WO2020096145A1 - 위성 영상 획득 자세를 보정하는 방법 및 보정 장치 - Google Patents

위성 영상 획득 자세를 보정하는 방법 및 보정 장치 Download PDF

Info

Publication number
WO2020096145A1
WO2020096145A1 PCT/KR2019/003635 KR2019003635W WO2020096145A1 WO 2020096145 A1 WO2020096145 A1 WO 2020096145A1 KR 2019003635 W KR2019003635 W KR 2019003635W WO 2020096145 A1 WO2020096145 A1 WO 2020096145A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
predicted
ground
time
image acquisition
Prior art date
Application number
PCT/KR2019/003635
Other languages
English (en)
French (fr)
Inventor
이선호
Original Assignee
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공우주연구원 filed Critical 한국항공우주연구원
Priority to EP19882007.8A priority Critical patent/EP3878758B1/en
Publication of WO2020096145A1 publication Critical patent/WO2020096145A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1021Earth observation satellites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1021Earth observation satellites
    • B64G1/1028Earth observation satellites using optical means for mapping, surveying or detection, e.g. of intelligence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • B64G1/245Attitude control algorithms for spacecraft attitude control

Definitions

  • the present invention relates to a method and a correction apparatus for correcting a posture for acquiring a satellite image, providing a posture correction of a satellite for photographing a desired ground target in an orbiting satellite optical camera or an image radar mount.
  • Orbiting satellites are satellites orbiting the Earth in a specific orbit.
  • Ground stations that control these satellites use satellite orbiters to predict the satellite's orbit in order to plan an image acquisition mission.
  • the orbital propagator operates inside the satellite and the ground station, and analyzes and predicts information about the position of the satellite in orbit.
  • the orbit propagator Due to the performance limitations, the orbit propagator generates an orbit prediction error in the direction of the satellite (about 200 m per day).
  • a difference may occur between the position of the satellite according to the ground-based predicted orbit and the position on the actual orbit of the satellite, and the difference means an interval between the actual orbit and the predicted orbit.
  • the reason for the gap between the actual orbit and the predicted orbit is due to the performance limitations of the orbit propagator, and an orbit prediction error of about 200m per day may occur.
  • the difference between the actual position of the satellite at the first targeted ground-planned imaging time (T Imaging ) and the desired satellite position of the first targeted satellite (P Desired ) to acquire an image is the attitude of the satellite.
  • An object of the present invention is to provide a method and a correction device for correcting a posture of acquiring a satellite image, such that a satellite image for a desired target region is obtained without error by supplementing it through correction.
  • an embodiment of the present invention for the purpose of simply calculating the attitude of the satellite to be corrected through mathematical calculations using the difference between the position on the satellite-based predicted orbit and the position on the ground-based predicted orbit. do.
  • the method of correcting the attitude of acquiring a satellite image is linked to an image acquisition command, and a desired satellite location (P Desired ) and a ground plan photographing time (T Imaging ) of the satellite from the ground-based orbiter.
  • the satellite image acquisition attitude correction device in conjunction with the image acquisition command, the desired satellite position of the satellite from the ground-based orbital propagator (P Desired ) and the ground plan shooting time (T Imaging )
  • a control unit for calculating a posture correction angle d ⁇ with respect to the satellite at a position P Predicted and a control unit controlling to acquire an image from the satellite after correcting the posture of the satellite according to the posture correction angle d ⁇ It can be configured to include.
  • the difference between the actual location of the satellite at the first targeted ground-planned imaging time (T Imaging ) and the desired satellite location of the first targeted satellite (P Desired ) to acquire an image is a satellite.
  • T Imaging first targeted ground-planned imaging time
  • P Desired desired satellite location of the first targeted satellite
  • FIG. 1 is a block diagram showing an internal configuration of a satellite image acquisition posture correction apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining by visually displaying the parameters calculated in the present invention.
  • FIG 3 is a view showing a specific example of calculating the posture correction angle according to the present invention.
  • FIG. 4 is a view for explaining a procedure for obtaining a satellite image according to the present invention.
  • FIG. 5 is a flowchart illustrating a procedure of a method of correcting a satellite image acquisition posture according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing an internal configuration of a satellite image acquisition posture correction apparatus according to an embodiment of the present invention.
  • a satellite image acquisition posture correction apparatus 100 (hereinafter, abbreviated as 'correction apparatus') includes: a reception unit 110, an estimation unit 120, and a calculation unit ( 130), and a control unit 140.
  • the receiver 110 receives a desired satellite position (P Desired ) and a ground plan shooting time (T Imaging ) of a satellite from a ground-based orbital propagator in conjunction with an image acquisition command. That is, the receiving unit 110 may serve to receive the location of the first target satellite to acquire a satellite image and the start time of shooting from an operator of the present invention.
  • the desired satellite location is an orbital location of a satellite for photographing a ground target, and may be a vertical spatial location of a satellite passing through an area to be photographed.
  • the ground plan shooting time is a ground target shooting time planned by a ground-based orbital propagator, and may be an initial target shooting start time.
  • the ground-based orbital propagator may be satellite orbit prediction software implemented in a ground station.
  • the time at which the satellite arrives at the desired satellite location (P Desired ) should be the ground-planned imaging time (T Imaging ).
  • T Imaging ground-planned imaging time
  • the satellite becomes a T-planned shooting time (T Imaging ) before reaching the desired satellite position (P Desired ), or after reaching the desired satellite position (P Desired ).
  • T Imaging time to shoot the ground plan
  • the correction apparatus 100 of the present invention corrects the attitude of the satellite, and induces to accurately photograph the ground target in consideration of an error in the ground imaging time (T Imaging ).
  • the estimating unit 120 estimates a predicted satellite position (P Predicted ) at which the satellite will be located at the ground imaging time (T Imaging ).
  • the predicted satellite position (P Predicted ) may be an orbital position of the satellite in the ground-planned imaging time (T Imaging ) predicted by the satellite-based orbital propagator. That is, the estimator 120 may serve to estimate a point at which the satellite is likely to be located at the first targeted ground-planning imaging time (T Imaging ).
  • the satellite-based orbital propagator may be satellite orbit prediction software mounted on a satellite.
  • the calculating unit 130 calculates a posture correction angle d ⁇ with respect to the satellite at the predicted satellite position P Predicted by using the photographed desired satellite position P Desired .
  • the posture correction angle d ⁇ may refer to an angle at which the satellite should correct the posture when photographing. That is, the calculation unit 130 may correct the satellite positioned at the actual predicted satellite position (P Predicted ), so that the satellite can photograph the satellite image while accurately looking at the target ground target.
  • FIG. 2 is a view for explaining by visually displaying the parameters calculated in the present invention.
  • the solid line shows the actual orbit of the satellite
  • the arrow moving along the solid line shows the orbit of the predicted satellite based on the satellite
  • the dotted line shows the orbit of the predicted satellite based on the ground station.
  • the desired satellite position is a point of the first target satellite, and in FIG. 2, may have a target altitude and be horizontal to the time axis x-axis.
  • both the satellite-based predicted orbit (solid line) and the ground-based predicted orbit (dashed line) increase the altitude of the satellite over time, and may be illustrated in the right-hand direction in FIG. 2.
  • the desired satellite position P Desired received by the reception unit 110 may be a value corresponding to the y-axis (satellite position on the orbit) in FIG. 2.
  • the ground plan photographing time (T Imaging ) received by the receiving unit 110 is a value corresponding to the x-axis (time line) in FIG. 2 and may be used to calculate a predicted satellite position (P Predicted ). Can be.
  • the satellite at the predicted satellite position can photograph an area of the ground corresponding to the ground plan shooting time (T Imaging ).
  • the correction apparatus 100 of the present invention postures the satellite by a posture correction angle d ⁇ . By calibrating, it allows the satellite to view the target area vertically.
  • FIG 3 is a view showing a specific example of calculating the posture correction angle according to the present invention.
  • FIG. 3 a part of FIG. 2 between the desired satellite position P Desired and the predicted satellite position P Predicted is enlarged.
  • the calculation unit 130 may calculate the satellite altitude h of the satellite.
  • the satellite altitude (h) may be defined as the distance from the surface to the satellite.
  • the satellite can transmit the height coordinates when the predicted satellite position (P Predicted ) arrives to the correction device 100 of the present invention, and the calculation unit of the correction device 100 130, the height coordinates can be converted into satellite altitude (h).
  • the calculating unit 130 may calculate the distance of the satellite to move between the desired satellite position (P Desired ) and the predicted satellite position (P Predicted ).
  • the calculation unit 130 In order to calculate the distance the satellite travels, the calculation unit 130 first calculates a photographing time error (dT) in satellite orbit.
  • dT photographing time error
  • the shooting time error (dT) is the time obtained by dividing the distance between the desired satellite position (P Desired ) and the predicted satellite position (P Predicted ) by the satellite speed (V), and the initial target shooting start time and the actual shooting start time. It is a parameter to indicate the difference.
  • the satellite speed (V) is the orbital speed of the satellite, and can be obtained through a satellite positioning system (GNSS) receiver mounted on the satellite.
  • GNSS satellite positioning system
  • GNSS satellite positioning system
  • the satellite positioning system (GNSS) may be any one of a Global Positioning System (GPS), a Global Navigation Satellite System (GLONASS), and a GALILEO system.
  • the calculator 130 may calculate the ground movement distance by multiplying and applying the satellite speed Vg on the surface to the photographing time error dT.
  • the satellite velocity Vg on the surface is the velocity of the satellite projected on the surface, and may be a velocity at which the orthogonal projection of the satellite passes from the target region to the region of the ground perpendicular to the predicted satellite position.
  • the calculation unit 130 may calculate 'dT * Vg' as a ground movement distance.
  • the calculating unit 130 may calculate the posture correction angle d ⁇ by applying the satellite altitude h and the ground movement distance to a trigonometric function or a linear approximation function. Specifically, the calculation unit 130 may calculate the posture correction angle 'd ⁇ ' through the trigonometric function atan ((dT * Vg) / h) or the linear approximation function (dT * Vg) / h.
  • the correction device 100 may estimate a predicted satellite position (P Predicted ) through a waiting time (T wait ) of the satellite.
  • the receiver 110 may receive a correction angle calculation time T Correct at which the image acquisition command is generated, from the ground-based orbit propagator.
  • the correction angle calculation time (T Correct ) can be defined as the execution time of the correction command to calculate the posture correction angle (d ⁇ ), and set to a faster time than the ground plan shooting time (T Imaging ) to perform the correction before acquiring the image. Can be.
  • the reception unit 110 in conjunction with the reception of the correction angle calculation time (T Correct ), the reception unit 110, from the satellite positioning system (GNSS) receiver, at the correction angle calculation time (T Correct ) where the image acquisition command has occurred, It is possible to obtain the satellite position (P Correct ) at the time of calculating the correction angle for the position of the satellite.
  • the correction position calculation time satellite position (P Correct ) refers to the position of the satellite in orbit at the correction angle calculation time (T Correct ), and may be obtained from a satellite positioning system (GNSS) receiver mounted on the satellite.
  • the receiver 110 may acquire a satellite speed V through a satellite positioning system (GNSS) receiver.
  • the calculating unit 130 may calculate the imaging standby time T wait of the satellite by subtracting the correction angle calculation time T Correct from the ground-planned imaging time T Imaging .
  • the shooting waiting time T wait may refer to the remaining time from the correction angle calculation time T Correct to the ground plan shooting time T Imaging .
  • the calculation unit 130 may calculate the time from the execution of the correction command to the ground-planned shooting time (T Imaging ) at which the actual photographing is performed, as a waiting time (T wait ).
