WO2020097846A1 - 同步信号块的配置信息的广播、接收方法和装置 - Google Patents

同步信号块的配置信息的广播、接收方法和装置 Download PDF

Info

Publication number
WO2020097846A1
WO2020097846A1 PCT/CN2018/115614 CN2018115614W WO2020097846A1 WO 2020097846 A1 WO2020097846 A1 WO 2020097846A1 CN 2018115614 W CN2018115614 W CN 2018115614W WO 2020097846 A1 WO2020097846 A1 WO 2020097846A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
bits
configuration information
signal block
preset value
Prior art date
Application number
PCT/CN2018/115614
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to KR1020217016919A priority Critical patent/KR102486809B1/ko
Priority to BR112021009326-5A priority patent/BR112021009326A2/pt
Priority to JP2021526543A priority patent/JP7137705B2/ja
Priority to SG11202104925RA priority patent/SG11202104925RA/en
Priority to EP18940452.8A priority patent/EP3876563B1/en
Priority to CN201880002575.3A priority patent/CN109565650B/zh
Priority to US17/293,030 priority patent/US11856538B2/en
Priority to PCT/CN2018/115614 priority patent/WO2020097846A1/zh
Priority to CN202110949732.5A priority patent/CN113747395A/zh
Publication of WO2020097846A1 publication Critical patent/WO2020097846A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method of broadcasting synchronization signal block configuration information, a method of receiving synchronization signal block configuration information, a broadcasting device of synchronization signal block configuration information, and a reception of synchronization signal block configuration information Devices, electronic equipment, and computer-readable storage media.
  • the base station sends configuration information through RSI (Remaining minimum system information, other non-essential information) to indicate the transmission status of the synchronization signal block (Synchronizing Signal Block, or SSB).
  • RSI Remaining minimum system information, other non-essential information
  • V2X Internet of Vehicles
  • the present disclosure proposes a method of broadcasting synchronization signal block configuration information, a method of receiving synchronization signal block configuration information, a broadcasting device of synchronization signal block configuration information, a reception device of synchronization signal block configuration information, and an electronic device And computer-readable storage media.
  • a method for broadcasting configuration information of a synchronization signal block is proposed, which is suitable for direct link communication.
  • the method includes:
  • the configuration information is used to indicate the maximum number of synchronization signal blocks In the synchronization signal block to be sent, the first preset value is positively related to the number of bits that can be sent by the physical direct broadcast channel;
  • the configuration information is broadcast through a physical direct broadcast channel.
  • the determining the number of bits of configuration information according to the relationship between the maximum number and the first preset value, and generating the configuration information including the number of bits includes:
  • configuration information with the maximum number of bits is generated, wherein each bit in the configuration information indicates whether a synchronization signal block is a synchronization signal that needs to be sent Piece.
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers.
  • the relationship of the preset numeric values determines the number of bits of the configuration information, and generating the configuration information containing the number of bits includes:
  • configuration information with n + m bits is generated, where n bits of the n + m bits are used to indicate each synchronization in the n synchronization signal block groups Whether the signal block group is a synchronization signal block group that needs to be sent, and m bits of the n + m bits are used to indicate whether each synchronization signal block in the synchronization signal block group that needs to be sent is a synchronization signal block that needs to be sent.
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers.
  • the relationship of the preset numeric values determines the number of bits of the configuration information, and generating the configuration information containing the number of bits includes:
  • the transmit beam where the configuration information is located determines the transmit beam where the configuration information is located, and generate configuration information with the number of bits (n-1) + (m-1), where the (n-1) (n-1) bits of + (m-1) bits are used to indicate each of the (n-1) synchronization signal block groups other than the synchronization signal block group where the synchronization signal block corresponding to the transmission beam is located Whether the synchronization signal block group is a synchronization signal block group that needs to be sent, (m-1) bits of the (n-1) + (m-1) bits are used to indicate that the synchronization signal block needs to be sent Whether each of the (m-1) synchronization signal blocks other than the synchronization signal block corresponding to the transmission beam is a synchronization signal block that needs to be transmitted.
  • the method further includes:
  • the configuration information includes:
  • the information of the second preset value bit in the configuration information is broadcast through a physical direct broadcast channel, and the information of other bits in the configuration information is transmitted through other channels.
  • the synchronization signal blocks in the synchronization signal block group correspond to the beams one-to-one.
  • multiple synchronization signal blocks in the synchronization signal block group correspond to the same beam.
  • a method for receiving configuration information of a synchronization signal block is proposed, which is suitable for direct link communication.
  • the method includes:
  • the frequency band of the received synchronization signal block determine the maximum number of synchronization signal blocks that can be received
  • the determining the number of bits for receiving configuration information according to the relationship between the maximum number and the first preset value includes:
  • the maximum number is less than or equal to the first preset value, it is determined that the number of received bits is the maximum number of configuration information, where each bit in the configuration information indicates whether a synchronization signal block is a synchronization that needs to be received Signal block.
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers.
  • the relationship between the preset values determines the number of bits to receive the configuration information includes:
  • the configuration information of the number of received bits is n + m, where n bits of the n + m bits are used to indicate each of the n synchronization signal block groups Whether the synchronization signal block group is a synchronization signal block group that needs to be received, and m bits of the n + m bits are used to indicate whether each synchronization signal block in the synchronization signal block group that needs to be received is a synchronization signal block that needs to be received .
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers.
  • the relationship between preset values determines the number of bits of configuration information including:
  • the receive beam where the configuration information is received determines the receive beam where the configuration information is received, and determine the configuration information where the number of received bits is (n-1) + (m-1), wherein, (n -1) + (m-1) bits (n-1) bits are used to indicate (n-1) synchronization signal block groups other than the synchronization signal block group where the synchronization signal block corresponding to the receive beam is located Whether each synchronization signal block group in is a synchronization signal block group that needs to be sent, and (m-1) bits of the (n-1) + (m-1) bits are used to indicate the synchronization signal block that needs to be sent Whether each of the (m-1) synchronization signal blocks other than the synchronization signal block corresponding to the receive beam in the synchronization beam block is a synchronization signal block that needs to be sent.
  • the method further includes:
  • the receiving the configuration information through the physical direct broadcast channel includes:
  • the synchronization signal blocks in the synchronization signal block group correspond to the beams one-to-one.
  • multiple synchronization signal blocks in the synchronization signal block group correspond to the same beam.
  • a broadcast device that synchronizes configuration information of a signal block is proposed, which is suitable for direct link communication.
  • the device includes:
  • the quantity determination module is configured to determine the maximum number of synchronization signal blocks that can be transmitted according to the frequency band at which the synchronization signal blocks are sent;
  • the bit number determining module is configured to determine the number of bits of configuration information to be generated according to the relationship between the maximum number and the first preset value;
  • the information generating module is configured to generate configuration information including the number of bits, wherein the configuration information is used to indicate a synchronization signal block that needs to be transmitted among the maximum number of synchronization signal blocks, and the first preset value is Describe the positive correlation between the number of bits that can be sent by the physical direct broadcast channel;
  • the broadcast module is configured to broadcast the configuration information through a physical direct broadcast channel.
  • bit number determination module includes:
  • the first comparison submodule is configured to determine whether the maximum number is greater than a first preset value
  • the first generation submodule is configured to generate configuration information with the maximum number of bits when the maximum number is less than or equal to the first preset value, wherein each bit in the configuration information is Indicates whether a synchronization signal block is a synchronization signal block that needs to be sent.
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers, and the bit number determination module includes:
  • a second comparison submodule determining whether the maximum number is greater than the first preset value
  • a second generating submodule if the maximum number is greater than the first preset value, generating configuration information with the number of bits n + m, where n bits of the n + m bits are used to indicate n synchronization signals Whether each synchronization signal block group in the block group is a synchronization signal block group to be sent, and m bits of the n + m bits are used to indicate whether each synchronization signal block in the synchronization signal block group to be sent is needed Block of sync signal sent.
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers, and the bit number determination module includes:
  • a third comparison submodule determining whether the maximum number is greater than the first preset value
  • the third generation submodule determines the transmit beam where the configuration information is located, and generates configuration information with the number of bits (n-1) + (m-1), where (N-1) of the (n-1) + (m-1) bits are used to indicate (n-1) synchronizations other than the synchronization signal block group where the synchronization signal block corresponding to the transmit beam is located Whether each synchronization signal block group in the signal block group is a synchronization signal block group that needs to be sent, (m-1) bits of the (n-1) + (m-1) bits are used to indicate the need to be sent Whether each of the (m-1) synchronization signal blocks other than the synchronization signal block corresponding to the transmission beam in the synchronization signal block is a synchronization signal block that needs to be transmitted.
  • the device further includes:
  • the comparison module determines whether the number of bits of the configuration information is greater than the second preset value before broadcasting the configuration information through the physical direct connection broadcast channel;
  • the broadcasting module is configured to broadcast the information of the second preset value bits in the configuration information through the physical direct connection broadcast channel when the number of bits of the configuration information is greater than the second preset value, and through other The channel transmits other bits of information in the configuration information.
  • the synchronization signal blocks in the synchronization signal block group correspond to the beams one-to-one.
  • multiple synchronization signal blocks in the synchronization signal block group correspond to the same beam.
  • an apparatus for receiving configuration information of a synchronization signal block which is suitable for direct link communication.
  • the apparatus includes:
  • the quantity determination module determines the maximum number of synchronization signal blocks that can be received according to the frequency band of the received synchronization signal blocks;
  • the value determining module is configured to determine a first preset value according to the physical direct-connected broadcast channel receiving the synchronization signal block in the frequency band, wherein the first preset value and the physical direct-connected broadcast channel can be transmitted The number of bits is positively correlated;
  • the bit number determining module determines the number of bits of configuration information that needs to be received according to the relationship between the maximum number and the first preset value, where the configuration information is used to indicate the synchronization signal that needs to be received in the maximum number of synchronization signal blocks Piece;
  • a receiving module configured to receive the configuration information through a physical direct broadcast channel
  • the parameter determination module is configured to determine the parameter on which the configuration information is parsed according to the number of bits
  • the parsing module is configured to parse the configuration information according to the parameters.
  • bit number determination module includes:
  • a first comparison submodule determining whether the maximum number is greater than a first preset value
  • the first determining submodule determines that the number of received bits is the maximum number of configuration information, where each bit in the configuration information respectively represents a synchronization signal block Whether it is a synchronization signal block to be received.
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers, and the bit number determination module includes:
  • a second comparison submodule determining whether the maximum number is greater than the first preset value
  • a second determining submodule determines the configuration information of the number of received bits n + m, where n bits of the n + m bits are used to indicate n synchronizations Whether each synchronization signal block group in the signal block group is a synchronization signal block group to be received, and m bits of the n + m bits are used to indicate whether each synchronization signal block in the synchronization signal block group to be received is The block of synchronization signals to be received.
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers, and the bit number determination module includes:
  • a third comparison submodule determining whether the maximum number is greater than the first preset value
  • a third determining submodule determine the receiving beam where the configuration information is received, and determine the configuration information with the number of received bits (n-1) + (m-1), Among them, (n-1) bits of the (n-1) + (m-1) bits are used to indicate (n-1 outside the synchronization signal block group where the synchronization signal block corresponding to the receive beam is located ) Whether each synchronization signal block group in the synchronization signal block group is a synchronization signal block group that needs to be transmitted, (m-1) bits of the (n-1) + (m-1) bits are used to indicate Whether each of the (m-1) synchronization signal blocks other than the synchronization signal block corresponding to the receive beam in the synchronization signal block to be transmitted is a synchronization signal block to be transmitted.
  • the device further includes:
  • the comparison module determines whether the number of bits of the configuration information is greater than the second preset value before receiving the configuration information through the physical direct connection broadcast channel;
  • the receiving module is configured to, when the number of bits of the configuration information is greater than the second preset value, receive the information of the bits of the second preset value in the configuration information through the physical direct connection broadcast channel, through other The channel receives other bits of information in the configuration information.
  • the synchronization signal blocks in the synchronization signal block group correspond to the beams one-to-one.
  • multiple synchronization signal blocks in the synchronization signal block group correspond to the same beam.
  • an electronic device including:
  • Memory for storing processor executable instructions
  • the processor is configured to implement the steps in the method for broadcasting the configuration information of the synchronization signal block in any of the above embodiments.
  • an electronic device including:
  • Memory for storing processor executable instructions
  • the processor is configured to implement the steps in the method for receiving the configuration information of the synchronization signal block in any of the above embodiments.
  • a computer-readable storage medium is provided on which a computer program is stored, which when executed by a processor implements the broadcasting of the configuration information of the synchronization signal block described in any of the above embodiments Steps in the method.
  • a computer-readable storage medium is provided on which a computer program is stored, which when executed by a processor implements the reception of the configuration information of the synchronization signal block described in any of the above embodiments Steps in the method.
  • the configuration information may be broadcast through a physical direct connection broadcast channel, and the configuration that needs to be generated may be determined according to the relationship between the maximum number and the first preset value The number of bits of the information, and generate configuration information containing the number of bits to ensure that the configuration information can be sent smoothly through the physical direct broadcast channel.
  • FIG. 1 is a schematic flowchart illustrating a method for broadcasting configuration information of a synchronization signal block according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic flowchart illustrating determining a number of bits of configuration information according to the relationship between the maximum number and a first preset value according to an embodiment of the present disclosure, and generating configuration information including the number of bits.
  • FIG. 3 is a schematic flowchart illustrating another method for determining the number of bits of configuration information according to the relationship between the maximum number and the first preset value according to an embodiment of the present disclosure, and generating configuration information including the number of bits.
  • FIG. 4 is a schematic flowchart illustrating yet another method for determining the number of bits of configuration information according to the relationship between the maximum number and the first preset value according to an embodiment of the present disclosure, and generating configuration information including the number of bits.
  • FIG. 5 is a schematic flowchart illustrating another method for broadcasting configuration information of a synchronization signal block according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart illustrating a method for receiving configuration information of a synchronization signal block according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart illustrating a method of determining the number of bits of received configuration information according to the relationship between the maximum number and a first preset value according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart illustrating another method for determining the number of bits of the received configuration information according to the relationship between the maximum number and the first preset value according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart illustrating yet another method for determining the number of bits of received configuration information according to the relationship between the maximum number and the first preset value according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart illustrating another method for receiving configuration information of a synchronization signal block according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic block diagram of a broadcasting device showing configuration information of a synchronization signal block according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic block diagram showing a bit number determination module according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic block diagram illustrating another bit number determination module according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic block diagram showing yet another bit number determination module according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic block diagram of another broadcasting apparatus showing configuration information of a synchronization signal block according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic block diagram illustrating a device for receiving configuration information of a synchronization signal block according to an embodiment of the present disclosure.
  • 17 is a schematic block diagram showing a bit number determination module according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic block diagram illustrating another bit number determination module according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic block diagram illustrating yet another bit number determination module according to an embodiment of the present disclosure.
