WO2020096101A1 - 자기보강복합재 제조장치 및 이를 이용하여 제조된 자기보강복합재 - Google Patents
자기보강복합재 제조장치 및 이를 이용하여 제조된 자기보강복합재 Download PDFInfo
- Publication number
- WO2020096101A1 WO2020096101A1 PCT/KR2018/013700 KR2018013700W WO2020096101A1 WO 2020096101 A1 WO2020096101 A1 WO 2020096101A1 KR 2018013700 W KR2018013700 W KR 2018013700W WO 2020096101 A1 WO2020096101 A1 WO 2020096101A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- self
- fiber reinforcement
- base material
- manufacturing apparatus
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/91—Heating, e.g. for cross linking
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D13/00—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0018—Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/05—Filamentary, e.g. strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/18—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
- B29C65/24—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
- B29C65/30—Electrical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/34—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/54—Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/06—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/10—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
Definitions
- the present invention relates to a self-reinforced composite manufacturing apparatus and a self-reinforced composite manufactured using the same.
- thermoplastic fiber-reinforced composite material has a disadvantage in that ductility and elongation are weak due to brittle characteristics of high-strength fibers, and for reuse, a heat treatment process through separation of fiber reinforcement and resin is required.
- the self-reinforcing composite material is a composite material composed of the same material as the fiber reinforcement material and the base material. It has excellent ductility and elongation characteristics, and unlike conventional fiber-reinforced composites, it has the advantage of being able to be recycled immediately without separation of fiber reinforcement and base material.
- thermoplastic resin-based self-reinforcing composites it is possible to lower the specific gravity of lighter than water, and mechanical properties can be improved to the level of existing fiber-reinforced composites through process optimization and maximization of material crystallinity.
- the self-reinforcing composite material 1 includes a fiber reinforcement 10 and a base material 20.
- the fiber reinforcement 10 and the base material 20 are made of resin, but the properties of the quantum resin are the same or similar. Examples of such resins include polypropylene, polybutylene, polypentene, polyvinyl acetate, polystyrene, and the like.
- the fiber reinforcing material 10 is used after being produced by stretching and weaving the yarn. Plain weave is used as the weaving form.
- the melting point of the fiber reinforcement 10 is designed to be larger than the melting point of the base material. Accordingly, when heat is applied, the base material 20 is melted, and the fiber reinforcement material 10 is compression molded to the base material 20 to be interfacially bonded, so that the self-reinforcing composite material 1 can be manufactured.
- the self-reinforcing composite material (1) has a limitation that the strength is somewhat lower than the conventional fiber-reinforced composite material using inorganic fibers. Therefore, measures have been taken to improve the strength of the self-reinforcing composite material (1).
- the present invention is self-reinforcing capable of improving the strength that has been pointed out as a limitation while maintaining high recyclability, price competitiveness, processability and resilience, which are the existing advantages of the self-reinforcing composite material, while being capable of high stretching (stretch ratio of 17: 1 or more). It is intended to provide a composite material manufacturing apparatus and a self-reinforcing composite material manufactured using the same.
- the present invention is a part of the national R & D project, task identification number: 10082586, department name: Ministry of Trade, Industry and Energy, research management agency: Korea Institute of Industrial Technology Evaluation and Management, research project name: industrial material core technology development project (textile apparel), research project Name: Development of self-reinforced composites based on polypropylene high-strength yarn with an elongation ratio of 1400% or more and airbag door for automobile passengers.
- Organizer Namjeon Industrial Co., Ltd., Research Period: 2017.09.01 ⁇ 2020.12.31.
- a fiber reinforcement fabrication unit for manufacturing a textile reinforcement material in the form of a polymer resin material; A fiber reinforcement supply unit supplying the fiber reinforcement downstream; A base material supply unit for supplying the polymer resin film downstream as a base material; And a laminating unit for manufacturing a self-reinforced composite material by laminating the supplied fiber reinforcement material and the base material, wherein the fiber reinforcement manufacturing part comprises: an extrusion part receiving an raw material and extruding it into a monofilament; An induction coil portion that heats the monofilament formed and discharged from the extrusion portion; A cooling unit cooling the monofilament passing through the induction coil unit; A stretching unit receiving the filament from the cooling unit and stretching a plurality of times; And it may be provided with a self-reinforcing composite manufacturing apparatus comprising a weaving portion to form a fabric by weaving the filament supplied from the stretched portion.
- the fiber reinforcement manufacturing unit may be further disposed between the cooling unit and the stretching unit or between the stretching unit and the weaving unit, and focusing the monofilament to form a multifilament.
- the laminating portion a first belt portion of a metal material that rotates while forming a caterpillar in a first direction; A second belt portion that rotates while forming a caterpillar in a second direction opposite to the first direction, and is disposed under the first belt portion to compress and transport the fiber reinforcement material and the base material together with the first belt portion; A plurality of heating units which are respectively installed inside the first belt unit and the second belt unit and heated to different temperatures to impregnate the fiber reinforcement with the base material; A press portion provided on the downstream side of the heating portion and installed inside the first belt portion and the second belt portion to compress the impregnated material; And a cooling unit provided on the downstream side of the press unit to pressurize and cool the impregnated material.
- the second belt portion has a length longer than the length of the first belt portion, and a preheating heater for preheating by receiving a base material may be installed inside the upstream side of the second belt portion.
- the filaments are woven in a plain weave form, but can be woven so that the cross angle between the warp and the weft is 75 ° to 85 °.
- the apparatus for manufacturing a self-reinforcing composite according to embodiments of the present invention is capable of high stretching by extruding a monofilament and heating it in an induction coil method before cooling to improve the orientation of the monofilament (stretch ratio of 17: 1 or more). Strength can be improved. Therefore, while maintaining the existing advantages of the self-reinforcing composites, such as excellent recyclability, price competitiveness, processability, and resilience, it is possible to improve the strength pointed out as a limitation in the meantime, thereby producing a better quality self-reinforcing composite.
- the cross angle of the warp and weft is corrected to be approximately 90 ° by deformation in the impregnated material passing through the laminating part, so that elasticity, strength, etc. are isotropic It can be behaved in the form, it is possible to form a self-reinforcing composite having a more uniform quality.
- FIG. 1 is a view showing a specific example of a self-reinforcing composite.
- FIG. 2 is a view schematically showing a self-reinforcing composite manufacturing apparatus according to an embodiment of the present invention.
- FIG. 3 is a view schematically showing the detailed configuration of the fiber reinforcement supply unit in the self-reinforcing composite manufacturing apparatus of FIG.
- the description of the space or the description of the positional relationship means a relative position between elements constituting the present invention.
- another component may exist in a space between one component and another component.
- FIG. 2 is a view schematically showing a self-reinforcing composite manufacturing apparatus 100 according to an embodiment of the present invention
- Figure 3 is a self-reinforcing composite manufacturing apparatus 100 of Figure 2, the detailed configuration of the fiber reinforcement supply unit 110 It is a diagram schematically showing.
- the self-reinforcing composite manufacturing apparatus 100 includes a fiber reinforcement manufacturing unit 110, a fiber reinforcement supply unit 120, a base material supply unit 130, and a laminating unit 140.
- the fiber reinforcement manufacturing unit 110 manufactures the fiber reinforcement 10.
- the fiber reinforcement supply unit 120 supplies the fiber reinforcement 10 to the laminating unit 140.
- the base material supply unit 130 supplies the base material 20 to the laminating unit 140.
- the fiber reinforcement 10 and the base material 20 are supplied to the laminating portion 140 with the fiber reinforcement 10 positioned at the top.
- the self-reinforcing composite material 1 is manufactured by heating, pressing, and cooling the fiber reinforcement material 10 and the base material 20.
- the fiber reinforcement manufacturing unit 110 includes an extrusion unit, an induction coil unit 113, a cooling unit 114, a stretching unit 115, and a weaving unit 116.
- the extruding part is supplied with a polymer resin raw material and is extruded into a monofilament.
- the extruding portion includes an extruding die 111 and a radiating portion 112 coupled to the front of the extruding die 111 to radiate a plurality of monofilaments downward.
- the molecular resin raw material is injected into the extrusion die 111, melted, and is spun into a monofilament form through the spinning section 112 (approximately 15500 Denier).
- a plurality of cylinders may be formed in the extrusion die 111. At this time, the temperatures of the plurality of cylinders formed in the radiating portion 112 may be set differently.
- each cylinder may be set to different temperatures to have 210 ° C, 230 ° C, 240 ° C, 250 ° C, and 260 ° C.
- the temperature of the cylinder is set differently because the actual temperature of the cylinder may vary depending on the distance from the heater when a plurality of cylinders are disposed on the extrusion die 111. That is, one of the plurality of cylinders may be heated above the set temperature and the other cylinder may be heated below the set temperature. Therefore, by setting the temperature differently according to the position of the cylinder, the actual heating temperature of the cylinders can be adjusted to the optimum uniform level.
