WO2020097874A1 - 加速器注入粒子数控制方法及装置、加速器和存储介质 - Google Patents

加速器注入粒子数控制方法及装置、加速器和存储介质 Download PDF

Info

Publication number
WO2020097874A1
WO2020097874A1 PCT/CN2018/115716 CN2018115716W WO2020097874A1 WO 2020097874 A1 WO2020097874 A1 WO 2020097874A1 CN 2018115716 W CN2018115716 W CN 2018115716W WO 2020097874 A1 WO2020097874 A1 WO 2020097874A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
chopper
starting
impact magnet
accelerator
Prior art date
Application number
PCT/CN2018/115716
Other languages
English (en)
French (fr)
Inventor
郑志鸿
刘铮铮
李凯若
Original Assignee
新瑞阳光粒子医疗装备 (无锡) 有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新瑞阳光粒子医疗装备 (无锡) 有限公司 filed Critical 新瑞阳光粒子医疗装备 (无锡) 有限公司
Priority to PCT/CN2018/115716 priority Critical patent/WO2020097874A1/zh
Priority to CN201880002210.0A priority patent/CN109641134B/zh
Priority to CN201911101367.1A priority patent/CN110831317A/zh
Publication of WO2020097874A1 publication Critical patent/WO2020097874A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/08Arrangements for injecting particles into orbits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/08Arrangements for injecting particles into orbits
    • H05H2007/087Arrangements for injecting particles into orbits by magnetic means

