WO2019071470A1 - 对应关系的指示及确定方法、装置、基站和用户设备 - Google Patents

对应关系的指示及确定方法、装置、基站和用户设备 Download PDF

Info

Publication number
WO2019071470A1
WO2019071470A1 PCT/CN2017/105725 CN2017105725W WO2019071470A1 WO 2019071470 A1 WO2019071470 A1 WO 2019071470A1 CN 2017105725 W CN2017105725 W CN 2017105725W WO 2019071470 A1 WO2019071470 A1 WO 2019071470A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
rmsi
correspondence
indication information
identifier
Prior art date
Application number
PCT/CN2017/105725
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2017/105725 priority Critical patent/WO2019071470A1/zh
Priority to EP17928296.7A priority patent/EP3684111B1/en
Priority to US16/753,290 priority patent/US11317394B2/en
Priority to ES17928296T priority patent/ES2921705T3/es
Priority to CN201780001691.9A priority patent/CN109451859B/zh
Publication of WO2019071470A1 publication Critical patent/WO2019071470A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06966Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to an indication and determination method, apparatus, base station, user equipment, and computer readable storage medium.
  • the fifth generation mobile communication technology 5th Generation, referred to as 5G
  • the 5G system will be used for high-band applications, ie applications above 6 GHz.
  • the high frequency band because the propagation characteristics of radio waves are not good, the traditional omnidirectional transmission will no longer be applicable, and beam scanning and beam management are required to communicate.
  • the base station configures the control domain information of the RMSI in the physical broadcast channel (PBCH) in the SSB, but the user equipment (UE) finds the control domain according to the control domain information, and does not know the RMSI and SSB of the system configuration after the RMSI is solved.
  • PBCH physical broadcast channel
  • UE user equipment
  • the present application discloses an indication and determination method, apparatus, base station, user equipment, and computer readable storage medium of a correspondence relationship, so as to indicate RMSI and SSB without increasing bit overhead. Correspondence relationship.
  • a method for indicating a correspondence relationship is provided, which is applied to a base station, where the method includes:
  • Generating indication information including a number of beam packets and a beam with each transmission synchronization signal block SSB An identifier corresponding to each beam in the packet, where the identifier corresponding to the to-be-transmitted beam is used to indicate a correspondence between the SSB and the remaining critical system information RMSI in the corresponding beam packet;
  • the method further includes:
  • the beams are grouped according to the number of beam packets.
  • the identifier corresponding to the beam other than the to-be-transmitted beam in the beam packet of each SSB is used to indicate whether the corresponding beam transmits the SSB.
  • the indication information is carried in the RMSI.
  • a method for determining a correspondence relationship is provided, which is applied to a user equipment, where the method includes:
  • a synchronization signal block SSB corresponding to the to-be-transmitted beam and indication information where the indication information includes a number of beam packets and an identifier corresponding to each of the beam packets of each of the transmission synchronization signal blocks SSB, wherein The identifier corresponding to the to-be-transmitted beam is used to indicate a correspondence between the SSB and the remaining critical system information RMSI in the corresponding beam group;
  • the determining, according to the identifier corresponding to the to-be-transmitted beam, the correspondence between the SSB and the RMSI in the corresponding beam group including:
  • the identifier corresponding to the to-be-transmitted beam is the first identifier, determining that the correspondence between the SSB and the RMSI in the corresponding beam group is a one-to-one relationship;
  • the identifier corresponding to the to-be-transmitted beam is the second identifier, determining that the correspondence between the SSB and the RMSI in the corresponding beam group is a many-to-one relationship.
  • the method further includes:
  • the correspondence between the SSB and the RMSI is a beam packet of the one-to-one relationship, and data is received in the SSB except for the location of the corresponding RMSI.
  • the identifier corresponding to the beam other than the to-be-transmitted beam in the beam packet of each SSB is used to indicate whether the corresponding beam transmits the SSB.
  • the indication information is carried in the RMSI.
  • a pointing device for providing a correspondence relationship is applied to a base station, where the device includes:
  • a determining module configured to determine a beam to be transmitted
  • a generating module configured to generate indication information, where the indication information includes a number of beam packets and an identifier corresponding to each of the beam packets of each of the transmission synchronization signal blocks SSB, wherein the identifier corresponding to the to-be-transmitted beam is used Corresponding to the correspondence between the SSB and the remaining critical system information RMSI in the corresponding beam group;
  • a sending module configured to send, to the user equipment, the SSB corresponding to the to-be-transmitted beam determined by the determining module, and the indication information generated by the generating module.
  • the apparatus further includes:
  • a grouping module configured to group the beams according to the number of the beam packets included in the indication information generated by the generating module.
  • the identifier corresponding to the beam other than the to-be-transmitted beam in the beam packet of each SSB is used to indicate whether the corresponding beam transmits the SSB.
  • the indication information is carried in the RMSI.
  • a device for determining a correspondence which is applied to a user equipment, the device comprising:
  • a receiving module configured to receive a synchronization signal block SSB and indication information corresponding to a to-be-transmitted beam from a base station, where the indication information includes a number of beam packets and an identifier corresponding to each beam in each of the beam packets of the transmission synchronization signal block SSB And an identifier corresponding to the to-be-transmitted beam is used to indicate a correspondence between the SSB and the remaining critical system information RMSI in the corresponding beam group;
  • the parsing determining module is configured to parse the time indication TI from the SSB received by the receiving module, and determine a location of the SSB in the belonging beam group according to the TI and the number of the beam packets;
  • An obtaining determining module configured to acquire an identifier corresponding to the to-be-sent beam according to the location determined by the parsing determining module, and determine an SSB and an RMSI in the corresponding beam group according to the identifier corresponding to the to-be-sent beam Correspondence.
  • the obtaining determining module comprises:
  • the first determining sub-module is configured to determine, if the identifier corresponding to the to-be-transmitted beam is the first identifier, that the correspondence between the SSB and the RMSI in the corresponding beam group is a one-to-one relationship;
  • the second determining submodule is configured to determine that the correspondence between the SSB and the RMSI in the corresponding beam group is a many-to-one relationship if the identifier corresponding to the to-be-transmitted beam is the second identifier.
  • the apparatus further includes:
  • a data receiving module configured to be a beam grouping of the one-to-one relationship determined by the first determining sub-module for the correspondence between the SSB and the RMSI, and other locations in the SSB except the location of the corresponding RMSI Receive data.
  • the identifier corresponding to the beam other than the to-be-transmitted beam in the beam packet of each SSB is used to indicate whether the corresponding beam transmits the SSB.
  • the indication information is carried in the RMSI.
  • a base station including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the indication information including a number of beam packets and an identifier corresponding to each of the beam packets of each of the transmission synchronization signal blocks SSB, wherein the identifier corresponding to the to-be-sent beam is used to indicate the corresponding beam packet Correspondence between SSB and remaining critical system information RMSI;
  • a user equipment including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • a synchronization signal block SSB corresponding to the to-be-transmitted beam and indication information where the indication information includes a number of beam packets and an identifier corresponding to each of the beam packets of each of the transmission synchronization signal blocks SSB, wherein The identifier corresponding to the to-be-transmitted beam is used to indicate a correspondence between the SSB and the remaining critical system information RMSI in the corresponding beam group;
  • a computer readable storage medium having stored thereon a computer program, the program being executed by a processor to implement the step of indicating the corresponding relationship.
  • a computer readable storage medium having stored thereon a computer program, the program being executed by a processor to implement the steps of the determining method of the corresponding relationship.
  • the identifier corresponding to the to-be-transmitted beam is used to indicate the correspondence between the SSB and the RMSI in the corresponding beam packet. Therefore, the correspondence between the RMSI and the SSB can be indicated without increasing the bit overhead.
  • the corresponding identifier determines the correspondence between the SSB and the RMSI in the corresponding beam packet, so as to determine the correspondence between the SSB and the RMSI according to the indication information sent by the base station, and does not additionally increase the bit overhead in the implementation process.
  • FIG. 1 is a flowchart of a method for indicating a correspondence relationship according to an exemplary embodiment of the present application
  • FIG. 2 is a flowchart of a method for determining a correspondence relationship according to an exemplary embodiment of the present application
  • FIG. 3 is a signaling flowchart of a method for determining a correspondence relationship according to an exemplary embodiment of the present application
  • FIG. 4 is a block diagram of a pointing device for a correspondence relationship according to an exemplary embodiment
  • FIG. 5 is a block diagram of a pointing device of another correspondence according to an exemplary embodiment
  • FIG. 6 is a block diagram of a determining apparatus for a correspondence relationship according to an exemplary embodiment
  • FIG. 7 is a block diagram of determining apparatus of another correspondence relationship according to an exemplary embodiment
  • FIG. 8 is a block diagram of determining apparatus of another correspondence relationship according to an exemplary embodiment
  • FIG. 9 is a block diagram of a determining apparatus suitable for a correspondence relationship, according to an exemplary embodiment.
  • FIG. 10 is a block diagram of a pointing device suitable for a correspondence relationship, according to an exemplary embodiment.
  • FIG. 1 is a flowchart of a method for indicating a correspondence relationship according to an exemplary embodiment of the present application. The embodiment is described from the base station side. As shown in FIG. 1 , the method for indicating the correspondence relationship includes:
  • step S101 a beam to be transmitted is determined.
  • the base station may determine the SSB transmitting a certain beam, and the determined beam is referred to as a to-be-transmitted beam, where the to-be-transmitted beam may be one beam or multiple beams.
