所述第二面上具有第二流道和第二基准面,所述第四面上具有第四流道和第四基准面,该第二流道是相对于第二基准面在厚度方向上形成的沟槽,该第四流道是相对于第四基准面在厚度方向上形成的沟槽;该第二流道包括横向段和纵向段,在燃料电池电堆中流体在该横向段的流动方向和在该纵向段的流动方向所构成的夹角位于[60°,120°]区间,该纵向段的总长度大于该横向段的总长度;
    该双极板包括至少两个同步起伏区;在该同步起伏区包括与该第二流道的横向段对应的第二流道、第二基准面、第四流道、第四基准面,并且所述第二基准面和所述第四基准面不相接触。
  4. 根据权利要求3所述的双极板,其特征在于,所述第二极板上设置有冷却剂导流堤,该冷却剂导流堤是阻断一部分所述第四流道而形成的第四基准 面。
  5. 根据权利要求4所述的双极板,其特征在于,所述双极板异侧两个对角处分别开设有冷却剂入口和冷却剂出口,分别与位于对角的两个U型段对应的冷却剂流道连通。
  6. 根据权利要求4所述的双极板,其特征在于,所述双极板同侧相邻内角处分别开设有冷却剂入口和冷却剂出口,分别与位于同侧相邻内角处的两个U型段对应的冷却剂流道连通。
  7. 一种双极板,包括第一极板和第二极板,该第一极板具有第一面和第二面,该第二极板具有第三面和第四面,在该双极板中该第一极板的第二面和第二极板的第四面贴合在一起;该第一极板的第一面上具有第一流道和第一基准面;该第二极板的第三面上具有第三流道和第三基准面;该第一流道是相对于第一基准面在厚度方向上形成的沟槽,该第三流道是相对于第三基准面在厚度方向上形成的沟槽;该厚度方向与该双极板在燃料电池电堆中的堆叠方向平行,其特征在于,该第一极板的第一面上的第一流道包含有S形段,该第二极板的第三面上的第三流道不包含有S形段;所述S形段包括第四段、第五段和第六段且该第五段的长度大于该第六段的宽度的3倍,在燃料电池电堆中流体依次流过该第四段、该第五段和该第六段且在该第四段内的流动方向和在该第六段内的流动方向所构成的夹角位于[0°,30°]区间、在该第四段内的流动方向和在该第五段内的流动方向所构成的夹角位于[60°,120°]区间、在该第五段内的流动方向和在该第六段内的流动方向所构成的夹角位于[60°,120°]区间。
  8. 根据权利要求7所述的双极板,其特征在于,流体在所述S形段的第四段内的流动方向和在该S形段的第六段内的流动方向相同、在该S形段的第四段内的流动方向和在该S形段的第五段内的流动方向垂直、在该S形段的第四段内的流动方向和在该S形段的第六段内的流动方向垂直。
  9. 根据权利要求7或8所述的双极板,其特征在于,所述第二面上具有第二流道和第二基准面,所述第四面上具有第四流道和第四基准面,该第二流道是相对于第二基准面在厚度方向上形成的沟槽,该第四流道是相对于第四基准面在厚度方向上形成的沟槽;该第二流道包括横向段和纵向段,在燃料电池 电堆中流体在该横向段的流动方向和在该纵向段的流动方向所构成的夹角位于[60°,120°]区间,该纵向段的总长度大于该横向段的总长度;
    该双极板包括至少两个同步起伏区;在该同步起伏区包括与该第二流道的横向段对应的第二流道、第二基准面、第四流道、第四基准面,并且所述第二基准面和所述第四基准面不相接触。
  10. 根据权利要求9所述的双极板,其特征在于,所述第二极板上设置有冷却剂导流堤,该冷却剂导流堤是阻断一部分所述第四流道而形成的第四基准面。
  11. 根据权利要求3或9所述的双极板,其特征在于,所述同步起伏区内具有若干上支撑台或下支撑台;所述的上支撑台是阻断一部分所述第二流道而形成的第二基准面,所述的下支撑台是阻断一部分所述第四流道而形成的第四基准面。
  12. 根据权利要求3或9所述的双极板,其特征在于:所述第一极板和第二极板是用厚度小于0.5mm的金属或合金薄板通过压力加工的方法制作成型。
  13. 一种燃料电池电堆,其特征在于,包括权利要求1-12中任一项所述的双极板。
  14. 一种燃料电池发电系统,其特征在于,包括权利要求13所述的燃料电池电堆。
PCT/CN2019/096756 2019-05-16 2019-07-19 双极板及包含该双极板的燃料电池电堆和发电系统 WO2020228131A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910409135.6 2019-05-16
CN201910409135.6A CN110112434A (zh) 2019-05-16 2019-05-16 双极板及包含该双极板的燃料电池电堆和发电系统