Definitions

  • the present disclosure relates to the technical field of medical equipment, for example, to an accelerator injection particle number control method and device, an accelerator, and a storage medium.
  • the present application provides a method and device for controlling the number of particles injected into an accelerator, an accelerator, and a storage medium, so as to control the number of particles injected into a particle accelerator without affecting the stability, hardware composition, and cost of the particle accelerator.
  • the embodiment of the present application provides a method for controlling the number of particles injected into an accelerator, which is applied to a particle accelerator.
  • the method includes: determining the beam duration of the particle beam required for the accelerator according to the preset number of injected particles and the beam intensity of the accelerator particle beam ; Wherein the beam duration is the overlap duration between the start flat time of the impact magnet and the start flat time of the beam chopper; according to the beam duration, the start time of the impact magnet and the Start time of the beam chopper; start the impact magnet according to the start time of the impact magnet, and start the beam chopper according to the start time of the beam chopper.
  • An embodiment of the present application further provides a device for controlling the number of particles injected into an accelerator, which is configured in a particle accelerator.
  • the device includes: a beam duration determination module, a start timing determination module, and a start module.
  • the beam duration determination module is set to determine the beam duration of the injected particle beam required by the accelerator according to the preset number of injected particles and the beam intensity of the accelerator particle beam; wherein, the beam duration is the start flat time of the impact magnet The length of overlap between the start flat time of the beam chopper;
  • the starting time determining module is configured to determine the starting time of the impact magnet and the starting time of the beam chopper according to the beam duration;
  • the starting module is configured to start the impact magnet according to the starting time of the impact magnet, and start the beam chopper according to the starting time of the beam chopper.
  • An embodiment of the present application further provides a particle accelerator, which includes a beam chopper and an impact magnet, and further includes:
  • One or more processors are One or more processors;
  • Storage device set to store one or more programs
  • the one or more programs are executed by the one or more processors, so that the one or more processors implement an accelerator injection particle number control method as provided above.
  • An embodiment of the present application further provides a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored.
  • an accelerator injection particle number control method as described above is implemented.
  • FIG. 1 is a schematic diagram of the hardware structure of a particle accelerator used in an embodiment of the present application.
  • Embodiment 2 is a flowchart of a method for controlling the number of particles injected into an accelerator in Embodiment 1 of the present application;
  • 3A is a flowchart of a method for controlling the number of particles injected into an accelerator in Embodiment 2 of the present application;
  • 3B is a schematic diagram of pulse signals of the impact magnet and the beam chopper in the second embodiment of the present application;
  • FIG. 4A is a flowchart of a method for controlling the number of particles injected into an accelerator in Embodiment 3 of the present application;
  • 4B is a schematic diagram of pulse signals of the impact magnet and the beam chopper in Embodiment 3 of the present application;
  • FIG. 5 is a structural diagram of a device for controlling the number of particles injected into an accelerator in Embodiment 4 of the present application;
  • FIG. 6 is a schematic diagram of a hardware structure of a terminal device according to Embodiment 5 of the present application.
  • the accelerator includes an injector 110, a beam chopper 120, an impact magnet 130, and an accelerator synchronization ring 140, wherein the particle output of the injector 110 is connected to the particle input of the beam chopper 120, and the particle output of the beam chopper 120 It is connected to the particle input of the accelerator sync ring 140.
  • the injector 110 is configured to inject the particle beam into the accelerator sync ring 140; the beam chopper 120 is configured to define the beam duration of the number of particles injected into the accelerator sync ring 140 by the injector 110; the impact magnet 130 is installed on the accelerator sync ring 140
  • the ion input terminal is used to correct the transmission direction of multiple particles in the particle beam transmitted by the beam chopper.
  • the implanter 110 includes an ion source 111, which is configured to ionize the gaseous ions of the element to be implanted into ions, and determine the type and intensity of the beam to be injected into the particle beam.
  • FIG. 2 is a flowchart of a method for controlling the number of particles injected into an accelerator in an embodiment of the present application.
  • the embodiments of the present application can be applied to the case of controlling the number of particles injected by a particle accelerator.
  • the method can be executed by a device for controlling the number of particles injected by an accelerator.
  • the device is implemented by at least one of software and hardware, and is specifically configured for particles. Accelerator.
  • the method for controlling the number of particles injected into the accelerator as shown in FIG. 2 includes steps S210, S220, and S230.
  • step S210 according to the preset number of injected particles and the beam intensity of the accelerator particle beam, the beam duration of the injected particle beam required by the accelerator is determined.
  • the beam current duration is the overlapping duration between the start-up flat-top time of the impact magnet and the start-up flat-top time of the beam chopper.
  • the preset number of injected particles is determined by the physical condition of the patient who needs to perform radiation therapy by means of the particle accelerator.
  • the preset number of injected particles can be obtained from a local storage space, another storage device, or the cloud; of course, the preset number of injected particles can also be manually input by a technician.
  • the beam intensity is determined according to the performance parameters of the ion source in the particle accelerator.
  • the beam intensity can be obtained by automatically reading the performance parameters of the ion source, or can be manually input by a technician.
  • the power signals applied by the impact magnet and the beam chopper are both pulse signals, so there is a startup flat-top time when the impact magnet or the beam chopper is activated.
  • the particles When the particles are in the non-starting flat-topping time of the beam chopper, they basically cannot pass through the chopper, so the start-up flat-topping time of the chopper can be used to control the number of particles passing through the beam-chopper; Basically, it can't pass the impact magnet, so the starting flat time of the impact magnet is used to control the number of particles passing the impact magnet.
  • step S220 the starting time of the impact magnet and the starting time of the beam chopper are determined respectively according to the beam current duration.
  • the beam duration is the overlap duration between the start-up flat-top time of the impact magnet and the start-up flat-top time of the beam chopper
  • the overlap duration can be combined with the start-up flat-top time of the impact magnet and the chopper's Start flat time, determine the start time of the impact magnet and the start time of the beam chopper.
  • step S230 the impact magnet is activated according to the activation time of the impact magnet, and the beam cutter is activated according to the activation time of the beam cutter.
  • the starting time of the impact magnet and the starting time of the beam chopper determined according to the duration of the beam current may be the same or different. After determining the starting time of the impact magnet and the starting time of the beam chopper, the impact magnet and the beam chopper will be respectively activated according to the determined starting time.
  • the particle beam output from the particle output end of the injector can pass through the beam chopper and the impact magnet at the same time, and the direction of movement of the impact magnet is corrected to be injected into the accelerator synchronization ring.
  • Synchronous acceleration is equivalent to the actual beam duration when injecting particles into the synchrotron of the accelerator.
  • the actual beam duration injected into the synchrotron of the accelerator is affected, and the beam intensity of the injected particle beam is combined to inject the corresponding number of particles into the synchrotron .
  • the actual number of injected particles is the same as or close to the preset number of injected particles.
  • the embodiment of the present application determines the beam duration of the number of particles required for the accelerator to be injected into the accelerator according to the beam intensity of the preset number of injected particles and the number of particles of the accelerator, that is, the start-up flat-top time of the impact magnet and the start of the beam chopper The overlap time between the flat top time; according to the beam time, determine the start time of the impact magnet and the start time of the beam chopper; start the impact magnet according to the start time of the impact magnet, and start the beam cut according to the start time of the beam chopper Device.
  • the beam duration of the number of particles injected into the accelerator is adjusted, thereby achieving To effectively control the number of particles injected into the accelerator.
  • 3A is a flowchart of a method for controlling the number of particles injected into an accelerator in an embodiment of the present application.
  • the feature “determine the start time of the impact magnet and the start time of the beam chopper respectively according to the beam current duration” is reduced to "according to the beam current duration, the impact magnet
  • the starting flat top time, the starting rise time of the impact magnet, and the starting rise time of the beam chopper determine the first time difference between starting the beam chopper and starting the impact magnet after a delay;
  • the preset start time of the impact magnet is delayed by the first time difference and determined as the start time of the beam chopper "to improve the way of determining the beam chopper and the start time.
  • the method for controlling the number of particles injected into the accelerator as shown in FIG. 3A includes steps S310 and S320.
  • step S310 according to the preset number of injected particles and the beam intensity of the accelerator particle beam, the beam duration of the injected particle beam required by the accelerator is determined.
  • the beam current duration is the overlapping duration between the start flat time of the impact magnet and the start flat time of the beam chopper;
  • T is the beam duration
  • N is the preset number of injected particles
  • I is the beam intensity
  • q is the amount of charge per electron.
  • step S320 according to the duration of the beam current, the start-up flat time of the impact magnet and the start-up rise time of the impact magnet, and the start-up rise time of the beam chopper, determine to start Then start the first time difference of the impact magnet.
  • the impact magnet power supply generates a pulse signal at time t 11 and inputs it to the impact magnet, and the pulse signal strength rises to the maximum value at time t 12 .
  • the impact magnet controls the passage of particles and corrects the movement direction of the passing particles.
  • the pulse signal of the power supply of the impact magnet is reduced at time t 13 , and at the same time, when a particle beam is input from the particle output end of the beam chopper to the accelerator synchronization ring, the impact magnet stops the particles by.
  • the pulse signal impacting the magnet power supply is reduced to a minimum value.
  • t 11 and t 12 may be the same time value; wherein, t 13 and t 14 may be the same time value.
  • the pulse chopper power source generates a pulse signal at time t 21 and inputs it to the beam chopper, and the pulse signal intensity rises to the maximum value at time t 22 .
  • the pulse signal intensity rises to the maximum value at time t 22 .
  • the pulse signal of the chopper power supply is reduced at t 23 , and at the same time, when a particle beam is input from the injector to the chopper, the chopper prevents the particles from passing The particle output of the beam chopper is input into the synchro loop of the accelerator.
  • the pulse signal of the beam chopper power supply drops to a minimum value.
  • t 21 and t 22 may be the same time value; wherein, t 23 and t 24 may be the same time value.
  • ⁇ t 1 is the first time difference
  • t p1 is the start flat time of the impact magnet
  • t r1 is the start rise time of the impact magnet
  • t r2 is the start rise time of the beam chopper
  • T is the duration of the beam current.
  • the length of the time period between t 11 and t 21 is the first time difference ⁇ t 1 ; t p1 is the start-up flat time of the impact magnet; the length of the time period between t 11 and t 12 is The start-up rise time t r1 of the impact magnet; the length of the time period between t 21 and t 22 is the start-up rise time t r2 of the chopper; the length of the time period between t 22 and t 13 is the beam duration T.
  • the start flat time of the impact magnet is 700 ns
  • the start rise time of the impact magnet is 200 ns
  • the start rise time of the chopper is 50 ns
  • control step for the first time difference is 10 ns
  • the corresponding control step for the beam duration is 10 ns
  • step S330 the first time difference is delayed according to the preset starting time of the impact magnet, and determined as the starting time of the beam chopper.
  • the preset starting time of the impact magnet may be set in association with the starting time of other constituent structures in the particle accelerator.
  • step S340 the impact magnet is activated according to the activation time of the impact magnet, and the beam cutter is activated according to the activation time of the beam chopper.
  • the beam chopper Since the starting time of the beam chopper is after the starting time of the impact magnet, the impact magnet and the beam chopper are respectively started at the starting times corresponding to t 11 and t 21 . From time t 22 to time t 13 , the beam chopper receives the particle beam output from the particle output of the injector, and successfully injects particles into the accelerator synchronization ring via the particle output of the beam chopper. The number of particles is the same as or close to the preset number of injected particles. From time t 13 to time t 23 , the beam chopper continues to receive the particle beam output from the particle output of the injector, and injects particles into the acceleration sync ring via the particle output of the beam chopper.
  • the first time difference between the start of the chopper and the start of the impact magnet is determined by the duration of the beam current, the start flat time of the impact magnet, the start rise time of the impact magnet, and the start rise time of the chopper. And delay the first time difference as the starting time of the chopper according to the preset starting time of the impact magnet; by starting the chopper at the starting time after the first time difference of the impact magnet start time, adjust the particles injected into the accelerator The length of the beam current can achieve effective control of the number of particles injected into the accelerator.
  • the method further includes: according to the particle output end of the beam chopper and the accelerator synchronization ring The distance between the ion input terminals determines the delay time of particle injection into the synchronization ring; the delay time is added to the first time difference for update.
  • the particle transmission time within the transmission distance between the particle output end of the beam chopper and the ion input end of the accelerator synchronization ring is added to the first time difference as a delay time to be used as the particle transmission process Time compensation.