  • 20 is a schematic block diagram illustrating another apparatus for receiving configuration information of a synchronization signal block according to an embodiment of the present disclosure.
  • 21 is a schematic structural diagram of an apparatus for broadcasting configuration information of a synchronization signal block according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram of an apparatus for receiving configuration information of a synchronization signal block according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic flowchart illustrating a method for broadcasting configuration information of a synchronization signal block according to an embodiment of the present disclosure.
  • the method for broadcasting the configuration information of the synchronization signal block shown in this embodiment can be applied to a device that can function as a base station in direct link communication, for example, a vehicle that can imitate a base station transmitting signals through a beam, and the vehicle can be based on 5G NR technology communicates with other vehicles.
  • the method for broadcasting the configuration information of the synchronization signal block may include the following steps:
  • step S11 determine the maximum number of synchronization signal blocks that can be transmitted according to the frequency band at which the synchronization signal blocks are sent;
  • step S12 the number of bits of configuration information to be generated is determined according to the relationship between the maximum number and the first preset value, and configuration information including the number of bits is generated, wherein the configuration information is used to indicate the maximum number Among the number of synchronization signal blocks, the first preset value is positively correlated with the number of bits that can be sent by the physical direct broadcast channel;
  • step S13 the configuration information is broadcast through a physical direct broadcast channel.
  • the vehicle can communicate with other vehicles, in-vehicle devices, and roadside devices. Take vehicle and other vehicle communication as an example.
  • vehicle A can receive Signal, but the B vehicle cannot receive the signal sent by the base station due to some reasons (such as outside the coverage of the base station), but the A vehicle is closer to the B vehicle and can receive the signal sent by the A vehicle, then the A vehicle can first communicate with The base station communicates, receives the information sent by the base station, and then imitates the base station to transmit the signal through the beam, so that the vehicle B can receive the signal transmitted by the vehicle A, and then obtain the information sent by the base station based on the signal transmitted by the vehicle A, and the communication between the vehicle A and the vehicle B Instead of going through the base station, the two are based on a direct link communication.
  • the A vehicle acts as a base station and the B vehicle acts as a user equipment.
  • the method shown in this embodiment can be applied to the A vehicle.
  • the embodiments of the present disclosure may broadcast the configuration information through a physical direct link broadcast channel (Physical Sidelink Broadcast Channel, PSBCH for short).
  • a physical direct link broadcast channel Physical Sidelink Broadcast Channel, PSBCH for short.
  • the maximum number of synchronization signal blocks that can be sent is L (L can be equal to 4, 8, 64, etc.), that is, the maximum number of synchronization signal blocks that can be sent
  • L can be equal to 4, 8, 64, etc.
  • the configuration information can accurately indicate whether each of the L synchronization signal blocks It is a synchronization signal block that needs to be sent.
  • the number of bits that can be sent by the physical direct broadcast channel is relatively limited, the number of bits that can be sent does not necessarily reach the maximum number L of synchronization signal blocks that can be sent, so the number of bits of configuration information needs to be adjusted appropriately.
  • the maximum number L of synchronization signal blocks that can be transmitted can be determined according to the frequency band at which the synchronization signal block is transmitted. As the center frequency of the frequency band increases, the signal transmitted through this frequency band is more susceptible to occlusion, so more numbers need to be transmitted Synchronous signal block to overcome the impact of occlusion, so the higher the center frequency of the frequency band, the larger the L value, and the lower the center frequency of the frequency band, the smaller the L value. Then, the number of bits of the configuration information that needs to be generated is determined according to the relationship between the maximum number and the first preset value K.
  • the first preset value is positively correlated with the number of bits that the physical direct connection broadcast channel can send, that is, a physical direct connection broadcast channel with a larger number of bits can be sent, and the first preset value is larger and can For a physical direct-connected broadcast channel with fewer bits, the first preset value is smaller.
  • the maximum value of the number of bits that can be sent by the physical direct broadcast channel can be selected as the first preset value, or a value that is smaller than the maximum value of the number of bits that can be sent by the physical direct broadcast channel is selected as the first preset value Value, in this case, the first preset value may be the upper limit of the number of bits that can be used to send configuration information in the physical direct broadcast channel, and the other bits in the physical direct broadcast channel need to transmit the configuration information Content outside.
  • the maximum value of the number of bits that can be transmitted by the physical direct broadcast channel Take the maximum value of the number of bits that can be transmitted by the physical direct broadcast channel as the first preset value for example. If the maximum number of synchronization signal blocks L that can be sent is less than or equal to the first preset value K, indicating that L bits of configuration information can be sent through the physical direct broadcast channel, then configuration information with a number of bits can be generated in order to It accurately indicates whether each of the L synchronization signal blocks is a synchronization signal block that needs to be transmitted.
  • the maximum number of synchronization signal blocks L that can be sent is greater than the first preset value K, it means that the physical direct connection broadcast channel is not enough to send L bits of configuration information, then the number of bits of the generated configuration information needs to be less than L, In order to ensure that the configuration information can be successfully transmitted through the physical direct connection broadcast channel.
  • the configuration information may be broadcast through a physical direct connection broadcast channel, and the configuration that needs to be generated may be determined according to the relationship between the maximum number and the first preset value The number of bits of the information, and generate configuration information containing the number of bits to ensure that the configuration information can be sent smoothly through the physical direct broadcast channel.
  • FIG. 2 is a schematic flowchart illustrating determining a number of bits of configuration information according to the relationship between the maximum number and a first preset value according to an embodiment of the present disclosure, and generating configuration information including the number of bits.
  • the determining the number of bits of configuration information according to the relationship between the maximum number and the first preset value, and generating the configuration information including the number of bits includes:
  • step S121 it is determined whether the maximum number is greater than the first preset value
  • step S122 if the maximum number is less than or equal to the first preset value, configuration information with the maximum number of bits is generated, where each bit in the configuration information indicates whether a synchronization signal block is Synchronization signal block to be sent.
  • the physical direct connection broadcast channel can send the maximum number of L bits of configuration information, then the configuration information with the number of bits can be generated to accurately indicate whether each of the L synchronization signal blocks is a synchronization signal block that needs to be sent .
  • FIG. 3 is a schematic flowchart illustrating another method for determining the number of bits of configuration information according to the relationship between the maximum number and the first preset value according to an embodiment of the present disclosure, and generating configuration information including the number of bits.
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers.
  • the relationship of the first preset value determines the number of bits of the configuration information, and generating configuration information including the number of bits includes:
  • step S123 it is determined whether the maximum number is greater than the first preset value
  • step S124 if the maximum number is greater than the first preset value, configuration information with the number of bits n + m is generated, where n bits of the n + m bits are used to indicate n synchronization signal blocks Whether each synchronization signal block group in the group is a synchronization signal block group to be sent, and m bits of the n + m bits are used to indicate whether each synchronization signal block in the synchronization signal block group to be sent is to be sent Block of sync signal.
  • the physical direct connection broadcast channel taking the maximum value of the number of bits that can be transmitted by the physical direct connection broadcast channel as the first preset value as an example, if the maximum number L is greater than the first preset value K, it indicates that the physical direct connection
  • each synchronization signal block group includes m synchronization signal blocks.
  • 8 synchronization signal block groups may be represented by 8 bits each synchronization signal Whether the block group is a synchronization signal block group that needs to be sent, for example, the 2nd and 7th synchronization signal block groups are not sent, n bits are 10111101, and m bits are used to indicate each of the synchronization signal block groups that need to be sent Whether the synchronization signal block is a synchronization signal block that needs to be sent, for example, each group of synchronization signal blocks is the third and fourth synchronization signal blocks that do not need to be sent, then whether the synchronization signal blocks in each group of synchronization signal blocks that need to be sent need to be sent.
  • the situation can be represented by m bits, which are 11001111. According to this, the transmission situation of 64 synchronization signal blocks can be expressed by 16 bits, which reduces the number of bits of configuration information transmitted through the physical
  • FIG. 4 is a schematic flowchart illustrating yet another method for determining the number of bits of configuration information according to the relationship between the maximum number and the first preset value according to an embodiment of the present disclosure, and generating configuration information including the number of bits.
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers, and the maximum number of The relationship of the first preset value determines the number of bits of the configuration information, and generating configuration information including the number of bits includes:
  • step S125 it is determined whether the maximum number is greater than the first preset value
  • step S126 if the maximum number is greater than the first preset value, the transmit beam where the configuration information is located is determined, and configuration information with the number of bits (n-1) + (m-1) is generated, wherein, the (n-1) of (n-1) + (m-1) bits are used to indicate (n-1) synchronization signals outside the synchronization signal block group where the synchronization signal block corresponding to the transmission beam is located Whether each synchronization signal block group in the block group is a synchronization signal block group that needs to be sent, (m-1) bits of the (n-1) + (m-1) bits are used to indicate the synchronization that needs to be sent Whether each of the (m-1) synchronization signal blocks other than the synchronization signal block corresponding to the transmission beam in the signal block is a synchronization signal block that needs to be transmitted.
  • the number of bits of the configuration information sent through the physical direct broadcast channel can be reduced, but by further consideration, since the vehicle acting as the base station can determine the beam that sends the configuration information, that is, the configuration information is located The beam is transmitted, and the vehicle acting as the user equipment can determine the beam that receives the configuration information, that is, the receive beam where the configuration information is located. Therefore, when sending the configuration information, one bit can be omitted from the m bits, and the bit is the transmission configuration The transmission status of the target synchronization signal block corresponding to the beam where the information is located. Since the target synchronization signal block needs to be transmitted in this beam, then this bit must be 1, so only other m-1 bits need to be sent to indicate synchronization signals other than the target synchronization signal block Whether the block needs to be sent.
  • the target synchronization signal block group where the target synchronization signal block is located is also sent, so the corresponding bit of the n synchronization bits of the target synchronization signal block group must also be 1, so that One bit is also omitted from the bits, and only other n-1 bits need to be sent to indicate whether the synchronization signal block group other than the target synchronization signal block group needs to be sent.
  • the number of bits of configuration information transmitted through the physical direct-connected broadcast channel can be further reduced, thereby reducing the occupation of the physical direct-connected broadcast channel.
  • FIG. 5 is a schematic flowchart illustrating another method for broadcasting configuration information of a synchronization signal block according to an embodiment of the present disclosure. As shown in FIG. 5, the method further includes:
  • step S14 before broadcasting the configuration information through a physical direct broadcast channel, determine whether the number of bits of the configuration information is greater than a second preset value
  • the broadcasting of the configuration information through the physical direct broadcast channel includes:
  • step S131 the information of the second preset value bit in the configuration information is broadcast through the physical direct broadcast channel, and the information of the other bits in the configuration information is transmitted through the other channel.
  • the second preset value may be a value smaller than the maximum number of bits that can be transmitted by the physical direct broadcast channel, and the second preset value may be a configuration that can be used for transmission in the physical direct broadcast channel
  • the upper limit of the number of bits of information In this case, the number of other bits in the physical direct broadcast channel needs to transmit content other than configuration information. If the number of bits of the configuration information is greater than the second preset value, then It is not enough to send the configuration information through the physical direct connection broadcast channel, so the information of the second preset value bit in the configuration information can be broadcast through the physical direct connection broadcast channel, and the information of other bits in the configuration information can be transmitted through other channels To ensure that the configuration information can be sent smoothly.
  • the synchronization signal blocks in the synchronization signal block group correspond to the beams one-to-one.
  • multiple synchronization signal blocks in the synchronization signal block group correspond to the same beam.
  • the number of bits in the configuration information is related to the beam, that is, the number of beams corresponding to the maximum number needs to be based on the first preset The relationship of the values determines the number of bits of configuration information that needs to be generated.
  • the maximum number of synchronization signals that can be transmitted blocks L 8
  • the number can be transmitted beam B n 4 i.e., each beam signal is capable of transmitting two sync blocks
  • the number of bits of the configuration information is based to B n
  • B n is less than or equal to K
  • configuration information with the number of bits B n is generated.
  • FIG. 6 is a schematic flowchart illustrating a method for receiving configuration information of a synchronization signal block according to an embodiment of the present disclosure.
  • the method for receiving the configuration information of the synchronization signal block shown in this embodiment can be applied to a device that can function as a user equipment in direct link communication, for example, to communicate with a vehicle serving as a base station in the embodiment shown in FIG. 1
  • the vehicle can receive information broadcast by the vehicle acting as a base station in the embodiment shown in FIG. 1 based on the 5G NR technology.
  • the method for receiving the configuration information of the synchronization signal block may include the following steps:
  • step S21 according to the frequency band of the received synchronization signal block, determine the maximum number of synchronization signal blocks that can be received;
  • a first preset value is determined according to the physical directly connected broadcast channel receiving the synchronization signal block in the frequency band, wherein the first preset value and the physical directly connected broadcast channel can transmit bits Positive correlation
  • step S23 the number of bits of configuration information that needs to be received is determined according to the relationship between the maximum number and the first preset value, where the configuration information is used to indicate the synchronization signal that needs to be received in the maximum number of synchronization signal blocks Piece;
  • step S24 receiving the configuration information through a physical direct broadcast channel
  • step S25 the parameter on which the configuration information is parsed is determined according to the number of bits
  • step S26 the configuration information is parsed according to the parameters.
  • the method shown in this embodiment may be applied to a vehicle serving as a user equipment, for example, corresponding to the embodiment shown in FIG. 1, may be applied to a B vehicle.
  • the maximum number of received synchronization signal blocks can be determined. It is also possible to determine the physical direct connection broadcast channel receiving the synchronization signal block and determine the maximum number L of synchronization signal blocks that the physical direct connection broadcast channel can receive, and then to determine the physical direct connection broadcast channel receiving the synchronization signal block in the frequency band.
  • the first preset value K is determined, and then the number of bits of configuration information to be received is determined according to the relationship between the maximum number L and the first preset value K.
  • the vehicle determines the parameters in the algorithm for parsing the configuration information, and then parses the configuration information according to the algorithm for determining the parameters, and determines the transmission status of the synchronization signal block according to the configuration information, so as to receive the synchronization signal block.
  • FIG. 7 is a schematic flowchart illustrating a method of determining the number of bits of received configuration information according to the relationship between the maximum number and a first preset value according to an embodiment of the present disclosure. As shown in FIG. 7, the determining the number of bits for receiving configuration information according to the relationship between the maximum number and the first preset value includes:
  • step S231 it is determined whether the maximum number is greater than the first preset value
  • step S232 if the maximum number is less than or equal to the first preset value, it is determined that the number of received bits is the maximum number of configuration information, where each bit in the configuration information respectively indicates whether a synchronization signal block It is a synchronization signal block that needs to be received.
  • the maximum number L is less than or equal to the first preset value K, it indicates that the maximum number of L bits of configuration information can be received through the physical direct broadcast channel , That is, the vehicle acting as the base station can send the configuration information of the maximum number of L bits through the physical direct broadcast channel, and then it can be determined that the configuration information of the number of received bits is L.
  • FIG. 8 is a schematic flowchart illustrating another method for determining the number of bits of the received configuration information according to the relationship between the maximum number and the first preset value according to an embodiment of the present disclosure.
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers.
  • the relationship of the first preset value determines that the number of bits for receiving configuration information includes:
  • step S233 it is determined whether the maximum number is greater than the first preset value
  • step S234 if the maximum number is greater than the first preset value, it is determined that the configuration information of the number of received bits is n + m, where n bits of the n + m bits are used to indicate n synchronization signals Whether each synchronization signal block group in the block group is a synchronization signal block group to be received, and m bits of the n + m bits are used to indicate whether each synchronization signal block in the synchronization signal block group to be received is required Received sync block.