- a plurality of nozzles are formed in the radiating portion 112, and a plurality of monofilaments are radiated from the radiating portion 112.
- a screen changer (not shown) may be installed between the extrusion die 111 and the radiating portion 112.
- the screen changer is a device that facilitates replacement of a screen that filters impurities such as foreign substances contained in the polymer resin raw material supplied to the cylinder of the extrusion die 111, impurities such as a resin mass that is not completely melted, or carbonized resin.
- the setting can be made at the optimum extrusion temperature of 255 °C.
- the polymer resin raw material is a material obtained by solidifying a thermoplastic resin in a bead form.
- the thermoplastic resin include polypropylene, polybutylene, polypentene, polyvinyl acetate, polystyrene, and the like.
- the thermoplastic resin is preferably a homopolypropylene with a melting point of approximately 168 ° C.
- the induction coil part 113 is provided under the radiation part 112.
- the induction coil part 113 heats the monofilament emitted from the radiation part 112 through the high frequency induction heating principle.
- a coil formed of copper or the like is wound on the outer circumferential surface of a tube-shaped object formed of a conductor material, and when a high-frequency current flows through the coil, heat is generated by the current induced in the object to be heated. do.
- This high frequency induction heating principle is well known in the art.
- the induction coil part 113 is a tube-shaped object to be heated 113a, a coil 113b to be wound on the outer circumferential surface of the object to be heated 113a, and a body to be heated It includes a heating network (113c) disposed inside the (113a).
- the object to be heated 113a may be formed of a material such as aluminum, copper, or stainless steel, and the coil 113b may be formed of a material such as copper.
- the object to be heated 113a is heated by the coil 113b to heat a plurality of filaments emitted from the radiating unit 112.
- the heating network 113c is disposed inside the object to be heated 113a and has a mesh shape.
- the heating net 113c is formed of the same material as the object to be heated 113a.
- the heating network 113c heats a plurality of filaments radiated from the radiating unit 112 through heat conducted from the object to be heated 113a.
- Each mesh grid of the heating network 113c is formed to correspond to the nozzle of the radiating unit 112 and is designed so that the radiated monofilament passes through the grid of the heating network 113c. Accordingly, the heating net 113c may be disposed densely between the plurality of monofilaments to uniformly heat the monofilaments.
- the monofilament radiated to a position relatively close to the object to be heated 113a has a higher degree of heating compared to the non-monofilament, so that a plurality of monofilaments can be heated in a uniform form. none.
- the monofilaments emitted from the radiating portion 112 are in a semi-solidified state, and immediately after being radiated from the radiating portion 112, the molecular arrangement state of the monofilaments is regularly aligned.
- the molecular alignment state is disturbed to a certain degree during the time of exposure to the outside before the monofilament is introduced into the cooling unit, and thus there is a problem in that the orientation is deteriorated.
- the temperature can be more precisely controlled by adjusting the frequency, and the power consumption is also lower than that of the general heater method, which is economical.
- the cooling unit 114 receives and cools the monofilaments that have passed through the induction coil unit 113. In the cooling unit 114, the molecular arrangement state of the monofilaments is fixed.
- the cooling unit 114 includes a water tank containing a refrigerant and a plurality of guide rollers installed inside the water tank to guide the monofilaments forward.
- the refrigerant may include water and ethylene glycol.
- the cooling unit 114 may be provided with a temperature control means capable of controlling the temperature in the water tank. For example, the cooling unit 114 may wet-cool the monofilaments at a water cooling temperature of about 25 ° C.
- the stretching unit 115 is provided at the front (downstream side) of the cooling unit 114 to receive and stretch the monofilament discharged from the cooling unit 114.
- the stretching unit 115 may include a plurality of roll stretching machines, wet stretching machines, and dry stretching machines.
- the roll stretching machine includes a plurality of rollers disposed up and down, and stretches the monofilament by varying the rotational speed of the rollers.
- the wet stretching machine may include a bath for accommodating an acidic aqueous solution (for example, an aqueous boric acid solution) and a tension regulator provided before and after the bath to adjust the tension of the monofilament.
- the dry type grinder stretches the monofilament in a dry atmosphere including a hot air fan.
- the monofilament discharged from the cooling unit 114 may be stretched by a high-stretch yarn while passing through a plurality of stretchers.
- the monofilament can be highly stretched by cooling immediately after passing through the induction coil portion 113 and maintaining the molecular arrangement state of the monofilament, followed by stretching.
- the first roller is immediately moved while the guide roller of the cooling unit 114 and the roller speed of the roll stretching machine disposed at the rear end of the cooling unit 114 are moved from the cooling unit 114 to the roll stretching machine.
- the monofilament discharged from the cooling unit 114 is a primary roll stretching machine, a wet stretching machine, a secondary roll stretching machine, a primary dry stretching machine, a tertiary roll stretching machine, a secondary dry stretching machine, Stretching may be performed through a fourth roll stretching machine, a third dry stretching machine, and a fifth roll stretching machine.
- Stretching may be performed through a fourth roll stretching machine, a third dry stretching machine, and a fifth roll stretching machine.
- the stretching may be made of MD (longitudinal) regardless of the type of stretching machine, and the stretching ratio may have a high stretching ratio of 17: 1 or more.
- the primary stretching may be performed by setting the speeds of the guide roller of the cooling unit 114 and the rollers of the primary roll stretching machine differently.
- the primary stretching condition may be 5.5 m / min, 14545 denier.
- secondary stretching may be performed through a wet stretching machine (water cooling temperature of 100 ° C) and a secondary roll stretching machine.
- the second stretching condition may be 45 m / min, 1778 denier.
- tertiary stretching may be performed through a primary dry stretching machine (hot air temperature 150 ° C) and a tertiary roll stretching machine.
- the third stretching condition may be 70 m / min, 1143 denier.
- a fourth stretching may be performed through a second dry stretching machine (hot air temperature 160 ° C) and a fourth roll stretching machine.
- the fourth stretching condition may be 75 m / min, 1070 denier.
- the fifth stretching may be performed through the third dry stretching machine (hot air temperature 210 ° C.) and the fifth roll stretching machine.
- the fifth stretching condition may be 80 m / min, 1000 denier. Since the fifth stretching is the final stretching, so that the monofilament, which has been steadily heated up during the period, can be cooled while passing through the fifth rolling stretching machine, a cooling means may be installed in the fifth rolling stretching machine unlike other roll stretching machines.
- the stretching is performed for the fifth time as described above, and by optimizing the process conditions such as the optimum temperature and the stretching speed in each stretching step (the order increases, the stretching speed increases and the temperature gradually increases to 1000 denier. Adjustment), and a monofilament can be oriented to have a high draw ratio of 17: 1 or more.
- the weaving portion 116 is provided on the front side (downstream side) of the stretching portion 115 to weave the filaments to form a fabric.
- the weaving portion 116 is woven in the form of a plain weave (plain weave), but can be woven so that the crossing angle between the warp and the weft is 75 ° to 85 °. This will be described in more detail later.
- the weaving section 116 may weave the filaments in other forms, such as twill weave or satin weave. However, for convenience of description, hereinafter, the case in which the filaments are woven in the weaving portion 116 will be mainly described.
- a focusing unit for forming a multifilament by focusing a monofilament may be disposed between the cooling unit 114 and the stretching unit 115 or between the stretching unit 115 and the weaving unit 116.
- the stretched portion 115 and / or the weaving portion 116 stretch or weave the multifilament to form a fabric.
- the fiber reinforcement supply unit 120 has a roll body shape, and the fiber reinforcement 10 woven from the weaving portion 116 is wound.
- the fiber reinforcement supply unit 120 rotates in the first direction to supply the fiber reinforcement 10 to the laminating unit 140.
- the weaving part 116 may weave the filament in the form of a plain weave, but weave it so that the cross angle between warp and weft is 75 ° to 85 °.
- the cross angle means an angle ⁇ formed between the warp 11 and the weft yarn 12 when the warp yarn 11 and the weft yarn 12 are woven into a 1: 1 plain weave as shown in the enlarged view of the left side of FIG. 2.
- the angle of intersection between the inclined 11 and the weft 12 is approximately 90 °. This is because elasticity, strength, and the like behave in an isotropic form in both the longitudinal and transverse directions.
- the fiber reinforcement 10 and the base material 20 are heated, compressed, and cooled to form an impregnated material, thereby forming an impregnated composite material at an angle formed by the slope 11 and the weft yarn 12.
- the cross angle of the warp 11 and the weft yarn 12 in the completed self-reinforcing composite material 1 is often distorted, and elasticity and strength are often behaved in anisotropic form.