Publications (1)

Publication Number Publication Date
WO2020228131A1 true WO2020228131A1 (zh) 2020-11-19

Family

ID=67490515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096756 WO2020228131A1 (zh) 2019-05-16 2019-07-19 双极板及包含该双极板的燃料电池电堆和发电系统

Country Status (3)

Country Link
US (1) US11289716B2 (zh)
CN (2) CN110112434A (zh)
WO (1) WO2020228131A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474065A (zh) * 2019-08-26 2019-11-19 珠海格力电器股份有限公司 燃料电池极板、双极板和氢燃料电池
CN110931820A (zh) * 2019-12-10 2020-03-27 张国胜 双极板的整体错位组装方法及包含该双极板的燃料电池电堆和发电系统
CN114566668B (zh) * 2022-03-01 2024-01-30 山东济燃氢动力有限公司 一种氢燃料电池金属双极板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643718A (zh) * 2002-03-29 2005-07-20 洁能氏公司 燃料电池流场板
CN1745489A (zh) * 2003-01-31 2006-03-08 通用汽车公司 燃料电池流场中的限流器
CN104813527A (zh) * 2012-10-30 2015-07-29 米其林集团总公司 用于燃料电池的双极板
CN106169595A (zh) * 2015-05-20 2016-11-30 现代自动车株式会社 用于燃料电池的双极板结构
CN108172857A (zh) * 2017-11-23 2018-06-15 同济大学 一种支持高电流密度放电的燃料电池电堆流场板

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1270878B (it) * 1993-04-30 1997-05-13 Permelec Spa Nora Migliorata cella elettrochimica utilizzante membrane a scambio ionico e piatti bipolari metallici
DE10323646B4 (de) * 2003-05-26 2012-09-20 Daimler Ag Bipolarplatte für eine Brennstoffzellenanordnung
EP1511102A3 (de) * 2003-08-14 2009-02-25 Behr GmbH & Co. KG Bipolarplatte und Brennstoffzellenstapel
JP4191783B2 (ja) * 2006-01-05 2008-12-03 パナソニック株式会社 燃料電池用セパレータおよび燃料電池
US7790324B2 (en) * 2006-02-02 2010-09-07 Panasonic Corporation Separator plate and fuel cell
DE102007062033A1 (de) * 2007-12-21 2009-06-25 Robert Bosch Gmbh Brennstoffzelle, Strömungsfeldplatte und Verfahren zur Herstellung einer Strömungsfeldplatte
DE102008056900A1 (de) * 2008-11-12 2010-05-20 Daimler Ag Bipolarplatte für eine Brennstoffzellenanordnung, insbesondere zur Anordnung zwischen zwei benachbarten Membran-Elektroden-Anordnungen in einem Brennstoffzellenstapel
US9178230B2 (en) * 2009-04-09 2015-11-03 Ford Motor Company Fuel cell having perforated flow field
US20110136042A1 (en) * 2009-12-07 2011-06-09 Chi-Chang Chen Fluid flow plate assemblies
US9748583B2 (en) * 2013-05-19 2017-08-29 Daimler Ag Flow field plate for improved coolant flow
DE102014009814A1 (de) * 2013-07-05 2015-04-02 Daimler Ag Poröse Einsätze für eine verbesserte Kühlmittelverteilung in Bipolarplatten-Anordnungen für Brennstoffzellen
DE102015215231A1 (de) * 2015-08-10 2017-02-16 Volkswagen Ag Bipolarplatte sowie Brennstoffzellensystem mit einer solchen
DE102015225228A1 (de) * 2015-11-24 2017-05-24 Volkswagen Aktiengesellschaft Bipolarplatte für eine Brennstoffzelle sowie Brennstoffzellenstapel mit einer solchen
CN105870477B (zh) * 2016-06-08 2018-06-01 江苏耀扬新能源科技有限公司 燃料电池双极板
TWI613862B (zh) * 2016-11-30 2018-02-01 黃鎮江 具引流凹槽之燃料電池雙極板進氣結構
CN107507993B (zh) * 2017-07-31 2020-09-04 武汉科利尔新材料有限公司 质子交换膜燃料电池金属双极板
CN107634240A (zh) * 2017-09-04 2018-01-26 苏州中氢能源科技有限公司 一种小型燃料电池金属双极板
CN108110275A (zh) * 2017-12-14 2018-06-01 苏州朔景动力新能源有限公司 双极板及燃料电池
CN108232229A (zh) * 2017-12-29 2018-06-29 中国科学院青岛生物能源与过程研究所 一种高分配一致性金属双极板流场构型
US10756357B2 (en) 2018-01-09 2020-08-25 Guosheng Zhang Bipolar plate with coolant flow channel
CN108511774A (zh) * 2018-01-09 2018-09-07 张国胜 带有冷却剂流道的双极板
CN210576223U (zh) * 2019-05-16 2020-05-19 张国胜 双极板及包含该双极板的燃料电池电堆和发电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643718A (zh) * 2002-03-29 2005-07-20 洁能氏公司 燃料电池流场板
CN1745489A (zh) * 2003-01-31 2006-03-08 通用汽车公司 燃料电池流场中的限流器
CN104813527A (zh) * 2012-10-30 2015-07-29 米其林集团总公司 用于燃料电池的双极板
CN106169595A (zh) * 2015-05-20 2016-11-30 现代自动车株式会社 用于燃料电池的双极板结构
CN108172857A (zh) * 2017-11-23 2018-06-15 同济大学 一种支持高电流密度放电的燃料电池电堆流场板

