WO2020095651A1 - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
WO2020095651A1
WO2020095651A1 PCT/JP2019/041032 JP2019041032W WO2020095651A1 WO 2020095651 A1 WO2020095651 A1 WO 2020095651A1 JP 2019041032 W JP2019041032 W JP 2019041032W WO 2020095651 A1 WO2020095651 A1 WO 2020095651A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
acceleration
sensor
value
vehicle acceleration
Prior art date
Application number
PCT/JP2019/041032
Other languages
English (en)
French (fr)
Inventor
直道 山口
佐藤 仁
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2020095651A1 publication Critical patent/WO2020095651A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means

Definitions

  • the present invention relates to a vehicle control device.
  • An automatic transmission mounted on a general vehicle detects the rotation of the output shaft of the transmission with a rotation sensor and controls the gear ratio using the detection signal as vehicle speed information.
  • the rotation sensor outputs a pulsed voltage signal when the rotating body rotates by a specific angle. Therefore, the transmission control unit (TCU: Transmission Control Unit) measures the rotation speed from this pulse signal, converts the rotation speed into vehicle speed information, and then determines the gear ratio.
  • TCU Transmission Control Unit
  • the rotation sensor on the output shaft side of the transmission (hereinafter referred to as the output rotation sensor) is subject to aging and corrosion of the sensor electrode due to the usage environment of the sensor, causing pulse dropouts and excess pulses in the pulse signal. It is known to occur.
  • the gear shift operation since the measured value of the vehicle speed deviates from the actual vehicle speed, the gear shift operation may not be performed as intended, which may lead to deterioration of fuel consumption and wear of the clutch and gear mechanism of the transmission. From such a background, in recent years, it has been required to accurately diagnose a failure of the output rotation sensor to guarantee the safety performance and fuel efficiency performance of the vehicle.
  • a method of diagnosing a failure of the output rotation sensor of the transmission a method of diagnosing a failure of the output rotation sensor by comparing the rotation speed of the output shaft of the engine, the rotation speed of the input shaft of the transmission, and the rotation speed of the output shaft of the transmission Is known (for example, refer to Patent Document 1).
  • the engine rotation sensor rotates the rotation speed of the output shaft of the engine
  • the input rotation sensor rotates the rotation speed of the input shaft of the transmission
  • the output rotation sensor rotates the rotation speed of the output shaft of the transmission. Detect with a sensor. Then, when only the detection value of the output rotation sensor shows a value different from the detection values of the engine rotation sensor and the input rotation sensor, it is diagnosed that the output rotation sensor is abnormal.
  • Patent Document 1 the failure diagnosis method described in Patent Document 1 is premised on that the output shaft of the engine and the input shaft of the transmission are in the engaged state (during lockup). Therefore, it is difficult to detect an abnormality in the vehicle including a failure of the output rotation sensor at an extremely low vehicle speed from when the vehicle is stopped to when the vehicle is locked up.
  • the present invention solves the above problems, and an object thereof is to provide a vehicle control device capable of detecting a vehicle abnormality even at an extremely low vehicle speed from when the vehicle is stopped to when the vehicle is locked up. That is.
  • a vehicle control device includes a drive source that generates a driving force, a speed change mechanism or a speed reduction mechanism that changes output rotation of the drive source, an acceleration sensor that measures vehicle acceleration, and the speed change mechanism or An output rotation sensor that detects the number of rotations of the output shaft of the speed reduction mechanism, and is a vehicle control device that controls a vehicle, the measured value of the vehicle acceleration measured by the acceleration sensor, and the output rotation sensor. And a control unit for detecting an abnormality of the vehicle by comparing the calculated value of the vehicle acceleration calculated from the output signal of the vehicle.
  • Explanatory drawing of the dead time which concerns on 1st Embodiment. 3 is a control block diagram of correction processing of a measured value of vehicle acceleration according to the first embodiment.
  • FIG. The time chart figure explaining the 1st diagnostic processing concerning a 1st embodiment.
  • the time chart figure explaining the 2nd diagnostic processing concerning a 1st embodiment. 3 is a flowchart showing a failure diagnosis of the output rotation sensor according to the first embodiment.
  • 3 is a flowchart showing failure diagnosis of the transmission according to the first embodiment.
  • FIG. 1 is a configuration diagram of a vehicle control system according to the first embodiment.
  • a vehicle 1 transmits a driving force generated by an engine 2 as a driving source to wheels 5 via a torque converter 3 and a transmission 4 as a transmission mechanism.
  • the output shaft 6 of the engine 2 is connected to the input shaft 7 of the transmission 4 via the torque converter 3, and the output shaft 8 of the transmission 4 is connected to the drive shaft 10 of the wheel 5 via the differential gear BOX 9.
  • the output rotation from the engine 2 is reduced by the torque converter 3 and input to the transmission 4, and the output torque from the transmission 4 is distributed to the wheels 5 by the differential gear BOX 9.
  • the vehicle 1 is provided with an ECU (Engine Control Unit) 21, a TCU (Transmission Control Unit) 22, and a running electronic control unit 23 as electronic control devices.
  • the TCU 22 is a controller for the transmission 4 to which the vehicle control device of this embodiment is applied.
  • the traveling electronic control unit 23 determines a traveling state by receiving an output signal from a sensor that detects a wheel speed, a steering wheel steering angle, a vehicle acceleration, a yaw rate, etc., and determines whether the engine 2, the transmission 4, the motor actuator, or the like is traveling. It is a dynamics controller that controls related devices.
  • the electronic control unit 23 for traveling includes a traction control system, an ABS (Antilock Brake System), and a VCU (Vehicle Control Unit).
  • the vehicle 1 includes, as a sensor group, an accelerator pedal stroke sensor 25 that detects the amount of depression of the accelerator pedal, an output rotation sensor 26 that detects the rotation speed of the output shaft 8 of the transmission 4, and a vehicle acceleration in the traveling direction.
  • a front-rear G sensor 27 (first acceleration sensor) that detects the vehicle speed
  • a left and right G sensor 28 (second acceleration sensor) that detects the vehicle acceleration in the vehicle width direction orthogonal to the traveling direction are provided.
  • the output rotation sensor 26 is a pulse output type rotation sensor that outputs a pulse signal (pulse voltage) according to the rotation of the output shaft 8.
  • the front-rear G sensor 27 and the left-right G sensor 28 are analog output type sensors that are attached to the vehicle body of the vehicle 1 and linearly output an analog signal (analog voltage) corresponding to the vehicle acceleration.
  • the ECU 21 calculates accelerator opening information S3 from the output signal of the accelerator pedal stroke sensor 25.
  • the TCU 22 calculates the vehicle acceleration (calculated value S2) from the output signal of the output rotation sensor 26.
  • the traveling electronic control unit 23 calculates the vehicle acceleration (measurement value S1) from the output signals of the G sensors 27 and 28.
  • the ECU 21, the TCU 22, and the electronic control unit 23 for traveling mutually transmit and receive various information such as the accelerator opening information S3, the calculated acceleration value S2, and the measured acceleration value S1 through CAN (Control Area Network) communication 29. ..
  • the vehicle 1 is provided with various sensors in addition to the above sensor group.
  • the vehicle acceleration measurement values S1 are input to the traveling electronic control unit 23 from the front-rear G sensor 27 and the left and right G sensors 28, and these vehicle acceleration measurement values S1 are transmitted from the traveling electronic control unit 23 to the TCU 22. It is sent to the control unit 30 (see FIG. 4).
  • the control unit 30 of the TCU 22 combines measured values S1 of vehicle acceleration in the traveling direction and the vehicle width direction.
  • the process of combining the measured values S1 of the front and rear G sensors 27 and the left and right G sensors 28 is performed by the traveling electronic control unit 23, and the measured values after the combination process are transferred from the traveling electronic control unit 23 to the control unit 30 of the TCU 22. May be sent.
  • the vehicle 1 configured as described above, it is required to accurately diagnose a failure such as a pulse omission of the output rotation sensor 26 of the transmission 4.
  • a failure diagnosis of the output rotation sensor 26 of the transmission 4 a method of diagnosing from the consistency of the engine speed, the input speed of the transmission 4, the output speed of the transmission 4 and the like is being studied.
  • the consistency between the rotation speeds cannot be determined unless the engine 2 and the transmission 4 are locked up. Therefore, the failure of the output rotation sensor 26 cannot be diagnosed when the vehicle is not locked up such as when the vehicle starts or when the vehicle speed is extremely low.
  • the output of the output rotation sensor 26 of the transmission 4 and the output of the wheel speed sensor are used to determine the consistency between the rotational speed of the wheel 5 and the output rotational speed of the transmission 4.
  • a configuration for comparison is also conceivable.
  • the detection accuracy of the output rotation sensor 26 is directly related to the driving force of the vehicle 1, a detection signal having a larger number of pulse signals per rotation of the output rotation sensor 26 than the wheel speed sensor is used. Therefore, a wheel speed sensor having a detection accuracy equivalent to that of the output rotation sensor 26 is required, and a sensor mounting mechanism is required, which complicates the mechanism and increases costs.
  • the abnormality of the output rotation sensor 26 is detected by utilizing the existing acceleration sensor without changing the mechanical mechanism or the sensor configuration.
  • the control unit 30 of the TCU 22 compares the calculated value S2 of the vehicle acceleration calculated from the detection signal of the output rotation sensor 26 with the measured value S1 of the vehicle acceleration measured by the acceleration sensor. ..
  • the failure of the acceleration sensor since it is detected by the traveling electronic control unit 23 and notified to the TCU 22, when the deviation between the calculated value S2 of the vehicle acceleration and the measured value S1 or the like occurs, the presence or absence of the failure of the acceleration sensor is determined. It is possible to detect an abnormality of the output rotation sensor 26.
  • the front-rear G sensor 27 and the left-right G sensor 28 as acceleration sensors linearly output analog signals according to the vehicle acceleration. Therefore, by comparing the measured value S1 of the vehicle acceleration measured from this linear analog signal with the calculated value S2 of the vehicle acceleration calculated from the pulse signal of the output rotation sensor 26, the error of the pulse signal per one rotation Can be suppressed and compared. That is, by comparing the pulsed output of the output rotation sensor 26 with the continuously changing output of the acceleration sensor, it is possible to make more accurate comparison than the configuration in which the pulsed outputs are compared with each other.
  • the driving force is generated by the backlash of the gear mechanism or the like or the twist of the shaft or the like. Is not transmitted to the vehicle 1. Due to the delay in the transmission of the driving force, the measured value S1 of the vehicle acceleration has a dead time with respect to the calculated value S2 of the vehicle acceleration. Therefore, the calculated value S2 of the vehicle acceleration and the measured value S1 of the vehicle acceleration are simply compared. I can't. Therefore, in the present embodiment, the measured value S1 of the vehicle acceleration is corrected, and then the measured value S1 of the vehicle acceleration is compared with the calculated value S2 of the vehicle acceleration to detect the failure of the output rotation sensor 26.
  • FIG. 2 is an explanatory diagram of the driving force transmission system according to the first embodiment.
  • FIG. 3 is an explanatory diagram of dead time according to the first embodiment.
  • FIG. 4 is a control block diagram of the correction processing of the measured value of the vehicle acceleration according to the first embodiment.
  • FIG. 2 the transmission system of the driving force of the vehicle from the transmission 4 to the front and rear G sensors 27 and the left and right G sensors 28 as acceleration sensors is shown by arrows.
  • the driving force of the transmission 4 is transmitted to the drive shaft 10 via the output shaft 8 and the differential gear BOX 9 and becomes the rotational torque of the wheels 5.
  • acceleration is measured by the front-rear G sensor 27 and the left-right G sensor 28 installed on the vehicle body side.
  • the rotation of the output shaft 8 of the transmission 4 is detected by the output rotation sensor 26, and the TCU 22 (see FIG. 1) calculates the acceleration from the detection signal of the output rotation sensor 26.
  • dead time L occurs depending on the running state of the vehicle as follows.
  • the entire vehicle acts as inertia with respect to the output torque of the transmission 4 to increase the amount of twist of the drive shaft 10, and the transmission of the driving force is delayed by this amount of twist.
  • the backlash (backlash) of the speed change gear (not shown) of the mechanical mechanism and the differential gear BOX 9 is large.
  • the transmission of the driving force is delayed by the amount of filling.
  • FIG. 3 simply shows a time chart of the calculated value S2 of the vehicle acceleration and the measured value S1 of the vehicle acceleration when the vehicle starts from the stop and starts.
  • the calculated value S2 of the vehicle acceleration is immediately calculated from the rotation speed of the output shaft 8 of the transmission 4 detected by the output rotation sensor 26.