  • the embodiment of the present application avoids that in the long time range of the beam current, the first time the transmission between the beam chopper and the accelerator synchronization ring fails to successfully inject the accelerator synchronization ring, resulting in insufficient number of particles actually injected in the beam time range Case.
  • 4A is a flowchart of a method for controlling the number of particles injected into an accelerator in an embodiment of the present application.
  • the feature “determine the start time of the impact magnet and the start time of the beam chopper respectively according to the beam current duration” is reduced to "according to the beam current duration, the beam cutting
  • the start-up flat-top time and start-up rise time of the converter, and the start-up rise time of the impact magnet determine the second time difference between starting the impact magnet and starting the chopper after a delay; according to the pre-cutting of the chopper It is assumed that the start time is delayed by the second time difference and determined as the start time of the impact magnet "to improve the way of determining the beam chopper and the start time.
  • the method for controlling the number of particles injected into the accelerator as shown in FIG. 4A includes steps S410-S440.
  • step S410 according to the preset number of injected particles and the beam intensity of the accelerator particle beam, the beam duration of the injected particle beam required by the accelerator is determined.
  • the beam current duration is the overlapping duration between the start-up flat-top time of the impact magnet and the start-up flat-top time of the beam chopper.
  • step S420 according to the duration of the beam current, the start flat time of the chopper and the start rise time of the chopper, and the start rise time of the impact magnet, determine the start of the impact magnet. After starting the second time difference of the beam chopper.
  • the abscissa is the time parameter. It can be seen from FIG. 4B that the power of the chopper is generated at t 21 and input to the chopper, and the intensity of the pulse signal rises to the maximum value at t 22 . After time t 12 , when a particle beam is input from the particle output end of the injector to the beam chopper, the beam chopper controls the passage of particles, and outputs it to the synchrotron of the accelerator via the particle output end of the beam chopper.
  • the pulse signal of the chopper power supply is reduced at time t 23 , and at the same time, when a particle beam is input from the injector to the chopper, the chopper prevents the particles from outputting through the chopper.
  • the port is input to the synchro loop of the accelerator.
  • the pulse signal of the beam chopper power supply drops to a minimum value.
  • t 21 and t 22 may be the same time value; wherein, t 23 and t 24 may be the same time value.
  • the pulse magnet power supply generates a pulse signal at time t 11 and inputs it to the impact magnet, and the pulse signal strength rises to the maximum value at time t 12 .
  • the impact magnet controls the passage of particles and corrects the movement direction of the passing particles.
  • the pulse signal of the impact magnet power supply decreases at time t 13 , and at the same time, when a particle beam is input from the particle output end of the beam chopper to the accelerator synchronization ring, the impact magnet prevents the particles from passing.
  • the pulse signal impacting the magnet power supply is reduced to a minimum value.
  • t 11 and t 12 may be the same time value; wherein, t 13 and t 14 may be the same time value.
  • ⁇ t 2 is the time difference
  • t r1 is the starting rise time of the impact magnet
  • t p2 is the starting flat top time of the beam chopper
  • t r2 is the starting rise time of the beam chopper
  • T is the beam duration.
  • the length of the time period between t 11 and t 21 is the second time difference; t p2 is the starting flat-top time of the chopper; the length of the time period between t 21 and t 22 is the cut
  • the start-up rise time t r2 of the beamer ; the length of the time period between t 11 and t 12 is the start rise time t r1 of the impact magnet; the length of the time period between t 12 and t 23 is the beam duration T.
  • step S430 the second time difference is delayed according to the preset starting time of the beam chopper to determine the starting time of the impact magnet.
  • the preset starting time of the beam chopper can be set in association with the starting time of other constituent structures in the particle accelerator.
  • step S440 the impact magnet is activated according to the activation time of the impact magnet, and the beam cutter is activated according to the activation time of the beam cutter.
  • the beam chopper Due to the impact after the start timing of the magnet cut the time of startup of the beam splitter, and therefore, the beam chopper and start the kicker and t 21 respectively corresponding to the start timing t11. From time t 22 to time t 12 , the beam chopper receives the particle beam output from the particle output of the injector, and injects particles into the accelerator synchronization ring via the particle output of the beam chopper.
  • the power pulse signal of the impact magnet is not at the starting flat-top time, that is, the power pulse signal of the impact magnet does not correspond to the maximum pulse value, the impact magnet cannot work normally.
  • the direction of movement of the particles in this period of time cannot be corrected, so it will disappear in the synchrotron of the accelerator.
  • the beam chopper still receives the particle beam output from the particle output end of the injector, and successfully injects particles into the accelerator synchronization ring through the particle output end of the beam chopper.
  • the number of particles in is the same as or close to the preset number of injected particles.
  • the particles in the chopper cannot pass through the particle output of the chopper Inject particles into the synchrotron of the accelerator.
  • the embodiment of the present application does not determine the second time difference between the start of the impact magnet and the start-up time of the beam chopper and the start-up time of the chopper and the start-up time of the impact magnet after the start of the impact magnet is delayed.
  • the preset start time of the beamer is delayed by a second time difference as the start time of the impact magnet; by starting the impact magnet after the start time of the beam chopper and delayed by the second time difference, the number of particles injected into the accelerator is adjusted The length of the flow, in turn, achieves effective control of the number of particles injected into the accelerator.
  • the method further includes: according to the particle output end of the chopper and the accelerator synchronization ring The distance between the ion input terminals determines the delay time of particle injection into the synchronization ring; the delay time is added to the second time difference for update.
  • the particle transmission time within the transmission distance between the particle output end of the beam chopper and the ion input end of the accelerator synchronization ring is added to the second time difference as a delay time to be used as the particle transmission process Time compensation.
  • the embodiment of the present application avoids that in the long time range of the beam current, the first time the transmission between the beam chopper and the accelerator synchronization ring fails to successfully inject the accelerator synchronization ring, resulting in insufficient number of particles actually injected in the beam time range Case.
  • FIG. 5 is a structural diagram of an accelerator injection particle number control device in an embodiment of the present application.
  • the embodiments of the present application can be applied to the case of controlling the number of particles injected by a particle accelerator.
  • the device is implemented by at least one of software and hardware, and is configured in the particle accelerator.
  • the accelerator particle number control device shown in FIG. 5 includes a beam duration determination module 510, a start timing determination module 520, and a start module 530.
  • the beam duration determination module 510 is configured to determine the beam duration of the injected particle beam required by the accelerator according to the preset number of injected particles and the beam intensity of the accelerator particle beam; wherein the beam duration is the start of the impact magnet The length of overlap between the flat top time and the start flat time of the beam chopper.
  • the starting time determining module 520 is configured to determine the starting time of the impact magnet and the starting time of the beam chopper according to the beam current duration, respectively.
  • the starting module 530 is configured to start the impact magnet according to the starting time of the impact magnet, and start the beam chopper according to the starting time of the beam chopper.
  • the beam duration determination module determines the beam duration required for the accelerator to be injected into the accelerator according to the beam intensity of the preset number of injected particles and the number of particles of the accelerator, that is, the startup flat time of the impact magnet
  • the beam duration of the number of particles injected into the accelerator is adjusted, thereby achieving To effectively control the number of particles injected into the accelerator.
  • the startup time determination module 520 includes a first time difference determination unit and a first startup time determination unit.
  • the first time difference determining unit is set to determine the start of the chopper delay based on the beam current duration, the start flat time and the start rise time of the impact magnet, and the start rise time of the beam chopper Then start the first time difference of the impact magnet.
  • the first starting time determining unit is configured to delay the first time difference according to the preset starting time of the impact magnet and determine the starting time of the beam chopper.
  • the first time difference determining unit is further set to:
  • ⁇ t 1 t p1 + t r1 -t r2 -T, determine the first time difference
  • ⁇ t 1 is the first time difference
  • t p1 is the start flat time of the impact magnet
  • t r1 is the start rise time of the impact magnet
  • t r2 is the start rise time of the beam chopper
  • T is the duration of the beam current.
  • the startup time determination module 520 includes a second time difference determination unit and a second startup time determination unit.
  • the second time difference determining unit is configured to determine that the start of the impact magnet is delayed according to the duration of the beam current, the start flat time and the start rise time of the beam chopper, and the start rise time of the impact magnet The second time difference to activate the beam chopper.
  • the second starting time determining unit is configured to delay the second time difference according to the preset starting time of the beam chopper and determine the starting time of the impact magnet.
  • the second time difference determining unit is further set to:
  • ⁇ t 2 is the time difference
  • t r1 is the starting rise time of the impact magnet
  • t p2 is the starting flat top time of the beam chopper
  • t r2 is the starting rise time of the beam chopper
  • T is the beam duration.
  • the apparatus further includes: a first delay time determining module and a first updating unit.
  • the first delay time determination module is configured to, after the determined first time difference between starting the impact magnet and delaying the start of the beam chopper, according to the ions of the particle output end of the beam chopper and the accelerator synchronization ring The distance between the input terminals determines the delay time for particles to be injected into the synchronization ring;
  • the first updating unit is configured to superimpose the delay time to the first time difference value for updating.
  • the device further includes: a second delay time determining module and a second updating unit.
  • the second delay time determining module is configured to, after the determined second time difference between starting the impact magnet and delaying the beam chopper, according to the ions of the particle output end of the beam chopper and the accelerator synchronization ring The distance between the input terminals determines the delay time for particles to be injected into the synchronization ring.
  • the second update unit is configured to superimpose the delay time to the second time difference value for update.
  • the above-mentioned accelerator particle injection number control device can execute the accelerator particle injection number control method provided in any embodiment of the present application, and has the corresponding functional modules and beneficial effects for executing the accelerator particle injection number control method.
  • the terminal device includes a beam chopper 610 and an impact magnet 620, and further includes:
  • One or more processors 630 One or more processors 630;
  • the storage device 640 is configured to store one or more programs.
  • the beam chopper 610 and the impact magnet 620 in the terminal device may be connected to the processor 630 and the storage device 640 through a bus or other means, and the processor 630 and the storage device 640 are also passed Connect by bus or other methods.
  • the connection by bus is used as an example.
  • the processor 630 in the terminal device may determine the beam duration of the injected particle beam required by the accelerator according to the preset number of injected particles and the beam intensity of the accelerator particle beam; it may also be determined separately according to the beam duration
  • the storage device 640 in the terminal device as a computer-readable storage medium may be used to store one or more programs, and the program may be a software program, a computer executable program, and a module, such as particles injected by an accelerator in the embodiment of the present application Program instructions / modules corresponding to the number control method (for example, the beam duration determining module 510, the starting time determining module 520, and the starting module 530 shown in FIG. 5).
  • the processor 630 runs software programs, instructions, and modules stored in the storage device 640 to execute various functional applications and data processing of the terminal device, that is, implements the accelerator injection particle number control method in the foregoing method embodiment.
  • the storage device 640 may include a storage program area and a storage data area, wherein the storage program area may store an operating system and application programs required by at least one function; the storage data area may store data, etc. (as the preset number of injected particles in the above embodiment , The duration of the beam current, the flattening time of the impact magnet and the flattening time of the beam chopper, etc.).
  • the storage device 640 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 640 may include memories remotely provided with respect to the processor 630, and these remote memories may be connected to the server through a network.
  • Examples of the above network include but are not limited to the Internet, intranet, local area network, mobile communication network, and combinations thereof.
  • embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored, which is implemented by an accelerator injection particle number control device to implement the accelerator injection particle number control method provided by the implementation of the application, the method including : According to the preset number of injected particles and the beam intensity of the accelerator particle beam, determine the beam duration of the injected particle beam required by the accelerator; wherein, the beam duration is the start flat time of the impact magnet and the start flat of the beam chopper The overlap time between the top time; according to the beam time, determine the start time of the impact magnet and the start time of the beam chopper; according to the start time of the impact magnet start the impact magnet, according to The beam cutter is activated at the starting moment of the beam cutter.
  • the technical solution of the present application can essentially be embodied in the form of a software product that contributes to the related technology, and the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, The server, or network equipment, etc.) executes the method for controlling the number of particles injected into the accelerator described in various embodiments of the present application.
  • a computer-readable storage medium such as a computer floppy disk, Read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