  • step S102 indication information is generated, the indication information including a number of beam packets and an identifier corresponding to each beam in each of the beam packets of the transmission synchronization signal block SSB, wherein the identifier corresponding to the to-be-sent beam is used to indicate the corresponding beam.
  • the indication information can be carried in the RMSI.
  • the identifier corresponding to the to-be-transmitted beam is the first identifier, for example, 0, the correspondence between the SSB and the RMSI in the corresponding beam packet may be a one-to-one relationship, and when the identifier corresponding to the to-be-sent beam is the second identifier, for example, The correspondence between the SSB and the RMSI in the corresponding beam grouping may be indicated as a many-to-one relationship.
  • the method may further include: grouping the beams according to the number of beam packets. For example, up to 64 beams can be divided into 8 beam packets.
  • the indication information may further include an identifier for indicating whether each beam packet transmits an SSB.
  • the identifier corresponding to the beam except the to-be-transmitted beam in the beam packet of each SSB is used to indicate whether the corresponding beam sends the SSB.
  • beam packet 1 transmits SSB
  • beam packet 1 includes beam 0-beam 7
  • the identifier corresponding to each beam in beam packet 1 is ⁇ 1, 0, 0, 1, 0, 1, 1,1 ⁇
  • the identifier corresponding to the beam 1 (that is, 0) is used to indicate that the correspondence between the SSB and the RMSI in the beam packet 1 is a one-to-one relationship
  • other identifiers are used to indicate whether the corresponding beam transmits the SSB.
  • step S103 the SSB corresponding to the to-be-sent beam and the indication information are sent to the UE.
  • the base station sends the SSB corresponding to the beam to be transmitted, for example, to the UE, and the foregoing indication information.
  • the UE may determine the correspondence between the SSB and the RMSI in the corresponding beam packet.
  • the UE may determine the SSB and the RMSI in the corresponding beam group according to the foregoing.
  • the correspondence between the SSM and the RMSI in the corresponding beam packet is used to indicate the correspondence between the RMSI and the SSB without increasing the bit overhead.
  • FIG. 2 is a flowchart of a method for determining a correspondence relationship according to an exemplary embodiment of the present application. The embodiment is described from the UE side. As shown in FIG. 2, the method includes:
  • step S201 the SSB and the indication information corresponding to the to-be-transmitted beam from the base station are received, where the indication information includes a number of beam packets and an identifier corresponding to each beam in each of the beam packets of the transmitting SSB, where the beam corresponds to the to-be-transmitted beam.
  • the identifier of the indicator is used to indicate the correspondence between the SSB and the RMSI in the corresponding beam packet.
  • the indication information can be carried in the RMSI.
  • an identifier corresponding to a beam of each of the beam packets transmitting the SSB except the to-be-transmitted beam may be used to indicate whether the corresponding beam transmits the SSB.
  • step S202 the time indication TI is parsed from the SSB, and the position of the SSB in the associated beam packet is determined according to the TI and the number of beam packets.
  • step S203 an identifier corresponding to the to-be-sent beam is acquired according to the determined location, and a correspondence between the SSB and the RMSI in the corresponding beam packet is determined according to the identifier corresponding to the to-be-sent beam.
  • the identifier corresponding to the to-be-transmitted beam is the first identifier, for example, 0, the correspondence between the SSB and the RMSI in the corresponding beam group may be determined to be a one-to-one relationship. If the identifier corresponding to the to-be-transmitted beam is, for example, the second identifier is 1, the relationship between the SSB and the RMSI in the corresponding beam packet may be determined to be a many-to-one relationship.
  • the identifier corresponding to each beam in the beam packet 1 is ⁇ 1, 0, 0, 1, 0, 1, 1, 1 ⁇ , and can be obtained according to the position of the SSB in the beam packet 1, that is, the second position.
  • the identifier corresponding to the to-be-sent beam is 0, and the correspondence between the SSB and the RMSI in the beam group 1 can be determined to be a one-to-one relationship.
  • the corresponding relationship between the SSB and the RMSI in the corresponding beam packet is determined to be a one-to-one relationship
  • the identifier corresponding to the to-be-sent beam is the second identifier
  • the relationship between the SSB and the RMSI in the corresponding beam group is determined to be a many-to-one relationship, and the implementation manner is simple.
  • the broadband UE can receive data in the SSB except for the location of the corresponding RMSI.
  • the UE needs to receive data at locations other than the four RMSIs when receiving data, that is, the locations where the four RMSIs are located are not used for transmission. data.
  • the wideband UE receives data by other locations in the SSB than the location of the corresponding RMSI to achieve correct reception of data.
  • the TI is parsed from the received SSB, and the location of the SSB in the associated beam packet is determined according to the TI and the number of received beam packets, and then the identifier corresponding to the to-be-sent beam is obtained according to the location, and according to the foregoing
  • the identifier corresponding to the to-be-transmitted beam determines the correspondence between the SSB and the RMSI in the corresponding beam group, so as to determine the correspondence between the SSB and the RMSI according to the indication information sent by the base station, and the bit overhead is not additionally increased in the implementation process.
  • FIG. 3 is a signaling flowchart of a method for determining a synchronization block according to an exemplary embodiment of the present application. The embodiment is described from the perspective of interaction between a base station and a UE. As shown in FIG. 3, the method for determining the synchronization block is shown in FIG. include:
  • step S301 the base station determines a beam to be transmitted.
  • the base station In step S302, the base station generates indication information including a number of beam packets and an identifier corresponding to each of the beam packets of each of the transmission synchronization signal blocks SSB, wherein each of the beam packets transmitting the SSB is to be transmitted.
  • the identifier corresponding to the beam outside the beam is used to indicate whether the corresponding beam transmits the SSB, and the identifier corresponding to the to-be-transmitted beam is used to indicate the correspondence between the SSB and the remaining critical system information RMSI in the corresponding beam packet.
  • step S303 the base station sends the SSB and the indication information corresponding to the to-be-sent beam to the UE.
  • step S304 the UE receives the SSB and indication information corresponding to the to-be-sent beam from the base station.
  • step S305 the UE parses the TI from the SSB, and determines the location of the SSB in the associated beam packet according to the TI and the number of beam packets.
  • step S306 the UE acquires an identifier corresponding to the to-be-sent beam according to the determined location, and determines a correspondence between the SSB and the RMSI in the corresponding beam packet according to the identifier corresponding to the to-be-sent beam.
  • the base station and the UE perform the interaction between the base station and the UE, so that the base station indicates the correspondence between the RMSI and the SSB by using the indication information, so that the UE can determine the correspondence between the SSB and the RMSI according to the indication information sent by the base station. Relationship, and no additional bit overhead is added during implementation.
  • FIG. 4 is a block diagram of a corresponding indicating device according to an exemplary embodiment.
  • the pointing device may be located in a base station.
  • the indicating device of the synchronization block includes: a determining module 41, and a generating module 42. And sending module 43.
  • the determination module 41 is configured to determine the beam to be transmitted.
  • the base station may determine the SSB transmitting a certain beam, and the determined beam is referred to as a to-be-transmitted beam, where the to-be-transmitted beam may be one beam or multiple beams.
  • the generating module 42 is configured to generate indication information including a number of beam packets and an identifier corresponding to each of the beam packets of each of the transmission synchronization signal blocks SSB, wherein the identifier corresponding to the to-be-sent beam is used to indicate the correspondence Correspondence between the SSB and the remaining critical system information RMSI in the beam grouping.
  • the indication information can be carried in the RMSI.
  • the identifier corresponding to the to-be-transmitted beam is the first identifier, for example, 0, the correspondence between the SSB and the RMSI in the corresponding beam packet may be a one-to-one relationship, and when the identifier corresponding to the to-be-sent beam is the second identifier, for example, The correspondence between the SSB and the RMSI in the corresponding beam grouping may be indicated as a many-to-one relationship.
  • the method may further include: grouping the beams according to the number of beam packets. For example, up to 64 beams can be divided into 8 beam packets.
  • the indication information may further include an identifier for indicating whether each beam packet transmits an SSB.
  • the identifier corresponding to the beam except the to-be-transmitted beam in the beam packet of each SSB is used to indicate whether the corresponding beam sends the SSB.
  • beam packet 1 transmits SSB
  • beam packet 1 includes beam 0-beam 7
  • the identifier corresponding to each beam in beam packet 1 is ⁇ 1, 0, 0, 1, 0, 1, 1,1 ⁇
  • the identifier corresponding to the beam 1 (that is, 0) is used to indicate that the correspondence between the SSB and the RMSI in the beam group 1 is a one-to-one relationship
  • other identifiers are used to indicate whether the corresponding beam is Send the SSB.
  • the sending module 43 is configured to send, to the user equipment, the SSB corresponding to the to-be-sent beam determined by the determining module 41 and the indication information generated by the generating module 42.
  • the base station sends the SSB corresponding to the beam to be transmitted, for example, to the UE, and the foregoing indication information.
  • the UE may determine the correspondence between the SSB and the RMSI in the corresponding beam packet.
  • the UE may determine the SSB and the RMSI in the corresponding beam group according to the foregoing.
  • the correspondence between the SSM and the RMSI in the corresponding beam packet is used to indicate the correspondence between the RMSI and the SSB without increasing the bit overhead.
  • FIG. 5 is a block diagram of another corresponding relationship indicating device according to an exemplary embodiment. As shown in FIG. 5, on the basis of the foregoing embodiment shown in FIG. 4, the device may further include: a grouping module 44.
  • the grouping module 44 is configured to group the beams according to the number of beam packets included in the indication information generated by the generation module 42.
  • the method may further include: grouping the beams according to the number of beam packets. For example, up to 64 beams can be divided into 8 beam packets.
  • the conditions are generated for generating the indication information by grouping the beams according to the number of beam packets.
  • FIG. 6 is a block diagram of a determining apparatus for a correspondence relationship, which may be located in a UE, as shown in FIG. 6, the apparatus includes: a receiving module 61, an analysis determining module 62, and an acquisition determination, according to an exemplary embodiment. Module 63.