- the cross angle of the warp and weft in a predetermined shape in the weaving part 116 in advance is approximately 90 °. It is corrected to achieve (angle ⁇ of the right magnification of FIG. 2). Therefore, it is possible to form a self-reinforcing composite 1 having a more uniform quality.
- the base material supply unit 130 has a roll body shape, and the base material 20 is wound.
- the base material supply unit 130 rotates in a second direction opposite to the first direction to supply the base material 20 to the laminating unit 140.
- the base material may be a thermoplastic resin film.
- the thermoplastic resin include polypropylene, polybutylene, polypentene, polyvinyl acetate, polystyrene, and the like.
- the base material is preferably an unstretched film made of ethylene copolymerized polypropylene having a melting point of approximately 129 ° C as a raw material.
- the fiber reinforcement 10 and the base material 20 are supplied to the laminating portion 140.
- the fiber reinforcement 10 is disposed at the top and the matrix 20 is disposed at the bottom.
- the laminating section 140 includes a first belt section 141, a second belt section 142, a heating section 143a to 143d, a press section 144, and a cooling section 145.
- the first belt part 141 includes a metal material that rotates while forming a caterpillar (caterpillar) in the first direction.
- a metal material is stainless steel.
- the second belt part 142 includes a metal material that rotates while forming a caterpillar (caterpillar) in a second direction opposite to the first direction.
- a metal material is stainless steel.
- the first belt portion 141 is disposed at the top, and the second belt portion 142 is disposed at the bottom.
- the lower portion of the first belt portion 141 and the upper portion of the second belt portion 142 are spaced at a predetermined distance so that the stack of the fiber reinforcement 10 and the base material 20 is downstream by the first and second belt portions 141 and 142.
- the first belt portion 141 and the second belt portion 142 are configured to transfer while compressing the fiber reinforcement 10 and the base material 20.
- the tension of the first belt portion 141 may be changed based on the second belt portion 142 to compress the fiber reinforcement 10 and the base material 20.
- the first and second belt parts 141 and 142 may further include tension adjusting means. This is for crimping, and further, in the process of driving the device, a phenomenon such as heat shrinkage may occur due to heat, and it is necessary to readjust the tension.
- the second belt portion 142 is formed to have a length longer than that of the first belt portion 141. Accordingly, the base material 20 is first supplied from the second belt portion 142, and then the fiber reinforcement material 10 may be supplied in a stacked form.
- a plurality of heating parts 143a to 143d are installed inside the first belt part 141 and the second belt part 142, respectively.
- four sets of heating units 143a to 143d may be installed as shown in FIG. 2.
- the temperature of each heating part is set differently.
- the first heating unit 143a, the second heating unit 143b, the third heating unit 143c, and the fourth heating unit 143d are installed from the upstream side to the downstream side based on FIG. 2. .
- the temperature of the first heating unit 143a is the highest, and the temperature of the fourth heating unit 143d is set to be the lowest, so that it may have a temperature gradient.
- the temperature of the first heating unit 143a is about 160 ° C and the second heating unit 143b
- the temperature may be about 120 ° C
- the temperature of the third heating unit 143c may be about 80 ° C
- the temperature of the fourth heating unit 143d may be about 50 ° C. Therefore, while passing through the first heating portion 143a, the base material 20 may be melted and the fiber reinforcement material 10 may be impregnated, and the base material 20 may gradually solidify as it moves downstream and a self-reinforcing composite material may be manufactured.
- the laminating unit 140 may be provided with a plurality of units of the fiber reinforcement 10 to be stacked in such a way that a plurality of layers of the fiber reinforcement 10 are superimposed to form a self-reinforcing composite material.
- the heating portions 143a to 143d may generate heat through a high frequency induction heating principle, like the induction coil portion 113 of the fiber reinforcement manufacturing portion 110.
- the heating parts 143a to 143d are installed inside the first belt part 141 and the second belt part 142 to face a pair of induction coil heaters (induction coil heaters are the induction coil parts described above) 113) may be configured to form one set.
- the induction coil heater installed in the first belt portion 141 and the induction coil heater installed in the second belt portion 142 are provided with contacts on both sides, and when they are close to each other, the contacts are connected to be connected to one coil. You can take a method.
- a high-frequency induction heating type induction coil heater is used as the heating parts 143a to 143d, the temperature can be controlled more precisely by adjusting the frequency, and power consumption is also lower than that of the general heater type, which is economical.
- a preheat heater 142a may be installed inside the upstream side of the second belt part 142 to receive and preheat the base material 20.
- the preheating heater 142a preheats the base material 20 before the base material 20 enters the heating part 143a.
- the preheating heater 142a may be heated to about 100 ° C to preheat the base material 20. In this case, since the melting of the base material 20 in the heating part 143a is made more smoothly, the process time can be shortened.
- the press portion 144 is provided on the downstream side of the heating portions 143a to 143d and is installed inside the first belt portion 141 and the second belt portion 142 to compress the impregnated material.
- the press part 144 may be provided with a pair of crimping rollers, and press the impregnated material transferred from the heating parts 143a to 143d by pressing in the vertical direction.
- the cooling unit 145 is provided on the downstream side of the press unit 144 to pressurize and cool the impregnated material.
- the cooling unit 145 is provided with a plurality of press rollers to which cooling water is supplied, and the impregnated material can be cooled by pressing the impregnated material with these press rollers.
- the apparatus 100 for manufacturing a self-reinforcing composite according to the present invention may further include a glass fiber supply unit 131.
- the glass fiber supply unit 131 is provided between the base material supply unit 130 and the front end side of the second belt unit 142 to spray the glass fibers toward the surface of the base material 20.
- the glass fiber is dispersed in the base material 20 and may contribute to increasing the strength of the impregnated material when the impregnated material is subsequently manufactured.
- the glass fiber may have a short fiber form, and more specifically, may have a length of less than 7 mm.
- the glass fiber may be supplied in an amount of 10 to 15 wt% based on the total weight of the base material 20.
- the present invention may additionally provide a self-reinforcing composite material manufactured by the self-reinforcing composite manufacturing apparatus 100 according to embodiments of the present invention as described above.
- the self-reinforcing composite manufactured by the self-reinforcing composite manufacturing apparatus 100 according to the present invention is highly oriented as the orientation of the monofilament forming the fiber reinforcing material is higher than before, and it is possible to improve the rigidity of the self-reinforcing composite produced. .
- the self-reinforcing composite manufactured by the self-reinforcing composite manufacturing apparatus 100 includes auto parts, protective equipment such as a helmet or ankle protector, unmanned aerial vehicle / aircraft such as a drone, tennis racket, etc. It can be used in various industries such as sports goods and travel carrier bags.
- automobile parts to which the self-reinforcing composite can be applied include a crash pad used in a vehicle airbag, a battery case for a vehicle, a bumper case, an undercover, and various other automobile panels.
- the self-reinforcing composites according to the present invention can be utilized in all products having eco-friendly / light-weighting issues, as the quality of the self-reinforcing composites such as recyclability and processability has been improved while improving the quality.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Textile Engineering (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- Woven Fabrics (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
자기보강복합재 제조장치 및 이를 이용하여 제조된 자기보강복합재가 개시된다. 본 발명의 구체예들에 따른 자기보강복합재 제조장치는 모노필라멘트를 압출 성형한 후 냉각 전에 유도코일 방식으로 가열하여 모노필라멘트의 배향도를 향상시킴으로써 강도를 향상시킬 수 있다. 따라서 자기보강복합재의 기존 장점인 우수한 재활용성, 가격경쟁력, 가공성 및 복원력 등을 유지하면서도 그간 한계로 지적되던 강도를 향상시킬 수 있어 보다 우수한 품질의 자기보강복합재를 제조할 수 있다.
Description
본 발명은 자기보강복합재(self-reinforced composite) 제조장치와 이를 이용하여 제조된 자기보강복합재에 관한 것이다.
최근 환경 오염에 대한 문제가 중요시되면서 이산화탄소, 메탄, 이산화질소 등의 온실가스 배출에 대한 규제가 강화되고 있다. 이에 연계하여 자동차 산업에서도 자동차를 경량화 시키는 연구개발이 활발히 이루어지고 있다. 구체적으로는 저비중, 고강도의 섬유강화 복합재료가 자동차 경량화 부품에 적용되고 있으며 비교적 재성형이 용이한 열가소성 수지가 탄소섬유 및 유리섬유 보강재에 함침되어 섬유강화 복합재료의 기지재(matrix)로 사용되고 있다. 하지만 열가소성 섬유강화 복합재료는 고강도 섬유의 취성 특성에 따른 연성 및 신율이 취약하며 재사용을 위해서는 섬유 보강재와 수지의 분리를 통한 열처리 공정이 요구되는 단점이 있다.