一种加速器注入粒子数控制方法及装置、加速器和存储介质,该方法包括:根据预设注入粒子数和加速器粒子数的束流强度,确定加速器所需注入加速器所需注入粒子数的束流时长,也即冲击磁铁(130)的启动平顶时间和斩束器(120)的启动平顶时间之间的重叠时长(S210);根据该束流时长,分别确定冲击磁铁(130)的启动时刻和斩束器(120)的启动时刻(S220);根据冲击磁铁(130)的启动时刻启动冲击磁铁(130),根据斩束器(120)的启动时刻启动斩束器(120)(S230)。

Description

加速器注入粒子数控制方法及装置、加速器和存储介质 技术领域
本公开涉及医疗设备技术领域,例如涉及一种加速器注入粒子数控制方法及装置、加速器和存储介质。
背景技术
在生物医学上,在对肿瘤进行放射治疗时,需要采用粒子加速器对带电粒子进行加速以使粒子获得能量。为了减小放疗副作用对患者健康细胞的损耗,通常需要在进行放疗前设定放疗所需的粒子数。
相关技术中,当直接将最大粒子数注入加速器时,为了避免剩余大量的高能粒子损失在加速器中造成严重的治疗外辐射,通常需要增加加速器屏蔽墙的厚度,显著增加了屏蔽墙的尺寸和造价。当对加速器的注入粒子数进行控制时,通常直接改变为粒子加速器的离子源的引出流强,致使离子源所输出粒子的稳定性较差;采用在注入器的粒子输出端设置外部挡板挡掉一部分粒子束流的方式,又需要额外引入硬件设备,增加了粒子加速器的体积和硬件成本;采用调节斩束器的电源启动平顶时间的方式时,由于需要为斩束器匹配更高性能的电源,导致粒子加速器硬件费用的升高。
发明内容
本申请提供加速器注入粒子数控制方法及装置、加速器和存储介质,以在不影响粒子加速器自身稳定性、硬件组成和造价的情况下,实现对粒子加速器注入粒子数的控制。
本申请实施例提供了一种加速器注入粒子数控制方法,应用于粒子加速器,该方法包括:根据预设注入粒子数和加速器粒子束的束流强度,确定加速器所需注入粒子束的束流时长;其中,所述束流时长为冲击磁铁的启动平顶时间和斩束器的启动平顶时间之间的重叠时长;根据所述束流时长,分别确定所述冲击磁铁的启动时刻和所述斩束器的启动时刻;根据所述冲击磁铁的启动时刻启动所述冲击磁铁,根据所述斩束器的启动时刻启动所述斩束器。
本申请实施例还提供了一种加速器注入粒子数控制装置,配置于粒子加速器,该装置包括:束流时长确定模块、启动时刻确定模块和启动模块。
束流时长确定模块,设置为根据预设注入粒子数和加速器粒子束的束流强度,确定加速器所需注入粒子束的束流时长;其中,所述束流时长为冲击磁铁的启动平顶时间和斩束器的启动平顶时间之间的重叠时长;
启动时刻确定模块,设置为根据所述束流时长,分别确定所述冲击磁铁的启动时刻和所述斩束器的启动时刻;
启动模块,设置为根据所述冲击磁铁的启动时刻启动所述冲击磁铁,根据所述斩束器的启动时刻启动所述斩束器。
本申请实施例还提供了一种粒子加速器,包括斩束器和冲击磁铁,还包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序;
所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上述所提供的一种加速器注入粒子数控制方法。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述所提供的一种加速器注入粒子数控制方法。
附图概述
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需使用的附图作简单地介绍,当然,以下描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以对这些附图进行修改和替换。
图1是本申请实施例所采用的粒子加速器的硬件结构示意图;
图2是本申请实施例一中的一种加速器注入粒子数控制方法的流程图;
图3A是本申请实施例二中的一种加速器注入粒子数控制方法中的流程图;
图3B是本申请实施例二中的冲击磁铁和斩束器的脉冲信号示意图;
图4A是本申请实施例三中的一种加速器注入粒子数控制方法中的流程图;
图4B是本申请实施例三中的冲击磁铁和斩束器的脉冲信号示意图;
图5是本申请实施例四中的一种加速器注入粒子数控制装置的结构图;
图6是本申请实施例五提供的一种终端设备的硬件结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此 处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
本申请多个实施例的技术方案所采用的粒子加速器可参见图1所示的粒子加速器的硬件结构示意图。该加速器包括:注入器110,斩束器120、冲击磁铁130以及加速器同步环140,其中,注入器110的粒子输出端与斩束器120的粒子输入端相连,斩束器120的粒子输出端与加速器同步环140的粒子输入端相连。
注入器110,设置为向加速器同步环140注入粒子束流;斩束器120设置为限定注入器110注入至加速同步环140中的粒子数的束流时长;冲击磁铁130安装于加速器同步环140的离子输入端,用以对斩束器所传输的粒子束中的多个粒子的传输方向进行校正。其中,注入器110包括离子源111,设置为把需要注入的元素气态离子电离成离子,决定要注入粒子束的种类和束流强度。
在图1所示的粒子加速器的基础上,对本申请多个实施例的技术方案加以论述。
实施例一
图2是本申请实施例中的一种加速器注入粒子数控制方法的流程图。本申请实施例可适用于对粒子加速器所注入粒子数进行控制的情况,该方法可以由加速器注入粒子数控制装置来执行,该装置由软件和硬件中的至少之一实现,并具体配置于粒子加速器中。如图2所示的加速器注入粒子数控制方法,包括:步骤S210、步骤S220和步骤S230。
在步骤S210中,根据预设注入粒子数和加速器粒子束的束流强度,确定加速器所需注入粒子束的束流时长。
其中,所述束流时长为冲击磁铁的启动平顶时间和斩束器的启动平顶时间之间的重叠时长。
其中,预设注入粒子数由需要借助粒子加速器进行放射治疗的患者的身体状况确定。在一实施例中,预设注入粒子数可以从本地存储空间、其他存储设备或云端获取;当然预设注入粒子数还可以由技术人员手动输入。
其中,束流强度根据粒子加速器中的离子源的性能参数确定。在一实施例中,束流强度可以通过自动读取离子源的性能参数获取,还可以由技术人员手动输入。
其中,冲击磁铁和斩束器所施加的电源信号均为脉冲信号,因此在启动冲击磁铁或启动斩束器时均存在启动平顶时间。当粒子在斩束器的非启动平顶时间基本不能通过斩束器,因此斩束器的启动平顶时间可以用于控制通过斩束器的粒子数量;粒子在冲击磁铁的非启动平顶时间基本不能通过冲击磁铁,因此冲击磁铁的启动平顶时间用于控制通过冲击磁铁的粒子数量。
在步骤S220中,根据所述束流时长,分别确定所述冲击磁铁的启动时刻和所述斩束器的启动时刻。
由于束流时长作为冲击磁铁的启动平顶时间和斩束器的启动平顶时间两者之间的重叠时长,因此可以通过该重叠时长,并结合冲击磁铁的启动平顶时间和斩束器的启动平顶时间,确定冲击磁铁的启动时刻和斩束器的启动时刻。
在步骤S230中,根据所述冲击磁铁的启动时刻启动所述冲击磁铁,根据所述斩束器的启动时刻启动所述斩束器。
其中,根据束流时长所确定的冲击磁铁的启动时刻和斩束器的启动时刻可以相同,也可以不同。当确定冲击磁铁的启动时刻和斩束器的启动时刻之后,会根据所确定的启动时刻分别对应启动冲击磁铁和斩束器。
由于冲击磁铁和斩束器启动后,冲击磁铁的启动平顶时间与斩束器的启动平顶时间之间存在一实际重叠时长。在该实际重叠时长所对应的时间段内,注入器的粒子输出端所输出的粒子束流能够同时通过斩束器和冲击磁铁,并经冲击磁铁进行运动方向的校正后注入至加速器同步环中进行同步加速。其中,实际重叠时长相当于向加速器同步环中注入粒子时的实际束流时长。
通过冲击磁铁的启动时刻和斩束器的启动时刻的控制,影响注入至加速器同步环中的实际束流时长,并结合所注入粒子束的束流强度,向加速器同步环中注入对应数量的粒子。其中,所注入的粒子的实际数量与预设注入粒子数相同或逼近。
本申请实施例根据预设注入粒子数和加速器粒子数的束流强度,确定加速器所需注入加速器所需注入粒子数的束流时长,也即冲击磁铁的启动平顶时间和斩束器的启动平顶时间之间的重叠时长;根据该束流时长,分别确定冲击磁铁的启动时刻和斩束器的启动时刻;根据冲击磁铁的启动时刻启动冲击磁铁,根据斩束器的启动时刻启动斩束器。本申请实施例在有效保证粒子加速器的自身稳定性、硬件组成和造价的前提下,通过控制冲击磁铁的启动时刻和斩束器的启动时刻,调整注入加速器的粒子数的束流时长,进而实现了对加速器注入 粒子数的有效控制。
实施例二
图3A是本申请实施例中的一种加速器注入粒子数控制方法中的流程图。