  • the maximum number L is greater than the first preset value K, it indicates that the physical direct connection broadcast channel is insufficient to receive L bits of configuration information, that is, The vehicle acting as a base station is insufficient to send configuration information with a maximum number of L bits through a directly connected broadcast channel.
  • the vehicle acting as a base station generates and transmits configuration information with a number of bits less than L, and the number of received configuration information bits is also less than L.
  • L m ⁇ n.
  • FIG. 9 is a schematic flowchart illustrating yet another method for determining the number of bits of received configuration information according to the relationship between the maximum number and the first preset value according to an embodiment of the present disclosure.
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers.
  • the relationship of the first preset value determines the number of bits of the configuration information includes:
  • step S235 determine whether the maximum number is greater than the first preset value
  • step S236 if the maximum number is greater than the first preset value, the receiving beam where the configuration information is received is determined, and the configuration information with the number of received bits (n-1) + (m-1) is determined, where , (N-1) of the (n-1) + (m-1) bits are used to indicate (n-1) outside the synchronization signal block group where the synchronization signal block corresponding to the receive beam is located Whether each synchronization signal block group in the synchronization signal block group is a synchronization signal block group that needs to be transmitted, (m-1) bits of the (n-1) + (m-1) bits are used to indicate the need Whether each of the (m-1) synchronization signal blocks other than the synchronization signal block corresponding to the receive beam in the transmitted synchronization signal block is a synchronization signal block that needs to be transmitted.
  • the number of bits of configuration information sent by the vehicle serving as the base station is (n-1) + (m- 1), it can be determined that the number of bits of the received configuration information is also (n-1) + (m-1).
  • the receiving beam where the configuration information is received since the receiving beam where the configuration information is received is already known (for example, it can be determined when establishing a communication connection with a vehicle serving as a base station), it can be determined that the synchronization signal block corresponding to the receiving beam must be received At this point, and the synchronization signal block is identified, according to the synchronization signal block identification, it can be determined that the synchronization signal block is the number of the synchronization signal block of the group.
  • the synchronization signal block identification is from 0 to 63, then if the identification of the synchronization signal block corresponding to the receiving beam is determined to be 7, that is, the eighth synchronization in the first line
  • the signal block must be received, and based on this, the received configuration information with the number of bits (n-1) + (m-1) can be complemented.
  • the first (n-1) bits indicate whether each synchronization signal block group among (n-1) synchronization signal block groups other than the synchronization signal block group where the synchronization signal block corresponding to the received beam is to be transmitted Synchronization signal block group, the last (m-1) bits are used to indicate whether each synchronization signal block in (m-1) synchronization signal blocks other than the synchronization signal block corresponding to the receive beam in the synchronization signal block to be transmitted
  • the first (n-1) bits in the received configuration information are 0111101
  • the last (m-1) bits are 1100111
  • the first (n-1) bits can be The first bit can be complemented by 1 to obtain the first n bits of 10111101
  • the 8th bit of the last (m-1) bits can be complemented by 1, to obtain the last m bits of 11001111, and then analyzed based on the completed configuration information.
  • FIG. 10 is a schematic flowchart illustrating another direct link communication method according to an embodiment of the present disclosure. As shown in FIG. 10, the method further includes:
  • step S27 before receiving the configuration information through the physical direct connection broadcast channel, determine whether the number of bits of the configuration information is greater than a second preset value
  • the receiving the configuration information through the physical direct broadcast channel includes:
  • step S241 the information of the second preset value bit in the configuration information is received through a physical direct broadcast channel, and the information of other bits in the configuration information is received through another channel.
  • the vehicle acting as a base station may broadcast the first Two preset value bits of information, and transmitting other bits of information in the configuration information through other channels, in this embodiment, the vehicle serving as the user equipment receives the second preset value bits in the configuration information through the physical direct connection broadcast channel , The other bits of the configuration information are received through other channels.
  • the synchronization signal blocks in the synchronization signal block group correspond to the beams one-to-one.
  • multiple synchronization signal blocks in the synchronization signal block group correspond to the same beam.
  • the present disclosure also provides an embodiment of the direct link communication device.
  • FIG. 11 is a schematic block diagram of a broadcasting device showing configuration information of a synchronization signal block according to an embodiment of the present disclosure.
  • the broadcast device of the configuration information of the synchronization signal block shown in this embodiment can be applied to a device that can function as a base station in direct link communication, such as a vehicle that can imitate a base station transmitting signals through a beam, and the vehicle can be based on 5G NR technology communicates with other vehicles.
  • the broadcasting device of the configuration information of the synchronization signal block may include:
  • the quantity determination module 11 is configured to determine the maximum number of synchronization signal blocks that can be transmitted according to the frequency band at which the synchronization signal blocks are sent;
  • the bit number determining module 12 is configured to determine the number of bits of configuration information to be generated according to the relationship between the maximum number and the first preset value;
  • the information generating module 13 is configured to generate configuration information including the number of bits, wherein the configuration information is used to indicate a synchronization signal block that needs to be transmitted among the maximum number of synchronization signal blocks, and the first preset value is The number of bits that can be sent by the physical directly connected broadcast channel is positively correlated;
  • the broadcasting module 14 is configured to broadcast the configuration information through a physical direct broadcast channel.
  • bit number determining module 12 is a schematic block diagram showing a bit number determination module according to an embodiment of the present disclosure. As shown in FIG. 12, the bit number determining module 12 includes:
  • the first comparison sub-module 121 is configured to determine whether the maximum number is greater than a first preset value
  • the first generation submodule 122 is configured to generate configuration information with the maximum number of bits when the maximum number is less than or equal to the first preset value, wherein each bit in the configuration information Respectively indicate whether a synchronization signal block is a synchronization signal block that needs to be transmitted.
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers, and the bit number determination module includes:
  • the second comparison submodule 123 determines whether the maximum number is greater than the first preset value
  • the second generation submodule 124 generates configuration information with the number of bits n + m if the maximum number is greater than the first preset value, where n bits of the n + m bits are used to indicate n synchronizations Whether each synchronization signal block group in the signal block group is a synchronization signal block group to be sent, and m bits of the n + m bits are used to indicate whether each synchronization signal block in the synchronization signal block group to be sent is Synchronization signal block to be sent.
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers, and the bit number determination module includes:
  • the third comparison submodule 125 determines whether the maximum number is greater than the first preset value
  • the third generation submodule 126 determines the transmit beam where the configuration information is located, and generates configuration information with the number of bits (n-1) + (m-1), where, (N-1) of the (n-1) + (m-1) bits are used to indicate (n-1) out of the synchronization signal block group where the synchronization signal block corresponding to the transmission beam is located Whether each synchronization signal block group in the synchronization signal block group is a synchronization signal block group that needs to be sent, and (m-1) bits of the (n-1) + (m-1) bits are used to indicate the need to send Whether each of the (m-1) synchronization signal blocks other than the synchronization signal block corresponding to the transmission beam in the synchronization signal block of the synchronization signal block is a synchronization signal block that needs to be transmitted.
  • FIG. 15 is a schematic block diagram of another broadcasting apparatus showing configuration information of a synchronization signal block according to an embodiment of the present disclosure. As shown in FIG. 15, the device further includes:
  • the comparison module 15 determines whether the number of bits of the configuration information is greater than the second preset value before broadcasting the configuration information through the physical direct connection broadcast channel;
  • the broadcast module 14 is configured to broadcast the information of the second preset value bits in the configuration information through the physical direct connection broadcast channel when the number of bits of the configuration information is greater than the second preset value, by Other channels transmit information of other bits in the configuration information.
  • the synchronization signal blocks in the synchronization signal block group correspond to the beams one-to-one.
  • multiple synchronization signal blocks in the synchronization signal block group correspond to the same beam.
  • FIG. 16 is a schematic block diagram illustrating a device for receiving configuration information of a synchronization signal block according to an embodiment of the present disclosure.
  • the apparatus for receiving the configuration information of the synchronization signal block shown in this embodiment can be applied to devices that can function as user equipment in direct link communication, for example, with a vehicle serving as a base station in the embodiment shown in FIG. 11 A communicating vehicle, which can receive information broadcast by the vehicle acting as a base station in the embodiment shown in FIG. 11 based on 5G NR technology.
  • the apparatus for receiving the configuration information of the synchronization signal block may include:
  • the quantity determination module 21 determines the maximum number of synchronization signal blocks that can be received according to the frequency band of the received synchronization signal blocks;
  • the value determining module 22 is configured to determine a first preset value according to the physical direct-connected broadcast channel receiving the synchronization signal block in the frequency band, wherein the first preset value and the physical direct-connected broadcast channel are capable of The number of bits sent is positively correlated;
  • the bit number determining module 23 determines the number of bits of configuration information that needs to be received according to the relationship between the maximum number and the first preset value, where the configuration information is used to indicate the synchronization that needs to be received in the maximum number of synchronization signal blocks Signal block
  • the receiving module 24 is configured to receive the configuration information through a physical direct broadcast channel
  • the parameter determination module 25 is configured to determine the parameter on which the configuration information is parsed according to the number of bits;
  • the parsing module 26 is configured to parse the configuration information according to the parameters.
  • bit number determining module 23 includes:
  • the first comparison submodule 231 determines whether the maximum number is greater than the first preset value
  • the first determining submodule 232 determines that the number of received bits is the maximum number of configuration information if the maximum number is less than or equal to the first preset value, where each bit in the configuration information represents a synchronization signal Whether the block is a synchronization signal block that needs to be received.
  • FIG. 18 is a schematic block diagram illustrating another bit number determination module according to an embodiment of the present disclosure.
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers, and the bit number determination module 23 includes :
  • the second comparison submodule 233 determines whether the maximum number is greater than the first preset value
  • the second determining submodule 234 determines that the configuration information of the number of received bits is n + m if the maximum number is greater than the first preset value, where n bits of the n + m bits are used to indicate n Whether each synchronization signal block group in the synchronization signal block group is a synchronization signal block group that needs to be received, and m bits of the n + m bits are used to indicate whether each synchronization signal block in the synchronization signal block group that needs to be received is It is a synchronization signal block that needs to be received.
  • FIG. 19 is a schematic block diagram illustrating yet another bit number determination module according to an embodiment of the present disclosure.
  • the maximum number of synchronization signal blocks includes n synchronization signal block groups, and each synchronization signal block group includes m synchronization signal blocks, where m and n are positive integers
  • the bit number determination module includes:
  • the third comparison submodule 235 determines whether the maximum number is greater than the first preset value
  • FIG. 20 is a schematic block diagram illustrating another apparatus for receiving configuration information of a synchronization signal block according to an embodiment of the present disclosure. As shown in FIG. 20, the device further includes:
  • the comparison module 27 determines whether the number of bits of the configuration information is greater than the second preset value before receiving the configuration information through the physical direct broadcast channel
  • the receiving module 24 is configured to receive the information of the second preset value bits in the configuration information through the physical direct connection broadcast channel when the number of bits of the configuration information is greater than the second preset value, by Other channels receive other bits of information in the configuration information.
  • the synchronization signal blocks in the synchronization signal block group correspond to the beams one-to-one.
  • multiple synchronization signal blocks in the synchronization signal block group correspond to the same beam.
  • the relevant parts can be referred to the description of the method embodiments.
  • the device embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located One place, or can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment. Those of ordinary skill in the art can understand and implement without paying creative labor.
  • An embodiment of the present disclosure also proposes an electronic device, including:
  • Memory for storing processor executable instructions
  • the processor is configured to implement the steps in the method described in any one of the embodiments in FIG. 1 to FIG. 5 above.
  • An embodiment of the present disclosure also proposes an electronic device, including:
  • Memory for storing processor executable instructions
  • the processor is configured to implement the steps in the method described in any one of the embodiments in FIG. 6 to FIG. 10 above.
  • An embodiment of the present disclosure also proposes a computer-readable storage medium on which a computer program is stored, which when executed by a processor implements the steps in the method described in any one of the embodiments in FIGS. 1 to 5 above.
  • An embodiment of the present disclosure also proposes a computer-readable storage medium on which a computer program is stored, which when executed by a processor implements the steps in the method described in any of the embodiments of FIGS. 6 to 10 described above.
  • FIG. 21 is a schematic structural diagram of an apparatus 2100 for broadcasting configuration information of a synchronization signal block according to an embodiment of the present disclosure.
  • the device 2100 may be provided as a base station.
  • the device 2100 includes a processing component 2122, a wireless transmission / reception component 2124, an antenna component 2126, and a signal processing part unique to a wireless interface.
  • the processing component 2122 may further include one or more processors. One of the processors in the processing component 2122 may be configured to implement the steps in the method in the embodiments shown in FIGS. 1 to 5.
  • the device 2200 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and so on.
  • the device 2200 may include one or more of the following components: processing component 2202, memory 2204, power supply component 2206, multimedia component 2208, audio component 2210, input / output (I / O) interface 2212, sensor component 2214, ⁇ ⁇ ⁇ 2216 ⁇ And communication components 2216.
  • the processing component 2202 generally controls the overall operations of the device 2200, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 2202 may include one or more processors 2220 to execute instructions to complete all or part of the steps in the above method.
  • the processing component 2202 may include one or more modules to facilitate interaction between the processing component 2202 and other components.
  • the processing component 2202 may include a multimedia module to facilitate interaction between the multimedia component 2208 and the processing component 2202.
  • the memory 2204 is configured to store various types of data to support operations at the device 2200. Examples of these data include instructions for any application or method operating on the device 2200, contact data, phone book data, messages, pictures, videos, and so on.
  • the memory 2204 can be implemented by any type of volatile or nonvolatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 2206 provides power to various components of the device 2200.
  • the power supply component 2206 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 2200.
  • the multimedia component 2208 includes a screen between the device 2200 and the user that provides an output interface.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundary of the touch or sliding action, but also detect the duration and pressure related to the touch or sliding operation.
  • the multimedia component 2208 includes a front camera and / or a rear camera. When the device 2200 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera may receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 2210 is configured to output and / or input audio signals.
  • the audio component 2210 includes a microphone (MIC).
  • the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 2204 or sent via the communication component 2216.
  • the audio component 2210 further includes a speaker for outputting audio signals.
  • the I / O interface 2212 provides an interface between the processing component 2202 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, or a button. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor assembly 2214 includes one or more sensors for providing the device 2200 with status assessments in various aspects.
  • the sensor component 2214 can detect the on / off state of the device 2200, and the relative positioning of the components, for example, the component is the display and keypad of the device 2200, and the sensor component 2214 can also detect the position change of the device 2200 or one component of the device 2200 The presence or absence of user contact with the device 2200, the orientation or acceleration / deceleration of the device 2200, and the temperature change of the device 2200.
  • the sensor assembly 2214 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor assembly 2214 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 2214 may further include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 2216 is configured to facilitate wired or wireless communication between the device 2200 and other devices.
  • the device 2200 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 2216 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 2216 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 2200 may be one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components are implemented to perform the steps in the method described in any one of the embodiments in FIGS. 6 to 10 above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller a microcontroller, a microprocessor or other electronic components are implemented to perform the steps in the method described in any one of the embodiments in FIGS. 6 to 10 above.
  • a non-transitory computer-readable storage medium including instructions is also provided, for example, a memory 2204 including instructions, which can be executed by the processor 2220 of the device 2200 to complete the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