이와 같은 문제를 해결하기 위해 자기보강 복합재(self-reinforced composite) 연구가 진행되고 있다. 자기보강 복합재는 섬유 보강재와 기지재가 동일한 소재로 구성된 복합재료다. 연성 및 신율 특성이 우수하고 기존 섬유강화 복합재와 달리 섬유 보강재와 기지재의 분리 없이 바로 재활용이 가능하다는 장점이 있다. 또한 열가소성 수지 기반 자기보강 복합재의 경우 물보다 가벼운 수준의 저비중화가 가능하며 공정최적화 및 소재결정성 극대화를 통해 기존 섬유강화복합재 수준까지 기계적 특성을 향상시킬 수 있다.
도 1은 자기보강 복합재의 일 구체예를 나타내는 도면이다. 도 1을 참조하면, 자기보강 복합재(1)는 섬유 보강재(10)와 기지재(20)를 포함한다. 섬유 보강재(10)와 기지재(20)는 수지로 이루어지되 양자 수지의 물성이 동일 또는 유사하다. 이러한 수지의 예로는 폴리프로필렌, 폴리부틸렌, 폴리펜텐, 폴리비닐아세테이트, 폴리스티렌 등이 있다.
섬유 보강재(10)는 원사를 제작한 후에 연신하고 제직하여 사용한다. 제직 형태로는 평직(plain weave)이 사용된다. 섬유 보강재(10)의 녹는점은 기지재의 녹는점보다 크게 설계된다. 이에 따라 열을 가했을 때 기지재(20)가 용융되고 섬유 보강재(10)가 기지재(20)에 압축 성형되어 계면 접착되는 방식으로 자기보강 복합재(1)가 제조될 수 있다.
다만 자기보강 복합재(1)는 다양한 장점에도 불구하고 아직까지는 무기섬유를 사용한 기존의 섬유강화복합재보다 강도가 다소 낮다는 한계가 있다. 따라서 자기보강 복합재(1)의 강도를 개선하기 위한 방안들이 강구되고 있다.
본 발명은 자기보강 복합재의 기존 장점인 우수한 재활용성, 가격경쟁력, 가공성 및 복원력 등을 유지하면서도 고연신이 가능하며(17:1 이상의 연신비) 그 동안 한계로 지적되던 강도를 향상시킬 수 있는 자기보강복합재 제조장치 및 이를 이용하여 제조된 자기보강복합재를 제공하고자 한다.
본 발명은 국가연구개발사업의 일환으로, 과제고유번호: 10082586, 부처명: 산업통상자원부, 연구관리 전문기관: 한국산업기술평가관리원, 연구사업명: 산업소재핵심기술개발사업(섬유의류), 연구과제명: 연신비 1400% 이상의 폴리프로필렌 고연신사 기반 자기보강 복합재 및 자동차 동승자 에어백 도어 개발, 주관관: (주)남전산업, 연구기간: 2017.09.01~2020.12.31에 관한 것이다.
본 발명의 일 측면에 따르면, 고분자 수지 원소재로 직물 형태의 섬유 보강재를 제조하는 섬유 보강재 제조부; 상기 섬유 보강재를 하류로 공급하는 섬유 보강재 공급부; 고분자 수지 필름을 기지재로 하여 하류로 공급하는 기지재 공급부; 및 공급된 섬유 보강재와 기지재를 라미네이팅하여 자기보강복합재를 제조하는 라미네이팅부를 포함하고, 상기 섬유 보강재 제조부는, 원소재를 공급받아 모노필라멘트로 압출 성형하는 압출부; 압출부로부터 성형되어 배출되는 모노필라멘트를 가열시키는 유도코일부; 유도코일부를 거친 모노필라멘트를 냉각시키는 냉각부; 냉각부로부터 필라멘트를 공급받아 복수 회 연신시키는 연신부; 및 연신부로부터 공급된 필라멘트를 직조하여 직물체를 형성하는 제직부를 포함하는 자기보강복합재 제조장치가 제공될 수 있다.
이 때, 상기 섬유 보강재 제조부는 상기 냉각부와 연신부 사이 또는 연신부와 제직부 사이에 배치되고, 모노필라멘트를 집속시켜 멀티필라멘트를 형성하는 집속부를 더 포함할 수 있다.
또한, 상기 라미네이팅부는, 제1 방향으로 무한궤도를 형성하며 회전하는 금속소재의 제1 벨트부; 제1 방향과 정반대되는 제2 방향으로 무한궤도를 형성하며 회전하고, 제1 벨트부 하부에 배치되어 제1 벨트부와 함께 섬유 보강재 및 기지재를 압착 이송하는 제2 벨트부; 제1 벨트부 및 제2 벨트부의 내측에 각각 설치되고 서로 다른 온도로 가열되어 섬유 보강재를 기지재에 함침시키는 복수의 히팅부; 히팅부 하류 측에 마련되고 제1 벨트부 및 제2 벨트부의 내측에 각각 설치되어 함침물을 압착하는 프레스부; 및 프레스부 하류 측에 마련되어 함침물을 가압 및 냉각시키는 냉각부를 포함할 수 있다.
또한, 제2 벨트부는 제1 벨트부의 길이보다 긴 길이를 가지며, 제2 벨트부의 상류측 내측에는 기지재를 공급받아 예열시키는 예열히터가 설치될 수 있다.
또한, 상기 섬유 보강재 제조부의 제직부에서는 필라멘트를 평직(plain weave) 형태로 직조하되, 경사와 위사의 교차각이 75°~ 85°가 되도록 제직할 수 있다.
본 발명의 구체예들에 따른 자기보강복합재 제조장치는 모노필라멘트를 압출 성형한 후 냉각 전에 유도코일 방식으로 가열하여 모노필라멘트의 배향도를 향상시킴으로써 고연신이 가능하며(17:1 이상의 연신비) 종전 대비 강도를 향상시킬 수 있다. 따라서 자기보강복합재의 기존 장점인 우수한 재활용성, 가격경쟁력, 가공성 및 복원력 등을 유지하면서도 그간 한계로 지적되던 강도를 향상시킬 수 있어 보다 우수한 품질의 자기보강복합재를 제조할 수 있다.
또한 제직부에서 경사와 위사의 교차각을 소정 정도 틀어진 형태로 제직함으로써 라미네이팅부를 거친 함침물에서의 변형에 의해 경사와 위사의 교차각이 대략 90°를 이루도록 보정되는 바, 탄성, 강도 등이 등방성 형태로 거동될 수 있어 보다 품질이 균일한 자기보강복합재를 형성할 수 있다.
도 1은 자기보강 복합재의 일 구체예를 나타내는 도면이다.
도 2는 본 발명의 일 구체예에 따른 자기보강복합재 제조장치를 개략적으로 나타내는 도면이다.
도 3은 도 2의 자기보강복합재 제조장치에서 섬유 보강재 공급부의 세부 구성을 개략적으로 나타내는 도면이다.
<부호의 설명>
100: 자기보강복합재 제조장치
110: 섬유 보강재 제조부
120: 섬유 보강재 공급부
130: 기지재 공급부
140: 라미네이팅부
10: 섬유 보강재
20: 기지재
이하, 첨부된 도면을 참조하여 본 발명을 구체적으로 설명한다. 하기의 설명은 본 발명을 구체적인 예시를 들어 기술하는 것으로 이해되어야 하며, 본 발명의 기술적 사상이 하기의 설명에 한정되는 것은 아니다. 그리고 첨부된 도면은 본 발명의 이해를 돕기 위해 제공되는 것으로, 본 발명의 기술적 사상은 첨부된 도면에 한정되지 않는다. 또한 도면에서 각 부재의 두께나 크기 등은 설명의 편의 등을 위해 과장, 생략, 개략적으로 도시될 수 있다.
본 명세서에 기재된 본 발명 구조에 대한 설명에서 위치관계나 방향은 특별히 언급하지 않는 한, 본 명세서에 첨부된 도면을 기준으로 한다.
본 명세서에 기재된 본 발명 구조에 대한 설명에서 공간에 대한 설명이나 위치관계에 대한 설명은 본 발명을 이루는 구성요소들 간의 상대적인 위치를 의미한다. 또한 특별히 언급하지 않는 한, 하나의 구성요소와 다른 구성요소 사이의 공간에는 또 다른 구성요소가 존재할 수 있다. 예를 들어 본 명세서에서 하나의 구성요소의 "상부에" 또는 "위에" 다른 구성요소가 위치함을 언급하는 경우, 하나의 구성요소의 바로 위에 다른 구성요소가 위치하는 경우뿐만 아니라, 하나의 구성요소와 다른 구성요소들 사이에 또 다른 구성요소가 위치하는 경우까지를 포함한다.