在一实施例中,将特征“根据所述束流时长,分别确定所述冲击磁铁的启动时刻和所述斩束器的启动时刻”细化为“根据所述束流时长、所述冲击磁铁的启动平顶时间和所述冲击磁铁的启动上升时间,以及所述斩束器的启动上升时间,确定启动所述斩束器延后启动所述冲击磁铁的第一时间差值;根据所述冲击磁铁的预设启动时刻延迟所述第一时间差值,确定为所述斩束器的启动时刻”,以完善斩束器和启动时刻的确定方式。
如图3A所示的加速器注入粒子数控制方法,包括:步骤S310和步骤S320。
在步骤S310中,根据预设注入粒子数和加速器粒子束的束流强度,确定加速器所需注入粒子束的束流时长。
其中,所述束流时长为冲击磁铁的启动平顶时间和斩束器的启动平顶时间之间的重叠时长;
在一实施例中,根据公式
Figure PCTCN2018115716-appb-000001
确定束流时长;
其中,T为所述束流时长,N为所述预设注入粒子数,I为所述束流强度,q为每个电子所带电荷量。
在步骤S320中,根据所述束流时长、所述冲击磁铁的启动平顶时间和所述冲击磁铁的启动上升时间,以及所述斩束器的启动上升时间,确定启动所述斩束器延后启动所述冲击磁铁的第一时间差值。
如图3B所示的冲击磁铁和斩束器的脉冲信号示意图,其中横坐标为时间参数。由图3B可知,在t 11时刻冲击磁铁电源产生脉冲信号并输入至冲击磁铁,在t 12时刻脉冲信号强度上升至最大值。在t 12时刻之后,当有粒子束流由斩束器的粒子输出端输入至加速器同步环时,冲击磁铁控制粒子通过,并对通过的粒子的运动方向进行校正。当经过冲击磁铁的启动平顶时间t p1之后,在t 13时刻冲击磁铁电源的脉冲信号降低,同时,当有粒子束流由斩束器粒子输出端输入至加速器同步环时,冲击磁铁阻止粒子通过。在t 14时刻,冲击磁铁电源的脉冲信号降低至最小值。其中,t 11和t 12可以为同一时刻值;其中,t 13和t 14可以为同一时刻值。
相应的,在t 21时刻斩束器电源产生脉冲信号并输入至斩束器,在t 22时刻脉 冲信号强度上升至最大值。在t 22时刻之后,当有粒子束流由注入器的粒子输出端输入至斩束器时,斩束器控制粒子通过,并经由斩束器的粒子输出端输出至加速器同步环中。当经过斩束器的启动平顶时间t p2之后,在t 23时刻斩束器电源的脉冲信号降低,同时,当有粒子束流由注入器输入至斩束器时,斩束器阻止粒子通过斩束器的粒子输出端输入至加速器同步环中。在t 24时刻,斩束器电源的脉冲信号降低至最小值。其中,t 21和t 22可以为同一时刻值;其中,t 23和t 24可以为同一时刻值。
在一实施例中,根据公式Δt 1=t p1+t r1-t r2-T,确定所述第一时间差值;
其中,Δt 1为所述第一时间差值;t p1为所述冲击磁铁的启动平顶时间;t r1为所述冲击磁铁的启动上升时间;t r2为所述斩束器的启动上升时间;T为所述束流时长。
参见图3B可知,t 11与t 21之间的时间段长度即为第一时间差值Δt 1;t p1为冲击磁铁的启动平顶时间;t 11与t 12之间的时间段长度即为冲击磁铁的启动上升时间t r1;t 21与t 22之间的时间段长度即为斩束器的启动上升时间t r2;t 22与t 13之间的时间段长度即为束流时长T。
在一实施例中,当冲击磁铁的启动平顶时间为700ns,冲击磁铁的启动上升时间为200ns,斩束器的启动上升时间为50ns时,若斩束器的启动时刻比冲击磁铁的启动时刻的延迟250ns,也即第一时间差值为250ns时,那么实际的束流时长为700-(250-200+50)=600ns。若粒子束的束流强度为10mA,那么实际注入粒子数为10mA×600ns/1.6e -19C=3.75e 10个。若第一时间差值的控制步长为10ns,相应的束流时长的控制步长为10ns,对应的注入粒子数的控制步长为10mA×10ns/1.6e -19C=6.25e 8个,所注入粒子的最大数量为10mA×700ns/1.6e -19C=4.4e 10个。
在步骤S330中,根据所述冲击磁铁的预设启动时刻延迟所述第一时间差值,确定为所述斩束器的启动时刻。
其中,冲击磁铁的预设启动时刻可以根据粒子加速器中其他组成结构的启动时刻关联设置。
在步骤S340中,根据所述冲击磁铁的启动时刻启动所述冲击磁铁,根据所述斩束器的启动时刻启动所述斩束器。
由于斩束器的启动时刻在冲击磁铁的启动时刻之后,因此,在t 11和t 21所对应的启动时刻分别启动冲击磁铁和斩束器。从t 22时刻至t 13时刻,斩束器接收由 注入器粒子输出端所输出的粒子束流,并经由斩束器粒子输出端向加速器同步环成功注入粒子,此时实际注入加速器同步环中的粒子数与预设注入粒子数相同或逼近。从t 13时刻值t 23时刻,斩束器继续接收由注入器粒子输出端所输出的粒子束流,并经由斩束器的粒子输出端向加速同步环注入粒子。但是,由于此时冲击磁铁电源脉冲信号减小,也即处于冲击磁铁的非启动平顶时间,所以冲击磁铁无法正常工作,相应地该时间段内的粒子的运动方向无法校正,因此会在加速器同步环中消逝。
本申请实施例通过束流时长、冲击磁铁的启动平顶时间和冲击磁铁的启动上升时间,以及斩束器的启动上升时间,确定启动斩束器延后启动冲击磁铁的第一时间差值,并根据冲击磁铁的预设启动时刻延后第一时间差值作为斩束器的启动时刻;通过在冲击磁铁启动时刻延后第一时间差值的启动时刻启动斩束器,调整注入加速器的粒子数的束流时长,进而实现了对加速器注入粒子数的有效控制。
在一实施例中,在步骤“确定启动所述冲击磁铁延后启动所述斩束器的第一时间差值”之后,还包括:根据所述斩束器的粒子输出端与加速器同步环的离子输入端之间的距离,确定粒子注入所述同步环的延迟时间;将所述延迟时间叠加至所述第一时间差值,以进行更新。
本申请实施例通过将斩束器的粒子输出端与加速器同步环的离子输入端之间的传输距离之内粒子传输的时间作为延迟时间叠加至第一时间差值中,用于作为粒子传输过程中的时间补偿。本申请实施例避免了在束流时长时间范围内,由于首次在斩束器和加速器同步环之间传输时,而无法成功注入加速器同步环,导致在束流时长范围内实际注入的粒子数不足的情况。
实施例三
图4A是本申请实施例中的一种加速器注入粒子数控制方法中的流程图。
在一实施例中,将特征“根据所述束流时长,分别确定所述冲击磁铁的启动时刻和所述斩束器的启动时刻”细化为“根据所述束流时长、所述斩束器的启动平顶时间和启动上升时间,以及所述冲击磁铁的启动上升时间,确定启动所述冲击磁铁延后启动所述斩束器的第二时间差值;根据所述斩束器的预设启动时刻延迟所述第二时间差值,确定为所述冲击磁铁的启动时刻”,以完善斩束器和启动时刻的确定方式。
如图4A所示的加速器注入粒子数控制方法,包括:步骤S410-步骤S440。
在步骤S410中,根据预设注入粒子数和加速器粒子束的束流强度,确定加速器所需注入粒子束的束流时长。
其中,所述束流时长为冲击磁铁的启动平顶时间和斩束器的启动平顶时间之间的重叠时长。
在步骤S420中,根据所述束流时长、所述斩束器的启动平顶时间和所述斩束器的启动上升时间,以及所述冲击磁铁的启动上升时间,确定启动所述冲击磁铁延后启动所述斩束器的第二时间差值。
如图4B所示的冲击磁铁和斩束器的脉冲信号示意图,其中横坐标为时间参数。有图4B可知,在t 21时刻斩束器电源产生脉冲信号并输入至斩束器,在t 22时刻脉冲信号强度上升至最大值。在t 12时刻之后,当有粒子束流由注入器的粒子输出端输入至斩束器后,斩束器控制粒子通过,并经由斩束器的粒子输出端向加速器同步环输出。当经过启动平顶时间t p2之后,在t 23时刻斩束器电源的脉冲信号降低,同时,当有粒子束流由注入器输入至斩束器后,斩束器阻止粒子通过斩束器输出端口输入至加速器同步环中。在t 24时刻,斩束器电源的脉冲信号降低至最小值。其中,t 21和t 22可以为同一时刻值;其中,t 23和t 24可以为同一时刻值。
相应的,在t 11时刻冲击磁铁电源产生脉冲信号并输入至冲击磁铁,在t 12时刻脉冲信号强度上升至最大值。在t 12时刻之后,当有粒子束流由斩束器的粒子输出端输入至加速器同步环时,冲击磁铁控制粒子通过,并对通过的粒子的运动方向进行校正。当经过启动平顶时间t p1之后,在t 13时刻冲击磁铁电源的脉冲信号降低,同时,当有粒子束流由斩束器的粒子输出端输入至加速器同步环时,冲击磁铁阻止粒子通过。在t 14时刻,冲击磁铁电源的脉冲信号降低至最小值。其中,t 11和t 12可以为同一时刻值;其中,t 13和t 14可以为同一时刻值。
在一实施例中,根据公式Δt 2=t p2+t r2-t r1-T,确定所述第二时间差值;
其中,Δt 2为所述时间差值;t r1为所述冲击磁铁的启动上升时间;t p2为所述斩束器的启动平顶时间;t r2为所述斩束器的启动上升时间;T为所述束流时长。
参见图4B可知,t 11与t 21之间的时间段长度即为第二时间差值;t p2为斩束器的启动平顶时间;t 21与t 22之间的时间段长度即为斩束器的启动上升时间t r2;t 11与t 12之间的时间段长度即为冲击磁铁的启动上升时间t r1;t 12与t 23之间的时间段长度即为束流时长T。
在步骤S430中,根据所述斩束器的预设启动时刻延迟所述第二时间差值, 确定为所述冲击磁铁的启动时刻。