  • the measured value S1 of the vehicle acceleration is not measured by the front-rear G sensor 27 and the left-right G sensor 28 until the rotation of the transmission 4 is converted into the driving force of the vehicle 1 via the power transmission path. ..
  • a dead time L time lag
  • the dead time L until the driving force output from the transmission 4 is transmitted to the vehicle body is calculated, and the vehicle acceleration measurement value S1 is corrected based on the dead time L.
  • the dead time L calculated by the TCU 22 is set as a variable parameter. For example, from the data map of the accelerator opening information measured by the accelerator pedal stroke sensor 25 and the vehicle speed calculated from the output signal of the output rotation sensor 26 shown in FIG. A dead time L due to backlash on the route is set.
  • L [sec] f (accelerator opening [%], vehicle speed [km / h]) (1)
  • the method of setting the dead time L of the present embodiment is not limited to the above, and also includes a configuration in which the method of setting the dead time L is changed according to the amounts of the target driving force and the braking force of the vehicle 1.
  • the dead time L may be set by a data map of the target driving force and the vehicle speed.
  • the target driving force may be automatically determined based on the surrounding environment of the vehicle-mounted camera, the millimeter wave radar, various sensors, and the like. That is, the dead time L may be set by the information of the surrounding environment and the data map of the vehicle speed.
  • the control unit 30 of the TCU 22 is provided with a dead time correction unit 31.
  • the dead time correction unit 31 a calculation process using the dead time L as a correction amount is performed on the measured value of the vehicle acceleration, and the sum of the measured value of the vehicle acceleration after the calculation and the input measured value of the vehicle acceleration is calculated. Then, the corrected measured value S1 of the vehicle acceleration is calculated. Next, the deviation between the corrected vehicle acceleration measured value S1 and the vehicle acceleration calculated value S2 is calculated, and the absolute value calculator 32 obtains the absolute value of the vehicle acceleration deviation. Then, the absolute value of the deviation of the vehicle acceleration is input to the diagnosis unit 33, and the diagnosis unit 33 diagnoses the failure of the output rotation sensor 26.
  • “s” of the dead time correction unit 31 in the drawing indicates a Laplace operator.
  • the diagnostic unit 33 includes a first diagnostic unit 41 that diagnoses a failure of the output rotation sensor 26 by a first diagnostic process, and a second diagnostic unit 45 that diagnoses a failure of the output rotation sensor 26 by a second diagnostic process.
  • the first diagnosis unit 41 includes a failure determination timer 42 that measures a duration time when the absolute value of the deviation exceeds a threshold value, and a first determination unit 43 that determines a failure of the output rotation sensor 26 based on the duration time. And are provided.
  • the first diagnostic process the magnitude of the absolute value of the deviation between the corrected vehicle acceleration measured value S1 and the corrected vehicle acceleration calculated value S2 is obtained, and the absolute time of the deviation exceeds the threshold value. Based on this, a failure of the output rotation sensor 26 is diagnosed.
  • the second diagnosis unit 45 includes a change speed calculation unit 46 that calculates a change speed that indicates the amount of change in the absolute value of the deviation per unit time, and an abnormality number counter 47 that counts the number of times the change speed exceeds a threshold value.
  • a second determination unit 48 that determines a failure of the output rotation sensor 26 based on the number of counts is provided.
  • the change speed of the absolute value of the deviation between the corrected vehicle acceleration measured value S1 and the calculated vehicle acceleration S2 is obtained, and the output rotation sensor is output based on the number of times the change speed exceeds the threshold value. Twenty-six faults are diagnosed.
  • the output rotation sensor 26 is regarded as a failure when the failure is diagnosed in at least one of the first and second diagnosis processes by the first and second diagnosis units 41 and 45.
  • the control unit 30 of the TCU 22 may be realized by software using a processor, or may be realized by a logic circuit (hardware) formed in an integrated circuit or the like.
  • the processor reads and executes the program stored in the memory to execute various processes.
  • the processor for example, a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), etc. are used.
  • the memory is configured by one or a plurality of recording media such as ROM (Read Only Memory), RAM (Random Access Memory), NVRAM (Non Volatile RAM), etc., depending on the application.
  • FIG. 5 is a time chart diagram for explaining the first diagnosis process according to the first embodiment.
  • a state in which the output rotation sensor 26 does not output due to a wire breakage during traveling, that is, a state in which steady pulse omission occurs is detected as a failure.
  • FIG. 5 shows time charts of vehicle acceleration, deviation absolute value, failure determination timer, and failure determination for the purpose of explaining the first diagnosis processing.
  • the corrected vehicle acceleration measured value S1 is shown by a broken line
  • the vehicle acceleration calculated value S2 is shown by a solid line.
  • the time chart of the absolute deviation value shows the absolute value of the deviation between the corrected vehicle acceleration measured value S1 and the vehicle acceleration calculated value S2.
  • the time chart of the failure determination timer shows the duration of the absolute value of the deviation exceeding the threshold value.
  • the timing chart for failure determination shows the timing for failure determination of the output rotation sensor 26.
  • the vehicle is in an accelerating state, and at time t1, the corrected vehicle acceleration measured value S1 and the vehicle acceleration calculated value S2 both increase at a constant rate as shown in the vehicle acceleration time chart.
  • the absolute value of the deviation is constant, and the absolute value of the deviation is smaller than the deviation threshold value.
  • the output rotation sensor 26 continuously loses a pulse due to the disconnection of the signal line or the like, and the calculated value of the vehicle acceleration calculated based on this sensor signal. S2 is apparently starting to decline.
  • the failure determination timer 42 measures the time. Is started. Further, as shown in the failure determination timer and the failure determination time chart, the output rotation sensor 26 is determined to be in the failed state at time t4 when the time measured by the failure determination timer 42 continues for the time threshold value or longer. In this way, when the absolute value of the deviation between the corrected vehicle acceleration measured value S1 and the vehicle acceleration calculated value S2 exceeds the deviation threshold value (judgment threshold value) for more than the time threshold value (specified time), the output is output. The failure of the rotation sensor 26 is diagnosed.
  • the failure of the output rotation sensor 26 when the pulse dropout occurs is diagnosed.
  • the absolute value of the deviation between the corrected vehicle acceleration measured value S1 and the vehicle acceleration calculated value S2. It is also possible to diagnose a failure when an excessive pulse is generated due to noise of the output rotation sensor 26.
  • the calculated value S2 of the vehicle acceleration appears higher than the measured value S1 of the corrected vehicle acceleration in the time chart of the vehicle acceleration.
  • the deviation threshold and the time threshold values experimentally, empirically, or theoretically obtained from past data or the like are used according to required safety performance or sensor characteristics.
  • FIG. 6 is a time chart diagram for explaining the second diagnosis process according to the first embodiment.
  • the second diagnosis process a state in which the pulse dropout discontinuously changes due to a contact failure of the output rotation sensor 26 or the like is detected as a failure.
  • FIG. 6 shows time charts of vehicle acceleration, absolute deviation value, change speed, abnormality counter, and failure determination for the purpose of explaining the second diagnosis process.
  • the corrected vehicle acceleration measured value S1 is shown by a broken line
  • the vehicle acceleration calculated value S2 is shown by a solid line.
  • the time chart of the deviation absolute value shows the absolute value of the deviation between the corrected vehicle acceleration measured value S1 and the vehicle acceleration calculated value S2.
  • the time chart of the changing speed shows the changing speed of the absolute value of the deviation.
  • the time chart of the abnormal number counter shows the number of times that the changing speed of the absolute value of the deviation exceeds the threshold value.
  • the timing chart for failure determination shows the timing for failure determination of the output rotation sensor 26.
  • the vehicle is in an accelerating state, and at time t1, the corrected vehicle acceleration measured value S1 and the vehicle acceleration calculated value S2 both increase at a constant rate as shown in the vehicle acceleration time chart.
  • the absolute value of the deviation is constant, and the absolute value of the deviation is smaller than the deviation threshold value.
  • the pulse dropout occurs discontinuously due to poor contact between the sensor section of the output rotation sensor 26 and the signal line, and the vehicle acceleration calculated based on this sensor signal.
  • the calculated value S2 of H is finely hunted.
  • the calculated value S2 of the vehicle acceleration decreases due to the missing pulse due to the non-contact state of the sensor portion of the output rotation sensor 26 and the signal line.
  • the sensor portion of the output rotation sensor 26 and the signal line return from the non-contact state to the contact state, and the calculated value S2 of the vehicle acceleration increases.
  • the absolute deviation value changes in a mountain shape. The slope of the absolute value of the deviation at this time indicates the changing speed of the absolute value of the deviation.
  • the changing speed threshold may be set to the maximum change rate of the acceleration when the vehicle is traveling, and the changing speed of the absolute value of the deviation due to the contact failure may be detected.
  • the changing speed of the absolute value of the deviation becomes larger than the changing speed threshold value at times t3 to t4.
  • the change speed of the absolute value of the deviation exceeds the change speed threshold value, it is considered that there is an abnormality in the pulse output, and the abnormality number counter 47 is incremented.
  • the failure of the output rotation sensor 26 when the pulse dropout occurs is diagnosed.
  • the absolute value of the deviation between the corrected vehicle acceleration measured value S1 and the vehicle acceleration calculated value S2. It is also possible to diagnose a failure when an excessive pulse is generated due to noise of the output rotation sensor 26.
  • the calculated value of the vehicle acceleration appears higher than the measured value of the corrected vehicle acceleration in the time chart of the vehicle acceleration.
  • the change speed threshold and the number of times threshold values experimentally, empirically or theoretically obtained from past data or the like are used according to required safety performance and sensor characteristics.
  • FIG. 7 is a flowchart showing a failure diagnosis of the output rotation sensor according to the first embodiment.
  • the flowchart shown in FIG. 7 is executed each time the measured value S1 of the vehicle acceleration and the calculated value S2 of the vehicle acceleration are loaded into the TCU 22.
  • FIG. 7 shows an example in which the first diagnostic process and the second diagnostic process are performed in parallel, the second diagnostic process may be performed after the first diagnostic process, The first diagnostic process may be performed after the second diagnostic process.
  • the control unit 30 first calculates the absolute value of the deviation between the corrected vehicle acceleration measured value S1 and the vehicle acceleration calculated value S2 (step S01), and changes the absolute value of the deviation. Is calculated (step S02). Subsequently, the control unit 30 performs the first diagnostic process and the second diagnostic process in parallel. In the first diagnosis processing, the control unit 30 determines whether or not the absolute value of the deviation exceeds the deviation threshold value (step S03). When the absolute value of the deviation exceeds the deviation threshold (YES in step S03), the control unit 30 increases the timer value of the failure determination timer 42 (step S04). On the other hand, when the absolute value of the deviation is less than or equal to the deviation threshold value (NO in step S03), the control unit 30 resets the timer value of the failure determination timer 42 (step S05).
  • the control unit 30 determines whether the timer value of the failure determination timer 42 is equal to or more than the time threshold value (step S06).
  • the control unit 30 considers that the abnormal state has continued for the specified time and diagnoses the output rotation sensor 26 as a failure (step S07).
  • the control unit 30 diagnoses the output rotation sensor 26 as no failure (step S08).
  • the control unit 30 determines whether the changing speed of the absolute value of the deviation exceeds the changing speed threshold value (step S09). When the changing speed of the absolute value of the deviation exceeds the changing speed threshold value (YES in step S09), the control unit 30 increments the count value of the abnormality number counter 47 (step S10). On the other hand, when the changing speed of the absolute value of the deviation is less than or equal to the changing speed threshold value (NO in step S09), the control unit 30 resets the count value of the abnormality number counter 47 (step S11).
  • step S12 determines whether the count value of the abnormality count counter 47 is equal to or larger than the count threshold value.
  • the control unit 30 considers that the abnormal state has been detected the specified number of times and determines that the output rotation sensor 26 has a failure (step S13).
  • the control unit 30 diagnoses the output rotation sensor 26 as having no failure (step S14).