도 2는 본 발명의 일 구체예에 따른 자기보강복합재 제조장치(100)를 개략적으로 나타내는 도면이고, 도 3은 도 2의 자기보강복합재 제조장치(100)에서 섬유 보강재 공급부(110)의 세부 구성을 개략적으로 나타내는 도면이다.
도 2 및 도 3을 참조하면 자기보강복합재 제조장치(100)는 섬유 보강재 제조부(110), 섬유 보강재 공급부(120), 기지재 공급부(130), 라미네이팅부(140)를 포함한다.
섬유 보강재 제조부(110)는 섬유 보강재(10)를 제조한다. 섬유 보강재 공급부(120)는 섬유 보강재(10)를 라미네이팅부(140)로 공급한다. 기지재 공급부(130)는 기지재(20)를 라미네이팅부(140)로 공급한다. 섬유 보강재(10)와 기지재(20)는 섬유 보강재(10)가 상부에 위치한 채로 라미네이팅부(140)로 공급된다. 라미네이팅부(140)에서는 섬유 보강재(10)와 기지재(20)를 가열, 압착 및 냉각시킴으로써 자기보강복합재(1)를 제조한다.
각 구성요소에 대해 구체적으로 설명한다.
도 3은 섬유 보강재 제조부(110)를 개략적으로 도시하고 있다. 섬유 보강재 제조부(110)는 압출부, 유도코일부(113), 냉각부(114), 연신부(115) 및 제직부(116)를 포함한다.
압출부는 고분자 수지 원소재를 공급받아 모노필라멘트(mono filament)로 압출 성형한다. 압출부는 압출 다이(111)와 압출 다이(111)의 전방에 결합되어 복수의 모노필라멘트를 하방향으로 방사시키는 방사부(112)를 포함한다. 분자 수지 원소재는 압출 다이(111)에 투입되어 용융되고 방사부(112)를 거쳐 모노필라멘트 형태로 방사된다(대략 15500 Denier). 압출 다이(111)에는 복수의 실린더가 형성될 수 있다. 이 때 방사부(112)에 형성되는 복수의 실린더의 온도는 상이하게 세팅될 수 있다. 예를 들어 5EA의 실린더가 형성되어 있을 때, 각 실린더는 210℃, 230℃, 240℃, 250℃, 260℃를 갖도록 다른 온도로 세팅될 수 있다. 이와 같이 실린더의 온도를 다르게 세팅하는 것은 복수의 실린더가 압출 다이(111)에 배치되는 경우 히터와의 거리에 따라 실린더의 실제 온도가 달라질 수 있기 때문이다. 즉 복수의 실린더 중 어떤 실린더는 세팅 온도보다 높게 가열되고 다른 실린더는 세팅 온도보다 낮게 가열될 수 있다. 따라서 실린더의 위치에 따라 온도를 다르게 세팅함으로써 실린더들의 실제 가열 온도를 최적의 균일한 레벨로 맞출 수 있다. 방사부(112)에는 복수의 노즐이 형성되며, 방사부(112)로부터 복수의 모노필라멘트가 방사된다. 또한 압출 다이(111)와 방사부(112) 사이에는 스크린 체인저(미도시)가 설치될 수 있다. 스크린 체인저는 압출 다이(111)의 실린더로 공급된 고분자 수지 원소재에 포함되는 이물질이나 완전히 용융되지 않은 수지덩어리, 탄화된 수지 등과 같은 불순물을 걸러내는 스크린의 교체를 용이하게 하는 장치다. 스크린체인저의 망 교체시에는 최적 압출 온도인 255℃로 세팅이 이루어질 수 있다.
고분자 수지 원소재는 열가소성 수지를 비드(bead) 형태로 고화시킨 소재다. 열가소성 수지의 예로는 폴리프로필렌, 폴리부틸렌, 폴리펜텐, 폴리비닐아세테이트, 폴리스티렌 등이 있다. 일 구체예에 있어서 열가소성 수지는 녹는점이 대략 168℃인 호모폴리프로필렌이 바람직하다.
유도코일부(113)는 방사부(112) 하부에 마련된다. 유도코일부(113)는 고주파 유도가열 원리를 통해 방사부(112)로부터 방사되는 모노필라멘트를 가열한다. 고주파 유도가열 원리를 간략히 설명하면 전도체 소재로 형성되는 튜브 형의 피가열체의 외주면에 구리 등으로 형성된 코일을 권취하고, 코일에 고주파 전류를 흐르게 하면 피가열체에 유도된 전류에 의해 열이 발생한다. 이와 같은 고주파 유도가열 원리는 당업계에 잘 알려져 있다.
도 3의 좌측에 도시된 상면도를 참고하면 유도코일부(113)는 튜브 형의 피가열체(113a)와, 피가열체(113a)의 외주면에 권취되는 코일(113b)과, 피가열체(113a)의 내측에 배치되는 가열망(113c)을 포함한다. 피가열체(113a)는 알루미늄, 구리, 스테인리스 스틸 등의 소재로 형성될 수 있고, 코일(113b)은 구리 등의 소재로 형성될 수 있다. 피가열체(113a)는 코일(113b)에 의해 가열되어 방사부(112)로부터 방사되는 복수의 필라멘트를 가열한다. 가열망(113c)은 피가열체(113a)의 내측에 배치되며 메쉬(mesh) 형태를 갖는다. 가열망(113c)은 피가열체(113a)와 동일한 소재로 형성된다. 가열망(113c)은 피가열체(113a)로부터 전도된 열을 통해 방사부(112)로부터 방사되는 복수의 필라멘트를 가열한다. 가열망(113c)의 각 메쉬 격자는 방사부(112)의 노즐과 상응하도록 형성되어 방사되는 모노필라멘트가 가열망(113c)의 격자를 통과하도록 설계된다. 이에 따라 가열망(113c)은 복수의 모노필라멘트 사이에 촘촘히 배치되어 모노필라멘트들을 균일하게 가열할 수 있다. 만약 가열망(113c)이 없는 경우라면 피가열체(113a)와 상대적으로 근접한 위치로 방사되는 모노필라멘트가 그렇지 않은 모노필라멘트에 비해 가열되는 정도가 높아 복수의 모노필라멘트가 균일한 형태로 가열될 수 없다.
방사부(112)로부터 방사되는 모노필라멘트들은 반고화 상태에 있으며, 방사부(112)로부터 방사된 직후에는 모노필라멘트들의 분자 배열 상태가 규칙적으로 정렬되어 있다. 기존 장치들에서는 모노필라멘트가 냉각부로 투입되기 전에 외부에 노출되는 시간동안 상기 분자 배열 상태가 소정 정도 흐트러지게 되어 배향성이 저하되는 문제가 있다. 하지만 본 발명에 따른 자기보강복합재 제조장치에서는 유도코일부(113)를 통해 모노필라멘트들의 분자 배열 상태가 흐트러지는 것을 최대한 방지함으로써 보다 고배향성을 갖는 모노필라멘트를 제조할 수 있다. 이는 모노필라멘트의 연신성을 향상시켜 강도를 높이는데 기여한다. 더욱이 고주파 유도가열 방식을 채택하는 경우, 주파수를 조정함으로써 보다 정밀하게 온도를 제어할 수 있으며 전력소비량 역시 일반 히터 방식에 비해 낮으므로 경제적이다.
냉각부(114)는 유도코일부(113)를 통과한 모노필라멘트들을 공급받아 냉각시킨다. 냉각부(114)에서 모노필라멘트들의 분자 배열 상태가 고정된다. 냉각부(114)는 냉매가 담겨진 수조와, 수조 내부에 설치되어 모노필라멘트들을 전방으로 가이드하는 복수의 가이드 롤러를 포함한다. 냉매는 물과 에틸렌글리콜을 포함할 수 있다. 냉각부(114)에는 수조 내의 온도를 제어할 수 있는 온도제어수단이 마련될 수 있다. 예컨대 냉각부(114)에서는 수냉온도 25℃ 가량으로 모노필라멘트들을 습식 냉각할 수 있다.