本公开涉及同步信号块的配置信息的广播方法,适用于直连链路通信,所述方法包括:根据发送同步信号块的频段,确定所能发送的同步信号块的最大数量;根据最大数量与第一预设数值的关系确定需要生成的配置信息的比特数,并生成包含比特数的配置信息,其中,配置信息用于指示在最大数量的同步信号块中需要发送的同步信号块,第一预设数值与物理直连广播信道所能发送的比特数正相关;通过物理直连广播信道广播配置信息。在直连链路通信的场景下,通过物理直连广播信道广播配置信息,并且可以根据最大数量与第一预设数值的关系确定需要生成的配置信息的比特数,并生成包含该比特数的配置信息,以保证能够通过物理直连广播信道顺利地发送配置信息。

Description

同步信号块的配置信息的广播、接收方法和装置 技术领域
本公开涉及通信技术领域,具体而言,涉及同步信号块的配置信息的广播方法、同步信号块的配置信息的接收方法、同步信号块的配置信息的广播装置、同步信号块的配置信息的接收装置、电子设备和计算机可读存储介质。
背景技术
在5G NR(New Radio,新空口)技术中,基站通过RMSI(Remaining minimum system information,其它非必要信息)发送配置信息来指示同步信号块(Synchronizing Signal Block,简称SSB)的发送情况。
然而在某些通信场景下,例如车联网(V2X)中直连链路(sidelink)通信的场景下,通信双方并不发送RSMI,这会影响上述配置信息的发送。
发明内容
有鉴于此,本公开提出了同步信号块的配置信息的广播方法、同步信号块的配置信息的接收方法、同步信号块的配置信息的广播装置、同步信号块的配置信息的接收装置、电子设备和计算机可读存储介质。
根据本公开的实施例的第一方面,提出一种同步信号块的配置信息的广播方法,适用于直连链路通信,所述方法包括:
根据发送同步信号块的频段,确定所能发送的同步信号块的最大数量;
根据所述最大数量与第一预设数值的关系确定需要生成的配置信息的比特数,并生成包含所述比特数的配置信息,其中,所述配置信息用于指示在最大数量的同步信号块中需要发送的同步信号块,所述第一预设数值与所述物理直连广播信道所能发送的比特数正相关;
通过物理直连广播信道广播所述配置信息。
可选地,所述根据所述最大数量与第一预设数值的关系确定配置信息的比特数,并生成包含所述比特数的配置信息包括:
确定所述最大数量是否大于第一预设数值;
若所述最大数量小于或等于第一预设数值,生成比特数为所述最大数量的配置信息,其中,所述配置信息中的每个比特分别表示一个同步信号块是否为需要发送的同步信号块。
可选地,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述根据所述最大数量与第一预设数值的关系确定配置信息的比特数,并生成包含所述比特数的配置信息包括:
确定所述最大数量是否大于第一预设数值;
若所述最大数量大于第一预设数值,生成比特数为n+m的配置信息,其中,所述n+m个比特中的n个比特用于指示n个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述n+m个比特中的m个比特用于指示需要发送的同步信号块组中每个同步信号块是否为需要发送的同步信号块。
可选地,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述根据所述最大数量与第一预设数值的关系确定配置信息的比特数,并生成包含所述比特数的配置信息包括:
确定所述最大数量是否大于第一预设数值;
若所述最大数量大于第一预设数值,确定所述配置信息所在的发送波束,生成比特数为(n-1)+(m-1)的配置信息,其中,所述(n-1)+(m-1)个比特中的(n-1)个比特用于指示所述发送波束对应的同步信号块所在的同步信号块组以外的(n-1)个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述(n-1)+(m-1)个比特中的(m-1)个比特用于指示需要发送的同步信号块中所述发送波束对应的同步信号块以外的(m-1)个同步信号块中每个同步信号块是否为需要发送的同步信号块。
可选地,所述方法还包括:
在通过物理直连广播信道广播所述配置信息之前,确定所述配置信息的比特数是否大于第二预设数值;
若所述配置信息的比特数大于第二预设数值,所述通过物理直连广播信道广播 所述配置信息包括:
通过物理直连广播信道广播所述配置信息中第二预设数值比特的信息,通过其他信道传输所述配置信息中其他比特的信息。
可选地,所述同步信号块组中的同步信号块与波束一一对应。
可选地,所述同步信号块组中的多个同步信号块对应相同波束。
根据本公开的实施例的第二方面,提出一种同步信号块的配置信息的接收方法,适用于直连链路通信,所述方法包括:
根据接收同步信号块的频段,确定所能接收的同步信号块的最大数量;
根据在所述频段中接收同步信号块的物理直连广播信道确定第一预设数值,其中,所述第一预设数值与所述物理直连广播信道所能发送的比特数正相关;
根据所述最大数量与第一预设数值的关系确定需要接收的配置信息的比特数,其中,所述配置信息用于指示在最大数量的同步信号块中需要接收的同步信号块;
通过物理直连广播信道接收所述配置信息;
根据所述比特数确定解析所述配置信息所依据的参数;
依据所述参数解析所述配置信息。
可选地,所述根据所述最大数量与第一预设数值的关系确定接收配置信息的比特数包括:
确定所述最大数量是否大于第一预设数值;
若所述最大数量小于或等于第一预设数值,确定接收比特数为所述最大数量的配置信息,其中,所述配置信息中的每个比特分别表示一个同步信号块是否为需要接收的同步信号块。
可选地,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述根据所述最大数量与第一预设数值的关系确定接收配置信息的比特数包括:
确定所述最大数量是否大于第一预设数值;
若所述最大数量大于第一预设数值,确定接收比特数为n+m的配置信息,其中,所述n+m个比特中的n个比特用于指示n个同步信号块组中每个同步信号块组是 否为需要接收的同步信号块组,所述n+m个比特中的m个比特用于指示需要接收的同步信号块组中每个同步信号块是否为需要接收的同步信号块。
可选地,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述根据所述最大数量与第一预设数值的关系确定配置信息的比特数包括:
确定所述最大数量是否大于第一预设数值;
若所述最大数量大于第一预设数值,确定接收所述配置信息时所在的接收波束,确定接收比特数为(n-1)+(m-1)的配置信息,其中,所述(n-1)+(m-1)个比特中的(n-1)个比特用于指示所述接收波束对应的同步信号块所在的同步信号块组以外的(n-1)个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述(n-1)+(m-1)个比特中的(m-1)个比特用于指示需要发送的同步信号块中所述接收波束对应的同步信号块以外的(m-1)个同步信号块中每个同步信号块是否为需要发送的同步信号块。
可选地,所述方法还包括:
在通过物理直连广播信道接收所述配置信息之前,确定所述配置信息的比特数是否大于第二预设数值;
若所述配置信息的比特数大于第二预设数值,所述通过物理直连广播信道接收所述配置信息包括:
通过物理直连广播信道接收所述配置信息中第二预设数值比特的信息,通过其他信道接收所述配置信息中其他比特的信息。
可选地,所述同步信号块组中的同步信号块与波束一一对应。
可选地,所述同步信号块组中的多个同步信号块对应相同波束。
根据本公开的实施例的第三方面,提出一种同步信号块的配置信息的广播装置,适用于直连链路通信,所述装置包括:
数量确定模块,被配置为根据发送同步信号块的频段,确定所能发送的同步信号块的最大数量;
比特数确定模块,被配置为根据所述最大数量与第一预设数值的关系确定需要生成的配置信息的比特数;
信息生成模块,被配置为生成包含所述比特数的配置信息,其中,所述配置信 息用于指示在最大数量的同步信号块中需要发送的同步信号块,所述第一预设数值与所述物理直连广播信道所能发送的比特数正相关;
广播模块,被配置为通过物理直连广播信道广播所述配置信息。
可选地,所述比特数确定模块包括:
第一比较子模块,被配置为确定所述最大数量是否大于第一预设数值;
第一生成子模块,被配置为在所述最大数量小于或等于第一预设数值的情况下,生成比特数为所述最大数量的配置信息,其中,所述配置信息中的每个比特分别表示一个同步信号块是否为需要发送的同步信号块。
可选地,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述比特数确定模块包括:
第二比较子模块,确定所述最大数量是否大于第一预设数值;
第二生成子模块,若所述最大数量大于第一预设数值,生成比特数为n+m的配置信息,其中,所述n+m个比特中的n个比特用于指示n个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述n+m个比特中的m个比特用于指示需要发送的同步信号块组中每个同步信号块是否为需要发送的同步信号块。
可选地,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述比特数确定模块包括:
第三比较子模块,确定所述最大数量是否大于第一预设数值;
第三生成子模块,若所述最大数量大于第一预设数值,确定所述配置信息所在的发送波束,生成比特数为(n-1)+(m-1)的配置信息,其中,所述(n-1)+(m-1)个比特中的(n-1)个比特用于指示所述发送波束对应的同步信号块所在的同步信号块组以外的(n-1)个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述(n-1)+(m-1)个比特中的(m-1)个比特用于指示需要发送的同步信号块中所述发送波束对应的同步信号块以外的(m-1)个同步信号块中每个同步信号块是否为需要发送的同步信号块。
可选地,所述装置还包括:
比较模块,在通过物理直连广播信道广播所述配置信息之前,确定所述配置信息的比特数是否大于第二预设数值;
其中,所述广播模块被配置为在所述配置信息的比特数大于第二预设数值的情况下,通过物理直连广播信道广播所述配置信息中第二预设数值比特的信息,通过其他信道传输所述配置信息中其他比特的信息。
可选地,所述同步信号块组中的同步信号块与波束一一对应。
可选地,所述同步信号块组中的多个同步信号块对应相同波束。
根据本公开的实施例的第四方面,提出一种同步信号块的配置信息的接收装置,适用于直连链路通信,所述装置包括:
数量确定模块,根据接收同步信号块的频段,确定所能接收的同步信号块的最大数量;
数值确定模块,被配置为根据在所述频段中接收同步信号块的物理直连广播信道确定第一预设数值,其中,所述第一预设数值与所述物理直连广播信道所能发送的比特数正相关;
比特数确定模块,根据所述最大数量与第一预设数值的关系确定需要接收的配置信息的比特数,其中,所述配置信息用于指示在最大数量的同步信号块中需要接收的同步信号块;
接收模块,被配置为通过物理直连广播信道接收所述配置信息;
参数确定模块,被配置为根据所述比特数确定解析所述配置信息所依据的参数;
解析模块,被配置为依据所述参数解析所述配置信息。
可选地,所述比特数确定模块包括:
第一比较子模块,确定所述最大数量是否大于第一预设数值;
第一确定子模块,若所述最大数量小于或等于第一预设数值,确定接收比特数为所述最大数量的配置信息,其中,所述配置信息中的每个比特分别表示一个同步信号块是否为需要接收的同步信号块。
可选地,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述比特数确定模块包括:
第二比较子模块,确定所述最大数量是否大于第一预设数值;
第二确定子模块,若所述最大数量大于第一预设数值,确定接收比特数为n+m的配置信息,其中,所述n+m个比特中的n个比特用于指示n个同步信号块组中每个同步信号块组是否为需要接收的同步信号块组,所述n+m个比特中的m个比特用于指示需要接收的同步信号块组中每个同步信号块是否为需要接收的同步信号块。
可选地,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述比特数确定模块包括:
第三比较子模块,确定所述最大数量是否大于第一预设数值;
第三确定子模块,若所述最大数量大于第一预设数值,确定接收所述配置信息时所在的接收波束,确定接收比特数为(n-1)+(m-1)的配置信息,其中,所述(n-1)+(m-1)个比特中的(n-1)个比特用于指示所述接收波束对应的同步信号块所在的同步信号块组以外的(n-1)个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述(n-1)+(m-1)个比特中的(m-1)个比特用于指示需要发送的同步信号块中所述接收波束对应的同步信号块以外的(m-1)个同步信号块中每个同步信号块是否为需要发送的同步信号块。
可选地,所述装置还包括:
比较模块,在通过物理直连广播信道接收所述配置信息之前,确定所述配置信息的比特数是否大于第二预设数值;
其中,所述接收模块被配置为在所述配置信息的比特数大于第二预设数值的情况下,通过物理直连广播信道接收所述配置信息中第二预设数值比特的信息,通过其他信道接收所述配置信息中其他比特的信息。
可选地,所述同步信号块组中的同步信号块与波束一一对应。
可选地,所述同步信号块组中的多个同步信号块对应相同波束。
根据本公开的实施例的第五方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述同步信号块的配置信息的广播方法中的步骤。
根据本公开的实施例的第六方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述同步信号块的配置信息的接收方法中的步骤。
根据本公开的实施例的第七方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述同步信号块的配置信息的广播方法中的步骤。
根据本公开的实施例的第八方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述同步信号块的配置信息的接收方法中的步骤。
根据本公开的实施例,在直连链路通信的场景下,可以通过物理直连广播信道广播所述配置信息,并且可以根据所述最大数量与第一预设数值的关系确定需要生成的配置信息的比特数,并生成包含所述比特数的配置信息,以保证能够通过物理直连广播信道顺利地发送配置信息。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出一种同步信号块的配置信息的广播方法的示意流程图。
图2是根据本公开的实施例示出一种根据所述最大数量与第一预设数值的关系确定配置信息的比特数,并生成包含所述比特数的配置信息的示意流程图。
图3是根据本公开的实施例示出另一种根据所述最大数量与第一预设数值的关系确定配置信息的比特数,并生成包含所述比特数的配置信息的示意流程图。
图4是根据本公开的实施例示出又一种根据所述最大数量与第一预设数值的关 系确定配置信息的比特数,并生成包含所述比特数的配置信息的示意流程图。
图5是根据本公开的实施例示出另一种同步信号块的配置信息的广播方法的示意流程图。
图6是根据本公开的实施例示出一种同步信号块的配置信息的接收方法的示意流程图。
图7是根据本公开的实施例示出一种根据所述最大数量与第一预设数值的关系确定接收配置信息的比特数的示意流程图。
图8是根据本公开的实施例示出另一种根据所述最大数量与第一预设数值的关系确定接收配置信息的比特数的示意流程图。
图9是根据本公开的实施例示出又一种根据所述最大数量与第一预设数值的关系确定接收配置信息的比特数的示意流程图。
图10是根据本公开的实施例示出另一种同步信号块的配置信息的接收方法的示意流程图。
图11是根据本公开的实施例示出一种同步信号块的配置信息的广播装置的示意框图。
图12是根据本公开的实施例示出一种比特数确定模块的示意框图。
图13是根据本公开的实施例示出另一种比特数确定模块的示意框图。
图14是根据本公开的实施例示出又一种比特数确定模块的示意框图。
图15是根据本公开的实施例示出另一种同步信号块的配置信息的广播装置的示意框图。
图16是根据本公开的实施例示出一种同步信号块的配置信息的接收装置的示意框图。
图17是根据本公开的实施例示出一种比特数确定模块的示意框图。
图18是根据本公开的实施例示出另一种比特数确定模块的示意框图。
图19是根据本公开的实施例示出又一种比特数确定模块的示意框图。
图20是根据本公开的实施例示出另一种同步信号块的配置信息的接收装置的示意框图。
图21是根据本公开的实施例示出的一种用于同步信号块的配置信息的广播的装置的一结构示意图。
图22是根据本公开的实施例示出的一种用于同步信号块的配置信息的接收的装置的一结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是根据本公开的实施例示出一种同步信号块的配置信息的广播方法的示意流程图。本实施例所示的同步信号块的配置信息的广播方法可以适用于适用于直连链路通信中能够起到基站作用的设备,例如能够模仿基站通过波束发射信号的车辆,该车辆可以基于5G NR技术与其他车辆通信。
如图1所示,所述同步信号块的配置信息的广播方法可以包括以下步骤:
在步骤S11中,根据发送同步信号块的频段,确定所能发送的同步信号块的最大数量;
在步骤S12中,根据所述最大数量与第一预设数值的关系确定需要生成的配置信息的比特数,并生成包含所述比特数的配置信息,其中,所述配置信息用于指示在最大数量的同步信号块中需要发送的同步信号块,所述第一预设数值与所述物理直连广播信道所能发送的比特数正相关;
在步骤S13中,通过物理直连广播信道广播所述配置信息。
本实施可以适用在车联网场景中,在车联网场景中,车辆可以与其他车辆、车内设备、路边设备进行通信,以车辆和其他车辆通信为例,例如A车辆可以接收到基站发送的信号,而B车辆由于某些原因(例如处于基站覆盖范围以外)而不能接收到基站发送的信号,但是A车辆距离B车辆较近,可以接收到A车辆发送的信号,那么A车辆可以先与基站通信,接收基站发送的信息,然后模仿基站通过波束发射信号,使得B车辆可以接收到A车辆发射的信号,进而基于A车辆发射的信号获取到基站发 送的信息,A车辆和B车辆的通信并不通过基站,两者是基于直连链路进行的通信,在此通信过程中,A车辆充当基站,B车辆充当用户设备。本实施例所示的方法可以应用于A车辆。
由于通过直连链路通信并不发送RMSI,因此与基站和用户设备进行通信不同,本公开的实施例可以通过物理直连广播信道(Physical Sidelink Broadcast Channel,简称PSBCH)广播所述配置信息。
配置信息的比特数越多,可以表达的内容越准确,例如所能发送的同步信号块的最大数量为L(L可以等于4、8、64等数值),也即最多能够发送的同步信号块的数量为L,但是其中可能存在某些同步信号块不需要发送的情况,那么当配置信息的比特数为L,通过配置信息可以精确地表示这L个同步信号块中每个同步信号块是否为需要发送的同步信号块。
考虑到物理直连广播信道所能发送内容的比特数较为有限,所能发送的比特数并不一定能够达到最多能够发送的同步信号块的数量L,那么就需要适当调整配置信息的比特数。
本实施可以根据发送同步信号块的频段,确定所能发送的同步信号块的最大数量L,随着频段的中心频率提高,通过该频段发送信号就越容易受到遮挡,因此就需要发送更多数量的同步信号块来克服遮挡带来的影响,因此频段的中心频率越高,L值越大,频段的中心频率越低,L值越小。然后根据最大数量与第一预设数值K的关系确定需要生成的配置信息的比特数。其中,所述第一预设数值与所述物理直连广播信道所能发送的比特数正相关,也即能够发送比特数较多的物理直连广播信道,第一预设数值较大,能够发送比特数较少的物理直连广播信道,第一预设数值较小。
例如可以选择物理直连广播信道所能发送的比特数的最大值作为第一预设数值,也可以选择比物理直连广播信道所能发送的比特数的最大值小的值作为第一预设数值,在这种情况下,第一预设数值可以是物理直连广播信道中能够用于发送配置信息的比特数的上限值,物理直连广播信道中的其他比特数则需要传输配置信息以外的内容。
以物理直连广播信道所能发送的比特数的最大值作为第一预设数值为例。如果所能发送的同步信号块的最大数量L小于或等于第一预设数值K,说明通过物理直连广播信道可以发送L个比特的配置信息,那么可以生成比特数为L的配置信息,以便 准确地表示L个同步信号块中每个同步信号块是否为需要发送的同步信号块。如果所能发送的同步信号块的最大数量L大于第一预设数值K,说明通过物理直连广播信道不足以发送L个比特的配置信息,那么生成的配置信息的比特数就需要小于L,以保证能够通过物理直连广播信道顺利地发送配置信息。
根据本公开的实施例,在直连链路通信的场景下,可以通过物理直连广播信道广播所述配置信息,并且可以根据所述最大数量与第一预设数值的关系确定需要生成的配置信息的比特数,并生成包含所述比特数的配置信息,以保证能够通过物理直连广播信道顺利地发送配置信息。
图2是根据本公开的实施例示出一种根据所述最大数量与第一预设数值的关系确定配置信息的比特数,并生成包含所述比特数的配置信息的示意流程图。如图2所示,所述根据所述最大数量与第一预设数值的关系确定配置信息的比特数,并生成包含所述比特数的配置信息包括:
在步骤S121中,确定所述最大数量是否大于第一预设数值;
在步骤S122中,若所述最大数量小于或等于第一预设数值,生成比特数为所述最大数量的配置信息,其中,所述配置信息中的每个比特分别表示一个同步信号块是否为需要发送的同步信号块。
在一个实施例中,以选择物理直连广播信道所能发送的比特数的最大值作为第一预设数值K为例,若所述最大数量L小于或等于第一预设数值K,说明通过物理直连广播信道可以发送最大数量L个比特的配置信息,那么可以生成比特数为L的配置信息,以便准确地表示L个同步信号块中每个同步信号块是否为需要发送的同步信号块。
图3是根据本公开的实施例示出另一种根据所述最大数量与第一预设数值的关系确定配置信息的比特数,并生成包含所述比特数的配置信息的示意流程图。如图3所示,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述根据所述最大数量与第一预设数值的关系确定配置信息的比特数,并生成包含所述比特数的配置信息包括:
在步骤S123中,确定所述最大数量是否大于第一预设数值;
在步骤S124中,若所述最大数量大于第一预设数值,生成比特数为n+m的配置信息,其中,所述n+m个比特中的n个比特用于指示n个同步信号块组中每个同步 信号块组是否为需要发送的同步信号块组,所述n+m个比特中的m个比特用于指示需要发送的同步信号块组中每个同步信号块是否为需要发送的同步信号块。
在一个实施例中,以选择物理直连广播信道所能发送的比特数的最大值作为第一预设数值为例,若所述最大数量L大于第一预设数值K,说明通过物理直连广播信道不足以发送L个比特的配置信息,那么生成的配置信息的比特数就需要小于L,以保证能够通过物理直连广播信道顺利地发送配置信息,其中,L=m×n。
同时,还需要保证通过物理直连广播信道发送的配置信息能够准确地表达L个信号块中哪些信号块为需要发送的信号块,因此本实施例主要适用最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块。当每组同步信号块中相同位置的同步信号块的发送情况相同,就可以通过n+m个比特的配置信息表达L个同步信号块中每个同步信号块是否为需要发送的同步信号块。
以L=64,m=8,n=8为例,8个同步信号块组中的某些同步信号块组可以不发送,那么可以通过8个比特表示8个同步信号块组每个同步信号块组是否为需要发送的同步信号块组,例如第2个和第7个同步信号块组不发送,n个比特为10111101,m个比特则用于指示需要发送的同步信号块组中每个同步信号块是否为需要发送的同步信号块,例如每组同步信号块都是第3个和第4个同步信号块不需要发送,那么每个需要同步信号块组中同步信号块是否需要发送的情况可以通过m个比特表示,m个比特为11001111,据此,可以通过16个比特表达64个同步信号块的发送情况,减少了通过物理直连广播信道发送的配置信息的比特数。
图4是根据本公开的实施例示出又一种根据所述最大数量与第一预设数值的关系确定配置信息的比特数,并生成包含所述比特数的配置信息的示意流程图。如图4所示,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述根据所述最大数量与第一预设数值的关系确定配置信息的比特数,并生成包含所述比特数的配置信息包括:
在步骤S125中,确定所述最大数量是否大于第一预设数值;
在步骤S126中,若所述最大数量大于第一预设数值,确定所述配置信息所在的发送波束,生成比特数为(n-1)+(m-1)的配置信息,其中,所述(n-1)+(m-1)个比特中的(n-1)个比特用于指示所述发送波束对应的同步信号块所在的同步信号块组以外的(n-1)个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述 (n-1)+(m-1)个比特中的(m-1)个比特用于指示需要发送的同步信号块中所述发送波束对应的同步信号块以外的(m-1)个同步信号块中每个同步信号块是否为需要发送的同步信号块。
虽然基于图3所示的实施例,可以减少通过物理直连广播信道发送的配置信息的比特数,但是通过进一步考虑,由于充当基站的车辆可以确定发送配置信息的波束,也即配置信息所在的发送波束,并且充当用户设备的车辆可以确定接收配置信息的波束,也即配置信息所在的接收波束,因此,在发送配置信息时,可以在m个比特中省去一个比特,该比特即发送配置信息所在波束对应的目标同步信号块的发送情况,由于需要在该波束发送目标同步信号块,那么该比特必然为1,所以只需要发送其他m-1比特来表示目标同步信号块以外的同步信号块的是否需要发送即可。
进一步地,由于目标同步信号块被发送,那么目标同步信号块所在的目标同步信号块组也被发送,所以目标同步信号块组在n个比特中对应的比特也必然为1,从而可以在n个比特中也省去一个比特,只需要发送其他n-1比特来表示目标同步信号块组以外的同步信号块组的是否需要发送即可。
根据本实施例,可以在图3所示实施例的基础上进一步减少通过物理直连广播信道发送的配置信息的比特数,从而降低对物理直连广播信道的占用。
图5是根据本公开的实施例示出另一种同步信号块的配置信息的广播方法的示意流程图。如图5所示,所述方法还包括:
在步骤S14中,在通过物理直连广播信道广播所述配置信息之前,确定所述配置信息的比特数是否大于第二预设数值;
若所述配置信息的比特数大于第二预设数值,所述通过物理直连广播信道广播所述配置信息包括:
在步骤S131中,通过物理直连广播信道广播所述配置信息中第二预设数值比特的信息,通过其他信道传输所述配置信息中其他比特的信息。
在一个实施例中,第二预设数值可以是比物理直连广播信道所能发送的比特数的最大值小的值,第二预设数值可以是物理直连广播信道中能够用于发送配置信息的比特数的上限值,在这种情况下,物理直连广播信道中的其他比特数则需要传输配置信息以外的内容,若所述配置信息的比特数大于第二预设数值,那么仅通过物理直连广播信道并不足以发送配置信息,因此可以通过物理直连广播信道广播所述配置信息 中第二预设数值比特的信息,通过其他信道传输所述配置信息中其他比特的信息,确保配置信息能够顺利地发送。
可选地,所述同步信号块组中的同步信号块与波束一一对应。
可选地,所述同步信号块组中的多个同步信号块对应相同波束。
在一个实施例中,除了同步信号块与波束一一对应的情况,还存在多个同步信号块对应相同波束的情况,在这种情况下,由于一个波束可以发送多个同步信号块(并非同时发送,而是在不同时刻发送,同一时刻仍只能发送一个同步信号块),配置信息中的比特数就与波束相关,也即需要根据所述最大数量对应的波束的数量与第一预设数值的关系确定需要生成的配置信息的比特数。
例如所能发送的同步信号块的最大数量L=8,所能发送的波束数量B n=4,也即每个波束能够发送两个同步信号块,那么配置信息的比特数就是基于B n来判断,判断方式与前述实施例相同,例如B n小于或等于K,生成比特数为B n的配置信息。
图6是根据本公开的实施例示出一种同步信号块的配置信息的接收方法的示意流程图。本实施例所示的同步信号块的配置信息的接收方法可以适用于适用于直连链路通信中能够起到用户设备作用的设备,例如与图1所示实施例中充当基站的车辆进行通信的车辆,该车辆可以基于5G NR技术接收图1所示实施例中充当基站的车辆广播的信息。
如图6所示,所述同步信号块的配置信息的接收方法可以包括以下步骤:
在步骤S21中,根据接收同步信号块的频段,确定所能接收的同步信号块的最大数量;
在步骤S22中,根据在所述频段中接收同步信号块的物理直连广播信道确定第一预设数值,其中,所述第一预设数值与所述物理直连广播信道所能发送的比特数正相关;
在步骤S23中,根据所述最大数量与第一预设数值的关系确定需要接收的配置信息的比特数,其中,所述配置信息用于指示在最大数量的同步信号块中需要接收的同步信号块;
在步骤S24中,通过物理直连广播信道接收所述配置信息;
在步骤S25中,根据所述比特数确定解析所述配置信息所依据的参数;
在步骤S26中,依据所述参数解析所述配置信息。
在一个实施例中,本实施例所示的方法可以应用于充当用户设备的车辆,例如与图1所示实施例相对应地,可以应用于B车辆。
由于接收配置信息的车辆可以确定接收配置信息的频段,从而可以确定接收的同步信号块的最大数量。还可以确定接收同步信号块的物理直连广播信道,并确定该物理直连广播信道能接收的同步信号块的最大数量L,进而根据在所述频段中接收同步信号块的物理直连广播信道确定第一预设数值K,进而根据所述最大数量L与第一预设数值K的关系确定需要接收的配置信息的比特数。
根据接收到的配置信息比特数,车辆确定解析所述配置信息的算法中的参数,进而根据确定参数的算法解析配置信息,并根据配置信息确定同步信号块的发送情况,以便接收同步信号块。
图7是根据本公开的实施例示出一种根据所述最大数量与第一预设数值的关系确定接收配置信息的比特数的示意流程图。如图7所示,所述根据所述最大数量与第一预设数值的关系确定接收配置信息的比特数包括:
在步骤S231中,确定所述最大数量是否大于第一预设数值;
在步骤S232中,若所述最大数量小于或等于第一预设数值,确定接收比特数为所述最大数量的配置信息,其中,所述配置信息中的每个比特分别表示一个同步信号块是否为需要接收的同步信号块。
在一个实施例中,与图2所示实施例相对应地,若所述最大数量L小于或等于第一预设数值K,说明通过物理直连广播信道可以接收最大数量L个比特的配置信息,也即充当基站的车辆通过物理直连广播信道可以发送最大数量L个比特的配置信息,那么可以确定接收比特数为L的配置信息。
图8是根据本公开的实施例示出另一种根据所述最大数量与第一预设数值的关系确定接收配置信息的比特数的示意流程图。如图8所示,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述根据所述最大数量与第一预设数值的关系确定接收配置信息的比特数包括:
在步骤S233中,确定所述最大数量是否大于第一预设数值;
在步骤S234中,若所述最大数量大于第一预设数值,确定接收比特数为n+m 的配置信息,其中,所述n+m个比特中的n个比特用于指示n个同步信号块组中每个同步信号块组是否为需要接收的同步信号块组,所述n+m个比特中的m个比特用于指示需要接收的同步信号块组中每个同步信号块是否为需要接收的同步信号块。
在一个实施例中,与图3所示实施例相对应地,若所述最大数量L大于第一预设数值K,说明通过物理直连广播信道不足以接收L个比特的配置信息,也即充当基站的车辆通过物理直连广播信道不足以发送最大数量L个比特的配置信息,充当基站的车辆会生成比特数小于L的配置信息并发送,则接收的配置信息的比特数也小于L,其中,L=m×n。
图9是根据本公开的实施例示出又一种根据所述最大数量与第一预设数值的关系确定接收配置信息的比特数的示意流程图。如图9所示,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述根据所述最大数量与第一预设数值的关系确定配置信息的比特数包括:
在步骤S235中,确定所述最大数量是否大于第一预设数值;
在步骤S236中,若所述最大数量大于第一预设数值,确定接收所述配置信息时所在的接收波束,确定接收比特数为(n-1)+(m-1)的配置信息,其中,所述(n-1)+(m-1)个比特中的(n-1)个比特用于指示所述接收波束对应的同步信号块所在的同步信号块组以外的(n-1)个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述(n-1)+(m-1)个比特中的(m-1)个比特用于指示需要发送的同步信号块中所述接收波束对应的同步信号块以外的(m-1)个同步信号块中每个同步信号块是否为需要发送的同步信号块。
在一个实施例中,与图4所示实施例相对应地,若所述最大数量大于第一预设数值,充当基站的车辆发送的配置信息的比特数为(n-1)+(m-1),可以确定接收的配置信息的比特数也为(n-1)+(m-1)。
进而在解析配置信息时,由于已经知道接收所述配置信息时所在的接收波束(例如可以在与充当基站的车辆建立通信连接时确定),那么可以确定该接收波束对应的同步信号块必然被接收到,而同步信号块是存在标识的,根据同步信号块标识可以确定同步信号块是第几组的第几个同步信号块。
例如以L=64,m=8,n=8为例,同步信号块标识为从0至63,那么若确定接收波束对应的同步信号块的标识为7,也即第1行第8个同步信号块必然被接到,基 于此可以对接收到的比特数为(n-1)+(m-1)的配置信息进行补全。
例如在前(n-1)个比特指示所述接收波束对应的同步信号块所在的同步信号块组以外的(n-1)个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,后(m-1)个比特用于指示需要发送的同步信号块中所述接收波束对应的同步信号块以外的(m-1)个同步信号块中每个同步信号块是否为需要发送的同步信号块的情况下,接收到的配置信息中前(n-1)个比特为0111101,后(m-1)个比特为1100111,可以在前(n-1)个比特的第1位可以补1,得到前n个比特10111101,在后(m-1)个比特的第8位补1,得到后m个比特11001111,进而基于补全后的配置信息进行解析。
图10是根据本公开的实施例示出另一种直连链路通信方法的示意流程图。如图10所示,所述方法还包括:
在步骤S27中,在通过物理直连广播信道接收所述配置信息之前,确定所述配置信息的比特数是否大于第二预设数值;
若所述配置信息的比特数大于第二预设数值,所述通过物理直连广播信道接收所述配置信息包括:
在步骤S241中,通过物理直连广播信道接收所述配置信息中第二预设数值比特的信息,通过其他信道接收所述配置信息中其他比特的信息。
在一个实施例中,与图5所示实施例相对应地,若所述配置信息的比特数大于第二预设数值,充当基站的车辆可以通过物理直连广播信道广播所述配置信息中第二预设数值比特的信息,通过其他信道传输所述配置信息中其他比特的信息,则本实施例中充当用户设备的车辆通过物理直连广播信道接收所述配置信息中第二预设数值比特的信息,通过其他信道接收所述配置信息中其他比特的信息。
可选地,所述同步信号块组中的同步信号块与波束一一对应。
可选地,所述同步信号块组中的多个同步信号块对应相同波束。
与前述的直连链路通信方法的实施例相对应,本公开还提供了直连链路通信装置的实施例。
图11是根据本公开的实施例示出一种同步信号块的配置信息的广播装置的示意框图。本实施例所示的同步信号块的配置信息的广播装置可以适用于适用于直连链路通信中能够起到基站作用的设备,例如能够模仿基站通过波束发射信号的车辆,该 车辆可以基于5G NR技术与其他车辆通信。
如图11所示,所述同步信号块的配置信息的广播装置可以包括:
数量确定模块11,被配置为根据发送同步信号块的频段,确定所能发送的同步信号块的最大数量;
比特数确定模块12,被配置为根据所述最大数量与第一预设数值的关系确定需要生成的配置信息的比特数;
信息生成模块13,被配置为生成包含所述比特数的配置信息,其中,所述配置信息用于指示在最大数量的同步信号块中需要发送的同步信号块,所述第一预设数值与所述物理直连广播信道所能发送的比特数正相关;
广播模块14,被配置为通过物理直连广播信道广播所述配置信息。
图12是根据本公开的实施例示出一种比特数确定模块的示意框图。如图12所示,所述比特数确定模块12包括:
第一比较子模块121,被配置为确定所述最大数量是否大于第一预设数值;
第一生成子模块122,被配置为在所述最大数量小于或等于第一预设数值的情况下,生成比特数为所述最大数量的配置信息,其中,所述配置信息中的每个比特分别表示一个同步信号块是否为需要发送的同步信号块。
图13是根据本公开的实施例示出另一种比特数确定模块的示意框图。如图13所示,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述比特数确定模块包括:
第二比较子模块123,确定所述最大数量是否大于第一预设数值;
第二生成子模块124,若所述最大数量大于第一预设数值,生成比特数为n+m的配置信息,其中,所述n+m个比特中的n个比特用于指示n个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述n+m个比特中的m个比特用于指示需要发送的同步信号块组中每个同步信号块是否为需要发送的同步信号块。
图14是根据本公开的实施例示出又一种比特数确定模块的示意框图。如图14所示,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述比特数确定模块包括:
第三比较子模块125,确定所述最大数量是否大于第一预设数值;
第三生成子模块126,若所述最大数量大于第一预设数值,确定所述配置信息所在的发送波束,生成比特数为(n-1)+(m-1)的配置信息,其中,所述(n-1)+(m-1)个比特中的(n-1)个比特用于指示所述发送波束对应的同步信号块所在的同步信号块组以外的(n-1)个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述(n-1)+(m-1)个比特中的(m-1)个比特用于指示需要发送的同步信号块中所述发送波束对应的同步信号块以外的(m-1)个同步信号块中每个同步信号块是否为需要发送的同步信号块。
图15是根据本公开的实施例示出另一种同步信号块的配置信息的广播装置的示意框图。如图15所示,所述装置还包括:
比较模块15,在通过物理直连广播信道广播所述配置信息之前,确定所述配置信息的比特数是否大于第二预设数值;
其中,所述广播模块14被配置为在所述配置信息的比特数大于第二预设数值的情况下,通过物理直连广播信道广播所述配置信息中第二预设数值比特的信息,通过其他信道传输所述配置信息中其他比特的信息。
可选地,所述同步信号块组中的同步信号块与波束一一对应。
可选地,所述同步信号块组中的多个同步信号块对应相同波束。
图16是根据本公开的实施例示出一种同步信号块的配置信息的接收装置的示意框图。本实施例所示的同步信号块的配置信息的接收装置可以适用于适用于直连链路通信中能够与起到用户设备作用的设备,例如与图11所示实施例中充当基站的车辆进行通信的车辆,该车辆可以基于5G NR技术接收图11所示实施例中充当基站的车辆广播的信息。
如图16所示,所述同步信号块的配置信息的接收装置可以包括:
数量确定模块21,根据接收同步信号块的频段,确定所能接收的同步信号块的最大数量;
数值确定模块22,被配置为根据在所述频段中接收同步信号块的物理直连广播信道确定第一预设数值,其中,所述第一预设数值与所述物理直连广播信道所能发送的比特数正相关;
比特数确定模块23,根据所述最大数量与第一预设数值的关系确定需要接收的 配置信息的比特数,其中,所述配置信息用于指示在最大数量的同步信号块中需要接收的同步信号块;
接收模块24,被配置为通过物理直连广播信道接收所述配置信息;
参数确定模块25,被配置为根据所述比特数确定解析所述配置信息所依据的参数;
解析模块26,被配置为依据所述参数解析所述配置信息。
图17是根据本公开的实施例示出一种比特数确定模块的示意框图。如图17所示,所述比特数确定模块23包括:
第一比较子模块231,确定所述最大数量是否大于第一预设数值;
第一确定子模块232,若所述最大数量小于或等于第一预设数值,确定接收比特数为所述最大数量的配置信息,其中,所述配置信息中的每个比特分别表示一个同步信号块是否为需要接收的同步信号块。
图18是根据本公开的实施例示出另一种比特数确定模块的示意框图。如图18所示,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述比特数确定模块23包括:
第二比较子模块233,确定所述最大数量是否大于第一预设数值;
第二确定子模块234,若所述最大数量大于第一预设数值,确定接收比特数为n+m的配置信息,其中,所述n+m个比特中的n个比特用于指示n个同步信号块组中每个同步信号块组是否为需要接收的同步信号块组,所述n+m个比特中的m个比特用于指示需要接收的同步信号块组中每个同步信号块是否为需要接收的同步信号块。
图19是根据本公开的实施例示出又一种比特数确定模块的示意框图。如图19所示,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述比特数确定模块包括:
第三比较子模块235,确定所述最大数量是否大于第一预设数值;
第三确定子模块236,若所述最大数量大于第一预设数值,确定接收所述配置信息时所在的接收波束,确定接收比特数为(n-1)+(m-1)的配置信息,其中,所述(n-1)+(m-1)个比特中的(n-1)个比特用于指示所述接收波束对应的同步信号块所在的同步信号块组以外的(n-1)个同步信号块组中每个同步信号块组是否为需要发送的同步信 号块组,所述(n-1)+(m-1)个比特中的(m-1)个比特用于指示需要发送的同步信号块中所述接收波束对应的同步信号块以外的(m-1)个同步信号块中每个同步信号块是否为需要发送的同步信号块。
图20是根据本公开的实施例示出另一种同步信号块的配置信息的接收装置的示意框图。如图20所示,所述装置还包括:
比较模块27,在通过物理直连广播信道接收所述配置信息之前,确定所述配置信息的比特数是否大于第二预设数值;
其中,所述接收模块24被配置为在所述配置信息的比特数大于第二预设数值的情况下,通过物理直连广播信道接收所述配置信息中第二预设数值比特的信息,通过其他信道接收所述配置信息中其他比特的信息。
可选地,所述同步信号块组中的同步信号块与波束一一对应。
可选地,所述同步信号块组中的多个同步信号块对应相同波束。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述图1至图5中任一实施例所述方法中的步骤。
本公开的实施例还提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述图6至图10中任一实施例所述方法中的步骤。
本公开的实施例还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述图1至图5中任一实施例所述方法中的步骤。
本公开的实施例还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述图6至图10中任一实施例所述方法中的步骤。
如图21所示,图21是根据本公开的实施例示出的一种用于同步信号块的配置信息的广播的装置2100的一结构示意图。装置2100可以被提供为一基站。参照图21,装置2100包括处理组件2122、无线发射/接收组件2124、天线组件2126、以及无线接口特有的信号处理部分,处理组件2122可进一步包括一个或多个处理器。处理组件2122中的其中一个处理器可以被配置为实现图1至图5所示实施例内方法中的步骤。
图22是根据本公开的实施例示出的一种用于同步信号块的配置信息的接收的装置2200的一结构示意图。例如,装置2200可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图22,装置2200可以包括以下一个或多个组件:处理组件2202,存储器2204,电源组件2206,多媒体组件2208,音频组件2210,输入/输出(I/O)的接口2212,传感器组件2214,以及通信组件2216。
处理组件2202通常控制装置2200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2202可以包括一个或多个处理器2220来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件2202可以包括一个或多个模块,便于处理组件2202和其他组件之间的交互。例如,处理组件2202可以包括多媒体模块,以方便多媒体组件2208和处理组件2202之间的交互。
存储器2204被配置为存储各种类型的数据以支持在装置2200的操作。这些数据的示例包括用于在装置2200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2206为装置2200的各种组件提供电力。电源组件2206可以包括电源管理系统,一个或多个电源,及其他与为装置2200生成、管理和分配电力相关联的组件。
多媒体组件2208包括在所述装置2200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件2208包括一个前置摄像头和/或后置摄像头。当装置2200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2210被配置为输出和/或输入音频信号。例如,音频组件2210包括一个麦克风(MIC),当装置2200处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2204或经由通信组件2216发送。在一些实施例中,音频组件2210还包括一个扬声器,用于输出音频信号。
I/O接口2212为处理组件2202和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2214包括一个或多个传感器,用于为装置2200提供各个方面的状态评估。例如,传感器组件2214可以检测到装置2200的打开/关闭状态,组件的相对定位,例如所述组件为装置2200的显示器和小键盘,传感器组件2214还可以检测装置2200或装置2200一个组件的位置改变,用户与装置2200接触的存在或不存在,装置2200方位或加速/减速和装置2200的温度变化。传感器组件2214可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2214还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2214还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2216被配置为便于装置2200和其他设备之间有线或无线方式的通 信。装置2200可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件2216经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件2216还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置2200可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述图6至图10中任一实施例所述的方法中的步骤。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器2204,上述指令可由装置2200的处理器2220执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (32)

  1. 一种同步信号块的配置信息的广播方法,其特征在于,适用于直连链路通信,所述方法包括:
    根据发送同步信号块的频段,确定所能发送的同步信号块的最大数量;
    根据所述最大数量与第一预设数值的关系确定需要生成的配置信息的比特数,并生成包含所述比特数的配置信息,其中,所述配置信息用于指示在最大数量的同步信号块中需要发送的同步信号块,所述第一预设数值与所述物理直连广播信道所能发送的比特数正相关;
    通过物理直连广播信道广播所述配置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述最大数量与第一预设数值的关系确定配置信息的比特数,并生成包含所述比特数的配置信息包括:
    确定所述最大数量是否大于第一预设数值;
    若所述最大数量小于或等于第一预设数值,生成比特数为所述最大数量的配置信息,其中,所述配置信息中的每个比特分别表示一个同步信号块是否为需要发送的同步信号块。
  3. 根据权利要求1所述的方法,其特征在于,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述根据所述最大数量与第一预设数值的关系确定配置信息的比特数,并生成包含所述比特数的配置信息包括:
    确定所述最大数量是否大于第一预设数值;
    若所述最大数量大于第一预设数值,生成比特数为n+m的配置信息,其中,所述n+m个比特中的n个比特用于指示n个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述n+m个比特中的m个比特用于指示需要发送的同步信号块组中每个同步信号块是否为需要发送的同步信号块。
  4. 根据权利要求1所述的方法,其特征在于,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述根据所述最大数量与第一预设数值的关系确定配置信息的比特数,并生成包含所述比特数的配置信息包括:
    确定所述最大数量是否大于第一预设数值;
    若所述最大数量大于第一预设数值,确定所述配置信息所在的发送波束,生成比特数为(n-1)+(m-1)的配置信息,其中,所述(n-1)+(m-1)个比特中的(n-1)个比特用于指 示所述发送波束对应的同步信号块所在的同步信号块组以外的(n-1)个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述(n-1)+(m-1)个比特中的(m-1)个比特用于指示需要发送的同步信号块中所述发送波束对应的同步信号块以外的(m-1)个同步信号块中每个同步信号块是否为需要发送的同步信号块。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    在通过物理直连广播信道广播所述配置信息之前,确定所述配置信息的比特数是否大于第二预设数值;
    若所述配置信息的比特数大于第二预设数值,所述通过物理直连广播信道广播所述配置信息包括:
    通过物理直连广播信道广播所述配置信息中第二预设数值比特的信息,通过其他信道传输所述配置信息中其他比特的信息。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述同步信号块组中的同步信号块与波束一一对应。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述同步信号块组中的多个同步信号块对应相同波束。
  8. 一种同步信号块的配置信息的接收方法,其特征在于,适用于直连链路通信,所述方法包括:
    根据接收同步信号块的频段,确定所能接收的同步信号块的最大数量;
    根据在所述频段中接收同步信号块的物理直连广播信道确定第一预设数值,其中,所述第一预设数值与所述物理直连广播信道所能发送的比特数正相关;
    根据所述最大数量与第一预设数值的关系确定需要接收的配置信息的比特数,其中,所述配置信息用于指示在最大数量的同步信号块中需要接收的同步信号块;
    通过物理直连广播信道接收所述配置信息;
    根据所述比特数确定解析所述配置信息所依据的参数;
    依据所述参数解析所述配置信息。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述最大数量与第一预设数值的关系确定接收配置信息的比特数包括:
    确定所述最大数量是否大于第一预设数值;
    若所述最大数量小于或等于第一预设数值,确定接收比特数为所述最大数量的配置信息,其中,所述配置信息中的每个比特分别表示一个同步信号块是否为需要接收的同步信号块。
  10. 根据权利要求8所述的方法,其特征在于,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述根据所述最大数量与第一预设数值的关系确定接收配置信息的比特数包括:
    确定所述最大数量是否大于第一预设数值;
    若所述最大数量大于第一预设数值,确定接收比特数为n+m的配置信息,其中,所述n+m个比特中的n个比特用于指示n个同步信号块组中每个同步信号块组是否为需要接收的同步信号块组,所述n+m个比特中的m个比特用于指示需要接收的同步信号块组中每个同步信号块是否为需要接收的同步信号块。
  11. 根据权利要求8所述的方法,其特征在于,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述根据所述最大数量与第一预设数值的关系确定配置信息的比特数包括:
    确定所述最大数量是否大于第一预设数值;
    若所述最大数量大于第一预设数值,确定接收所述配置信息时所在的接收波束,确定接收比特数为(n-1)+(m-1)的配置信息,其中,所述(n-1)+(m-1)个比特中的(n-1)个比特用于指示所述接收波束对应的同步信号块所在的同步信号块组以外的(n-1)个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述(n-1)+(m-1)个比特中的(m-1)个比特用于指示需要发送的同步信号块中所述接收波束对应的同步信号块以外的(m-1)个同步信号块中每个同步信号块是否为需要发送的同步信号块。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述方法还包括:
    在通过物理直连广播信道接收所述配置信息之前,确定所述配置信息的比特数是否大于第二预设数值;
    若所述配置信息的比特数大于第二预设数值,所述通过物理直连广播信道接收所述配置信息包括:
    通过物理直连广播信道接收所述配置信息中第二预设数值比特的信息,通过其他信道接收所述配置信息中其他比特的信息。
  13. 根据权利要求8至11中任一项所述的方法,其特征在于,所述同步信号块组中的同步信号块与波束一一对应。
  14. 根据权利要求8至11中任一项所述的方法,其特征在于,所述同步信号块组中的多个同步信号块对应相同波束。
  15. 一种同步信号块的配置信息的广播装置,其特征在于,适用于直连链路通信,所述装置包括:
    数量确定模块,被配置为根据发送同步信号块的频段,确定所能发送的同步信号块的最大数量;
    比特数确定模块,被配置为根据所述最大数量与第一预设数值的关系确定需要生成的配置信息的比特数;
    信息生成模块,被配置为生成包含所述比特数的配置信息,其中,所述配置信息用于指示在最大数量的同步信号块中需要发送的同步信号块,所述第一预设数值与所述物理直连广播信道所能发送的比特数正相关;
    广播模块,被配置为通过物理直连广播信道广播所述配置信息。
  16. 根据权利要求15所述的装置,其特征在于,所述比特数确定模块包括:
    第一比较子模块,被配置为确定所述最大数量是否大于第一预设数值;
    第一生成子模块,被配置为在所述最大数量小于或等于第一预设数值的情况下,生成比特数为所述最大数量的配置信息,其中,所述配置信息中的每个比特分别表示一个同步信号块是否为需要发送的同步信号块。
  17. 根据权利要求15所述的装置,其特征在于,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述比特数确定模块包括:
    第二比较子模块,确定所述最大数量是否大于第一预设数值;
    第二生成子模块,若所述最大数量大于第一预设数值,生成比特数为n+m的配置信息,其中,所述n+m个比特中的n个比特用于指示n个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述n+m个比特中的m个比特用于指示需要发送的同步信号块组中每个同步信号块是否为需要发送的同步信号块。
  18. 根据权利要求15所述的装置,其特征在于,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述比特数确定模块包括:
    第三比较子模块,确定所述最大数量是否大于第一预设数值;
    第三生成子模块,若所述最大数量大于第一预设数值,确定所述配置信息所在的发送波束,生成比特数为(n-1)+(m-1)的配置信息,其中,所述(n-1)+(m-1)个比特中的(n-1)个比特用于指示所述发送波束对应的同步信号块所在的同步信号块组以外的(n-1)个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述(n-1)+(m-1)个比特中的(m-1)个比特用于指示需要发送的同步信号块中所述发送波束对应的同步信号块以外的(m-1)个同步信号块中每个同步信号块是否为需要发送的同步信号块。
  19. 根据权利要求15至18中任一项所述的装置,其特征在于,所述装置还包括:
    比较模块,在通过物理直连广播信道广播所述配置信息之前,确定所述配置信息的比特数是否大于第二预设数值;
    其中,所述广播模块被配置为在所述配置信息的比特数大于第二预设数值的情况下,通过物理直连广播信道广播所述配置信息中第二预设数值比特的信息,通过其他信道传输所述配置信息中其他比特的信息。
  20. 根据权利要求15至18中任一项所述的装置,其特征在于,所述同步信号块组中的同步信号块与波束一一对应。
  21. 根据权利要求15至18中任一项所述的装置,其特征在于,所述同步信号块组中的多个同步信号块对应相同波束。
  22. 一种同步信号块的配置信息的接收装置,其特征在于,适用于直连链路通信,所述装置包括:
    数量确定模块,根据接收同步信号块的频段,确定所能接收的同步信号块的最大数量;
    数值确定模块,被配置为根据在所述频段中接收同步信号块的物理直连广播信道确定第一预设数值,其中,所述第一预设数值与所述物理直连广播信道所能发送的比特数正相关;
    比特数确定模块,根据所述最大数量与第一预设数值的关系确定需要接收的配置信息的比特数,其中,所述配置信息用于指示在最大数量的同步信号块中需要接收的同步信号块;
    接收模块,被配置为通过物理直连广播信道接收所述配置信息;
    参数确定模块,被配置为根据所述比特数确定解析所述配置信息所依据的参数;
    解析模块,被配置为依据所述参数解析所述配置信息。
  23. 根据权利要求22所述的装置,其特征在于,所述比特数确定模块包括:
    第一比较子模块,确定所述最大数量是否大于第一预设数值;
    第一确定子模块,若所述最大数量小于或等于第一预设数值,确定接收比特数为所述最大数量的配置信息,其中,所述配置信息中的每个比特分别表示一个同步信号块是否为需要接收的同步信号块。
  24. 根据权利要求22所述的装置,其特征在于,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述比特数确定模块包括:
    第二比较子模块,确定所述最大数量是否大于第一预设数值;
    第二确定子模块,若所述最大数量大于第一预设数值,确定接收比特数为n+m的配置信息,其中,所述n+m个比特中的n个比特用于指示n个同步信号块组中每个同步信号块组是否为需要接收的同步信号块组,所述n+m个比特中的m个比特用于指示需要接收的同步信号块组中每个同步信号块是否为需要接收的同步信号块。
  25. 根据权利要求22所述的装置,其特征在于,最大数量的同步信号块包括n个同步信号块组,每个同步信号块组包括m个同步信号块,其中,m和n为正整数,所述比特数确定模块包括:
    第三比较子模块,确定所述最大数量是否大于第一预设数值;
    第三确定子模块,若所述最大数量大于第一预设数值,确定接收所述配置信息时所在的接收波束,确定接收比特数为(n-1)+(m-1)的配置信息,其中,所述(n-1)+(m-1)个比特中的(n-1)个比特用于指示所述接收波束对应的同步信号块所在的同步信号块组以外的(n-1)个同步信号块组中每个同步信号块组是否为需要发送的同步信号块组,所述(n-1)+(m-1)个比特中的(m-1)个比特用于指示需要发送的同步信号块中所述接收波束对应的同步信号块以外的(m-1)个同步信号块中每个同步信号块是否为需要发送的同步信号块。
  26. 根据权利要求22至25中任一项所述的装置,其特征在于,所述装置还包括:
    比较模块,在通过物理直连广播信道接收所述配置信息之前,确定所述配置信息的比特数是否大于第二预设数值;
    其中,所述接收模块被配置为在所述配置信息的比特数大于第二预设数值的情况下,通过物理直连广播信道接收所述配置信息中第二预设数值比特的信息,通过其他信道接收所述配置信息中其他比特的信息。
  27. 根据权利要求22至25中任一项所述的装置,其特征在于,所述同步信号块组中的同步信号块与波束一一对应。
  28. 根据权利要求22至25中任一项所述的装置,其特征在于,所述同步信号块组中的多个同步信号块对应相同波束。
  29. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为实现权利要求1至7中任一项所述方法中的步骤。
  30. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为实现权利要求8至14中任一项所述方法中的步骤。
  31. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至7中任一项所述方法中的步骤。
  32. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求8至14中任一项所述方法中的步骤。
PCT/CN2018/115614 2018-11-15 2018-11-15 同步信号块的配置信息的广播、接收方法和装置 WO2020097846A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020217016919A KR102486809B1 (ko) 2018-11-15 2018-11-15 동기화 신호 블록의 구성 정보의 방송, 수신 방법 및 장치
BR112021009326-5A BR112021009326A2 (pt) 2018-11-15 2018-11-15 método e dispositivo para transmitir informações de configuração de bloco de sinal de sincronização e método e dispositivo para receber informações de configuração de bloco de sinal de sincronização
JP2021526543A JP7137705B2 (ja) 2018-11-15 2018-11-15 同期信号ブロックの構成情報のブロードキャスト、受信方法及び装置
SG11202104925RA SG11202104925RA (en) 2018-11-15 2018-11-15 Method and apparatus for broadcasting configuration information of synchronizing signal block, and method and apparatus for receiving configuration information of synchronizing signal block
EP18940452.8A EP3876563B1 (en) 2018-11-15 2018-11-15 Method and apparatus for broadcasting configuration information of synchronizing signal block, and method and apparatus for receiving configuration information of synchronizing signal block
CN201880002575.3A CN109565650B (zh) 2018-11-15 2018-11-15 同步信号块的配置信息的广播、接收方法和装置
US17/293,030 US11856538B2 (en) 2018-11-15 2018-11-15 Method and apparatus for broadcasting configuration information of synchronizing signal block, and method and apparatus for receiving configuration information of synchronizing signal block
PCT/CN2018/115614 WO2020097846A1 (zh) 2018-11-15 2018-11-15 同步信号块的配置信息的广播、接收方法和装置
CN202110949732.5A CN113747395A (zh) 2018-11-15 2018-11-15 同步信号块的配置信息的广播、接收方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/115614 WO2020097846A1 (zh) 2018-11-15 2018-11-15 同步信号块的配置信息的广播、接收方法和装置

Publications (1)

Publication Number Publication Date
WO2020097846A1 true WO2020097846A1 (zh) 2020-05-22

Family

ID=65872668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115614 WO2020097846A1 (zh) 2018-11-15 2018-11-15 同步信号块的配置信息的广播、接收方法和装置

Country Status (8)

Country Link
US (1) US11856538B2 (zh)
EP (1) EP3876563B1 (zh)
JP (1) JP7137705B2 (zh)
KR (1) KR102486809B1 (zh)
CN (2) CN113747395A (zh)
BR (1) BR112021009326A2 (zh)
SG (1) SG11202104925RA (zh)
WO (1) WO2020097846A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020097846A1 (zh) * 2018-11-15 2020-05-22 北京小米移动软件有限公司 同步信号块的配置信息的广播、接收方法和装置
WO2021016940A1 (zh) * 2019-07-31 2021-02-04 北京小米移动软件有限公司 V2x通信的同步信号配置方法、装置及存储介质
CN114642044A (zh) * 2019-11-28 2022-06-17 华为技术有限公司 同步信号块指示方法及通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401526A (zh) * 2018-01-26 2018-08-14 北京小米移动软件有限公司 信息配置方法及装置、时频位置的确定方法及装置和基站
US20180287840A1 (en) * 2017-04-04 2018-10-04 Qualcomm Incorporated Synchronization signaling supporting multiple waveforms
CN108632985A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 下行同步方法和装置
WO2018191011A1 (en) * 2017-04-14 2018-10-18 Qualcomm Incorporated Synchronization signal block designs for wireless communication
CN108811120A (zh) * 2017-05-05 2018-11-13 中兴通讯股份有限公司 数据传输方法及装置

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101769958B1 (ko) * 2014-01-26 2017-08-30 엘지전자 주식회사 단말 간 통신을 지원하는 무선 통신 시스템에서 동기 신호 및 동기 채널 전송 방법 및 이를 위한 장치
WO2016036141A1 (ko) 2014-09-02 2016-03-10 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 단말의 동기 신호 전송 방법 및 장치
JP6262849B2 (ja) 2014-09-23 2018-01-17 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 送信機、受信機、および同期信号を送信/受信するための方法
CN106717080B (zh) * 2014-09-25 2020-08-04 Lg 电子株式会社 在无线通信系统中的同步信号传输的方法
EP3206446B1 (en) 2014-10-07 2019-08-07 LG Electronics Inc. Method for transmitting synchronization signal for device-to-device communication in wireless communication system and apparatus therefor
KR102229947B1 (ko) 2014-11-05 2021-03-19 주식회사 아이티엘 D2d 통신을 위한 동기화 신호 구성 방법 및 장치
US10285142B2 (en) * 2014-11-05 2019-05-07 Innovative Technology Lab Co., Ltd. Apparatus and method for configuring synchronization signal for D2D communication
CN107534831A (zh) 2015-04-10 2018-01-02 三星电子株式会社 用于终端之间的直接通信的方法和设备
KR102373038B1 (ko) * 2015-05-06 2022-03-11 삼성전자 주식회사 기기 대 기기 무선 통신에서 신호 수신 방법 및 장치
CN107852686B (zh) 2015-07-29 2020-11-13 康维达无线有限责任公司 通信装置和方法
US10511422B2 (en) * 2015-10-01 2019-12-17 Lg Electronics Inc. Method and terminal for transmitting reference signal in D2D communication
US10383147B2 (en) 2015-12-28 2019-08-13 Samsung Electronics Co., Ltd. Methods and apparatus for resource collision avoidance in vehicle to vehicle communication
CN107046461B (zh) 2016-02-05 2022-06-07 北京三星通信技术研究有限公司 V2x终端时频同步的发送和接收处理方法及装置
US20200305152A1 (en) * 2016-03-31 2020-09-24 Ntt Docomo, Inc. User equipment and sensing control method
CN107295626B (zh) * 2016-04-01 2022-02-08 北京三星通信技术研究有限公司 一种v2x同步信号和psbch的发送方法和设备
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN115002910A (zh) * 2016-09-30 2022-09-02 北京三星通信技术研究有限公司 一种v2x通信中的发送资源确定方法和设备
EP3512267B1 (en) 2016-10-13 2021-03-24 LG Electronics Inc. Sidelink synchronization signal transmission method performed by terminal in wireless communication system and terminal using same
CN108024337B (zh) 2016-11-03 2019-09-17 电信科学技术研究院 一种子帧指示、确定方法及装置
CN108235435A (zh) * 2016-12-15 2018-06-29 华为技术有限公司 一种资源指示方法及装置
US10917833B2 (en) 2017-02-02 2021-02-09 Telefontakiebolaget Lm Ericsson (Publ) Implicit system information (SI) content variation enabling soft combining
US10568102B2 (en) 2017-02-23 2020-02-18 Qualcomm Incorporated Usage of synchronization signal block index in new radio
KR20180108377A (ko) 2017-03-23 2018-10-04 삼성전자주식회사 멀티 빔 기반 시스템에서 다양한 pbch 전송 주기에 따른 기지국 및 단말 동작
TW201907686A (zh) * 2017-05-01 2019-02-16 美商Idac控股公司 在nr 中同步訊號多工及映射
CN109286987B (zh) 2017-05-04 2019-11-05 华为技术有限公司 一种信息发送、接收方法及相关设备
CN108811071B (zh) * 2017-05-04 2023-09-22 华为技术有限公司 传输信号的方法和装置
US10044403B1 (en) * 2017-05-04 2018-08-07 Samsung Electronics Co., Ltd Apparatus and method for multi-beam initial synchronization for 5G-NR system
US10925023B2 (en) * 2017-05-04 2021-02-16 Innovative Technology Lab Co., Ltd. Method and apparatus for communicating reference signal for broadcast channel
US10736077B2 (en) * 2017-05-05 2020-08-04 Qualcomm Incorporated Configuration of remaining system information transmission window
JP6728470B2 (ja) * 2017-06-15 2020-07-22 エルジー エレクトロニクス インコーポレイティド 同期信号ブロックを送受信する方法及びそのための装置
SG11201911813WA (en) * 2017-07-28 2020-01-30 Lg Electronics Inc Method for transmitting and receiving synchronization signal block and device therefor
WO2019095291A1 (en) * 2017-11-17 2019-05-23 Mediatek Singapore Pte. Ltd. Methods of remaining minimum system information reception
US10863494B2 (en) * 2018-01-22 2020-12-08 Apple Inc. Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
CN108702700B (zh) 2018-03-16 2020-06-02 北京小米移动软件有限公司 定义小区同步广播块位置的指示、搜索方法及装置和基站
US11510164B2 (en) 2018-04-02 2022-11-22 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for synchronous broadcasting transmission signal block
SG11202009721WA (en) * 2018-04-02 2020-10-29 Beijing Xiaomi Mobile Software Co Ltd Method and apparatus for transmitting synchronized broadcast information
US10834708B2 (en) * 2018-07-06 2020-11-10 Samsung Electronics Co., Ltd. Method and apparatus for NR sidelink SS/PBCH block
CN112567673A (zh) * 2018-08-09 2021-03-26 康维达无线有限责任公司 用于nr v2x的波束赋形和分组
CN112567826B (zh) * 2018-08-10 2024-04-23 联想(新加坡)私人有限公司 识别同步信号/物理广播信道块时机
CA3113097A1 (en) * 2018-09-27 2020-04-02 Ntt Docomo, Inc. User equipment and communication method
WO2020097846A1 (zh) * 2018-11-15 2020-05-22 北京小米移动软件有限公司 同步信号块的配置信息的广播、接收方法和装置
CN111315007B (zh) * 2018-12-11 2022-04-12 华为技术有限公司 同步信号块的发送、接收方法及装置
KR20200087017A (ko) * 2019-01-10 2020-07-20 삼성전자주식회사 무선 통신 시스템에서 동기 신호를 전송하기 위한 방법 및 장치
WO2020168123A1 (en) * 2019-02-13 2020-08-20 Apple Inc. System information design for new radio (nr) vehicle-to-everything (v2x) sidelink operation
KR20200120534A (ko) * 2019-04-12 2020-10-21 한양대학교 산학협력단 사이드링크 통신을 수행하는 방법 및 그 장치
US11523354B2 (en) * 2019-08-14 2022-12-06 Qualcomm Incorporated Synchronization signal for sidelink
WO2021159532A1 (zh) * 2020-02-14 2021-08-19 华为技术有限公司 一种配置信息的指示方法及装置
US20230130297A1 (en) * 2021-10-22 2023-04-27 Qualcomm Incorporated Measurement gaps for l1 measurements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632985A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 下行同步方法和装置
US20180287840A1 (en) * 2017-04-04 2018-10-04 Qualcomm Incorporated Synchronization signaling supporting multiple waveforms
WO2018191011A1 (en) * 2017-04-14 2018-10-18 Qualcomm Incorporated Synchronization signal block designs for wireless communication
CN108811120A (zh) * 2017-05-05 2018-11-13 中兴通讯股份有限公司 数据传输方法及装置
CN108401526A (zh) * 2018-01-26 2018-08-14 北京小米移动软件有限公司 信息配置方法及装置、时频位置的确定方法及装置和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3876563A4

Also Published As

Publication number Publication date
KR20210089203A (ko) 2021-07-15
US20210410088A1 (en) 2021-12-30
CN109565650A (zh) 2019-04-02
EP3876563A1 (en) 2021-09-08
KR102486809B1 (ko) 2023-01-10
SG11202104925RA (en) 2021-06-29
CN109565650B (zh) 2021-08-31
JP7137705B2 (ja) 2022-09-14
EP3876563B1 (en) 2024-05-08
EP3876563A4 (en) 2021-11-17
CN113747395A (zh) 2021-12-03
JP2022507520A (ja) 2022-01-18
US11856538B2 (en) 2023-12-26
BR112021009326A2 (pt) 2021-08-17

Similar Documents

Publication Publication Date Title
US11469962B2 (en) Method and apparatus for configuring information of indicating time-frequency position of SSB, and method and apparatus for determining time-frequency position of SSB
WO2019183854A1 (zh) 寻呼同步指示方法及装置、寻呼同步方法及装置和基站
US11457479B2 (en) Method and apparatus for configuring random access occasion, method and apparatus for random access
CN109451877B (zh) 无人机控制方法及装置、无人机和遥控设备
WO2022021387A1 (zh) 偏移指示确定方法和装置、偏移确定方法和装置
WO2020097846A1 (zh) 同步信号块的配置信息的广播、接收方法和装置
WO2019095105A1 (zh) 通信链路的配置方法及装置
WO2019019164A1 (zh) 无人机管理方法及装置、通信连接建立方法及装置
WO2022027495A1 (zh) 调整指示方法和装置、调整接收方法和装置
US20240063980A1 (en) System information reception method and apparatus, and system information transmission method and apparatus
US11917562B2 (en) Vehicle-to-everything synchronization method and device
WO2019056173A1 (zh) 随机接入方法、装置、电子设备和计算机可读存储介质
WO2020097881A1 (zh) 传输控制信息和数据的方法及装置
US11297626B2 (en) Information indication method and apparatus, base station and user equipment
CN111800836B (zh) 一种通信方法、装置、电子设备及存储介质
WO2019056385A1 (zh) 随机接入方法及装置、用户设备和计算机可读存储介质
US20220345936A1 (en) Multi-band communication method and apparatus, and storage medium
WO2019071470A1 (zh) 对应关系的指示及确定方法、装置、基站和用户设备
WO2022133645A1 (zh) 信息发送方法和装置、关系确定方法和装置
US20220247545A1 (en) Receiving state feedback method and device
WO2019165645A1 (zh) 发射功率差值的指示方法及装置、功率补偿方法及装置
US20220131604A1 (en) Method and apparatus for receiving analog signal
CN116565988A (zh) 多协议确定方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526543

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021009326

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217016919

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018940452

Country of ref document: EP

Effective date: 20210602

ENP Entry into the national phase

Ref document number: 112021009326

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210513