  • the dead time L until the driving force of the output shaft 8 of the transmission 4 is transmitted to the vehicle body is calculated and measured by the front and rear G sensor 27 and the left and right G sensor 28.
  • the measured value S1 of the vehicle acceleration is corrected based on the dead time L.
  • the measured value S1 of the vehicle acceleration and the calculated value S2 of the vehicle acceleration can be accurately compared.
  • FIG. 8 is a flowchart showing a failure diagnosis of the transmission 4 of this embodiment.
  • an engine rotation sensor (not shown) as a drive source rotation sensor that detects the rotation speed of the drive source
  • an input rotation sensor (not shown) that detects the rotation speed of the input shaft of the transmission. And are provided.
  • the control unit 30 determines the consistency between the vehicle acceleration measured by the front and rear G sensor 27 and the left and right G sensor 28 and the rotation speed detected by the output rotation sensor 26 (step S21). .. As described above, the consistency can be determined by comparing the measured value S1 of the vehicle acceleration and the calculated value S2 of the vehicle acceleration.
  • the control unit 30 determines the consistency between the rotation speed detected by the engine rotation sensor and the rotation speed detected by the input rotation sensor (step S22). In this case, the consistency between the engine speed and the input shaft speed of the transmission 4 is determined in consideration of the speed ratio of the torque converter 3 and the like.
  • the control unit 30 determines the consistency between the rotation speed detected by the input rotation sensor and the rotation speed detected by the output rotation sensor 26 (step S23). In this case, the matching between the rotation speed of the input shaft of the transmission 4 and the rotation speed of the output shaft 6 of the transmission 4 is determined in consideration of the gear ratio of the transmission 4. Then, the control unit 30 diagnoses the failure of the transmission 4 based on the result of the matching in steps S21 to S23 (step S24). If it is determined that there is consistency in steps S21 and S22 and if there is no consistency in step S23 (YES in step S24), the transmission 4 is diagnosed as a failure (step S25), and otherwise the transmission is No. 4 is diagnosed as having no failure (step S26).
  • the output rotation sensor 26 is operating normally. ..
  • the input rotation sensor is operating normally.
  • the output rotation sensor 26 and the input rotation sensor are operating normally, but there is no match between the rotation speed detected by the input rotation sensor and the rotation speed detected by the output rotation sensor 26, It is determined that the transmission 4 is out of order.
  • the TCU 22 can perform not only the failure diagnosis of the output rotation sensor 26 but also the failure diagnosis of the transmission 4.
  • FIGS. 9 and 10 the vehicle control device according to the second embodiment will be described with reference to FIGS. 9 and 10.
  • the first embodiment the case where the dead time L of the measured value S1 of the vehicle acceleration is corrected has been described, but the measured value S1 of the vehicle acceleration may have a phase delay with respect to the calculated value S2 of the vehicle acceleration. Therefore, in the second embodiment, a phase lead filter that corrects the phase delay is added to the control unit 30.
  • FIG. 9 is an explanatory diagram of the phase delay according to the second embodiment.
  • FIG. 10 is a control block diagram of the correction processing of the measured value of the vehicle acceleration according to the second embodiment.
  • a time chart of the calculated value S2 of the vehicle acceleration and the measured value S1 of the vehicle acceleration when the vehicle starts to start is shown in a simplified manner.
  • the calculated value S2 of the vehicle acceleration is immediately calculated from the rotation speed of the output shaft 8 of the transmission 4 detected by the output rotation sensor 26.
  • the measured value S1 of the vehicle acceleration has a phase delay due to the twist of the shaft after the vehicle starts to move.
  • the measured value S1 of the vehicle acceleration has a smaller rate of change of the vehicle acceleration per unit time than the calculated value S2 of the vehicle acceleration due to the phase delay.
  • the control unit 30 of the TCU 22 is provided with a phase advance filter 35 in addition to the dead time correction unit 31.
  • the phase advance filter 35 is a filter that advances the phase of the measured value S1 of the vehicle acceleration by a delay relative to the phase of the calculated value S2 of the vehicle acceleration.
  • the dead time correction unit 31 corrects the dead time L
  • the measured value S1 of the vehicle acceleration is filtered by the phase advance filter 35 so as to advance the measured value of the vehicle acceleration by the phase delay. Since the configuration of the control unit 30 other than the phase advance filter 35 is the same as that of the first embodiment shown in FIG. 4, description thereof will be omitted.
  • phase advance filter 35 indicates the Laplace operator, “ ⁇ ” indicates the delay amount [sec], and “a” indicates the time constant [sec].
  • the phase advance filter 35 has a filter configuration for advancing the phase by ⁇ [sec] with respect to the signal after passing through the first-order lag filter having the time constant a.
  • is the following from the data map of the accelerator opening information measured by the accelerator pedal stroke sensor 25 shown in FIG. 1 and the vehicle speed calculated from the output signal of the output rotation sensor 26. It may be set as shown in Expression (2).
  • ⁇ [sec] f (accelerator opening [%], vehicle speed [km / h]) (2)
  • the method of setting the phase delay amount ⁇ of the present embodiment is not limited to the above, but the method of setting the phase delay amount ⁇ is changed according to the target driving drive force and braking force amount of the vehicle. Including configuration. Further, the time constant a is set as the time constant a ⁇ the amount of phase delay ⁇ , and it is desirable to set it in accordance with the high frequency component of noise included in the sensor signal. Further, the phase delay amount ⁇ may be set by a data map of the target driving force and the vehicle speed. The target driving force may be automatically determined based on the surrounding environment of the vehicle-mounted camera, the millimeter wave radar, various sensors, and the like. That is, the phase delay amount ⁇ may be set by the information of the surrounding environment and the data map of the vehicle speed.
  • the phase delay amount ⁇ is calculated in addition to the dead time L, and the measured value S1 of the vehicle acceleration measured by the front and rear G sensor 27 and the left and right G sensor 28 is wasted.
  • the correction is made based on the time L and the phase delay amount ⁇ .
  • the measured value S1 of the vehicle acceleration and the calculated value S2 of the vehicle acceleration can be compared more accurately.
  • FIG. 11 is a configuration diagram of a vehicle control system according to the third embodiment.
  • the vehicle 11 transmits the driving force generated by the motor 12 as a driving source to the wheels 5 via the speed reduction mechanism 15. Further, the vehicle 11 is provided with an inverter 13 that controls the drive current of the motor 12 and a power storage system 14 that controls power storage of the drive power of the motor 12. Further, as the vehicle control device, an electronic control device 24 is provided instead of the TCU 22 to instruct the inverter 13 of the generated torque and current value of the motor 12. Note that the other configurations are the same as those of the first embodiment, and the same configurations are denoted by the same reference numerals as those of the first embodiment.
  • the failure diagnosis of the output rotation sensor 26 and the speed reduction mechanism 15 can be performed in the same manner as in the first embodiment.
  • the vehicle 1 is configured to include the front-rear G sensor 27 and the left-right G sensor 28 as the acceleration sensor, but at least the front-rear G sensor 27 may be provided.
  • the vehicle 1 is not limited to the configuration including the stepped transmission mechanism as the transmission mechanism, and may include a belt-type or disc-type continuously variable transmission mechanism as the transmission mechanism.
  • the TCU 22 determines the abnormality of the vehicle 1, but the ECU 21 or the electronic control unit 23 for traveling may determine the abnormality of the vehicle 1. That is, the failure diagnosis process of the vehicle control device may be performed not only by the TCU 22 but also by the ECU 21 or the traveling electronic control device 23.
  • the dead time L correction process and the phase delay ⁇ filter process are performed. However, if the dead time L and the phase delay ⁇ do not matter, these processes are omitted. You may.
  • the configuration is such that the output rotation sensor 26 is subjected to a failure diagnosis in the first diagnostic process and the second diagnostic process, but either the first diagnostic process or the second diagnostic process is performed.
  • the output rotation sensor 26 may be diagnosed for failure.
  • the vehicle control device (TCU22) includes the drive source (engine 2) that generates the drive force and the speed change mechanism (gear) that shifts the output rotation of the drive source (the engine 2 and the motor 12).
  • the transmission 4) or the deceleration mechanism 15, the acceleration sensor (front and rear G sensor 27, the left and right G sensor 28) for measuring the vehicle acceleration, and the rotation speed of the output shaft 8 of the transmission mechanism (transmission 4) or the deceleration mechanism 15 are detected.
  • the control unit 30 is provided for detecting an abnormality of the vehicle (1, 11) by comparing the measured value S1 and the calculated value S2 of the vehicle acceleration calculated from the output signal of the output rotation sensor 26.
  • the control unit 30 calculates the absolute value of the deviation between the measured value S1 of the vehicle acceleration and the calculated value S2 of the vehicle acceleration, and the absolute value is the determination threshold (deviation.
  • the determination threshold device.
  • the control unit 30 calculates the absolute value of the deviation between the measured value S1 of the vehicle acceleration and the calculated value S2 of the vehicle acceleration, and calculates the absolute value of the absolute value per unit time.
  • the number of times the amount of change exceeds the determination threshold value (change speed threshold value) within the set time is equal to or greater than the specified number of times (number of times threshold value), it is diagnosed as an abnormality of the vehicle (1, 11).
  • the control unit 30 calculates the absolute value of the deviation between the measured value S1 of the vehicle acceleration and the calculated value S2 of the vehicle acceleration, and the absolute value is the determination threshold (deviation.
  • the first diagnostic process of diagnosing the abnormality of the vehicle (1, 11) when the state exceeding the threshold value continues for a specified time (time threshold value) or more, and the measured value S1 of the vehicle acceleration and the calculated value S2 of the vehicle acceleration.
  • the absolute value of the deviation is calculated, and when the number of times that the amount of change of the absolute value per unit time exceeds the determination threshold value (change speed threshold value) is equal to or greater than the specified number of times (number of times threshold value), the vehicle (1, 11 2)
  • the second diagnosis process for diagnosing the abnormality is executed in parallel.
  • the control unit 30 calculates the dead time L of the measured value S1 of the vehicle acceleration with respect to the calculated value S2 of the vehicle acceleration, and uses the measured value S1 of the vehicle acceleration as the dead time. Correct based on L.
  • the control unit 30 uses waste due to backlash on the power transmission path from the transmission mechanism (transmission 4) or the reduction mechanism 15 to the wheels 5 as one of the factors.
  • the time L is calculated.
  • the control unit 30 calculates the phase delay of the measured value S1 of the vehicle acceleration with respect to the calculated value S2 of the vehicle acceleration, and calculates the measured value S1 of the vehicle acceleration by the phase delay amount. Perform filter processing that advances only.
  • the acceleration sensor is a first acceleration sensor (front and rear G sensor 27) that measures vehicle acceleration in the traveling direction of the vehicle (1, 11) and is orthogonal to the traveling direction.
  • a second acceleration sensor (left and right G sensor 28) that measures the vehicle acceleration in the vehicle width direction, and a measurement value of the first acceleration sensor (front and rear G sensor 27) and a second acceleration sensor (left and right G sensor 28).
  • the vehicle acceleration is measured by synthesizing the measured values of.
  • the acceleration sensor front and rear G sensor 27, left and right G sensor 28
  • the output rotation sensor 26 is a pulse output type sensor that outputs a pulse signal according to the rotation of the output shaft 8 of the transmission mechanism (transmission 4) or the reduction mechanism 15.
  • the vehicle (1, 11) includes a drive source rotation sensor (engine rotation sensor) that detects the rotation speed of the drive source (engine 2), and a transmission mechanism (shift).
  • Machine 4 or an input rotation sensor that detects the rotation speed of the input shaft 7 of the speed reduction mechanism 15, and the vehicle acceleration measured by the acceleration sensor and the rotation speed detected by the output rotation sensor 26 are consistent with each other and driven.
  • the rotation speed detected by the source rotation sensor (engine rotation sensor) and the rotation speed detected by the input rotation sensor are consistent, and the rotation speed detected by the input rotation sensor and the rotation speed detected by the output rotation sensor 26 If there is no consistency in the above, the abnormality of the transmission mechanism (transmission 4) or the speed reduction mechanism 15 is detected.
  • the vehicle (1, 11) includes a dynamics controller (running electronic control unit 23) that controls devices related to running from a running state, and is measured by an acceleration sensor.
  • the measured vehicle acceleration measurement value S1 is input to the dynamics controller (running electronic control device 23), and the vehicle acceleration measurement value S1 is sent from the dynamics controller (running electronic control device 23) to the control unit 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Transmission Device (AREA)