其中,斩束器的预设启动时刻可以根据粒子加速器中其他组成结构的启动时刻关联设置。
在步骤S440中,根据所述冲击磁铁的启动时刻启动所述冲击磁铁,根据所述斩束器的启动时刻启动所述斩束器。
由于冲击磁铁的启动时刻在斩束器的启动时刻之后,因此,在t 21t11所对应的启动时刻分别启动斩束器和冲击磁铁。从t 22时刻至t 12时刻,斩束器接收由注入器粒子输出端所输出的粒子束流,并经由斩束器粒子输出端向加速器同步环注入粒子。但是,由于冲击磁铁电源脉冲信号未处于启动平顶时间,也即冲击磁铁的电源脉冲信号并非对应最大脉冲值,因此冲击磁铁无法正常工作。相应地,该时间段内的粒子的运动方向无法校正,因此会在加速器同步环中消逝。从t 12时刻至t 23时刻,斩束器仍接收由注入器粒子输出端所输出的粒子束流,并经由斩束器粒子输出端向加速器同步环成功注入粒子,此时实际注入加速器同步环中的粒子数与预设注入粒子数相同或逼近。从t 23时刻值t 13时刻,由于此时斩束器的电源脉冲信号减小,也即处于斩束器的非启动平顶时间,所以斩束器中的粒子无法通过斩束器的粒子输出端向加速器同步环注入粒子。
本申请实施例通过束流时长、斩束器的启动平顶时间和启动上升时间,以及冲击磁铁的启动上升时间没确定启动冲击磁铁延后启动斩束器的第二时间差值,并根据斩束器的预设启动时刻延后第二时间差值作为冲击磁铁的启动时刻;通过在斩束器启动时刻延后第二时间差值的启动时刻启动冲击磁铁,调整注入加速器的粒子数的束流时长,进而实现了对加速器注入粒子数的有效控制。
在一实施例中,在步骤“确定启动所述冲击磁铁延后启动所述斩束器的第二时间差值”之后,还包括:根据所述斩束器的粒子输出端与加速器同步环的离子输入端之间的距离,确定粒子注入所述同步环的延迟时间;将所述延迟时间叠加至所述第二时间差值,以进行更新。
本申请实施例通过将斩束器的粒子输出端与加速器同步环的离子输入端之间的传输距离之内粒子传输的时间作为延迟时间叠加至第二时间差值中,用于作为粒子传输过程中的时间补偿。本申请实施例避免了在束流时长时间范围内,由于首次在斩束器和加速器同步环之间传输时,而无法成功注入加速器同步环,导致在束流时长范围内实际注入的粒子数不足的情况。
实施例四
图5是本申请实施例中的一种加速器注入粒子数控制装置的结构图。本申请实施例可适用于对粒子加速器所注入粒子数进行控制的情况,该装置由软件和硬件中的至少之一实现,并配置于粒子加速器中。如图5所示的加速器粒子数控制装置,包括束流时长确定模块510、启动时刻确定模块520和启动模块530。
其中,束流时长确定模块510,设置为根据预设注入粒子数和加速器粒子束的束流强度,确定加速器所需注入粒子束的束流时长;其中,所述束流时长为冲击磁铁的启动平顶时间和斩束器的启动平顶时间之间的重叠时长。
启动时刻确定模块520,设置为根据所述束流时长,分别确定所述冲击磁铁的启动时刻和所述斩束器的启动时刻。
启动模块530,设置为根据所述冲击磁铁的启动时刻启动所述冲击磁铁,根据所述斩束器的启动时刻启动所述斩束器。
本申请实施例通过束流时长确定模块根据预设注入粒子数和加速器粒子数的束流强度,确定加速器所需注入加速器所需注入粒子数的束流时长,也即冲击磁铁的启动平顶时间和斩束器的启动平顶时间之间的重叠时长;通过启动时刻确定模块根据该束流时长,分别确定冲击磁铁的启动时刻和斩束器的启动时刻;通过启动模块根据冲击磁铁的启动时刻启动冲击磁铁,根据斩束器的启动时刻启动斩束器。本申请实施例在有效保证粒子加速器的自身稳定性、硬件组成和造价的前提下,通过控制冲击磁铁的启动时刻和斩束器的启动时刻,调整注入加速器的粒子数的束流时长,进而实现了对加速器注入粒子数的有效控制。
在一实施例中,所述启动时刻确定模块520,包括:第一时间差值确定单元和第一启动时刻确定单元。
第一时间差值确定单元,设置为根据所述束流时长、所述冲击磁铁的启动平顶时间和启动上升时间,以及所述斩束器的启动上升时间,确定启动所述斩束器延后启动所述冲击磁铁的第一时间差值。
第一启动时刻确定单元,设置为根据所述冲击磁铁的预设启动时刻延迟所述第一时间差值,确定为所述斩束器的启动时刻。
在一实施例中,所述第一时间差值确定单元,还设置为:
根据公式Δt 1=t p1+t r1-t r2-T,确定所述第一时间差值;
其中,Δt 1为所述第一时间差值;t p1为所述冲击磁铁的启动平顶时间;t r1为 所述冲击磁铁的启动上升时间;t r2为所述斩束器的启动上升时间;T为所述束流时长。
在一实施例中,所述启动时刻确定模块520,包括:第二时间差值确定单元和第二启动时刻确定单元。
第二时间差值确定单元,设置为根据所述束流时长、所述斩束器的启动平顶时间和启动上升时间,以及所述冲击磁铁的启动上升时间,确定启动所述冲击磁铁延后启动所述斩束器的第二时间差值。
第二启动时刻确定单元,设置为根据所述斩束器的预设启动时刻延迟所述第二时间差值,确定为所述冲击磁铁的启动时刻。
在一实施例中,所述第二时间差值确定单元,还设置为:
根据公式Δt 2=t p2+t r2-t r1-T,确定所述第二时间差值;
其中,Δt 2为所述时间差值;t r1为所述冲击磁铁的启动上升时间;t p2为所述斩束器的启动平顶时间;t r2为所述斩束器的启动上升时间;T为所述束流时长。
在一实施例中,该装置,还包括:第一延迟时间确定模块和第一更新单元。
第一延迟时间确定模块,设置为在所述确定启动所述冲击磁铁延后启动所述斩束器的第一时间差值之后,根据所述斩束器的粒子输出端与加速器同步环的离子输入端之间的距离,确定粒子注入所述同步环的延迟时间;
第一更新单元,设置为将所述延迟时间叠加至所述第一时间差值,以进行更新。
在一实施例中,该装置,还包括:第二延迟时间确定模块和第二更新单元。
第二延迟时间确定模块,设置为在所述确定启动所述冲击磁铁延后启动所述斩束器的第二时间差值之后,根据所述斩束器的粒子输出端与加速器同步环的离子输入端之间的距离,确定粒子注入所述同步环的延迟时间。
第二更新单元,设置为将所述延迟时间叠加至所述第二时间差值,以进行更新。
上述加速器注入粒子数控制装置可执行本申请任意实施例所提供的加速器注入粒子数控制方法,具备执行加速器注入粒子数控制方法相应的功能模块和有益效果。
实施例五
图6是本申请实施例提供的一种终端设备的硬件结构示意图,该终端设备包括斩束器610和冲击磁铁620,还包括:
一个或多个处理器630;
存储装置640,设置为存储一个或多个程序。
图6中以一个处理器630为例,该终端设备中的斩束器610和冲击磁铁620可以通过总线或其他方式与处理器630以及存储装置640相连,且处理器630和存储装置640也通过总线或其他方式连接,图6中以通过总线连接为例。
在本实施例中,终端设备中的处理器630可以根据预设注入粒子数和加速器粒子束的束流强度,确定加速器所需注入粒子束的束流时长;还可以根据束流时长,分别确定斩束器610和冲击磁铁620的启动时刻;还可以根据冲击磁铁620的启动时刻启动冲击磁铁620,根据斩束器610的启动时刻启动斩束器610。
该终端设备中的存储装置640作为一种计算机可读存储介质,可用于存储一个或多个程序,所述程序可以是软件程序、计算机可执行程序以及模块,如本申请实施例中加速器注入粒子数控制方法对应的程序指令/模块(例如,附图5所示的束流时长确定模块510、启动时刻确定模块520和启动模块530)。处理器630通过运行存储在存储装置640中的软件程序、指令以及模块,从而执行终端设备的多种功能应用以及数据处理,即实现上述方法实施例中的加速器注入粒子数控制方法。
存储装置640可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储数据等(如上述实施例中预设注入粒子数、束流时长、冲击磁铁的启动平顶时间以及斩束器的启动平顶时间等)。此外,存储装置640可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置640可包括相对于处理器630远程设置的存储器,这些远程存储器可以通过网络连接至服务器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
此外,本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被加速器注入粒子数控制装置执行时实现本申请实施提供的加速器注入粒子数控制方法,该方法包括:根据预设注入粒子数和加速器粒子束的束流强度,确定加速器所需注入粒子束的束流时长;其中,所述束流时长为冲击磁铁的启动平顶时间和斩束器的启动平顶时间之间的重叠时长;根据所述束流时长,分别确定所述冲击磁铁的启动时刻和所述斩束器的启动时刻;根据所 述冲击磁铁的启动时刻启动所述冲击磁铁,根据所述斩束器的启动时刻启动所述斩束器。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请多个实施例所述的加速器注入粒子数控制方法。