  • the estimator 120 may estimate the position of the satellite after the waiting time T wait , through the satellite-based orbital propagator, as the predicted satellite position (P Predicted ). For example, the estimator 120 estimates the satellite position as the predicted satellite position P Predicted when the waiting time T wait ends, taking into account the satellite speed V of the satellite moving along the orbit of the satellite. You can do it.
  • the controller 140 controls to acquire an image from the satellite after correcting the attitude of the satellite according to the posture correction angle d ⁇ . That is, the controller 140 may control the attitude of the satellite at the predicted satellite position (P Predicted ) by the attitude correction angle d ⁇ , so that the target area to be photographed is aligned with the imaging means in the satellite.
  • the difference between the actual location of the satellite at the first targeted ground-planned imaging time (T Imaging ) and the desired satellite location of the first targeted satellite (P Desired ) to acquire an image is a satellite.
  • T Imaging first targeted ground-planned imaging time
  • P Desired desired satellite location of the first targeted satellite
  • FIG. 4 is a view for explaining a procedure for obtaining a satellite image according to the present invention.
  • the ground station 410 includes a ground-based orbital wave 412
  • the satellite body 420 includes a satellite-based orbital wave 422 and a satellite positioning system (GNSS) receiver. It can be configured to include (424).
  • the satellite mounting body 430 may be configured independently of the satellite body 420 or may be included in the satellite body 420.
  • the ground station 410 receives a satellite location (P Desired ) desired to be photographed.
  • the ground station 410 uses the ground-based orbital propagator 412 to calculate the ground-planned imaging time (T Imaging ) corresponding to the desired satellite location (P Desired ).
  • the ground station 410 transmits the ground plan shooting time (T Imaging ) to the satellite body 420.
  • the ground station 410 transmits the correction angle T Correct and the desired satellite position P Desired to the satellite body 420.
  • the satellite body 420 calculates a waiting time (T wait ) using the correction angle calculation time (T Correct ) and the correction angle calculation time (T Correct ).
  • the satellite body 420 may acquire the correction position calculation time (T Correct ) and the correction position calculation time satellite position (P Correct ) through the satellite positioning system (GNSS) receiver 424.
  • the satellite body 420 may acquire a satellite speed (V) through a satellite positioning system (GNSS) receiver.
  • the satellite body 420 calculates the predicted satellite position (P Predicted ) after the waiting time (T wait ) by using the satellite-based orbital propagator (422) at the correction angle T Correct .
  • the satellite-based orbital propagator 422 receives the correction position calculation time, the satellite position P Correct , the satellite speed V, and the recording standby time T wait , and outputs a predicted satellite position P Predicted .
  • the satellite body 420 calculates a shooting time error (dT) using a desired satellite position (P Desired ), a predicted satellite position (P Predicted ), and a satellite speed (V).
  • dT shooting time error
  • the satellite body 420 calculates a posture correction angle d ⁇ using a photographing time error dT.
  • the satellite body 420 generates a corrected posture command using the posture correction angle d ⁇ , thereby performing posture startup of the satellite body.
  • the satellite mounting body 430 may process image acquisition performance at the ground plan shooting time (T Imaging ).
  • FIG. 5 is a flowchart illustrating a procedure of a method of correcting a satellite image acquisition posture according to an embodiment of the present invention.
  • the method of correcting the attitude of acquiring a satellite image according to this embodiment may be performed by the apparatus 100 for correcting the attitude of acquiring a satellite image.
  • the correction device 100 receives a desired satellite position (P Desired ) and a ground plan shooting time (T Imaging ) of a satellite from a ground-based orbital propagator in conjunction with an image acquisition command (510).
  • Step 510 may be a process of receiving the location of the first target satellite to acquire a satellite image and the start time of shooting from an operator of the present invention.
  • the desired satellite location is an orbital location of a satellite for photographing a ground target, and may be a vertical spatial location of a satellite passing through an area to be photographed.
  • the ground plan shooting time is a ground target shooting time planned by a ground-based orbital propagator, and may be an initial target shooting start time.
  • the ground-based orbital propagator may be satellite orbit prediction software implemented in a ground station.
  • the time at which the satellite arrives at the desired satellite location (P Desired ) should be the ground-planned imaging time (T Imaging ).
  • T Imaging ground-planned imaging time
  • the satellite becomes a T-planned shooting time (T Imaging ) before the satellite reaches the desired satellite position (P Desired ), or the terrestrial plan after reaching the desired satellite position (P Desired ).
  • T Imaging time to shoot
  • the correction device 100 of the present invention corrects the attitude of the satellite, and induces to accurately shoot the ground target in consideration of an error in the ground planning shooting time (T Imaging ) of the time when the ground target has already passed. do.
  • the correction device 100 estimates a predicted satellite position (P Predicted ) at which the satellite will be located at the ground-planned imaging time (T Imaging ) (520).
  • the predicted satellite position (P Predicted ) may be an orbital position of the satellite in the ground-planned imaging time (T Imaging ) predicted by the satellite-based orbital propagator.
  • Step 520 may serve to estimate a point at which the satellite is likely to be located at the first targeted ground plan T Imaging .
  • the satellite-based orbital propagator may be satellite orbit prediction software mounted on a satellite.
  • the correction device 100 calculates a posture correction angle d ⁇ with respect to the satellite at the predicted satellite position P Predicted using the photographed desired satellite position P Desired (530).
  • the posture correction angle d ⁇ may refer to an angle at which the satellite should correct the posture when photographing.
  • the step 530 may be a process of allowing a satellite to take a satellite image while accurately looking at a target ground target by correcting a shooting posture for a satellite located at an actual predicted satellite position (P Predicted ).
  • the desired satellite position P Desired may be a value corresponding to the y-axis (satellite position on the orbit) in FIG. 2.
  • the ground plan photographing time (T Imaging ) is a value corresponding to the x-axis (time line) in FIG. 2 and may be used to calculate a predicted satellite position (P Predicted ).
  • the satellite at the predicted satellite position may photograph an area of the ground corresponding to the ground-planned imaging time (T Imaging ).
  • the correction apparatus 100 of the present invention postures the satellite by a posture correction angle d ⁇ . By calibrating, it allows the satellite to view the target area vertically.
  • the correction device 100 may calculate the satellite altitude h of the satellite.
  • the satellite altitude (h) may be defined as the distance from the surface to the satellite.
  • the satellite can transmit the height coordinates when the predicted satellite position (P Predicted ) reaches, the correction device 100 of the present invention, the correction device 100 is the The height coordinates can be converted as satellite altitude (h).
  • the correction apparatus 100 may calculate the distance of the satellite to move between the desired satellite location (P Desired ) and the predicted satellite location (P Predicted ).
  • the correction device 100 calculates a photographing time error (dT) in satellite orbit.
  • the shooting time error (dT) is the time obtained by dividing the distance between the desired satellite position (P Desired ) and the predicted satellite position (P Predicted ) by the satellite speed (V), and the initial target shooting start time and the actual shooting start time. It is a parameter to indicate the difference.
  • the satellite speed (V) is the orbital speed of the satellite, and can be obtained through a satellite positioning system (GNSS) receiver mounted on the satellite.
  • GNSS satellite positioning system
  • GNSS satellite positioning system
  • the satellite positioning system (GNSS) may be any one of a Global Positioning System (GPS), a Global Navigation Satellite System (GLONASS), and a GALILEO system.
  • the correction apparatus 100 may calculate the ground movement distance by multiplying and applying the satellite speed Vg on the surface to the photographing time error dT.
  • the satellite velocity Vg on the surface is the velocity of the satellite projected on the surface, and may be a velocity at which the orthogonal projection of the satellite passes from the target region to the region of the ground perpendicular to the predicted satellite position.
  • the correction device 100 may calculate 'dT * Vg' as a ground travel distance.
  • the correction device 100 may calculate the posture correction angle d ⁇ by applying the satellite altitude h and the ground movement distance to a trigonometric function or a linear approximation function. Specifically, the correction apparatus 100 may calculate the posture correction angle 'd ⁇ ' through the trigonometric function atan ((dT * Vg) / h) or the linear approximation function (dT * Vg) / h.
  • the correction device 100 may receive a correction angle calculation time T Correct at which the image acquisition command is generated, from the ground-based orbit propagator.
  • the correction angle calculation time (T Correct ) can be defined as the execution time of the correction command to calculate the posture correction angle (d ⁇ ), and set to a faster time than the ground plan shooting time (T Imaging ) to perform the correction before acquiring the image. Can be.
  • the correction device 100 receives, from the satellite positioning system (GNSS) receiver, the correction angle calculation time (T Correct ) at which the image acquisition command is generated, It is possible to obtain the satellite position (P Correct ) at the time of calculating the correction angle for the position of the satellite.
  • the correction position calculation time satellite position (P Correct ) refers to the position of the satellite in orbit at the correction angle calculation time (T Correct ), and may be obtained from a satellite positioning system (GNSS) receiver mounted on the satellite.
  • the correction device 100 may calculate the imaging standby time T wait of the satellite by subtracting the correction angle T Correct from the ground-planned imaging time T Imaging .
  • the shooting waiting time T wait may refer to the remaining time from the correction angle calculation time T Correct to the ground plan shooting time T Imaging .
  • the correction device 100 may calculate a time from the ground plan T Imaging at which the actual photographing is performed as the photographing standby time T wait .
  • the correction device 100 may estimate the position of the satellite after the waiting time T wait , through the satellite-based orbital propagator, as the predicted satellite position (P Predicted ). For example, the correction device 100 estimates the satellite position as the predicted satellite position P Predicted when the waiting time T wait ends, taking into account the satellite speed V of the satellite moving along the orbit of the satellite. You can do it.
  • Step 540 may be a process of tilting the attitude of the satellite at a predicted satellite position (P Predicted ) by a posture correction angle (d ⁇ ) so that the target region to be photographed is placed in line with the imaging means in the satellite.
  • the difference between the actual location of the satellite at the first targeted ground-planned imaging time (T Imaging ) and the desired satellite location of the first targeted satellite (P Desired ) to acquire an image is a satellite.
  • T Imaging first targeted ground-planned imaging time
  • P Desired desired satellite location of the first targeted satellite
  • the method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, or the like alone or in combination.
  • the program instructions recorded in the medium may be specially designed and configured for the embodiments or may be known and usable by those skilled in computer software.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs, DVDs, and magnetic media such as floptical disks.
  • -Hardware devices specifically configured to store and execute program instructions such as magneto-optical media, and ROM, RAM, flash memory, and the like.
  • program instructions include high-level language codes that can be executed by a computer using an interpreter, etc., as well as machine language codes produced by a compiler.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.
  • the software may include a computer program, code, instruction, or a combination of one or more of these, and configure the processing device to operate as desired, or process independently or collectively You can command the device.
  • Software and / or data may be interpreted by a processing device, or to provide instructions or data to a processing device, of any type of machine, component, physical device, virtual equipment, computer storage medium or device. , Or may be permanently or temporarily embodied in the transmitted signal wave.
  • the software may be distributed over networked computer systems, and stored or executed in a distributed manner.
  • Software and data may be stored in one or more computer-readable recording media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Studio Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