Abstract

車両停車中からロックアップまでの極低車速時であっても車両の異常を検出する。このため、駆動力を発生するエンジン(2)と、エンジンの出力回転を変速する変速機(4)と、車両加速度を計測する前後Gセンサ(27)及び左右Gセンサ(28)と、変速機の出力軸(8)の回転数を検出する出力回転センサ(26)と、を備えた車両(1)を制御するTCU(22)が、加速度センサによって計測される車両加速度の計測値と出力回転センサの出力信号から算出される車両加速度の算出値とを比較することで車両の異常を検出する構成にした。

Description

車両用制御装置
 本発明は車両用制御装置に関する。
 一般的な車両に搭載された自動変速機は、変速機の出力軸側の回転を回転センサで検出し、検出信号を車速情報として用いて変速比を制御する。回転センサは、回転体が特定の角度回転した際にパルス状の電圧信号を出力する。したがって、変速機制御装置(TCU:Transmission Control Unit)は、このパルス信号から回転数を計測し、回転数を車速情報に変換した上で変速比を決定している。
 変速機の出力軸側の回転センサ(以降、出力回転センサと称する)は、センサの使用環境に起因して、経年変化やセンサ電極の腐食が発生して、パルス信号にパルス抜けや過剰パルスが発生することが分っている。この場合、車速の計測値が実際の車速から乖離するため、意図した変速動作にならず燃費の悪化や、変速機のクラッチやギヤ機構の摩耗の発生を招くおそれがあった。このような背景から近年、出力回転センサの故障を精度よく診断して、車両の安全性能及び燃費性能を保証することが求められている。
 変速機の出力回転センサの故障診断方法として、エンジンの出力軸の回転数、変速機の入力軸の回転数、変速機の出力軸の回転数を比較して出力回転センサの故障を診断する方法が知られている(例えば、特許文献1参照)。特許文献1に記載の故障診断方法は、エンジン回転センサでエンジンの出力軸の回転数、入力回転センサで変速機の入力軸の回転数、出力回転センサで変速機の出力軸の回転数を回転センサで検出する。そして、出力回転センサの検出値のみが、エンジン回転センサ及び入力回転センサの検出値と異なる値を示した場合、出力回転センサが異常であると診断する。
特開2001-99304号公報
 しかしながら、特許文献1に記載の故障診断方法は、エンジンの出力軸と変速機の入力軸が係合状態(ロックアップ中)であることが前提となる。したがって、車両停車中からロックアップまでの極低車速時において、出力回転センサの故障等を含む車両の異常を検出することが困難であった。
 本発明は前記課題を解決するもので、その目的とするところは、車両停車中からロックアップまでの極低車速時であっても車両の異常を検出することができる車両用制御装置を提供することである。
 本発明の一態様の車両用制御装置は、駆動力を発生する駆動源と、前記駆動源の出力回転を変速する変速機構又は減速機構と、車両加速度を計測する加速度センサと、前記変速機構又は前記減速機構の出力軸の回転数を検出する出力回転センサと、を備えた車両を制御する車両用制御装置であって、前記加速度センサによって計測される前記車両加速度の計測値と前記出力回転センサの出力信号から算出される前記車両加速度の算出値とを比較することで前記車両の異常を検出する制御部を備えたことを特徴とする。
 本発明によれば、車両加速度の計測値と変速機構又は減速機構の出力回転数から求めた車両加速度の算出値との比較から、車両停車中からロックアップまでの極低車速時であっても車両の異常を検出できる。本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
第1の実施形態に係る車両制御システムの構成図。 第1の実施形態に係る駆動力伝達系の説明図。 第1の実施形態に係る無駄時間の説明図。 第1の実施形態に係る車両加速度の計測値の補正処理の制御ブロック図。 第1の実施形態に係る第1の診断処理を説明するタイムチャート図。 第1の実施形態に係る第2の診断処理を説明するタイムチャート図。 第1の実施形態に係る出力回転センサの故障診断を示すフローチャート。 第1の実施形態に係る変速機の故障診断を示すフローチャート。 第2の実施形態に係る位相遅れの説明図。 第2の実施形態に係る車両加速度の計測値の補正処理の制御ブロック図。 第3の実施形態に係る車両制御システム構成図。
 [第1の実施形態]
 以下、図1から図8を参照して、第1の実施形態に係る車両用制御装置を適用した車両制御システムについて説明する。図1は、第1の実施形態に係る車両制御システムの構成図である。
 図1に示すように、車両1は、駆動源としてのエンジン2で発生した駆動力を、トルクコンバータ3、変速機構としての変速機4を介して車輪5に伝達している。エンジン2の出力軸6はトルクコンバータ3を介して変速機4の入力軸7に接続され、変速機4の出力軸8はディファレンシャルギヤBOX9を介して車輪5のドライブシャフト10に接続されている。エンジン2からの出力回転がトルクコンバータ3で減速されて変速機4に入力され、変速機4からの出力トルクがディファレンシャルギヤBOX9で車輪5に分配されている。
 また、車両1には、電子制御装置として、ECU(Engine Control Unit)21と、TCU(Transmission Control Unit)22と、走行用電子制御装置23とが設けられている。TCU22は、本実施形態の車両用制御装置が適用された変速機4用のコントローラである。走行用電子制御装置23は、車輪速、ハンドル操舵角、車両加速度、ヨーレート等を検出するセンサからの出力信号を受けて走行状態を判別し、エンジン2、変速機4、モータアクチュエータ等の走行に関わるデバイスを制御するダイナミクスコントローラである。走行用電子制御装置23には、トラクションコントロールシステム、ABS(Antilock Brake System)、VCU(Vehicle Control Unit)が含まれる。
 さらに、車両1には、センサ群として、アクセルペダルの踏込量を検出するアクセルペダルストロークセンサ25と、変速機4の出力軸8の回転数を検出する出力回転センサ26と、進行方向の車両加速度を検出する前後Gセンサ27(第1の加速度センサ)と、進行方向に直交する車幅方向の車両加速度を検出する左右Gセンサ28(第2の加速度センサ)とが設けられている。出力回転センサ26は、出力軸8の回転に応じたパルス信号(パルス電圧)を出力するパルス出力型の回転センサである。前後Gセンサ27及び左右Gセンサ28は、車両1の車体に取り付けられ、車両加速度に応じたアナログ信号(アナログ電圧)をリニアに出力するアナログ出力型のセンサである。
 ECU21は、アクセルペダルストロークセンサ25の出力信号からアクセル開度情報S3を算出する。TCU22は、出力回転センサ26の出力信号から車両加速度(算出値S2)を算出する。走行用電子制御装置23は、各Gセンサ27、28の出力信号から車両加速度(計測値S1)を算出する。ECU21、TCU22、走行用電子制御装置23は、CAN(Control Area Network)通信29にてアクセル開度情報S3、加速度の算出値S2、加速度の計測値S1等の各種情報を相互に送受信している。なお、図1では図示省略しているが、上記センサ群の他にも、車両1には各種センサが設けられている。
 本実施形態では、前後Gセンサ27及び左右Gセンサ28から走行用電子制御装置23に車両加速度の計測値S1が入力され、これらの車両加速度の計測値S1が走行用電子制御装置23からTCU22の制御部30(図4参照)に送られている。TCU22の制御部30では、進行方向及び車幅方向の車両加速度の計測値S1が合成される。なお、前後Gセンサ27及び左右Gセンサ28の計測値S1の合成処理は走行用電子制御装置23で実施されて、合成処理後の計測値が走行用電子制御装置23からTCU22の制御部30に送られてもよい。
 このように構成された車両1では、変速機4の出力回転センサ26のパルス抜け等の故障を精度よく診断することが求められている。変速機4の出力回転センサ26の故障診断として、エンジン回転数、変速機4の入力回転数、変速機4の出力回転数等の整合性から診断する方法が検討されている。しかしながら、上記診断方法ではエンジン2と変速機4がロックアップされていなければ、回転数同士の整合性を判断することができない。よって、車両の発進時や極低車速時等のようにロックアップされていない状態では出力回転センサ26の故障を診断できない。
 上記方法の代わりに、車輪5側の回転数と変速機4の出力回転数の整合性を判断するために、変速機4の出力回転センサ26の出力と車輪速センサ(不図示)の出力を比較する構成も考えられる。一般に、出力回転センサ26の検出精度は車両1の駆動力に直接関わるため、車輪速センサよりも出力回転センサ26の1回転当たりのパルス信号の検出数が多いものが使用される。このため、出力回転センサ26と同等な検出精度の車輪速センサが必要になると共に、センサの取り付け機構が必要になって、機構の複雑化やコストアップが生じる。
 そこで、本実施形態では、メカ機構やセンサ構成を変えずに、既存の加速度センサを活用して、出力回転センサ26の異常を検出している。この場合、TCU22の制御部30(図4参照)にて出力回転センサ26の検出信号から算出された車両加速度の算出値S2と加速度センサで計測された車両加速度の計測値S1とが比較される。加速度センサの故障については、走行用電子制御装置23で検出されてTCU22に通知されるため、車両加速度の算出値S2と計測値S1のズレ等が生じたときに、加速度センサの故障の有無から出力回転センサ26の異常を検出することが可能になっている。
 また、上記したように、加速度センサとしての前後Gセンサ27及び左右Gセンサ28は車両加速度に応じたアナログ信号をリニアに出力している。したがって、このリニアなアナログ信号から計測される車両加速度の計測値S1と出力回転センサ26のパルス信号から算出される車両加速度の算出値S2を比較することで、1回転数当たりのパルス信号の誤差を抑えて比較することができる。すなわち、出力回転センサ26のパルス状の出力を、加速度センサの連続的に変化する出力と比較することで、パルス状の出力同士を比較する構成よりも精度よく比較することができる。