연신부(115)는 냉각부(114)의 전방(하류 측)에 마련되어 냉각부(114)로부터 배출되는 모노필라멘트를 공급 받아 연신시킨다. 연신부(115)는 복수의 롤 연신기, 습식연신기 및 건식연신기를 포함할 수 있다. 롤 연신기는 복수의 상하로 배치된 롤러를 포함하며, 롤러들의 회전속도를 달리하여 모노필라멘트를 연신시킨다. 습식연신기는 산성 수용액(예컨대 붕산 수용액)을 수용하는 욕(浴)과 욕의 전후에 마련되어 모노필라멘트의 장력을 조절하는 장력조절기를 포함하여 이루어질 수 있다. 건식연식기는 열풍기 등을 포함하여 건조시킨 대기 중에서 모노필라멘트를 연신시킨다. 냉각부(114)로부터 배출되는 모노필라멘트는 복수의 연신기를 거치면서 고연신사로 연신될 수 있다. 특히 유도코일부(113)를 통과하여 모노필라멘트의 분자 배열 상태를 유지시킨 상태에서 바로 냉각하고 이어 연신을 수행함으로써 모노필라멘트를 고연신 시킬 수 있다. 이를 위해 냉각부(114)의 가이드 롤러와 냉각부(114)의 후단에 배치되는 롤 연신기의 롤러 속도를 조절하여 냉각부(114)에서 롤 연신기로 이동하면서 곧바로 1차 연신이 이루어지도록 한다. 일 구체예에 있어서 냉각부(114)로부터 배출되는 모노필라멘트는 1차 롤 연신기, 습식연신기, 2차 롤 연신기, 1차 건식연신기, 3차 롤 연신기, 2차 건식연신기, 4차 롤 연신기, 3차 건식연신기, 5차 롤 연신기를 거쳐 연신이 이루어질 수 있다. 이처럼 모노필라멘트를 습식연신한 후에 롤 연신 및 건식연신을 반복할 경우 고연신비를 갖는 모노필라멘트를 제조할 수 있다. 이 때, 연신은 연신기의 종류를 불문하고 MD(종방향)로 이루어질 수 있으며, 연신비는 17:1 이상의 고연신비를 가질 수 있다.
예를 들어 냉각부(114)의 가이드 롤러 및 1차 롤 연신기의 롤러의 속도를 달리 세팅하여 1차 연신이 이루어질 수 있다. 이 때 1차 연신 조건은 5.5m/min, 14545 데니어일 수 있다. 다음으로 습식연신기(수냉온도 100℃) 및 2차 롤 연신기를 통해 2차 연신이 이루어질 수 있다. 이 때 2차 연신 조건은 45m/min, 1778 데니어일 수 있다. 다음으로 1차 건식연신기(열풍온도 150℃) 및 3차 롤 연신기를 통해 3차 연신이 이루어질 수 있다. 이 때 3차 연신 조건은 70m/min, 1143 데니어일 수 있다. 다음으로 2차 건식연신기(열풍온도 160℃) 및 4차 롤 연신기를 통해 4차 연신이 이루어질 수 있다. 이 때 4차 연신 조건은 75m/min, 1070 데니어일 수 있다. 마지막으로 3차 건식연신기(열풍온도 210℃) 및 5차 롤 연신기를 통해 5차 연신이 이루어질 수 있다. 이 때 5차 연신 조건은 80m/min, 1000 데니어일 수 있다. 5차 연신은 최종 연신이므로 그동안 꾸준히 승온되어 오던 모노필라멘트가 5차 롤 연신기를 거치면서 냉각될 수 있도록, 5차 롤 연신기에는 다른 롤 연신기와는 달리 냉각수단이 설치될 수 있다. 본 발명에서는 이와 같이 5차에 걸친 연신을 수행하며 각 연신단계에서의 최적온도 및 연신속도 등의 공정 조건을 최적화 함으로써(차수가 진행될수록 연신속도 증가 및 온도의 점진적 상승을 통해 최종적으로 1000 데니어로 조정함), 17:1 이상의 고연신비를 갖도록 모노필라멘트를 배향시킬 수 있다.
제직부(116)는 연신부(115)의 전방(하류 측)에 마련되어 필라멘트를 직조하여 직물체를 형성한다. 이 때 제직부(116)는 필라멘트를 평직(plain weave) 형태로 직조하되, 경사(warp)와 위사(weft)의 교차각이 75°~ 85°가 되도록 제직할 수 있다. 이에 대해서는 이후에 보다 구체적으로 설명한다. 경우에 따라 제직부(116)는 필라멘트를 능직(twill weave), 수자직(satin weave) 등의 다른 형태로 제직할 수도 있다. 다만 설명의 편의를 위하여 이하에서는 제직부(116)에서 필라멘트를 평직 형태로 제직하는 경우를 중심으로 설명한다. 한편 도면에 도시되지는 않았으나 냉각부(114)와 연신부(115) 사이, 또는 연신부(115)와 제직부(116) 사이에 모노필라멘트를 집속시켜 멀티필라멘트를 형성하는 집속부가 배치될 수 있다. 집속부가 배치되는 경우 연신부(115) 및/또는 제직부(116)에서는 멀티필라멘트를 연신시키거나 제직시켜 직물체를 형성한다.
다시 도 2를 참조하면, 섬유 보강재 공급부(120)는 롤 바디 형태를 가지며 제직부(116)로부터 제직된 섬유 보강재(10)가 권취된다. 섬유 보강재 공급부(120)는 제1 방향으로 회전하여 섬유 보강재(10)를 라미네이팅부(140)로 공급한다.
또한 앞서 설명하였듯이 제직부(116)는 필라멘트를 평직(plain weave) 형태로 직조하되, 경사(warp)와 위사(weft)의 교차각이 75°~ 85°가 되도록 제직할 수 있다. 여기에서 교차각이란 도 2의 좌측 확대도에 도시되듯이 경사(11)와 위사(12)가 1:1의 평직으로 제직될 때 경사(11)와 위사(12)가 이루는 각도 α를 의미한다. 일반적으로 평직(plain weave)에서는 경사(11)와 위사(12)의 교차각이 대략 90°를 이룬다. 이 경우 종방향이나 횡방향 모두에서 탄성, 강도 등이 등방성 형태로 거동하기 때문이다. 그런데 본 발명에서와 같이 섬유 보강재(10)와 기지재(20)를 가열, 압착 및 냉각시켜 함침물을 형성하여 자기보강복합재를 제조하는 과정에서 경사(11)와 위사(12)가 이루는 각도에 변화가 생길 가능성이 높다. 공정이 진행되는 동안 섬유 보강재(10)에 열과 압력이 2 이상의 방향으로 가해지기 때문이다. 따라서 완성된 자기보강복합재(1)에서의 경사(11)와 위사(12)의 교차각이 틀어지는 경우가 많아, 탄성, 강도 등이 이방성 형태로 거동하는 경우가 많았다. 하지만 본 발명에서와 같이 제직부(116)에서 미리 경사와 위사의 교차각을 소정 정도 틀어진 형태로 제직하는 경우, 라미네이팅부(140)를 거친 후의 함침물에서 경사와 위사의 교차각이 대략 90°를 이루도록 보정된다(도 2의 우측 확대도의 각도 β). 따라서 보다 품질이 균일한 자기보강복합재(1)를 형성할 수 있다.
기지재 공급부(130)는 롤 바디 형태를 가지며 기지재(20)가 권취된다. 기지재 공급부(130)는 제1 방향과 반대되는 제2 방향으로 회전하여 기지재(20)를 라미네이팅부(140)로 공급한다. 기지재는 열가소성 수지 필름일 수 있다. 열가소성 수지의 예로는 폴리프로필렌, 폴리부틸렌, 폴리펜텐, 폴리비닐아세테이트, 폴리스티렌 등이 있다. 일 구체예에 있어서 기지재는 녹는점이 대략 129℃인 에틸렌 공중합 폴리프로필렌을 원료로 제작된 무연신 필름이 바람직하다.
섬유 보강재(10)와 기지재(20)는 라미네이팅부(140)로 공급된다. 섬유 보강재(10)가 상부에 배치되고 기지재(20)는 하부에 배치된다.
라미네이팅부(140)는 제1 벨트부(141), 제2 벨트부(142), 히팅부(143a~143d), 프레스부(144), 냉각부(145)를 포함한다.
제1 벨트부(141)는 제1 방향으로 무한궤도(캐터필러)를 형성하며 회전하는 금속소재를 포함한다. 금속소재의 예로는 스테인리스 스틸이 있다.
제2 벨트부(142)는 제1 방향과 정반대되는 제2 방향으로 무한궤도(캐터필러)를 형성하며 회전하는 금속소재를 포함한다. 금속소재의 예로는 스테인리스 스틸이 있다.
제1 벨트부(141)가 상부에 배치되고 제2 벨트부(142)는 하부에 배치된다. 제1 벨트부(141)의 하부와 제2 벨트부(142)의 상부는 소정 간격을 두어 섬유 보강재(10)와 기지재(20)의 적층체가 제1,2 벨트부(141,142)에 의해 하류 측으로 이송될 수 있도록 한다. 제1 벨트부(141)와 제2 벨트부(142)는 섬유 보강재(10) 및 기지재(20)를 압착하면서 이송하도록 구성된다. 예를 들어 제2 벨트부(142)를 기준으로 제1 벨트부(141)의 장력 등이 변화하여 섬유 보강재(10) 및 기지재(20)에 하중을 가하는 방식으로 압착이 이루어질 수 있다. 이를 위해 제1,2 벨트부(141,142)는 장력 조정 수단을 더 포함할 수 있다. 이는 압착을 위함이며 나아가 장치의 구동 과정에서 열에 의해 열수축 등의 현상이 일어날 수 있어, 장력 등을 재조정할 필요가 있기 때문이다.