Claims (16)

  1. 一种加速器注入粒子数控制方法,应用于粒子加速器,包括:
    根据预设注入粒子数和加速器粒子束的束流强度,确定加速器所需注入粒子束的束流时长;其中,所述束流时长为冲击磁铁的启动平顶时间和斩束器的启动平顶时间之间的重叠时长;
    根据所述束流时长,分别确定所述冲击磁铁的启动时刻和所述斩束器的启动时刻;
    根据所述冲击磁铁的启动时刻启动所述冲击磁铁,根据所述斩束器的启动时刻启动所述斩束器。
  2. 根据权利要求1所述的方法,其中,根据所述束流时长,分别确定所述冲击磁铁的启动时刻和所述斩束器的启动时刻,包括:
    根据所述束流时长、所述冲击磁铁的启动平顶时间和所述冲击磁铁的启动上升时间,以及所述斩束器的启动上升时间,确定启动所述斩束器延后启动所述冲击磁铁的第一时间差值;
    根据所述冲击磁铁的预设启动时刻延迟所述第一时间差值,确定为所述斩束器的启动时刻。
  3. 根据权利要求2所述的方法,其中,所述根据所述束流时长、所述冲击磁铁的启动平顶时间和所述冲击磁铁的启动上升时间,以及所述斩束器的启动上升时间,确定启动所述斩束器延后启动所述冲击磁铁的第一时间差值,包括:
    根据公式Δt 1=t p1+t r1-t r2-T,确定所述第一时间差值;
    其中,Δt 1为所述第一时间差值;t p1为所述冲击磁铁的启动平顶时间;t r1为所述冲击磁铁的启动上升时间;t r2为所述斩束器的启动上升时间;T为所述束流时长。
  4. 根据权利要求1所述的方法,其中,根据所述束流时长,分别确定所述冲击磁铁的启动时刻和所述斩束器的启动时刻,包括:
    根据所述束流时长、所述斩束器的启动平顶时间和所述斩束器的启动上升时间,以及所述冲击磁铁的启动上升时间,确定启动所述冲击磁铁延后启动所述斩束器的第二时间差值;
    根据所述斩束器的预设启动时刻延迟所述第二时间差值,确定为所述冲击磁铁的启动时刻。
  5. 根据权利要求4所述的方法,其中,所述根据所述束流时长、所述斩束器的启动平顶时间和所述斩束器的启动上升时间,以及所述冲击磁铁的启动上 升时间,确定启动所述冲击磁铁延后启动所述斩束器的第二时间差值,包括:
    根据公式Δt 2=t p2+t r2-t r1-T,确定所述第二时间差值;
    其中,Δt 2为所述时间差值;t r1为所述冲击磁铁的启动上升时间;t p2为所述斩束器的启动平顶时间;t r2为所述斩束器的启动上升时间;T为所述束流时长。
  6. 根据权利要求2或3所述的方法,在所述确定启动所述冲击磁铁延后启动所述斩束器的第一时间差值之后,还包括:
    根据所述斩束器的粒子输出端与加速器同步环的离子输入端之间的距离,确定粒子注入所述同步环的延迟时间;
    将所述延迟时间叠加至所述第一时间差值,以进行更新。
  7. 根据权利要求4或5所述的方法,在所述确定启动所述冲击磁铁延后启动所述斩束器的第二时间差值之后,还包括:
    根据所述斩束器的粒子输出端与加速器同步环的离子输入端之间的距离,确定粒子注入所述同步环的延迟时间;
    将所述延迟时间叠加至所述第二时间差值,以进行更新。
  8. 一种加速器注入粒子数控制装置,配置于粒子加速器,包括:
    束流时长确定模块,设置为根据预设注入粒子数和加速器粒子束的束流强度,确定加速器所需注入粒子束的束流时长;其中,所述束流时长为冲击磁铁的启动平顶时间和斩束器的启动平顶时间之间的重叠时长;
    启动时刻确定模块,设置为根据所述束流时长,分别确定所述冲击磁铁的启动时刻和所述斩束器的启动时刻;
    启动模块,设置为根据所述冲击磁铁的启动时刻启动所述冲击磁铁,根据所述斩束器的启动时刻启动所述斩束器。
  9. 根据权利要求8所述的装置,所述启动时刻确定模块包括:
    第一时间差值确定单元,设置为根据所述束流时长、所述冲击磁铁的启动平顶时间和启动上升时间,以及所述斩束器的启动上升时间,确定启动所述斩束器延后启动所述冲击磁铁的第一时间差值;
    第一启动时刻确定单元,设置为根据所述冲击磁铁的预设启动时刻延迟所述第一时间差值,确定为所述斩束器的启动时刻。
  10. 根据权利要求9所述的装置,所述第一时间差值确定单元设置为:
    根据公式Δt 1=t p1+t r1-t r2-T,确定所述第一时间差值;
    其中,Δt 1为所述第一时间差值;t p1为所述冲击磁铁的启动平顶时间;t r1为 所述冲击磁铁的启动上升时间;t r2为所述斩束器的启动上升时间;T为所述束流时长。
  11. 根据权利要求8所述的装置,所述启动时刻确定模块包括:
    第二时间差值确定单元,设置为根据所述束流时长、所述斩束器的启动平顶时间和启动上升时间,以及所述冲击磁铁的启动上升时间,确定启动所述冲击磁铁延后启动所述斩束器的第二时间差值;
    第二启动时刻确定单元,设置为根据所述斩束器的预设启动时刻延迟所述第二时间差值,确定为所述冲击磁铁的启动时刻。
  12. 根据权利要求11所述的装置,所述第二时间差值确定单元设置为:
    根据公式Δt 2=t p2+t r2-t r1-T,确定所述第二时间差值;
    其中,Δt 2为所述时间差值;t r1为所述冲击磁铁的启动上升时间;t p2为所述斩束器的启动平顶时间;t r2为所述斩束器的启动上升时间;T为所述束流时长。
  13. 根据权利要求9或10所述的装置,还包括:
    第一延迟时间确定模块,设置为在所述确定启动所述冲击磁铁延后启动所述斩束器的第一时间差值之后,根据所述斩束器的粒子输出端与加速器同步环的离子输入端之间的距离,确定粒子注入所述同步环的延迟时间;
    第一更新单元,设置为将所述延迟时间叠加至所述第一时间差值,以进行更新。
  14. 根据权利要求11或12所述的装置,还包括:
    第二延迟时间确定模块,设置为在所述确定启动所述冲击磁铁延后启动所述斩束器的第二时间差值之后,根据所述斩束器的粒子输出端与加速器同步环的离子输入端之间的距离,确定粒子注入所述同步环的延迟时间。
    第二更新单元,设置为将所述延迟时间叠加至所述第二时间差值,以进行更新。
  15. 一种粒子加速器,包括斩束器和冲击磁铁,还包括:
    至少一个处理器;
    存储装置,设置为存储一个或多个程序;
    所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-7中任一项所述的一种加速器注入粒子数控制方法。
  16. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1-7中任一项所述的一种加速器注入粒子数控制方法。
PCT/CN2018/115716 2018-11-15 2018-11-15 加速器注入粒子数控制方法及装置、加速器和存储介质 WO2020097874A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/115716 WO2020097874A1 (zh) 2018-11-15 2018-11-15 加速器注入粒子数控制方法及装置、加速器和存储介质
CN201880002210.0A CN109641134B (zh) 2018-11-15 2018-11-15 加速器注入粒子数控制方法及装置、加速器和存储介质
CN201911101367.1A CN110831317A (zh) 2018-11-15 2019-11-12 加速器注入粒子数控制方法及装置、加速器和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/115716 WO2020097874A1 (zh) 2018-11-15 2018-11-15 加速器注入粒子数控制方法及装置、加速器和存储介质