 ただし、このような車両1では、変速機4の出力回転が車両1の駆動力に変換されて加速度センサに検出されるまでは、ギヤ機構等が持つバックラッシュやシャフト等の捻じれによって駆動力が車両1に伝達されない。この駆動力の伝達の遅れによって、車両加速度の算出値S2に対して車両加速度の計測値S1に無駄時間が生じるため、車両加速度の算出値S2と車両加速度の計測値S1を単純に比較することができない。このため、本実施形態では、車両加速度の計測値S1を補正したうえで、車両加速度の計測値S1と車両加速度の算出値S2を比較して、出力回転センサ26の故障を検出している。
 以下、出力回転センサの故障診断について詳細に説明する。図2は、第1の実施形態に係る駆動力伝達系の説明図である。図3は、第1の実施形態に係る無駄時間の説明図である。図4は、第1の実施形態に係る車両加速度の計測値の補正処理の制御ブロック図である。
 図2には、変速機4から加速度センサとしての前後Gセンサ27及び左右Gセンサ28までの車両の駆動力の伝達系を矢印で示している。変速機4の駆動力は、出力軸8とディファレンシャルギヤBOX9を介してドライブシャフト10に伝達されて車輪5の回転トルクになる。車輪5の回転によって車両1が走行すると、車体側に設置された前後Gセンサ27及び左右Gセンサ28によって加速度が計測される。また、変速機4の出力軸8の回転が出力回転センサ26によって検出され、TCU22(図1参照)によって出力回転センサ26の検出信号から加速度が算出される。
 この駆動力伝達系では、次のような車両の走行状態によって無駄時間L(図3参照)が発生することが分っている。車両停車中から発進する際には、変速機4の出力トルクに対し車両全体がイナーシャとして働いてドライブシャフト10の捻じれ量が大きくなり、この捻じれ量分だけ駆動力の伝達が遅れる。走行中にエンジンブレーキで減速している状態から再加速する際には、メカ機構の変速ギヤ(図示しない)やディファレンシャルギヤBOX9の持つバックラッシュ(ガタ)が大きい状態となっており、このバックラッシュを詰める分だけ駆動力の伝達が遅れる。
 図3には、車両停車から発進時における車両加速度の算出値S2と車両加速度の計測値S1のタイムチャートを簡易的に示している。車両加速度の算出値S2は、出力回転センサ26で検出された変速機4の出力軸8の回転数から即座に算出される。一方で、車両加速度の計測値S1は、変速機4の回転が動力伝達経路を介して車両1の駆動力に変換されるまでは前後Gセンサ27及び左右Gセンサ28によって計測されることがない。このため、動力伝達経路上のバックラッシュ等の影響によって、車両加速度の計測値S1と車両加速度の算出値S2の立ち上り開始の時間に無駄時間L(タイムラグ)が発生する。
 TCU22(図1参照)では、変速機4から出力される駆動力が車体に伝わるまでの無駄時間Lが算出されて、車両加速度の計測値S1が無駄時間Lに基づき補正される。TCU22にて算出する無駄時間Lは、可変パラメータとして設定される。例えば、図1に示すアクセルペダルストロークセンサ25によって計測したアクセル開度情報と出力回転センサ26の出力信号から算出された車速とのデータマップから、下記の式(1)に示すように、動力伝達経路上のバックラッシュを要因の一つとする無駄時間Lが設定される。
 L[sec]=f(アクセル開度[%]、車速[km/h])…(1)
 なお、本実施形態の無駄時間Lの設定方法は、前述の限りではなく、車両1の目標駆動力及び制動力の量に応じて、無駄時間Lの設定方法を可変する構成も含む。また、無駄時間Lは、目標駆動力と車速のデータマップによって設定されてもよい。目標駆動力は、車載カメラ、ミリ波レーダ、各種センサ等の周囲環境に基づいて自動的に決定されてもよい。すなわち、周囲環境の情報と車速のデータマップによって無駄時間Lが設定されてもよい。
 図4に示すように、TCU22の制御部30には無駄時間補正部31が設けられている。無駄時間補正部31では、無駄時間Lを補正量とした演算処理が車両加速度の計測値に対して実施され、演算後の車両加速度の計測値と入力された車両加速度の計測値の和をとって補正後の車両加速度の計測値S1が算出される。次に、補正後の車両加速度の計測値S1と車両加速度の算出値S2の偏差が算出され、絶対値算出部32で車両加速度の偏差の絶対値が求められる。そして、車両加速度の偏差の絶対値が診断部33に入力されて、診断部33にて出力回転センサ26の故障が診断される。なお、図中の無駄時間補正部31の「s」はラプラス演算子を示している。
 診断部33には、第1の診断処理によって出力回転センサ26の故障を診断する第1の診断部41と第2の診断処理によって出力回転センサ26の故障を診断する第2の診断部45とが設けられている。第1の診断部41には、偏差の絶対値が閾値を超えた継続時間を計時する故障判定タイマ42と、当該継続時間に基づいて出力回転センサ26の故障を判定する第1の判定部43とが設けられている。第1の診断処理では、補正後の車両加速度の計測値S1と車両加速度の算出値S2との偏差の絶対値の大きさが求められ、偏差の絶対値が閾値を超えてからの継続時間に基づいて出力回転センサ26の故障が診断される。
 第2の診断部45には、単位時間当たりの偏差の絶対値の変化量を示す変化速度を算出する変化速度算出部46と、変化速度が閾値を超えた回数をカウントする異常回数カウンタ47と、カウント回数に基づいて出力回転センサ26の故障を判定する第2の判定部48とが設けられている。第2の診断処理では、補正後の車両加速度の計測値S1と車両加速度の算出値S2との偏差の絶対値の変化速度が求められ、変化速度が閾値を超えた回数に基づいて出力回転センサ26の故障が診断される。また、診断部33では、第1、第2の診断部41、45による第1、第2の診断処理の少なくとも一方で故障と診断された場合に出力回転センサ26が故障と見做される。
 なお、TCU22の制御部30は、プロセッサを用いてソフトウェアで実現されてもよいし、集積回路等に形成された論理回路(ハードウェア)で実現されてもよい。プロセッサを用いる場合には、プロセッサがメモリに格納されているプログラムを読み出して実行することで各種処理が実施される。プロセッサとしては、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)等が使用される。また、メモリは、用途に応じてROM(Read Only Memory)、RAM(Random Access Memory)、NVRAM(Non Volatile RAM)等の一つ又は複数の記録媒体で構成されている。
 図5を参照して、第1の診断処理について説明する。図5は、第1の実施形態に係る第1の診断処理を説明するタイムチャート図である。なお、第1の診断処理では、走行時の断線等によって出力回転センサ26が出力しない状態、すなわち定常的なパルス抜けが生じる状態を故障として検出する。
 図5には、第1の診断処理の説明用に、車両加速度、偏差絶対値、故障判定タイマ、故障判定の各タイムチャート図を示している。車両加速度のタイムチャート図には、補正後の車両加速度の計測値S1を破線で示し、車両加速度の算出値S2を実線で示している。
偏差絶対値のタイムチャート図には、補正後の車両加速度の計測値S1と車両加速度の算出値S2の偏差の絶対値を示している。故障判定タイマのタイムチャート図には、偏差の絶対値が閾値を超えた継続時間を示している。故障判定のタイムチャート図には、出力回転センサ26の故障判定のタイミングを示している。
 本チャートにおいて車両は加速状態であり、時刻t1では、車両加速度のタイムチャート図に示すように、補正後の車両加速度の計測値S1と車両加速度の算出値S2は共に一定の割合で増加する。このとき、偏差絶対値のタイムチャート図に示すように、偏差の絶対値は一定であり、かつ偏差の絶対値は偏差閾値より小さい値をとっている。時刻t2以降は、車両加速度のタイムチャート図に示すように、信号線の断線等によって出力回転センサ26に連続的なパルス抜けが生じて、本センサ信号を基に算出される車両加速度の算出値S2が、見かけ上、低下し始めている。
 偏差絶対値のタイムチャート図に示すように、時刻t2以降もパルス抜けが継続されて、時刻t3にて偏差の絶対値が予め設定された偏差閾値を超えた場合に、故障判定タイマ42による計時が開始される。さらに、故障判定タイマ及び故障判定のタイムチャート図に示すように、故障判定タイマ42による計時時間が時間閾値以上継続した時刻t4で出力回転センサ26が故障状態であると判定される。このように、補正後の車両加速度の計測値S1と車両加速度の算出値S2の偏差の絶対値が偏差閾値(判定閾値)を超えた状態が時間閾値(規定時間)以上継続する場合に、出力回転センサ26の故障が診断される。
 なお、上記の説明では、出力回転センサ26のパルス抜けの発生時の故障を診断したが、補正後の車両加速度の計測値S1と車両加速度の算出値S2の偏差の絶対値を算出することで、出力回転センサ26のノイズ等による過剰パルスの発生時の故障を診断することもできる。過剰パルスの発生時には、車両加速度のタイムチャート図で、補正後の車両加速度の計測値S1よりも車両加速度の算出値S2が高く表れる。なお、偏差閾値、時間閾値は、要求される安全性能やセンサの特性に応じて、過去データ等から実験的、経験的又は理論的に求められた値が使用される。
 図6を参照して、第2の診断処理について説明する。図6は、第1の実施形態に係る第2の診断処理を説明するタイムチャート図である。なお、第2の診断処理では、出力回転センサ26の接触不良等によりパルス抜けが非連続的に変化する状態を故障として検出する。
 図6には、第2の診断処理の説明用に、車両加速度、偏差絶対値、変化速度、異常回数カウンタ、故障判定の各タイムチャート図を示している。車両加速度のタイムチャート図には、補正後の車両加速度の計測値S1を破線で示し、車両加速度の算出値S2を実線で示している。偏差絶対値のタイムチャート図には、補正後の車両加速度の計測値S1と車両加速度の算出値S2の偏差の絶対値を示している。変化速度のタイムチャート図には、偏差の絶対値の変化速度を示している。異常回数カウンタのタイムチャート図には、偏差の絶対値の変化速度が閾値を超えた回数を示している。故障判定のタイムチャート図には、出力回転センサ26の故障判定のタイミングを示している。