위성 영상 획득 자세를 보정하는 방법 및 보정 장치가 개시된다. 본 발명의 일실시예에 따른 위성 영상 획득 자세를 보정하는 방법은, 영상 획득 명령에 연동하여, 지상기반 궤도전파기로부터 위성의 촬영희망 위성위치(P Desired)와 지상계획 촬영시각(T Imaging)을 수신하는 단계, 상기 지상계획 촬영시각(T Imaging)에 상기 위성이 위치하게 되는 예측 위성위치(P Predicted)를 추정하는 단계, 상기 촬영희망 위성위치(P Desired)를 이용하여, 상기 예측 위성위치(P Predicted)에서의, 상기 위성에 대한 자세 보정각(dθ)을 연산하는 단계, 및 상기 자세 보정각(dθ)에 따른 상기 위성의 자세 보정 후, 상기 위성에서 영상을 획득하도록 제어하는 단계를 포함할 수 있다.

Description

위성 영상 획득 자세를 보정하는 방법 및 보정 장치
본 발명은 궤도상 인공위성의 광학 카메라 또는 영상 레이더 탑재체에 있어서 원하는 지상 타킷을 촬영하기 위한 위성의 자세 보정을 제공하는, 위성 영상을 획득하는 자세를 보정하는 방법 및 보정 장치에 관한 것이다.
궤도 위성은 특정 궤도 상에서 지구 주위를 공전하는 위성을 말한다.
이러한 위성을 관제하는 지상국은 영상획득 임무를 계획하기 위해, 궤도전파기를 이용하여 위성 궤도를 예측한다.
궤도전파기는 지상국과 위성 내부에서 함께 운용되며 위성의 공전 궤도상 위치 등에 관한 정보를 분석하고 예측한다.
상기 궤도전파기는 성능적 한계로 인하여 위성 진행방향에 대해, 궤도 예측 오차가 발생한다(하루당 약 200m의 오차 발생).
이로 인한 영상 획득 위치 오차가 발생하여, 원하는 타킷 지역을 정확하게 촬영하지 못하는 경우가 발생하고, 이로 인해 임무 수행에 차질을 초래할 수 있다.
예컨대, 지상기반 예측 궤도에 따른 위성의 위치와 위성의 실제 궤도상 위치 간에 차이가 발생할 수 있고, 상기 차이는 실제 궤도와 예측 궤도 사이의 간격을 의미한다. 실제 궤도와 예측 궤도 사이의 간격이 발생하는 이유는 궤도전파기의 성능 한계로 인한 것이며 하루에 약 200m의 궤도 예측 오차가 발생할 수 있다.
따라서, 위성의 영상획득 자세를 보정하는 기술이 필수적으로 요구되고 있다.
본 발명의 실시예는, 영상을 획득하도록 최초 목표한 지상계획 촬영시각(T Imaging)에서의 위성의 실제 위치와, 최초 목표한 위성의 촬영희망 위성위치(P Desired)와의 차이를, 위성의 자세 보정을 통해 보완 함으로써, 원하는 타킷 영역에 대한 위성 영상을, 오류 없이 획득하도록 하는, 위성 영상 획득 자세를 보정하는 방법 및 보정 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명의 실시예는, 위성 기반의 예측 궤도 상의 위치와, 지상 기반의 예측 궤도 상의 위치의 차이를 이용한, 수학적 계산을 통해, 보정해야 하는 위성의 자세를 간단하게 산출해내는 것을 목적으로 한다.
본 발명의 일실시예에 따른 위성 영상 획득 자세를 보정하는 방법은, 영상 획득 명령에 연동하여, 지상기반 궤도전파기로부터 위성의 촬영희망 위성위치(P Desired)와 지상계획 촬영시각(T Imaging)을 수신하는 단계, 상기 지상계획 촬영시각(T Imaging)에 상기 위성이 위치하게 되는 예측 위성위치(P Predicted)를 추정하는 단계, 상기 촬영희망 위성위치(P Desired)를 이용하여, 상기 예측 위성위치(P Predicted)에서의, 상기 위성에 대한 자세 보정각(dθ)을 연산하는 단계, 및 상기 자세 보정각(dθ)에 따른 상기 위성의 자세 보정 후, 상기 위성에서 영상을 획득하도록 제어하는 단계를 포함할 수 있다.
또한, 본 발명의 실시예에 따른 위성 영상 획득 자세의 보정 장치는, 영상 획득 명령에 연동하여, 지상기반 궤도전파기로부터 위성의 촬영희망 위성위치(P Desired)와 지상계획 촬영시각(T Imaging)을 수신하는 수신부, 상기 지상계획 촬영시각(T Imaging)에 상기 위성이 위치하게 되는 예측 위성위치(P Predicted)를 추정하는 추정부, 상기 촬영희망 위성위치(P Desired)를 이용하여, 상기 예측 위성위치(P Predicted)에서의, 상기 위성에 대한 자세 보정각(dθ)을 연산하는 연산부, 및 상기 자세 보정각(dθ)에 따른 상기 위성의 자세 보정 후, 상기 위성에서 영상을 획득하도록 제어하는 제어부를 포함하여 구성할 수 있다.
본 발명의 일실시예에 따르면, 영상을 획득하도록 최초 목표한 지상계획 촬영시각(T Imaging)에서의 위성의 실제 위치와, 최초 목표한 위성의 촬영희망 위성위치(P Desired)와의 차이를, 위성의 자세 보정을 통해 보완 함으로써, 원하는 타킷 영역에 대한 위성 영상을, 오류 없이 획득하도록 하는, 위성 영상 획득 자세를 보정하는 방법 및 보정 장치를 제공할 수 있다.
또한, 본 발명의 일실시예에 따르면, 위성 기반의 예측 궤도 상의 위치와, 지상 기반의 예측 궤도 상의 위치의 차이를 이용한, 수학적 계산을 통해, 보정해야 하는 위성의 자세를 간단하게 산출해 낼 수 있다.
도 1은 본 발명의 일실시예에 따른, 위성 영상 획득 자세의 보정 장치의 내부 구성을 도시한 블록도이다.
도 2는 본 발명에서 산출된 파라미터를 시각적으로 표시하여 설명하기 위한 도이다.
도 3은 본 발명에 따라 자세 보정각을 산출하는 구체적인 예를 도시하는 도면이다.
도 4는 본 발명에 따른 위성 영상을 획득하는 절차를 설명하는 도이다.
도 5는 본 발명의 일실시예에 따른, 위성 영상 획득 자세를 보정하는 방법의 순서를 도시한 흐름도이다.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
도 1은 본 발명의 일실시예에 따른, 위성 영상 획득 자세의 보정 장치의 내부 구성을 도시한 블록도이다.
도 1를 참조하면, 본 발명의 일실시예에 따른, 위성 영상 획득 자세의 보정 장치(100, 이하, '보정 장치'로 약칭함)는, 수신부(110), 추정부(120), 연산부(130), 및 제어부(140)를 포함하여 구성할 수 있다.
수신부(110)는 영상 획득 명령에 연동하여, 지상기반 궤도전파기로부터 위성의 촬영희망 위성위치(P Desired)와 지상계획 촬영시각(T Imaging)을 수신한다. 즉, 수신부(110)는 본 발명의 운영자로부터, 위성 영상을 획득하도록 최초 목표된 위성의 위치와, 촬영 개시 시각을 입력받는 역할을 수행할 수 있다.
촬영희망 위성위치(P Desired)는 지상 타킷을 촬영하기 위한 위성의 궤도상 위치로서, 촬영 대상인 영역을 지나가는 위성의 수직적 공간상 위치일 수 있다.
지상계획 촬영시각(T Imaging)은 지상기반 궤도전파기에 의해 계획한 지상 타킷 촬영 시각으로서, 최초 목표한 촬영 개시 시각일 수 있다.
여기서, 지상기반 궤도전파기는 지상국에서 구현되는, 위성궤도 예측 소프트웨어일 수 있다.
이론적으로, 촬영희망 위성위치(P Desired)에 위성이 도달하는 시각은 지상계획 촬영시각(T Imaging)이 되어야 한다. 그러나, 상술한 위성의 궤도 예측 오차로 인해, 위성이 촬영희망 위성위치(P Desired)에 도달하기 전에 지상계획 촬영시각(T Imaging)이 되거나, 또는 촬영희망 위성위치(P Desired)에 도달 이후에 지상계획 촬영시각(T Imaging)이 되는 경우가 있다.
이를 보완하기 위해, 본 발명의 보정 장치(100)는 위성의 자세를 보정 함으로써, 지상계획 촬영시각(T Imaging)에서, 오차를 감안하여 지상 타킷을 정확하게 촬영할 수 있게 유도한다.
추정부(120)는 상기 지상계획 촬영시각(T Imaging)에 상기 위성이 위치하게 되는 예측 위성위치(P Predicted)를 추정한다. 여기서, 예측 위성위치(P Predicted)는 위성기반 궤도전파기에 의해서 예측되는 지상계획 촬영시각(T Imaging)에서의, 위성의 궤도상 위치일 수 있다. 즉, 추정부(120)는, 최초 목표된 지상계획 촬영시각(T Imaging)에 위성이 위치하고 있을 것으로 보이는 지점을 추정하는 역할을 할 수 있다. 여기서, 위성기반 궤도전파기는 위성에 탑재된 위성궤도 예측 소프트웨어일 수 있다.
연산부(130)는, 상기 촬영희망 위성위치(P Desired)를 이용하여, 상기 예측 위성위치(P Predicted)에서의, 상기 위성에 대한 자세 보정각(dθ)을 연산한다. 여기서, 자세 보정각(dθ)은 촬영시의, 위성이 자세를 보정해야 하는 각도를 지칭할 수 있다. 즉, 연산부(130)는, 실제 예측 위성위치(P Predicted)에 위치한 위성에 대해, 촬영 자세를 수정 함으로써, 위성이, 목표한 지상 타킷을 정확하게 바라보면서, 위성 영상을 촬영하도록 할 수 있다.
상술의 추정부(120), 연산부(130)에서 산출된 촬영희망 위성위치(P Desired), 지상계획 촬영시각(T Imaging), 예측 위성위치(P Predicted), 및 자세 보정각(dθ)에 대해, 이하의 도 2, 3을 참조하여 보다 상세히 설명한다.
도 2는 본 발명에서 산출된 파라미터를 시각적으로 표시하여 설명하기 위한 도이다.
도 2에서, 실선은 위성의 실제 궤도를 도시하고, 상기 실선을 따라 움직이는 화살표는 위성에 기반하여 예측된 위성의 궤도를 도시하며, 점선은 지상국에 기반하여 예측된 위성의 궤도를 도시한다.
촬영희망 위성위치(P Desired)는 최초 목표한 위성의 지점이고, 도 2에서, 목표한 고도를 가지면서 time 선인 x축과 수평할 수 있다.
위성이 지나가는 궤도는, 위성기반 예측궤도(실선)과 지상기반 예측궤도(점선) 모두, 시간의 흐름에 따라 위성이 고도를 높이게 되어, 도 2에서, 우상 방향으로 도시될 수 있다.
수신부(110)에 의해 수신한 촬영희망 위성위치(P Desired)는, 도 2에서의 y축(궤도상의 위성 위치) 상에 해당하는 값일 수 있다.
또한, 수신부(110)에 의해 수신한 지상계획 촬영시각(T Imaging)은, 도 2에서의 x축(time 선)에 해당하는 값으로서, 예측 위성위치(P Predicted)를 산출하는 데에 활용될 수 있다.
도 2와 같은 각 파라미터를 도시한 상태에서, 설계상, 예측 위성위치(P Predicted)에서의 위성은, 지상계획 촬영시각(T Imaging)에 해당하는 지상의 영역을 촬영할 수 있다.
하지만, 최초 목표하는 촬영 영역인 타킷 영역은, 촬영희망 위성위치(P Desired)에서의 위성이 촬영하는 영역이므로, 본 발명의, 보정 장치(100)는, 위성을 자세 보정각(dθ) 만큼 자세 보정 함으로써, 위성이 타킷 영역을 수직으로 바라볼 수 있게 한다.
도 3은 본 발명에 따라 자세 보정각을 산출하는 구체적인 예를 도시하는 도면이다.
도 3에서는, 도 2의, 촬영희망 위성위치(P Desired)와 예측 위성위치(P Predicted) 사이의 일부를 확대하여 도시한다.
연산부(130)는, 위성의 위성 고도(h)를 연산할 수 있다. 여기서, 위성 고도(h)는 지표면에서 위성까지의 거리로 정의될 수 있다. 상기 위성 고도(h)의 연산에 있어, 위성은, 예측 위성위치(P Predicted)이 도달할 때의 높이 좌표를, 본 발명의 보정 장치(100)로 전송할 수 있고, 보정 장치(100)의 연산부(130)는 상기 높이 좌표를, 위성 고도(h)로서 환산할 수 있다.
또한, 연산부(130)는 촬영희망 위성위치(P Desired)와 예측 위성위치(P Predicted) 사이에서의, 상기 위성의 지상이동 거리를 연산할 수 있다.
위성의 지상이동 거리를 연산하기 위해, 먼저 연산부(130)는 위성 궤도에서의, 촬영 시각오차(dT)를 연산한다.
촬영 시각오차(dT)는 촬영희망 위성위치(P Desired)와 예측 위성위치(P Predicted)와의 거리차를, 위성속도(V)로 나눈 시간으로서, 최초 목표한 촬영 개시시각과 실제 촬영 개시시각과의 차이를 나타내기 위한 파라미터 이다.
여기서, 위성속도(V)는 위성의 궤도상 속도로서, 위성에 장착된 위성측위시스템(GNSS) 수신기를 통해 획득할 수 있다. 또한, 위성측위시스템(GNSS) 수신기는 위성에 탑재된 하드웨어 장치로서, 위성의 위치 및 속도 정보를 제공할 수 있다. 상기 위성측위시스템(GNSS)은, GPS(Global Positioning System), GLONASS(Global Navigation Satellite System), GALILEO 시스템 중 어느 하나일 수 있다.
이후, 연산부(130)는 상기 촬영 시각오차(dT)에, 지표상 위성속도(Vg)를 곱셈 적용하여 상기 지상이동 거리를 연산할 수 있다. 여기서, 지표상 위성속도(Vg)는 지표에 투영된 위성의 속도로서, 타킷 영역에서 예측 위성위치의 수직인, 지상의 영역까지 위성의 정사영이 지나는 속도일 수 있다.
즉, 연산부(130)는 'dT*Vg'를 지상이동 거리로서 연산할 수 있다.
또한, 연산부(130)는 상기 위성 고도(h)와 상기 지상이동 거리를, 삼각함수 또는 선형근사화 함수에 적용하여, 상기 자세 보정각(dθ)을 연산할 수 있다. 구체적으로, 연산부(130)는 삼각함수 atan((dT*Vg)/h) 또는 선형근사화 함수 (dT*Vg)/h를 통해, 자세 보정각 'dθ'를 산출할 수 있다.
또한, 보정 장치(100)는 위성의 촬영대기 시간(T wait)를 통해, 예측 위성위치(P Predicted)를 추정해 낼 수 있다.
이를 위해, 수신부(110)는 상기 지상기반 궤도전파기로부터, 상기 영상 획득 명령이 발생한 보정각 계산시각(T Correct)을 수신할 수 있다. 보정각 계산시각(T Correct)은 자세 보정각(dθ)을 계산하기 위한 보정명령 실행 시각으로 정의할 수 있고, 영상획득하기 전에 보정 수행을 위해 지상계획 촬영시각(T Imaging) 보다 빠른 시각으로 설정할 수 있다.
또한, 상기 보정각 계산시각(T Correct)의 수신에 연동하여, 수신부(110)는, 위성측위시스템(GNSS) 수신기로부터, 상기 영상 획득 명령이 발생한 상기 보정각 계산시각(T Correct)에서의, 상기 위성의 위치에 관한 보정각 계산시각 위성위치(P Correct)를 획득할 수 있다. 여기서, 보정각 계산시각 위성위치(P Correct)는 보정각 계산시각(T Correct)에서 위성의 궤도상 위치를 지칭하고, 위성에 장착된 위성측위시스템(GNSS) 수신기로부터 획득할 수 있다. 또한, 수신부(110)는, 위성측위시스템(GNSS) 수신기를 통해, 위성속도(V)를 획득할 수 있다.
연산부(130)는, 상기 지상계획 촬영시각(T Imaging)에서, 상기 보정각 계산시각(T Correct)을 차감하여, 상기 위성의 촬영대기 시간(T wait)를 연산할 수 있다. 여기서, 촬영대기 시간(T wait)은, 보정각 계산시각(T Correct) 이후 지상계획 촬영시각(T Imaging)까지의 잔여 시각을 지칭할 수 있다.
즉, 연산부(130)는 보정명령 실행 시각이 발생한 이후, 실제 촬영이 이루어지는 지상계획 촬영시각(T Imaging)까지의 시간을, 촬영대기 시간(T wait)으로 산출해 낼 수 있다.
이후, 추정부(120)는 위성기반 궤도전파기를 통해, 상기 촬영대기 시간(T wait) 이후의 상기 위성의 위치를, 상기 예측 위성위치(P Predicted)로서 추정할 수 있다. 예컨대, 추정부(120)는 위성의 궤도를 따라 이동하는 위성의 위성 속도(V) 고려하여, 촬영대기 시간(T wait)이 종료 때의, 위성 위치를 상기 예측 위성위치(P Predicted)로서 추정해 낼 수 있다.
다시, 도 1을 설명하면, 제어부(140)는 상기 자세 보정각(dθ)에 따른 상기 위성의 자세 보정 후, 상기 위성에서 영상을 획득하도록 제어한다. 즉, 제어부(140)는 예측 위성위치(P Predicted)에서의, 위성의 자세를, 자세 보정각(dθ) 만큼 기울여, 촬영 대상인 타킷 영역이 위성 내 촬영수단과 일직선 상에 놓이게 제어할 수 있다.
본 발명의 일실시예에 따르면, 영상을 획득하도록 최초 목표한 지상계획 촬영시각(T Imaging)에서의 위성의 실제 위치와, 최초 목표한 위성의 촬영희망 위성위치(P Desired)와의 차이를, 위성의 자세 보정을 통해 보완 함으로써, 원하는 타킷 영역에 대한 위성 영상을, 오류 없이 획득하도록 하는, 위성 영상 획득 자세를 보정하는 방법 및 보정 장치를 제공할 수 있다.
또한, 본 발명의 일실시예에 따르면, 위성 기반의 예측 궤도 상의 위치와, 지상 기반의 예측 궤도 상의 위치의 차이를 이용한, 수학적 계산을 통해, 보정해야 하는 위성의 자세를 간단하게 산출해 낼 수 있다.
도 4는 본 발명에 따른 위성 영상을 획득하는 절차를 설명하는 도이다.
도 4에 도시한 바와 같이, 지상국(410)은 지상기반 궤도전파기(412)를 포함하여 구성하고, 위성본체(420)는 위성기반 궤도전파기(422)와, 위성측위시스템(GNSS) 수신기(424)를 포함하여 구성할 수 있다. 또한, 위성 탑재체(430)는 위성본체(420)와 독립적으로 구성되거나, 위성본체(420)에 포함되어 구성될 수 있다.
우선, 지상국(410)은 촬영희망 위성위치(P Desired)를 입력받는다.
지상국(410)은 지상기반 궤도전파기(412)를 이용하여 촬영희망 위성위치(P Desired)에 상응하는 지상계획 촬영시각(T Imaging)을 계산한다.
지상국(410)은 지상계획 촬영시각(T Imaging)을 위성본체(420)에 전송한다.
지상국(410)은 보정각 계산시각(T Correct)과 촬영희망 위성위치(P Desired)를 위성본체(420)에 전송한다.
위성본체(420)은 보정각 계산시각(T Correct)와 보정각 계산시각(T Correct)을 이용하여 촬영대기 시간(T wait)을 계산한다.
「T wait = T Imaging - T Correct
위성본체(420)는 보정각 계산시각(T Correct)에, 위성측위시스템(GNSS) 수신기(424)를 통해 보정각 계산시각 위성위치(P Correct)를 획득할 수 있다. 또한, 위성본체(420)는 위성측위시스템(GNSS) 수신기를 통해, 위성속도(V)를 획득할 수 있다.
위성본체(420)는 보정각 계산시각(T Correct)에, 위성기반 궤도전파기(422)를 이용하여, 촬영대기 시간(T wait) 이후의 예측 위성위치(P Predicted)를 계산한다.
위성기반 궤도전파기(422)는, 보정각 계산시각 위성위치(P Correct), 위성 속도(V), 촬영대기 시간(T wait)을 입력받아, 예측 위성위치(P Predicted)를 출력한다.
위성본체(420)는 촬영희망 위성위치(P Desired), 예측 위성위치(P Predicted) 그리고 위성 속도(V)를 이용하여 촬영 시각오차(dT)를 계산한다.
「dT = (P Desired - P Predicted) / V」
위성본체(420)는 촬영 시각오차(dT)를 이용하여 자세 보정각(dθ)을 계산한다.
「dθ = atan((dT*Vg)/h)」
위성본체(420)는 자세 보정각(dθ)을 이용하여 보정 자세명령을 발생시키고, 이에 따라 위성본체의 자세 기동을 수행한다.
또한, 위성 탑재체(430)는, 지상계획 촬영시각(T Imaging)에 영상획득 수행을 처리할 수 있다.
이하, 도 5에서는 본 발명의 실시예들에 따른 위성 영상 획득 자세의 보정 장치(100)의 작업 흐름을 상세히 설명한다.
도 5는 본 발명의 일실시예에 따른, 위성 영상 획득 자세를 보정하는 방법의 순서를 도시한 흐름도이다.
본 실시예에 따른 위성 영상 획득 자세를 보정하는 방법은 상술한 위성 영상 획득 자세의 보정 장치(100)에 의해 수행될 수 있다.
우선, 보정 장치(100)는 영상 획득 명령에 연동하여, 지상기반 궤도전파기로부터 위성의 촬영희망 위성위치(P Desired)와 지상계획 촬영시각(T Imaging)을 수신한다(510). 단계(510)는 본 발명의 운영자로부터, 위성 영상을 획득하도록 최초 목표된 위성의 위치와, 촬영 개시 시각을 입력받는 과정일 수 있다.
촬영희망 위성위치(P Desired)는 지상 타킷을 촬영하기 위한 위성의 궤도상 위치로서, 촬영 대상인 영역을 지나가는 위성의 수직적 공간상 위치일 수 있다.
지상계획 촬영시각(T Imaging)은 지상기반 궤도전파기에 의해 계획한 지상 타킷 촬영 시각으로서, 최초 목표한 촬영 개시 시각일 수 있다.
여기서, 지상기반 궤도전파기는 지상국에서 구현되는, 위성궤도 예측 소프트웨어일 수 있다.
이론적으로, 촬영희망 위성위치(P Desired)에 위성이 도달하는 시각은 지상계획 촬영시각(T Imaging)이 되어야 한다. 그러나, 위성의 궤도 예측 오차로 인해, 위성이 촬영희망 위성위치(P Desired)에 도달하기 전에 지상계획 촬영시각(T Imaging)이 되거나, 또는 촬영희망 위성위치(P Desired)에 도달 이후에 지상계획 촬영시각(T Imaging)이 되는 경우가 있다.
이를 보완하기 위해, 본 발명의 보정 장치(100)는 위성의 자세를 보정 함으로써, 지상 타킷을 이미 지난 시점의 지상계획 촬영시각(T Imaging)에서, 오차를 감안하여 지상 타킷을 정확하게 촬영할 수 있게 유도한다.
또한, 보정 장치(100)는 상기 지상계획 촬영시각(T Imaging)에 상기 위성이 위치하게 되는 예측 위성위치(P Predicted)를 추정한다(520). 여기서, 예측 위성위치(P Predicted)는 위성기반 궤도전파기에 의해서 예측되는 지상계획 촬영시각(T Imaging)에서의, 위성의 궤도상 위치일 수 있다. 단계(520)는 최초 목표된 지상계획 촬영시각(T Imaging)에 위성이 위치하고 있을 것으로 보이는 지점을 추정하는 역할을 할 수 있다. 여기서, 위성기반 궤도전파기는 위성에 탑재된 위성궤도 예측 소프트웨어일 수 있다.
다음으로, 보정 장치(100)는 상기 촬영희망 위성위치(P Desired)를 이용하여, 상기 예측 위성위치(P Predicted)에서의, 상기 위성에 대한 자세 보정각(dθ)을 연산한다(530). 여기서, 자세 보정각(dθ)은 촬영시의, 위성이 자세를 보정해야 하는 각도를 지칭할 수 있다. 단계(530)는 실제 예측 위성위치(P Predicted)에 위치한 위성에 대해, 촬영 자세를 수정 함으로써, 위성이, 목표한 지상 타킷을 정확하게 바라보면서, 위성 영상을 촬영하도록 하는 과정일 수 있다.
자세 보정각(dθ)의 산출에 있어, 촬영희망 위성위치(P Desired)는, 도 2에서의 y축(궤도상의 위성 위치) 상에 해당하는 값일 수 있다.
또한, 지상계획 촬영시각(T Imaging)은, 도 2에서의 x축(time 선)에 해당하는 값으로서, 예측 위성위치(P Predicted)를 산출하는 데에 활용될 수 있다.
예측 위성위치(P Predicted)에서의 위성은, 지상계획 촬영시각(T Imaging)에 해당하는 지상의 영역을 촬영할 수 있다.
하지만, 최초 목표하는 촬영 영역인 타킷 영역은, 촬영희망 위성위치(P Desired)에서의 위성이 촬영하는 영역이므로, 본 발명의, 보정 장치(100)는, 위성을 자세 보정각(dθ) 만큼 자세 보정 함으로써, 위성이 타킷 영역을 수직으로 바라볼 수 있게 한다.
자세 보정에 있어, 보정 장치(100)는, 위성의 위성 고도(h)를 연산할 수 있다. 여기서, 위성 고도(h)는 지표면에서 위성까지의 거리로 정의될 수 있다. 상기 위성 고도(h)의 연산에 있어, 위성은, 예측 위성위치(P Predicted)이 도달할 때의 높이 좌표를, 본 발명의 보정 장치(100)로 전송할 수 있고, 보정 장치(100)는 상기 높이 좌표를, 위성 고도(h)로서 환산할 수 있다.
또한, 보정 장치(100)는 촬영희망 위성위치(P Desired)와 예측 위성위치(P Predicted) 사이에서의, 상기 위성의 지상이동 거리를 연산할 수 있다.
위성의 지상이동 거리를 연산하기 위해, 보정 장치(100)는 위성 궤도에서의, 촬영 시각오차(dT)를 연산한다.
촬영 시각오차(dT)는 촬영희망 위성위치(P Desired)와 예측 위성위치(P Predicted)와의 거리차를, 위성속도(V)로 나눈 시간으로서, 최초 목표한 촬영 개시시각과 실제 촬영 개시시각과의 차이를 나타내기 위한 파라미터 이다.
여기서, 위성속도(V)는 위성의 궤도상 속도로서, 위성에 장착된 위성측위시스템(GNSS) 수신기를 통해 획득할 수 있다. 또한, 위성측위시스템(GNSS) 수신기는 위성에 탑재된 하드웨어 장치로서, 위성의 위치 및 속도 정보를 제공할 수 있다. 상기 위성측위시스템(GNSS)은, GPS(Global Positioning System), GLONASS(Global Navigation Satellite System), GALILEO 시스템 중 어느 하나일 수 있다.
이후, 보정 장치(100)는 상기 촬영 시각오차(dT)에, 지표상 위성속도(Vg)를 곱셈 적용하여 상기 지상이동 거리를 연산할 수 있다. 여기서, 지표상 위성속도(Vg)는 지표에 투영된 위성의 속도로서, 타킷 영역에서 예측 위성위치의 수직인, 지상의 영역까지 위성의 정사영이 지나는 속도일 수 있다.
즉, 보정 장치(100)는 'dT*Vg'를 지상이동 거리로서 연산할 수 있다.
또한, 보정 장치(100)는 상기 위성 고도(h)와 상기 지상이동 거리를, 삼각함수 또는 선형근사화 함수에 적용하여, 상기 자세 보정각(dθ)을 연산할 수 있다. 구체적으로, 보정 장치(100)는 삼각함수 atan((dT*Vg)/h) 또는 선형근사화 함수 (dT*Vg)/h를 통해, 자세 보정각 'dθ'를 산출할 수 있다.
또한, 보정 장치(100)는 상기 지상기반 궤도전파기로부터, 상기 영상 획득 명령이 발생한 보정각 계산시각(T Correct)을 수신할 수 있다. 보정각 계산시각(T Correct)은 자세 보정각(dθ)을 계산하기 위한 보정명령 실행 시각으로 정의할 수 있고, 영상획득하기 전에 보정 수행을 위해 지상계획 촬영시각(T Imaging) 보다 빠른 시각으로 설정할 수 있다.
또한, 상기 보정각 계산시각(T Correct)의 수신에 연동하여, 보정 장치(100)는 위성측위시스템(GNSS) 수신기로부터, 상기 영상 획득 명령이 발생한 상기 보정각 계산시각(T Correct)에서의, 상기 위성의 위치에 관한 보정각 계산시각 위성위치(P Correct)를 획득할 수 있다. 여기서, 보정각 계산시각 위성위치(P Correct)는 보정각 계산시각(T Correct)에서 위성의 궤도상 위치를 지칭하고, 위성에 장착된 위성측위시스템(GNSS) 수신기로부터 획득할 수 있다.
보정 장치(100)는 상기 지상계획 촬영시각(T Imaging)에서, 상기 보정각 계산시각(T Correct)을 차감하여, 상기 위성의 촬영대기 시간(T wait)를 연산할 수 있다. 여기서, 촬영대기 시간(T wait)은, 보정각 계산시각(T Correct) 이후 지상계획 촬영시각(T Imaging)까지의 잔여 시각을 지칭할 수 있다.
즉, 보정 장치(100)는 보정명령 실행 시각이 발생한 이후, 실제 촬영이 이루어지는 지상계획 촬영시각(T Imaging)까지의 시간을, 촬영대기 시간(T wait)으로 산출해 낼 수 있다.
이후, 보정 장치(100)는 위성기반 궤도전파기를 통해, 상기 촬영대기 시간(T wait) 이후의 상기 위성의 위치를, 상기 예측 위성위치(P Predicted)로서 추정할 수 있다. 예컨대, 보정 장치(100)는 위성의 궤도를 따라 이동하는 위성의 위성 속도(V) 고려하여, 촬영대기 시간(T wait)이 종료 때의, 위성 위치를 상기 예측 위성위치(P Predicted)로서 추정해 낼 수 있다.
계속해서, 보정 장치(100)는 상기 자세 보정각(dθ)에 따른 상기 위성의 자세 보정 후, 상기 위성에서 영상을 획득하도록 제어한다(540). 단계(540)는 예측 위성위치(P Predicted)에서의, 위성의 자세를, 자세 보정각(dθ) 만큼 기울여, 촬영 대상인 타킷 영역이 위성 내 촬영수단과 일직선 상에 놓이게 제어하는 과정일 수 있다.
본 발명의 일실시예에 따르면, 영상을 획득하도록 최초 목표한 지상계획 촬영시각(T Imaging)에서의 위성의 실제 위치와, 최초 목표한 위성의 촬영희망 위성위치(P Desired)와의 차이를, 위성의 자세 보정을 통해 보완 함으로써, 원하는 타킷 영역에 대한 위성 영상을, 오류 없이 획득하도록 하는, 위성 영상 획득 자세를 보정하는 방법 및 보정 장치를 제공할 수 있다.
또한, 본 발명의 일실시예에 따르면, 위성 기반의 예측 궤도 상의 위치와, 지상 기반의 예측 궤도 상의 위치의 차이를 이용한, 수학적 계산을 통해, 보정해야 하는 위성의 자세를 간단하게 산출해 낼 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드 뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.

Claims (10)

  1. 영상 획득 명령에 연동하여,
    지상기반 궤도전파기로부터 위성의 촬영희망 위성위치(P Desired)와 지상계획 촬영시각(T Imaging)을 수신하는 단계;
    상기 지상계획 촬영시각(T Imaging)에 상기 위성이 위치하게 되는 예측 위성위치(P Predicted)를 추정하는 단계;
    상기 촬영희망 위성위치(P Desired)를 이용하여, 상기 예측 위성위치(P Predicted)에서의, 상기 위성에 대한 자세 보정각(dθ)을 연산하는 단계; 및
    상기 자세 보정각(dθ)에 따른 상기 위성의 자세 보정 후, 상기 위성에서 영상을 획득하도록 제어하는 단계
    를 포함하는 위성 영상 획득 자세를 보정하는 방법.
  2. 제1항에 있어서,
    상기 자세 보정각(dθ)을 연산하는 단계는,
    상기 촬영희망 위성위치(P Desired)와 상기 예측 위성위치(P Predicted) 사이에서의, 상기 위성의 지상이동 거리를 연산하는 단계; 및
    상기 위성의 위성 고도(h)와 상기 지상이동 거리를, 삼각함수 또는 선형근사화 함수에 적용하여, 상기 자세 보정각(dθ)을 연산하는 단계
    를 포함하는 위성 영상 획득 자세를 보정하는 방법.
  3. 제2항에 있어서,
    상기 방법은,
    상기 촬영희망 위성위치(P Desired)와 상기 예측 위성위치(P Predicted)와의 거리차를, 위성속도(V)로 나누어, 촬영 시각오차(dT)를 연산하는 단계
    를 더 포함하고,
    상기 위성의 지상이동 거리를 연산하는 단계는,
    상기 촬영 시각오차(dT)에, 지표상 위성속도(Vg)를 곱셈 적용하여, 상기 지상이동 거리를 연산하는 단계
    를 더 포함하는 위성 영상 획득 자세를 보정하는 방법.
  4. 제1항에 있어서,
    상기 지상기반 궤도전파기로부터, 상기 영상 획득 명령이 발생한 보정각 계산시각(T Correct)을 수신하는 단계; 및
    상기 지상계획 촬영시각(T Imaging)에서, 상기 보정각 계산시각(T Correct)을 차감하여, 상기 위성의 촬영대기 시간(T wait)를 연산하는 단계
    를 더 포함하고,
    상기 예측 위성위치(P Predicted)를 추정하는 단계는,
    위성기반 궤도전파기를 통해, 상기 촬영대기 시간(T wait) 이후의 상기 위성의 위치를, 상기 예측 위성위치(P Predicted)로서 추정하는 단계
    를 포함하는 위성 영상 획득 자세를 보정하는 방법.
  5. 제4항에 있어서,
    상기 방법은,
    위성측위시스템(GNSS) 수신기로부터, 상기 영상 획득 명령이 발생한 상기 보정각 계산시각(T Correct)에서의, 상기 위성의 위치에 관한 보정각 계산시각 위성위치(P Correct)와 위성속도(V)를 획득하는 단계
    를 더 포함하는 위성 영상 획득 자세를 보정하는 방법.
  6. 영상 획득 명령에 연동하여,
    지상기반 궤도전파기로부터 위성의 촬영희망 위성위치(P Desired)와 지상계획 촬영시각(T Imaging)을 수신하는 수신부;
    상기 지상계획 촬영시각(T Imaging)에 상기 위성이 위치하게 되는 예측 위성위치(P Predicted)를 추정하는 추정부;
    상기 촬영희망 위성위치(P Desired)를 이용하여, 상기 예측 위성위치(P Predicted)에서의, 상기 위성에 대한 자세 보정각(dθ)을 연산하는 연산부; 및
    상기 자세 보정각(dθ)에 따른 상기 위성의 자세 보정 후, 상기 위성에서 영상을 획득하도록 제어하는 제어부
    를 포함하는 위성 영상 획득 자세의 보정 장치.
  7. 제6항에 있어서,
    상기 연산부는,
    상기 촬영희망 위성위치(P Desired)와 상기 예측 위성위치(P Predicted) 사이에서의, 상기 위성의 지상이동 거리를 연산하며,
    상기 위성의 위성 고도(h)와 상기 지상이동 거리를, 삼각함수 또는 선형근사화 함수에 적용하여, 상기 자세 보정각(dθ)을 연산하는
    위성 영상 획득 자세의 보정 장치.
  8. 제7항에 있어서,
    상기 연산부는,
    상기 촬영희망 위성위치(P Desired)와 상기 예측 위성위치(P Predicted)와의 거리차를, 위성속도(V)로 나누어, 촬영 시각오차(dT)를 연산하고,
    상기 촬영 시각오차(dT)에, 지표상 위성속도(Vg)를 곱셈 적용하여 상기 지상이동 거리를 연산하는
    위성 영상 획득 자세의 보정 장치.
  9. 제6항에 있어서,
    상기 수신부는,
    상기 지상기반 궤도전파기로부터, 상기 영상 획득 명령이 발생한 보정각 계산시각(T Correct)을 수신하고,
    상기 연산부는,
    상기 지상계획 촬영시각(T Imaging)에서, 상기 보정각 계산시각(T Correct)을 차감하여, 상기 위성의 촬영대기 시간(T wait)를 연산하며,
    상기 추정부는,
    위성기반 궤도전파기를 통해, 상기 촬영대기 시간(T wait) 이후의 상기 위성의 위치를, 상기 예측 위성위치(P Predicted)로서 추정하는
    위성 영상 획득 자세의 보정 장치.
  10. 제9항에 있어서,
    상기 수신부는,
    위성측위시스템(GNSS) 수신기로부터, 상기 영상 획득 명령이 발생한 상기 보정각 계산시각(T Correct)에서의, 상기 위성의 위치에 관한 보정각 계산시각 위성위치(P Correct)와 위성속도(V)를 획득하는
    위성 영상 획득 자세의 보정 장치.
PCT/KR2019/003635 2018-11-06 2019-03-28 위성 영상 획득 자세를 보정하는 방법 및 보정 장치 WO2020096145A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19882007.8A EP3878758B1 (en) 2018-11-06 2019-03-28 Method and correction device for correcting satellite image acquisition positioning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0135198 2018-11-06
KR1020180135198A KR102135835B1 (ko) 2018-11-06 2018-11-06 위성 영상 획득 자세를 보정하는 방법 및 보정 장치

Publications (1)

Publication Number Publication Date
WO2020096145A1 true WO2020096145A1 (ko) 2020-05-14

Family

ID=70610739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003635 WO2020096145A1 (ko) 2018-11-06 2019-03-28 위성 영상 획득 자세를 보정하는 방법 및 보정 장치

Country Status (3)

Country Link
EP (1) EP3878758B1 (ko)
KR (1) KR102135835B1 (ko)
WO (1) WO2020096145A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114201489A (zh) * 2021-11-30 2022-03-18 深圳市魔方卫星科技有限公司 一种快速并行的在轨像移匹配方法、装置及存储介质
CN115042995A (zh) * 2022-06-10 2022-09-13 北京航天飞行控制中心 地外天体分离探头释放分离规划方法、装置、设备及介质
CN115118876A (zh) * 2022-04-19 2022-09-27 北京航天飞行控制中心 拍摄参数的确定方法、装置及计算机可读存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240030070A (ko) * 2022-08-29 2024-03-07 한국항공우주연구원 인공위성 영상획득을 위한 지상표적 정밀 지향 방법 및 장치
KR102612606B1 (ko) * 2023-05-25 2023-12-08 국방과학연구소 비행체의 비행자세 보상 장치 및 보상 방법, 이를 이용한 지상국의 비행자세 시뮬레이션 시스템 및 시뮬레이션 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627235A (ja) * 1992-07-13 1994-02-04 Nec Corp 合成開口レーダにおけるターゲット位置算出装置
JP2001116584A (ja) * 1999-10-15 2001-04-27 Mitsubishi Electric Corp 人工衛星搭載用時刻補正装置及びコマンド装置
JP2003327200A (ja) * 2002-05-15 2003-11-19 Mitsubishi Electric Corp 観測方向制御計画立案方法
JP2009103656A (ja) * 2007-10-25 2009-05-14 Mitsubishi Electric Corp 観測衛星システム
JP2012144137A (ja) * 2011-01-12 2012-08-02 Mitsubishi Electric Corp 観測運用計画装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2890965B2 (ja) * 1991-04-16 1999-05-17 日本電気株式会社 撮像装置
KR101009419B1 (ko) * 2008-08-28 2011-01-19 한국전자통신연구원 단일 지상국에서 위성 궤도 결정 방법
KR101017606B1 (ko) * 2008-12-22 2011-02-28 한국항공우주연구원 단일영상을 이용한 자세각센서 삼차원 오정렬 보정방법
KR101227665B1 (ko) * 2010-12-29 2013-01-30 세종대학교산학협력단 위성 데이터 스무딩을 이용한 정지궤도위성의 정밀 궤도 결정장치 및 결정 방법
US10262403B2 (en) * 2017-04-24 2019-04-16 Korea Aerospace Research Institute Apparatus and method for image navigation and registration of geostationary remote sensing satellites

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627235A (ja) * 1992-07-13 1994-02-04 Nec Corp 合成開口レーダにおけるターゲット位置算出装置
JP2001116584A (ja) * 1999-10-15 2001-04-27 Mitsubishi Electric Corp 人工衛星搭載用時刻補正装置及びコマンド装置
JP2003327200A (ja) * 2002-05-15 2003-11-19 Mitsubishi Electric Corp 観測方向制御計画立案方法
JP2009103656A (ja) * 2007-10-25 2009-05-14 Mitsubishi Electric Corp 観測衛星システム
JP2012144137A (ja) * 2011-01-12 2012-08-02 Mitsubishi Electric Corp 観測運用計画装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114201489A (zh) * 2021-11-30 2022-03-18 深圳市魔方卫星科技有限公司 一种快速并行的在轨像移匹配方法、装置及存储介质
CN115118876A (zh) * 2022-04-19 2022-09-27 北京航天飞行控制中心 拍摄参数的确定方法、装置及计算机可读存储介质
CN115118876B (zh) * 2022-04-19 2023-09-22 北京航天飞行控制中心 拍摄参数的确定方法、装置及计算机可读存储介质
CN115042995A (zh) * 2022-06-10 2022-09-13 北京航天飞行控制中心 地外天体分离探头释放分离规划方法、装置、设备及介质
CN115042995B (zh) * 2022-06-10 2022-11-18 北京航天飞行控制中心 地外天体分离探头释放分离规划方法、装置、设备及介质

Also Published As

Publication number Publication date
KR102135835B1 (ko) 2020-07-20
KR20200052073A (ko) 2020-05-14
EP3878758A4 (en) 2022-07-20
EP3878758B1 (en) 2024-05-08
EP3878758A1 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
WO2020096145A1 (ko) 위성 영상 획득 자세를 보정하는 방법 및 보정 장치
JP3938932B2 (ja) カメラガイド機構
JP2525539B2 (ja) 合成アレイレ―ダを使用した自律正確度兵器
EP1926007B1 (en) Method and system for navigation of an unmanned aerial vehicle in an urban environment
EP0738947A1 (en) An attitude control and navigation system for high resolution imaging
US20090115850A1 (en) Mobile object image tracking apparatus and method
WO2014104574A1 (ko) 선형배열 영상 센서와 자세제어 센서 간의 절대 오정렬 보정방법
KR102005620B1 (ko) 정지궤도 관측위성 영상 기하보정 장치 및 방법
CN110887486B (zh) 一种基于激光线辅助的无人机视觉导航定位方法
WO2015147371A1 (ko) 차량의 위치 보정 장치 및 방법과 이를 이용한 차량 위치 보정 시스템 및 무인 운행이 가능한 차량
JPH11291997A (ja) 恒星検知に基づく衛星搭載姿勢制御装置
CN109360250A (zh) 一种对摄像装置的标定方法、设备及系统
WO2012134237A2 (ko) 촬영화상의 카메라 자세 추정 시스템 및 방법
CN111045067B (zh) 一种用于捷联航姿系统的gps数据源有效性判断方法
WO2020101426A1 (ko) 군집 비행 제어 방법 및 군집 비행 제어 시스템
Smith et al. Operational Constraint Analysis of Terrain Relative Navigation for Landing Applications
KR102026115B1 (ko) 위성 영상 획득 시각 보정 장치 및 방법
KR20200050736A (ko) 선박식별정보를 이용한 영상센서 오정렬 보정 방법 및 장치
KR102243649B1 (ko) 도심 환경에서의 무인 항공기 Ad-hoc 위치 추정 시스템
WO2019027095A1 (ko) 데이터 동기화 및 위치 추정 기법을 사용한 실시간 위치 제공 장치 및 방법
JP2016223934A (ja) 位置補正システム、位置補正方法、および位置補正プログラム
JP2003219252A (ja) 移動体搭載用撮影装置を用いた撮影システム及び撮影方法
WO2024005286A1 (ko) 다중 저궤도위성을 이용한 도플러 효과 기반의 gnss 측위 정확도 향상 방법
US11054220B2 (en) Method and system of determining miss-distance
US20200158877A1 (en) Method for Estimating a Position of a Mobile Device Using GNSS Signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019882007

Country of ref document: EP

Effective date: 20210607