  • the receiving module 61 is configured to receive the synchronization signal block SSB and the indication information corresponding to the to-be-transmitted beam from the base station, the indication information including the number of beam packets and an identifier corresponding to each beam in each of the beam packets of the transmission synchronization signal block SSB, The identifier corresponding to the to-be-transmitted beam is used to indicate the correspondence between the SSB and the remaining critical system information RMSI in the corresponding beam group.
  • the indication information can be carried in the RMSI.
  • an identifier corresponding to a beam of each of the beam packets transmitting the SSB except the to-be-transmitted beam may be used to indicate whether the corresponding beam transmits the SSB.
  • the parsing determination module 62 is configured to parse the time indication TI from the SSB received by the receiving module 61 and determine the location of the SSB in the associated beam packet based on the TI and the number of beam packets.
  • the UE may parse out from the SSB.
  • the acquisition determining module 63 is configured to acquire an identifier corresponding to the to-be-sent beam according to the location determined by the parsing determination module 62, and determine a correspondence between the SSB and the RMSI in the corresponding beam packet according to the identifier corresponding to the to-be-sent beam.
  • the identifier corresponding to the to-be-transmitted beam is the first identifier, for example, 0, the correspondence between the SSB and the RMSI in the corresponding beam group may be determined to be a one-to-one relationship. If the identifier corresponding to the to-be-transmitted beam is, for example, the second identifier is 1, the relationship between the SSB and the RMSI in the corresponding beam packet may be determined to be a many-to-one relationship.
  • the identifier corresponding to each beam in the beam packet 1 is ⁇ 1, 0, 0, 1, 0, 1, 1, 1 ⁇ , and can be obtained according to the position of the SSB in the beam packet 1, that is, the second position.
  • the identifier corresponding to the to-be-sent beam is 0, and the correspondence between the SSB and the RMSI in the beam group 1 can be determined to be a one-to-one relationship.
  • the TI is parsed from the received SSB, and the location of the SSB in the associated beam packet is determined according to the TI and the number of received beam packets, and then the identifier corresponding to the to-be-sent beam is obtained according to the location, and according to the foregoing
  • the identifier corresponding to the to-be-transmitted beam determines the correspondence between the SSB and the RMSI in the corresponding beam group, so as to determine the correspondence between the SSB and the RMSI according to the indication information sent by the base station, and the bit overhead is not additionally increased in the implementation process.
  • FIG. 7 is a block diagram of a determining apparatus for another correspondence relationship according to an exemplary embodiment.
  • the obtaining determining module 63 may include: first determining Submodule 631 and second determination submodule 632.
  • the first determining sub-module 631 is configured to determine that the correspondence between the SSB and the RMSI in the corresponding beam group is a one-to-one relationship if the identifier corresponding to the to-be-sent beam is the first identifier.
  • the second determining sub-module 632 is configured to determine that the correspondence between the SSB and the RMSI in the corresponding beam group is a many-to-one relationship if the identifier corresponding to the to-be-sent beam is the second identifier.
  • the identifier corresponding to the to-be-transmitted beam is the first identifier, for example, 0, the correspondence between the SSB and the RMSI in the corresponding beam group may be determined to be a one-to-one relationship. If the identifier corresponding to the to-be-transmitted beam is, for example, the second identifier is 1, the relationship between the SSB and the RMSI in the corresponding beam packet may be determined to be a many-to-one relationship.
  • the identifier corresponding to each beam in the beam packet 1 is ⁇ 1, 0, 0, 1, 0, 1, 1, 1 ⁇ , and can be obtained according to the position of the SSB in the beam packet 1, that is, the second position.
  • the identifier corresponding to the to-be-sent beam is 0, and the correspondence between the SSB and the RMSI in the beam group 1 can be determined to be a one-to-one relationship.
  • the identifier corresponding to the to-be-sent beam is the first identifier
  • determining the SSB in the corresponding beam group The corresponding relationship with the RMSI is a one-to-one relationship.
  • the identifier corresponding to the to-be-sent beam is the second identifier
  • the correspondence between the SSB and the RMSI in the corresponding beam group is determined to be a many-to-one relationship, and the implementation manner is simple.
  • FIG. 8 is a block diagram of another apparatus for determining a correspondence relationship according to an exemplary embodiment. As shown in FIG. 8, the apparatus may further include: a data receiving module 64, based on the foregoing embodiment shown in FIG. .
  • the data receiving module 64 is configured to receive, for the beam packet of the one-to-one relationship determined by the first determining sub-module 631 for the correspondence between the SSB and the RMSI, and receive data in the SSB except for the location of the corresponding RMSI.
  • the wideband UE may receive data in a location other than the location of the corresponding RMSI in the SSB.
  • the UE needs to receive data at locations other than the four RMSIs when receiving data, that is, the locations where the four RMSIs are located are not used for transmission. data.
  • data is received by other locations than the location of the corresponding RMSI in the SSB to achieve correct reception of data.
  • FIG. 9 is a block diagram of a determining apparatus suitable for a correspondence relationship, according to an exemplary embodiment.
  • device 900 can be a user device such as a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • device 900 can include one or more of the following components: processing component 902, memory 904, power component 906, multimedia component 908, audio component 910, input/output (I/O) interface 912, sensor component 914, And a communication component 916.
  • Processing component 902 typically controls the overall operation of device 900, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 902 can include one or more processors 920 to execute instructions to perform all or part of the steps described above.
  • processing component 902 can include one or more modules to facilitate interaction between component 902 and other components.
  • processing component 902 can include a multimedia module to facilitate interaction between multimedia component 908 and processing component 902.
  • One of the processors 920 in the processing component 902 can be configured to:
  • a synchronization signal block SSB corresponding to the to-be-transmitted beam and indication information
  • the indication information including a number of beam packets and an identifier corresponding to each beam in each of the beam packets of the transmission synchronization signal block SSB, wherein the beam to be transmitted
  • Corresponding identifier is used to indicate a correspondence between the SSB and the remaining critical system information RMSI in the corresponding beam group;
  • the time indication TI is parsed from the SSB, and the SSB is determined according to the number of the TI and the number of beam packets. The location in the group;
  • Memory 904 is configured to store various types of data to support operation at device 900. Examples of such data include instructions for any application or method operating on device 900, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 904 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 906 provides power to various components of device 900.
  • Power component 906 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 900.
  • the multimedia component 908 includes a screen between the device 900 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor can sense not only the boundaries of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 908 includes a front camera and/or a rear camera. When the device 900 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 910 is configured to output and/or input an audio signal.
  • audio component 910 includes a microphone (MIC) that is configured to receive an external audio signal when device 900 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 904 or transmitted via communication component 916.
  • the audio component 910 also includes a speaker for outputting an audio signal.
  • the I/O interface 912 provides an interface between the processing component 902 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 914 includes one or more sensors for providing device 900 with various aspects of status assessment.
  • sensor component 914 can detect an open/closed state of device 900, a relative positioning of components, such as a display and a keypad of device 900, and sensor component 914 can also detect the position of one component of device 900 or device 900. The change, the presence or absence of contact of the user with the device 900, the orientation or acceleration/deceleration of the device 900 and the temperature change of the device 900.
  • Sensor assembly 914 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 914 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 914 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 916 is configured to facilitate wired or wireless communication between device 900 and other devices.
  • the device 900 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 916 receives a broadcast signal or broadcast associated information from an external broadcast management system via a broadcast channel.
  • communication component 916 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 900 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation is used to perform the determination of the correspondence described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation is used to perform the determination of the correspondence described above.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 904 comprising instructions executable by processor 920 of apparatus 900 to perform the above method.
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • FIG. 10 is a block diagram of another indication device suitable for a correspondence relationship, according to an exemplary embodiment.
  • Apparatus 1000 can be provided as a base station.
  • apparatus 1000 includes a processing component 1022, a wireless transmit/receive component 1024, an antenna component 1026, and a signal processing portion specific to the wireless interface.
  • the processing component 1022 can further include one or more processors.
  • One of the processing components 1022 can be configured to:
  • Generating indication information including a number of beam packets and an identifier corresponding to each of the beam packets of each of the transmission synchronization signal blocks SSB, wherein the identifier corresponding to the to-be-sent beam is used to indicate the SSB and the remaining in the corresponding beam packet Correspondence of key system information RMSI;
  • non-transitory computer readable storage medium comprising instructions executable by the processing component 1022 of the apparatus 1000 to perform the indication of the correspondence described above.
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units illustrated as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located in one place. Or it can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种对应关系的指示及确定方法、装置、基站、用户设备和计算机可读存储介质。其中,对应关系的指示方法包括:确定待发送波束;生成指示信息,该指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系;向用户设备发送待发送波束对应的SSB和指示信息。本公开实施例,可以实现在不增加bit开销的情况下,指示RMSI和SSB的对应关系。

Description

对应关系的指示及确定方法、装置、基站和用户设备 技术领域
本公开涉及通信技术领域,尤其涉及一种对应关系的指示及确定方法、装置、基站、用户设备和计算机可读存储介质。
背景技术
随着无线通信技术的飞速发展,出现了第五代移动通信技术(5th Generation,简称为5G)系统。5G系统将面向高频段应用,即6GHz以上频段的应用。在高频段,因为无线电波的传播特性不好,因此传统的全向发送将不再适用,需要引入波束(beam)扫描和波束管理来进行通信。
在最近的第三代合作伙伴计划(3GPP)讨论中,引入宽带(Wideband)的概念,并且确定宽带可以有多个同步信号块(SSB)的频域分布,那么多个SSB对应多个剩余关键系统信息(RMSI)还是一个RMSI是需要解决的一个技术问题。
目前,基站会在SSB中的物理广播信道(PBCH)里配置RMSI的控制域信息,但用户设备(UE)根据控制域信息找到控制域,并解出RMSI后仍然不知道系统配置的RMSI和SSB的对应关系。对于宽带UE,因为可以在整个wideband工作,因此,在速率匹配时需要知道这种对应关系,以便根据RMSI的位置进行速率匹配,这就需要在RMSI中对这种对应关系进行指示。
发明内容
有鉴于此,本申请公开了一种对应关系的指示及确定方法、装置、基站、用户设备和计算机可读存储介质,以实现在不增加比特(bit)开销的情况下,指示RMSI和SSB的对应关系。
根据本公开实施例的第一方面,提供一种对应关系的指示方法,应用于基站,所述方法包括:
确定待发送波束;
生成指示信息,所述指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束 分组中每个波束对应的标识,其中,与所述待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系;
向用户设备发送所述待发送波束对应的SSB和所述指示信息。
在一实施例中,所述方法还包括:
按照所述波束分组数量对波束进行分组。
在一实施例中,所述每个发送SSB的波束分组中除所述待发送波束之外的波束对应的标识用于指示对应波束是否发送SSB。
在一实施例中,所述指示信息携带在所述RMSI中。
根据本公开实施例的第二方面,提供一种对应关系的确定方法,应用于用户设备,所述方法包括:
接收来自基站的待发送波束对应的同步信号块SSB和指示信息,所述指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与所述待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系;
从所述SSB中解析出时间指示TI,并根据所述TI和所述波束分组数量确定出所述SSB在所属波束分组中的位置;
根据所述位置获取与所述待发送波束对应的标识,并根据所述与所述待发送波束对应的标识确定对应波束分组中SSB与RMSI的对应关系。
在一实施例中,所述根据所述与所述待发送波束对应的标识确定对应波束分组中SSB与RMSI的对应关系,包括:
若所述与所述待发送波束对应的标识为第一标识,则确定对应波束分组中SSB与RMSI的对应关系为一对一关系;
若所述与所述待发送波束对应的标识为第二标识,则确定对应波束分组中SSB与RMSI的对应关系为多对一关系。
在一实施例中,所述方法还包括:
对于所述SSB与RMSI的对应关系为所述一对一关系的波束分组,在SSB中除对应的RMSI所在位置之外的其他位置接收数据。
在一实施例中,所述每个发送SSB的波束分组中除所述待发送波束之外的波束对应的标识用于指示对应波束是否发送SSB。
在一实施例中,所述指示信息携带在所述RMSI中。
根据本公开实施例的第三方面,提供一种对应关系的指示装置,应用于基站,所述装置包括:
确定模块,被配置为确定待发送波束;
生成模块,被配置为生成指示信息,所述指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与所述待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系;
发送模块,被配置为向用户设备发送所述确定模块确定的所述待发送波束对应的SSB和所述生成模块生成的所述指示信息。
在一实施例中,所述装置还包括:
分组模块,被配置为按照所述生成模块生成的所述指示信息中包括的所述波束分组数量对波束进行分组。
在一实施例中,所述每个发送SSB的波束分组中除所述待发送波束之外的波束对应的标识用于指示对应波束是否发送SSB。
在一实施例中,所述指示信息携带在所述RMSI中。
根据本公开实施例的第四方面,提供一种对应关系的确定装置,应用于用户设备,所述装置包括:
接收模块,被配置为接收来自基站的待发送波束对应的同步信号块SSB和指示信息,所述指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与所述待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系;
解析确定模块,被配置为从所述接收模块接收的所述SSB中解析出时间指示TI,并根据所述TI和所述波束分组数量确定出所述SSB在所属波束分组中的位置;
获取确定模块,被配置为根据所述解析确定模块确定的所述位置获取与所述待发送波束对应的标识,并根据所述与所述待发送波束对应的标识确定对应波束分组中SSB与RMSI的对应关系。
在一实施例中,所述获取确定模块包括:
第一确定子模块,被配置为若所述与所述待发送波束对应的标识为第一标识,则确定对应波束分组中SSB与RMSI的对应关系为一对一关系;
第二确定子模块,被配置为若所述与所述待发送波束对应的标识为第二标识,则确定对应波束分组中SSB与RMSI的对应关系为多对一关系。
在一实施例中,所述装置还包括:
数据接收模块,被配置为对于所述SSB与RMSI的对应关系为所述第一确定子模块确定的所述一对一关系的波束分组,在SSB中除对应的RMSI所在位置之外的其他位置接收数据。
在一实施例中,所述每个发送SSB的波束分组中除所述待发送波束之外的波束对应的标识用于指示对应波束是否发送SSB。
在一实施例中,所述指示信息携带在所述RMSI中。
根据本公开实施例的第五方面,提供一种基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
确定待发送波束;
生成指示信息,所述指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与所述待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系;
向用户设备发送所述待发送波束对应的SSB和所述指示信息。
根据本公开实施例的第六方面,提供一种用户设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收来自基站的待发送波束对应的同步信号块SSB和指示信息,所述指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与所述 待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系;
从所述SSB中解析出时间指示TI,并根据所述TI和所述波束分组数量确定出所述SSB在所属波束分组中的位置;
根据所述位置获取与所述待发送波束对应的标识,并根据所述与所述待发送波束对应的标识确定对应波束分组中SSB与RMSI的对应关系。
根据本公开实施例的第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述对应关系的指示方法的步骤。
根据本公开实施例的第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述对应关系的确定方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过确定待发送波束,并生成包括待发送波束对应的标识的指示信息,然后向UE发送待发送波束对应的SSB和指示信息,使得UE可以据此确定对应波束分组中SSB与RMSI的对应关系,由于待发送波束对应的标识用于指示对应波束分组中SSB与RMSI的对应关系,因此,可以实现在不增加bit开销的情况下,指示RMSI和SSB的对应关系。
通过从接收的SSB中解析出TI,并根据该TI和接收的波束分组数量确定出SSB在所属波束分组中的位置,然后根据上述位置获取与待发送波束对应的标识,并根据与待发送波束对应的标识确定对应波束分组中SSB与RMSI的对应关系,从而实现根据基站发送的指示信息确定SSB与RMSI的对应关系,且实现过程中不额外增加比特开销。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是本申请一示例性实施例示出的一种对应关系的指示方法的流程图;
图2是本申请一示例性实施例示出的一种对应关系的确定方法的流程图;
图3是本申请一示例性实施例示出的一种对应关系的确定方法的信令流程图;
图4是根据一示例性实施例示出的一种对应关系的指示装置的框图;
图5是根据一示例性实施例示出的另一种对应关系的指示装置的框图;
图6是根据一示例性实施例示出的一种对应关系的确定装置的框图;
图7是根据一示例性实施例示出的另一种对应关系的确定装置的框图;
图8是根据一示例性实施例示出的另一种对应关系的确定装置的框图;
图9是根据一示例性实施例示出的一种适用于对应关系的确定装置的框图;
图10是根据一示例性实施例示出的一种适用于对应关系的指示装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
图1是本申请一示例性实施例示出的一种对应关系的指示方法的流程图,该实施例从基站侧进行描述,如图1所示,该对应关系的指示方法包括:
在步骤S101中,确定待发送波束。
在该实施例中,基站可以确定发送某个波束的SSB,所确定的波束被称为待发送波束,其中,待发送波束可以为一个波束,也可以为多个波束。
在步骤S102中,生成指示信息,该指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系。
其中,该指示信息可以携带在RMSI中。当与待发送波束对应的标识为第一标识例如0时,可以指示对应波束分组中SSB与RMSI的对应关系为一对一关系,当与待发送波束对应的标识为第二标识例如1时,可以指示对应波束分组中SSB与RMSI的对应关系为多对一关系。
可选地,在生成指示信息时或者在生成指示信息之前,该方法还可以包括:按照波束分组数量对波束进行分组。例如,可以将至多64个波束分为8个波束分组。在该实施例中,该指示信息还可以包括用于指示每个波束分组是否发送SSB的标识。
其中,每个发送SSB的波束分组中除待发送波束之外的波束对应的标识用于指示对应波束是否发送SSB。
假设,待发送波束为波束1,波束分组1发送SSB,波束分组1包括波束0-波束7,与波束分组1中每个波束对应的标识为{1,0,0,1,0,1,1,1},则波束1对应的标识(也即0)用于指示波束分组1中SSB与RMSI的对应关系为一对一关系,其他标识用于表示对应波束是否发送SSB。
在步骤S103中,向UE发送待发送波束对应的SSB和该指示信息。
基站向UE发送待发送波束例如波束1对应的SSB和上述指示信息,UE在接收SSB和指示信息后,可以确定对应波束分组中SSB与RMSI的对应关系。
上述实施例,通过确定待发送波束,并生成包括待发送波束对应的标识的指示信息,然后向UE发送待发送波束对应的SSB和指示信息,使得UE可以据此确定对应波束分组中SSB与RMSI的对应关系,由于待发送波束对应的标识用于指示对应波束分组中SSB与RMSI的对应关系,因此,可以实现在不增加bit开销的情况下,指示RMSI和SSB的对应关系。
图2是本申请一示例性实施例示出的一种对应关系的确定方法的流程图,该实施例从UE侧进行描述,如图2所示,该方法包括:
在步骤S201中,接收来自基站的待发送波束对应的SSB和指示信息,该指示信息包括波束分组数量以及与每个发送SSB的波束分组中每个波束对应的标识,其中,与待发送波束对应的标识用于指示对应波束分组中SSB与RMSI的对应关系。
其中,该指示信息可以携带在RMSI中。
另外,每个发送SSB的波束分组中除待发送波束之外的波束对应的标识可以用于指示对应波束是否发送SSB。
在步骤S202中,从SSB中解析出时间指示TI,并根据TI和波束分组数量确定出SSB在所属波束分组中的位置。
在该实施例中,UE在接收到基站发送的SSB和指示信息后,可以从SSB中解析出TI,假设解析出的TI=1,波束分组数量为8,则可以确定该SSB所属的波束分组为波束分组1,且该SSB在波束分组1中的位置为2。
在步骤S203中,根据确定出的位置获取与待发送波束对应的标识,并根据与待发送波束对应的标识确定对应波束分组中SSB与RMSI的对应关系。
在该实施例中,若与待发送波束对应的标识为第一标识例如为0,则可以确定对应波束分组中SSB与RMSI的对应关系为一对一关系。若与待发送波束对应的标识为第二标识例如为1,则可以确定对应波束分组中SSB与RMSI的对应关系为多对一关系。
假设,与波束分组1中每个波束对应的标识为{1,0,0,1,0,1,1,1},则根据该SSB在波束分组1中的位置即第2个位置可以获取待发送波束对应的标识为0,并可以确定波束分组1中SSB与RMSI的对应关系为一对一关系。
在该实施例中,在与待发送波束对应的标识为第一标识时,确定对应波束分组中SSB与RMSI的对应关系为一对一关系,在与待发送波束对应的标识为第二标识时,确定对应波束分组中SSB与RMSI的对应关系为多对一关系,实现方式简单。
另外,对于SSB与RMSI的对应关系为一对一关系的波束分组,宽带UE可以在SSB中除对应的RMSI所在位置之外的其他位置接收数据。
例如,假设4个SSB与4个RMSI一一对应,则UE在接收数据时,需要在除这4个RMSI所在位置之外的其他位置接收数据,也即这4个RMSI所在的位置不用于传输数据。
宽带UE通过在SSB中除对应的RMSI所在位置之外的其他位置接收数据,以实现正确地接收数据。
上述实施例,通过从接收的SSB中解析出TI,并根据该TI和接收的波束分组数量确定出SSB在所属波束分组中的位置,然后根据上述位置获取与待发送波束对应的标识,并根据与待发送波束对应的标识确定对应波束分组中SSB与RMSI的对应关系,从而实现根据基站发送的指示信息确定SSB与RMSI的对应关系,且实现过程中不额外增加比特开销。
图3是本申请一示例性实施例示出的一种同步块的确定方法的信令流程图,该实施例从基站和UE交互的角度进行描述,如图3所示,该同步块的确定方法包括:
在步骤S301中,基站确定待发送波束。
在步骤S302中,基站生成指示信息,该指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,每个发送SSB的波束分组中除待发送波束之外的波束对应的标识用于指示对应波束是否发送SSB,与待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系。
在步骤S303中,基站向UE发送待发送波束对应的SSB和指示信息。
在步骤S304中,UE接收来自基站的待发送波束对应的SSB和指示信息。
在步骤S305中,UE从SSB中解析出TI,并根据该TI和波束分组数量确定出SSB在所属波束分组中的位置。
在步骤S306中,UE根据确定出的位置获取与待发送波束对应的标识,并根据与待发送波束对应的标识确定对应波束分组中SSB与RMSI的对应关系。
上述实施例,通过基站和UE之间的交互,使得基站在不增加bit开销的情况下,通过指示信息指示RMSI和SSB的对应关系,使得UE可以根据基站发送的指示信息确定SSB与RMSI的对应关系,且实现过程中不额外增加比特开销。
图4是根据一示例性实施例示出的一种对应关系的指示装置的框图,该指示装置可以位于基站中,如图4所示,该同步块的指示装置包括:确定模块41、生成模块42和发送模块43。
确定模块41被配置为确定待发送波束。
在该实施例中,基站可以确定发送某个波束的SSB,所确定的波束被称为待发送波束,其中,待发送波束可以为一个波束,也可以为多个波束。
生成模块42被配置为生成指示信息,该指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系。
其中,该指示信息可以携带在RMSI中。当与待发送波束对应的标识为第一标识例如0时,可以指示对应波束分组中SSB与RMSI的对应关系为一对一关系,当与待发送波束对应的标识为第二标识例如1时,可以指示对应波束分组中SSB与RMSI的对应关系为多对一关系。
可选地,在生成指示信息时或者在生成指示信息之前,该方法还可以包括:按照波束分组数量对波束进行分组。例如,可以将至多64个波束分为8个波束分组。在该实施例中,该指示信息还可以包括用于指示每个波束分组是否发送SSB的标识。
其中,每个发送SSB的波束分组中除待发送波束之外的波束对应的标识用于指示对应波束是否发送SSB。
假设,待发送波束为波束1,波束分组1发送SSB,波束分组1包括波束0-波束7,与波束分组1中每个波束对应的标识为{1,0,0,1,0,1,1,1},则波束1对应的标识(也即0)用于指示波束分组1中SSB与RMSI的对应关系为一对一关系,其他标识用于表示对应波束是否 发送SSB。
发送模块43被配置为向用户设备发送确定模块41确定的待发送波束对应的SSB和生成模块42生成的指示信息。
基站向UE发送待发送波束例如波束1对应的SSB和上述指示信息,UE在接收SSB和指示信息后,可以确定对应波束分组中SSB与RMSI的对应关系。
上述实施例,通过确定待发送波束,并生成包括待发送波束对应的标识的指示信息,然后向UE发送待发送波束对应的SSB和指示信息,使得UE可以据此确定对应波束分组中SSB与RMSI的对应关系,由于待发送波束对应的标识用于指示对应波束分组中SSB与RMSI的对应关系,因此,可以实现在不增加bit开销的情况下,指示RMSI和SSB的对应关系。
图5是根据一示例性实施例示出的另一种对应关系的指示装置的框图,如图5所示,在上述图4所示实施例的基础上,该装置还可以包括:分组模块44。
分组模块44被配置为按照生成模块42生成的指示信息中包括的波束分组数量对波束进行分组。
可选地,在生成指示信息时或者在生成指示信息之前,该方法还可以包括:按照波束分组数量对波束进行分组。例如,可以将至多64个波束分为8个波束分组。
上述实施例,通过按照波束分组数量对波束进行分组,为生成指示信息提供了条件。
图6是根据一示例性实施例示出的一种对应关系的确定装置的框图,该确定装置可以位于UE中,如图6所示,该装置包括:接收模块61、解析确定模块62和获取确定模块63。
接收模块61被配置为接收来自基站的待发送波束对应的同步信号块SSB和指示信息,该指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系。
其中,该指示信息可以携带在RMSI中。
另外,每个发送SSB的波束分组中除待发送波束之外的波束对应的标识可以用于指示对应波束是否发送SSB。
解析确定模块62被配置为从接收模块61接收的SSB中解析出时间指示TI,并根据TI和波束分组数量确定出SSB在所属波束分组中的位置。
在该实施例中,UE在接收到基站发送的SSB和指示信息后,可以从SSB中解析出 TI,假设解析出的TI=1,波束分组数量为8,则可以确定该SSB所属的波束分组为波束分组1,且该SSB在波束分组1中的位置为2。
获取确定模块63被配置为根据解析确定模块62确定的位置获取与待发送波束对应的标识,并根据与待发送波束对应的标识确定对应波束分组中SSB与RMSI的对应关系。
在该实施例中,若与待发送波束对应的标识为第一标识例如为0,则可以确定对应波束分组中SSB与RMSI的对应关系为一对一关系。若与待发送波束对应的标识为第二标识例如为1,则可以确定对应波束分组中SSB与RMSI的对应关系为多对一关系。
假设,与波束分组1中每个波束对应的标识为{1,0,0,1,0,1,1,1},则根据该SSB在波束分组1中的位置即第2个位置可以获取待发送波束对应的标识为0,并可以确定波束分组1中SSB与RMSI的对应关系为一对一关系。
上述实施例,通过从接收的SSB中解析出TI,并根据该TI和接收的波束分组数量确定出SSB在所属波束分组中的位置,然后根据上述位置获取与待发送波束对应的标识,并根据与待发送波束对应的标识确定对应波束分组中SSB与RMSI的对应关系,从而实现根据基站发送的指示信息确定SSB与RMSI的对应关系,且实现过程中不额外增加比特开销。
图7是根据一示例性实施例示出的另一种对应关系的确定装置的框图,如图7所示,在上述图6所示实施例的基础上,获取确定模块63可以包括:第一确定子模块631和第二确定子模块632。
第一确定子模块631被配置为若与待发送波束对应的标识为第一标识,则确定对应波束分组中SSB与RMSI的对应关系为一对一关系。
第二确定子模块632被配置为若与待发送波束对应的标识为第二标识,则确定对应波束分组中SSB与RMSI的对应关系为多对一关系。
在该实施例中,若与待发送波束对应的标识为第一标识例如为0,则可以确定对应波束分组中SSB与RMSI的对应关系为一对一关系。若与待发送波束对应的标识为第二标识例如为1,则可以确定对应波束分组中SSB与RMSI的对应关系为多对一关系。
假设,与波束分组1中每个波束对应的标识为{1,0,0,1,0,1,1,1},则根据该SSB在波束分组1中的位置即第2个位置可以获取待发送波束对应的标识为0,并可以确定波束分组1中SSB与RMSI的对应关系为一对一关系。
上述实施例,在与待发送波束对应的标识为第一标识时,确定对应波束分组中SSB 与RMSI的对应关系为一对一关系,在与待发送波束对应的标识为第二标识时,确定对应波束分组中SSB与RMSI的对应关系为多对一关系,实现方式简单。
图8是根据一示例性实施例示出的另一种对应关系的确定装置的框图,如图8所示,在上述图7所示实施例的基础上,该装置还可以包括:数据接收模块64。
数据接收模块64被配置为对于SSB与RMSI的对应关系为第一确定子模块631确定的一对一关系的波束分组,在SSB中除对应的RMSI所在位置之外的其他位置接收数据。
在该实施例中,对于SSB与RMSI的对应关系为一对一关系的波束分组,宽带UE可以在SSB中除对应的RMSI所在位置之外的其他位置接收数据。
例如,假设4个SSB与4个RMSI一一对应,则UE在接收数据时,需要在除这4个RMSI所在位置之外的其他位置接收数据,也即这4个RMSI所在的位置不用于传输数据。
上述实施例,通过在SSB中除对应的RMSI所在位置之外的其他位置接收数据,以实现正确地接收数据。
图9是根据一示例性实施例示出的一种适用于对应关系的确定装置的框图。例如,装置900可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等用户设备。
参照图9,装置900可以包括以下一个或多个组件:处理组件902,存储器904,电源组件906,多媒体组件908,音频组件910,输入/输出(I/O)的接口912,传感器组件914,以及通信组件916。
处理组件902通常控制装置900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理元件902可以包括一个或多个处理器920来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件902可以包括一个或多个模块,便于处理组件902和其他组件之间的交互。例如,处理部件902可以包括多媒体模块,以方便多媒体组件908和处理组件902之间的交互。
处理组件902中的其中一个处理器920可以被配置为:
接收来自基站的待发送波束对应的同步信号块SSB和指示信息,该指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系;
从SSB中解析出时间指示TI,并根据TI和波束分组数量确定出SSB在所属波束分 组中的位置;
根据确定出的位置获取与待发送波束对应的标识,并根据与待发送波束对应的标识确定对应波束分组中SSB与RMSI的对应关系。
存储器904被配置为存储各种类型的数据以支持在设备900的操作。这些数据的示例包括用于在装置900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件906为装置900的各种组件提供电力。电源组件906可以包括电源管理系统,一个或多个电源,及其他与为装置900生成、管理和分配电力相关联的组件。
多媒体组件908包括在装置900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件908包括一个前置摄像头和/或后置摄像头。当设备900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件910被配置为输出和/或输入音频信号。例如,音频组件910包括一个麦克风(MIC),当装置900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器904或经由通信组件916发送。在一些实施例中,音频组件910还包括一个扬声器,用于输出音频信号。
I/O接口912为处理组件902和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件914包括一个或多个传感器,用于为装置900提供各个方面的状态评估。例如,传感器组件914可以检测到设备900的打开/关闭状态,组件的相对定位,例如组件为装置900的显示器和小键盘,传感器组件914还可以检测装置900或装置900一个组件的位 置改变,用户与装置900接触的存在或不存在,装置900方位或加速/减速和装置900的温度变化。传感器组件914可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件914还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件914还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件916被配置为便于装置900和其他设备之间有线或无线方式的通信。装置900可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件916经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信部件916还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述对应关系的确定方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器904,上述指令可由装置900的处理器920执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图10是根据一示例性实施例示出的另一种适用于对应关系的指示装置的框图。装置1000可以被提供为一基站。参照图10,装置1000包括处理组件1022、无线发射/接收组件1024、天线组件1026、以及无线接口特有的信号处理部分,处理组件1022可进一步包括一个或多个处理器。
处理组件1022中的其中一个处理器可以被配置为:
确定待发送波束;
生成指示信息,该指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系;
向用户设备发送待发送波束对应的SSB和指示信息。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,上述指令可由装置1000的处理组件1022执行以完成上述对应关系的指示方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (22)

  1. 一种对应关系的指示方法,其特征在于,应用于基站,所述方法包括:
    确定待发送波束;
    生成指示信息,所述指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与所述待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系;
    向用户设备发送所述待发送波束对应的SSB和所述指示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    按照所述波束分组数量对波束进行分组。
  3. 根据权利要求1所述的方法,其特征在于,所述每个发送SSB的波束分组中除所述待发送波束之外的波束对应的标识用于指示对应波束是否发送SSB。
  4. 根据权利要求1所述的方法,其特征在于,所述指示信息携带在所述RMSI中。
  5. 一种对应关系的确定方法,其特征在于,应用于用户设备,所述方法包括:
    接收来自基站的待发送波束对应的同步信号块SSB和指示信息,所述指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与所述待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系;
    从所述SSB中解析出时间指示TI,并根据所述TI和所述波束分组数量确定出所述SSB在所属波束分组中的位置;
    根据所述位置获取与所述待发送波束对应的标识,并根据所述与所述待发送波束对应的标识确定对应波束分组中SSB与RMSI的对应关系。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述与所述待发送波束对应的标识确定对应波束分组中SSB与RMSI的对应关系,包括:
    若所述与所述待发送波束对应的标识为第一标识,则确定对应波束分组中SSB与RMSI的对应关系为一对一关系;
    若所述与所述待发送波束对应的标识为第二标识,则确定对应波束分组中SSB与RMSI的对应关系为多对一关系。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    对于所述SSB与RMSI的对应关系为所述一对一关系的波束分组,在SSB中除对应的RMSI所在位置之外的其他位置接收数据。
  8. 根据权利要求5所述的方法,其特征在于,所述每个发送SSB的波束分组中除所述待发送波束之外的波束对应的标识用于指示对应波束是否发送SSB。
  9. 根据权利要求5所述的方法,其特征在于,所述指示信息携带在所述RMSI中。
  10. 一种对应关系的指示装置,其特征在于,应用于基站,所述装置包括:
    确定模块,被配置为确定待发送波束;
    生成模块,被配置为生成指示信息,所述指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与所述待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系;
    发送模块,被配置为向用户设备发送所述确定模块确定的所述待发送波束对应的SSB和所述生成模块生成的所述指示信息。
  11. 根据权利要求10所述的装置,其特征在于,所述装置还包括:
    分组模块,被配置为按照所述生成模块生成的所述指示信息中包括的所述波束分组数量对波束进行分组。
  12. 根据权利要求10所述的装置,其特征在于,所述每个发送SSB的波束分组中除所述待发送波束之外的波束对应的标识用于指示对应波束是否发送SSB。
  13. 根据权利要求10所述的装置,其特征在于,所述指示信息携带在所述RMSI中。
  14. 一种对应关系的确定装置,其特征在于,应用于用户设备,所述装置包括:
    接收模块,被配置为接收来自基站的待发送波束对应的同步信号块SSB和指示信息,所述指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与所述待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系;
    解析确定模块,被配置为从所述接收模块接收的所述SSB中解析出时间指示TI,并根据所述TI和所述波束分组数量确定出所述SSB在所属波束分组中的位置;
    获取确定模块,被配置为根据所述解析确定模块确定的所述位置获取与所述待发送波束对应的标识,并根据所述与所述待发送波束对应的标识确定对应波束分组中SSB与RMSI的对应关系。
  15. 根据权利要求14所述的装置,其特征在于,所述获取确定模块包括:
    第一确定子模块,被配置为若所述与所述待发送波束对应的标识为第一标识,则确定对应波束分组中SSB与RMSI的对应关系为一对一关系;
    第二确定子模块,被配置为若所述与所述待发送波束对应的标识为第二标识,则确定对 应波束分组中SSB与RMSI的对应关系为多对一关系。
  16. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    数据接收模块,被配置为对于所述SSB与RMSI的对应关系为所述第一确定子模块确定的所述一对一关系的波束分组,在SSB中除对应的RMSI所在位置之外的其他位置接收数据。
  17. 根据权利要求14所述的装置,其特征在于,所述每个发送SSB的波束分组中除所述待发送波束之外的波束对应的标识用于指示对应波束是否发送SSB。
  18. 根据权利要求14所述的装置,其特征在于,所述指示信息携带在所述RMSI中。
  19. 一种基站,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    确定待发送波束;
    生成指示信息,所述指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与所述待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系;
    向用户设备发送所述待发送波束对应的SSB和所述指示信息。
  20. 一种用户设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收来自基站的待发送波束对应的同步信号块SSB和指示信息,所述指示信息包括波束分组数量以及与每个发送同步信号块SSB的波束分组中每个波束对应的标识,其中,与所述待发送波束对应的标识用于指示对应波束分组中SSB与剩余关键系统信息RMSI的对应关系;
    从所述SSB中解析出时间指示TI,并根据所述TI和所述波束分组数量确定出所述SSB在所属波束分组中的位置;
    根据所述位置获取与所述待发送波束对应的标识,并根据所述与所述待发送波束对应的标识确定对应波束分组中SSB与RMSI的对应关系。
  21. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1所述的对应关系的指示方法的步骤。
  22. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求5所述的对应关系的确定方法的步骤。
PCT/CN2017/105725 2017-10-11 2017-10-11 对应关系的指示及确定方法、装置、基站和用户设备 WO2019071470A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2017/105725 WO2019071470A1 (zh) 2017-10-11 2017-10-11 对应关系的指示及确定方法、装置、基站和用户设备
EP17928296.7A EP3684111B1 (en) 2017-10-11 2017-10-11 Correspondence indicating and determining method, base station, and user equipment
US16/753,290 US11317394B2 (en) 2017-10-11 2017-10-11 Correspondence indicating and determining method and apparatus, base station, and user equipment
ES17928296T ES2921705T3 (es) 2017-10-11 2017-10-11 Método de indicación y determinación de correspondencia, estación base y equipo de usuario
CN201780001691.9A CN109451859B (zh) 2017-10-11 2017-10-11 对应关系的指示及确定方法、装置、基站和用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/105725 WO2019071470A1 (zh) 2017-10-11 2017-10-11 对应关系的指示及确定方法、装置、基站和用户设备

Publications (1)

Publication Number Publication Date
WO2019071470A1 true WO2019071470A1 (zh) 2019-04-18

Family

ID=65530622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105725 WO2019071470A1 (zh) 2017-10-11 2017-10-11 对应关系的指示及确定方法、装置、基站和用户设备

Country Status (5)

Country Link
US (1) US11317394B2 (zh)
EP (1) EP3684111B1 (zh)
CN (1) CN109451859B (zh)
ES (1) ES2921705T3 (zh)
WO (1) WO2019071470A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11700589B2 (en) * 2020-06-05 2023-07-11 Qualcomm Incorporated Synchronization signal block transmissions in non-terrestrial networks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203290A1 (en) * 2015-06-15 2016-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Variable synchronization block format
CN106793058A (zh) * 2016-12-30 2017-05-31 展讯通信(上海)有限公司 处理同步信号块的方法、基站及用户设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5279677B2 (ja) * 2009-10-13 2013-09-04 株式会社日立製作所 無線通信システム、無線基地局装置及び無線通信方法
KR20130028397A (ko) * 2011-09-09 2013-03-19 삼성전자주식회사 무선 통신 시스템에서 동기 및 시스템 정보 획득을 위한 장치 및 방법
WO2014162568A1 (ja) * 2013-04-04 2014-10-09 富士通株式会社 移動通信システム、移動局、基地局及びセル検出方法
JP6336728B2 (ja) 2013-08-20 2018-06-06 株式会社Nttドコモ 同期信号送信方法及び基地局装置
US20150139001A1 (en) * 2013-11-20 2015-05-21 Feng Xue Method and apparatus for beam identification in multi-antenna systems
CN106998569B (zh) 2016-01-26 2020-06-16 华为技术有限公司 一种通信方法、装置和可读存储介质
CN106797625B (zh) * 2016-09-26 2020-06-02 北京小米移动软件有限公司 数据传输同步方法及装置
CN106455040B (zh) * 2016-11-30 2019-12-10 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端
US10979265B2 (en) * 2016-12-07 2021-04-13 Lg Electronics Inc. Method and apparatus for configuring control channel for NR in wireless communication system
US10505773B2 (en) * 2017-01-17 2019-12-10 Qualcomm Incorporated Association between synchronization signal beams and reference signal beams
US11012974B2 (en) * 2017-02-02 2021-05-18 Convida Wireless, Llc Apparatuses for transmission of paging blocks in swept downlink beams
WO2018175705A1 (en) * 2017-03-23 2018-09-27 Intel IP Corporation Nr (new radio) prach (physical random access channel) configuration and multi-beam operation
GB2563454A (en) * 2017-06-16 2018-12-19 Nec Corp Communication system
CN109413591B (zh) * 2017-08-11 2019-11-19 华为技术有限公司 一种数据传输方法、装置、系统、网络设备及用户设备
US10763984B2 (en) * 2017-08-18 2020-09-01 Qualcomm Incorporated Frequency division multiplexing synchronization signals (SS) for wideband operation
WO2019056210A1 (zh) * 2017-09-20 2019-03-28 北京小米移动软件有限公司 同步块的指示及确定方法、装置、基站、用户设备
MX2020003263A (es) * 2017-10-06 2020-07-20 Fg innovation co ltd Sistemas y metodos para (re)seleccion y prohibicion de celula.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203290A1 (en) * 2015-06-15 2016-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Variable synchronization block format
CN106793058A (zh) * 2016-12-30 2017-05-31 展讯通信(上海)有限公司 处理同步信号块的方法、基站及用户设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Additional Synchronization provision", 3GPP TSG RAN WG1 MEETING #90BIS R1-1717761, 8 October 2017 (2017-10-08), XP051340946 *
See also references of EP3684111A4 *
SONY: "Remaining details on remaining minimum system information", 3GPP TSG RAN WG1 MEETING NR#3 R1-1718664, 8 October 2017 (2017-10-08), XP051341837 *
ZTE ET AL.: "Remaining details of Synchronization Signal Design", 3GPP TSG RAN WG1 MEETING #90BIS R1-1717030, XP051340222 *

Also Published As

Publication number Publication date
CN109451859A (zh) 2019-03-08
EP3684111A1 (en) 2020-07-22
US11317394B2 (en) 2022-04-26
US20200305132A1 (en) 2020-09-24
EP3684111A4 (en) 2021-05-19
EP3684111B1 (en) 2022-04-13
ES2921705T3 (es) 2022-08-30
CN109451859B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
US11469962B2 (en) Method and apparatus for configuring information of indicating time-frequency position of SSB, and method and apparatus for determining time-frequency position of SSB
WO2019056210A1 (zh) 同步块的指示及确定方法、装置、基站、用户设备
CN108064466B (zh) 剩余关键系统信息的公共控制资源集合的周期信息指示方法
WO2019104672A1 (zh) 信息指示方法及装置、基站和用户设备
WO2019024087A1 (zh) 获取剩余关键系统信息的公共控制资源集时频资源位置的方法
WO2019084879A1 (zh) 剩余关键系统信息的公共资源集合的查找方法及装置
WO2018195798A1 (zh) 寻呼方法及装置
WO2018141134A1 (zh) 关于网络切片的接入方法及装置
WO2019183854A1 (zh) 寻呼同步指示方法及装置、寻呼同步方法及装置和基站
WO2019095109A1 (zh) 剩余关键系统信息的公共控制资源集合的频域信息指示方法
WO2019047143A1 (zh) 寻呼消息接收方法及装置和寻呼配置方法及装置
WO2019100402A1 (zh) 信息指示方法及装置、基站和用户设备
WO2018141165A1 (zh) 数据传输方法及装置
WO2019153355A1 (zh) 随机接入时机的配置方法及装置、随机接入方法及装置
WO2019210468A1 (zh) 同步广播块的发送、解调方法及装置、基站和用户设备
WO2019047168A1 (zh) 寻呼配置方法及装置、寻呼消息接收方法及装置和基站
WO2019061085A1 (zh) 信道检测、信息发送方法、装置及通信设备
WO2018201439A1 (zh) 随机接入方法及装置、用户设备和计算机可读存储介质
JP7137705B2 (ja) 同期信号ブロックの構成情報のブロードキャスト、受信方法及び装置
WO2019095183A1 (zh) 剩余关键系统信息的公共控制资源集合的时域信息指示方法
WO2019174069A1 (zh) 定义小区同步广播块位置的指示、搜索方法及装置和基站
WO2019041151A1 (zh) 最佳波束上报和确定方法及装置、用户设备、基站
WO2019144388A1 (zh) 信息指示方法及装置、基站和用户设备
WO2019071470A1 (zh) 对应关系的指示及确定方法、装置、基站和用户设备
WO2018195981A1 (zh) 系统信息变更通知方法、装置及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017928296

Country of ref document: EP

Effective date: 20200416