 本チャートにおいて車両は加速状態であり、時刻t1では、車両加速度のタイムチャート図に示すように、補正後の車両加速度の計測値S1と車両加速度の算出値S2は共に一定の割合で増加する。このとき、偏差絶対値のタイムチャート図に示すように、偏差の絶対値は一定であり、かつ偏差の絶対値は偏差閾値より小さい値をとっている。時刻t2以降は、車両加速度のタイムチャート図に示すように、出力回転センサ26のセンサ部と信号線の接触不良によってパルス抜けが非連続に生じて、本センサ信号を基に算出される車両加速度の算出値S2が細かくハンチングしている。
 時刻t2-t3では、車両加速度のタイムチャート図に示すように、出力回転センサ26のセンサ部と信号線の非接触状態によるパルス抜けによって車両加速度の算出値S2が低下する。また、時刻t3-t4では、車両加速度のタイムチャート図に示すように、出力回転センサ26のセンサ部と信号線が、非接触状態から接触状態に戻って車両加速度の算出値S2が増加する。これに合わせて、偏差絶対値のタイムチャート図に示すように、偏差の絶対値が山形に変化している。このときの偏差の絶対値の傾きは、偏差の絶対値の変化速度を示している。
 接触不良時には、偏差の絶対値の変化速度は、車両走行時の加速度変化率よりも大きくなることが車両試験により把握されている。したがって、変化速度のタイムチャート図では、変化速度閾値を車両走行時の加速度の最大変化率に設定して、接触不良による偏差の絶対値の変化速度を検出してもよい。ここでは、時刻t3-t4で偏差の絶対値の変化速度が変化速度閾値よりも大きくなる。異常回数カウンタのタイムチャート図に示すように、偏差の絶対値の変化速度が変化速度閾値を超えた場合に、パルス出力に異常がある状態と見做して異常回数カウンタ47がインクリメントされる。
 時刻t4以降では、時刻t2-t3の動作が再度生じた場合を示している。異常回数カウンタ及び故障判定のタイムチャート図に示すように、予め規定された設定時間T内に異常回数カウンタ47が2回カウントアップすると、時刻t6で出力回転センサ26が故障状態であると判定される。このように、補正後の車両加速度の計測値S1と車両加速度の算出値S2の偏差の絶対値の変化速度を算出し、当該絶対値の変化速度が設定時間T内に変化速度閾値(判定閾値)を超えた回数が回数閾値(規定回数)以上の場合に、出力回転センサ26の故障が診断される。
 なお、上記の説明では、出力回転センサ26のパルス抜けの発生時の故障を診断したが、補正後の車両加速度の計測値S1と車両加速度の算出値S2の偏差の絶対値を算出することで、出力回転センサ26のノイズ等による過剰パルスの発生時の故障を診断することもできる。過剰パルスの発生時には、車両加速度のタイムチャート図で、補正後の車両加速度の計測値よりも車両加速度の算出値が高く表れる。なお、変化速度閾値、回数閾値は、要求される安全性能やセンサの特性に応じて過去データ等から実験的、経験的又は理論的に求められた値が使用される。
 図7を参照して、本実施形態の診断処理の流れについて説明する。図7は、第1の実施形態に係る出力回転センサの故障診断を示すフローチャートである。なお、図7に示すフローチャートは、車両加速度の計測値S1と車両加速度の算出値S2がTCU22に取り込まれる度に実施される。また、図7では、第1の診断処理と第2の診断処理が並列に実施される一例を示しているが、第1の診断処理の後に第2の診断処理が実施されてもよいし、第2の診断処理の後に第1の診断処理が実施されてもよい。
 図7に示すように、先ず、制御部30が補正後の車両加速度の計測値S1と車両加速度の算出値S2の偏差の絶対値を算出し(ステップS01)、その偏差の絶対値の変化速度を算出する(ステップS02)。続いて、制御部30は、第1の診断処理と第2の診断処理とを並列で実施する。第1の診断処理では、制御部30は偏差の絶対値が偏差閾値を超えるか否かを判定する(ステップS03)。偏差の絶対値が偏差閾値を超える場合には(ステップS03でYES)、制御部30は故障判定タイマ42のタイマ値をアップする(ステップS04)。一方で、偏差の絶対値が偏差閾値以下の場合には(ステップS03でNO)、制御部30は故障判定タイマ42のタイマ値をリセットする(ステップS05)。
 次に、故障判定タイマ42のタイマ値がアップ又はリセットされると、制御部30は故障判定タイマ42のタイマ値が時間閾値以上か否かを判定する(ステップS06)。故障判定タイマ42のタイマ値が時間閾値以上の場合には(ステップS06でYES)、制御部30は異常状態が規定時間継続したと見做して出力回転センサ26を故障と診断する(ステップS07)。一方で、故障判定タイマ42のタイマ値が時間閾値未満の場合には(ステップS06でNO)、制御部30は出力回転センサ26を故障無しと診断する(ステップS08)。
 第2の診断処理では、制御部30は偏差の絶対値の変化速度が、変化速度閾値を超えるか否かを判定する(ステップS09)。偏差の絶対値の変化速度が変化速度閾値を超える場合には(ステップS09でYES)、制御部30は異常回数カウンタ47のカウント値をアップする(ステップS10)。一方で、偏差の絶対値の変化速度が変化速度閾値以下の場合には(ステップS09でNO)、制御部30は異常回数カウンタ47のカウント値をリセットする(ステップS11)。
 次に、異常回数カウンタ47のカウント値がアップ又はリセットされると、制御部30は異常回数カウンタ47のカウント値が回数閾値以上か否かを判定する(ステップS12)。異常回数カウンタ47のカウント値が回数閾値以上の場合には(ステップS12でYES)、制御部30は異常状態が規定回数検出されたと見做して出力回転センサ26の故障と判断する(ステップS13)。一方で、異常回数カウンタ47のカウント値が回数閾値未満の場合には(ステップS12でNO)、制御部30は出力回転センサ26を故障無しと診断する(ステップS14)。
 以上のように、第1の実施形態のTCU22では、変速機4の出力軸8の駆動力が車体に伝わるまでの無駄時間Lを算出し、前後Gセンサ27及び左右Gセンサ28に計測される車両加速度の計測値S1を無駄時間Lに基づいて補正している。これにより、車両加速度の計測値S1と車両加速度の算出値S2を精度よく比較することができる。また、車両加速度の偏差の絶対値と当該偏差の絶対値の変化速度から、出力回転センサ26のパルス抜けや過剰パルスの発生を検知することが可能となる。
 第1の実施形態では、出力回転センサ26の故障を検出する構成について説明したが、変速機4の故障を検出することも可能である。図8を参照して、変速機4の故障診断について説明する。図8は、本実施形態の変速機4の故障診断を示すフローチャートである。なお、車両には、センサ群として、駆動源の回転数を検出する駆動源回転センサとしてエンジン回転センサ(不図示)と、変速機の入力軸の回転数を検出する入力回転センサ(不図示)とが設けられている。
 図8に示すように、先ず、制御部30は、前後Gセンサ27及び左右Gセンサ28で計測された車両加速度と出力回転センサ26で検出された回転数の整合性を判定する(ステップS21)。上記したように、車両加速度の計測値S1と車両加速度の算出値S2を比較することで整合性を判定することができる。次に、制御部30は、エンジン回転センサで検出された回転数と入力回転センサで検出された回転数の整合性を判定する(ステップS22)。この場合、エンジン回転数と変速機4の入力軸の回転数は、トルクコンバータ3の速度比等を考慮して整合性が判定される。
 次に、制御部30は、入力回転センサで検出された回転数と出力回転センサ26で検出された回転数の整合性を判定する(ステップS23)。この場合、変速機4の入力軸の回転数と変速機4の出力軸6の回転数は、変速機4の変速比等を考慮して整合性が判定される。そして、制御部30は、各ステップS21-S23の整合性の結果から変速機4の故障を診断する(ステップS24)。ステップS21、S22で整合性有りと判断され、ステップS23で整合性無しと判定された場合には(ステップS24でYES)、変速機4を故障と診断され(ステップS25)、それ以外は変速機4を故障無しと診断される(ステップS26)。
 より詳細には、前後Gセンサ27及び左右Gセンサ28で計測された車両加速度と出力回転センサ26で検出された回転数に整合性がある場合には、出力回転センサ26は正常動作している。エンジン回転センサで検出された回転数と入力回転センサで検出された回転数に整合性がある場合には、入力回転センサは正常動作している。そして、出力回転センサ26及び入力回転センサが正常動作しているにも関わらず、入力回転センサで検出された回転数と出力回転センサ26で検出された回転数に整合性が無い場合には、変速機4が故障していると判断される。このように、TCU22は、出力回転センサ26の故障診断だけでなく、変速機4の故障診断も行うことが可能である。
 [第2の実施形態]
 以下、図9及び図10を参照して、第2の実施形態に係る車両用制御装置について説明する。第1の実施形態では、車両加速度の計測値S1の無駄時間Lを補正した場合について説明したが、車両加速度の計測値S1が車両加速度の算出値S2に対して位相遅れが生じる場合がある。そこで、第2の実施形態では、制御部30に対して位相遅れを補正する位相進みフィルタを追加している。図9は、第2の実施形態に係る位相遅れの説明図である。図10は、第2の実施形態に係る車両加速度の計測値の補正処理の制御ブロック図である。
 図9に示すように、車両停車から発進時における車両加速度の算出値S2と車両加速度の計測値S1のタイムチャートを簡易的に示している。ここでは、説明の便宜上、無駄時間Lについて既に補正されているものとする。車両加速度の算出値S2は、出力回転センサ26で検出された変速機4の出力軸8の回転数から即座に算出される。一方で、車両加速度の計測値S1は、車両が動き出した後のシャフトの捻じれ等によって位相遅れが生じている。車両加速度の計測値S1は、位相遅れによって車両加速度の算出値S2と比べて単位時間当たりの車両加速度の変化率が小さくなっている。