Publications (1)

Publication Number Publication Date
WO2020097874A1 true WO2020097874A1 (zh) 2020-05-22

Family

ID=66060083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115716 WO2020097874A1 (zh) 2018-11-15 2018-11-15 加速器注入粒子数控制方法及装置、加速器和存储介质

Country Status (2)

Country Link
CN (2) CN109641134B (zh)
WO (1) WO2020097874A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020097874A1 (zh) * 2018-11-15 2020-05-22 新瑞阳光粒子医疗装备 (无锡) 有限公司 加速器注入粒子数控制方法及装置、加速器和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697587A (zh) * 2004-04-19 2005-11-16 三菱电机株式会社 带电粒子束加速器、粒子束照射医疗系统及其运行方法
CN101807506A (zh) * 2010-04-20 2010-08-18 江苏海明医疗器械有限公司 一种医用直线加速器中电子枪发射束流的控制方法和系统
CN106163615A (zh) * 2014-04-04 2016-11-23 三菱电机株式会社 粒子射线治疗装置
CN106669048A (zh) * 2015-11-11 2017-05-17 三菱电机株式会社 粒子射线照射装置
CN107333380A (zh) * 2017-08-17 2017-11-07 上海联影医疗科技有限公司 直线加速器及其稳定射线束流的方法
CN107360662A (zh) * 2017-07-12 2017-11-17 合肥中科离子医学技术装备有限公司 一种提高医用超导回旋加速器束流流强精度控制的方法
US20180078792A1 (en) * 2016-09-22 2018-03-22 Varian Medical Systems International Ag Controlling and shaping the dose distribution outside treatment targets in external-beam radiation treatments
CN107952178A (zh) * 2017-12-13 2018-04-24 合肥中科离子医学技术装备有限公司 一种采用可移动屏蔽门紧凑布局的质子治疗系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2925965B2 (ja) * 1994-12-15 1999-07-28 住友重機械工業株式会社 荷電粒子ビームの集群方法とその装置
ITCO20050028A1 (it) * 2005-11-11 2007-05-12 Fond Per Adroterapia Oncologica Complesso di acceleratori di protoni in particolare per uso medicale
EP2189185B1 (en) * 2007-09-12 2014-04-30 Kabushiki Kaisha Toshiba Particle beam projection apparatus
EP2283708B1 (en) * 2008-05-22 2018-07-11 Vladimir Yegorovich Balakin Charged particle cancer therapy beam path control apparatus
US8571181B2 (en) * 2009-11-02 2013-10-29 Xrsciences Llc Rapidly switching dual energy X-ray source
JP5347070B2 (ja) * 2010-09-09 2013-11-20 三菱電機株式会社 粒子線治療装置
US8749179B2 (en) * 2012-08-14 2014-06-10 Kla-Tencor Corporation Optical characterization systems employing compact synchrotron radiation sources
TW201422278A (zh) * 2012-09-28 2014-06-16 Mevion Medical Systems Inc 粒子加速器之控制系統
EP3072554A4 (en) * 2013-11-21 2017-07-19 Mitsubishi Electric Corporation Particle therapy device
JP6341655B2 (ja) * 2013-12-09 2018-06-13 株式会社東芝 円形加速器及び重粒子線治療装置
JP6243263B2 (ja) * 2014-03-19 2017-12-06 住友重機械工業株式会社 荷電粒子線治療装置
JP6612559B2 (ja) * 2015-08-31 2019-11-27 株式会社東芝 自由電子レーザ光源、その制御方法及びその制御プログラム
JP6936988B2 (ja) * 2017-05-01 2021-09-22 東芝エネルギーシステムズ株式会社 加速器制御装置、加速器制御方法、および粒子線治療装置
CN107744399A (zh) * 2017-09-25 2018-03-02 中派科技(深圳)有限责任公司 高能粒子注入系统及高能粒子注入控制方法
CN207835897U (zh) * 2018-02-05 2018-09-07 中国科学院近代物理研究所 高频同步系统及包含其的同步加速器设备
CN108770181A (zh) * 2018-05-24 2018-11-06 新瑞阳光粒子医疗装备(无锡)有限公司 同步加速器、粒子束加速方法、装置、设备及存储介质
WO2020097874A1 (zh) * 2018-11-15 2020-05-22 新瑞阳光粒子医疗装备 (无锡) 有限公司 加速器注入粒子数控制方法及装置、加速器和存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697587A (zh) * 2004-04-19 2005-11-16 三菱电机株式会社 带电粒子束加速器、粒子束照射医疗系统及其运行方法
CN101807506A (zh) * 2010-04-20 2010-08-18 江苏海明医疗器械有限公司 一种医用直线加速器中电子枪发射束流的控制方法和系统
CN106163615A (zh) * 2014-04-04 2016-11-23 三菱电机株式会社 粒子射线治疗装置
CN106669048A (zh) * 2015-11-11 2017-05-17 三菱电机株式会社 粒子射线照射装置
US20180078792A1 (en) * 2016-09-22 2018-03-22 Varian Medical Systems International Ag Controlling and shaping the dose distribution outside treatment targets in external-beam radiation treatments
CN107360662A (zh) * 2017-07-12 2017-11-17 合肥中科离子医学技术装备有限公司 一种提高医用超导回旋加速器束流流强精度控制的方法
CN107333380A (zh) * 2017-08-17 2017-11-07 上海联影医疗科技有限公司 直线加速器及其稳定射线束流的方法
CN107952178A (zh) * 2017-12-13 2018-04-24 合肥中科离子医学技术装备有限公司 一种采用可移动屏蔽门紧凑布局的质子治疗系统

Also Published As

Publication number Publication date
CN109641134A (zh) 2019-04-16
CN109641134B (zh) 2021-05-18
CN110831317A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2020097874A1 (zh) 加速器注入粒子数控制方法及装置、加速器和存储介质
US10420202B2 (en) Accelerator control device, accelerator control method, and particle beam therapy device
WO2016131349A1 (zh) 一种治疗心律失常的医疗设备
CN109769336A (zh) 同步加速器、粒子束加速方法、装置、设备及存储介质
DE102022105069A1 (de) Systeme, verfahren und vorrichtungen für gesicherte nichtflüchtige speicher
CN110505466A (zh) 图像处理方法、装置、电子设备、存储介质和系统
CN111131286A (zh) 一种区块链节点的准入控制方法、装置、设备和介质
TW201521524A (zh) 同步加速器用射入器系統,及同步加速器用射入器系統的運轉方法
CN107754098B (zh) 放射治疗设备及其剂量控制装置和方法
Dong et al. Timing system of HIRFL-CSR
CN109587540B (zh) 一种对象的控制方法、装置、终端及存储介质
CN111313893A (zh) 分频器和电子设备
CN208300104U (zh) 同步加速器
WO2014166451A1 (zh) 衰减装置、系统、衰减方法及计算机存储介质
CN110971941A (zh) 用于弹幕拥挤疏通的方法、系统、服务器及直播间控制器
Hancock Tomography at injection in the PSB
JP2013522936A (ja) 悪意のあるアクセスの遮断
WO2011100918A2 (zh) 复位装置
KR20230048537A (ko) 빔 시스템에서 빔 전송을 개시하기 위한 시스템들,디바이스들, 및 방법들
US20130002343A1 (en) High voltage regulation in charge pumps
Wieschollek et al. On the role of preexisting MHD activity for the plasma response to massive deuterium injection
Seiya et al. Beam studies for the Proton Improvement Plan (PIP)--reducing beam loss at the Fermilab Booster
WO2019127535A1 (zh) 寻呼处理方法、用户设备、网络设备及计算机存储介质
US9972965B1 (en) Apparatus and method for stabilizing a light
CN111193570A (zh) 指令执行的方法、装置、系统、介质和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940171

Country of ref document: EP

Kind code of ref document: A1