제2 벨트부(142)는 제1 벨트부(141)의 길이보다 긴 길이를 갖도록 형성된다. 이에 따라 제2 벨트부(142)에서 기지재(20)를 먼저 공급 받고, 이후 섬유 보강재(10)가 적층되는 형태로 공급될 수 있다.
히팅부(143a~143d)는 제1 벨트부(141) 및 제2 벨트부(142)의 내측에 복수개가 각각 설치된다. 예를 들어 히팅부(143a~143d)는 도 2에서와 같이 4 세트가 설치될 수 있다. 이 때 각 히팅부의 온도는 서로 다르게 설정된다. 예를 들어 도 2를 기준으로 상류측에서 하류측으로 제1 히팅부(143a), 제2 히팅부(143b), 제3 히팅부(143c), 제4 히팅부(143d)가 설치된 경우를 가정한다. 이 때 제1 히팅부(143a)의 온도가 가장 높고, 제4 히팅부(143d)의 온도가 가장 낮도록 설정되어 온도 구배를 가질 수 있다. 예를 들어 섬유 보강재(10)의 녹는점이 대략 168℃이고 기지재(20)의 녹는점이 대략 129℃일 때, 제1 히팅부(143a)의 온도는 160℃ 가량, 제2 히팅부(143b)의 온도는 120℃ 가량, 제3 히팅부(143c)의 온도는 80℃ 가량, 제4 히팅부(143d)의 온도는 50℃ 가량이 될 수 있다. 따라서 제1 히팅부(143a)를 거치면서 기지재(20)가 용융되어 섬유 보강재(10)가 함침될 수 있고 하류로 이동하면서 기지재(20)가 점차 고화되며 자기보강복합재가 제조될 수 있다. 또한 라미네이팅부(140)는 복수 단위의 섬유 보강재(10)를 공급받아 적층시키는 방식으로 여러 겹의 섬유 보강재(10)가 겹쳐진 형태의 자기보강복합재를 제조할 수도 있다.
일 구체예에 있어서 히팅부(143a~143d)는 섬유 보강재 제조부(110)의 유도코일부(113)와 마찬가지로 고주파 유도가열 원리를 통해 열을 발생시킬 수 있다. 예를 들어 히팅부(143a~143d)는 제1 벨트부(141) 및 제2 벨트부(142)의 내측에 설치되어 마주하는 한 쌍의 유도코일 히터(유도코일 히터는 앞서 설명한 유도코일부(113)와 유사)가 하나의 세트를 이루도록 구성될 수 있다. 이 때 제1 벨트부(141)에 설치된 유도코일 히터와 제2 벨트부(142)에 설치된 유도코일 히터에는 양측에 접점이 마련되어 있어, 이들이 상호 근접하면 상기 접점이 연결되어 하나의 코일로 연결되는 방식을 취할 수 있다. 히팅부(143a~143d)로 고주파 유도가열 방식의 유도코일 히터를 사용하는 경우에는 주파수를 조정함으로써 보다 정밀하게 온도를 제어할 수 있으며 전력소비량 역시 일반 히터 방식에 비해 낮으므로 경제적이다.
한편, 제2 벨트부(142)의 상류측 내측에는 기지재(20)를 공급받아 예열시키는 예열히터(142a)가 설치될 수 있다. 예열히터(142a)는 기지재(20)가 히팅부(143a)로 진입하기 전에 기지재(20)를 예열시킨다. 예컨대 기지재(20)의 녹는점이 대략 129℃일 때 예열히터(142a)는 100℃ 가량으로 가열되어 기지재(20)를 예열시킬 수 있다. 이 경우 히팅부(143a)에서의 기지재(20)의 용융이 보다 원활하게 이루어지므로 공정시간을 단축시킬 수 있다.
프레스부(144)는 히팅부(143a~143d) 하류 측에 마련되고 제1 벨트부(141) 및 제2 벨트부(142) 내측에 각각 설치되어 함침물을 압착시킨다. 예컨대 프레스부(144)는 한 쌍의 압착 롤러를 구비하고 히팅부(143a~143d)에서 이송되는 함침물을 상하 방향에서 가압하여 압착시킬 수 있다.
냉각부(145)는 프레스부(144) 하류 측에 마련되어 함침물을 가압 및 냉각시킨다. 냉각부(145) 내부에는 냉각수가 공급되는 복수의 가압롤러가 구비되고, 이들 가압롤러로 함침물을 가압함으로써 함침물을 냉각시킬 수 있다.
본 발명에 따른 자기보강복합재 제조장치(100)는 유리섬유 공급부(131)를 더 포함할 수 있다. 유리섬유 공급부(131)는 기지재 공급부(130)와 제2 벨트부(142)의 전단측 사이에 마련되어 기지재(20)의 표면을 향해 유리섬유를 분사시킨다. 유리섬유는 기지재(20)에 분산되어 이후 함침물이 제조되었을 때 함침물의 강도를 높이는 데 기여할 수 있다. 유리섬유는 단섬유 형태를 가질 수 있으며, 보다 구체적으로는 7mm 미만의 길이를 가질 수 있다. 유리섬유는 기지재(20)의 총 중량을 기준으로 10~15wt% 가량이 공급될 수 있다.
본 발명은 상술한 것과 같은 본 발명의 구체예들에 따른 자기보강복합재 제조장치(100)에 의해 제조되는 자기보강복합재를 추가적으로 제공할 수 있다. 본 발명에 따른 자기보강복합재 제조장치(100)에 의해 제조되는 자기보강복합재는 섬유보강재를 이루는 모노필라멘트의 배향성이 종전 대비 높으므로 고연신이 가능하며 제조된 자기보강복합재의 강성을 향상시킬 수 있다.
본 발명의 구체예들에 따른 자기보강복합재 제조장치(100)에 의해 제조되는 자기보강복합재는 자동차 부품, 헬멧이나 앵클보호대와 같은 보호장비, 드론과 같은 무인비행기/항공기, 테니스 라켓 등을 포함하는 스포츠용품, 여행용 캐리어백 등 다양한 산업 분야에서 활용될 수 있다. 예를 들어 자기보강복합재가 적용될 수 있는 자동차 부품으로는 차량 에어백에 사용되는 크래시패드, 차량용 배터리 케읏, 범퍼 케이스, 언더커버, 그 외 각종 자동차 패널 등이 있다. 특히 본 발명에 따른 자기보강복합재는 재활용성, 가공성 등의 자기보강복합재의 특성을 보존하면서도 강도를 향상시켜 품질을 높였으므로 친환경/경량화 이슈가 있는 모든 제품군에 활용될 수 있다.
이상, 본 발명의 기술적 사상을 구체적으로 설명하였다. 그러나 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 청구범위에 기재된 본 발명의 기술적 사상의 범위 내에서 기술의 구체적 적용에 따른 단순한 설계변경, 일부 구성요소의 생략, 단순한 용도의 변경 등 본 발명을 다양하게 변형할 수 있을 것이며, 이러한 변형 역시 본 발명의 권리범위 내에 포함됨은 자명하다.
Claims (6)
- 고분자 수지 원소재로 직물 형태의 섬유 보강재를 제조하는 섬유 보강재 제조부;상기 섬유 보강재를 하류로 공급하는 섬유 보강재 공급부;고분자 수지 필름을 기지재로 하여 하류로 공급하는 기지재 공급부; 및공급된 섬유 보강재와 기지재를 라미네이팅하여 자기보강복합재를 제조하는 라미네이팅부를 포함하고,상기 섬유 보강재 제조부는,원소재를 공급받아 모노필라멘트로 압출 성형하는 압출부;압출부로부터 성형되어 배출되는 모노필라멘트를 가열시키는 유도코일부;유도코일부를 거친 모노필라멘트를 냉각시키는 냉각부;냉각부로부터 필라멘트를 공급받아 복수 회 연신시키는 연신부; 및연신부로부터 공급된 필라멘트를 직조하여 직물체를 형성하는 제직부를 포함하는 자기보강복합재 제조장치.
- 청구항 1에 있어서,상기 섬유 보강재 제조부는 상기 냉각부와 연신부 사이 또는 연신부와 제직부 사이에 배치되고, 모노필라멘트를 집속시켜 멀티필라멘트를 형성하는 집속부를 더 포함하는 자기보강복합재 제조장치.
- 청구항 1에 있어서,상기 라미네이팅부는,제1 방향으로 무한궤도를 형성하며 회전하는 금속소재의 제1 벨트부;제1 방향과 정반대되는 제2 방향으로 무한궤도를 형성하며 회전하고, 제1 벨트부 하부에 배치되어 제1 벨트부와 함께 섬유 보강재 및 기지재를 압착 이송하는 제2 벨트부;제1 벨트부 및 제2 벨트부의 내측에 각각 설치되고 서로 다른 온도로 가열되어 섬유 보강재를 기지재에 함침시키는 복수의 히팅부;히팅부 하류 측에 마련되고 제1 벨트부 및 제2 벨트부의 내측에 각각 설치되어 함침물을 압착하는 프레스부; 및프레스부 하류 측에 마련되어 함침물을 가압 및 냉각시키는 냉각부를 포함하는 자기보강복합재 제조장치.
- 청구항 3에 있어서,제2 벨트부는 제1 벨트부의 길이보다 긴 길이를 가지며, 제2 벨트부의 상류측 내측에는 기지재를 공급받아 예열시키는 예열히터가 설치되는 자기보강복합재 제조장치.
- 청구항 1에 있어서,상기 섬유 보강재 제조부의 제직부에서는 필라멘트를 평직(plain weave) 형태로 직조하되, 경사와 위사의 교차각이 75°~ 85°가 되도록 제직하는 자기보강복합재 제조장치.
- 청구항 1 내지 청구항 5 중 어느 한 항에 따른 자기보강복합재 제조장치에 의해 제조되는 자기보강복합재.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0136717 | 2018-11-08 | ||
KR1020180136717A KR102162644B1 (ko) | 2018-11-08 | 2018-11-08 | 자기보강복합재 제조장치 및 이를 이용하여 제조된 자기보강복합재 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020096101A1 true WO2020096101A1 (ko) | 2020-05-14 |
Family
ID=70611320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/013700 WO2020096101A1 (ko) | 2018-11-08 | 2018-11-12 | 자기보강복합재 제조장치 및 이를 이용하여 제조된 자기보강복합재 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102162644B1 (ko) |
WO (1) | WO2020096101A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102302666B1 (ko) | 2021-02-18 | 2021-09-16 | 최현준 | 디스플레이패널 보호필름 제조용 우레탄필름 제조방법 |
KR102302668B1 (ko) | 2021-02-18 | 2021-09-16 | 남상진 | 디스플레이패널 보호필름 제조용 우레탄필름 제조장치 |
KR20240083911A (ko) * | 2022-12-05 | 2024-06-13 | 전북대학교산학협력단 | 더블벨트 라미네이터 공정을 이용한 자기강화복합재 및 그 제조 방법 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0911404A (ja) * | 1995-06-29 | 1997-01-14 | Idemitsu Petrochem Co Ltd | 多層シート及びその製造方法 |
JP2015224297A (ja) * | 2014-05-28 | 2015-12-14 | 三菱レイヨン株式会社 | プリプレグの製造方法 |
KR101713714B1 (ko) * | 2015-06-29 | 2017-03-22 | 현대자동차주식회사 | 열가소성 수지 복합재 및 이의 제조방법 |
KR20170072088A (ko) * | 2015-12-16 | 2017-06-26 | 현대자동차주식회사 | 열가소성 수지 복합재 및 이의 제조방법 |
KR101827867B1 (ko) * | 2017-06-16 | 2018-03-23 | 주식회사윈텍스 | 고탄력 및 고강도 모노필라멘트를 이용한 원단 제조공법 |
KR20180094392A (ko) * | 2017-02-15 | 2018-08-23 | 현대자동차주식회사 | 자기보강 복합재를 이용한 자동차용 동승석 에어백 도어의 힌지 및 그 제조방법 |
KR20180119284A (ko) * | 2017-04-25 | 2018-11-02 | 만고산업 (주) | 고강도 경량 복합소재 및 이의 제조방법 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR930008443B1 (ko) * | 1990-09-29 | 1993-09-04 | 주식회사 럭키 | 유리섬유보강 열가소성 합성수지 시트의 제조방법 및 그 장치 |
KR100582671B1 (ko) * | 2004-05-17 | 2006-05-23 | 안세원 | 판상의 복합소재 제조장치 |
KR20070071189A (ko) * | 2005-12-29 | 2007-07-04 | 주식회사 효성 | 타이어 코드용 폴리에스테르 사의 제조 방법 |
KR101293892B1 (ko) * | 2010-02-22 | 2013-08-06 | (주)엘지하우시스 | 고주파 유도가열 더블스틸벨트 프레스 장치 |
KR102039766B1 (ko) * | 2015-12-14 | 2019-11-01 | (주)엘지하우시스 | 고강도 열가소성 복합재 시트 제조장치 및 제조방법 |
-
2018
- 2018-11-08 KR KR1020180136717A patent/KR102162644B1/ko active IP Right Grant
- 2018-11-12 WO PCT/KR2018/013700 patent/WO2020096101A1/ko active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0911404A (ja) * | 1995-06-29 | 1997-01-14 | Idemitsu Petrochem Co Ltd | 多層シート及びその製造方法 |
JP2015224297A (ja) * | 2014-05-28 | 2015-12-14 | 三菱レイヨン株式会社 | プリプレグの製造方法 |
KR101713714B1 (ko) * | 2015-06-29 | 2017-03-22 | 현대자동차주식회사 | 열가소성 수지 복합재 및 이의 제조방법 |
KR20170072088A (ko) * | 2015-12-16 | 2017-06-26 | 현대자동차주식회사 | 열가소성 수지 복합재 및 이의 제조방법 |
KR20180094392A (ko) * | 2017-02-15 | 2018-08-23 | 현대자동차주식회사 | 자기보강 복합재를 이용한 자동차용 동승석 에어백 도어의 힌지 및 그 제조방법 |
KR20180119284A (ko) * | 2017-04-25 | 2018-11-02 | 만고산업 (주) | 고강도 경량 복합소재 및 이의 제조방법 |
KR101827867B1 (ko) * | 2017-06-16 | 2018-03-23 | 주식회사윈텍스 | 고탄력 및 고강도 모노필라멘트를 이용한 원단 제조공법 |
Also Published As
Publication number | Publication date |
---|---|
KR102162644B1 (ko) | 2020-10-08 |
KR20200053723A (ko) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020096101A1 (ko) | 자기보강복합재 제조장치 및 이를 이용하여 제조된 자기보강복합재 | |
US4883552A (en) | Pultrusion process and apparatus | |
JP3947560B2 (ja) | 繊維強化熱可塑性複合材料の成形方法およびその中間体、および、複合シート | |
CN103660308B (zh) | 连续纤维织物增强热塑性树脂复合材料及其制作方法 | |
US4539249A (en) | Method and apparatus for producing blends of resinous, thermoplastic fiber, and laminated structures produced therefrom | |
CN102218831A (zh) | 连续纤维多轴向增强热塑性预固结片材及其制备方法 | |
WO2014007505A1 (ko) | 열가소성 프리프레그 및 그 제조방법 | |
WO2011102679A2 (ko) | 고주파 유도가열 더블스틸벨트 프레스 장치 | |
KR101688717B1 (ko) | 열가소성 수지 보강 시트재 및 그의 제조 방법 | |
CN107866954B (zh) | 连续纤维增强热塑性树脂预浸带的制造方法及设备 | |
WO2019107991A1 (ko) | 연속섬유 보강 열가소성 수지 복합재료 및 그 제조방법 | |
CN108215383B (zh) | 可快速复合成型的热塑性预浸织物结构 | |
CN202115036U (zh) | 一种多轴向线束增强的热塑性预固结片材 | |
CN110281550A (zh) | 一种可织造连续纤维增强热塑性预浸带的制备方法及制品 | |
US9683317B2 (en) | Two-ply woven structure with high-strength and thermoplastic fibres | |
SK2392002A3 (en) | Method and device for making composite plates | |
AU733134B2 (en) | Cloth prepreg and wet process for manufacturing the same | |
KR20170079656A (ko) | 폴리프로필렌 원사의 제조방법, 폴리올레핀 기반의 복합재 및 그 제조방법 | |
US20070003748A1 (en) | Composite fabric product and method of manufacturing the same | |
CN111745857B (zh) | 一种规则截面的单向纤维增强树脂体的制备方法和设备 | |
JP2009091377A (ja) | プリプレグの製造装置 | |
CN107283861A (zh) | 一种单向连续性纤维热塑性增强带及其制备工艺 | |
WO2005033390A2 (en) | Composite fabric product and method of manufacturing the same | |
JP3672043B2 (ja) | 熱可塑性コンポジットの連続成形品および連続成形方法 | |
CN115771322A (zh) | 一种生物基聚酰胺复合板材及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18939440 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18939440 Country of ref document: EP Kind code of ref document: A1 |