 図10に示すように、TCU22の制御部30には無駄時間補正部31に加えて、位相進みフィルタ35が設けられている。位相進みフィルタ35は、車両加速度の計測値S1の位相を、車両加速度の算出値S2の位相に対する遅れ分だけ進ませるフィルタである。車両加速度の計測値S1は、無駄時間補正部31で無駄時間Lが補正された後に、位相進みフィルタ35で車両加速度の計測値を位相遅れ分だけ進ませるフィルタ処理が実施される。なお、制御部30の位相進みフィルタ35以外の構成は、図4に示す第1の実施形態と同じであるため、説明を省略する。
 図中の位相進みフィルタ35の「s」はラプラス演算子、「τ」は遅れ量[sec]、「a」は時定数[sec]を示している。位相進みフィルタ35は、時定数aの1次遅れフィルタ通過後の信号に対し、τ[sec]分だけ位相を進ませるフィルタ構成としている。「τ」は、無駄時間Lと同様に、図1に示すアクセルペダルストロークセンサ25によって計測したアクセル開度情報と、出力回転センサ26の出力信号から算出された車速とのデータマップから、下記の式(2)に示すように設定されてもよい。
 τ[sec]=f(アクセル開度[%]、車速[km/h])…(2)
 なお、本実施形態の位相の遅れ量τの設定方法は、前述の限りではなく、車両の目標とする走行駆動力及び制動力の量に応じて、位相の遅れ量τの設定方法を可変する構成も含む。また、時定数aは時定数a≪位相の遅れ量τとして設定され、センサ信号に含まれるノイズの高周波数成分に合わせて設定することが望ましい。また、位相の遅れ量τは、目標駆動力と車速のデータマップによって設定されてもよい。目標駆動力は、車載カメラ、ミリ波レーダ、各種センサ等の周囲環境に基づいて自動的に決定されてもよい。すなわち、周囲環境の情報と車速のデータマップによって位相の遅れ量τが設定されてもよい。
 以上のように、第2の実施形態のTCU22では、無駄時間Lに加えて位相の遅れ量τを算出し、前後Gセンサ27及び左右Gセンサ28に計測される車両加速度の計測値S1を無駄時間L、位相の遅れ量τに基づいて補正している。これにより、車両加速度の計測値S1と車両加速度の算出値S2をより精度よく比較することができる。また、第1の実施形態と同様にして、出力回転センサ26及び変速機4を故障診断することができる。
 [第3の実施形態]
 以下、図11を参照して、第3の実施形態に係る車両用制御装置について説明する。第1、第2の実施形態では、ガソリンエンジン車を例示したが、本開示の技術を電気自動車、ハイブリット自動車、燃料電池車等にも適用することが可能である。図11は、第3の実施形態に係る車両制御システム構成図である。
 図11に示すように、車両11は、駆動源としてモータ12で発生した駆動力を、減速機構15を介して車輪5に伝達している。また、車両11には、モータ12の駆動電流を制御するインバータ13と、モータ12の駆動電力の蓄電制御を担う蓄電システム14とが設けられている。また、車両用制御装置として、TCU22の代わりに、インバータ13へモータ12の発生トルクや電流値を指示する電子制御装置24が設けられている。なお、その他の構成は第1の実施形態の構成と同じであり、同様な構成については第1の実施形態と同一の符号を付している。
 第3の実施形態においても、無駄時間L及び位相の遅れ量τを算出することで、車両加速度の計測値と車両加速度の算出値をより精度よく比較することができる。また、第1の実施形態と同様にして、出力回転センサ26及び減速機構15を故障診断することができる。
 なお、上記した各実施形態では、車両1は、加速度センサとして前後Gセンサ27及び左右Gセンサ28を備える構成にしたが、少なくとも前後Gセンサ27を備えていればよい。
 また、上記した各実施形態では、車両1は、変速機構として有段変速機構を備える構成に限定されず、変速機構としてベルト式やディスク式の無断変速機構を備えてもよい。
 また、上記した各実施形態では、TCU22で車両1の異常を判定する構成にしたが、ECU21や走行用電子制御装置23で車両1の異常を判定する構成にしてもよい。すなわち、車両用制御装置の故障診断処理は、TCU22だけでなく、ECU21や走行用電子制御装置23で実施されていてもよい。
 また、上記した各実施形態では、無駄時間Lの補正処理及び位相遅れτのフィルタ処理を実施する構成にしたが、無駄時間Lや位相遅れτが問題にならない場合には、これらの処理を省略してもよい。
 また、上記した各実施形態では、第1の診断処理及び第2の診断処理で出力回転センサ26を故障診断する構成にしたが、第1の診断処理及び第2の診断処理のいずれか一方で出力回転センサ26を故障診断してもよい。
 以上の通り、本実施形態に記載の車両用制御装置(TCU22)は、駆動力を発生する駆動源(エンジン2)と、駆動源(エンジン2、モータ12)の出力回転を変速する変速機構(変速機4)又は減速機構15と、車両加速度を計測する加速度センサ(前後Gセンサ27、左右Gセンサ28)と、変速機構(変速機4)又は減速機構15の出力軸8の回転数を検出する出力回転センサ26と、を備えた車両(1、11)を制御する車両用制御装置(TCU22)であって、加速度センサ(前後Gセンサ27、左右Gセンサ28)によって計測される車両加速度の計測値S1と出力回転センサ26の出力信号から算出される車両加速度の算出値S2とを比較することで車両(1、11)の異常を検出する制御部30を備えている。
 本実施形態に記載の車両用制御装置(TCU22)において、制御部30は、車両加速度の計測値S1と車両加速度の算出値S2の偏差の絶対値を算出し、当該絶対値が判定閾値(偏差閾値)を超えた状態が規定時間(時間閾値)以上継続する場合に車両(1、11)の異常と診断する。
 本実施形態に記載の車両用制御装置(TCU22)において、制御部30は、車両加速度の計測値S1と車両加速度の算出値S2の偏差の絶対値を算出し、当該絶対値の単位時間当たりの変化量が設定時間内に判定閾値(変化速度閾値)を超えた回数が規定回数(回数閾値)以上の場合に車両(1、11)の異常と診断する。
 本実施形態に記載の車両用制御装置(TCU22)において、制御部30は、車両加速度の計測値S1と車両加速度の算出値S2の偏差の絶対値を算出し、当該絶対値が判定閾値(偏差閾値)を超えた状態が規定時間(時間閾値)以上継続する場合に車両(1、11)の異常と診断する第1の診断処理と、車両加速度の計測値S1と車両加速度の算出値S2の偏差の絶対値を算出し、当該絶対値の単位時間当たりの変化量が設定時間内に判定閾値(変化速度閾値)を超えた回数が規定回数(回数閾値)以上の場合に車両(1、11)の異常と診断する第2の診断処理とを並列に実施する。
 本実施形態に記載の車両用制御装置(TCU22)において、制御部30は、車両加速度の算出値S2に対する車両加速度の計測値S1の無駄時間Lを算出し、車両加速度の計測値S1を無駄時間Lに基づいて補正する。
 本実施形態に記載の車両用制御装置(TCU22)において、制御部30は、変速機構(変速機4)又は減速機構15から車輪5までの動力伝達経路上のバックラッシュを要因の一つとする無駄時間Lを算出する。
 本実施形態に記載の車両用制御装置(TCU22)において、制御部30は、車両加速度の算出値S2に対する車両加速度の計測値S1の位相遅れを算出し、車両加速度の計測値S1を位相遅れ分だけ進ませるフィルタ処理を実施する。
 本実施形態に記載の車両用制御装置(TCU22)において、加速度センサは、車両(1、11)の進行方向の車両加速度を計測する第1の加速度センサ(前後Gセンサ27)及び進行方向と直交する車幅方向の車両加速度を計測する第2の加速度センサ(左右Gセンサ28)であり、第1の加速度センサ(前後Gセンサ27)の計測値及び第2の加速度センサ(左右Gセンサ28)の計測値を合成して車両加速度を計測する。
 本実施形態に記載の車両用制御装置(TCU22)において、加速度センサ(前後Gセンサ27、左右Gセンサ28)は、車両加速度に応じたアナログ信号をリニアに出力するアナログ出力型のセンサであり、出力回転センサ26は、変速機構(変速機4)又は減速機構15の出力軸8の回転に応じたパルス信号を出力するパルス出力型のセンサである。
 本実施形態に記載の車両用制御装置(TCU22)において、車両(1、11)は、駆動源(エンジン2)の回転数を検出する駆動源回転センサ(エンジン回転センサ)と、変速機構(変速機4)又は減速機構15の入力軸7の回転数を検出する入力回転センサとを備え、加速度センサで計測された車両加速度と出力回転センサ26で検出された回転数に整合性があり、駆動源回転センサ(エンジン回転センサ)で検出された回転数と入力回転センサで検出された回転数に整合性があり、入力回転センサで検出された回転数と出力回転センサ26で検出された回転数に整合性が無い場合に変速機構(変速機4)又は減速機構15の異常を検出する。
 本実施形態に記載の車両用制御装置(TCU22)において、車両(1、11)は、走行状態から走行に関わるデバイスを制御するダイナミクスコントローラ(走行用電子制御装置23)を備え、加速度センサで計測された車両加速度の計測値S1がダイナミクスコントローラ(走行用電子制御装置23)に入力され、ダイナミクスコントローラ(走行用電子制御装置23)から制御部30に車両加速度の計測値S1が送られる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1  車両
2  エンジン(駆動源)
4  変速機(変速機構)
5  車輪
7  入力軸
8  出力軸
11 車両
12 モータ(駆動源)
15 減速機構
22 TCU(車両用制御装置)
23 走行用電子制御装置(ダイナミクスコントローラ)
26 出力回転センサ
27 前後Gセンサ(第1の加速度センサ)
28 左右Gセンサ(第2の加速度センサ)
30 制御部
S1 車両加速度の計測値
S2 車両加速度の算出値