Also Published As

Publication number Publication date
CN110492126A (zh) 2019-11-22
US20200365913A1 (en) 2020-11-19
CN110112434A (zh) 2019-08-09
US11289716B2 (en) 2022-03-29

Similar Documents

Publication Publication Date Title
JP4516229B2 (ja) 固体高分子型セルアセンブリ
US10468691B2 (en) Bipolar plates for use in conduction-cooled electrochemical cells
US20110274999A1 (en) Fuel cell stack
CN108172857B (zh) 一种支持高电流密度放电的燃料电池电堆流场板
US9601785B2 (en) Fuel cell
US10141583B2 (en) Bipolar plate and fuel cell comprising a bipolar plate of this type
WO2020228131A1 (zh) 双极板及包含该双极板的燃料电池电堆和发电系统
US20050255367A1 (en) Fuel cell, separator unit kit for fuel cell, and fuel cell generating unit kit
CN112786913B (zh) 双极板及包含其的燃料电池
JP2004247061A (ja) 燃料電池のセパレータ流路構造
TW201312844A (zh) 極板與使用該極板的極板組
CN115513486B (zh) 一种单极板、双极板、电堆及燃料电池
JP2003068331A (ja) 燃料電池のセパレータ
CN210296506U (zh) 一种z字形的燃料电池流场板
KR20150056206A (ko) 연료전지용 분리판 및 이를 이용한 연료전지
CN210576223U (zh) 双极板及包含该双极板的燃料电池电堆和发电系统
US20220238894A1 (en) Fuel cell
CN113013437B (zh) 一种具有渐缩坡面结构的燃料电池阴极流道
CN112968189A (zh) 一种空冷型燃料电池阳极板
JP5358473B2 (ja) 燃料電池構造及びこの構造内で使用するためのセパレータ・プレート
JP2010165692A (ja) 固体高分子型セルアセンブリ
CN110289431A (zh) 一种z字形的燃料电池流场板
CN219286457U (zh) 一种燃料电池双极板冷却流场结构
CN214505549U (zh) 用于燃料电池的单电池及燃料电池
CN219393428U (zh) 一种带有多孔金属分配区和集合区的燃料电池流场板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928569

Country of ref document: EP

Kind code of ref document: A1