Claims (11)

  1.  駆動力を発生する駆動源と、前記駆動源の出力回転を変速する変速機構又は減速機構と、車両加速度を計測する加速度センサと、前記変速機構又は前記減速機構の出力軸の回転数を検出する出力回転センサと、を備えた車両を制御する車両用制御装置であって、
     前記加速度センサによって計測される前記車両加速度の計測値と前記出力回転センサの出力信号から算出される前記車両加速度の算出値とを比較することで前記車両の異常を検出する制御部を備えたことを特徴とする車両用制御装置。
  2.  前記制御部は、前記車両加速度の計測値と前記車両加速度の算出値の偏差の絶対値を算出し、当該絶対値が判定閾値を超えた状態が規定時間以上継続する場合に前記車両の異常と診断することを特徴とする請求項1に記載の車両用制御装置。
  3.  前記制御部は、前記車両加速度の計測値と前記車両加速度の算出値の偏差の絶対値を算出し、当該絶対値の単位時間当たりの変化量が設定時間内に判定閾値を超えた回数が規定回数以上の場合に前記車両の異常と診断することを特徴とする請求項1に記載の車両用制御装置。
  4.  前記制御部は、前記車両加速度の計測値と前記車両加速度の算出値の偏差の絶対値を算出し、当該絶対値が判定閾値を超えた状態が規定時間以上継続する場合に前記車両の異常と診断する第1の診断処理と、前記車両加速度の計測値と前記車両加速度の算出値の偏差の絶対値を算出し、当該絶対値の単位時間当たりの変化量が設定時間内に判定閾値を超えた回数が規定回数以上の場合に前記車両の異常と診断する第2の診断処理とを並列に実施することを特徴とする請求項1に記載の車両用制御装置。
  5.  前記制御部は、前記車両加速度の算出値に対する前記車両加速度の計測値の無駄時間を算出し、前記車両加速度の計測値を前記無駄時間に基づいて補正することを特徴とする請求項1に記載の車両用制御装置。
  6.  前記制御部は、前記変速機構又は前記減速機構から車輪までの動力伝達経路上のバックラッシュを要因の一つとする前記無駄時間を算出することを特徴とする請求項5に記載の車両用制御装置。
  7.  前記制御部は、前記車両加速度の算出値に対する前記車両加速度の計測値の位相遅れを算出し、前記車両加速度の計測値を位相遅れ分だけ進ませるフィルタ処理を実施することを特徴とする請求項1に記載の車両用制御装置。
  8.  前記加速度センサは、前記車両の進行方向の車両加速度を計測する第1の加速度センサ及び進行方向と直交する車幅方向の車両加速度を計測する第2の加速度センサであり、
     前記第1の加速度センサの計測値及び前記第2の加速度センサの計測値を合成して前記車両加速度を計測することを特徴とする請求項1に記載の車両用制御装置。
  9.  前記加速度センサは、前記車両加速度に応じたアナログ信号をリニアに出力するアナログ出力型のセンサであり、
     前記出力回転センサは、前記変速機構又は前記減速機構の出力軸の回転に応じたパルス信号を出力するパルス出力型のセンサであることを特徴とする請求項1に記載の車両用制御装置。
  10.  前記車両は、前記駆動源の回転数を検出する駆動源回転センサと、前記変速機構又は前記減速機構の入力軸の回転数を検出する入力回転センサとを備え、
     前記加速度センサで計測された車両加速度と前記出力回転センサで検出された回転数に整合性があり、前記駆動源回転センサで検出された回転数と前記入力回転センサで検出された回転数に整合性があり、前記入力回転センサで検出された回転数と前記出力回転センサで検出された回転数に整合性が無い場合に前記変速機構又は前記減速機構の異常を検出することを特徴とする請求項1に記載の車両用制御装置。
  11.  前記車両は、走行状態から走行に関わるデバイスを制御するダイナミクスコントローラを備え、
     前記加速度センサで計測された車両加速度の計測値が前記ダイナミクスコントローラに入力され、前記ダイナミクスコントローラから前記制御部に車両加速度の計測値が送られることを特徴とする請求項1から請求項10のいずれか一項に記載の車両用制御装置。
PCT/JP2019/041032 2018-11-07 2019-10-18 車両用制御装置 WO2020095651A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018209958A JP2022017615A (ja) 2018-11-07 2018-11-07 車両用制御装置
JP2018-209958 2018-11-07

Publications (1)

Publication Number Publication Date
WO2020095651A1 true WO2020095651A1 (ja) 2020-05-14

Family

ID=70612401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041032 WO2020095651A1 (ja) 2018-11-07 2019-10-18 車両用制御装置

Country Status (2)

Country Link
JP (1) JP2022017615A (ja)
WO (1) WO2020095651A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210164562A1 (en) * 2019-11-28 2021-06-03 Toyota Jidosha Kabushiki Kaisha Vehicle anomaly analysis apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315768B2 (ja) * 1973-05-23 1978-05-27
JPS5333379B2 (ja) * 1974-04-04 1978-09-13
JPS5633681B2 (ja) * 1976-05-17 1981-08-05
JPS646780B2 (ja) * 1983-07-25 1989-02-06 Tokyo Electric Co Ltd
JP3994598B2 (ja) * 1999-10-18 2007-10-24 株式会社豊田自動織機 産業車両の荷役及び走行制御装置
JP2010185523A (ja) * 2009-02-12 2010-08-26 Toyota Motor Corp 自動変速機の変速制御装置
JP2014211351A (ja) * 2013-04-18 2014-11-13 いすゞ自動車株式会社 車輪速検出装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315768B2 (ja) * 1973-05-23 1978-05-27
JPS5333379B2 (ja) * 1974-04-04 1978-09-13
JPS5633681B2 (ja) * 1976-05-17 1981-08-05
JPS646780B2 (ja) * 1983-07-25 1989-02-06 Tokyo Electric Co Ltd
JP3994598B2 (ja) * 1999-10-18 2007-10-24 株式会社豊田自動織機 産業車両の荷役及び走行制御装置
JP2010185523A (ja) * 2009-02-12 2010-08-26 Toyota Motor Corp 自動変速機の変速制御装置
JP2014211351A (ja) * 2013-04-18 2014-11-13 いすゞ自動車株式会社 車輪速検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210164562A1 (en) * 2019-11-28 2021-06-03 Toyota Jidosha Kabushiki Kaisha Vehicle anomaly analysis apparatus
US11725726B2 (en) * 2019-11-28 2023-08-15 Toyota Jidosha Kabushiki Kaisha Vehicle anomaly analysis apparatus

Also Published As

Publication number Publication date
JP2022017615A (ja) 2022-01-26

Similar Documents

Publication Publication Date Title
CA2879295C (en) Vehicle brake force generation device
US8886375B2 (en) Control apparatus for electric vehicle
JP5146608B2 (ja) 前後加速度センサの異常判定装置及び方法
US9126592B2 (en) Method and apparatus for monitoring unintended vehicle motion
US11287439B2 (en) System and method for estimating wheel speed of vehicle
EP3575130A1 (en) Vehicle control system and method of controlling the same, and braking device
CN112673245B (zh) 用于测定传动机构的传动机构间隙的方法
JP6779379B2 (ja) 車両制御装置
US10759409B2 (en) Techniques for detecting and monitoring unintended powertrain propulsive torque in hybrid vehicles
WO2016111328A1 (ja) 車両制御装置
US20180201240A1 (en) Electric braking system
US10974601B2 (en) Braking control device for vehicle
WO2020095651A1 (ja) 車両用制御装置
KR20010093332A (ko) 자동차에서 적어도 하나의 구동륜의 속도 파라미터를결정하기 위한 방법 및 장치
JP5125708B2 (ja) 車両およびその制御方法
US11813943B2 (en) Method and drive control device for operating at least two electric drive machines in the event of a change in load and motor vehicle with a drive control device
US11691520B2 (en) System for an electrically driven vehicle, vehicle having same and method for same
JP7199929B2 (ja) 後輪操舵システムの制御方法
KR20210073951A (ko) 차량의 토크 벡터링 시스템 및 제어 방법
JP2016061414A (ja) 車両の制御装置
JP2019158070A (ja) 車両の動力装置
US20240042870A1 (en) Vehicle mass and road grade based regenerative braking and anti-rollback
US20230331092A1 (en) Control device for vehicle
JP2010001963A (ja) 車両用差動制限装置の制御装置
JP2022124404A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP