WO2020095532A1 - 通信制御装置、通信装置、及び通信制御方法 - Google Patents
通信制御装置、通信装置、及び通信制御方法 Download PDFInfo
- Publication number
- WO2020095532A1 WO2020095532A1 PCT/JP2019/035429 JP2019035429W WO2020095532A1 WO 2020095532 A1 WO2020095532 A1 WO 2020095532A1 JP 2019035429 W JP2019035429 W JP 2019035429W WO 2020095532 A1 WO2020095532 A1 WO 2020095532A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication
- communication control
- wireless
- base station
- control device
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 760
- 238000000034 method Methods 0.000 title claims description 297
- 230000005540 biological transmission Effects 0.000 claims abstract description 216
- 230000000737 periodic effect Effects 0.000 claims description 49
- 238000004364 calculation method Methods 0.000 claims description 36
- 238000012545 processing Methods 0.000 description 78
- 230000006870 function Effects 0.000 description 52
- 230000008569 process Effects 0.000 description 44
- 238000010586 diagram Methods 0.000 description 33
- 230000004044 response Effects 0.000 description 31
- 238000005516 engineering process Methods 0.000 description 26
- 230000011664 signaling Effects 0.000 description 13
- 238000001228 spectrum Methods 0.000 description 11
- 230000010267 cellular communication Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 230000001186 cumulative effect Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 238000012937 correction Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 208000011338 SATB2 associated disease Diseases 0.000 description 5
- 208000013959 SATB2-associated syndrome Diseases 0.000 description 5
- 238000013475 authorization Methods 0.000 description 5
- 230000001149 cognitive effect Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 235000011127 sodium aluminium sulphate Nutrition 0.000 description 4
- 238000001808 supercritical antisolvent technique Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000005562 fading Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000012854 evaluation process Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920002939 poly(N,N-dimethylacrylamides) Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/14—Spectrum sharing arrangements between different networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/541—Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
Definitions
- the present disclosure relates to a communication control device, a communication device, and a communication control method.
- radio wave resources wireless resources
- wireless devices wireless devices
- any radio band is already used by the existing radio system (radio device)
- cognitive radio technology radio resources are generated by using the free radio waves (white space) of the existing radio system in time and space.
- the present disclosure proposes a communication control device, a communication device, and a communication control method that can realize efficient use of radio resources.
- a second wireless system that performs wireless communication using radio waves in a frequency band used by a first wireless system starts or continues radio wave transmission.
- An acquisition unit that acquires a request for performing the request from the second wireless system or a proxy system that represents the second wireless system, and a predetermined second wireless system among the plurality of second wireless systems or a plurality of the proxies.
- a determination unit that determines a transmission interval of the request transmitted from a predetermined proxy system of the system, and a notification that notifies the predetermined transmission interval to the predetermined second wireless system or the predetermined proxy system. And a section.
- a plurality of constituent elements having substantially the same functional configuration may be distinguished by attaching different numbers after the same reference numerals.
- a plurality of configurations having substantially the same functional configuration are distinguished as communication control devices 40 1 and 40 2 as necessary.
- only the same reference numeral is given.
- the communication control devices 40 1 and 40 2 are simply referred to as the communication control device 40.
- radio resources are generated by utilizing free space (white space) of the existing wireless system in time and space (for example, dynamic frequency sharing (DSA: Dynamic Spectrum Access)).
- DSA Dynamic Spectrum Access
- the CBRS which utilizes frequency sharing technology
- the Federal use band (3.55-3.70 GHz) that overlaps with the frequency bands that are considered to be 3GPP band 42, 43 worldwide to the general public.
- the legalization and standardization of citizens Broadband Radio Service is accelerating.
- Cognitive radio technology not only contributes to dynamic frequency sharing, but also contributes to improving the frequency utilization efficiency of the radio system.
- ETSI EN 303 387 and IEEE 802.19.1-2014 specify coexistence technology between wireless systems that use idle radio waves.
- the allowable interference reference value of the primary system is provided by the NRA, and the radio interference (secondary system) of the secondary user (secondary user) causes the interference caused by sharing to fall below the allowable interference reference value. Is required.
- the communication control device controls the communication of the secondary system so as not to give fatal interference to the primary system.
- the communication control device is a device that manages communication and the like of the communication device.
- the communication control device is a device (system) for managing radio resources (for example, frequency) such as GLDB (Geo-location Database) and SAS (Spectrum Access System).
- the communication control device corresponds to the communication control device 40 described later.
- the communication control device 40 will be described later in detail.
- the primary system is, for example, a system (for example, an existing system) that preferentially uses radio waves in a predetermined frequency band over other systems such as a secondary system.
- the secondary system is, for example, a system that secondarily uses (for example, shares a dynamic frequency) radio waves in the frequency band used by the primary system.
- the primary system and the secondary system may each be composed of a plurality of communication devices, or may be composed of one communication device.
- the communication control device is configured so that the accumulation of interference (Interference Aggregation) of one or a plurality of communication devices constituting the secondary system with respect to the primary system does not exceed the interference allowable amount (also referred to as an interference margin) of the primary system.
- the allowable interference amount is distributed to a plurality of communication devices.
- the allowable interference amount may be an amount of interference predetermined by the operator of the primary system, a public organization that manages radio waves, or the like.
- the term “interference margin” refers to the allowable interference amount.
- the accumulation of interference may be referred to as cumulative interference power.
- FIG. 1 is an explanatory diagram showing an example of distribution of an interference margin to each communication device that constitutes a secondary system.
- the communication system 1 is a primary system and the communication system 2 is a secondary system.
- the communication system 1 includes a wireless communication device 10 1 and the like.
- the communication system 2 includes base station devices 20 1 , 20 2 , 20 3, and the like. Note that, in the example of FIG. 1, the communication system 1 includes only one wireless communication device 10, but the communication system 1 may include a plurality of wireless communication devices 10. Further, in the example of FIG. 1, the communication system 2 includes three base station devices 20, but the communication system 2 may include less or more than three base station devices 20.
- the wireless communication device included in the communication system 2 does not necessarily have to be the base station device. Although only one primary system (communication system 1 in the example of FIG. 1) and one secondary system (communication system 2 in the example of FIG. 1) are shown in the example of FIG. 1, the primary system and the secondary system are There may be more than one.
- the wireless communication device 10 1 and the base station devices 20 1 , 20 2 , and 20 3 can send and receive radio waves, respectively.
- the amount of interference the wireless communications device 10 1 is permitted is I the accept.
- the interference amounts given by the base station devices 20 1 , 20 2 , and 20 3 to the predetermined protection points of the communication system 1 (primary system) are the given interference amounts I 1 , I 2 , and I 3 , respectively.
- the protection point is an interference calculation reference point for protection of the communication system 1.
- the communication control device controls the plurality of base station devices 20 so that the accumulated interference (reception interference amount I 1 + I 2 + I 3 shown in FIG. 1) at a predetermined protection point of the communication system 1 does not exceed the interference margin I accept.
- the interference margin I accept is allocated to. For example, the communication control device allocates the interference margin I accept to each base station device 20 so that the interference amounts I 1 , I 2 , and I 3 are respectively I accept / 3. Alternatively, the communication control device allocates the interference margin I accept to each base station device 20 so that the given interference amounts I 1 , I 2 , and I 3 are each less than or equal to I accept / 3.
- the method of allocating the interference margin is not limited to this example.
- the communication control device calculates the maximum transmission power allowed for each base station device 20 (hereinafter referred to as the maximum allowed transmission power) based on the distributed interference amount (hereinafter referred to as the distributed interference amount). For example, the communication control device calculates the maximum allowable transmission power of each base station device 20 by back-calculating the distribution interference amount based on the propagation loss, the antenna gain, and the like. Then, the communication control device notifies each base station device 20 of the information on the calculated maximum allowable transmission power.
- Non-Patent Document 2 a signaling protocol between a database (SAS) and a base station (CBSD) for frequency sharing of 3550-3700 MHz in the United States is standardized.
- a CBSD (Citizens Broadband Radio Service Device) is a wireless device that communicates using radio waves in the CBRS frequency band, for example.
- the authorization of the radio wave transmission given to the CBSD by the SAS is called "Grant”.
- the operating parameters allowed in the grant are defined by the maximum allowable EIRP (Equivalent Isotropic Radiated Power) and the frequency channel. That is, in order to perform radio wave transmission using a plurality of frequency channels, the CBSD needs to acquire a plurality of grants from the SAS.
- EIRP Equivalent Isotropic Radiated Power
- FIG. 2 is a state transition diagram showing a permitted state of radio wave transmission.
- the Granted state indicates a state in which a grant is held but radio wave transmission is prohibited
- the Authorized state indicates a state in which radio wave transmission is permitted based on an operation parameter value defined by the grant.
- the heartbeat procedure one of which is an instruction to stop the CBSD radio wave when using the radio waves of the existing radar in the same band, which is an existing system.
- the SAS is obliged to stop the radio waves of all CBSDs that can cause interference within 300 seconds when it is determined that the onboard radar is using the radio waves.
- the CBSD periodically performs a heartbeat (Heartbeat) to the SAS, and the response (Response) is used. It is permitted to give instructions to stop radio waves.
- Heartbeat Interval which is the interval at which the CBSD performs the heartbeat
- CBSD is obliged to stop the radio wave within 60 seconds after receiving an instruction from SAS, so basically the maximum heartbeat interval is 240 seconds or less. It is recommended to set the value.
- Non-Patent Document 7 and Non-Patent Document 9 disclose a synchronization method between SASs called CPAS (Coordinated Periodic Activities among SASs). This is a method of performing information synchronization between SASs and calculation related to protection of existing system (Incumbent) once every 24 hours.
- the calculation related to the existing system protection may be referred to as the primary system protection calculation. Since the CBSD has to perform radio wave transmission while protecting the existing system, if the grant is acquired during the daytime, the grant state does not become the Authorized state until the next CPAS is completed. That is, no matter how many heartbeat requests come in, the SAS continues to instruct the CBSD to stop (Suspension).
- the second wireless system for example, a base station device such as CBSD
- a communication controller eg, SAS
- a transmission interval eg, heartbeat interval
- a request for continuing eg, heartbeat request
- the primary system (communication system 1) and the secondary system (communication system 2) are under the dynamic frequency sharing environment.
- the present embodiment will be described below by taking the CBRS established by the FCC (Federal Communications Commission) of the United States as an example. Note that the communication system 1 and the communication system 2 of this embodiment are not limited to CBRS.
- FIG. 3 is an explanatory diagram showing a hierarchical structure in CBRS.
- each user of the frequency band is classified into one of three groups. This group is called a "tier".
- Each of the three groups has a hierarchical structure defined by an existing layer (Incumbent Tier), a priority access layer (Priority Access Tier), and a general authorized access layer (General Authorized Access Tier).
- the priority access layer (Priority Access Tier) is located above the general authorized access layer (General Authorized Access Tier)
- the existing layer Incumbent Tier
- the existing layer is located above the priority access layer.
- the system located in the existing layer becomes the primary system
- the system located in the general authorization access layer and the priority access layer becomes the secondary system.
- the existing layer is a group consisting of existing users in the shared frequency band.
- DOD Department of Defense
- GWBL Grandfathered Wireless Broadband Licensee
- “Incumbent Tier” is not required to avoid or suppress interference with "Priority Access Tier” and "GAA (General Authorized Access) Tier” with lower priority.
- “Incumbent Tier” is protected from interference by "Priority Access Tier” and "GAA Tier”. That is, the user of “Incumbent Tier” can use the frequency band without considering the existence of other groups.
- Priority access layer is a group of users who have a license called PAL (Priority Access License). Interference avoidance or suppression to "Incumbent Tier” having higher priority than “Priority Access Tier” is required, but interference avoidance or suppression to "GAA Tier” having lower priority is not required. Also, “Priority Access Tier” is not protected from interference by "Incumbent Tier” having higher priority, but is protected from interference by "GAA Tier” having lower priority.
- GAA Tier General authorization access layer
- GAA Tier is a group consisting of all other users who do not belong to the above “Incumbent Tier” and “Priority Access Tier”. It is required to avoid or suppress the interference with “Incumbent Tier” and “Priority Access Tier” which have higher priority.
- GAA Tier is not protected from interference by "Incumbent Tier” with higher priority and "Priority Access Tier”.
- GAA Tier is a "tier” that is legally required to use opportunistic frequencies.
- CBRS is generally called a 3 Tier structure, but it may be a 2 Tier structure.
- a typical example is a 2 Tier structure such as LSA (Licensed Shared Access) and TVWS (TV band White Space).
- LSA the structure equivalent to the combination of the above "Incumbent Tier” and "Priority Access Tier” is adopted.
- TVWS adopts the same structure as the combination of "Incumbent Tier” and "GAA Tier”.
- FIG. 4 is an explanatory diagram showing the CBRS band.
- the primary system is a military radar system (Military Radar System), an existing wireless system (Grand fathered Wireless System), or fixed satellite service (space-to-earth) (Fixed Satellite Service (space-to-earth). )
- the military radar system is typically a ship-borne radar.
- the secondary system will be a wireless network system consisting of CBSD (Citizens Broadband Radio Service Device), base stations called EUD (End User Device), and terminals.
- CBSD Cas Broadband Radio Service Device
- EUD End User Device
- the secondary system has a higher priority, and a priority access license (PAL: Priority Access License) that can use the shared band as a license and a general authorized access (GAA: General Authorized Access) that is equivalent to license-free are defined.
- PAL Priority Access License
- GAA General Authorized Access
- Layer 1 (Tier 1) shown in FIG. 4 corresponds to the existing layer shown in FIG.
- the layer 2 (Tier 2) shown in FIG. 4 corresponds to the priority access layer shown in FIG.
- Layer 3 (Tier 3) shown in FIG. 4 corresponds to the general authorization access layer shown in FIG.
- the primary system (communication system 1) of this embodiment is not limited to the example shown in FIG.
- Another type of wireless system may be the primary system (communication system 1).
- another wireless system may be the primary system depending on the country / region / frequency band to which it is applied.
- the primary system may be a television broadcasting system such as a DVB-T (Digital Video Broadcasting-Terrestrial) system.
- the primary system may be a wireless system called FS (Fixed System).
- the frequency may be shared in other frequency bands.
- typical examples include LSA and TVWS (TV band White Space).
- the primary system may be a cellular communication system such as LTE (Long Term Evolution) or NR (New Radio).
- the primary system may be an aviation wireless system such as ARNS (Aeronautical Radio Navigation Service).
- the primary system is not limited to the above wireless system and may be another type of wireless system.
- the vacant radio waves (White Space) used by the communication system 2 are not limited to the radio waves of the Federal use band (3.55-3.70 GHz).
- the communication system 2 may use radio waves in a frequency band different from the Federal use band (3.55-3.70 GHz) as free radio waves.
- the primary system (communication system 1) is a television broadcasting system
- the communication system 2 may be a system that uses TV white space as free radio waves.
- the TV white space refers to a frequency band that is not used by the television broadcasting system among frequency channels assigned to the television broadcasting system (primary system). At this time, the TV white space may be a channel that is not used depending on the area.
- the relationship between the communication system 1 and the communication system 2 is not limited to the frequency sharing relationship in which the communication system 1 is the primary system and the communication system 2 is the secondary system.
- the relationship between the communication system 1 and the communication system 2 may be a network coexistence relationship between the same or different wireless systems that use the same frequency.
- an existing system that uses the target band is called a primary system
- a system of a secondary user is called a secondary system.
- these (primary system, secondary System) may be replaced by another term system.
- the macro cell in HetNet may be the primary system
- the small cell or relay station may be the secondary system.
- the base station may be the primary system
- the Relay UE or Vehicle UE that realizes D2D or V2X existing within its coverage may be the secondary system.
- the base station is not limited to a fixed type, but may be a portable type / mobile type. In such a case, for example, the communication control device provided by the present invention may be provided in a base station, a relay station, a Relay UE, or the like.
- frequency that appears in the following description may be replaced by another term.
- frequency has the meanings of "resource,” “resource block,” “resource element,” “channel,” “component carrier,” “carrier,” “subcarrier,” and similar terms. May be replaced by terms.
- the communication system 2 is a wireless communication system that performs wireless communication by secondarily utilizing the radio waves used by the communication system 1 (first wireless system).
- the communication system 2 is a wireless communication system that dynamically shares an idle wave of the communication system 1 with a dynamic frequency.
- the communication system 2 provides a wireless service to a user or a device owned by the user by using a predetermined radio access technology.
- the communication system 2 may be a cellular communication system such as W-CDMA (Wideband Code Division Multiple Access), cdma2000 (Code Division Multiple Access 2000), LTE, and NR.
- LTE includes LTE-A (LTE-Advanced), LTE-A Pro (LTE-Advanced Pro), and EUTRA (Evolved Universal Terrestrial Radio Access).
- NR shall include NRAT (New Radio Access Technology) and FEUTRA (Further EUTRA).
- the communication system 2 is not limited to the cellular communication system.
- the communication system 2 may be another wireless communication system such as a wireless LAN (Local Area Network) system, a television broadcasting system, an aviation wireless system, and a space wireless communication system.
- a wireless LAN Local Area Network
- the communication system 1 is a primary system and the communication system 2 is a secondary system. As described above, there may be a plurality of communication systems 1 and communication systems 2, respectively.
- the communication system 1 is configured by one wireless communication device 10 (the wireless communication device 10 1 shown in FIG. 1 ), but may be configured by a plurality of wireless communication devices 10.
- the configuration of the wireless communication device 10 may be the same as the configuration of the base station device 20 or the terminal device 30 described later.
- the communication system 2 is typically composed of the following entities.
- Communication device for example, base station device or proxy device
- Terminal device Communication control device
- the entity serving as the communication device is the base station device 20 and / or the proxy device 50, but the entity serving as the communication device is not limited to the base station device 20 and the proxy device 50, and other Communication device (for example, the terminal device 30 or the communication control device 40).
- FIG. 5 is a diagram showing a configuration example of the communication system 2 according to the embodiment of the present disclosure.
- the communication system 2 includes a base station device 20, a terminal device 30, a communication control device 40, and a proxy device 50.
- the communication system 2 provides a wireless service to a user or a device owned by the user by the devices (eg, a communication device such as a wireless communication device) included in the communication system 2 operating in cooperation with each other.
- the wireless communication device is a device having a wireless communication function, and corresponds to the base station device 20 and the terminal device 30 in the example of FIG.
- the communication control device 40 and the proxy device 50 may have a wireless communication function.
- the communication control device 40 and the proxy device 50 can also be regarded as wireless communication devices.
- the wireless communication device may be simply referred to as a communication device.
- the communication device is not limited to a wireless communication device, and for example, a device that does not have a wireless communication function and can perform only wired communication can be regarded as a communication device.
- the communication system 2 may include a plurality of base station devices 20, terminal devices 30, communication control devices 40, and proxy devices 50, respectively.
- the communication system 1 includes base station devices 20 1 , 20 2 , 20 3 , 20 4 , 20 5, etc. as the base station device 20.
- the communication system 2 also includes, as the terminal device 30, terminal devices 30 1 , 30 2 , 30 3 , 30 4, and the like. Further, the communication system 1 includes communication control devices 40 1 and 40 2 as the communication control device 40.
- the wireless communication device may be referred to as a wireless system.
- the wireless communication device 10 and the base station devices 20 1 to 20 5 are each one wireless system.
- each of the terminal devices 30 1 to 30 4 is one wireless system.
- the communication system 1 is the first wireless system, but each of the one or more wireless communication devices 10 included in the communication system 1 may be regarded as the first wireless system.
- one or a plurality of base station devices 20 included in the communication system 2 are each the second wireless system, but the communication system 2 itself may be regarded as the second wireless system, or the communication system 2
- Each of the provided one or a plurality of terminal devices 30 may be regarded as the second wireless system. If the communication control device 40 and the proxy device 50 have a wireless communication function, the communication control device 40 or the proxy device 50 may be regarded as the second wireless system.
- the wireless system may be one system including a plurality of communication devices including at least one wireless communication device.
- a system including one or a plurality of base station devices 20 and one or a plurality of terminal devices 30 under its control may be regarded as one wireless system.
- each of the communication system 1 and the communication system 2 may be referred to as a wireless communication system or simply a communication system.
- one system including a plurality of communication devices including one wireless communication device may be regarded as the first wireless system or the second wireless system.
- the base station device 20 (second wireless system) is a wireless communication device that wirelessly communicates with the terminal device 30 or another communication device (another base station device 20, another proxy device 50).
- the base station device 20 is a type of communication device.
- the base station device 20 is, for example, a device corresponding to a wireless base station (Base Station, Node B, eNB, gNB, etc.) or a wireless access point (Access Point).
- the base station device 20 may be a wireless relay station. Further, the base station device 20 may be a light projecting device called an RRH (Remote Radio Head).
- the base station of the wireless communication system may be referred to as a base station device.
- the radio access technology used by the base station device 20 may be a cellular communication technology or a wireless LAN technology. Of course, the radio access technology used by the base station device 20 is not limited to these, and may be another radio access technology.
- the base station device 20 does not necessarily have to be fixed, and may be installed in something that moves like an automobile.
- the base station device 20 does not necessarily have to exist on the ground, but exists in the air or in space such as an aircraft, a drone, a helicopter, or a satellite, or at sea or under the sea such as a ship or a submarine.
- the object to be operated may be provided with a communication device function. In such a case, the base station device 20 can perform wireless communication with another communication device that is fixedly installed.
- the size of the coverage of the base station device 20 may be as large as a macro cell or as small as a pico cell. Of course, the size of the coverage of the base station device 20 may be extremely small, such as a femtocell. Further, when the base station device 20 has a beamforming capability, a cell or a service area may be formed for each beam.
- the base station device 20 can be used, operated, and / or managed by various entities.
- the base station device 20 includes a mobile communication operator (MNO: Mobile Network Operator), a virtual mobile communication operator (MVNO: Mobile Virtual Network Operator), a virtual mobile communication enabler (MVNE: Mobile Virtual Network Enabler), Neutral Host Network (NHN) operators, enterprises, educational institutions (school corporations, local government education boards, etc.), real estate (buildings, condominiums, etc.) managers, individuals, etc. can be envisioned.
- MNO Mobile Network Operator
- MVNO Mobile Virtual Network Operator
- MVNE Virtual Network Enabler
- NHS Neutral Host Network
- the subject of use, operation, and / or management of the base station device 20 is not limited to these.
- the base station device 20 may be installed and / or operated by one operator, or may be installed and / or operated by one individual.
- the installation / operation subject of the base station device 20 is not limited to these.
- the base station device 20 may be installed and operated jointly by a plurality of businesses or a plurality of individuals.
- the base station device 20 may be a shared facility used by a plurality of businesses or a plurality of individuals. In this case, the installation and / or operation of the equipment may be performed by a third party different from the user.
- the base station device 20 operated by a business operator is typically connected to the Internet via a core network. Further, the base station device 20 is operated and maintained by a function called OA & M (Operation, Administration & Maintenance).
- the communication system 2 may include, for example, a network manager that integrally controls the base station devices 20 in the network.
- the concept of a base station includes access points and wireless relay stations (also called relay devices). Further, the concept of a base station includes not only a structure having a function of a base station (Structure) but also a device installed in the structure.
- the structure is, for example, a building such as an office building, a house, a steel tower, a station facility, an airport facility, a port facility, and a stadium.
- the concept of a structure includes not only buildings but also non-building structures such as tunnels, bridges, dams, fences, steel columns, and equipment such as cranes, gates, and windmills. Further, the concept of a structure includes not only structures on the ground (onshore) or in the ground but also structures on the water such as a jetty and a megafloat, and structures underwater such as an ocean observation facility.
- the base station may be a base station (mobile station) configured to be movable.
- the base station (mobile station) may be a wireless communication device installed in the mobile body or the mobile body itself.
- the moving body may be a moving body (for example, a vehicle such as an automobile, a bus, a truck, a train, or a linear motor car) that moves on the ground (on land), or moves in the ground (for example, in a tunnel). It may be a moving body (for example, a subway).
- the mobile body may be a mobile terminal such as a smartphone.
- the moving body may be a moving body that moves on the water (for example, a ship such as a passenger ship, a cargo ship, or a hovercraft), or a moving body that moves underwater (for example, a submersible boat, a submarine, or an unmanned submarine). Submersible).
- the moving body may be a moving body that moves in the atmosphere (for example, an aircraft such as an airplane, an airship, or a drone), or a space moving body that moves outside the atmosphere (for example, an artificial satellite, a spaceship, or space). It may be an artificial astronomical object such as a station or a spacecraft.
- the terminal device 30 is a communication device having a communication function.
- the terminal device 30 is typically a communication device such as a smartphone.
- the terminal device 30 may be a user terminal such as a mobile phone, a smart device (smartphone or tablet), a wearable terminal, a PDA (Personal Digital Assistant), or a personal computer.
- Terminal devices are sometimes called User Equipment, User Terminal, User Station, Mobile Terminal, Mobile Station, etc.
- the terminal device 30 does not need to be used by a person.
- the terminal device 30 may be a sensor installed in a factory machine or a building like a so-called MTC (Machine Type Communication). Further, the terminal device 30 may be an M2M (Machine to Machine) device or an IoT (Internet of Things) device. Further, the terminal device 30 may be a device having a relay communication function, as represented by D2D (Device to Device) and V2X (Vehicle to everything). Further, the terminal device 30 may be a device called CPE (Client Premises Equipment) used in a wireless backhaul or the like. Further, the terminal device 30 may be a wireless communication device installed in a moving body or the moving body itself.
- MTC Machine Type Communication
- M2M Machine to Machine
- IoT Internet of Things
- the terminal device 30 may be a device having a relay communication function, as represented by D2D (Device to Device) and V2X (Vehicle to everything).
- the terminal device 30 does not necessarily have to exist on the ground, but exists in the air or in space such as an aircraft, a drone, a helicopter, or a satellite, or at the sea or under the sea such as a ship or a submarine. It may be an object.
- the communication control device 40 is a device that manages the base station device 20.
- the communication control device 40 is a device that controls wireless communication of the base station device 20.
- the communication control device 40 determines communication parameters (also referred to as operation parameters) used by the base station device 20, and permits or instructs the base station device 20.
- the communication control device 40 may be a network manager that integrally controls the wireless devices in the network. Taking ETSI EN 303 387 or IEEE 802.19.1-2014 as an example, the communication control device 40 may be a control device such as Spectrum Manager / Coexistence Manager that performs radio wave interference control between wireless devices.
- an RLSS (Registered Location Secure Server) defined in IEEE 802.11-2016 can also be the communication control device 40.
- a database database server, device, system
- GLDB Geographiclocation database
- SAS Specifictrum Access System
- the control target of the communication control device 40 is the base station device 20, but the communication control device 40 may control the terminal device 30 under it.
- a plurality of communication control devices 40 may exist in one communication system 2.
- FIG. 6 is a diagram showing a model in which the communication control devices 40 are distributedly arranged.
- the plurality of communication control devices 40 (in the example of FIG. 6, the communication control device 40 1 and the communication control device 40 2 ) exchange information of the base station devices 20 managed by each other, and the necessary frequency allocation and interference are performed. Perform control calculations.
- the communication control device 40 may be a master-slave type device.
- FIG. 7 is a diagram showing a model (so-called master-slave model) in which one communication control device centrally controls a plurality of communication control devices.
- the communication control device 40 3 is a master communication control device
- the communication control devices 40 4 and 40 5 are slave communication control devices.
- the master communication control device can control a plurality of slave communication control devices and collectively make a decision.
- the master communication control device can also transfer or discard decision-making authority to each slave communication control device for the purpose of load balancing.
- the communication control device 40 can acquire necessary information from entities other than the base station device 20, the terminal device 30, and the proxy device 50 for its role.
- the communication control device 40 can acquire information necessary for protection such as the position information of the primary system, for example, from a database (regulatory database) managed and operated by a radio wave administrative agency in a country / region.
- a database regulatory database
- ULS Universal Licensing System
- Other examples of information necessary for protection include, for example, out-of-band emission (OOBE) limit, adjacent channel leakage ratio (ACLR: Adjacent Channel Leakage Ratio), and adjacent channel selectivity (Adjacent). Channel Selectivity), fading margin, and / or protection ratio (PR) can be included.
- OOBE out-of-band emission
- ACLR Adjacent Channel Leakage Ratio
- Adjacent adjacent channel selectivity
- Channel Selectivity fading margin
- PR protection ratio
- the communication control device 40 acquires radio wave sensing information from a radio wave sensing system installed and operated for the purpose of detecting the radio wave of the primary system.
- the communication control device 40 can acquire the radio wave detection information of the primary system from a radio wave sensing system such as an environmental sensing function (ESC: Environmental Sensing Capability) in the US CBRS.
- ESC Environmental Sensing Capability
- the communication control device 40 may acquire the radio wave detection information of the primary system from them.
- the proxy device 50 (proxy system) is a device that communicates with the communication control device 40 by proxying (representing) one or a plurality of communication devices (for example, the base station device 20).
- the proxy device 50 is also a type of communication device.
- the proxy device 50 may be a DP (Domain Proxy) defined in Non-Patent Document 2 or the like.
- the DP means an entity that communicates with the SAS on behalf of each of the plurality of CBSDs or a network composed of the plurality of CBSDs.
- the proxy device 50 is not limited to the DP specified in Non-Patent Document 2 as long as it has a function of proxying (representing) one or a plurality of communication devices and communicating with the communication control device 40. ..
- a network manager that integrally controls the base station device 20 in the network may be regarded as the proxy device 50.
- the wireless interface is, for example, a wireless interface provided by a mobile communication carrier through a licensed band or a wireless interface that uses an existing license-exempt band (for example, Wi-Fi). -Wireless interface using Fi communication) or the like.
- FIG. 8 is a diagram illustrating a configuration example of the base station device 20 according to the embodiment of the present disclosure.
- the base station device 20 is a wireless communication device (wireless system) that wirelessly communicates with the terminal device 30 under the control of the communication control device 40.
- the base station device 20 is a base station device (ground station device) located on the ground.
- the base station device 20 may be a base station device arranged on a structure on the ground or a base station device installed on a moving body moving on the ground. More specifically, the base station device 20 may be an antenna installed in a structure such as a building and a signal processing device connected to the antenna.
- the base station device 20 may be a structure or a moving body itself.
- the “ground” is not only the ground (land) but also the ground in the broad sense, including the ground, water, and water.
- the base station device 20 is a type of communication device.
- the base station device 20 is not limited to the ground station device.
- the base station device 20 may be a base station device (non-ground station device) that moves or floats in the air or in space.
- the base station device 20 may be an aircraft station device or a satellite station device.
- the aircraft station device may be a device mounted on an aircraft or the like, or may be the aircraft itself.
- the concept of an aircraft includes not only heavy aircraft such as airplanes and gliders, but also light aircraft such as balloons and airships. Further, the concept of an aircraft also includes a rotorcraft such as a helicopter and an autogyro.
- the aircraft station device (or the aircraft on which the aircraft station device is mounted) may be a manned aircraft or an unmanned aircraft such as a drone.
- the satellite station device may be a device mounted on a space vehicle such as an artificial satellite or the space vehicle itself.
- the satellite stations are low earth orbiting (LEO) satellites, medium earth orbiting (MEO) satellites, geostationary earth orbiting (GEO) satellites, and high elliptical orbiting (HEO: highly elliptical orbiting).
- LEO low earth orbiting
- MEO medium earth orbiting
- GEO geostationary earth orbiting
- HEO high elliptical orbiting
- the satellite station device may be a device mounted on a low-orbit satellite, a medium-orbit satellite, a geostationary satellite, or a high-elliptic orbit satellite.
- the base station device 20 may be a relay station device.
- the relay station device is, for example, an aviation station or an earth station.
- the relay station device can be regarded as a kind of the above-mentioned relay device.
- An aviation station is a radio station installed on the ground or a moving body that moves on the ground to communicate with an aircraft station device.
- the earth station is a radio station located on the earth (including in the air) to communicate with the satellite station device.
- the earth station may be a large earth station or a small earth station such as VSAT (Very Small Aperture Terminal).
- the earth station may be a VSAT earth station (also referred to as a parent station or HUB station) or a VSAT earth station (also referred to as a child station).
- the earth station may be a wireless station installed in a moving body that moves on the ground.
- the Earth Stations on board vessels include ESV (Earth Stations on board Vessels).
- the earth station may include an aircraft earth station installed in an aircraft (including a helicopter) and communicating with a satellite station.
- the earth station may include an aviation earth station that is installed in a moving body that moves on the ground and communicates with an aircraft earth station via a satellite station.
- the relay station device may be a portable and mobile wireless station that communicates with a satellite station or an aircraft station.
- the base station device 20 includes a wireless communication unit 21, a storage unit 22, a network communication unit 23, and a control unit 24.
- the configuration shown in FIG. 8 is a functional configuration, and the hardware configuration may be different from this. Further, the function of the base station device 20 may be distributed and implemented in a plurality of physically separated devices.
- the wireless communication unit 21 is a wireless communication interface that wirelessly communicates with other communication devices (for example, the terminal device 30, the communication control device 40, the proxy device 50, and the other base station device 20).
- the wireless communication unit 21 operates according to the control of the control unit 24.
- the wireless communication unit 21 may support a plurality of wireless access methods.
- the wireless communication unit 21 may support both NR and LTE.
- the wireless communication unit 21 may support other cellular communication schemes such as W-CDMA and cdma2000.
- the wireless communication unit 21 may support a wireless LAN communication system in addition to the cellular communication system. Of course, the wireless communication unit 21 may support only one wireless access method.
- the wireless communication unit 21 includes a reception processing unit 211, a transmission processing unit 212, and an antenna 213.
- the wireless communication unit 21 may include a plurality of reception processing units 211, transmission processing units 212, and antennas 213, respectively.
- each unit of the wireless communication unit 21 can be individually configured for each wireless access method. For example, if the base station device 20 supports NR and LTE, the reception processing unit 211 and the transmission processing unit 212 may be configured separately for NR and LTE.
- the reception processing unit 211 processes the uplink signal received via the antenna 213.
- the reception processing unit 211 includes a wireless reception unit 211a, a demultiplexing unit 211b, a demodulation unit 211c, and a decoding unit 211d.
- the radio reception unit 211a down-converts an uplink signal, removes unnecessary frequency components, controls an amplification level, orthogonal demodulation, converts to a digital signal, removes a guard interval, and removes a frequency domain signal by fast Fourier transform. Extract, etc.
- the radio access scheme of the base station device 20 is a cellular communication scheme such as LTE.
- the demultiplexing unit 211b separates an uplink channel such as PUSCH (Physical Uplink Shared Channel) and PUCCH (Physical Uplink Control Channel) and an uplink reference signal from the signal output from the wireless reception unit 211a.
- PUSCH Physical Uplink Shared Channel
- PUCCH Physical Uplink Control Channel
- the demodulation unit 211c demodulates the received signal using a modulation method such as BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase Shift Keying) for the modulation symbol of the uplink channel.
- the modulation method used by the demodulation unit 211c may be 16QAM (Quadrature Amplitude Modulation), 64QAM, or 256QAM.
- the decoding unit 211d performs a decoding process on the demodulated coded bits of the uplink channel.
- the decoded uplink data and uplink control information are output to the control unit 24.
- the transmission processing unit 212 performs transmission processing of downlink control information and downlink data.
- the transmission processing unit 212 includes an encoding unit 212a, a modulation unit 212b, a multiplexing unit 212c, and a wireless transmission unit 212d.
- the encoding unit 212a encodes the downlink control information and downlink data input from the control unit 24 using an encoding method such as block encoding, convolutional encoding, turbo encoding, or the like.
- the modulator 212b modulates the coded bits output from the encoder 212a by a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM.
- the multiplexing unit 212c multiplexes the modulation symbol of each channel and the downlink reference signal, and arranges them in a predetermined resource element.
- the wireless transmission unit 212d performs various kinds of signal processing on the signal from the multiplexing unit 212c.
- the wireless transmission unit 212d performs conversion into the time domain by fast Fourier transform, addition of a guard interval, generation of a baseband digital signal, conversion into an analog signal, quadrature modulation, up-conversion, removal of extra frequency components, Performs processing such as power amplification.
- the signal generated by the transmission processing unit 212 is transmitted from the antenna 213.
- the storage unit 22 is a data readable / writable storage device such as DRAM, SRAM, flash memory, and hard disk.
- the storage unit 22 functions as a storage unit of the base station device 20.
- the storage unit 22 stores desired transmission power information, operation parameters, retained resource information, and the like.
- the desired transmission power information is information on the transmission power that the base station device 20 requests from the communication control device 40 as information on the transmission power required to transmit radio waves.
- the operation parameter is information (for example, setting information) regarding the radio wave transmission operation of the base station device 20.
- the communication operation parameter is information on the maximum value of the transmission power allowed by the base station device 20 (maximum allowable transmission power).
- the operation parameter is not limited to the information on the maximum allowable transmission power.
- the owned resource information is information on the wireless resource owned by the base station device 20.
- the owned resource information is information on the wireless resources currently available to the base station device 20.
- the available resource information is information on the holding amount of the interference margin assigned by the base station device 20 from the communication control device 40.
- the information on the possession amount may be information on a resource block basis described later. That is, the owned resource information may be information (for example, the resource block holding amount) regarding the resource blocks held by the base station device 20.
- the network communication unit 23 is a communication interface for communicating with other devices (for example, the communication control device 40, the proxy device 50, and the other base station device 20).
- the network communication unit 23 is a LAN (Local Area Network) interface such as a NIC (Network Interface Card).
- the network communication unit 23 may be a USB interface including a USB (Universal Serial Bus) host controller, a USB port, and the like.
- the network communication unit 23 may be a wired interface or a wireless interface.
- the network communication unit 23 functions as a network communication unit of the base station device 20.
- the network communication unit 23 communicates with other devices under the control of the control unit 24.
- the control unit 24 is a controller that controls each unit of the base station device 20.
- the control unit 24 is realized by a processor such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit).
- the control unit 24 is realized by the processor executing various programs stored in the storage device inside the base station device 20 using a RAM (Random Access Memory) or the like as a work area.
- the control unit 24 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- the control unit 24 includes an acquisition unit 241, a setting unit 242, and a transmission unit 243.
- Each block (acquisition unit 241 to transmission unit 243) forming the control unit 24 is a functional block showing the function of the control unit 24.
- These functional blocks may be software blocks or hardware blocks.
- each of the above functional blocks may be one software module realized by software (including a microprogram) or one circuit block on a semiconductor chip (die).
- each functional block may be one processor or one integrated circuit.
- the method of configuring the functional blocks is arbitrary.
- the control unit 24 may be configured in functional units different from the above functional blocks. The operation of each block (acquisition unit 241 to transmission unit 243) included in the control unit 24 will be described in detail in the description of the request transmission process and the like described later.
- FIG. 9 is a diagram illustrating a configuration example of the terminal device 30 according to the embodiment of the present disclosure.
- the terminal device 30 is a communication device that wirelessly communicates with the base station device 20 and / or the communication control device 40.
- the concept of a communication device includes not only a base station device and a proxy device but also a terminal device.
- the communication device (or wireless communication device) can be restated as a wireless system.
- the terminal device 30 includes a wireless communication unit 31, a storage unit 32, an input / output unit 33, and a control unit 34.
- the configuration shown in FIG. 9 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the terminal device 30 may be distributed and implemented in a plurality of physically separated configurations.
- the wireless communication unit 31 is a wireless communication interface that wirelessly communicates with other communication devices (for example, the base station device 20 and other terminal devices 30).
- the wireless communication unit 31 operates under the control of the control unit 34.
- the wireless communication unit 31 supports one or more wireless access methods.
- the wireless communication unit 31 supports both NR and LTE.
- the wireless communication unit 31 may be compatible with other wireless access methods such as W-CDMA and cdma2000.
- the wireless communication unit 31 includes a reception processing unit 311, a transmission processing unit 312, and an antenna 313.
- the wireless communication unit 31 may include a plurality of reception processing units 311, transmission processing units 312, and antennas 313.
- each unit of the wireless communication unit 31 can be individually configured for each wireless access scheme.
- the reception processing unit 311 and the transmission processing unit 312 may be configured separately for LTE and NR.
- the configurations of the reception processing unit 311 and the transmission processing unit 312 are similar to those of the reception processing unit 211 and the transmission processing unit 212 of the base station device 20.
- the storage unit 32 is a data readable / writable storage device such as DRAM, SRAM, flash memory, and hard disk.
- the storage unit 32 functions as a storage unit of the terminal device 30.
- the input / output unit 33 is a user interface for exchanging information with the user.
- the input / output unit 33 is an operation device such as a keyboard, a mouse, operation keys, and a touch panel for the user to perform various operations.
- the input / output unit 33 is a display device such as a liquid crystal display (Liquid Crystal Display) or an organic EL display (Organic Electroluminescence Display).
- the input / output unit 33 may be an audio device such as a speaker or a buzzer.
- the input / output unit 33 may be a lighting device such as an LED (Light Emitting Diode) lamp.
- the input / output unit 33 functions as an input / output unit (input unit, output unit, operation unit or notification unit) of the terminal device 30.
- the control unit 34 is a controller that controls each unit of the terminal device 30.
- the control unit 34 is realized by a processor such as a CPU or MPU, for example.
- the control unit 34 is realized by the processor executing various programs stored in the storage device inside the terminal device 30 by using the RAM or the like as a work area.
- the control unit 34 may be realized by an integrated circuit such as ASIC or FPGA.
- ASIC application specific integrated circuit
- the communication control device 40 is a device that controls wireless communication of the base station device 20.
- the communication control device 40 may control the wireless communication of the terminal device 30 via the base station device 20 or directly.
- the communication control device 40 may be a network manager that integrally controls wireless devices in the network.
- the communication control device 40 may be a Spectrum Manager / Coexistence Manager.
- the communication control device 40 may be a database server such as a GLDB (Geolocation database) or a SAS (Spectrum Access System).
- the communication control device 40 may be a device forming a core network.
- the core network CN is, for example, EPC (Evolved Packet Core) or 5GC (5G Core network).
- EPC Evolved Packet Core
- 5GC 5G Core network
- the communication control device 40 may be a device having a function as an MME (Mobility Management Entity), for example.
- MME Mobility Management Entity
- AMF Access and Mobility Management Function
- the communication control device 40 does not necessarily have to be a device forming a core network.
- the communication control device 40 may be a device having a function as an RNC (Radio Network Controller).
- the communication control device 40 may have a gateway function.
- the communication control device 40 may be a device having a function as an S-GW (Serving Gateway) or a P-GW (Packet Data Network Gateway).
- the communication control device 40 may be a device having a function as a UPF (User Plane Function).
- the communication control device 40 does not necessarily have to be a device that constitutes the core network.
- the core network is a W-CDMA or cdma2000 core network.
- the communication control device 40 may be a device that functions as an RNC (Radio Network Controller).
- RNC Radio Network Controller
- the communication control device 40 may be a system that controls a plurality of secondary systems.
- the communication system 2 can be regarded as a system including a plurality of secondary systems.
- FIG. 10 is a diagram showing a configuration example of the communication control device 40 according to the embodiment of the present disclosure.
- the communication control device 40 includes a wireless communication unit 41, a storage unit 42, a network communication unit 43, and a control unit 44.
- the configuration shown in FIG. 10 is a functional configuration, and the hardware configuration may be different from this. Further, the function of the communication control device 40 may be distributed and implemented in a plurality of physically separated configurations.
- the communication control device 40 may be composed of a plurality of server devices.
- the wireless communication unit 41 is a wireless communication interface that wirelessly communicates with other communication devices (for example, the base station device 20, the terminal device 30, the proxy device 50, and the other communication control device 40).
- the wireless communication unit 41 operates under the control of the control unit 44.
- the wireless communication unit 31 supports one or more wireless access methods.
- the wireless communication unit 31 supports both NR and LTE.
- the wireless communication unit 31 may be compatible with other wireless access methods such as W-CDMA and cdma2000.
- the configuration of the wireless communication unit 41 is similar to that of the wireless communication unit 21 of the base station device 20.
- the storage unit 42 is a data readable / writable storage device such as DRAM, SRAM, flash memory, and hard disk.
- the storage unit 22 functions as a storage unit of the base station device 20.
- the storage unit 22 stores operation parameters of each of the plurality of base station devices 20 included in the communication system 2.
- the storage unit 22 may store the owned resource information of each of the plurality of base station devices 20 included in the communication system 2.
- the possessed resource information is information regarding the possession of the radio resource of the base station device 20.
- the network communication unit 43 is a communication interface for communicating with other devices (for example, the base station device 20, the proxy device 50, and the other communication control device 40).
- the network communication unit 43 may be a network interface or a device connection interface.
- the network communication unit 43 may be a LAN (Local Area Network) interface such as a NIC (Network Interface Card).
- the network communication unit 43 may be a USB interface including a USB (Universal Serial Bus) host controller, a USB port, and the like.
- the network communication unit 43 may be a wired interface or a wireless interface.
- the network communication unit 43 functions as a communication unit of the communication control device 40.
- the network communication unit 43 communicates with the base station device 20, the terminal device 30, and the proxy device 50 under the control of the control unit 44.
- the control unit 44 is a controller that controls each unit of the communication control device 40.
- the control unit 44 is realized by a processor such as a CPU or MPU, for example.
- the control unit 44 is realized by the processor executing various programs stored in the storage device inside the communication control device 40 by using the RAM or the like as a work area.
- the control unit 44 may be realized by an integrated circuit such as ASIC or FPGA.
- ASIC application specific integrated circuit
- the control unit 44 includes an acquisition unit 441, a determination unit 442, a determination unit 443, and a notification unit 444.
- Each block (acquisition unit 441 to notification unit 444) forming the control unit 44 is a functional block showing the function of the control unit 44.
- These functional blocks may be software blocks or hardware blocks.
- each of the above functional blocks may be one software module realized by software (including a microprogram) or one circuit block on a semiconductor chip (die).
- each functional block may be one processor or one integrated circuit.
- the method of configuring the functional blocks is arbitrary.
- FIG. 11 is a diagram illustrating a configuration example of the proxy device 50 according to the embodiment of the present disclosure.
- the proxy device 50 is a communication device that communicates with the base station device 20 and the communication control device 40.
- the proxy device 50 is a proxy system that communicates with the communication control device 40 by acting (representing) one or a plurality of base station devices 20.
- the proxy device 50 is a domain proxy (DP) that represents (represents) a plurality of CBSDs.
- the proxy system may be configured by one device or may be configured by a plurality of devices.
- the communication between the proxy device 50 and the base station device 20 may be wired communication or wireless communication.
- the communication between the proxy device 50 and the communication control device 40 may be wired communication or wireless communication.
- the communication device represented by the proxy device 50 as a proxy is not limited to the base station device 20, and may be the terminal device 30, for example.
- one or a plurality of communication devices for example, one or a plurality of base station devices 20
- a subordinate communication device for example, a subordinate base station device 20.
- the proxy device 50 includes a wireless communication unit 51, a storage unit 52, a network communication unit 53, and a control unit 54. Note that the configuration shown in FIG. 11 is a functional configuration, and the hardware configuration may be different from this. Further, the function of the proxy device 50 may be distributed and implemented in a plurality of physically separated configurations.
- the wireless communication unit 51 is a wireless communication interface that wirelessly communicates with other communication devices (for example, the base station device 20, the terminal device 30, the communication control device 40, and the other proxy device 50).
- the wireless communication unit 51 operates under the control of the control unit 54.
- the wireless communication unit 51 supports one or more wireless access methods.
- the wireless communication unit 31 supports both NR and LTE.
- the wireless communication unit 51 may be compatible with other wireless access schemes such as W-CDMA and cdma2000.
- the storage unit 52 is a data readable / writable storage device such as DRAM, SRAM, flash memory, and hard disk.
- the storage unit 52 functions as a storage unit of the proxy device 50.
- the storage unit 22 may store desired transmission power information, operation parameters, owned resource information, and the like of each of the subordinate base station devices 20.
- the network communication unit 53 is a communication interface for communicating with other devices (for example, the base station device 20, the communication control device 40, and the other proxy device 50).
- the network communication unit 53 is a LAN interface such as NIC.
- the network communication unit 53 may be a USB interface including a USB host controller and a USB port.
- the network communication unit 53 may be a wired interface or a wireless interface.
- the network communication unit 53 functions as a network communication unit of the proxy device 50.
- the network communication unit 53 communicates with other devices under the control of the control unit 54.
- the control unit 54 is a controller that controls each unit of the proxy device 50.
- the control unit 54 is realized by a processor such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit).
- the control unit 54 is realized by the processor executing various programs stored in the storage device inside the proxy device 50 using a RAM (Random Access Memory) or the like as a work area.
- the control unit 24 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- the control unit 54 includes an acquisition unit 541, a setting unit 542, and a transmission unit 543.
- Each block (acquisition unit 541 to transmission unit 543) included in the control unit 24 is a functional block showing the function of the control unit 54.
- These functional blocks may be software blocks or hardware blocks.
- each of the above functional blocks may be one software module realized by software (including a microprogram) or one circuit block on a semiconductor chip (die).
- each functional block may be one processor or one integrated circuit.
- the method of configuring the functional blocks is arbitrary.
- the control unit 24 may be configured in functional units different from the above functional blocks.
- each block (acquisition unit 541 to transmission unit 543) included in the control unit 54 is the same as the operation of each block (acquisition unit 241 to transmission unit 243) included in the control unit 24 of the base station device 20. Good.
- the descriptions of the acquisition unit 241 to the transmission unit 243 appearing in the following description can be replaced with the acquisition unit 541 to the transmission unit 543.
- FIG. 12 is an explanatory diagram showing an example of an interference model assumed in this embodiment. Note that the description of the base station device 20 appearing in the following description can be replaced with a word indicating another communication device having a wireless communication function.
- the interference model shown in FIG. 12 is applied, for example, when the primary system has a service area.
- the communication system 1 primary system
- the communication system 1 is a wireless communication system having a service area.
- This service area is, for example, a protected area of the communication system 1.
- a plurality of interference calculation reference points (hereinafter referred to as protection points) are set in the protection area.
- the protection point is set by, for example, an operator of the communication system 1, a public institution that manages radio waves, or the like (hereinafter referred to as an administrator).
- the administrator may divide the protection area into a grid shape and set the center of a predetermined grid as a protection point.
- the method of determining the protection points is arbitrary.
- the interference margin of each protection point is set by the administrator or the like.
- FIG. 12 shows the interference given to the protection points by the plurality of base station devices 20 that form the communication system 2 (secondary system).
- the communication control device 40 of the communication system 2 controls the transmission power of the plurality of base station devices 20 so that the cumulative interference at each protection point does not exceed the set interference margin.
- FIG. 13 is an explanatory diagram showing another example of the interference model assumed in this embodiment.
- the interference model shown in FIG. 13 is applied, for example, when the primary system only performs reception.
- the communication system 1 primary system
- the communication system 1 includes a receiving antenna as a wireless communication device 10 2.
- the wireless communication device 10 2 is, for example, a receiving antenna of the satellite ground stations.
- the communication control device 40 of the communication system 2 uses the position of the receiving antenna as a protection point and controls the transmission power of the plurality of base station devices 20 so that the cumulative interference at that position does not exceed the interference margin.
- Non-Patent Document 3 for example, the method disclosed in Non-Patent Document 3 (for example, the maximum allowable EIRP calculation method) can be mentioned.
- the interference margin sequential allocation type primer system protection method there is, for example, the sequential allocation process (IAP: Iterative Allocation Process) disclosed in Non-Patent Document 6.
- FIG. 14 is an explanatory diagram for explaining the interference margin simultaneous allocation type primer system protection method.
- the communication control device 40 calculates the maximum allowable transmission power of the secondary system with the “value uniquely obtained by the positional relationship between the protection reference point of the primary system and the secondary system” as the reference value.
- the allowable interference threshold of the primary system is I accept .
- This threshold value may be an actual threshold value, or may be a value set in consideration of a calculation error and an interference variation with a certain margin (for example, a protection ratio) from the actual threshold value.
- interference control means determining the transmission power (EIRP, Conducted Power + Antenna gain, etc.) of the wireless device so as not to exceed the allowable interference threshold. At this time, if there are many base station devices 20 and each of them does not exceed the allowable interference threshold, the interference power received in the communication system 1 (primary system) may exceed the allowable interference threshold. .. Therefore, the interference margin (allowable interference amount) is “allocated” based on the number of base station devices 20 registered in the communication control device 40.
- the total number of base station devices 20 is five. Therefore, the allowable interference amount of I accept / 5 is allocated to each individual. Since the base station device 20 cannot recognize this distribution amount by itself, the base station device 20 recognizes it through the communication control device, or acquires the transmission power determined based on this distribution amount. Since the communication control device cannot recognize the number of wireless devices managed by other communication control devices, it is possible to recognize the total number by exchanging information with each other and distribute the allowable interference amount. Become. For example, the allowable interference amount of 3I accept / 5 is assigned in the communication control device 40 1 .
- the interference margin not used by the base station device 20 can be a residual interference margin.
- FIG. 15 is a diagram showing how a surplus interference margin occurs.
- FIG. 15 shows the total amount of interference set in each of the two communication control devices 40 (communication control devices 40 1 and 40 2 ). Further, in FIG. 15, the amount of interference (interfering interference) given to a predetermined protection point of the communication system 1 by a plurality of base station devices 20 (base station devices 20 1 to 20 5 ) under the control of the two communication control devices 40. Amount) is shown.
- the interference amount obtained by subtracting the interference amount by the base station device 20 from the total interference amount of each of the two communication control devices 40 is the surplus interference margin.
- the surplus interference amount is referred to as a surplus interference margin.
- the surplus interference margin can be restated as the surplus interference amount.
- each of the plurality of base station devices 20 stores desired transmission power information in the storage unit 22.
- the desired transmission power information is information on the transmission power that the base station device 20 requests from the communication control device 40 as information on the transmission power required to transmit radio waves.
- the base station devices 20 1 to 20 4 hold desired transmission power information A to D, respectively.
- the communication control device 40 allocates the interference amounts A to D to the base station devices 20 1 to 20 4 based on the desired transmission power information A to D, respectively.
- the registration procedure is a procedure for registering device parameters related to the base station device 20 in the communication control device 40.
- the base station apparatus 20 or one or more communication systems including a plurality of base station apparatuses 20 notify the communication control apparatus 40 of a registration request including the device parameter, thereby starting the registration procedure.
- the registration request may be transmitted by a communication system that represents (represents) one or a plurality of base station devices 20 (for example, a proxy system such as the proxy device 50).
- the communication system that represents (represents) the plurality of base station devices 20 is the proxy device 50, but the word of the proxy device 50 that appears in the following description refers to other communication such as a proxy system. It can be replaced with a word indicating the communication system that represents the device.
- the device parameters refer to the information shown below, for example. Information peculiar to communication equipment Position information Antenna information Radio interface information Legal information Installer information When implementing, other information may be treated as device parameters.
- the information unique to the communication device is information that can identify the base station device 20, information about the hardware of the base station device 20, and the like. For example, a serial number, a product model number, etc. may be included.
- Information that can identify the base station device 20 refers to communication device user information, communication device serial number, and the like.
- the communication device user information may be a user ID, a call sign, or the like.
- the user ID may be uniquely generated by the communication device user or may be previously issued by the communication control device 40.
- the information regarding the hardware of the base station device 20 may include, for example, transmission power class information, manufacturer information, and the like.
- transmission power class information for example, in FCC C.F.R.Part 96, two types of classes, Category A and Category B, are specified, and either information may be included.
- some classes of eNodeB and gNodeB are specified in 3GPP TS 36.104 and TS 38.104, and these classes can also be used.
- the information regarding the software of the base station device 20 may include, for example, version information regarding the execution program in which the processing required for the interaction with the communication control device 40 is described, a build number, and the like. Also, version information, build number, etc. of software for operating as the base station device 20 may be included.
- the information relating to the position is typically information capable of specifying the geographical position of the base station device 20.
- it is coordinate information acquired by a position positioning function represented by GPS (Global Positioning System), Beidou, QZSS (Quasi-Zenith Satellite System), Galileo, and A-GPS (Assisted Global Positioning System).
- a position positioning function represented by GPS (Global Positioning System), Beidou, QZSS (Quasi-Zenith Satellite System), Galileo, and A-GPS (Assisted Global Positioning System).
- information about latitude, longitude, altitude, and positioning error can be included.
- it may be location information registered in an information management device managed by an NRA (National Regulatory Authority) or its consignment organization.
- the coordinates may be X-axis, Y-axis, and Z-axis with a specific geographical position as the origin. Further, an identifier indicating outdoor / indoor can be added together with such coordinate information.
- the information related to the position may be information indicating the area where the base station device 20 is located. For example, information determined by the government such as a postal code and an address may be used. Further, for example, the region may be indicated by a set of three or more geographical coordinates. Information indicating these areas may be provided together with the coordinate information.
- the information related to the position may be added with information indicating the floor of the building when the base station device 20 is located indoors. For example, the number of floors, an identifier indicating above ground / underground, and the like may be added. Further, for example, information indicating a further closed space inside a room may be added, such as a room number and a room name in a building.
- the base station device 20 typically has the above-mentioned positioning function.
- the positioning function may be used by the installer. In such a case, it is desirable that the position information measured by the installer is written in the base station device 20.
- the antenna information is typically information indicating the performance and configuration of the antenna included in the base station device 20.
- information such as antenna installation height, tilt angle (Downtilt), horizontal direction (Azimuth), aiming (Boresight), antenna peak gain, and antenna model can be included.
- the antenna information may also include information on the beam that can be formed. For example, information such as beam width, beam pattern, and analog / digital beamforming capability may be included.
- the antenna information may include information on the performance and configuration of MIMO (Mutiple Input Multiple Output) communication. For example, information such as the number of antenna elements and the maximum number of spatial streams can be included.
- codebook information used weight matrix information (SVD (Singular Value Decomposition), EVD (Eigen Value Decomposition), BD (Block Diagonalization), and other unitary matrices, ZF (Zero-Forcing) matrix, MMSE) (Minimum Mean Square Error) matrix) etc. can be included.
- MLD Maximum Likelihood Detection
- MLD Maximum Likelihood Detection
- the above antenna information may include ZoD (Zenith of Direction, Departure).
- the ZoD is a type of radio wave arrival angle.
- the ZoD may be estimated by another base station device 20 from the radio wave radiated from the antenna of the base station device 20.
- the base station device 20 may be a terminal device that operates as a base station or an access point, a device that performs D2D communication, a moving relay base station, or the like.
- ZoD can be estimated by a radio wave arrival direction estimation technique such as MUSIC (Multiple Signal Classification) or ESPRIT (Estimation of Signal Propagation via Rotation Invariance Techniques). It can be used by the communication control device 40 as the measurement information.
- MUSIC Multiple Signal Classification
- ESPRIT Estimatiation of Signal Propagation via Rotation Invariance Techniques
- the wireless interface information is typically information indicating the wireless interface technology included in the base station device 20.
- technologies used in GSM registered trademark
- LTE-based derivative technologies such as MultiFire and LTE-U (LTE-Unlicensed)
- WiMAX Includes identifier information indicating standard technologies such as MAN (Metropolitan Area Network) such as WiMAX 2+ and IEEE 802.11 wireless LAN. Further, the version number or release number of the technical specification that defines them may be given. It does not necessarily have to be standard technology, and may include information indicating a proprietary wireless technology.
- the radio interface information may also include frequency band information supported by the base station device 20. For example, it can be expressed by one or more of the combination of the upper limit frequency and the lower limit frequency, one or more of the combination of the center frequency and the bandwidth, or one or more 3GPP Operating Band number.
- the frequency band information supported by the base station device 20 may further include carrier aggregation (CA: Carrier Aggregation) and channel bonding capability information.
- CA Carrier Aggregation
- band information that can be combined may be included.
- the carrier aggregation may also include information about the band that is desired to be used as a primary component carrier (PCC: Primary Component Carrier) or a secondary component carrier (SCC: Secondary Component Carrier).
- PCC Primary Component Carrier
- SCC Secondary Component Carrier
- the number of CCs that can be aggregated at the same time may be included.
- the frequency band information supported by the base station device 20 may also include information indicating a radio wave utilization priority such as PAL and GAA.
- the radio interface information may also include modulation method information supported by the base station device 20.
- modulation method information supported by the base station device 20.
- FSK Frequency Shift Keying
- n-value PSK Phase Shift Keying
- n-value QAM Quadrature Amplitude Modulation
- information indicating secondary modulation methods such as OFDM (Orthogonal Frequency Division Multiplexing), DFT-s-OFDM (DFT spread OFDM), and FBMC (Filter Bank Multi Carrier). sell.
- OFDM Orthogonal Frequency Division Multiplexing
- DFT-s-OFDM DFT spread OFDM
- FBMC Fanter Bank Multi Carrier
- the wireless interface information may include information on error correction codes.
- capabilities such as Turbo code, LDPC (Low Density Parity Check) code, and Polar code and applicable coding rate information may be included.
- MCS Modulation and Coding Scheme
- the wireless interface information may also include information indicating a function unique to each wireless technology supported by the base station device 20.
- TM Transmission Mode
- LTE Long Term Evolution
- those having two or more modes regarding a specific function can be included in the radio interface information as in the above TM.
- information indicating this may be included.
- the wireless interface information may also include information on a wireless access method (RAT: Radio Access Technology) supported by the base station device 20.
- RAT Radio Access Technology
- TDMA Time Division Multiple Access
- FDMA Frequency Division Multiple Access
- OFDMA Orthogonal Frequency Division Multiple Access
- OMA Orthogonal Multiple Access
- CDMA Code Division Multiple Access
- SCMA Synparse Code Multiple Access
- IDMA Interleaver Division Multiple Access
- SDMA Spaal Division Multiple
- Access such as non-orthogonal multiple access (NOMA)
- CSMA / CA Carrier Sense Multiple Access / Collision Avoidance
- CSMA / CD Carrier Sense Multiple Access / Collision Detection
- Connection scheme can include (Opportunistic Access) information indicating, for example.
- the wireless interface information may also include information related to the duplex mode supported by the base station device 20.
- information related to the duplex mode supported by the base station device 20 For example, for example, FDD (Frequency Division Duplex), TDD (Time Division Duplex), and FD (Full Duplex) can be included.
- TDD Frequency Division Duplex
- TDD Time Division Duplex
- FD Freull Duplex
- TDD Frame Configuration information used / supported by the base station device 20 can be added.
- information on the duplex mode may be included for each frequency band indicated by the frequency band information.
- the wireless interface information may also include information on the transmission diversity method supported by the base station device 20.
- space-time coding STC: Space Time Coding
- STC Space Time Coding
- the wireless interface information may include guard band information.
- information about the guard band size defined in the standard may be included.
- information about the guard band size desired by the base station device 20 may be included.
- the legal information is typically information about regulations that the base station device 20 must comply with, which is determined by the radio wave administrative agency in each country / region or its equivalent, and is acquired by the base station device 20. It is authentication information.
- the information regarding the regulation may typically include, for example, upper limit information of out-of-band radiation, information regarding blocking characteristics of the receiver, and the like.
- type approval (Type Approval) information FCC ID, technical standard conformance certification, etc.
- legal regulation information eg, FCC rule number, ETSI Harmonized Standard number, etc.
- Etc. may be included.
- an adjacent channel leakage ratio (ACLR: Adjacent Channel Leakage Ratio) may be used to derive and use the upper limit of out-of-band radiation.
- ACLR Adjacent Channel Leakage Ratio
- ACS Adjacent channel selectivity
- ACIR Adjacent Channel Interference Ratio
- the installer information may include information that can identify the person who installed the base station device 20 (installer), unique information associated with the installer, and the like.
- Non-Patent Document 2 discloses a CPIR-ID (Certified Professional Installer Registration ID) and a CPI name as information that can identify an installer.
- the unique information associated with the installer for example, a contact address (Mailing / Contact address), an email address, a telephone number, a PKI (Public Key Identifier), etc. are disclosed. Not limited to these, other information about the installer may be included as necessary.
- FIG. 17 is a sequence diagram for explaining the registration procedure.
- the base station device 20 or one or more communication systems including the plurality of base station devices 20 generate a registration request message using the device parameters (step S11), and notify the communication control device 40 (step S12).
- the proxy device 50 may generate and / or notify the message.
- the information may be used to process the registration request to prevent alteration. Further, some or all of the information included in the registration request may be encrypted. Specifically, for example, a process in which a public key unique to the installer is shared in advance between the installer and the communication control device 40, and the installer encrypts information using the private key is performed. Can be implemented. For example, information that is sensitive to crime prevention, such as location information, can be used as the encryption target.
- the location information may be directly written in the communication control device 40, for example, by the installer, as disclosed in Non-Patent Document 2.
- the communication control device 40 executes the registration process of the base station device 20 (step S13), and returns a registration response according to the processing result (step S14). If the information required for registration is insufficient or abnormal, the communication control device 40 records the information in the storage unit 42 and notifies normal completion. If not, the communication control device 40 notifies the registration failure. When the registration is normally completed, the communication control device 40 may allocate an ID to each communication device and enclose the ID information at the time of response and notify it. When the registration fails, typically, the base station device 20 or one or more communication systems including a plurality of base station devices 20, or operators (for example, mobile communication operators and individuals) and installers thereof are , Modify the registration request, and try the registration procedure until it is completed normally.
- the registration procedure may be executed multiple times. Specifically, the registration procedure may be re-executed when the position information is changed beyond a predetermined standard due to, for example, movement or accuracy improvement.
- the predetermined criteria are typically established by the legal system. For example, in 47 C.F.R.Part 15, Mode II personal / portable white space device is obliged to access the database again when the location information changes 100 meters or more.
- the available frequency information inquiry procedure is a procedure in which the base station device 20 or the proxy device 50 inquires of the communication control device 40 about information about available frequencies. Typically, the base station device 20 or the proxy device 50 notifies the communication control device 40 of an inquiry request including information that can identify the base station device 20 (or the base station device 20 under the proxy device 50). This will start the procedure.
- Example 1 the available frequency information is typically safe without giving fatal interference to the primary system at the position of the base station device 20 (or the base station device 20 under the proxy device 50). Is information indicating the frequency that can be secondarily used. For example, when the base station device 20 is installed in a secondary use prohibited area such as the Exclusion Zone in order to protect the primary system that uses the frequency channel F1, the frequency F1 is applied to the base station device 20. The channel is not advertised as an available channel.
- Example 2 Further, for example, even if the frequency channel is outside the secondary use prohibited area, if it is determined that the primary system will be fatally interfered with, the frequency channel may not be notified as an available channel.
- the available frequency information may include a frequency channel that is not notified as available under conditions other than the primary system protection requirement of Example 2. Specifically, for example, in order to avoid interference that may occur between the base station devices 20 in advance, other base station devices 20 existing near the base station device 20 (or the base station device 20 under the proxy device 50) In some cases, the frequency channel being used by the base station device 20 is not notified as an available channel.
- Example 4 Even in the cases corresponding to these cases (Examples 2 and 3), it is possible to notify the same frequency as that of the primary system or the nearby base station apparatus 20 as an available channel.
- the maximum allowable transmission power information is typically included in the available frequency information.
- the maximum allowable transmission power is typically represented by equivalent isotropic radiated power (EIRP).
- EIRP equivalent isotropic radiated power
- the present invention is not necessarily limited to this, and may be provided by a combination of antenna power (Conducted Power) and antenna gain, for example. Feeder Loss may also be included. Further, as the antenna gain, an allowable peak gain may be set for each spatial direction.
- the information that can identify the base station device 20 can be assumed to be, for example, the information unique to the communication device registered during the registration procedure or the ID information described in the above (Details of registration process).
- the inquiry request may include inquiry requirement information.
- the inquiry requirement information may include, for example, information indicating a frequency band of which availability is desired to be known.
- transmission power information may be included.
- the base station device 20 or the proxy device 50 can include the transmission power information, for example, when it is desired to know only the frequency information that is likely to use the desired transmission power. Inquiry requirement information does not necessarily have to be included.
- the inquiry request may include a measurement report.
- the measurement report includes the result of the measurement performed by the base station device 20 and / or the terminal device 30.
- the measurement report includes the result of the measurement performed by the base station device 20 and / or the terminal device 30.
- not only raw data but also processed information can be included.
- standardized metrics represented by RSRP (Reference Signal Received Power), RSSI (Reference Signal Strength Indicator), and RSRQ (Reference Signal Received Quality) may be used.
- FIG. 18 is a sequence diagram for explaining the available frequency information inquiry procedure.
- the base station device 20 or the proxy device 50 generates an inquiry request including information that can identify the base station device 20 (or the base station device 20 under the proxy device 50) (step S21), and sends it to the communication control device 40. Notify (step S22).
- the communication control device 40 After receiving the inquiry request, the communication control device 40 evaluates the available frequency based on the inquiry requirement information (step S23). For example, as described in Examples 1 to 3 above, it is possible to evaluate the usable frequency in consideration of the presence of the primary system, its secondary use prohibited area, and the base station device 20 in the vicinity.
- the communication control device 40 may derive the maximum allowable transmission power information.
- the allowable interference power information in the primary system or its protection zone (Protection Zone) the calculation reference position (Reference Point) information of the interference power level that the primary system suffers, the registration information of the base station device 20, and the propagation loss estimation.
- the model Specifically, for example, it is calculated by the following mathematical formula.
- P MaxTx (dBm) I Th (dBm) + PL (d) (dB) (1)
- P MaxTx (dBm) is the maximum allowable transmission power
- I Th (dBm) is the allowable interference power
- d is the distance between the reference position (Reference Point) and the base station device 20
- PL (d) (dB ) ) Is the propagation loss at distance d.
- the antenna gain in the transceiver is not explicitly shown, but it is used as a method of expressing the maximum allowable transmission power (EIRP, Conducted power, etc.) and a reference point of the received power (antenna input point, antenna output point, etc.). May be included accordingly.
- a safety margin for compensating for fluctuations due to fading may be included.
- feeder loss or the like may be considered as necessary.
- the above formula is described based on the assumption that the single base station device 20 is the interference source. For example, when it is necessary to consider the cumulative interference (Aggregated Interference) from a plurality of base station devices 20 at the same time, a correction value may be added. Specifically, for example, the correction value can be determined based on three types of interference margin methods (Fixed / Predetermined, Flexible, and Flexible Minimized) disclosed in Non-Patent Document 3.
- Method 1 when the transmission power information is included in the inquiry requirement information, the available frequency can be evaluated by a method different from the above method. It is possible. Specifically, for example, when assuming that the desired transmission power indicated by the transmission power information is used, the estimated amount of interference is below the allowable interference power in the primary system or its protection area (Protection Zone). The base station apparatus 20 (or the proxy apparatus 50) is notified that the frequency channel is available.
- the communication control device 40 may voluntarily carry out without requesting an inquiry after the above-mentioned registration procedure is normally completed. In such a case, the communication control device 40 may create the REM and the lookup table exemplified in the method 2 or an information table similar to them.
- the radio use priority such as PAL and GAA.
- the registered device parameter or the inquiry requirement includes information about the radio wave utilization priority
- information about the base station device 20 that uses high priority for example, PAL
- Cluser List in Non-Patent Document 2 is provided.
- the evaluation may be performed based on the information.
- the communication control device 40 After completing the evaluation of the usable frequency, the communication control device 40 notifies the base station device 20 (or the proxy device 50) of the evaluation result (step S24).
- the base station device 20 may use the evaluation result received from the communication control device 40 to select desired communication parameters.
- the frequency usage permission procedure is a procedure for the base station apparatus 20 to receive a secondary frequency usage permission from the communication control apparatus 40.
- the base station device 20 or one or more communication systems including the plurality of base station devices 20 communicate a frequency use permission request including information that can identify the base station device 20.
- the procedure is started by notifying the control device 40. This notification may be performed by the proxy device 50.
- the phrase "after the registration procedure has been normally completed" also means that the available frequency information inquiry procedure does not necessarily have to be performed.
- the designation method is a request method in which the base station device 20 specifies at least a desired frequency band and maximum transmission power as desired communication parameters and requests the communication control device 40 to permit operation based on the desired communication parameters.
- the parameters are not necessarily limited to these parameters, and parameters specific to the wireless interface technology (modulation method, duplex mode, etc.) may be specified. Also, information indicating the radio wave utilization priority such as PAL and GAA may be included.
- the flexible method is a request method in which the base station device 20 specifies only requirements concerning communication parameters, and requests the communication control device 40 to specify communication parameters that allow secondary usage while satisfying the requirements.
- the requirements on communication parameters may include bandwidth or desired maximum transmit power or desired minimum transmit power.
- the parameters are not necessarily limited to these parameters, and parameters specific to the wireless interface technology (modulation method, duplex mode, etc.) may be specified. Specifically, for example, one or more of TDD Frame Configurations may be selected and notified in advance.
- ⁇ Either method may include a measurement report.
- the measurement report includes the result of the measurement performed by the base station device 20 and / or the terminal device 30.
- the measurement report includes the result of the measurement performed by the base station device 20 and / or the terminal device 30.
- not only raw data but also processed information can be included.
- standardized metrics represented by RSRP (Reference Signal Received Power), RSSI (Reference Signal Strength Indicator), and RSRQ (Reference Signal Received Quality) may be used.
- FIG. 19 is a sequence diagram for explaining the frequency usage permission procedure.
- the base station device 20 or one or more communication systems including the plurality of base station devices 20 generate a frequency use permission request including information that can identify the base station device 20 (step S31) and notify the communication control device 40. Yes (step S32).
- the proxy device 50 may generate and / or notify the request.
- the frequency usage permission request is acquired by, for example, the acquisition unit 441 of the communication control device 40.
- the communication control device 40 After acquiring the frequency usage permission request, the communication control device 40 performs frequency usage permission processing based on the frequency usage permission request method (step S33). For example, the communication control device 40 uses ⁇ 5-2. Available frequency information inquiring procedure> Using the method described in Examples 1 to 3 above, frequency usage permission processing is performed in consideration of the presence of the primary system, its secondary usage prohibited area, and the nearby base station device 20. It is possible.
- the communication control device 40 When the flexible method is used, the communication control device 40 is configured to operate in ⁇ 5-2.
- the procedure of the available frequency information inquiry procedure> in Example 4 may be used to derive the maximum allowable transmission power information.
- the communication control device 40 is configured so that the allowable interference power information in the primary system or its protection zone (Protection Zone), the calculation reference position (Reference Point) information of the interference power level of the primary system, and the base station device 20.
- the maximum allowable transmission power is calculated using the registration information and the propagation loss estimation model. For example, the communication control device 40 calculates the maximum allowable transmission power by the following equation (2).
- P MaxTx (dBm) I Th (dBm) + PL (d) (dB) (2)
- P MaxTx (dBm) is the maximum allowable transmission power
- I Th (dBm) is the allowable interference power
- d is the distance between the reference position (Reference Point) and the base station device 20
- PL (d) (dB ) ) Is the propagation loss at distance d.
- the antenna gain in the transceiver is not explicitly shown, but it is used as a method of expressing the maximum allowable transmission power (EIRP, Conducted power, etc.) and a reference point of the received power (antenna input point, antenna output point, etc.).
- the mathematical formula may be modified and used accordingly.
- a safety margin for compensating for fluctuations due to fading may be included.
- feeder loss or the like may be considered as necessary.
- the above formula is described based on the assumption that the single base station device 20 is the interference source. For example, when it is necessary to consider the cumulative interference (Aggregated Interference) from a plurality of base station devices 20 at the same time, a correction value may be added. Specifically, for example, the correction value can be determined based on the three types (Fixed / Predetermined, Flexible, Flexible Minimized) disclosed in Non-Patent Document 3.
- Non-Patent Document 6 a propagation loss model such as eHATA (Extended Hata) or ITM (Irregular Terrain Model) is adopted for each application.
- eHATA Extended Hata
- ITM International Terrain Model
- the propagation loss model need not be limited to these when implementing the present invention.
- the model is not specified for a given purpose, you may use it as needed.
- an aggressive model such as a free space loss model. Can be used differently by using a conservative model.
- ⁇ 5-2. Available frequency information inquiry procedure> It is possible to perform the frequency usage permission process by using the method described in Method 1. Specifically, for example, if the estimated amount of interference is below the allowable interference power in the primary system or its protection area (Protection Zone), assuming that the desired transmission power indicated by the transmission power information is used. The base station device 20 (or the proxy device 50) is notified that the use of the frequency channel is permitted.
- the radio use priority such as PAL and GAA.
- the registered device parameter or the inquiry requirement includes information about the radio wave utilization priority
- information about the base station device 20 that uses high priority for example, PAL
- Cluser List in Non-Patent Document 2 is provided.
- the evaluation may be performed based on the information.
- the frequency usage permission process does not necessarily have to be performed when a request is received.
- the communication control device 40 may voluntarily implement the request without the frequency use permission request after the registration procedure is normally completed.
- the frequency usage permission determination process may be performed at regular intervals. In such a case, ⁇ 5-2.
- An available information table similar to the REM and the look-up table illustrated in the method 2 of the procedure of available frequency information inquiry> may be created.
- the communication control device 40 After the completion of the frequency usage permission process, the communication control device 40 notifies the base station device 20 of the determination result (step S34).
- the frequency usage notification is a procedure in which the base station device 20 or the proxy device 50 notifies the communication control device 40 of the frequency usage based on the communication parameter permitted to be used in the frequency usage permission procedure. .. Typically, the procedure is started when the base station device 20 or the proxy device 50 notifies the communication control device 40 of a notification message including information that can identify the base station device 20.
- the base station device 20 may start or continue radio wave transmission.
- the grant status is Granted
- the grant status is changed to Authorized by the success of this procedure.
- the grant status is changed to Granted or Idle due to the failure of this procedure.
- the frequency usage notification may be referred to as a heartbeat request (Heartbeat Request) or simply heartbeat (Heartbeat).
- the heartbeat request transmission interval is sometimes called the heartbeat interval.
- the description of the heartbeat request or the heartbeat that appears in the following description can be appropriately replaced with other description indicating “request for starting or continuing radio wave transmission”.
- the heartbeat interval can be replaced with another description (for example, transmission interval) indicating the transmission interval of the frequency usage notification.
- FIG. 20 is a sequence diagram for explaining the frequency usage notification procedure.
- the base station device 20 or one or more communication systems including a plurality of base station devices 20 generate a notification message including information that can identify the base station device 20 (step S41) and notify the communication control device 40 ( Step S42).
- the proxy device 50 may generate and / or notify the message.
- the communication control device 40 may determine whether the start / continuation of the radio wave transmission is permitted (step S43).
- a determination method for example, confirmation of frequency usage information of the primary system can be cited.
- the start / continuation permission or refusal of the radio wave transmission is determined based on the change of the frequency used by the primary system, the change of the frequency use situation of the primary system (for example, ship-borne radar) in which the radio wave is not constantly used. It is possible to
- the communication control device 40 notifies the base station device 20 (or the proxy device 50) of the determination result (step S44).
- a communication parameter reconfiguration command may be issued from the communication control device 40 to the base station device 20 (or the proxy device 50). Typically, it can be implemented in the response to the frequency usage notification. For example, recommended communication parameter information may be provided.
- the procedures do not necessarily have to be implemented individually, as described below.
- the above-mentioned two different procedures may be realized by substituting a third procedure having the roles of two different procedures.
- the registration request and the available frequency information inquiry request may be integrally notified.
- the frequency usage permission procedure and the frequency usage notification may be integrally performed.
- the combination is not limited to these and may be three or more. Further, the above procedure may be performed separately.
- the expression "acquiring information” or its equivalent in this document does not necessarily mean that the information is acquired according to the above procedure.
- the position information of the base station device 20 is used in the available frequency evaluation process, it is not always necessary to use the information acquired in the registration procedure, and the available frequency inquiry procedure request includes the position information. If so, it means that the position information may be used. In other words, it means that the described parameters may be included in other procedures within the scope and technical feasibility of the description.
- information that may be included in the response from the communication control device 40 to the base station device 20 (or the proxy device 50) shown in the above procedure may be notified by push.
- push notification may be made of available frequency information, recommended communication parameter information, notification of refusal of radio wave transmission, and the like.
- Individual parameters are defined as "operational parameters peculiar to a specific slave WSD (White Space Device)" in the non-patent document.
- the communication parameters are calculated using the device parameters of the slave WSD corresponding to the terminal device 30.
- a feature is that it is calculated by WSDB (White Space Database) using the position information of the slave WSD.
- the individual parameter is suitable for low mobility or the terminal device 30 fixedly installed.
- Generic parameters are defined as "operation parameters that can be used by any slave WSD located within the coverage area of a given master WSD (corresponding to the base station device 20)" in the non-patent document. There is. The feature is that it is calculated by WSDB without using the position information of the slave WSD.
- the information for the terminal device 30 can be provided from the base station device 20 by unicast / broadcast.
- a broadcast signal represented by CVS (Contact Verification Signal) defined by FCC rule Part 15 Subpart H may be used.
- CVS Contact Verification Signal
- FCC rule Part 15 Subpart H may be used.
- it may be provided by a broadcast signal specific to the air interface.
- PBCH Physical Broadcast Channel
- FIG. 21 is a sequence diagram for explaining the management information exchange procedure.
- the communication control device 40 1 and the communication control device 40 2 exchange information.
- the communication control devices for exchanging information are not limited to the two communication control devices 40 1 and 40 2 .
- the communication device registration information is typically device parameters of the base station device 20 registered in the communication control device 40 in the above registration procedure. Not all registered information needs to be exchanged. For example, information that may be personal information need not be exchanged. Further, when exchanging the communication device registration information, the encrypted / fuzzy information may be exchanged. For example, information converted into a binary value or information signed using a digital signature mechanism may be exchanged.
- the communication device communication parameter information is typically information related to the communication parameters currently used by the base station device 20. It is desirable that at least information indicating the frequency used and the transmission power is included. Other communication parameters may be included.
- Area information is typically information that indicates a certain geographical area. This information may include area information with various attributes in various ways.
- protection area information of the base station device 20 that is a high-priority secondary system such as PPA (PAL Protection Area) disclosed in Non-Patent Document 5 may be included.
- the area information in this case can be expressed by, for example, a set of three or more geographical position coordinates.
- a plurality of communication control devices 40 can refer to a common external database, it can be represented by an ID indicating the information.
- information indicating the coverage of the base station device 20 may be included.
- the area information in this case can also be expressed by, for example, a set of three or more geographical position coordinates. Further, for example, assuming a circle having the geographical position of the base station device 20 as an origin, it can be represented by information indicating a radius size. Further, for example, when a plurality of communication control devices 40 can refer to a common external database, it can be represented by an ID indicating the information.
- information related to the area division predetermined by the government may be included. Specifically, for example, it is possible to indicate a certain area by indicating an address. Further, for example, a license area or the like can be similarly expressed.
- the area information does not necessarily have to represent a planar area and may represent a three-dimensional space.
- it may be expressed using a spatial coordinate system.
- information indicating a predetermined closed space such as the number of floors of a building, the floor or room number may be used.
- ID designation method Period designation method Area designation method Dump method
- the ID designation method is a method of acquiring information corresponding to the above-mentioned ID by using an ID given in advance for specifying the information managed by the communication control device 40.
- the communication control device 40 1 manages the base station device 20 with ID: AAA.
- the communication controller 40 2 to, ID to the communication control device 401: acquires information request with AAA.
- the communication control device 40 1 with an ID performs AAA information retrieval, and notifies the registration information of the relevant base station apparatus 20, the communication parameter information in response.
- the term designation method allows a specific term to be designated, and information satisfying a prescribed condition can be exchanged during that term.
- the predetermined condition is, for example, whether or not the information has been updated. For example, when acquisition of communication device information in a specific period is specified by a request, communication is performed with the registration information of the base station device 20 newly registered during the period and the registration information of the base station device 20 whose communication parameters have been changed. Parameter information can be notified in the response.
- the predetermined condition may be, for example, whether or not the communication control device 40 records. For example, when acquisition of the communication device information in the specific period is designated by the request, the registration information of the base station device 20 and the communication parameter information recorded by the communication control device 40 in the period can be notified by a response. Furthermore, the latest information in the period can be notified. Alternatively, the update history may be notified for each piece of information.
- a specific area is designated and information belonging to the area is exchanged. For example, when acquisition of the communication device information in the specific area is designated by the request, the registration information of the base station device 20 installed in the area and the communication parameter information can be notified by a response.
- the dump method is a method of providing all information recorded by the communication control device 40. At least the information about the base station device 20 and the area information are preferably provided in a dump method.
- the explanation of the information exchange between the communication control devices 40 up to this point is based on the pull method. That is, it is a form in which information corresponding to the parameter specified in the request is returned, and can be realized by the HTTP GET method as an example.
- the method is not limited to the pull method, and information may be actively provided to the other communication control device 40 by the push method.
- the push method can be realized by the HTTP POST method, for example.
- the communication controllers 40 may implement commands and / or requests for each other. Specifically, as an example, reconfiguration of the communication parameters of the base station device 20 can be cited. For example, when it is determined that the base station device 20 1 managed by the communication control device 40 1 is greatly interfered with by the base station device 20 4 managed by the communication control device 40 2 , the communication control device 40 1 May request the communication control device 40 2 to change the communication parameter of the base station device 20 4 .
- Another example is reconfiguration of area information. For example, when there is a defect in the calculation of the coverage information and the protection area information regarding the base station device 20 4 managed by the communication control device 40 2 , the communication control device 40 1 informs the communication control device 40 2 of the area information. You may request the reconstruction. Other than this, the area information reconfiguration request may be made for various reasons.
- Heartbeat related operations Next, the operation related to the heartbeat of the communication system 2 will be described.
- FIG. 22 is a sequence diagram showing an example of an operation related to heartbeat. Specifically, FIG. 22 shows ⁇ 5-3. Frequency usage permission procedure> and ⁇ 5-4. It is a sequence diagram which shows operation
- the periodic process is a process for executing information synchronization between the communication control devices 40 and calculation related to protection of the primary system.
- the periodic process is, for example, CPAS (Coordinated Periodic Activities among SASs) shown in Non-Patent Document 7 and Non-Patent Document 9.
- CPAS Coordinatd Periodic Activities among SASs
- the periodic processing may be referred to as periodic protection calculation.
- the execution timing of the periodic processing is, for example, 24 hours after the execution of the previous periodic processing. Of course, the execution interval of the periodic processing is not limited to 24 hours.
- FIG. 23 is a diagram showing specific processing contents of the periodic processing.
- the communication control device 40 1 and the communication control device 40 2 perform information synchronization and primary system protection calculation.
- each of the plurality of communication control devices 40 executes a periodic process (step S61). First, each of the plurality of communication control devices 40 synchronizes information with the other communication control devices 40 (step S61a). Then, each of the plurality of communication control devices 40 performs the primary system protection calculation (step S61b, step S61c). At this time, the communication control device 40 may calculate an estimated value of the amount of interference that each communication node (for example, the base station device 20) can individually give to the primary system, a surplus interference margin, or the like.
- the base station apparatus 20 or the proxy device 50 sends a grant request (Grant Request) to the communication control apparatus 40 1 (step S62).
- the transmission of this grant request may be performed by the transmission unit 243 of the base station device 20 or the transmission unit 543 of the proxy device 50.
- the acquisition unit 441 of the communication control device 40 1 obtains the transmitted grants the request.
- Communication control device 40 1 allocates the available frequency to the base station device 20 on request. After assigning frequency, the communication control device 40 1, the base station apparatus 20 or the proxy device 50, transmits a grant response (Grant Response).
- the communication control device 40 reporting the success of the grant request (Approve shown in FIG. 22) as a grant response (step S63).
- This notification, the notification unit 444 of the communication control device 40 1 may perform. Due to the success of the grant request, the state of the grant of the base station device 20 shifts from Idle to Granted, as shown in FIG.
- the communication control device 40 1, the base station apparatus 20 or the proxy device 50 may notify the heartbeat interval (Heartbeat Interval) using the grant response.
- the heartbeat interval notified to the base station device 20 or the proxy device 50 may be “240 seconds or less” as described above. Further, the heartbeat interval is not a fixed value such as "240 seconds", which determination unit 443 of the communication control device 40 1, based on information concerning interference margin to allocate, for example, in base station apparatus 20, it was determined in each case May be At this time, the heartbeat interval determination method may be selected from a plurality of determination methods. The method of determining the heartbeat interval will be described in detail later.
- the base station apparatus 20 or the proxy device 50 transmits, to the communication control device 40 1 heartbeat request (Heartbeat Request) (step S64).
- the transmission of the heartbeat request may be performed by the transmission unit 243 of the base station device 20 or the transmission unit 543 of the proxy device 50.
- the acquisition unit 441 of the communication control device 40 1 obtains a heartbeat request sent.
- the communication control device 40 1 sends a heartbeat response (Heartbeat Response).
- the grant assigned to the base station device 20 has not yet passed the periodic processing (for example, CPAS). Therefore, in the example of FIG. 22, the communication control device 40 1 can not approve the start of the radio transmission. Therefore, the communication control device 40 1 sends a heartbeat response wave transmission instruction to stop the (Suspension instruction) (step S65).
- the base station apparatus 20 or the proxy apparatus 50 continues to send heartbeat requests heartbeat interval notified from the communication control device 40 1.
- the communication control device 40 for this heartbeat request, the communication control device 40 1, until the next periodic processing is completed, continues to transmit a stop instruction of the radio wave transmitted as a heartbeat response.
- the communication control device 40 1, the base station apparatus 20 or the proxy device 50 may notify the heartbeat interval using a heartbeat response. This notification, the notification unit 444 of the communication control device 40 1 may perform.
- the heartbeat interval notified to the base station device 20 or the proxy device 50 may be “240 seconds or less” as described above, or may be another value. The method of determining the heartbeat interval will be described in detail later.
- step S66 when a running time of the periodic processing, the plurality of communication control device 40 including the communication control device 40 1, respectively, to perform a periodic process.
- the plurality of communication control devices 40 respectively synchronize information with other communication control devices 40 as shown in FIG. 23 (step S66a).
- step S66b, step S66c each of the plurality of communication control devices 40 performs the primary system protection calculation.
- the base station apparatus 20 or the proxy device 50 sends a heartbeat request to the communication control apparatus 40 1 (step S67).
- the transmission of the heartbeat request may be performed by the transmission unit 243 of the base station device 20 or the transmission unit 543 of the proxy device 50.
- the acquisition unit 441 of the communication control device 40 1 obtains a heartbeat request sent.
- the communication control device 40 1 sends a heartbeat response.
- grant allocated to the base station apparatus 20 than passes through the periodic processing the communication control device 40 1 can authorize the start of the radio wave transmitted to the base station apparatus 20 which has transmitted the heartbeat request. Therefore, the communication control unit 40 1, as the heartbeat response, and transmits the success of the heartbeat response a (Authorize shown in FIG. 22) (step S68).
- This notification, the notification unit 444 of the communication control device 40 1 may perform. Due to the success of the heartbeat request, the grant state of the base station device 20 shifts from Granted to Authorized, as shown in FIG.
- the communication control device 40 1, the base station apparatus 20 or the proxy device 50 may notify the heartbeat interval using a heartbeat response. This notification, the notification unit 444 of the communication control device 40 1 may perform.
- the heartbeat interval notified to the base station device 20 or the proxy device 50 may be “240 seconds or less” as described above, or may be another value. The method of determining the heartbeat interval will be described in detail later. Thereafter, the base station apparatus 20 or the proxy apparatus 50 continues to send heartbeat requests heartbeat interval notified from the communication control device 40 1.
- a plurality of determination methods are proposed as the determination method of the heartbeat interval.
- the following determination method is just an example.
- the method of determining the heartbeat interval is not limited to the method described below. Since the first heartbeat immediately after the grant response (Approve) is to be performed immediately according to the standard, the time interval between them will be described as zero for simplicity. Of course, if this time interval has to be taken into account, it may be taken into account in a suitable range. It should be noted that the “heartbeat interval” used in the following description corresponds to the maximum heartbeat interval from the second heartbeat onward.
- Heartbeat interval determination method (first determination method)> First, the first determination method will be described. As described above, the communication control device 40 gives an instruction to stop the radio wave transmission to the grant that has not passed the periodic processing until the next periodic processing, even if it receives a heartbeat request ( Continue sending Suspension instruction). This is very wasteful. Therefore, in the first determination method, the communication control device 40 sets the heartbeat interval in the base station device 20 or the proxy device 50 so as to perform the heartbeat after the completion of the next periodic process (for example, CPAS).
- the next periodic process for example, CPAS
- the heartbeat interval is determined by, for example, the determination unit 443 of the communication control device 40.
- the heartbeat interval can be determined, for example, by the following Expression (3). ⁇ Heartbeat, Interval [sec]> ⁇ CPAS, Processing [sec] + ⁇ CPAS, Interval [sec]-(t res -t Prev, CPAS ) [sec]... (3)
- ⁇ Heartbeat, Interval is a heartbeat interval
- ⁇ CPAS Processing is a time interval related to cyclic processing (for example, CPAS processing)
- ⁇ CPAS is a time interval between cyclic processing
- t Prev CPAS is a previous cycle. This is the time when the statistical processing was started.
- the unit of the time interval is “second” in the formula (1), it may be replaced with another unit such as “minute” as necessary.
- next heartbeat interval is set to “240 seconds or less”.
- Heartbeat interval determination method (second determination method)> Next, the second determination method will be described.
- the first determination method described above can be applied when it is determined as a result of the previous periodic processing that there is no surplus interference margin that can be allocated to the base station device 20. However, if there is a multiplicative interference interference that can be distributed in the previous periodic process, it is possible to transition the grant state of the base station device 20 to Authorized without waiting for the next periodic process within the range.
- the communication control device 40 immediately performs the primary system protection calculation after request acquisition in order to allocate the surplus interference margin to the base station device 20, and after the completion of the primary system protection calculation.
- a heartbeat interval is set in the base station device 20 or the proxy device 50 so as to perform a heartbeat.
- the time required to calculate the protection of the primary system is ⁇ calc [sec].
- the heartbeat interval ⁇ Heartbeat, Interval can be set as in the following Expression (4). ⁇ Heartbeat, Interval [sec]> ⁇ calc [sec]... (4)
- the base station device 20 can transmit radio waves without waiting for the completion of the next periodic process. Moreover, there is no waste of the base station device 20 or the proxy device 50 continuing to transmit the heartbeat during the primary system protection calculation.
- Heartbeat interval processing flow Note that the method of determining the heartbeat interval used by the communication control device 40 does not necessarily have to be one.
- the communication control device 40 may determine the heartbeat interval using a predetermined determination method selected from a plurality of determination methods. For example, the communication control device 40 may determine the heartbeat interval using either the first determination method or the second determination method according to a predetermined criterion. At this time, the communication control device 40 may select the determination method based on information about the interference margin to be distributed to the base station device 20 (for example, the surplus amount of the interference margin that can be distributed to the base station device 20).
- FIG. 24 is a flowchart showing a communication control process relating to the determination of the heartbeat interval. The process illustrated in FIG. 24 is executed, for example, when the communication control device 40 receives a grant request from the base station device 20 or the proxy device 50, or the first heartbeat request after a successful grant request.
- the acquisition unit 441 of the communication control device 40 receives a grant request from the one or more predetermined base station devices 20, or a predetermined proxy device 50 representing the one or more predetermined base station devices 20, or a grant request success.
- the subsequent first heartbeat request is acquired (step S71).
- the determination unit 442 of the communication control device 40 determines whether or not there is a surplus of interference margin (surplus interference margin) to be distributed to one or a plurality of predetermined base station devices 20 (step S72).
- the determination unit 443 of the communication control device 40 uses the above-described first determination method to determine 1 or The heartbeat interval of each of the plurality of predetermined base station devices 20 is determined (step S73). That is, the determining unit 443 determines the heartbeat interval so that the heartbeat request is transmitted after the next periodic processing is completed.
- the determination unit 443 uses one or more predetermined determination methods by using the above-described second determination method.
- the heartbeat interval of each base station device 20 is determined (step S74). That is, the determining unit 443 determines the heartbeat interval so that the heartbeat is transmitted after the completion of the primary system protection calculation.
- the notification unit 444 of the communication control device 40 heartbeats the one or more predetermined base station devices 20 or the predetermined proxy device 50 representing the one or more predetermined base station devices 20.
- the interval is notified (step S75).
- the heartbeat interval notification may be performed using a grant response or a heartbeat response. Thereby, the heartbeat interval is set in one or a plurality of predetermined base station devices 20.
- the base station device 20 or the proxy device 50 can be made to perform the next heartbeat at an appropriate timing. As a result, the efficiency of signaling of the communication system 2 is improved.
- FIG. 25 is a flowchart showing a request transmission process related to the transmission of a heartbeat request. The process illustrated in FIG. 25 is executed, for example, when the grant response or the heartbeat response from the communication control device 40 includes information on the heartbeat interval determined by the communication control device 40.
- the acquisition unit 241 of the base station device 20 acquires information on the heartbeat interval determined by the communication control device 40 (step S81). Then, the setting unit 242 of the base station device 20 sets the acquired heartbeat interval (step S82). For example, the setting unit 242 records the value of the heartbeat interval in a predetermined semiconductor register that controls the transmission of the heartbeat request. Then, the transmission unit 243 of the base station device 20 transmits a heartbeat request to the communication control device 40 according to the set heartbeat interval (step S83).
- the base station device 20 can perform the heartbeat at an appropriate timing, so that the efficiency of signaling of the communication system 2 is improved.
- Heartbeat interval determination method (third determination method)>
- the communication control device 40 controls a plurality of communication devices (for example, the base station device 20 and / or the proxy device 50)
- many communication devices access the communication control device 40 at the same time.
- the value of the heartbeat interval is not a fixed value (for example, “240 seconds or less”) but a value determined by the communication control device 40 according to a predetermined standard. In this case, depending on the standard, a large number of heartbeat requests may be transmitted to the communication control device 40 at the same time without being dispersed in time.
- the first determination method is to set a heartbeat interval so that a heartbeat request is transmitted after the next periodic processing.
- the communication control device 40 may deteriorate the performance due to a sudden increase in load. In this case, the communication control device 40 may not be able to process the heartbeat request, and efficient frequency management may not be possible.
- the communication control device 40 determines the value of the heartbeat interval so that the heartbeat requests are distributed and transmitted.
- the determination unit 443 of the communication control device 40 determines the heartbeat interval so that the heartbeat request is transmitted after the next periodic process
- the determination unit 443 transmits the heartbeat request after the next periodic process.
- a margin time different from the margin time added to the heartbeat interval of the other second wireless system (base station device 20 or proxy device 50) may be added.
- the case where the margin time is added is not limited to this case.
- the determination unit 443 of the communication control device 40 determines a different margin time ( ⁇ margin, i ) for each communication device that transmits a heartbeat request (for example, for each base station device 20 and / or for each proxy device 50). You may. Then, the determining unit 443 adds the margin time ( ⁇ margin, i ) to the heartbeat interval ( ⁇ Heartbeat, Interval ) determined by the predetermined determining method (for example, the first determining method or the second determining method described above). You may. The determining unit 443 may determine the heartbeat interval ( ⁇ ′ Heartbeat, Interval, i ) added with the margin time ⁇ marg, i as the heartbeat interval to be set in the base station device 20 or the proxy device 50.
- i indicates the index of the communication device (for example, for each base station device 20 and / or the proxy device 50) that transmits the heartbeat request.
- ⁇ ' Heartbeat, Interval, i ⁇ Heartbeat, Interval + ⁇ margin, i ... (5)
- the determination unit 443 randomly selects a value that becomes the margin time ⁇ margin, i from the range of 0 to ⁇ margin, max [sec].
- ⁇ margin, max is the maximum value of the margin time ⁇ margin, i .
- the determination unit 443 may divide the range of 0 to ⁇ margin, max [sec] into discrete values in advance and randomly select from the discrete values. At this time, the discrete intervals are dynamically changed. Good. As a result, the transmission timing of the heartbeat request is dispersed. As a result, the processing load of the communication control device 40 is also dispersed, and efficient frequency management becomes possible.
- the determination unit 443 may set a common margin time between specific base station devices 20 (or between specific proxy devices 50). For example, the determination unit 443 groups the base station device 20 and / or the proxy device 50 according to a predetermined standard, and sets a common margin time for each group. The following four methods are assumed as the setting method.
- the proxy device 50 accesses the communication control device 40 on behalf of one or more base station devices 20, the determination unit 443 determines that the one or more base station devices 20 under the proxy device 50 have a common margin. Set the time. At this time, the proxy device 50 acquires from the communication control device 40 a heartbeat interval that is commonly used by a plurality of subordinate base station devices 20, and sends a heartbeat request of the plurality of subordinate base station devices 20 to the communication control device 40. And send them together. By setting the common heartbeat interval, the proxy device 50 can collectively transmit the heartbeat requests of the base station devices 20 thereunder to the communication control device 40, and thus the signaling efficiency of the communication system 2 is further improved. Increase.
- the communication control device 40 may have an allowable number of simultaneous accesses.
- the determination unit 443 of the communication control device 40 groups the plurality of base station devices 20 based on the allowable simultaneous access number of the communication control device 40. Then, the determining unit 443 sets a common margin time within each group. Since an optimal number of requests matching the processing capability of the communication control device 40 are transmitted simultaneously, it is possible to improve the processing efficiency of the communication control device 40 while improving the signaling efficiency.
- the determining unit 443 may group a plurality of base station devices 20 subordinate to one proxy device 50 into a plurality of groups. For example, when the total number of base station devices 20 bundled by one proxy device 50 exceeds the allowable simultaneous access number of the communication control device 40, the determination unit 443 groups the plurality of base station devices 20 under the control of the proxy device 50.
- heartbeats may be performed in group units.
- the communication control device 40 it is desirable to notify the communication control device 40 of the total number of base station devices 20 bundled by the proxy device 50. This notification may be performed by the proxy device 50 itself or may be performed by another device that manages the proxy device 50. If the total number of base station devices 20 bundled by the proxy device 50 is not notified to the communication control device 40, the communication control device 40 estimates the total number of base station devices 20 bundled by the proxy device 50 based on the access record or the like. Good.
- the communication control device 40 notify the proxy device 50 of the information on the grouping performed by the communication control device 40.
- the proxy device 50 can bundle the requests from the base station device 20 based on the grouping instructed by the communication control device 40. As a result, the signaling efficiency of the communication system 2 is increased.
- the determination unit 443 of the communication control device 40 may group the base station devices 20 that are “contributors” of the cumulative interference power in the primary system protection calculation into one group. Then, the determining unit 443 may make the margin time common within the group.
- the determination unit 443 may consider the base station devices 20 located in the interference calculation consideration area as “contributors” of the cumulative interference power and group them.
- the interference calculation consideration area may be defined, for example, on the basis of the calculation reference position (Reference Point) information of the interference power level that the primary system suffers.
- the determination unit 443 of the communication control device 40 groups the base station devices 20 in consideration of mutual interference groups.
- the mutual interference group is a group of base station devices 20 that interfere with each other. That is, the determination unit 443 sets the base station devices 20 that may interfere with each other as one group. For example, the determination unit 443 sets the base station devices 20 that have a positional relationship in which the ranges (coverages) that cover communication overlap, as one group. Since the heartbeat request of the base station device 20 that is highly likely to have the same request result is transmitted at the same time, the process of the communication control device 40 becomes easy.
- the determination unit 443 of the communication control device 40 determines the heartbeat interval based on the information on the status of the grant. For example, the determining unit 443 determines a heartbeat interval that is common to grants in the same state (for example, Granted / Authorized).
- the determination unit 443 determines the heartbeat interval for the grant in the Granted state by using the first determination method or the second determination method. Note that when there are a plurality of base station devices 20 in the communication system 2, the determination unit 443 may further determine the heartbeat interval in consideration of the third determination method.
- the determining unit 443 sets a heartbeat interval that is normally used for grants in the Authorized state.
- the heartbeat interval normally used may be “240 seconds or less”. Note that when there are a plurality of base station devices 20 in the communication system 2, the determination unit 443 may further determine the heartbeat interval in consideration of the third determination method.
- FIG. 26 is a diagram showing a state in which a common heartbeat interval is set for grants in the same state.
- one base station device 20 has four grants Grant1 to Grant4. Grant1 and Grant3 are grants in the Authorized state, and Grant2 and Grant4 are grants in the Granted state.
- Grant1 and Grant3 are grants in the Authorized state
- Grant2 and Grant4 are grants in the Granted state.
- the grant in the Granted state and the grant in the Authorized state have different heartbeat intervals.
- the base station device 20 does not execute the heartbeat request regarding the grants (Grant 2 and Grant 4) in the Granted state until the periodic process is completed.
- the communication system 2 can improve signaling efficiency. As a result, efficient use of radio resources becomes possible.
- the determining unit 443 of the communication control device 40 may similarly determine a common heartbeat interval for a grant in that state when another grant state exists.
- the determining unit 443 sets a common heartbeat interval for the base station devices 20 having the same grant. More specifically, the determining unit 443 determines the heartbeat interval for the base station device 20 having the grant in the Granted state by using the first determining method or the second determining method. A heartbeat interval that is normally used is set for the base station device 20 that has a grant in the Authorized state. In any case, the heartbeat interval may be determined in consideration of the third determination method. Also in this case, the communication system 2 can improve the signaling efficiency.
- the determination unit 443 of the communication control device 40 determines the heartbeat interval based on information on whether or not the grant has passed the periodic process (periodic protection calculation of the primary system). For example, the determining unit 443 determines a common heartbeat interval for a New Entrant Grant or an Existing Grant.
- the new entrant grant is a grant that has never passed the periodic processing (for example, CPAS)
- the extinguishing grant is a grant that has passed the periodic processing.
- the determining unit 443 determines the heartbeat interval for the New Entrant grant by using the first determining method or the second determining method. Note that when there are a plurality of base station devices 20 in the communication system 2, the determination unit 443 may further determine the heartbeat interval in consideration of the third determination method.
- the determining unit 443 sets the heartbeat interval that is normally used for the extinguishing grant.
- the heartbeat interval normally used may be “240 seconds or less”. Note that when there are a plurality of base station devices 20 in the communication system 2, the determination unit 443 may further determine the heartbeat interval in consideration of the third determination method.
- the determination unit 443 does not necessarily need to set a common heartbeat interval for all the extinguishing grants.
- the setting example 2 also enables the communication system 2 to improve signaling efficiency. As a result, efficient use of radio resources becomes possible.
- the determining unit 443 sets a common heartbeat interval for the base station device 20 having the new entrant grant or the base station device 20 having the exiting grant. More specifically, the determination unit 443 determines the heartbeat interval for the base station device 20 having the new entrant grant by using the first determination method or the second determination method. For the base station device 20 having an exiting grant, a normally used heartbeat interval is set. In any case, the heartbeat interval may be determined in consideration of the third determination method. Also in this case, the communication system 2 can improve the signaling efficiency.
- the communication control device 40 of this embodiment is not limited to the device described in the above embodiment.
- the communication control device 40 may be a device having a function other than controlling the base station device 20 that secondarily uses the frequency band in which frequency sharing is performed.
- the network manager may have the function of the communication control device 40 of the present embodiment.
- the network manager may be, for example, a C-BBU (Centralized Base Band Unit) having a network configuration called C-RAN (Centralized Radio Access Network) or a device including the same.
- the base station including the access point
- These devices can also be regarded as communication control devices.
- the communication system 1 is the first wireless system and the base station device 20 is the second wireless system.
- the first wireless system and the second wireless system are not limited to this example.
- the first wireless system may be a communication device (for example, the wireless communication device 10)
- the second wireless system may be a communication system (communication system 2).
- the wireless system that appears in this embodiment is not limited to a system including a plurality of devices, and can be appropriately replaced with a “device”, a “terminal”, or the like.
- the communication control device 40 is assumed to be a device belonging to the communication system 2, but it does not necessarily have to be a device belonging to the communication system 2.
- the communication control device 40 may be a device external to the communication system 2.
- the communication control device 40 may control the base station device 20 indirectly via a device configuring the communication system 2 without directly controlling the base station device 20.
- the communication control device 40 may manage a plurality of secondary systems. In this case, each secondary system can be regarded as the second wireless system.
- the existing system that uses the target band is called the primary system, and the secondary user is called the secondary system.
- the terms primary system and secondary system may be replaced with other terms.
- the macro cell in HetNET Heterogeneous Network
- the small cell or relay station may be the secondary system.
- the base station may be the primary system
- the Relay UE or Vehicle UE that realizes D2D or V2X (Vehicle-to-Everything) existing within its coverage may be the secondary system.
- the base station is not limited to a fixed type, but may be a portable type / mobile type.
- the interface between each entity does not matter whether it is wired or wireless.
- the interface between each entity (communication device, communication control device, or terminal device) that has appeared in this embodiment may be a wireless interface that does not depend on frequency sharing.
- Examples of the wireless interface that does not depend on frequency sharing include a wireless interface provided by a mobile communication carrier via a licensed band, a wireless LAN communication that uses an existing unlicensed band, and the like.
- the control device for controlling the wireless communication device 10, the base station device 20, the terminal device 30, or the communication control device 40 of the present embodiment may be realized by a dedicated computer system or a general-purpose computer system. Good.
- a communication program for executing the above-described operation (for example, communication control processing, adjustment processing, distribution processing, or the like) is stored in a computer-readable recording medium such as an optical disk, semiconductor memory, magnetic tape, or flexible disk.
- the control device is configured by installing the program in a computer and executing the above processing.
- the control device may be a device (for example, a personal computer) external to the wireless communication device 10, the base station device 20, the terminal device 30, the communication control device 40, or the proxy device 50.
- the control device is a device inside the wireless communication device 10, the base station device 20, the terminal device 30, the communication control device 40, or the proxy device 50 (for example, the control unit 24, the control unit 34, the control unit 44, or the control unit). 54).
- the above communication program may be stored in a disk device provided in a server device on a network such as the Internet so that it can be downloaded to a computer.
- the above-mentioned functions may be realized by cooperation between an OS (Operating System) and application software.
- the part other than the OS may be stored in a medium for distribution, or the part other than the OS may be stored in the server device and downloaded to a computer.
- each component of each device shown in the drawings is functionally conceptual, and does not necessarily have to be physically configured as shown. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or part of the device may be functionally or physically distributed / arranged in arbitrary units according to various loads and usage conditions. It can be integrated and configured.
- the base station device 20 that performs radio communication by using radio waves in the frequency band used by the communication system 1 starts or continues radio wave transmission.
- a request for doing so (for example, a heartbeat request) is acquired from the base station device 20 or the proxy device 50 that represents the base station device 20.
- the communication control device 40 transmits a request (for example, a heartbeat request) transmitted from a predetermined base station device 20 among the plurality of base station devices 20 or a predetermined proxy device 50 among the plurality of proxy devices 50.
- Determine a transmission interval eg, heartbeat interval.
- the communication control device 40 notifies the predetermined base station device 20 or the predetermined proxy device 50 of the determined transmission interval.
- the predetermined base station device 20 or the predetermined proxy device 50 acquires information on the transmission interval determined by the communication control device 40 from the communication control device 40. Then, the request (for example, heartbeat request) is transmitted at the acquired transmission interval.
- the request for example, heartbeat request
- the base station device 20 and / or the proxy device 50 will transmit the request at an interval appropriately determined by the communication control device 40 instead of the fixed interval, and thus the base station device 20 and / or the proxy device 50.
- the signaling efficiency is increased as a whole system.
- the communication volume of the entire system and the processing load of the communication control device 40 are reduced, so that the communication control device 40 can quickly cope with various situations. As a result, efficient use of radio resources is realized.
- a proxy that proxies the second wireless system or the second wireless system for a request for the second wireless system, which performs wireless communication using radio waves in the frequency band used by the first wireless system, to start or continue radio wave transmission.
- An acquisition unit that acquires from the system, A determining unit that determines a transmission interval of the request transmitted from a predetermined second wireless system of the plurality of second wireless systems or a predetermined proxy system of the plurality of proxy systems; A notification unit for notifying the determined transmission interval to the predetermined second wireless system or the predetermined proxy system, And a communication control device.
- the determination unit determines the transmission interval using a predetermined determination method selected from a plurality of determination methods, The communication control device according to (1).
- the determination unit determines the transmission interval using a predetermined determination method selected from a plurality of determination methods based on information about an interference margin to be allocated to the second wireless system, The communication control device according to (1) or (2).
- the determination unit determines the transmission interval using different determination methods depending on whether there is a surplus interference margin that can be allocated to the second wireless system or not.
- the communication control device according to any one of (1) to (3) above.
- the determining unit determines the transmission interval so that the request is transmitted after the next periodic protection calculation of the first wireless system. , The communication control device according to (4).
- the determining unit protects the first wireless system so that the predetermined second wireless system uses the surplus interference margin to transmit radio waves. After calculation, determine the transmission interval so that the request is transmitted, The communication control device according to (4) or (5). (7) The determination unit adds a margin time determined according to a predetermined standard to the determined transmission interval, The communication control device according to any one of (1) to (6). (8) When the determination unit determines the transmission interval so that the request is transmitted after the next periodic protection calculation of the first wireless system, the determination unit transmits the request after the next periodic protection calculation. A margin time different from the margin time added to the transmission interval of the other one second radio system is added, The communication control device according to any one of (1) to (7).
- the determining unit classifies the plurality of second wireless systems into a plurality of groups, and adds a common margin time to the determined transmission intervals for the second wireless systems belonging to the same group.
- the communication control device according to any one of (1) to (8).
- the determination unit determines a time randomly selected for each of the second wireless systems as a margin time to be added to the transmission interval, The communication control device according to any one of (1) to (8).
- the determining unit adds a common margin time to the determined transmission intervals for the plurality of second wireless systems under the same proxy system.
- the communication control device according to any one of (1) to (8).
- the determining unit classifies the plurality of second wireless systems under the same proxy system into a plurality of groups, and the second wireless systems belonging to the same group have a common margin for the determined transmission intervals. Add time, The communication control device according to any one of (1) to (8). (13) The determining unit classifies the plurality of second wireless systems into a plurality of groups on the basis of whether or not to interfere with each other, and the second wireless systems belonging to the same group are assigned the determined transmission interval. Add a common margin time, The communication control device according to any one of (1) to (8). (14) When the predetermined second wireless system has a plurality of radio wave transmission grants, the determination unit determines the transmission interval for each grant. The communication control device according to any one of (1) to (13) above.
- the determination unit determines the transmission interval based on information regarding a grant of radio wave transmission given to the second wireless system, The communication control device according to any one of (1) to (14).
- the determination unit determines the transmission interval based on information on the state of the grant, The communication control device according to (15).
- the determining unit determines the transmission interval based on information on whether the grant is a grant that has passed the periodic protection calculation of the first wireless system, The communication control device according to (15).
- the second wireless system that performs wireless communication using radio waves in the frequency band used by the first wireless system, or a proxy system that represents the second wireless system as a request for starting or continuing radio wave transmission.
- the communication device is the proxy system, The acquisition unit acquires the transmission interval commonly used by the plurality of second wireless systems under the control, The transmission unit collectively transmits the requests of the plurality of second wireless systems under the control at the transmission interval.
- a communication method comprising. (22) Computer, A proxy that proxies the second wireless system or the second wireless system for a request for the second wireless system, which performs wireless communication using radio waves in the frequency band used by the first wireless system, to start or continue radio wave transmission.
- the acquisition unit that acquires from the system
- a determining unit that determines a transmission interval of the request transmitted from a predetermined second wireless system of the plurality of second wireless systems or a predetermined proxy system of the plurality of proxy systems;
- a notification unit that notifies the determined transmission interval to the predetermined second wireless system or the predetermined proxy system, Communication control program to function as.
- (23) Computer A proxy that proxies the second wireless system or the second wireless system for a request for the second wireless system, which performs wireless communication using radio waves in the frequency band used by the first wireless system, to start or continue radio wave transmission.
- a transmission interval of the request acquired from the system and transmitted from a predetermined second wireless system of the plurality of second wireless systems or a predetermined proxy system of the plurality of proxy systems An acquisition unit that acquires information about the transmission interval from a communication control device that notifies the determined transmission interval to the second wireless system or the predetermined proxy system.
- a transmission unit that transmits the request at the acquired transmission interval Communication program to function as.
- a communication system comprising a communication control device and a communication device, The communication control device, An acquisition unit that acquires, from the communication device or a proxy system acting on behalf of the communication device, a request for a communication device that performs radio communication using radio waves in the frequency band used by the first wireless system to start or continue radio wave transmission.
- a determining unit that determines a transmission interval of the request transmitted from a predetermined communication device of the plurality of communication devices or a predetermined proxy system of the plurality of proxy systems
- a notification unit for notifying the determined transmission interval to the predetermined communication device or the predetermined proxy system
- the communication device acquires the transmission interval determined by the communication control device from the communication control device or from the proxy system, and transmits the request at the acquired transmission interval. Communications system.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
通信制御装置(40)は、第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを、第2無線システム又は第2無線システムを代理するプロキシシステムから取得する。そして、通信制御装置(40)は、複数の第2無線システムのうちの所定の第2無線システム又は複数のプロキシシステムのうちの所定のプロキシシステムから送信されるリクエストの送信インターバルを決定する。そして、通信制御装置(40)は、所定の第2無線システム又は所定のプロキシシステムに対して、決定した送信インターバルを通知する。
Description
本開示は、通信制御装置、通信装置、及び通信制御方法に関する。
無線システム(無線装置)に割り当て可能な電波資源(無線リソース)が枯渇するという問題が表面化している。どの電波帯域もすでに既存の無線システム(無線装置)が利用しているため、新規に無線システムに電波資源を割り当てることは困難である。そこで、近年では、コグニティブ無線技術の活用による電波資源の更なる有効利用が注目されはじめている。コグニティブ無線技術では、既存の無線システムの時間的・空間的な空き電波(White Space)を利用することにより電波資源を捻出する。
WINNF-TS-0247-V1.0.0 CBRS Certified Professional Installer Accreditation Technical Specification.
WINNF-TS-0016-V1.2.1 Signaling Protocols and Procedures for Citizens Broadband Radio Service (CBRS): Spectrum Access System (SAS) - Citizens Broadband Radio Service Device (CBSD) Interface Technical Specification
ECC Report 186, Technical and operational requirements for the operation of white space devices under geo-location approach, CEPT ECC, 2013 January
White Space Database Provider (WSDB) Contract, available at https://www.ofcom.org.uk/__data/assets/pdf_file/0026/84077/white_space_database_contract_for_operational_use_of_wsds.pdf
WINNF-TS-0096-V1.2.0 Signaling Protocols and Procedures for Citizens Broadband Radio Service (CBRS): Spectrum Access System (SAS) - SAS Interface Technical Specification
WINNF-TS-0112-V1.4.1 Requirements for Commercial Operation in the U.S. 3550-3700 MHz Citizens Broadband Radio Service Band
WINNF-TS-0061-V1.2.0 Test and Certification for Citizens Broadband Radio Service (CBRS); Conformance and Performance Test Technical Specification; SAS as Unit Under Test (UUT)
IEEE Std 802.19.1aTM-2017 "Coexistence Methods for Geo-location Capable Devices Operating under General Authorization"
WINNF-SSC-0008 Spectrum Sharing Committee Policy and Procedure Coordinated Periodic Activities Policy
しかしながら、単に空き電波を利用しただけでは電波資源の有効利用が実現できるとは限らない。例えば、電波資源の有効利用を実現するためには、種々の状況に迅速に対応するために、複数の無線システム(無線装置)とそれらを制御する制御システム(制御装置)との間で、リクエストやレスポンス等の制御情報を効率的にやり取りする必要がある。しかし、状況が異なる様々なシステムが存在する中で、制御情報を効率的にやり取りするのは容易ではない。
そこで、本開示では、電波資源の効率的な利用を実現可能な通信制御装置、通信装置、及び通信制御方法を提案する。
上記の課題を解決するために、本開示に係る一形態の通信制御装置は、第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを、前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得する取得部と、複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定する決定部と、前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する通知部と、を備える。
以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なる数字を付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の構成を、必要に応じて通信制御装置401、及び402のように区別する。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、通信制御装置401、及び402を特に区別する必要が無い場合には、単に通信制御装置40と称する。
また、以下に示す項目順序に従って本開示を説明する。
1.はじめに
1-1.周波数共用実現のための無線システムの制御
1-2.本実施形態の概要
1-3.周波数と共用に関する用語について
2.通信システムの構成
2-1.通信システムの全体構成
2-2.基地局装置の構成
2-3.端末装置の構成
2-4.通信制御装置の構成
2-5.プロキシ装置の構成
3.干渉モデル
4.プライマリシステム保護方法
4-1.干渉マージン一斉配分型
4-2.干渉マージン逐次配分型
5.諸手続きの説明
5-1.登録手続き
5-2.利用可能周波数情報問い合わせ手続き
5-3.周波数利用許可手続き
5-4.周波数利用通知
5-5.諸手続きの補足
5-6.端末装置に関する諸手続き
5-7.通信制御装置間で発生する手続き
6.ハートビートに係る動作
6-1.代表的動作フロー
6-2.ハートビートインターバルの決定方法(第1の決定方法)
6-3.ハートビートインターバルの決定方法(第2の決定方法)
6-4.ハートビートインターバルに係る処理フロー
6-5.ハートビートインターバルの決定方法(第3の決定方法)
6-6.基地局装置が複数のグラント保有している場合
7.変形例
7-1.システム構成に関する変形例
7-2.その他の変形例
8.むすび
1.はじめに
1-1.周波数共用実現のための無線システムの制御
1-2.本実施形態の概要
1-3.周波数と共用に関する用語について
2.通信システムの構成
2-1.通信システムの全体構成
2-2.基地局装置の構成
2-3.端末装置の構成
2-4.通信制御装置の構成
2-5.プロキシ装置の構成
3.干渉モデル
4.プライマリシステム保護方法
4-1.干渉マージン一斉配分型
4-2.干渉マージン逐次配分型
5.諸手続きの説明
5-1.登録手続き
5-2.利用可能周波数情報問い合わせ手続き
5-3.周波数利用許可手続き
5-4.周波数利用通知
5-5.諸手続きの補足
5-6.端末装置に関する諸手続き
5-7.通信制御装置間で発生する手続き
6.ハートビートに係る動作
6-1.代表的動作フロー
6-2.ハートビートインターバルの決定方法(第1の決定方法)
6-3.ハートビートインターバルの決定方法(第2の決定方法)
6-4.ハートビートインターバルに係る処理フロー
6-5.ハートビートインターバルの決定方法(第3の決定方法)
6-6.基地局装置が複数のグラント保有している場合
7.変形例
7-1.システム構成に関する変形例
7-2.その他の変形例
8.むすび
<<1.はじめに>>
近年、無線システムに割り当て可能な電波資源(例えば、周波数)が枯渇するという問題が表面化している。しかしながら、どの電波帯域もすでに既存の無線システムが利用しているため、新規の電波資源割り当てが困難である。そこで、近年では、コグニティブ無線技術の活用による電波資源の更なる有効利用が注目されはじめている。
近年、無線システムに割り当て可能な電波資源(例えば、周波数)が枯渇するという問題が表面化している。しかしながら、どの電波帯域もすでに既存の無線システムが利用しているため、新規の電波資源割り当てが困難である。そこで、近年では、コグニティブ無線技術の活用による電波資源の更なる有効利用が注目されはじめている。
コグニティブ無線技術では、既存の無線システムの時間的・空間的な空き電波(White Space)を利活用(例えば、動的周波数共用(DSA:Dynamic Spectrum Access))することにより、電波資源を捻出する。例えば、米国では、世界的には3GPP band 42、43とされている周波数帯とオーバーラップするFederal use band(3.55-3.70GHz)の一般国民への開放を目指し、周波数共用技術を活用するCBRS(Citizens Broadband Radio Service)の法制化・標準化が加速している。
なお、コグニティブ無線技術は、動的周波数共用のみならず、無線システムによる周波数利用効率の向上にも寄与する。例えば、ETSI EN 303 387やIEEE 802.19.1-2014では、空き電波を利用する無線システム間の共存技術が規定されている。
<1-1.周波数共用実現のための無線システムの制御>
一般に周波数共用においては、各国・地域の規制当局(NRA:National Regulatory Authority)によって、周波数帯域の利用に係る免許または認可を受けた1次利用者(プライマリユーザ)の無線システム(プライマリシステム)の保護が義務付けられる。典型的には、当該NRAによってプライマリシステムの許容干渉基準値が設けられ、2次利用者(セカンダリユーザ)の無線システム(セカンダリシステム)には、共用によって発生する与干渉が許容干渉基準値を下回ることを求められる。
一般に周波数共用においては、各国・地域の規制当局(NRA:National Regulatory Authority)によって、周波数帯域の利用に係る免許または認可を受けた1次利用者(プライマリユーザ)の無線システム(プライマリシステム)の保護が義務付けられる。典型的には、当該NRAによってプライマリシステムの許容干渉基準値が設けられ、2次利用者(セカンダリユーザ)の無線システム(セカンダリシステム)には、共用によって発生する与干渉が許容干渉基準値を下回ることを求められる。
周波数共用を実現するため、例えば、通信制御装置(例えば、周波数管理データベース)が、プライマリシステムに対して致命的な干渉を与えないようにセカンダリシステムの通信を制御する。通信制御装置は、通信装置の通信等を管理する装置である。例えば、通信制御装置は、GLDB(Geo-location Database)、SAS(Spectrum Access System)等の電波資源(例えば、周波数)の管理のための装置(システム)である。本実施形態の場合、通信制御装置は、後述の通信制御装置40に相当する。通信制御装置40については、後に詳述する。
ここで、プライマリシステムとは、例えば、所定の周波数帯の電波をセカンダリシステム等の他のシステムに優先して使用するシステム(例えば、既存のシステム)である。また、セカンダリシステムとは、例えば、プライマリシステムが使用する周波数帯の電波を二次利用(例えば、動的周波数共用)するシステムである。プライマリシステム及びセカンダリシステムは、それぞれ、複数の通信装置で構成されていてもよいし、1つの通信装置で構成されていてもよい。通信制御装置は、セカンダリシステムを構成する1又は複数の通信装置のプライマリシステムへの干渉の累積(Interference Aggregation)が、プライマリシステムの干渉許容量(干渉マージンともいう。)を越えないように、1又は複数の通信装置に干渉許容量を配分する。このとき、干渉許容量は、プライマリシステムの運営者や電波を管理する公的機関等が予め定めた干渉量であってもよい。以下の説明では、干渉マージンといった場合は、干渉許容量のことを指す。また、干渉の累積のことを、累積与干渉電力と呼ぶことがある。
図1は、セカンダリシステムを構成する各通信装置への干渉マージンの配分例を示す説明図である。図1の例では、通信システム1がプライマリシステムであり、通信システム2がセカンダリシステムである。通信システム1は無線通信装置101等を備える。また、通信システム2は基地局装置201、202、203等を備える。なお、図1の例では、通信システム1は無線通信装置10を1つしか備えていないが、通信システム1が備える無線通信装置10は複数であってもよい。また、図1の例では、通信システム2は基地局装置20を3つ備えているが、通信システム2が備える基地局装置20は3つより少なくてもよいし、多くてもよい。また、通信システム2が備える無線通信装置は、必ずしも基地局装置でなくてもよい。なお、図1の例では、プライマリシステム(図1の例では通信システム1)及びセカンダリシステム(図1の例では通信システム2)がそれぞれ1つしか示されていないが、プライマリシステム及びセカンダリシステムはそれぞれ複数あってもよい。
無線通信装置101、及び基地局装置201、202、203は、それぞれ、電波を送受信可能である。無線通信装置101が許容する干渉量はIacceptである。また、基地局装置201、202、203が通信システム1(プライマリシステム)の所定の保護点に与える干渉量は、それぞれ、与干渉量I1、I2、I3である。ここで、保護点は、通信システム1の保護のための干渉算出基準点である。
通信制御装置は、通信システム1の所定の保護点への干渉の累積(図1に示す受信干渉量I1+I2+I3)が干渉マージンIacceptを超えないように、複数の基地局装置20に干渉マージンIacceptを配分する。例えば、通信制御装置は、与干渉量I1、I2、I3がそれぞれIaccept/3となるように各基地局装置20に干渉マージンIacceptを配分する。或いは、通信制御装置は、与干渉量I1、I2、I3がそれぞれIaccept/3以下となるように、各基地局装置20に干渉マージンIacceptを配分する。勿論、干渉マージンの配分方法はこの例に限定されない。
通信制御装置は、配分された干渉量(以下、配分干渉量という。)に基づいて、各基地局装置20に許容される最大送信電力(以下、最大許容送信電力という。)を算出する。例えば、通信制御装置は、伝搬損失、アンテナゲイン等に基づいて、配分干渉量から逆算することによって、各基地局装置20の最大許容送信電力を算出する。そして、通信制御装置は、算出した最大許容送信電力の情報を各基地局装置20に通知する。
<1-2.本実施形態の概要>
非特許文献2では、米国の3550-3700MHzの周波数共用のためのデータベース(SAS)-基地局(CBSD)間のシグナリングプロトコルが規格化されている。CBSD(Citizens Broadband Radio Service Device)は、例えば、CBRSの周波数帯の電波を使用して通信を行う無線デバイスである。この規格では、SASがCBSDに与える電波送信の認可のことを“グラント(Grant)”と呼んでいる。グラントで認められる動作パラメータは、最大許容EIRP(Equivalent Isotropic Radiated Power)と周波数チャネルの2つで定義される。すなわち、複数の周波数チャネルを用いて電波送信を行うためには、CBSDはSASから複数のグラントを獲得する必要がある。
非特許文献2では、米国の3550-3700MHzの周波数共用のためのデータベース(SAS)-基地局(CBSD)間のシグナリングプロトコルが規格化されている。CBSD(Citizens Broadband Radio Service Device)は、例えば、CBRSの周波数帯の電波を使用して通信を行う無線デバイスである。この規格では、SASがCBSDに与える電波送信の認可のことを“グラント(Grant)”と呼んでいる。グラントで認められる動作パラメータは、最大許容EIRP(Equivalent Isotropic Radiated Power)と周波数チャネルの2つで定義される。すなわち、複数の周波数チャネルを用いて電波送信を行うためには、CBSDはSASから複数のグラントを獲得する必要がある。
グラントには、電波送信の許可状態を示すステート(State)が定義されている。図2は、電波送信の許可状態を示す状態遷移図である。図2において、Granted状態は、グラントを保有するものの電波送信をしてはいけない状態、Authorized状態はグラントで定義される動作パラメータ値に基づいて電波送信が許可されている状態を示す。この2つの状態は、同規格で規定されるハートビート手続き(Heartbeat Procedure)の結果によって遷移する。
ハートビート手続きには、さまざまな目的が定義されているが、その一つに、同帯域の既存システムである艦載レーダの電波利用時のCBSDの電波停止指示がある。SASは、艦載レーダが電波利用を行っていると判断される場合に、300秒以内に干渉を与えうる全てのCBSDの電波を停止しなければならないと義務付けられる。このとき、停止指示をプッシュ通知することが実装上複雑になると想定されることから、代わりに、定期的にCBSDがSASにハートビート(Heartbeat)を行うことで、その応答(Response)を用いて電波停止指示を行うことが認められている。
ここで、CBSDがハートビートを行う間隔であるハートビートインターバル(Heartbeat Interval)はSASから指示される。上記300秒ルールに加えて、CBSDはSASから指示を受けてから60秒以内に電波停止をしなければならないと義務付けられているため、基本的にはハートビートインターバルの最大値を240秒以下の値に設定することが推奨される。
非特許文献7と非特許文献9には、CPAS(Coordinated Periodic Activities among SASs)というSAS間の同期手法が開示されている。SAS間の情報同期、既存システム(Incumbent)保護に関わる計算を24時間に1回実施する手法である。以下の説明では、既存システム保護に関わる計算のことをプライマリシステム保護計算ということがある。CBSDは既存システムを保護しながら電波送信を行わなければならないため、グラント(Grant)を日中に獲得すると、次回のCPASの完了までGrantの状態はAuthorized状態にならない。すなわち、何度ハートビートリクエスト(Heartbeat request)が来ようと、SASはCBSDに停止(Suspension)を指示し続ける。
このように、Grantの状態がAuthorized状態にならないと分かっていてもハートビートリクエストを実施し続けなければならないのは、非常に非効率的である。
そこで、本実施形態では、第1無線システム(例えば、プライマリシステム)が使用する周波数帯の電波を利用して無線通信する第2無線システム(例えば、CBSD等の基地局装置)が電波送信を開始または継続するためのリクエスト(例えば、ハートビートリクエスト)の送信インターバル(例えば、ハートビートインターバル)を、第2無線システムを制御する通信制御装置(例えば、SAS)が種々の方法で決定できるようにする。
これにより、第2無線システム-通信制御装置間の情報のやり取りが効率的にできるようになる。その結果、通信量や処理負荷が削減されるので、第2無線システムを備えるセカンダリシステムは、システム全体として、種々の状況に迅速に対応できるようになる。結果として、電波資源の効率的な利用が実現する。
<1-3.周波数と共用に関する用語について>
なお、本実施形態では、プライマリシステム(通信システム1)及びセカンダリシステム(通信システム2)は、動的周波数共用環境下にあるものとする。以下、米国のFCC(Federal Communications Commission)が法整備したCBRSを例にとり本実施形態を説明する。なお、本実施形態の通信システム1及び通信システム2は、CBRSに限定されない。
なお、本実施形態では、プライマリシステム(通信システム1)及びセカンダリシステム(通信システム2)は、動的周波数共用環境下にあるものとする。以下、米国のFCC(Federal Communications Commission)が法整備したCBRSを例にとり本実施形態を説明する。なお、本実施形態の通信システム1及び通信システム2は、CBRSに限定されない。
図3は、CBRSでの階層構造を示す説明図である。図3に示すように、周波数帯域のユーザの各々は3つのグループのうちのいずれかに分類される。このグループは、“tier”と呼ばれる。当該3つのグループは、それぞれ、既存層(Incumbent Tier)、優先アクセス層(Priority Access Tier)、及び一般認可アクセス層(General Authorized Access Tier)から構成される階層構造が定義されている。この階層構造では、一般認可アクセス層(General Authorized Access Tier)の上位に優先アクセス層(Priority Access Tier)が位置し、優先アクセス層の上位に既存層(Incumbent Tier)が位置している。CBRSを例にとると、既存層に位置するシステム(既存システム)がプライマリシステムとなり、一般認可アクセス層及び優先アクセス層に位置するシステムがセカンダリシステムとなる。
既存層(Incumbent Tier)は、共用周波数帯域の既存ユーザからなるグループである。CBRSにおいては、国防総省(DOD:Department of Defense)、固定衛星事業者、新条件適用除外無線ブロードバンド免許人(GWBL:Grandfathered Wireless Broadband Licensee)が、既存ユーザとして定められる。“Incumbent Tier”は、より低い優先度を有する“Priority Access Tier”及び“GAA(General Authorized Access) Tier”への干渉回避又は抑制を要求されない。また、“Incumbent Tier”は、“Priority Access Tier”及び“GAA Tier”による干渉から保護される。即ち、“Incumbent Tier”のユーザは、他のグループの存在を考慮することなく、周波数帯域を使用することが可能である。
優先アクセス層(Priority Access Tier)は、PAL(Priority Access License)と呼ばれる免許を有するユーザからなるグループである。“Priority Access Tier”より高い優先度を有する“Incumbent Tier”への干渉回避又は抑制を要求されるが、より低い優先度を有する“GAA Tier”への干渉回避又は抑制を要求されない。また、“Priority Access Tier”は、より高い優先度を有する“Incumbent Tier”による干渉から保護されないが、より低い優先度を有する“GAA Tier”による干渉から保護される。
一般認可アクセス層(GAA Tier)は、上記“Incumbent Tier”および“Priority Access Tier”に属さない他の全てのユーザからなるグループである。より高い優先度を有する“Incumbent Tier”及び“Priority Access Tier”への干渉の回避又は抑制を要求される。また、“GAA Tier”は、より高い優先度を有する“Incumbent Tier”に及び“Priority Access Tier”よる干渉から保護されない。即ち、“GAA Tier”は、法制上、日和見的な(opportunistic)周波数利用が要求される“tier”である。
なお階層構造はこれらの定義に限定されない。CBRSは一般に3Tier構造と呼ばれるが、2Tier構造であってもよい。代表的な一例として、LSA(Licensed Shared Access)やTVWS(TV band White Space)のような2Tier構造が挙げられる。LSAでは、前記“Incumbent Tier”と“Priority Access Tier”の組み合わせと同等の構造が採用されている。また、TVWSでは、前記“Incumbent Tier”と“GAA Tier”の組み合わせと同等の構造が採用されている。また、4以上のTierが存在してもよい。具体的には、例えば、“Priority Access Tier”に相当する中間層を、さらに優先度付するなどしてもよい。また、例えば、“GAA Tier”も同様に優先度付するなどしてもよい。
図4は、CBRSの帯域を示す説明図である。上述のCBRSを例にとると、プライマリシステムは、軍事レーダシステム(Military Radar System)、既存無線システム(Grandfathered Wireless System)、或いは固定衛星業務(宇宙から地球)(Fixed Satellite Service (space-to-earth))となる。ここで、軍事レーダシステムは、代表的には艦載レーダである。また、セカンダリシステムはCBSD(Citizens Broadband Radio Service Device)、EUD(End User Device)と呼ばれる基地局、端末からなる無線ネットワークシステムとなる。セカンダリシステムにはさらに優先度が存在し、共用帯域を免許利用可能な優先アクセス免許(PAL:Priority Access License)と、免許不要と同等の一般認可アクセス(GAA:General Authorized Access)と、が定められている。図4に示す層1(Tier 1)は、図3に示す既存層に相当する。また、図4に示す層2(Tier 2)は、図3に示す優先アクセス層に相当する。また、図4に示す層3(Tier 3)は、図3に示す一般認可アクセス層に相当する。
なお、本実施形態のプライマリシステム(通信システム1)は、図4に示した例に限られない。他の種類の無線システムをプライマリシステム(通信システム1)としてもよい。例えば、適用する国・地域・周波数帯域に応じて、他の無線システムをプライマリシステムとしてもよい。例えば、プライマリシステムは、DVB-T(Digital Video Broadcasting-Terrestrial)システム等のテレビジョン放送システムであってもよい。また、プライマリシステムは、FS(Fixed System)と呼ばれる無線システムであってもよい。また、他の周波数帯における周波数共用であってもよい。例えば、代表的な一例として、LSAやTVWS(TV band White Space)が挙げられる。また、プライマリシステムは、LTE(Long Term Evolution)、NR(New Radio)等のセルラー通信システムであってもよい。また、プライマリシステムは、ARNS(Aeronautical Radio Navigation Service)等の航空無線システムであってもよい。勿論、プライマリシステムは、上記の無線システムに限定されず、他の種類の無線システムであってもよい。
また、通信システム2が利用する空き電波(White Space)は、Federal use band(3.55-3.70GHz)の電波に限られない。通信システム2は、Federal use band(3.55-3.70GHz)とは異なる周波数帯の電波を空き電波として利用してもよい。例えば、プライマリシステム(通信システム1)がテレビジョン放送システムなのであれば、通信システム2はTVホワイトスペースを空き電波として利用するシステムであってもよい。ここで、TVホワイトスペースとは、テレビジョン放送システム(プライマリシステム)に割当てられている周波数チャネルのうち、当該テレビジョン放送システムにより利用されていない周波数帯のことをいう。このとき、TVホワイトスペースは、地域に応じて使用されていないチャネルであってもよい。
また、通信システム1及び通信システム2の関係は、通信システム1をプライマリシステム、通信システム2をセカンダリシステムとした周波数共用関係に限られない。通信システム1及び通信システム2の関係は、同一周波数を利用する同一または異なる無線システム間のネットワーク共存(Network Coexistence)関係であってもよい。
一般に周波数共用において、対象帯域を利用する既存システムをプライマリシステム、二次利用者のシステムをセカンダリシステムと呼ぶが、周波数共用環境以外に本実施形態を適用する場合には、これら(プライマリシステム、セカンダリシステム)は別の用語のシステムに置き換えてもよい。例えば、HetNetにおけるマクロセルをプライマリシステム、スモールセルやリレー局をセカンダリシステムとしてもよい。また、基地局をプライマリシステム、そのカバレッジ内に存在するD2DやV2Xを実現するRelay UEやVehicle UEをセカンダリシステムとしてもよい。基地局は固定型に限らず、可搬型/移動型であってもよい。そのような場合、例えば、本発明の提供する通信制御装置は、基地局やリレー局、Relay UE等に具備されてもよい。
なお、以下の説明で登場する「周波数」という用語は、別の用語によって置き換えられてもよい。例えば、「周波数」という用語は、「リソース」、「リソースブロック」、「リソースエレメント」、「チャネル」、「コンポーネントキャリア」、「キャリア」、「サブキャリア」といった用語やこれらと類似の意味を有する用語によって置き換えられてよい。
<<2.通信システムの構成>>
以下、本開示の実施形態に係る通信システム2を説明する。通信システム2は、通信システム1(第1無線システム)が使用する電波を二次利用して無線通信する無線通信システムである。例えば、通信システム2は、通信システム1の空き電波を動的周波数共用する無線通信システムである。通信システム2は、所定の無線アクセス技術(Radio Access Technology)を使って、ユーザ或いはユーザが有する装置に対し、無線サービスを提供する。
以下、本開示の実施形態に係る通信システム2を説明する。通信システム2は、通信システム1(第1無線システム)が使用する電波を二次利用して無線通信する無線通信システムである。例えば、通信システム2は、通信システム1の空き電波を動的周波数共用する無線通信システムである。通信システム2は、所定の無線アクセス技術(Radio Access Technology)を使って、ユーザ或いはユーザが有する装置に対し、無線サービスを提供する。
ここで、通信システム2は、W-CDMA(Wideband Code Division Multiple Access)、cdma2000(Code Division Multiple Access 2000)、LTE、NR等のセルラー通信システムであってもよい。以下の説明では、「LTE」には、LTE-A(LTE-Advanced)、LTE-A Pro(LTE-Advanced Pro)、及びEUTRA(Evolved Universal Terrestrial Radio Access)が含まれるものとする。また、「NR」には、NRAT(New Radio Access Technology)、及びFEUTRA(Further EUTRA)が含まれるものとする。なお、通信システム2は、セルラー通信システムに限られない。例えば、通信システム2は、無線LAN(Local Area Network)システム、テレビジョン放送システム、航空無線システム、宇宙無線通信システム等の他の無線通信システムであってもよい。
本実施形態では、通信システム1はプライマリシステムであり、通信システム2はセカンダリシステムである。上述したように、通信システム1及び通信システム2は、それぞれ、複数あってもよい。なお、図1の例では、通信システム1は1つの無線通信装置10(図1に示す無線通信装置101)で構成されていたが、複数の無線通信装置10で構成されていてもよい。無線通信装置10の構成は、後述する基地局装置20又は端末装置30の構成と同じであってもよい。
<2-1.通信システムの全体構成>
通信システム2は、典型的には、以下のエンティティで構成される。
通信装置(例えば、基地局装置やプロキシ装置)
端末装置
通信制御装置
通信システム2は、典型的には、以下のエンティティで構成される。
通信装置(例えば、基地局装置やプロキシ装置)
端末装置
通信制御装置
なお、以下の説明では、通信装置となるエンティティは、基地局装置20及び/又はプロキシ装置50であるものとするが、通信装置となるエンティティは基地局装置20やプロキシ装置50に限られず、他の通信装置(例えば、端末装置30や通信制御装置40)であってもよい。
図5は、本開示の実施形態に係る通信システム2の構成例を示す図である。通信システム2は、基地局装置20と、端末装置30と、通信制御装置40と、プロキシ装置50と、を備える。通信システム2は、通信システム2を構成する各装置(例えば、無線通信装置等の通信装置)が連携して動作することで、ユーザ或いはユーザが有する装置に対し、無線サービスを提供する。無線通信装置は、無線通信の機能を有する装置のことであり、図5の例では、基地局装置20と端末装置30とが該当する。
なお、通信制御装置40及びプロキシ装置50は、無線通信機能を有していてもよい。この場合には、通信制御装置40及びプロキシ装置50も無線通信装置とみなすことができる。以下の説明では、無線通信装置のことを単に通信装置ということがある。なお、通信装置は無線通信装置に限られず、例えば、無線通信機能を有さず、有線通信のみ可能な装置も通信装置とみなすことができる。
通信システム2は、基地局装置20と、端末装置30と、通信制御装置40と、プロキシ装置50と、をそれぞれ複数備えていてもよい。図5の例では、通信システム1は、基地局装置20として基地局装置201、202、203、204、205等を備えている。また、通信システム2は、端末装置30として端末装置301、302、303、304等を備えている。また、通信システム1は、通信制御装置40として通信制御装置401、402等を備えている。
なお、以下の説明では、無線通信装置のことを無線システムと呼ぶことがある。例えば、無線通信装置10及び基地局装置201~205は、それぞれ、1つの無線システムである。また、端末装置301~304は、それぞれ、1つの無線システムである。なお、以下の説明では、通信システム1を第1無線システムとするが、通信システム1が備える1又は複数の無線通信装置10それぞれを第1無線システムとみなしてもよい。また、以下の説明では、通信システム2が備える1又は複数の基地局装置20それぞれを第2無線システムとするが、通信システム2そのものを第2無線システムとみなしてもよいし、通信システム2が備える1又は複数の端末装置30それぞれを第2無線システムとみなしてもよい。通信制御装置40及びプロキシ装置50が無線通信機能を有するのであれば、通信制御装置40それぞれ或いはプロキシ装置50それぞれを第2無線システムとみなしてもよい。
なお、無線システムは、少なくとも1つの無線通信装置を含む複数の通信装置で構成される1つのシステムであってもよい。例えば、1又は複数の基地局装置20と、その配下にある1又は複数の端末装置30と、で構成されるシステムを1つの無線システムとみなしてもよい。また、通信システム1又は通信システム2を、それぞれ、1つの無線システムとみなすことも可能である。以下の説明では、少なくとも1つの無線通信装置を含む複数の通信装置で構成される通信システムのことを、無線通信システム、或いは、単に通信システムと呼ぶことがある。なお、1つの無線通信装置を含む複数の通信装置で構成される1つのシステムを第1無線システム或いは第2無線システムとみなしてもよい。
基地局装置20(第2無線システム)は、端末装置30或いは他の通信装置(他の基地局装置20、他のプロキシ装置50)と無線通信する無線通信装置である。基地局装置20は通信装置の一種である。基地局装置20は、例えば、無線基地局(Base Station、Node B、eNB、gNB、など)や無線アクセスポイント(Access Point)に相当する装置である。基地局装置20は、無線リレー局であってもよい。また、基地局装置20は、RRH(Remote Radio Head)と呼ばれる光張り出し装置であってもよい。本実施形態では、無線通信システムの基地局のことを基地局装置ということがある。なお、基地局装置20が使用する無線アクセス技術は、セルラー通信技術であってもよいし、無線LAN技術であってもよい。勿論、基地局装置20が使用する無線アクセス技術は、これらに限定されず、他の無線アクセス技術であってもよい。
基地局装置20は、必ずしも固定されたものである必要もなく、自動車のように動くものに設置されていてもよい。また、基地局装置20は、必ずしも地上に存在する必要はなく、航空機、ドローン、ヘリコプター、衛星などのように、空中や宇宙に存在する物体や、船、潜水艦などのように海上・海中に存在する物体に通信装置機能が具備されてもよい。このような場合、基地局装置20は固定的に設置されている他の通信装置と無線通信を実施しうる。
基地局装置20のカバレッジの大きさも、マクロセルのような大きなものから、ピコセルのような小さなものであってもよい。勿論、基地局装置20のカバレッジの大きさは、フェムトセルのような極めて小さなものであってもよい。また、基地局装置20がビームフォーミングの能力を有する場合、ビームごとにセルやサービスエリアが形成されてもよい。
基地局装置20は、さまざまなエンティティによって利用、運用、及び/又は管理されうる。例えば、基地局装置20は、移動体通信事業者(MNO:Mobile Network Operator)、仮想移動体通信事業者(MVNO:Mobile Virtual Network Operator)、仮想移動体通信イネーブラ(MVNE:Mobile Virtual Network Enabler)、ニュートラルホストネットワーク(NHN:Neutral Host Network)事業者、エンタープライズ、教育機関(学校法人、各自治体教育委員会、等)、不動産(ビル、マンション等)管理者、個人などが想定されうる。勿論、基地局装置20の利用、運用、及び/又は管理の主体はこれらに限定されない。
基地局装置20は1事業者が設置及び/又は運用を行うものであってもよいし、1個人が設置及び/又は運用を行うものであってもよい。勿論、基地局装置20の設置・運用主体はこれらに限定されない。例えば、基地局装置20は、複数の事業者または複数の個人が共同で設置・運用を行うものであってもよい。また、基地局装置20は、複数の事業者または複数の個人が利用する共用設備であってもよい。この場合、設備の設置及び/又は運用は利用者とは異なる第三者によって実施されてもよい。
事業者によって運用される基地局装置20は、典型的には、コアネットワークを介してインターネット接続される。また、基地局装置20は、OA&M(Operation, Administration & Maintenance)と呼ばれる機能により、運用管理・保守がなされる。なお、通信システム2には、例えば、ネットワーク内の基地局装置20を統合制御するネットワークマネージャが存在しうる。
なお、基地局という概念には、アクセスポイントや無線リレー局(中継装置ともいう。)が含まれる。また、基地局という概念には、基地局の機能を備えた構造物(Structure)のみならず、構造物に設置される装置も含まれる。構造物は、例えば、オフィスビル、家屋、鉄塔、駅施設、空港施設、港湾施設、スタジアム等の建物(Building)である。なお、構造物という概念には、建物のみならず、トンネル、橋梁、ダム、塀、鉄柱等の構築物(Non-building structure)や、クレーン、門、風車等の設備も含まれる。また、構造物という概念には、地上(陸上)又は地中の構造物のみならず、桟橋、メガフロート等の水上の構造物や、海洋観測設備等の水中の構造物も含まれる。
また、基地局は、移動可能に構成された基地局(移動局)であってもよい。このとき、基地局(移動局)は、移動体に設置される無線通信装置であってもよいし、移動体そのものであってもよい。また、移動体は、地上(陸上)を移動する移動体(例えば、自動車、バス、トラック、列車、リニアモーターカー等の車両)であってもよいし、地中(例えば、トンネル内)を移動する移動体(例えば、地下鉄)であってもよい。勿論、移動体は、スマートフォンなどのモバイル端末であってもよい。また、移動体は、水上を移動する移動体(例えば、旅客船、貨物船、ホバークラフト等の船舶)であってもよいし、水中を移動する移動体(例えば、潜水艇、潜水艦、無人潜水機等の潜水船)であってもよい。また、移動体は、大気圏内を移動する移動体(例えば、飛行機、飛行船、ドローン等の航空機)であってもよいし、大気圏外を移動する宇宙移動体(例えば、人工衛星、宇宙船、宇宙ステーション、探査機等の人工天体)であってもよい。
端末装置30は、通信機能を備えた通信機器である。端末装置30は、典型的にはスマートフォン等の通信機器である。端末装置30は、携帯電話、スマートデバイス(スマートフォン、又はタブレット)、ウェアラブル端末、PDA(Personal Digital Assistant)、パーソナルコンピュータ等のユーザ端末であってもよい。端末装置は、User Equipment、User Terminal、User Station、Mobile Terminal、Mobile Station、等と呼ばれることがある。
なお、端末装置30は、人が利用するものである必要はない。端末装置30は、いわゆるMTC(Machine Type Communication)のように、工場の機械、建物に設置されるセンサであってもよい。また、端末装置30は、M2M(Machine to Machine)デバイス、又はIoT(Internet of Things)デバイスであってもよい。また、端末装置30は、D2D(Device to Device)やV2X(Vehicle to everything)に代表されるように、リレー通信機能を具備した装置であってもよい。また、端末装置30は、無線バックホール等で利用されるCPE(Client Premises Equipment)と呼ばれる機器であってもよい。また、端末装置30は、移動体に設置される無線通信装置であってもよいし、移動体そのものであってもよい。
また、端末装置30は、必ずしも地上に存在する必要はなく、航空機、ドローン、ヘリコプター、衛星などのように、空中や宇宙に存在する物体や、船、潜水艦などのように海上・海中に存在する物体であってもよい。
通信制御装置40は、基地局装置20を管理する装置である。例えば、通信制御装置40は、基地局装置20の無線通信を制御する装置である。例えば、通信制御装置40は、基地局装置20が使用する通信パラメータ(動作パラメータともいう。)を決定し、基地局装置20に対して許可又は指示を行う。このとき、通信制御装置40は、ネットワーク内の無線装置を統合制御するネットワークマネージャであってもよい。ETSI EN 303 387やIEEE 802.19.1-2014を例にとると、通信制御装置40は、無線機器間の電波干渉制御を行うSpectrum Manager/Coexistence Managerといった制御装置であってもよい。また、例えば、IEEE 802.11-2016にて規定されるRLSS(Registered Location Secure Server)も通信制御装置40となりうる。また、周波数共用環境下では、GLDB(Geolocation database)やSAS(Spectrum Access System)といったデータベース(データベースサーバ、装置、システム)も通信制御装置40となりうる。基本的には、通信制御装置40の制御対象は基地局装置20となるが、通信制御装置40はその配下の端末装置30を制御してもよい。
なお、通信制御装置40は、1つの通信システム2に複数存在していてもよい。図6は、通信制御装置40が分散的に配置されるモデルを示す図である。この場合、複数の通信制御装置40(図6の例の場合、通信制御装置401及び通信制御装置402)は互いに管理する基地局装置20の情報を交換し、必要な周波数の割り当てや干渉制御の計算を行う。
また、通信制御装置40は、マスタ-スレーブ型の装置であってもよい。図7は、1つの通信制御装置が中央制御的に複数の通信制御装置を統括するモデル(いわゆるマスタ-スレーブ型のモデル)を示す図である。図7の例では、通信制御装置403がマスタ通信制御装置であり、通信制御装置404、405がスレーブ通信制御装置である。このようなシステムの場合、マスタ通信制御装置は複数のスレーブ通信制御装置を統括し、集中的に意思決定を行うことが可能である。また、マスタ通信制御装置は、負荷分散(ロードバランシング)などを目的として、各スレーブ通信制御装置に対して、意思決定権限の委譲・破棄等を実施することも可能である。
なお、通信制御装置40は、その役目のために、基地局装置20、端末装置30、及びプロキシ装置50以外のエンティティからも必要な情報を取得しうる。具体的には、通信制御装置40は、例えば、国・地域の電波行政機関が管理・運用するデータベース(レギュラトリデータベース)から、プライマリシステムの位置情報等、保護に必要な情報を取得しうる。レギュラトリデータベースの一例としては、米国連邦通信委員会(Federal Communications Commissions)が運用するULS(Universal Licensing System)などが挙げられる。保護に必要な情報のその他の例としては、例えば、帯域外輻射制限(OOBE(Out-of-Band Emission) Limit)、隣接チャネル漏洩比(ACLR:Adjacent Channel Leakage Ratio)、隣接チャネル選択性(Adjacent Channel Selectivity)、フェージングマージン、及び/又は保護比率(PR:Protection Ratio)等を含みうる。これらの例については、法制上、数値が固定的に与えられる場合にはそれらを用いることが望ましい。
また、その他の一例としては、通信制御装置40が、プライマリシステムの電波検知を目的に設置・運用される電波センシングシステムから電波センシング情報を取得することも想定されうる。具体的な一例としては、通信制御装置40は、米国CBRSにおける環境センシング機能(ESC:Environmental Sensing Capability)のような電波センシングシステムから、プライマリシステムの電波検知情報を取得しうる。また、通信装置や端末がセンシング機能を具備する場合、通信制御装置40は、これらからプライマリシステムの電波検知情報を取得してもよい。
プロキシ装置50(プロキシシステム)は、1又は複数の通信装置(例えば、基地局装置20)を代理(代表)して通信制御装置40と通信する装置である。プロキシ装置50も通信装置の一種である。プロキシ装置50は、非特許文献2等で規定されるDP(Domain Proxy)であってもよい。ここで、DPとは、複数のCBSDそれぞれ、又は複数のCBSDで構成されるネットワークに代わってSASと通信するエンティティのことをいう。なお、1又は複数の通信装置を代理(代表)して通信制御装置40と通信する機能を有しているのであれば、プロキシ装置50は、非特許文献2で規定されるDPに限られない。ネットワーク内の基地局装置20を統合制御するネットワークマネージャをプロキシ装置50とみなしてもよい。
各エンティティ間のインタフェースは、有線であるか無線であるかは問わない。例えば、通信制御装置および通信装置間のインタフェースには、有線回線のみならず、周波数共用に依存しない無線インタフェースを利用可能である。このとき、無線インタフェースは、例えば、移動体通信事業者によって免許帯域(Licensed band)を介して提供される無線インタフェースや既存の免許不要帯域(License-exempt band)を利用する無線インタフェース(例えば、Wi-Fi通信を利用する無線インタフェース)等であってもよい。
以下、通信システム2を構成する各装置の構成を具体的に説明する。
<2-2.基地局装置の構成>
最初に、基地局装置20の構成を説明する。図8は、本開示の実施形態に係る基地局装置20の構成例を示す図である。基地局装置20は、通信制御装置40の制御に従って端末装置30と無線通信する無線通信装置(無線システム)である。例えば、基地局装置20は、地上に位置する基地局装置(地上局装置)である。このとき、基地局装置20は、地上の構造物に配置される基地局装置であってもよいし、地上を移動する移動体に設置される基地局装置であってもよい。より具体的には、基地局装置20は、ビル等の構造物に設置されたアンテナ及びそのアンテナに接続する信号処理装置であってもよい。勿論、基地局装置20は、構造物や移動体そのものであってもよい。「地上」は、地上(陸上)のみならず、地中、水上、水中も含む広義の地上である。基地局装置20は、通信装置の一種である。
最初に、基地局装置20の構成を説明する。図8は、本開示の実施形態に係る基地局装置20の構成例を示す図である。基地局装置20は、通信制御装置40の制御に従って端末装置30と無線通信する無線通信装置(無線システム)である。例えば、基地局装置20は、地上に位置する基地局装置(地上局装置)である。このとき、基地局装置20は、地上の構造物に配置される基地局装置であってもよいし、地上を移動する移動体に設置される基地局装置であってもよい。より具体的には、基地局装置20は、ビル等の構造物に設置されたアンテナ及びそのアンテナに接続する信号処理装置であってもよい。勿論、基地局装置20は、構造物や移動体そのものであってもよい。「地上」は、地上(陸上)のみならず、地中、水上、水中も含む広義の地上である。基地局装置20は、通信装置の一種である。
なお、基地局装置20は、地上局装置に限られない。例えば、基地局装置20は、空中又は宇宙を移動或いは浮遊する基地局装置(非地上局装置)であってもよい。このとき、基地局装置20は、航空機局装置や衛星局装置であってもよい。
航空機局装置は、航空機等に搭載される装置であってもよいし、航空機そのものであってもよい。航空機という概念には、飛行機、グライダー等の重航空機のみならず、気球、飛行船等の軽航空機も含まれる。また、航空機という概念には、ヘリコプターやオートジャイロ等の回転翼機も含まれる。なお、航空機局装置(又は、航空機局装置が搭載される航空機)は、有人航空機であってもよいし、ドローン等の無人航空機であってもよい。
衛星局装置は、人工衛星等の宇宙移動体に搭載される装置であってもよいし、宇宙移動体そのものであってもよい。衛星局装置となる衛星は、低軌道(LEO:Low Earth Orbiting)衛星、中軌道(MEO:Medium Earth Orbiting)衛星、静止軌道(GEO:Geostationary Earth Orbiting)衛星、高楕円軌道(HEO:Highly Elliptical Orbiting)衛星の何れであってもよい。勿論、衛星局装置は、低軌道衛星、中軌道衛星、静止衛星、又は高楕円軌道衛星に搭載される装置であってもよい。
また、基地局装置20は中継局装置であってもよい。中継局装置は、例えば、航空局や地球局である。中継局装置は上述の中継装置の一種とみなすことができる。航空局は、航空機局装置と通信を行うために、地上又は地上を移動する移動体に設置された無線局である。また、地球局は、衛星局装置と通信するために、地球(空中を含む。)に位置する無線局である。地球局は、大型地球局であってもよいし、VSAT(Very Small Aperture Terminal)等の小型地球局であってもよい。なお、地球局は、VSAT制御地球局(親局、HUB局ともいう。)であってもよいし、VSAT地球局(子局ともいう。)であってもよい。また、地球局は、地上を移動する移動体に設置される無線局であってもよい。例えば、船舶に搭載される地球局として、船上地球局(ESV:Earth Stations on board Vessels)が挙げられる。また、地球局には、航空機(ヘリコプターを含む。)に設置され、衛星局と通信する航空機地球局が含まれていてもよい。また、地球局には、地上を移動する移動体に設置され、衛星局を介して航空機地球局と通信する航空地球局が含まれていてもよい。なお、中継局装置は、衛星局や航空機局と通信する携帯移動可能な無線局であってもよい。
基地局装置20は、無線通信部21と、記憶部22と、ネットワーク通信部23と、制御部24と、を備える。なお、図8に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、基地局装置20の機能は、複数の物理的に分離された装置に分散して実装されてもよい。
無線通信部21は、他の通信装置(例えば、端末装置30、通信制御装置40、プロキシ装置50、及び他の基地局装置20)と無線通信する無線通信インタフェースである。無線通信部21は、制御部24の制御に従って動作する。無線通信部21は複数の無線アクセス方式に対応してもよい。例えば、無線通信部21は、NR及びLTEの双方に対応してもよい。無線通信部21は、W-CDMAやcdma2000等の他のセルラー通信方式に対応してもよい。また、無線通信部21は、セルラー通信方式に加えて、無線LAN通信方式に対応してもよい。勿論、無線通信部21は、1つの無線アクセス方式に対応するだけであってもよい。
無線通信部21は、受信処理部211と、送信処理部212と、アンテナ213と、を備える。無線通信部21は、受信処理部211、送信処理部212、及びアンテナ213をそれぞれ複数備えていてもよい。なお、無線通信部21が複数の無線アクセス方式に対応する場合、無線通信部21の各部は、無線アクセス方式毎に個別に構成されうる。例えば、基地局装置20がNRとLTEとに対応しているのであれば、受信処理部211及び送信処理部212は、NRとLTEとで個別に構成されてもよい。
受信処理部211は、アンテナ213を介して受信された上りリンク信号の処理を行う。受信処理部211は、無線受信部211aと、多重分離部211bと、復調部211cと、復号部211dと、を備える。
無線受信部211aは、上りリンク信号に対して、ダウンコンバート、不要な周波数成分の除去、増幅レベルの制御、直交復調、デジタル信号への変換、ガードインターバルの除去、高速フーリエ変換による周波数領域信号の抽出等を行う。例えば、基地局装置20の無線アクセス方式が、LTE等のセルラー通信方式であるとする。このとき、多重分離部211bは、無線受信部211aから出力された信号から、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)等の上りリンクチャネル及び上りリンク参照信号を分離する。復調部211cは、上りリンクチャネルの変調シンボルに対して、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase shift Keying)等の変調方式を使って受信信号の復調を行う。復調部211cが使用する変調方式は、16QAM(Quadrature Amplitude Modulation)、64QAM、又は256QAMであってもよい。復号部211dは、復調された上りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された上りリンクデータ及び上りリンク制御情報は制御部24へ出力される。
送信処理部212は、下りリンク制御情報及び下りリンクデータの送信処理を行う。送信処理部212は、符号化部212aと、変調部212bと、多重部212cと、無線送信部212dと、を備える。
符号化部212aは、制御部24から入力された下りリンク制御情報及び下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化等の符号化方式を用いて符号化を行う。変調部212bは、符号化部212aから出力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。多重部212cは、各チャネルの変調シンボルと下りリンク参照信号とを多重化し、所定のリソースエレメントに配置する。無線送信部212dは、多重部212cからの信号に対して、各種信号処理を行う。例えば、無線送信部212dは、高速フーリエ変換による時間領域への変換、ガードインターバルの付加、ベースバンドのデジタル信号の生成、アナログ信号への変換、直交変調、アップコンバート、余分な周波数成分の除去、電力の増幅等の処理を行う。送信処理部212で生成された信号は、アンテナ213から送信される。
記憶部22は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部22は、基地局装置20の記憶手段として機能する。記憶部22は、所望送信電力情報、動作パラメータ、保有リソース情報等を記憶する。
所望送信電力情報は、基地局装置20が、電波の送信に必要な送信電力の情報として、通信制御装置40に要求する送信電力の情報である。
動作パラメータは、基地局装置20の電波送信動作に関する情報(例えば、設定情報)である。例えば、通動作パラメータは、基地局装置20に許容された送信電力の最大値(最大許容送信電力)の情報である。勿論、動作パラメータは、最大許容送信電力の情報に限定されない。
また、保有リソース情報は、基地局装置20の無線リソースの保有に関する情報である。例えば、保有リソース情報は、基地局装置20が現在使用可能な無線リソースの情報である。例えば、有リソース情報は、基地局装置20が通信制御装置40から割り当てられた干渉マージンの保有量の情報である。保有量の情報は、後述のリソースブロック単位の情報であってもよい。すなわち、保有リソース情報は、基地局装置20が保有するリソースブロックに関する情報(例えば、リソースブロック保有量)であってもよい。
ネットワーク通信部23は、他の装置(例えば、通信制御装置40、プロキシ装置50、及び他の基地局装置20)と通信するための通信インタフェースである。例えば、ネットワーク通信部23は、NIC(Network Interface Card)等のLAN(Local Area Network)インタフェースである。ネットワーク通信部23は、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、ネットワーク通信部23は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部23は、基地局装置20のネットワーク通信手段として機能する。ネットワーク通信部23は、制御部24の制御に従って、他の装置と通信する。
制御部24は、基地局装置20の各部を制御するコントローラ(Controller)である。制御部24は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサにより実現される。例えば、制御部24は、基地局装置20内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部24は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
制御部24は、図8に示すように、取得部241と、設定部242と、送信部243と、を備える。制御部24を構成する各ブロック(取得部241~送信部243)はそれぞれ制御部24の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。機能ブロックの構成方法は任意である。なお、制御部24は上述の機能ブロックとは異なる機能単位で構成されていてもよい。制御部24を構成する各ブロック(取得部241~送信部243)の動作は、後述のリクエスト送信処理等の説明で詳述する。
<2-3.端末装置の構成>
次に、端末装置30の構成を説明する。図9は、本開示の実施形態に係る端末装置30の構成例を示す図である。端末装置30は、基地局装置20及び/又は通信制御装置40と無線通信する通信装置である。なお、本実施形態において、通信装置(或いは無線通信装置)という概念には、基地局装置やプロキシ装置のみならず、端末装置も含まれる。通信装置(或いは無線通信装置)は、無線システムと言い換えることができる。
次に、端末装置30の構成を説明する。図9は、本開示の実施形態に係る端末装置30の構成例を示す図である。端末装置30は、基地局装置20及び/又は通信制御装置40と無線通信する通信装置である。なお、本実施形態において、通信装置(或いは無線通信装置)という概念には、基地局装置やプロキシ装置のみならず、端末装置も含まれる。通信装置(或いは無線通信装置)は、無線システムと言い換えることができる。
端末装置30は、無線通信部31と、記憶部32と、入出力部33と、制御部34と、を備える。なお、図9に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、端末装置30の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
無線通信部31は、他の通信装置(例えば、基地局装置20及び他の端末装置30)と無線通信する無線通信インタフェースである。無線通信部31は、制御部34の制御に従って動作する。無線通信部31は1又は複数の無線アクセス方式に対応する。例えば、無線通信部31は、NR及びLTEの双方に対応する。無線通信部31は、W-CDMAやcdma2000等、他の無線アクセス方式に対応していてもよい。
無線通信部31は、受信処理部311と、送信処理部312と、アンテナ313と、を備える。無線通信部31は、受信処理部311、送信処理部312、及びアンテナ313をそれぞれ複数備えていてもよい。なお、無線通信部31が複数の無線アクセス方式に対応する場合、無線通信部31の各部は、無線アクセス方式毎に個別に構成されうる。例えば、受信処理部311及び送信処理部312は、LTEとNRとで個別に構成されてもよい。受信処理部311、及び送信処理部312の構成は、基地局装置20の受信処理部211、及び送信処理部212と同様である。
記憶部32は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部32は、端末装置30の記憶手段として機能する。
入出力部33は、ユーザと情報をやりとりするためのユーザインタフェースである。例えば、入出力部33は、キーボード、マウス、操作キー、タッチパネル等、ユーザが各種操作を行うための操作装置である。又は、入出力部33は、液晶ディスプレイ(Liquid Crystal Display)、有機ELディスプレイ(Organic Electroluminescence Display)等の表示装置である。入出力部33は、スピーカー、ブザー等の音響装置であってもよい。また、入出力部33は、LED(Light Emitting Diode)ランプ等の点灯装置であってもよい。入出力部33は、端末装置30の入出力手段(入力手段、出力手段、操作手段又は通知手段)として機能する。
制御部34は、端末装置30の各部を制御するコントローラである。制御部34は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部34は、端末装置30内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部34は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
<2-4.通信制御装置の構成>
通信制御装置40は、基地局装置20の無線通信を制御する装置である。通信制御装置40は、基地局装置20を介して、或いは直接、端末装置30の無線通信を制御してもよい。通信制御装置40は、ネットワーク内の無線装置を統合制御するネットワークマネージャであってもよい。例えば、通信制御装置40は、Spectrum Manager/Coexistence Managerであってもよい。また、通信制御装置40は、GLDB(Geolocation database)やSAS(Spectrum Access System)といったデータベースサーバであってもよい。
通信制御装置40は、基地局装置20の無線通信を制御する装置である。通信制御装置40は、基地局装置20を介して、或いは直接、端末装置30の無線通信を制御してもよい。通信制御装置40は、ネットワーク内の無線装置を統合制御するネットワークマネージャであってもよい。例えば、通信制御装置40は、Spectrum Manager/Coexistence Managerであってもよい。また、通信制御装置40は、GLDB(Geolocation database)やSAS(Spectrum Access System)といったデータベースサーバであってもよい。
なお、通信システム2がセルラー通信システムなのであれば、通信制御装置40は、コアネットワークを構成する装置であってもよい。コアネットワークCNは、例えば、EPC(Evolved Packet Core)や5GC(5G Core network)である。コアネットワークがEPCなのであれば、通信制御装置40は、例えば、MME(Mobility Management Entity)としての機能を有する装置であってもよい。また、コアネットワークが5GCなのであれば、通信制御装置40は、例えば、AMF(Access and Mobility Management Function)としての機能を有する装置であってもよい。なお、通信システム2がセルラー通信システムの場合であっても、通信制御装置40は必ずしもコアネットワークを構成する装置である必要はない。例えば、通信制御装置40はRNC(Radio Network Controller)としての機能を有する装置であってもよい。
なお、通信制御装置40はゲートウェイの機能を有していてもよい。例えば、コアネットワークがEPCなのであれば、通信制御装置40は、S-GW(Serving Gateway)やP-GW(Packet Data Network Gateway)としての機能を有する装置であってもよい。また、コアネットワークが5GCなのであれば、通信制御装置40は、UPF(User Plane Function)としての機能を有する装置であってもよい。なお、通信制御装置40は必ずしもコアネットワークを構成する装置でなくてもよい。例えば、コアネットワークがW-CDMAやcdma2000のコアネットワークであるとする。このとき、通信制御装置40はRNC(Radio Network Controller)として機能する装置であってもよい。
また、通信制御装置40は、複数のセカンダリシステムを制御するシステムであってもよい。この場合、通信システム2は、複数のセカンダリシステムを備えるシステムとみなすことが可能である。
図10は、本開示の実施形態に係る通信制御装置40の構成例を示す図である。通信制御装置40は、無線通信部41と、記憶部42と、ネットワーク通信部43、制御部44と、を備える。なお、図10に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、通信制御装置40の機能は、複数の物理的に分離された構成に分散して実装されてもよい。例えば、通信制御装置40は、複数のサーバ装置により構成されていてもよい。
無線通信部41は、他の通信装置(例えば、基地局装置20、端末装置30、プロキシ装置50、及び他の通信制御装置40)と無線通信する無線通信インタフェースである。無線通信部41は、制御部44の制御に従って動作する。無線通信部31は1又は複数の無線アクセス方式に対応する。例えば、無線通信部31は、NR及びLTEの双方に対応する。無線通信部31は、W-CDMAやcdma2000等、他の無線アクセス方式に対応していてもよい。無線通信部41の構成は、基地局装置20の無線通信部21と同様である。
記憶部42は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部22は、基地局装置20の記憶手段として機能する。記憶部22は、通信システム2を構成する複数の基地局装置20それぞれの動作パラメータを記憶する。なお、記憶部22は、通信システム2を構成する複数の基地局装置20それぞれの保有リソース情報を記憶していてもよい。上述したように、保有リソース情報は、基地局装置20の無線リソースの保有に関する情報である。
ネットワーク通信部43は、他の装置(例えば、基地局装置20、プロキシ装置50、及び、他の通信制御装置40)と通信するための通信インタフェースである。ネットワーク通信部43は、ネットワークインタフェースであってもよいし、機器接続インタフェースであってもよい。例えば、ネットワーク通信部43は、NIC(Network Interface Card)等のLAN(Local Area Network)インタフェースであってもよい。また、ネットワーク通信部43は、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、ネットワーク通信部43は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部43は、通信制御装置40の通信手段として機能する。ネットワーク通信部43は、制御部44の制御に従って基地局装置20、端末装置30及びプロキシ装置50と通信する。
制御部44は、通信制御装置40の各部を制御するコントローラである。制御部44は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部44は、通信制御装置40内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部44は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
制御部44は、図10に示すように、取得部441と、判定部442と、決定部443と、通知部444と、を備える。制御部44を構成する各ブロック(取得部441~通知部444)はそれぞれ制御部44の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。機能ブロックの構成方法は任意である。なお、制御部44は上述の機能ブロックとは異なる機能単位で構成されていてもよい。制御部44を構成する各ブロック(取得部441~通知部444)の動作は、後述の通信制御処理等の説明で詳述する。
<2-5.プロキシ装置の構成>
次に、プロキシ装置50の構成を説明する。図11は、本開示の実施形態に係るプロキシ装置50の構成例を示す図である。プロキシ装置50は、基地局装置20及び通信制御装置40と通信する通信装置である。プロキシ装置50は、1又は複数の基地局装置20を代理(代表)して通信制御装置40と通信するプロキシシステムである。例えば、プロキシ装置50は、複数のCBSDを代理(代表)するドメインプロキシ(DP:Domain Proxy)である。なお、プロキシシステムは、1つの装置で構成されていてもよいし、複数の装置で構成されていてもよい。プロキシ装置50と基地局装置20との間の通信は有線通信であってもよいし、無線通信であってもよい。同様に、プロキシ装置50と通信制御装置40との間の通信は有線通信であってもよいし、無線通信であってもよい。
次に、プロキシ装置50の構成を説明する。図11は、本開示の実施形態に係るプロキシ装置50の構成例を示す図である。プロキシ装置50は、基地局装置20及び通信制御装置40と通信する通信装置である。プロキシ装置50は、1又は複数の基地局装置20を代理(代表)して通信制御装置40と通信するプロキシシステムである。例えば、プロキシ装置50は、複数のCBSDを代理(代表)するドメインプロキシ(DP:Domain Proxy)である。なお、プロキシシステムは、1つの装置で構成されていてもよいし、複数の装置で構成されていてもよい。プロキシ装置50と基地局装置20との間の通信は有線通信であってもよいし、無線通信であってもよい。同様に、プロキシ装置50と通信制御装置40との間の通信は有線通信であってもよいし、無線通信であってもよい。
なお、プロキシ装置50が代理(代表)する通信装置は基地局装置20に限られず、例えば、端末装置30であってもよい。以下の説明では、プロキシ装置50が代理(代表)する1又は複数の通信装置(例えば、1又は複数の基地局装置20)のことを配下の通信装置(例えば、配下の基地局装置20)ということがある。
プロキシ装置50は、無線通信部51と、記憶部52と、ネットワーク通信部53と、制御部54と、を備える。なお、図11に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、プロキシ装置50の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
無線通信部51は、他の通信装置(例えば、基地局装置20、端末装置30、通信制御装置40、及び他のプロキシ装置50)と無線通信する無線通信インタフェースである。無線通信部51は、制御部54の制御に従って動作する。無線通信部51は1又は複数の無線アクセス方式に対応する。例えば、無線通信部31は、NR及びLTEの双方に対応する。無線通信部51は、W-CDMAやcdma2000等、他の無線アクセス方式に対応していてもよい。
記憶部52は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部52は、プロキシ装置50の記憶手段として機能する。記憶部22は、配下の基地局装置20それぞれの所望送信電力情報、動作パラメータ、保有リソース情報等を記憶していてもよい。
ネットワーク通信部53は、他の装置(例えば、基地局装置20、通信制御装置40、及び、他のプロキシ装置50)と通信するための通信インタフェースである。例えば、ネットワーク通信部53は、NIC等のLANインタフェースである。ネットワーク通信部53は、USBホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、ネットワーク通信部53は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部53は、プロキシ装置50のネットワーク通信手段として機能する。ネットワーク通信部53は、制御部54の制御に従って、他の装置と通信する。
制御部54は、プロキシ装置50の各部を制御するコントローラ(Controller)である。制御部54は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサにより実現される。例えば、制御部54は、プロキシ装置50内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部24は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
制御部54は、図11に示すように、取得部541と、設定部542と、送信部543と、を備える。制御部24を構成する各ブロック(取得部541~送信部543)はそれぞれ制御部54の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。機能ブロックの構成方法は任意である。なお、制御部24は上述の機能ブロックとは異なる機能単位で構成されていてもよい。制御部54を構成する各ブロック(取得部541~送信部543)の動作は、基地局装置20の制御部24を構成する各ブロック(取得部241~送信部243)の動作と同じであってもよい。以下の説明で登場する取得部241~送信部243の記載は、取得部541~送信部543に置き換え可能である。
<<3.干渉モデル>>
次に、本実施形態で想定する干渉モデルを説明する。図12は、本実施形態で想定する干渉モデルの一例を示す説明図である。なお、以下の説明で登場する、基地局装置20の記載は、無線通信機能を有する他の通信装置を示すワードに置き換え可能である。
次に、本実施形態で想定する干渉モデルを説明する。図12は、本実施形態で想定する干渉モデルの一例を示す説明図である。なお、以下の説明で登場する、基地局装置20の記載は、無線通信機能を有する他の通信装置を示すワードに置き換え可能である。
図12に示す干渉モデルは、例えば、プライマリシステムがサービスエリアを持つ場合に適用される。図12の例では、通信システム1(プライマリシステム)はサービスエリアを有する無線通信システムとなっている。このサービスエリアが、例えば、通信システム1の保護エリアとなる。保護エリアには、干渉計算基準点(以下、保護点という。)は複数設定される。保護点は、例えば、通信システム1の運営者や電波を管理する公的機関等(以下、管理者という。)により設定される。例えば、管理者は、保護エリアを格子状に区切り、所定の格子の中心を保護点としてもよい。保護点の決定方法は任意である。各保護点の干渉マージンは管理者等により設定される。図12には、通信システム2(セカンダリシステム)を構成する複数の基地局装置20が、保護点に与える干渉が示されている。通信システム2の通信制御装置40は、各保護点における累積干渉が、設定された干渉マージンを超えないように、複数の基地局装置20の送信電力を制御する。
図13は、本実施形態で想定する干渉モデルの他の例を示す説明図である。図13に示す干渉モデルは、例えば、プライマリシステムが受信のみ行う場合に適用される。図13の例では、通信システム1(プライマリシステム)は、無線通信装置102として受信アンテナを有している。無線通信装置102は、例えば、衛星地上局の受信アンテナである。通信システム2の通信制御装置40は、受信アンテナの位置を保護点とし、その地点における累積干渉が干渉マージンを超えないように、複数の基地局装置20の送信電力を制御する。
<<4.プライマリシステム保護方法>>
次に、プライマシステム保護方法について説明する。上述したように、プライマリシステム保護方法は、例えば、以下の2種類に分類可能である。
(1)干渉マージン一斉配分型
(2)干渉マージン逐次配分型
次に、プライマシステム保護方法について説明する。上述したように、プライマリシステム保護方法は、例えば、以下の2種類に分類可能である。
(1)干渉マージン一斉配分型
(2)干渉マージン逐次配分型
なお、干渉マージン一斉配分型のプライマシステム保護方法の例としては、例えば、非特許文献3にて開示されている手法(例えば、最大許容EIRPの計算手法)が挙げられる。また、干渉マージン逐次配分型のプライマシステム保護方法の例としては、例えば、非特許文献6で開示されている逐次配分処理(IAP:Iterative Allocation Process)が挙げられる。
以下、「干渉マージン一斉配分型」のプライマシステム保護方法と「干渉マージン逐次配分型」のプライマシステム保護方法について説明する。なお、以下の説明で登場する、基地局装置20の記載は、無線通信機能を有する他の通信装置を示すワードに置き換え可能である。
<4-1.干渉マージン一斉配分型>
最初に、干渉マージン一斉配分型のプライマシステム保護方法について説明する。図14は、干渉マージン一斉配分型のプライマシステム保護方法を説明するための説明図である。上述したように、干渉マージン一斉配分型では、通信制御装置40は、「プライマリシステムの保護基準点とセカンダリシステムの位置関係によって一意に求まる値」を基準値としてセカンダリシステムの最大許容送信電力を算出する。図14の例では、プライマリシステムの許容可能干渉閾値がIacceptとなっている。この閾値は、実際の閾値でもよいし、計算誤差や干渉変動を考慮して実際の閾値からある程度のマージン(例えば保護比率(Protection Ratio))を見込んで設定された値であってもよい。
最初に、干渉マージン一斉配分型のプライマシステム保護方法について説明する。図14は、干渉マージン一斉配分型のプライマシステム保護方法を説明するための説明図である。上述したように、干渉マージン一斉配分型では、通信制御装置40は、「プライマリシステムの保護基準点とセカンダリシステムの位置関係によって一意に求まる値」を基準値としてセカンダリシステムの最大許容送信電力を算出する。図14の例では、プライマリシステムの許容可能干渉閾値がIacceptとなっている。この閾値は、実際の閾値でもよいし、計算誤差や干渉変動を考慮して実際の閾値からある程度のマージン(例えば保護比率(Protection Ratio))を見込んで設定された値であってもよい。
干渉マージン一斉配分型のプライマシステム保護方法において、干渉制御とは、許容可能干渉閾値を越えないように、無線装置の送信電力(EIRP、Conducted Power+Antenna gain等)を決定することを意味する。このとき、基地局装置20が多数存在し、それぞれが許容可能干渉閾値を越えないようにすると、通信システム1(プライマリシステム)において受信される干渉電力が許容可能干渉閾値を越えてしまう恐れがある。そこで、通信制御装置40に登録されている基地局装置20の数に基づき、干渉マージン(許容可能干渉量)を「配分」する。
例えば、図14の例では、基地局装置20の総数は5である。そのため、個々には、Iaccept/5の許容干渉量が配分される。基地局装置20は自身でこの配分量を認識することはできないので、通信制御装置を通じて認識する、またはこの配分量に基づいて決定された送信電力を取得する。通信制御装置は、他の通信制御装置が管理する無線装置の数を認識できないので、相互に情報をやりとりすることによって、総数を認識することができ、許容干渉量を配分することができるようになる。例えば、通信制御装置401内では3Iaccept/5の許容干渉量が割り当てられる。
なお、この手法では、基地局装置20が使用しなかった干渉マージンは剰余干渉マージンとなり得る。図15は、剰余干渉マージンが発生した様子を示す図である。図15には、2つの通信制御装置40(通信制御装置401、402)のそれぞれに設定された総干渉量が示されている。また、図15には、2つの通信制御装置40の管理下にある複数の基地局装置20(基地局装置201~205)が通信システム1の所定の保護点に与える干渉量(与干渉量)が示されている。2つの通信制御装置40それぞれの総干渉量から基地局装置20による干渉量を引いた干渉量が、剰余干渉マージンである。以下の説明では、余った干渉量のことを剰余干渉マージンという。剰余干渉マージンは剰余干渉量と言い換えることが可能である。
<4-2.干渉マージン逐次配分型>
次に、干渉マージン逐次配分型のプライマシステム保護方法について説明する。上述したように、干渉マージン逐次配分型では、通信制御装置40は、「セカンダリシステムの所望送信電力」を基準値としてセカンダリシステムの最大許容送信電力を算出する。図16は、干渉マージン逐次配分型のプライマシステム保護方法を説明するための説明図である。干渉マージン逐次配分型では、例えば、複数の基地局装置20それぞれが、所望送信電力情報を記憶部22に記憶している。所望送信電力情報は、基地局装置20が、電波の送信に必要な送信電力の情報として、通信制御装置40に要求する送信電力の情報である。図16の例では、基地局装置201~204が、それぞれ、所望送信電力情報A~Dを保持している。通信制御装置40は、所望送信電力情報A~Dに基づいて、基地局装置201~204にそれぞれ干渉量A~Dを割り当てる。
次に、干渉マージン逐次配分型のプライマシステム保護方法について説明する。上述したように、干渉マージン逐次配分型では、通信制御装置40は、「セカンダリシステムの所望送信電力」を基準値としてセカンダリシステムの最大許容送信電力を算出する。図16は、干渉マージン逐次配分型のプライマシステム保護方法を説明するための説明図である。干渉マージン逐次配分型では、例えば、複数の基地局装置20それぞれが、所望送信電力情報を記憶部22に記憶している。所望送信電力情報は、基地局装置20が、電波の送信に必要な送信電力の情報として、通信制御装置40に要求する送信電力の情報である。図16の例では、基地局装置201~204が、それぞれ、所望送信電力情報A~Dを保持している。通信制御装置40は、所望送信電力情報A~Dに基づいて、基地局装置201~204にそれぞれ干渉量A~Dを割り当てる。
<<5.諸手続きの説明>>
次に、通信システム2のエンティティ間で発生しうる諸手続きについて説明する。なお、以下の説明で登場する、基地局装置20の記載は、無線通信機能を有する他の通信装置を示すワードに置き換え可能である。
次に、通信システム2のエンティティ間で発生しうる諸手続きについて説明する。なお、以下の説明で登場する、基地局装置20の記載は、無線通信機能を有する他の通信装置を示すワードに置き換え可能である。
<5-1.登録手続き(Registration Procedure)>
登録手続きとは、基地局装置20に関するデバイスパラメータを通信制御装置40に登録する手続きのことである。典型的には、基地局装置20または複数の基地局装置20を含む1以上の通信システムが、前記デバイスパラメータを含む登録リクエストを通信制御装置40へ通知することで登録手続きが開始される。登録リクエストは1又は複数の基地局装置20を代理(代表)する通信システム(例えば、プロキシ装置50等のプロキシシステム)が送信してもよい。
以下の説明では、複数の基地局装置20を代理(代表)する通信システムはプロキシ装置50であるものとするが、以下の説明で登場するプロキシ装置50のワードは、プロキシシステム等、他の通信装置を代理(代表)する通信システムを示すワードに置き換え可能である。
(所要パラメータの詳細)
デバイスパラメータとは、例えば、以下に示す情報のことを指す。
通信装置固有の情報
位置情報
アンテナ情報
無線インタフェース情報
法的情報
設置者情報
実施の際には、これら以外の情報がデバイスパラメータとして扱われてもよい。
デバイスパラメータとは、例えば、以下に示す情報のことを指す。
通信装置固有の情報
位置情報
アンテナ情報
無線インタフェース情報
法的情報
設置者情報
実施の際には、これら以外の情報がデバイスパラメータとして扱われてもよい。
通信装置固有の情報とは、基地局装置20を特定可能な情報、基地局装置20のハードウェアに関する情報などである。例えば、シリアル番号、製品型番などが含まれうる。
基地局装置20を特定可能な情報は、通信装置利用者情報、通信装置製造番号などを指す。例えば、通信装置利用者情報としては利用者ID、コールサインなどが想定されうる。利用者IDは通信装置利用者が独自に生成してもよいし、通信制御装置40が事前に発行したものであってもよい。
基地局装置20のハードウェアに関する情報は、例えば、送信電力クラス情報、製造者情報などが含まれうる。送信電力クラス情報は、例えば、FCC C.F.R Part 96においては、Category A、Category Bという2種類のクラスが規定されており、いずれかの情報が含まれうる。また、3GPP TS 36.104やTS 38.104において、eNodeB、gNodeBのクラスがいくつか規定されており、これらも用いられうる。
基地局装置20のソフトウェアに関する情報は、例えば、通信制御装置40とのインタラクションに必要な処理が記述された実行プログラムに関するバージョン情報やビルド番号などが含まれうる。また、基地局装置20として動作するためのソフトウェアのバージョン情報やビルド番号なども含まれてもよい。
位置に係る情報とは、典型的には、基地局装置20の地理位置を特定可能な情報である。例えば、GPS(Global Positioning System)、Beidou、QZSS(Quasi-Zenith Satellite System)、GalileoやA-GPS(Assisted Global Positioning System)に代表される位置測位機能によって取得される座標情報である。典型的には、緯度、経度、高度、測位誤差に係る情報が含まれうる。または、例えば、NRA(National Regulatory Authority)またはその委託機関によって管理される情報管理装置に登録される位置情報であってよい。または、例えば、特定の地理位置を原点とするX軸、Y軸、Z軸の座標であってもよい。また、このような座標情報と一緒に屋外/屋内を示す識別子が付与されうる。
また、位置に係る情報とは、基地局装置20が位置する領域を示す情報であってもよい。例えば、郵便番号、住所など、行政によって定められた情報が用いられてもよい。また、例えば、3以上の地理座標の集合によって領域が示されてもよい。これらの領域を示す情報は、上記座標情報と一緒に提供されてもよい。
また、位置に係る情報には、基地局装置20が屋内に位置する場合に、建物のフロアを示す情報が付与されてもよい。例えば、階数、地上/地下を示す識別子などが付与されてもよい。また、例えば、建物内の部屋番号、部屋名のように、屋内のさらなる閉空間を示す情報が付与されてもよい。
上記位置測位機能は、典型的には、基地局装置20によって具備されることが望ましい。しかしながら、位置測位機能の性能や、設置位置によっては、必ずしも要求される精度を満たす位置情報が取得できるとは限らない。そのため、位置測位機能は、設置者によって用いられてもよい。そのような場合、設置者によって測定された位置情報が基地局装置20に書き込まれることが望ましい。
アンテナ情報とは、典型的には、基地局装置20が具備するアンテナの性能や構成等を示す情報である。典型的には、例えば、アンテナ設置高、チルト角(Downtilt)、水平方向の向き(Azimuth)、照準(Boresight)、アンテナピークゲイン、アンテナモデルといった情報が含まれうる。
また、アンテナ情報には、形成可能なビームに関する情報も含まれうる。例えば、ビーム幅、ビームパターン、アナログ/デジタルビームフォーミングのケイパビリティといった情報が含まれうる。
また、アンテナ情報には、MIMO(Mutiple Input Multiple Output)通信の性能や構成に関する情報も含まれうる。例えば、アンテナエレメント数、最大空間ストリーム数、といった情報が含まれうる。また、用いるコードブック(Codebook)情報や、ウェイト行列情報(SVD(Singular Value Decomposition)、EVD (Eigen Value Decomposition)、BD(Block Diagonalization)などによって得られるユニタリ行列、ZF(Zero-Forcing)行列、MMSE(Minimum Mean Square Error)行列)なども含まれうる。また、非線形演算を要するMLD(Maximum Likelihood Detection)等を具備する場合、それを示す情報が含まれてもよい。
上記アンテナ情報には、ZoD(Zenith of Direction, Departure)が含まれてもよい。当該ZoDは、電波到来角度の一種である。上記ZoDは、基地局装置20のアンテナから放射される電波から他の基地局装置20により推定されてもよい。この場合に、基地局装置20は、基地局若しくはアクセスポイントとして動作する端末装置、D2D通信を行う装置、又はムービングリレー基地局などであってもよい。ZoDは、MUSIC(Multiple Signal Classification)又はESPRIT(Estimation of Signal Propagation via Rotation Invariance Techniques)などの電波到来方向推定技術により推定され得る。メジャメント情報として通信制御装置40によって用いられうる。
無線インタフェース情報とは、典型的には、基地局装置20が具備する無線インタフェース技術を示す情報のことである。例えば、GSM(登録商標)、CDMA2000、UMTS、E-UTRA、5G NRまたはさらなる次世代のセルラーシステムで用いられる技術や、MulteFire、LTE-U(LTE-Unlicensed)といったLTE準拠の派生技術、WiMAX、WiMAX2+といったMAN(Metropolitan Area Network)、IEEE 802.11系の無線LANといった標準技術を示す識別子情報が含まれる。また、これらを定める技術仕様書のバージョン番号またはリリース番号も付与されうる。必ずしも標準技術である必要はなく、プロプライエタリな無線技術を示す情報が含まれてもよい。
また、無線インタフェース情報には、基地局装置20がサポートする周波数帯域情報も含まれうる。例えば、上限周波数および下限周波数の組み合わせの1以上、中心周波数および帯域幅の組み合わせの1以上または、1以上の3GPP Operating Band番号などによって表現されうる。
基地局装置20がサポートする周波数帯域情報として、さらに、キャリアアグリゲーション(CA:Carrier Aggregation)やチャネルボンディング(Channel Bonding)のケイパビリティ情報も含まれうる。例えば、組み合わせ可能な帯域情報などが含まれうる。また、キャリアアグリゲーションについては、プライマリコンポーネントキャリア(PCC:Primary Component Carrier)やセカンダリコンポーネントキャリア(SCC:Secondary Component Carrier)として利用したい帯域に関する情報も含まれうる。また、同時にアグリゲート可能なCC数も含まれうる。
基地局装置20がサポートする周波数帯域情報として、また、PAL、GAAのような電波利用優先度を示す情報が含まれてもよい。
また、無線インタフェース情報には、基地局装置20がサポートする変調方式情報も含まれうる。例えば、代表的な一例として、FSK(Frequency Shift Keying)、n値PSK(Phase Shift Keying)(nは2、4、8等)やn値QAM(Quadrature Amplitude Modulation)(nは4,16,64,256等)といった一次変調方式を示す情報や、OFDM(Orthogonal Frequency Division Multiplexing)やDFT-s-OFDM(DFT spread OFDM)、FBMC(Filter Bank Multi Carrier)といった二次変調方式を示す情報が含まれうる。
また、無線インタフェース情報には、誤り訂正符号に関する情報も含まれうる。例えば、Turbo符号、LDPC(Low Density Parity Check)符号、Polar符号などのケイパビリティや適用する符号化率情報が含まれうる。
変調方式情報や誤り訂正符号に関する情報は、別の態様として、MCS(Modulation and Coding Scheme)インデックスでも表現されうる。
また、無線インタフェース情報には、基地局装置20がサポートする各無線技術特有の機能を示す情報も含まれうる。例えば、代表的な一例として、LTEで規定されているTM(Transmission Mode)情報が挙げられる。この他にも、特定の機能に関して2以上のモードを有するものについては、上記TMのように無線インタフェース情報に含まれうる。また、技術仕様において、2以上のモードが存在しなくても仕様上必須でない機能を基地局装置20がサポートする場合には、これを示す情報も含まれうる。
また、無線インタフェース情報には、基地局装置20がサポートする無線アクセス方式(RAT:Radio Access Technology)情報も含まれうる。例えば、TDMA(Time Division Multiple Access)、FDMA(Frequency Division Multiple Access)、OFDMA(Orthogonal Frequency Division Multiple Access)といった直交多元接続方式(OMA:Orthogonal Multiple Access)、PDMA(Power Division Multiple Access、Superposition Coding(SPC)とSuccessive Interference Canceller(SIC)との組み合わせによって実現される手法が代表例)、CDMA(Code Division Multiple Access)、SCMA(Sparse Code Multiple Access)、IDMA(Interleaver Division Multiple Access)、SDMA(Spatial Division Multiple Access)といった非直交多元接続方式(NOMA:Non Orthogonal Multiple Access)、CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)やCSMA/CD(Carrier Sense Multiple Access/Collision Detection)といった日和見的接続方式(Opportunistic Access)などを示す情報が含まれうる。
また、無線インタフェース情報には、基地局装置20がサポートするデュプレクスモードに係る情報も含まれうる。代表的な一例として、例えば、FDD(Frequency Division Duplex)、TDD(Time Division Duplex)、FD(Full Duplex)が含まれうる。無線インタフェース情報として、TDDが含まれる場合、基地局装置20が使用する/サポートするTDD Frame Configuration情報が付与されうる。また、上記周波数帯域情報で示される周波数帯域ごとにデュプレクスモードに係る情報が含まれてもよい。
また、無線インタフェース情報には、基地局装置20がサポートする送信ダイバーシチ手法に関する情報も含まれうる。例えば、時空間符号化(STC:Space Time Coding)などが含まれてもよい。
また、無線インタフェース情報には、ガードバンド情報も含まれうる。例えば、規格上定められるガードバンドサイズに関する情報が含まれうる。または、例えば、基地局装置20が所望するガードバンドサイズに関する情報が含まれてもよい。
法的情報とは、典型的には、各国・地域の電波行政機関またはそれに準ずる機関によって定められる、基地局装置20が順守しなければならない規制に関する情報や、基地局装置20が取得している認証情報などのことである。上記規制に関する情報として、典型的には、例えば、帯域外輻射の上限値情報、受信機のブロッキング特性に関する情報などが含まれうる。上記認証情報として、典型的には、例えば、型式認証(Type Approval)情報(FCC ID、技術基準適合証明など)、認証取得の基準となる法規制情報(例えばFCC規則番号、ETSI Harmonized Standard番号等)などが含まれうる。
法的情報のうち、数値に関するものについては、無線インタフェース技術の規格書において定められているものを代用してもよい。例えば、帯域外輻射の上限値情報の代わりに、隣接チャネル漏洩比(ACLR:Adjacent Channel Leakage Ratio)を用いて、帯域外輻射の上限値を導出し利用してもよい。また、必要に応じて、ACLRそのものを用いてもよい。また、隣接チャネル選択性(ACS:Adjacent Channel Selectivity)をブロッキング特性の代わりに用いてもよい。また、これらは併用してもよいし、隣接チャネル干渉比(ACIR:Adjacent Channel Interference Ratio)を用いてもよい。
設置者情報とは、基地局装置20の設置を行った者(設置者)を特定することが可能な情報、設置者に紐づく固有の情報などが含まれうる。例えば、非特許文献2においては、設置者を特定することが可能な情報として、CPIR-ID(Certified Professional Installer Registration ID)、CPI名が開示されている。また、設置者に紐づく固有の情報として、例えば、連絡用住所(Mailing/Contact address)、Eメールアドレス、電話番号、PKI(Public Key Identifier)などが開示されている。これらに限らず、必要に応じて設置者に関するその他の情報が含まれてもよい。
(所要パラメータの補足)
登録手続きにおいて、実施形態によっては、基地局装置20のみならず端末装置30に関するデバイスパラメータを通信制御装置40に登録することも要求されることが想定される。そのような場合、上記(所要パラメータの詳細)で述べた説明中の「通信装置」という用語を「端末装置」またはそれに準ずる用語で置き換えて適用してもよい。また、上記(所要パラメータの詳細)では述べられていない「端末装置」特有のパラメータも登録手続きにおける所要パラメータとして扱われてよい。例えば、3GPPで規定されるUE(User Equipment)Categoryなどが挙げられる。
登録手続きにおいて、実施形態によっては、基地局装置20のみならず端末装置30に関するデバイスパラメータを通信制御装置40に登録することも要求されることが想定される。そのような場合、上記(所要パラメータの詳細)で述べた説明中の「通信装置」という用語を「端末装置」またはそれに準ずる用語で置き換えて適用してもよい。また、上記(所要パラメータの詳細)では述べられていない「端末装置」特有のパラメータも登録手続きにおける所要パラメータとして扱われてよい。例えば、3GPPで規定されるUE(User Equipment)Categoryなどが挙げられる。
(登録処理の詳細)
図17は、登録手続きを説明するためのシーケンス図である。基地局装置20または複数の基地局装置20を含む1以上の通信システムは、上記デバイスパラメータを用いて登録リクエストメッセージを生成し(ステップS11)、通信制御装置40へ通知する(ステップS12)。メッセージの生成及び/又は通知は、プロキシ装置50が行ってもよい。
図17は、登録手続きを説明するためのシーケンス図である。基地局装置20または複数の基地局装置20を含む1以上の通信システムは、上記デバイスパラメータを用いて登録リクエストメッセージを生成し(ステップS11)、通信制御装置40へ通知する(ステップS12)。メッセージの生成及び/又は通知は、プロキシ装置50が行ってもよい。
ここで、デバイスパラメータに設置者情報が含まれる場合、この情報を用いて、登録リクエストに改ざん防止の加工等を施してもよい。また、登録リクエストに含まれる情報の一部又は全部に暗号化処理が施されてもよい。具体的には、例えば、設置者と通信制御装置40との間で事前に設置者特有の公開鍵を共有しておき、設置者は秘密鍵を用いて情報の暗号化を施す、という処理が実施されうる。暗号化の対象としては、例えば、位置情報といった防犯上センシティブな情報が挙げられる。
また、位置情報に関しては、非特許文献2で開示されているように、例えば、設置者が、直接、通信制御装置40に書き込んでもよい。
登録リクエスト受信後、通信制御装置40は、基地局装置20の登録処理を実施し(ステップS13)、処理結果に応じて登録レスポンスを返す(ステップS14)。登録に必要な情報の不足、異常がなければ通信制御装置40は記憶部42に情報を記録し、正常完了を通知する。そうでなければ、通信制御装置40は登録失敗を通知する。登録が正常完了する場合、通信制御装置40は、通信装置個別にIDを割り振り、そのID情報を応答時に同封して通知してもよい。登録失敗となる場合、典型的には、基地局装置20または複数の基地局装置20を含む1以上の通信システム、またはこれらの運用者(例えば、移動体通信事業者や個人)や設置者は、登録リクエストの修正等を行い、正常完了するまで登録手続きを試行する。
なお、登録手続きは、複数回実行されることがある。具体的には、例えば、移動・精度改善などにより、位置情報が所定の基準を超えて変更される場合に登録手続きが再実行されうる。所定の基準は、典型的には、法制度によって定められる。例えば、47 C.F.R Part 15において、Mode II personal/portable white space deviceは、100メートル以上位置情報が変わる場合には、再度データベースにアクセスすることが義務付けられている。
<5-2.利用可能周波数情報問い合わせ手続き(Available Spectrum Query Procedure)>
利用可能周波数情報問い合わせ手続きとは、基地局装置20またはプロキシ装置50が、通信制御装置40に対して、利用可能な周波数に関する情報を問い合わせる手続きのことである。典型的には、基地局装置20またはプロキシ装置50が、当該基地局装置20(或いは当該プロキシ装置50配下の基地局装置20)を特定可能な情報を含む問い合わせリクエストを通信制御装置40へ通知することで手続きが開始される。
利用可能周波数情報問い合わせ手続きとは、基地局装置20またはプロキシ装置50が、通信制御装置40に対して、利用可能な周波数に関する情報を問い合わせる手続きのことである。典型的には、基地局装置20またはプロキシ装置50が、当該基地局装置20(或いは当該プロキシ装置50配下の基地局装置20)を特定可能な情報を含む問い合わせリクエストを通信制御装置40へ通知することで手続きが開始される。
(1)例1
ここで、利用可能周波数情報とは、典型的には、当該基地局装置20(或いは当該プロキシ装置50配下の基地局装置20)の位置においてプライマリシステムに対して致命的な干渉を与えず、安全に2次利用が可能な周波数を示す情報のことである。例えば、F1という周波数チャネルを利用するプライマリシステム保護のために、Exclusion Zoneなどの2次利用禁止エリアに基地局装置20が設置されている場合、その基地局装置20に対しては、F1という周波数チャネルは利用可能チャネルとして通知されない。
ここで、利用可能周波数情報とは、典型的には、当該基地局装置20(或いは当該プロキシ装置50配下の基地局装置20)の位置においてプライマリシステムに対して致命的な干渉を与えず、安全に2次利用が可能な周波数を示す情報のことである。例えば、F1という周波数チャネルを利用するプライマリシステム保護のために、Exclusion Zoneなどの2次利用禁止エリアに基地局装置20が設置されている場合、その基地局装置20に対しては、F1という周波数チャネルは利用可能チャネルとして通知されない。
(2)例2
また、例えば、2次利用禁止エリア外であっても、プライマリシステムに対して致命的な干渉を与えると判断される場合には、当該周波数チャネルは利用可能チャネルとして通知されない場合がある。
また、例えば、2次利用禁止エリア外であっても、プライマリシステムに対して致命的な干渉を与えると判断される場合には、当該周波数チャネルは利用可能チャネルとして通知されない場合がある。
(3)例3
また、利用可能周波数情報は、例2のプライマリシステム保護要件以外の条件によっても利用可能として通知されない周波数チャネルが存在しうる。具体的には、例えば、基地局装置20間で発生しうる干渉を事前に回避するために、当該基地局装置20(或いは当該プロキシ装置50配下の基地局装置20)の近傍に存在する他の基地局装置20が利用中の周波数チャネルを、利用可能チャネルとして通知しない場合もある。
また、利用可能周波数情報は、例2のプライマリシステム保護要件以外の条件によっても利用可能として通知されない周波数チャネルが存在しうる。具体的には、例えば、基地局装置20間で発生しうる干渉を事前に回避するために、当該基地局装置20(或いは当該プロキシ装置50配下の基地局装置20)の近傍に存在する他の基地局装置20が利用中の周波数チャネルを、利用可能チャネルとして通知しない場合もある。
(4)例4
これらの場合(例2、例3)に該当する場合であっても、プライマリシステムや近傍の基地局装置20と同じ周波数を利用可能チャネルとして通知することは可能である。そのような場合には、典型的には、最大許容送信電力情報が利用可能周波数情報に含まれる。最大許容送信電力は、典型的には、等価等方輻射電力(EIRP:Equivalent Isotropic Radiated Power)で表現される。必ずしもこれに限られる必要はなく、例えば、空中線電力(Conducted Power)とアンテナゲインの組み合わせで提供されてもよい。給電線損失(Feeder Loss)も含まれてもよい。さらに、アンテナゲインは、空間的な方向ごとに許容ピークゲインが設定されてもよい。
これらの場合(例2、例3)に該当する場合であっても、プライマリシステムや近傍の基地局装置20と同じ周波数を利用可能チャネルとして通知することは可能である。そのような場合には、典型的には、最大許容送信電力情報が利用可能周波数情報に含まれる。最大許容送信電力は、典型的には、等価等方輻射電力(EIRP:Equivalent Isotropic Radiated Power)で表現される。必ずしもこれに限られる必要はなく、例えば、空中線電力(Conducted Power)とアンテナゲインの組み合わせで提供されてもよい。給電線損失(Feeder Loss)も含まれてもよい。さらに、アンテナゲインは、空間的な方向ごとに許容ピークゲインが設定されてもよい。
(所要パラメータの詳細)
基地局装置20を特定可能な情報とは、例えば、上記登録手続き時に登録した通信装置固有の情報や上述の(登録処理の詳細)で説明したID情報などが想定されうる。
基地局装置20を特定可能な情報とは、例えば、上記登録手続き時に登録した通信装置固有の情報や上述の(登録処理の詳細)で説明したID情報などが想定されうる。
また、問い合わせリクエストには、問い合わせ要件情報も含まれうる。問い合わせ要件情報とは、例えば、利用可能か否かを知りたい周波数帯域を示す情報が含まれうる。また、例えば、送信電力情報も含まれうる。基地局装置20またはプロキシ装置50は、例えば、所望の送信電力を用いることができそうな周波数情報のみを知りたい場合に送信電力情報を含めうる。問い合わせ要件情報は必ずしも含まれる必要はない。
また、問い合わせリクエストには、メジャメントレポートも含まれうる。メジャメントレポートは、基地局装置20および/または端末装置30が実施するメジャメントの結果が含まれる。例えば、生データのみならず、加工された情報も含まれうる。例えば、RSRP(Reference Signal Received Power)、RSSI(Reference Signal Strength Indicator)、RSRQ(Reference Signal Received Quality)に代表される標準化されたメトリックが用いられうる。
(利用可能周波数評価処理の詳細)
図18は、利用可能周波数情報問い合わせ手続きを説明するためのシーケンス図である。基地局装置20またはプロキシ装置50が、当該基地局装置20(或いは当該プロキシ装置50配下の基地局装置20)を特定可能な情報を含む問い合わせリクエストを生成し(ステップS21)、通信制御装置40へ通知する(ステップS22)。
図18は、利用可能周波数情報問い合わせ手続きを説明するためのシーケンス図である。基地局装置20またはプロキシ装置50が、当該基地局装置20(或いは当該プロキシ装置50配下の基地局装置20)を特定可能な情報を含む問い合わせリクエストを生成し(ステップS21)、通信制御装置40へ通知する(ステップS22)。
問い合わせリクエスト受信後、通信制御装置40は、問い合わせ要件情報に基づいて、利用可能周波数の評価を行う(ステップS23)。例えば、上述の例1~例3で説明したようにプライマリシステムやその2次利用禁止エリア、近傍の基地局装置20の存在を考慮して利用可能周波数の評価を行うことが可能である。
上述の例4で説明したように、通信制御装置40は、最大許容送信電力情報を導出してもよい。典型的には、プライマリシステムまたはその保護領域(Protection Zone)における許容可能干渉電力情報、プライマリシステムが被る干渉電力レベルの算定基準位置(Reference Point)情報、基地局装置20の登録情報、伝搬損失推定モデルを用いて算出される。具体的には、一例として、以下の数式によって算出される。
PMaxTx(dBm)=ITh(dBm)+PL(d)(dB) …(1)
PMaxTx(dBm)=ITh(dBm)+PL(d)(dB) …(1)
ここで、PMaxTx(dBm)は最大許容送信電力、ITh(dBm)は許容可能干渉電力、dは基準位置(Reference Point)と基地局装置20との間の距離、PL(d)(dB)は距離dにおける伝搬損失である。本数式においては送受信機におけるアンテナゲインを明示的に示していないが、最大許容送信電力の表現方法(EIRP、Conducted power等)や受信電力の参照点(アンテナ入力点、アンテナ出力点、等)に応じて含めてよい。また、フェージングによる変動を補償するためのセーフティマージン等も含まれてよい。また、フィーダロス等、必要に応じて考慮されてよい。
また、上記数式は、単体の基地局装置20が干渉源である仮定に基づいて記述されている。例えば、同時に複数の基地局装置20からの累積的な干渉(Aggregated Interference)を考慮しなければならない場合には、補正値を加味してもよい。具体的には、例えば、非特許文献3で開示されている3種類(Fixed/Predetermined、Flexible、Flexible Minimized)の干渉マージン方式に基づいて補正値が決定されうる。
なお、上記数式は、対数を用いて表現されているが、実施の際には、当然のことながら真数に変換して用いてもよい。また、本書に記載される全ての対数表記のパラメータは、適宜進数に変換して用いてもよい。
(1)手法1
また、上述の(所要パラメータの詳細)の項で説明したように、送信電力情報が問い合わせ要件情報に含まれる場合には、上述の方法とは別の方法で利用可能周波数の評価を行うことが可能である。具体的には、例えば、送信電力情報で示される所望の送信電力を用いたと仮定した場合に、推定される与干渉量がプライマリシステムまたはその保護領域(Protection Zone)における許容可能干渉電力を下回る場合には、当該周波数チャネルが利用可能であると判断され、基地局装置20(又はプロキシ装置50)へ通知される。
また、上述の(所要パラメータの詳細)の項で説明したように、送信電力情報が問い合わせ要件情報に含まれる場合には、上述の方法とは別の方法で利用可能周波数の評価を行うことが可能である。具体的には、例えば、送信電力情報で示される所望の送信電力を用いたと仮定した場合に、推定される与干渉量がプライマリシステムまたはその保護領域(Protection Zone)における許容可能干渉電力を下回る場合には、当該周波数チャネルが利用可能であると判断され、基地局装置20(又はプロキシ装置50)へ通知される。
(2)手法2
上記他システム関連情報に基づいて、上記帯域使用条件が算出される例を説明したが、本開示は係る例に限定されない。例えば、REM(Radio Environment Map)のエリアと同様に、基地局装置20が共用帯域を使用可能なエリア/空間が予め定められている場合には、上記位置関連情報及び上記高さ関連情報のみに基づいて、利用可能周波数情報が導出されてもよい。また、例えば、位置及び高さと利用可能周波数情報とを関連付けるルックアップテーブルが用意されている場合にも、上記位置関連情報及び上記高さ関連情報のみに基づいて、上記利用可能周波数情報が導出されてもよい。
上記他システム関連情報に基づいて、上記帯域使用条件が算出される例を説明したが、本開示は係る例に限定されない。例えば、REM(Radio Environment Map)のエリアと同様に、基地局装置20が共用帯域を使用可能なエリア/空間が予め定められている場合には、上記位置関連情報及び上記高さ関連情報のみに基づいて、利用可能周波数情報が導出されてもよい。また、例えば、位置及び高さと利用可能周波数情報とを関連付けるルックアップテーブルが用意されている場合にも、上記位置関連情報及び上記高さ関連情報のみに基づいて、上記利用可能周波数情報が導出されてもよい。
利用可能周波数の評価は、必ずしも問い合わせリクエスト受信後に実施する必要はない。例えば、前述の登録手続きの正常完了後に、問い合わせリクエストなしに、通信制御装置40が主体的に実施してもよい。そのような場合、通信制御装置40は、手法2で例示したREMやルックアップテーブルまたはそれらと相似の情報テーブルを作成してもよい。
いずれの手法においても、PALやGAAのような電波利用優先度についても評価を行ってもよい。例えば、登録済デバイスパラメータまたは問い合わせ要件に電波利用優先度に関する情報が含まれる場合、当該優先度に基づいて周波数利用が可能かどうかを判定し、通知してもよい。また、例えば、非特許文献2で開示されているように、事前にユーザから高優先度利用(例えば、PAL)を行う基地局装置20に関する情報(非特許文献2では、Cluser Listと呼ばれる)が通信制御装置40に登録されている場合、その情報に基づいて評価を行ってもよい。
利用可能周波数の評価完了後、通信制御装置40は評価結果を基地局装置20(又はプロキシ装置50)へ通知する(ステップS24)。基地局装置20は、通信制御装置40から受け取った評価結果を用いて、所望通信パラメータの選定を行ってもよい。
<5-3.周波数利用許可手続き(Spectrum Grant Procedure)>
周波数利用許可手続きとは、基地局装置20が通信制御装置40から周波数の2次利用許可を受けるための手続きである。典型的には、登録手続きの正常完了後、基地局装置20または複数の基地局装置20を含む1以上の通信システムが、当該基地局装置20を特定可能な情報を含む周波数利用許可リクエストを通信制御装置40へ通知することで手続きが開始される。この通知は、プロキシ装置50が行ってもよい。なお、「登録手続きの正常完了後」というのは、必ずしも、利用可能周波数情報問い合わせ手続きを実施する必要がないことも意味する。
周波数利用許可手続きとは、基地局装置20が通信制御装置40から周波数の2次利用許可を受けるための手続きである。典型的には、登録手続きの正常完了後、基地局装置20または複数の基地局装置20を含む1以上の通信システムが、当該基地局装置20を特定可能な情報を含む周波数利用許可リクエストを通信制御装置40へ通知することで手続きが開始される。この通知は、プロキシ装置50が行ってもよい。なお、「登録手続きの正常完了後」というのは、必ずしも、利用可能周波数情報問い合わせ手続きを実施する必要がないことも意味する。
本発明においては、少なくとも以下の2種類の周波数利用許可リクエストの方式が用いられうることを想定する。
指定方式
フレキシブル方式
指定方式
フレキシブル方式
指定方式とは、基地局装置20が所望通信パラメータとして、少なくとも利用したい周波数帯域、最大送信電力を指定して、所望通信パラメータに基づく運用の許可を通信制御装置40に求めるリクエスト方式である。必ずしもこれらのパラメータに限定される必要はなく、無線インタフェース技術特有のパラメータ(変調方式やデュプレクスモードなど)が指定されてもよい。また、PAL、GAAのような電波利用優先度を示す情報が含まれてもよい。
フレキシブル方式とは、基地局装置20が、通信パラメータに関する要件のみを指定し、当該要件を満たしつつ2次利用許可が可能な通信パラメータの指定を通信制御装置40に求めるリクエスト方式である。通信パラメータに関する要件は、帯域幅または所望最大送信電力または所望最小送信電力が含まれうる。必ずしもこれらのパラメータに限定される必要はなく、無線インタフェース技術特有のパラメータ(変調方式やデュプレクスモードなど)が指定されてもよい。具体的には、例えば、TDD Frame Configurationのうち、1以上を事前に選択して通知してもよい。
いずれの方式であっても、メジャメントレポートが含まれてもよい。メジャメントレポートは、基地局装置20および/または端末装置30が実施するメジャメントの結果が含まれる。例えば、生データのみならず、加工された情報も含まれうる。例えば、RSRP(Reference Signal Received Power)、RSSI(Reference Signal Strength Indicator)、RSRQ(Reference Signal Received Quality)に代表される標準化されたメトリックが用いられうる。
(周波数利用許可処理の詳細)
図19は、周波数利用許可手続きを説明するためのシーケンス図である。基地局装置20または複数の基地局装置20を含む1以上の通信システムが、当該基地局装置20を特定可能な情報を含む周波数利用許可リクエストを生成し(ステップS31)、通信制御装置40へ通知する(ステップS32)。リクエストの生成及び/又は通知は、プロキシ装置50が行ってもよい。周波数利用許可リクエストは、例えば、通信制御装置40の取得部441が取得する。
図19は、周波数利用許可手続きを説明するためのシーケンス図である。基地局装置20または複数の基地局装置20を含む1以上の通信システムが、当該基地局装置20を特定可能な情報を含む周波数利用許可リクエストを生成し(ステップS31)、通信制御装置40へ通知する(ステップS32)。リクエストの生成及び/又は通知は、プロキシ装置50が行ってもよい。周波数利用許可リクエストは、例えば、通信制御装置40の取得部441が取得する。
通信制御装置40は周波数利用許可リクエストの取得後、周波数利用許可リクエスト方式に基づいて、周波数利用許可処理を行う(ステップS33)。例えば、通信制御装置40は、<5-2.利用可能周波数情報問い合わせ手続き>の例1~例3で説明した手法を利用して、プライマリシステムやその2次利用禁止エリア、近傍の基地局装置20の存在を考慮して周波数利用許可処理を行うことが可能である。
フレキシブル方式が用いられる場合、通信制御装置40は、<5-2.利用可能周波数情報問い合わせ手続き>の例4で説明した手法を利用して、最大許容送信電力情報を導出してもよい。典型的には、通信制御装置40は、プライマリシステムまたはその保護領域(Protection Zone)における許容可能干渉電力情報、プライマリシステムが被る干渉電力レベルの算定基準位置(Reference Point)情報、基地局装置20の登録情報、伝搬損失推定モデルを用いて最大許容送信電力を算出する。例えば、通信制御装置40は、以下の式(2)によって最大許容送信電力を算出する。
PMaxTx(dBm)=ITh(dBm)+PL(d)(dB) …(2)
PMaxTx(dBm)=ITh(dBm)+PL(d)(dB) …(2)
ここで、PMaxTx(dBm)は最大許容送信電力、ITh(dBm)は許容可能干渉電力、dは基準位置(Reference Point)と基地局装置20との間の距離、PL(d)(dB)は距離dにおける伝搬損失である。本数式においては送受信機におけるアンテナゲインを明示的に示していないが、最大許容送信電力の表現方法(EIRP、Conducted power等)や受信電力の参照点(アンテナ入力点、アンテナ出力点、等)に応じて数式を変形して用いてもよい。また、フェージングによる変動を補償するためのセーフティマージン等も含まれてよい。また、フィーダロス等、必要に応じて考慮されてよい。
また、上記数式は、単体の基地局装置20が干渉源である仮定に基づいて記述されている。例えば、同時に複数の基地局装置20からの累積的な干渉(Aggregated Interference)を考慮しなければならない場合には、補正値を加味してもよい。具体的には、例えば、非特許文献3で開示されている3種類(Fixed/Predetermined、Flexible、Flexible Minimized)の方式に基づいて補正値が決定されうる。
伝搬損失推定モデルは、さまざまなモデルが用いられうる。用途ごとにモデルが指定される場合、指定されるモデルを用いることが望ましい。例えば、非特許文献6においては、その用途ごとに、eHATA(Extended Hata)やITM(Irregular Terrain Model)といった伝搬損失モデルが採用されている。当然ながら、本発明の実施の際には、伝搬損失モデルはこれらに限定する必要はない。
所定の用途において、モデルが指定されていない場合、必要に応じて使い分けてもよい。具体的な一例として、例えば、他の基地局装置20への与干渉電力を推定する際には自由空間損失モデルのようにアグレッシブなモデルを用いて、基地局装置20のカバレッジを推定する際にはコンサバティブなモデルを用いるといった使い分けが可能である。
また、指定方式が用いられる場合、<5-2.利用可能周波数情報問い合わせ手続き>の手法1で説明した手法を用いて周波数利用許可処理を行うことが可能である。具体的には、例えば、送信電力情報で示される所望の送信電力を用いたと仮定した場合に、推定される与干渉量がプライマリシステムまたはその保護領域(Protection Zone)における許容可能干渉電力を下回る場合には、当該周波数チャネルの利用が許可可能であると判断され、基地局装置20(又はプロキシ装置50)へ通知される。
いずれの手法においても、PALやGAAのような電波利用優先度についても評価を行ってもよい。例えば、登録済デバイスパラメータまたは問い合わせ要件に電波利用優先度に関する情報が含まれる場合、当該優先度に基づいて周波数利用が可能かどうかを判定し、通知してもよい。また、例えば、非特許文献2で開示されているように、事前にユーザから高優先度利用(例えば、PAL)を行う基地局装置20に関する情報(非特許文献2では、Cluser Listと呼ばれる)が通信制御装置40に登録されている場合、その情報に基づいて評価を行ってもよい。
周波数利用許可処理は、必ずしもリクエスト受信時に実施する必要はない。例えば、前述の登録手続きの正常完了後に、周波数利用許可リクエストなしに、通信制御装置40が主体的に実施してもよい。また、例えば、一定周期毎に周波数利用許可判定処理を実施してもよい。そのような場合、<5-2.利用可能周波数情報問い合わせ手続き>の手法2で例示したREMやルックアップテーブルそれらと相似の情報テーブルを作成してもよい。
周波数利用許可処理の完了後、通信制御装置40は判定結果を基地局装置20へ通知する(ステップS34)。
<5-4.周波数利用通知(Spectrum Use Notification/Heartbeat)>
周波数利用通知とは、基地局装置20またはプロキシ装置50が、通信制御装置40に対して、上記周波数利用許可手続きで利用が認められた通信パラメータに基づく周波数利用の通知を行う手続きのことである。典型的には、基地局装置20またはプロキシ装置50が、当該基地局装置20を特定可能な情報を含む通知メッセージを通信制御装置40へ通知することで手続きが開始される。
周波数利用通知とは、基地局装置20またはプロキシ装置50が、通信制御装置40に対して、上記周波数利用許可手続きで利用が認められた通信パラメータに基づく周波数利用の通知を行う手続きのことである。典型的には、基地局装置20またはプロキシ装置50が、当該基地局装置20を特定可能な情報を含む通知メッセージを通信制御装置40へ通知することで手続きが開始される。
この手続きに関しては、周波数の利用が通信制御装置40から拒絶されるまでは周期的に実施されることが望ましい。この手続きが正常完了すれば、基地局装置20は、電波送信を開始または継続してもよい。上述の図2の例で、グラントの状態がGrantedだったのであれば、この手続きの成功によりグラントの状態はAuthorizedに移行する。また、上述の図2の例で、グラントの状態がAuthorizedだったのであれば、この手続きの失敗によりグラントの状態はGranted或いはIdoleに移行する。
以下の説明では、周波数利用通知のことをハートビートリクエスト(Heartbeat Request)、或いは単にハートビート(Heartbeat)ということがある。また、ハートビートリクエストの送信間隔のことをハートビートインターバル(Heartbeat Interval)ということがある。なお、以下の説明で登場するハートビートリクエスト(Heartbeat Request)或いはハートビート(Heartbeat)の記載は、「電波送信を開始または継続するためのリクエスト」を示す他の記載に適宜置き換え可能である。同様に、ハートビートインターバルも周波数利用通知の送信間隔を示す他の記載(例えば、送信インターバル)に置き換え可能である。
図20は、周波数利用通知手続きを説明するためのシーケンス図である。基地局装置20または複数の基地局装置20を含む1以上の通信システムが、当該基地局装置20を特定可能な情報を含む通知メッセージを生成し(ステップS41)、通信制御装置40へ通知する(ステップS42)。メッセージの生成及び/又は通知は、プロキシ装置50が行ってもよい。
周波数利用通知受信後、通信制御装置40は、電波送信の開始/継続が許容されるか判定してもよい(ステップS43)。判定方法として、例えば、プライマリシステムの周波数利用情報の確認が挙げられる。具体的には、プライマリシステムの利用周波数の変更、電波利用が定常的でないプライマリシステム(例えば、艦載レーダ)の周波数利用状況の変更、などに基づいて、電波送信の開始/継続許可または拒否を決定することが可能である。
判定処理が完了したら、通信制御装置40は、判定結果を基地局装置20(又はプロキシ装置50)へ通知する(ステップS44)。
本手続きにおいて、通信制御装置40から基地局装置20(又はプロキシ装置50)に対して通信パラメータの再構成(Reconfiguration)命令が行われてもよい。典型的には、周波数利用通知のレスポンスにおいて実施されうる。例えば、推奨される通信パラメータ情報が提供されうる。
<5-5.諸手続きの補足>
ここで、諸手続きは以降で説明する通りに、個別に実装される必要は必ずしもない。例えば、2つの異なる手続きの役割を備えた第3の手続きを代用することによって上記2つの異なる手続きを実現してもよい。具体的には、例えば、登録リクエストと利用可能周波数情報問い合わせリクエストが一体的に通知されてもよい。また、例えば、周波数利用許可手続きと周波数利用通知が一体的に実施されてもよい。当然のことながら、これらの組み合わせに限定されず、3つ以上であってもよい。また、上記手続きが分離されて実施されてもよい。
ここで、諸手続きは以降で説明する通りに、個別に実装される必要は必ずしもない。例えば、2つの異なる手続きの役割を備えた第3の手続きを代用することによって上記2つの異なる手続きを実現してもよい。具体的には、例えば、登録リクエストと利用可能周波数情報問い合わせリクエストが一体的に通知されてもよい。また、例えば、周波数利用許可手続きと周波数利用通知が一体的に実施されてもよい。当然のことながら、これらの組み合わせに限定されず、3つ以上であってもよい。また、上記手続きが分離されて実施されてもよい。
また、本書における「情報を取得する」という表現またはそれに準ずる表現は、必ずしも、上記手続き通りに取得することを意味しているわけではない。例えば、利用可能周波数評価処理において基地局装置20の位置情報を用いることが記載されているが、必ずしも登録手続きで取得される情報を用いる必要はなく、利用可能周波数問い合わせ手続きリクエストに位置情報が含まれる場合、その位置情報を用いてもよい、ということを意味する。換言すれば、本書に記載の範囲内、技術的な実現性の範囲内で、記載されているパラメータを他の手続きに含めてよいということを意味する。
また、上記手続きで示した通信制御装置40から基地局装置20(又はプロキシ装置50)へのレスポンスに含まれうる情報は、プッシュ通知されてもよい。具体的な一例として、利用可能周波数情報や推奨通信パラメータ情報、電波送信継続拒否通知などはプッシュ通知されてもよい。
<5-6.端末装置に関する諸手続き>
端末装置30についても、基本的には、<5-1>から<5-4>で説明した各手続きを用いることが可能である。ただし、基地局装置20と異なり、端末装置30はモビリティを有する。すなわち、動的に位置情報が更新される。法制によっては、一定以上位置情報が変わる場合、通信制御装置40への再登録が義務付けられる場合もある。そこで、英国情報通信庁(Ofcom:Office of Communication)が定める運用形態(非特許文献4参照)においては、以下に示す2種類の通信パラメータが規定されている。
個別パラメータ(Specific Operational Parameters)
一般パラメータ(Generic Operational Parameters)
端末装置30についても、基本的には、<5-1>から<5-4>で説明した各手続きを用いることが可能である。ただし、基地局装置20と異なり、端末装置30はモビリティを有する。すなわち、動的に位置情報が更新される。法制によっては、一定以上位置情報が変わる場合、通信制御装置40への再登録が義務付けられる場合もある。そこで、英国情報通信庁(Ofcom:Office of Communication)が定める運用形態(非特許文献4参照)においては、以下に示す2種類の通信パラメータが規定されている。
個別パラメータ(Specific Operational Parameters)
一般パラメータ(Generic Operational Parameters)
個別パラメータ(Specific Operational Parameters)とは、当該非特許文献において、「特定のスレーブWSD(White Space Device)に特有の動作パラメータ」として定義されている。換言すれば、端末装置30に相当するスレーブWSDのデバイスパラメータを用いて計算される通信パラメータのことである。特徴として、スレーブWSDの位置情報を用いてWSDB(White Space Database)によって計算されるということが挙げられる。
このような特徴から、個別パラメータは、低モビリティまたは固定設置される端末装置30に適していると想定される。
一般パラメータ(Generic Operational Parameters)とは、当該非特許文献において、「所定のマスタWSD(基地局装置20に相当)のカバレッジエリア内に位置するどのスレーブWSDも使用可能な動作パラメータ」として定義されている。特徴としては、スレーブWSDの位置情報を用いずにWSDBによって計算されるということが挙げられる。
このような特徴から、一般パラメータは、高モビリティの端末装置30に適していると想定される。
これら、端末装置30向けの情報は、基地局装置20からユニキャスト/ブロードキャストによって提供されうる。例えば、FCC規則Part 15 Subpart Hで規定されるCVS(Contact Verification Signal)に代表されるブロードキャスト信号が用いられうる。または、無線インタフェース特有のブロードキャスト信号によって提供されてもよい。具体的には、例えば、LTEや5G NRで用いられるPBCH(Physical Broadcast Channel)、NR-PBCHなどによって提供されてよい。
<5-7.通信制御装置間で発生する手続き>
(情報交換)
通信制御装置40は、他の通信制御装置40と管理情報の交換を行うことができる。図21は、管理情報の交換手続きを説明するためのシーケンス図である。図21の例では、通信制御装置401と通信制御装置402が情報を交換している。勿論、情報交換を行う通信制御装置は、通信制御装置401と通信制御装置402の2つに限られない。
(情報交換)
通信制御装置40は、他の通信制御装置40と管理情報の交換を行うことができる。図21は、管理情報の交換手続きを説明するためのシーケンス図である。図21の例では、通信制御装置401と通信制御装置402が情報を交換している。勿論、情報交換を行う通信制御装置は、通信制御装置401と通信制御装置402の2つに限られない。
管理情報の交換手続きでは、少なくとも、以下の情報が交換されることが望ましい。
通信装置登録情報
通信装置通信パラメータ情報
エリア情報
通信装置登録情報
通信装置通信パラメータ情報
エリア情報
通信装置登録情報とは、典型的には、上記登録手続きにおいて通信制御装置40に登録される基地局装置20のデバイスパラメータのことである。必ずしも、登録されている全ての情報が交換される必要はない。例えば、個人情報に該当する恐れのある情報は交換される必要はない。また、通信装置登録情報を交換する際に、暗号化・曖昧化された情報が交換されてもよい。例えば、バイナリ値に変換された情報や、電子署名の仕組みを用いて署名された情報が交換されてもよい。
通信装置通信パラメータ情報とは、典型的には、基地局装置20が現在使用している通信パラメータに係る情報のことである。少なくとも、利用周波数、送信電力を示す情報が含まれることが望ましい。その他の通信パラメータが含まれてもよい。
エリア情報とは、典型的には、所定の地理領域を示す情報のことである。この情報には、様々な属性の領域情報が、様々な態様で含まれうる。
例えば、非特許文献5で開示されているPPA(PAL Protection Area)のように高優先度セカンダリシステムとなる基地局装置20の保護領域情報が含まれてもよい。この場合のエリア情報は、例えば、3以上の地理位置座標の集合で表現されうる。また、例えば、複数の通信制御装置40が共通の外部データベースを参照可能な場合、当該情報を示すIDで表現されうる。
また、例えば、基地局装置20のカバレッジを示す情報が含まれてもよい。この場合のエリア情報も、例えば、3以上の地理位置座標の集合で表現されうる。また、例えば、基地局装置20の地理位置を原点とする円を想定し、半径サイズを示す情報でも表現されうる。また、例えば、複数の通信制御装置40が共通の外部データベースを参照可能な場合、当該情報を示すIDで表現されうる。
また、別の態様として、行政などによりあらかじめ定められたエリア区画に係る情報も含まれうる。具体的には、例えば、住所を示すことで一定の領域を示すことが可能である。また、例えば、ライセンスエリアなども同様に表現し得る。
また、さらなる別の態様として、エリア情報は必ずしも平面的なエリアを表現する必要はなく、3次元の空間を表現してもよい。例えば、空間座標系を用いて表現されてもよい。また、例えば、建物の階数、フロアや部屋番号など、所定の閉空間を示す情報が用いられてもよい。
これらの情報は、さまざまな方式により交換されうる。以下にその一例を示す。
ID指定方式
期間指定方式
領域指定方式
ダンプ方式
ID指定方式
期間指定方式
領域指定方式
ダンプ方式
ID指定方式とは、通信制御装置40が管理する情報を特定するためにあらかじめ付与されているIDを用いて、上記IDに該当する情報を取得する方式である。例えば、ID:AAAという基地局装置20を通信制御装置401が管理していると仮定する。このときに通信制御装置402が、通信制御装置401に対してID:AAAを指定して情報取得リクエストを行う。リクエスト受信後、通信制御装置401はID:AAAの情報検索を行い、該当する基地局装置20の登録情報、通信パラメータ情報をレスポンスで通知する。
期間指定方式とは、特定の期間を指定し、当該期間に所定の条件を満たす情報が交換されうる。
所定の条件とは、例えば、情報の更新の有無が挙げられる。例えば、特定期間における通信装置情報の取得をリクエストで指定された場合、当該期間に新規に登録された基地局装置20の登録情報や通信パラメータに変更があった基地局装置20の登録情報と通信パラメータの情報がレスポンスで通知されうる。
所定の条件とは、例えば、通信制御装置40が記録しているかどうかが挙げられる。例えば、特定期間における通信装置情報の取得をリクエストで指定された場合、当該期間に通信制御装置40が記録していた基地局装置20の登録情報、通信パラメータの情報がレスポンスで通知されうる。さらには、当該期間における最新情報が通知されうる。または、情報ごとに更新履歴が通知されてもよい。
領域指定方式とは、特定の領域を指定し、当該領域に属する情報が交換される。例えば、特定領域における通信装置情報の取得をリクエストで指定された場合、当該領域に設置されている基地局装置20の登録情報、通信パラメータの情報がレスポンスで通知されうる。
ダンプ方式とは、通信制御装置40が記録している全ての情報を提供する方式である。少なくとも、基地局装置20に係る情報やエリア情報はダンプ方式で提供されることが望ましい。
ここまでの通信制御装置40間情報交換についての説明は、全てプル方式に基づくものである。すなわち、リクエストで指定されたパラメータに該当する情報がレスポンスされる形態であり、一例として、HTTP GETメソッドで実現されうる。しかしながら、プル方式に限定される必要はなく、プッシュ方式で能動的に他の通信制御装置40に情報を提供してもよい。プッシュ方式は、一例として、HTTP POSTメソッドで実現されうる。
(命令・依頼手続き)
通信制御装置40は、互いに命令及び/又は依頼を実施してもよい。具体的には、一例として、基地局装置20の通信パラメータの再構成(Reconfiguration)が挙げられる。例えば、通信制御装置401が管理する基地局装置201が、通信制御装置402の管理する基地局装置204から多大な干渉を受けていると判断される場合に、通信制御装置401が通信制御装置402に対して、基地局装置204の通信パラメータ変更依頼をしてもよい。
通信制御装置40は、互いに命令及び/又は依頼を実施してもよい。具体的には、一例として、基地局装置20の通信パラメータの再構成(Reconfiguration)が挙げられる。例えば、通信制御装置401が管理する基地局装置201が、通信制御装置402の管理する基地局装置204から多大な干渉を受けていると判断される場合に、通信制御装置401が通信制御装置402に対して、基地局装置204の通信パラメータ変更依頼をしてもよい。
別の一例として、エリア情報の再構成(Reconfiguration)が挙げられる。例えば、通信制御装置402の管理する基地局装置204に関するカバレッジ情報や保護領域情報の計算に不備が見られる場合、通信制御装置401が通信制御装置402に対して、当該エリア情報の再構成を依頼してもよい。これ以外にも、さまざまな理由からエリア情報の再構成依頼が行われてもよい。
<<6.ハートビートに係る動作>>
次に、通信システム2のハートビートに係る動作を説明する。
次に、通信システム2のハートビートに係る動作を説明する。
<6-1.代表的動作フロー>
最初に、ハートビートに係る代表的な動作フローを説明する。図22は、ハートビートに係る動作の一例を示すシーケンス図である。具体的には、図22は、<5-3.周波数利用許可手続き>および<5-4.周波数利用通知>の手続きに相当する通信システム2の動作を示すシーケンス図である。なお、図22に示す動作フローはあくまで一例であり、基地局装置20、通信制御装置40、及びプロキシ装置50が置かれた状態等により様々に変化する。
最初に、ハートビートに係る代表的な動作フローを説明する。図22は、ハートビートに係る動作の一例を示すシーケンス図である。具体的には、図22は、<5-3.周波数利用許可手続き>および<5-4.周波数利用通知>の手続きに相当する通信システム2の動作を示すシーケンス図である。なお、図22に示す動作フローはあくまで一例であり、基地局装置20、通信制御装置40、及びプロキシ装置50が置かれた状態等により様々に変化する。
まず、通信制御装置401は、周期的処理の実行タイミングとなったら、周期的処理を実行する(ステップS61)。周期的処理は、通信制御装置40間の情報同期、及び、プライマリシステム保護に関わる計算を実行する処理である。周期的処理は、例えば、非特許文献7と非特許文献9に示されるCPAS(Coordinated Periodic Activities among SASs)である。以下の説明では、周期的処理のことを周期的保護計算ということもある。周期的処理の実行タイミングは、例えば、前回の周期的処理実行から24時間後である。勿論、周期的処理の実行間隔は24時間に限定されない。
図23は、周期的処理の具体的処理内容を示す図である。図23の例では、通信制御装置401と通信制御装置402とが情報同期及びプライマリシステム保護計算を行っている。勿論、周期的処理(情報同期等)を行う通信制御装置40は2つより多くてもよい。
図23に示すように、複数の通信制御装置40は、それぞれ、周期的処理を実行する(ステップS61)。まず、複数の通信制御装置40は、それぞれ、他の通信制御装置40と情報の同期をとる(ステップS61a)。そして、複数の通信制御装置40は、それぞれ、プライマリシステム保護計算を行う(ステップS61b、ステップS61c)。このとき、通信制御装置40は、個々の通信ノード(例えば、基地局装置20)がプライマリシステムに対して個別に与えうる干渉量の推定値や剰余干渉マージン等を計算してもよい。
図22に戻り、基地局装置20或いはプロキシ装置50は、通信制御装置401に対してグラントリクエスト(Grant Request)を送信する(ステップS62)。このグラントリクエストの送信は、基地局装置20の送信部243或いはプロキシ装置50の送信部543が行ってもよい。そして、通信制御装置401の取得部441は、送信されたグラントリクエストを取得する。通信制御装置401は、リクエストに応じて基地局装置20に利用可能周波数を割り当てる。周波数を割り当てたら、通信制御装置401は、基地局装置20或いはプロキシ装置50に対し、グラントレスポンス(Grant Response)を送信する。図22の例では、通信制御装置401は、グラントレスポンスとしてグラントリクエストの成功(図22に示すApprove)を通知している(ステップS63)。この通知は、通信制御装置401の通知部444が行ってもよい。グラントリクエストの成功により、基地局装置20が有するグラントの状態は、図2に示すように、IdoleからGrantedに移行する。
なお、通信制御装置401は、基地局装置20或いはプロキシ装置50に対して、グラントレスポンスを用いてハートビートインターバル(Heartbeat Interval)を通知してもよい。基地局装置20或いはプロキシ装置50に通知されるハートビートインターバルは、上述したように「240秒以下」であってもよい。また、ハートビートインターバルは「240秒以下」等の固定値ではなく、通信制御装置401の決定部443が、例えば基地局装置20に配分する干渉マージンに関する情報等に基づき、その都度決定したものであってもよい。このとき、ハートビートインターバルの決定方法は複数の決定方法の中から選択されたものであってもよい。ハートビートインターバルの決定方法については後に詳述する。
続いて、基地局装置20或いはプロキシ装置50は、通信制御装置401に対してハートビートリクエスト(Heartbeat Request)を送信する(ステップS64)。このハートビートリクエストの送信は、基地局装置20の送信部243或いはプロキシ装置50の送信部543が行ってもよい。そして、通信制御装置401の取得部441は、送信されたハートビートリクエストを取得する。そして、通信制御装置401は、ハートビートレスポンス(Heartbeat Response)を送信する。なお、図22の例では、基地局装置20に割り当てられたグラントは未だ周期的処理(例えば、CPAS)を通過していない。そのため、図22の例では、通信制御装置401は電波送信の開始を承認できない。そこで、通信制御装置401は、ハートビートレスポンスとして、電波送信の停止指示(Suspension instruction)を送信する(ステップS65)。
以降、基地局装置20或いはプロキシ装置50は、通信制御装置401から通知されたハートビートインターバルでハートビートリクエストを送信し続ける。このハートビートリクエストに対して、通信制御装置401は、次回の周期的処理が完了するまで、ハートビートレスポンスとして電波送信の停止指示を送信し続ける。
なお、通信制御装置401は、基地局装置20或いはプロキシ装置50に対して、ハートビートレスポンスを用いてハートビートインターバルを通知してもよい。この通知は、通信制御装置401の通知部444が行ってもよい。基地局装置20或いはプロキシ装置50に通知されるハートビートインターバルは、上述したように「240秒以下」であってもよいし、他の値であってもよい。ハートビートインターバルの決定方法については後に詳述する。
そして、周期的処理の実行タイミングとなったら、通信制御装置401を含む複数の通信制御装置40は、それぞれ、周期的処理を実行する(ステップS66)。例えば、複数の通信制御装置40は、図23に示すように、それぞれ、他の通信制御装置40と情報の同期をとる(ステップS66a)。そして、複数の通信制御装置40は、それぞれ、プライマリシステム保護計算を行う(ステップS66b、ステップS66c)。
続いて、基地局装置20或いはプロキシ装置50は、通信制御装置401に対してハートビートリクエストを送信する(ステップS67)。このハートビートリクエストの送信は、基地局装置20の送信部243或いはプロキシ装置50の送信部543が行ってもよい。そして、通信制御装置401の取得部441は、送信されたハートビートリクエストを取得する。そして、通信制御装置401は、ハートビートレスポンスを送信する。このとき、基地局装置20に割り当てられたグラントは周期的処理を通過しているで、通信制御装置401はハートビートリクエストを送信した基地局装置20に対して電波送信の開始を承認できる。そこで、通信制御装置401は、ハートビートレスポンスとして、ハートビートレスポンスの成功(図22に示すAuthorize)を送信する(ステップS68)。この通知は、通信制御装置401の通知部444が行ってもよい。ハートビートリクエストの成功により、基地局装置20が有するグラントの状態は、図2に示すように、GrantedからAuthorizedに移行する。
なお、通信制御装置401は、基地局装置20或いはプロキシ装置50に対して、ハートビートレスポンスを用いてハートビートインターバルを通知してもよい。この通知は、通信制御装置401の通知部444が行ってもよい。基地局装置20或いはプロキシ装置50に通知されるハートビートインターバルは、上述したように「240秒以下」であってもよいし、他の値であってもよい。ハートビートインターバルの決定方法については後に詳述する。以降、基地局装置20或いはプロキシ装置50は、通信制御装置401から通知されたハートビートインターバルでハートビートリクエストを送信し続ける。
なお、本実施形態では、ハートビートインターバルの決定方法として、複数の決定方法を提案する。なお、以下に示す決定方法はあくまで一例である。ハートビートインターバルの決定方法は以下に示す方法に限定されない。なお、グラントレスポンス(Approve)直後の初回のハートビートは規格上ただちに実施することになっているため、簡便のため、その間の時間間隔はゼロとして説明する。当然のことながら、この時間間隔を考慮しなければならない場合には、適当な範囲で考慮してよい。以下の説明で用いる「ハートビートインターバル」は2回目以降のハートビートの最大間隔に相当することに留意されたい。
<6-2.ハートビートインターバルの決定方法(第1の決定方法)>
まず、第1の決定方法を説明する。上述したように、通信制御装置40は、次回の周期的処理までの間、周期的処理を通過していないグラントに対しては、例えハートビートリクエストを受け取ったとしても、電波送信の停止指示(Suspension instruction)を送信し続ける。これは、非常に無駄なことである。そこで、第1の決定方法では、通信制御装置40は、次回の周期的処理(例えば、CPAS)完了後にハートビートを行うよう基地局装置20或いはプロキシ装置50にハートビートインターバルを設定する。
まず、第1の決定方法を説明する。上述したように、通信制御装置40は、次回の周期的処理までの間、周期的処理を通過していないグラントに対しては、例えハートビートリクエストを受け取ったとしても、電波送信の停止指示(Suspension instruction)を送信し続ける。これは、非常に無駄なことである。そこで、第1の決定方法では、通信制御装置40は、次回の周期的処理(例えば、CPAS)完了後にハートビートを行うよう基地局装置20或いはプロキシ装置50にハートビートインターバルを設定する。
ハートビートインターバルの決定は、例えば、通信制御装置40の決定部443が行う。グラントレスポンス(Approve)またはハートビート(Suspension instruction)を送る時刻をtresとすると、ハートビートインターバルは、例えば、以下の式(3)ように決定できる。
ΔHeartbeat,Interval[sec]>ΔCPAS,Processing[sec]+ΔCPAS,Interval[sec]-(tres-tPrev,CPAS)[sec] …(3)
ΔHeartbeat,Interval[sec]>ΔCPAS,Processing[sec]+ΔCPAS,Interval[sec]-(tres-tPrev,CPAS)[sec] …(3)
ここで、ΔHeartbeat,Intervalはハートビートインターバル、ΔCPAS,Processingは周期的処理(例えばCPAS処理)に係る時間間隔、ΔCPAS,Intervalは周期的処理間の時間間隔、tPrev,CPASは前回周期的処理が実行開始された時刻である。なお、式(1)にて時間間隔の単位を「秒」としているが、必要に応じて「分」など他の単位に置き換えられてもよい。
このように決定することで、次回の周期的処理までの間、不要なハートビートが発生することが少なくなる。なお、次回の周期的処理で、グラントが許可(例えば、図22に示すステップS68のAuthorize)された場合、次のハートビートインターバルは「240秒以下」に設定されることが望ましい。
<6-3.ハートビートインターバルの決定方法(第2の決定方法)>
次に第2の決定方法を説明する。上述の第1の決定方法は、前回の周期的処理の結果、基地局装置20に配分可能な剰余干渉マージン(Leftover interference margin)がないと判別された場合に適用されうる。しかしながら、前回の周期的処理で、配分可能な乗除干渉マージンがある場合、その範囲内で次回の周期的処理を待たずに基地局装置20のグラント状態をAuthorizedに遷移させることも可能である。
次に第2の決定方法を説明する。上述の第1の決定方法は、前回の周期的処理の結果、基地局装置20に配分可能な剰余干渉マージン(Leftover interference margin)がないと判別された場合に適用されうる。しかしながら、前回の周期的処理で、配分可能な乗除干渉マージンがある場合、その範囲内で次回の周期的処理を待たずに基地局装置20のグラント状態をAuthorizedに遷移させることも可能である。
そこで、第2の決定方法では、通信制御装置40は、基地局装置20に剰余干渉マージンを配分するために、リクエスト取得後、即座にプライマリシステム保護計算を行うとともに、プライマリシステム保護計算の完了後にハートビートを行うよう基地局装置20或いはプロキシ装置50にハートビートインターバルを設定する。
ここで、プライマリシステム保護の計算に要する時間をΔcalc[sec]とする。このとき、ハートビートインターバルΔHeartbeat,Intervalは以下の式(4)のように設定できる。
ΔHeartbeat,Interval[sec]>Δcalc[sec] …(4)
ΔHeartbeat,Interval[sec]>Δcalc[sec] …(4)
このように設定することで、基地局装置20は、次回の周期的処理の完了を待つことなく、電波送信が可能になる。しかも、プライマリシステム保護計算の間、基地局装置20或いはプロキシ装置50がハートビートを送信し続けるという無駄は発生しない。
<6-4.ハートビートインターバルに係る処理フロー>
なお、通信制御装置40が使用するハートビートインターバルの決定方法は必ずしも1つでなくてもよい。通信制御装置40は、複数の決定方法の中から選択される所定の決定方法を使って、ハートビートインターバルを決定してもよい。例えば、通信制御装置40は、所定の基準に従って第1の決定方法及び第2の決定方法のいずれかを使用してハートビートインターバルを決定してもよい。このとき、通信制御装置40は、基地局装置20に配分する干渉マージンに関する情報(例えば、基地局装置20に配分可能な干渉マージンの剰余量)に基づき決定方法を選択してもよい。
なお、通信制御装置40が使用するハートビートインターバルの決定方法は必ずしも1つでなくてもよい。通信制御装置40は、複数の決定方法の中から選択される所定の決定方法を使って、ハートビートインターバルを決定してもよい。例えば、通信制御装置40は、所定の基準に従って第1の決定方法及び第2の決定方法のいずれかを使用してハートビートインターバルを決定してもよい。このとき、通信制御装置40は、基地局装置20に配分する干渉マージンに関する情報(例えば、基地局装置20に配分可能な干渉マージンの剰余量)に基づき決定方法を選択してもよい。
(通信制御処理)
図24は、ハートビートインターバルの決定に係る通信制御処理を示すフローチャートである。図24に示す処理は、例えば、通信制御装置40が、基地局装置20或いはプロキシ装置50からグラントリクエスト、或いはグラントリクエスト成功後の最初のハートビートリクエストを受信した場合に実行される。
図24は、ハートビートインターバルの決定に係る通信制御処理を示すフローチャートである。図24に示す処理は、例えば、通信制御装置40が、基地局装置20或いはプロキシ装置50からグラントリクエスト、或いはグラントリクエスト成功後の最初のハートビートリクエストを受信した場合に実行される。
まず、通信制御装置40の取得部441は、1又は複数の所定の基地局装置20、或いは1又は複数の所定の基地局装置20を代表する所定のプロキシ装置50からグラントリクエスト、或いはグラントリクエスト成功後の最初のハートビートリクエストを取得する(ステップS71)。そして、通信制御装置40の判定部442は、1又は複数の所定の基地局装置20に配分するだけの干渉マージンの剰余(剰余干渉マージン)があるか判別する(ステップS72)。
1又は複数の所定の基地局装置20に配分するだけの剰余干渉マージンがない場合(ステップS72:No)、通信制御装置40の決定部443は、上述の第1の決定方法を使って1又は複数の所定の基地局装置20それぞれのハートビートインターバルを決定する(ステップS73)。すなわち、決定部443は、次回の周期的処理完了後にハートビートリクエストが送信されるようハートビートインターバルを決定する。
一方、1又は複数の所定の基地局装置20に配分するだけの剰余干渉マージンがある場合(ステップS72:Yes)、決定部443は、上述の第2の決定方法を使って1又は複数の所定の基地局装置20それぞれのハートビートインターバルを決定する(ステップS74)。すなわち、決定部443は、プライマリシステム保護計算の完了後にハートビートが送信されるようハートビートインターバルを決定する。
ハートビートインターバルを決定したら、通信制御装置40の通知部444は、1又は複数の所定の基地局装置20、或いは1又は複数の所定の基地局装置20を代表する所定のプロキシ装置50にハートビートインターバルを通知する(ステップS75)。ハートビートインターバルの通知は、グラントレスポンス或いはハートビートレスポンスを用いて行われてもよい。これにより、1又は複数の所定の基地局装置20にハートビートインターバルが設定される。
このようにハートビートインターバルを設定することで、基地局装置20或いはプロキシ装置50に適切なタイミングで次回のハートビートを実施させることができる。結果として、通信システム2のシグナリング(Signaling)の効率性が高まる。
(リクエスト送信処理)
次に、ハートビートリクエストの送信処理を説明する。以下の説明では、基地局装置20が以下の処理を実行するものとして説明するが、プロキシ装置50が実行してもよい。この場合、以下の説明で登場する基地局装置20の記載はプロキシ装置50に置き換えてもよい。また、以下の説明で登場する取得部241、設定部242、送信部243の記載は、それぞれ、取得部541、設定部542、送信部543に置き換えてもよい。
次に、ハートビートリクエストの送信処理を説明する。以下の説明では、基地局装置20が以下の処理を実行するものとして説明するが、プロキシ装置50が実行してもよい。この場合、以下の説明で登場する基地局装置20の記載はプロキシ装置50に置き換えてもよい。また、以下の説明で登場する取得部241、設定部242、送信部243の記載は、それぞれ、取得部541、設定部542、送信部543に置き換えてもよい。
図25は、ハートビートリクエストの送信に係るリクエスト送信処理を示すフローチャートである。図25に示す処理は、例えば、通信制御装置40からのグラントレスポンス或いはハートビートレスポンスに、通信制御装置40が決定したハートビートインターバルの情報が含まれていた場合に実行される。
まず、基地局装置20の取得部241は、通信制御装置40が決定したハートビートインターバルの情報を取得する(ステップS81)。そして、基地局装置20の設定部242は、取得したハートビートインターバルを設定する(ステップS82)。例えば、設定部242は、ハートビートインターバルの値を、ハートビートリクエストの送信を制御する半導体の所定のレジスタに記録する。そして、基地局装置20の送信部243は、設定ハートビートインターバルに従って、通信制御装置40にハートビートリクエストを送信する(ステップS83)。
これにより、基地局装置20は適切なタイミングでハートビートを実施できるので、通信システム2のシグナリング(Signaling)の効率性が高まる。
<6-5.ハートビートインターバルの決定方法(第3の決定方法)>
通信制御装置40が複数の通信装置(例えば、基地局装置20及び/又はプロキシ装置50)を制御する場合、多数の通信装置が同時に通信制御装置40にアクセスすることが想定される。例えば、ハートビートインターバルの値を固定の値(例えば、「240秒以下」)ではなく、通信制御装置40が所定の基準に従って決定する値とする場合を想定する。この場合、基準によっては、多数のハートビートリクエストが、時間的に分散されずに、通信制御装置40に同時に送信されてしまうことが想定される。
通信制御装置40が複数の通信装置(例えば、基地局装置20及び/又はプロキシ装置50)を制御する場合、多数の通信装置が同時に通信制御装置40にアクセスすることが想定される。例えば、ハートビートインターバルの値を固定の値(例えば、「240秒以下」)ではなく、通信制御装置40が所定の基準に従って決定する値とする場合を想定する。この場合、基準によっては、多数のハートビートリクエストが、時間的に分散されずに、通信制御装置40に同時に送信されてしまうことが想定される。
例えば、第1の決定方法によりハートビートインターバルが決定される場合を考える。第1の決定方法は、次回の周期的処理の後にハートビートリクエストを送信するようハートビートインターバルを設定する方法である。この場合、多少の誤差はあれども、多数の基地局装置20(或いは多数のプロキシ装置50)が、次回の周期的処理が完了したタイミングでハートビートリクエストを送信することが想定される。この場合、通信制御装置40は急激な負荷上昇によりパフォーマンスを低下させる恐れがある。こうなると、通信制御装置40はハートビートリクエストを処理しきれず、効率的な周波数管理ができなくなる恐れがある。
そこで、通信制御装置40は、ハートビートリクエストが分散されて送信されるようハートビートインターバルの値を決定する。一例として、通信制御装置40の決定部443は、次の周期的処理の後にハートビートリクエストが送信されるようハートビートインターバルを決定する場合に、次の周期的処理の後にハートビートリクエストを送信する他の1の第2無線システム(基地局装置20又はプロキシ装置50)のハートビートインターバルに付加するマージン時間とは異なるマージン時間を付加してもよい。勿論、マージン時間を付加するケースはこのケースに限定されない。
通信制御装置40の決定部443は、ハートビートリクエストを送信する通信装置毎に(例えば、基地局装置20毎に及び/又はプロキシ装置50毎に)、異なるマージン時間(Δmargin,i)を決定してもよい。そして、決定部443は、所定の決定方法(例えば、上述の第1の決定方法或いは第2の決定方法)で決定したハートビートインターバル(ΔHeartbeat,Interval)にマージン時間(Δmargin,i)付加してもよい。決定部443は、マージン時間Δmargin,iを付加したハートビートインターバル(Δ'Heartbeat,Interval,i)を基地局装置20又はプロキシ装置50に設定するハートビートインターバルとして決定してもよい。
これを式にすると、以下の式(5)のように表現される。式(5)において、iはハートビートリクエストを送信する通信装置(例えば、基地局装置20毎に及び/又はプロキシ装置50)のインデックスを示す。
Δ'Heartbeat,Interval,i=ΔHeartbeat,Interval+Δmargin,i …(5)
Δ'Heartbeat,Interval,i=ΔHeartbeat,Interval+Δmargin,i …(5)
マージン時間Δmargin,iの設定方法としては以下のランダム設定と共通設定が想定されうる。
(ランダム設定)
例えば、決定部443は、0~Δmargin,max[sec]の範囲からランダムにマージン時間Δmargin,iとなる値を選択する。このときΔmargin,maxはマージン時間Δmargin,iとなる値の最大値である。なお、決定部443は、0~Δmargin,max[sec]の範囲をあらかじめ離散的に区切り、その離散値からランダムに選択してもよい、このとき、離散間隔は、動的に変更されてよい。これにより、ハートビートリクエストの送信タイミングが分散される。結果として、通信制御装置40の処理負荷も分散され、効率的な周波数管理が可能になる。
例えば、決定部443は、0~Δmargin,max[sec]の範囲からランダムにマージン時間Δmargin,iとなる値を選択する。このときΔmargin,maxはマージン時間Δmargin,iとなる値の最大値である。なお、決定部443は、0~Δmargin,max[sec]の範囲をあらかじめ離散的に区切り、その離散値からランダムに選択してもよい、このとき、離散間隔は、動的に変更されてよい。これにより、ハートビートリクエストの送信タイミングが分散される。結果として、通信制御装置40の処理負荷も分散され、効率的な周波数管理が可能になる。
(共通設定)
決定部443は、特定の基地局装置20間(或いは、特定のプロキシ装置50間)で共通のマージン時間を設定してもよい。例えば、決定部443は、基地局装置20及び/又はプロキシ装置50を所定の基準に従ってグルーピングし、グループごとに共通のマージン時間を設定する。設定方法としては以下の4つの方法が想定される。
決定部443は、特定の基地局装置20間(或いは、特定のプロキシ装置50間)で共通のマージン時間を設定してもよい。例えば、決定部443は、基地局装置20及び/又はプロキシ装置50を所定の基準に従ってグルーピングし、グループごとに共通のマージン時間を設定する。設定方法としては以下の4つの方法が想定される。
(設定方法1)
1又は複数の基地局装置20の代理でプロキシ装置50が通信制御装置40にアクセスする場合、決定部443は、そのプロキシ装置50の配下の1又は複数の基地局装置20には、共通のマージン時間を設定する。このとき、プロキシ装置50は、配下の複数の基地局装置20が共通で使用するハートビートインターバルを通信制御装置40から取得し、配下の複数の基地局装置20のハートビートリクエストを通信制御装置40にまとめて送信する。共通のハートビートインターバルとすることより、プロキシ装置50が、配下の基地局装置20のハートビートリクエストをまとめて通信制御装置40に送信できるようになるので、通信システム2のシグナリングの効率性がさらに高まる。
1又は複数の基地局装置20の代理でプロキシ装置50が通信制御装置40にアクセスする場合、決定部443は、そのプロキシ装置50の配下の1又は複数の基地局装置20には、共通のマージン時間を設定する。このとき、プロキシ装置50は、配下の複数の基地局装置20が共通で使用するハートビートインターバルを通信制御装置40から取得し、配下の複数の基地局装置20のハートビートリクエストを通信制御装置40にまとめて送信する。共通のハートビートインターバルとすることより、プロキシ装置50が、配下の基地局装置20のハートビートリクエストをまとめて通信制御装置40に送信できるようになるので、通信システム2のシグナリングの効率性がさらに高まる。
(設定方法2)
通信制御装置40には、許容可能な同時アクセス数が存在する場合があり得る。この場合、通信制御装置40の決定部443は、通信制御装置40の許容可能同時アクセス数に基づいて、複数の基地局装置20のグルーピングを行う。そして、決定部443は、各グループ内では、共通のマージン時間を設定する。通信制御装置40の処理能力に合わせた最適な数のリクエストが同時送信されるので、シグナリングの効率性を高めつつ、通信制御装置40の処理効率も高めることができる。
通信制御装置40には、許容可能な同時アクセス数が存在する場合があり得る。この場合、通信制御装置40の決定部443は、通信制御装置40の許容可能同時アクセス数に基づいて、複数の基地局装置20のグルーピングを行う。そして、決定部443は、各グループ内では、共通のマージン時間を設定する。通信制御装置40の処理能力に合わせた最適な数のリクエストが同時送信されるので、シグナリングの効率性を高めつつ、通信制御装置40の処理効率も高めることができる。
なお、決定部443は、1つのプロキシ装置50の配下にある複数の基地局装置20を複数のグループにグルーピングしてもよい。例えば、1つのプロキシ装置50が束ねる基地局装置20の総数が通信制御装置40の許容可能同時アクセス数を超える場合には、決定部443は、プロキシ装置50配下の複数の基地局装置20をグルーピングし、グループ単位でハートビートを実施させてもよい。
このとき、プロキシ装置50が束ねる基地局装置20の総数が、通信制御装置40に通知されることが望ましい。この通知は、プロキシ装置50自身が行ってもよいし、プロキシ装置50を管理する他の装置が行ってもよい。なお、プロキシ装置50が束ねる基地局装置20の総数が通信制御装置40に通知されない場合、通信制御装置40はアクセス記録などに基づいてプロキシ装置50が束ねる基地局装置20の総数を推測してもよい。
なお、通信制御装置40が行ったグルーピングの情報は、通信制御装置40からプロキシ装置50に通知されることが望ましい。それにより、プロキシ装置50は通信制御装置40から指示されたグルーピングに基づいて基地局装置20のリクエストを束ねることが可能となる。結果として、通信システム2のシグナリングの効率性が高まる。
(設定方法3)
通信制御装置40の決定部443は、プライマリシステム保護計算で累積干渉電力の「寄与者」となる基地局装置20を1つのグループとしてもよい。そして、決定部443は、グループ内では、マージン時間を共通のものとしてもよい。
通信制御装置40の決定部443は、プライマリシステム保護計算で累積干渉電力の「寄与者」となる基地局装置20を1つのグループとしてもよい。そして、決定部443は、グループ内では、マージン時間を共通のものとしてもよい。
このとき、決定部443は、干渉計算考慮エリアに位置する基地局装置20を累積干渉電力の「寄与者」として考え、グループ化してもよい。干渉計算考慮エリアは、例えば、プライマリシステムが被る干渉電力レベルの算定基準位置(Reference Point)情報に基づいて定義されたものであってもよい。
リクエストの結果が同じになる可能性が高い基地局装置20のハートビートリクエストが同時に送信されるので、通信制御装置40の処理が容易となる。
(設定方法4)
通信制御装置40の決定部443は、相互干渉グループ(Mutual Interference Group)を考慮して、基地局装置20のグルーピングを行う。ここで、相互干渉グループとは、互いに干渉を与える基地局装置20のグループである。すなわち、決定部443は、互いに干渉影響を与えうる基地局装置20を1つのグループとする。例えば、決定部443は、通信をカバーする範囲(カバレッジ)が重複する位置関係となっている基地局装置20を1つのグループとする。リクエストの結果が同じになる可能性が高い基地局装置20のハートビートリクエストが同時に送信されるので、通信制御装置40の処理が容易となる。
通信制御装置40の決定部443は、相互干渉グループ(Mutual Interference Group)を考慮して、基地局装置20のグルーピングを行う。ここで、相互干渉グループとは、互いに干渉を与える基地局装置20のグループである。すなわち、決定部443は、互いに干渉影響を与えうる基地局装置20を1つのグループとする。例えば、決定部443は、通信をカバーする範囲(カバレッジ)が重複する位置関係となっている基地局装置20を1つのグループとする。リクエストの結果が同じになる可能性が高い基地局装置20のハートビートリクエストが同時に送信されるので、通信制御装置40の処理が容易となる。
<6-6.基地局装置が複数のグラント保有している場合>
上述の実施形態では、1つの基地局装置20が複数のグラント(周波数の割り当て)を保有する場合について明示していなかったが、当然ながら、1つの基地局装置20が複数のグラントを保有する場合であっても、1つのグラントを1つの無線通信装置とみなして上述の実施形態を適用可能である。1つの基地局装置20が複数のグラントを保有する場合には、上述の実施形態に加えて、例えば、以下に示すようなハートビートインターバルの設定例も可能である。
上述の実施形態では、1つの基地局装置20が複数のグラント(周波数の割り当て)を保有する場合について明示していなかったが、当然ながら、1つの基地局装置20が複数のグラントを保有する場合であっても、1つのグラントを1つの無線通信装置とみなして上述の実施形態を適用可能である。1つの基地局装置20が複数のグラントを保有する場合には、上述の実施形態に加えて、例えば、以下に示すようなハートビートインターバルの設定例も可能である。
(設定例1)
通信制御装置40の決定部443は、グラントの状態の情報の基づきハートビートインターバルを決定する。例えば、決定部443は、同じ状態(例えば、Granted/Authorized)のグラントに共通のハートビートインターバルを決定する。
通信制御装置40の決定部443は、グラントの状態の情報の基づきハートビートインターバルを決定する。例えば、決定部443は、同じ状態(例えば、Granted/Authorized)のグラントに共通のハートビートインターバルを決定する。
例えば、決定部443は、Granted状態のグラントには、第1の決定方法或いは第2の決定方法を用いてハートビートインターバルを決定する。なお、通信システム2に複数の基地局装置20が存在する場合には、決定部443は、さらに第3の決定方法を考慮してハートビートインターバルを決定してもよい。
また、決定部443は、Authorized状態のグラントには、通常用いるハートビートインターバルを設定する。通常用いるハートビートインターバルは「240秒以下」であってもよい。なお、通信システム2に複数の基地局装置20が存在する場合には、決定部443は、さらに第3の決定方法を考慮してハートビートインターバルを決定してもよい。
図26は、同じステート(状態)のグラントに共通のハートビートインターバルを設定した様子を示す図である。図26の例では、1つの基地局装置20がGrant1~Grant4の4つのグラントを有している。Grant1とGrant3は、Authorized状態のグラントであり、Grant2とGrant4は、Granted状態のグラントである。図26の例では、Granted状態のグラントとAuthorized状態のグラントとでハートビートインターバルが異なっている。図26を見ると分かるように、基地局装置20は、Granted状態のグラント(Grant2とGrant4)に関するハートビートリクエストを周期的処理が完了するまで実行しない。これにより、通信システム2はシグナリングの効率性を高めることができる。結果として、電波資源の効率的な利用が可能になる。
なお、通信制御装置40の決定部443は、他のグラントの状態が存在する場合には、同じように、その状態のグラントには共通のハートビートインターバルを決定してもよい。
なお、この設定例1では、1つの基地局装置20が複数のグラントを有する場合を想定して説明したが、1つの基地局装置20が1つのグラントを有する場合にも設定例1を適用可能である。例えば、決定部443は、グラントが同じ状態の基地局装置20に共通のハートビートインターバルを設定する。より具体的には、決定部443は、Granted状態のグラントを有する基地局装置20には第1の決定方法或いは第2の決定方法を用いてハートビートインターバルを決定する。Authorized状態のグラントを有する基地局装置20には、通常用いるハートビートインターバルを設定する。いずれの場合も第3の決定方法を考慮してハートビートインターバルを決定してもよい。この場合にも、通信システム2はシグナリングの効率性を高めることができる。
(設定例2)
通信制御装置40の決定部443は、周期的処理(プライマリシステムの周期的保護計算)を通過したグラントか否かの情報に基づいてハートビートインターバルを決定する。例えば、決定部443は、ニューエントラントグラント(New Entrant Grant)かイグジスティンググラント(Existing Grant)かで、共通のハートビートインターバルを決定する。ここで、ニューエントラントグラントは周期的処理(例えば、CPAS)を一度もパスしていないグラントであり、イグジスティンググラントは周期的処理をパスしたことのあるグラントである。
通信制御装置40の決定部443は、周期的処理(プライマリシステムの周期的保護計算)を通過したグラントか否かの情報に基づいてハートビートインターバルを決定する。例えば、決定部443は、ニューエントラントグラント(New Entrant Grant)かイグジスティンググラント(Existing Grant)かで、共通のハートビートインターバルを決定する。ここで、ニューエントラントグラントは周期的処理(例えば、CPAS)を一度もパスしていないグラントであり、イグジスティンググラントは周期的処理をパスしたことのあるグラントである。
ニューエントラントグラントは、周期的処理をパスするまで電波を出せないので、決定部443は、ニューエントラントグラントには、第1の決定方法或いは第2の決定方法を用いてハートビートインターバルを決定する。なお、通信システム2に複数の基地局装置20が存在する場合には、決定部443は、さらに第3の決定方法を考慮してハートビートインターバルを決定してもよい。
また、決定部443は、イグジスティンググラントには、通常用いるハートビートインターバルを設定する。通常用いるハートビートインターバルは「240秒以下」であってもよい。なお、通信システム2に複数の基地局装置20が存在する場合には、決定部443は、さらに第3の決定方法を考慮してハートビートインターバルを決定してもよい。
なお、イグジスティンググラントは電波を出せるものの、基地局装置20によっては、位置関係等から電波を止めないといけない場合が生じうる。そのため、決定部443は、必ずしもイグジスティンググラント全てに対して共通のハートビートインターバルを設定する必要はない。
設定例2によっても、通信システム2はシグナリングの効率性を高めることができる。結果として、電波資源の効率的な利用が可能になる。
なお、この設定例2では、1つの基地局装置20が複数のグラントを有する場合を想定して説明したが、1つの基地局装置20が1つのグラントを有する場合にも設定例2を適用可能である。例えば、決定部443は、ニューエントラントグラントを有する基地局装置20かイグジスティンググラントを有する基地局装置20かで、共通のハートビートインターバルを設定する。より具体的には、決定部443は、ニューエントラントグラントを有する基地局装置20には第1の決定方法或いは第2の決定方法を用いてハートビートインターバルを決定する。イグジスティンググラントを有する基地局装置20には、通常用いるハートビートインターバルを設定する。いずれの場合も第3の決定方法を考慮してハートビートインターバルを決定してもよい。この場合にも、通信システム2はシグナリングの効率性を高めることができる。
<<7.変形例>>
上述の実施形態は一例を示したものであり、種々の変更及び応用が可能である。
上述の実施形態は一例を示したものであり、種々の変更及び応用が可能である。
<7-1.システム構成に関する変形例>
本実施形態の通信制御装置40は、上述の実施形態で説明した装置に限定されない。例えば、通信制御装置40は、周波数共用が行われる周波数帯域を二次利用する基地局装置20を制御する以外の機能を有する装置であってもよい。例えば、本実施形態の通信制御装置40の機能をネットワークマネージャが具備してもよい。このとき、ネットワークマネージャは、例えば、C-RAN(Centralized Radio Access Network)と呼ばれるネットワーク構成のC-BBU(Centralized Base Band Unit)またはこれを備える装置であってもよい。また、ネットワークマネージャの機能を基地局(アクセスポイントを含む。)が具備してもよい。これらの装置(ネットワークマネージャ等)も通信制御装置とみなすことが可能である。
本実施形態の通信制御装置40は、上述の実施形態で説明した装置に限定されない。例えば、通信制御装置40は、周波数共用が行われる周波数帯域を二次利用する基地局装置20を制御する以外の機能を有する装置であってもよい。例えば、本実施形態の通信制御装置40の機能をネットワークマネージャが具備してもよい。このとき、ネットワークマネージャは、例えば、C-RAN(Centralized Radio Access Network)と呼ばれるネットワーク構成のC-BBU(Centralized Base Band Unit)またはこれを備える装置であってもよい。また、ネットワークマネージャの機能を基地局(アクセスポイントを含む。)が具備してもよい。これらの装置(ネットワークマネージャ等)も通信制御装置とみなすことが可能である。
なお、上述の実施形態では、通信システム1を第1無線システム、基地局装置20を第2無線システムとした。しかし、第1無線システム及び第2無線システムはこの例に限定されない。例えば、第1無線システムは通信装置(例えば、無線通信装置10)であってもよいし、第2無線システムは通信システム(通信システム2)であってもよい。なお、本実施形態で登場する無線システムは、複数の装置から構成されるシステムに限定されず、適宜、「装置」、「端末」等に置き換え可能である。
また、上述の実施形態では、通信制御装置40は、通信システム2に属する装置であるものとしたが、必ずしも通信システム2に属する装置でなくてもよい。通信制御装置40は、通信システム2の外部の装置であてもよい。通信制御装置40は、基地局装置20を直接制御せず、通信システム2を構成する装置を介して間接的に基地局装置20を制御してもよい。また、セカンダリシステム(通信システム2)は複数存在していてもよい。このとき、通信制御装置40は、複数のセカンダリシステムを管理してもよい。この場合、セカンダリシステムそれぞれを第2無線システムとみなすことができる。
なお、一般に周波数共用において、対象帯域を利用する既存システムをプライマリシステム、二次利用者をセカンダリシステムと呼ぶが、プライマリシステム及びセカンダリシステムは、別の用語に置き換えてもよい。HetNET(Heterogeneous Network)におけるマクロセルをプライマリシステム、スモールセルやリレー局をセカンダリシステムとしてもよい。また、基地局をプライマリシステム、そのカバレッジ内に存在するD2DやV2X(Vehicle-to-Everything)を実現するRelay UEやVehicle UEをセカンダリシステムとしてもよい。基地局は固定型に限らず、可搬型/移動型であってもよい。
さらに、各エンティティ間のインタフェースは、有線・無線問わない。例えば、本実施形態で登場した各エンティティ(通信装置、通信制御装置、又は端末装置)間のインタフェースは、周波数共用に依存しない無線インタフェースであってもよい。周波数共用に依存しない無線インタフェースとしては、例えば、移動体通信事業者によってLicensed bandを介して提供される無線インタフェースや、既存の免許不要帯域を利用する無線LAN通信、等が挙げられる。
<7-2.その他の変形例>
本実施形態の無線通信装置10、基地局装置20、端末装置30、又は通信制御装置40を制御する制御装置は、専用のコンピュータシステムで実現してもよいし、汎用のコンピュータシステムで実現してもよい。
本実施形態の無線通信装置10、基地局装置20、端末装置30、又は通信制御装置40を制御する制御装置は、専用のコンピュータシステムで実現してもよいし、汎用のコンピュータシステムで実現してもよい。
例えば、上述の動作(例えば、通信制御処理、調整処理、又は配分処理等)を実行するための通信プログラムを、光ディスク、半導体メモリ、磁気テープ、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に格納して配布する。そして、例えば、該プログラムをコンピュータにインストールし、上述の処理を実行することによって制御装置を構成する。このとき、制御装置は、無線通信装置10、基地局装置20、端末装置30、通信制御装置40、又はプロキシ装置50の外部の装置(例えば、パーソナルコンピュータ)であってもよい。また、制御装置は、無線通信装置10、基地局装置20、端末装置30、通信制御装置40又はプロキシ装置50の内部の装置(例えば、制御部24、制御部34、制御部44、又は制御部54)であってもよい。
また、上記通信プログラムをインターネット等のネットワーク上のサーバ装置が備えるディスク装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。また、上述の機能を、OS(Operating System)とアプリケーションソフトとの協働により実現してもよい。この場合には、OS以外の部分を媒体に格納して配布してもよいし、OS以外の部分をサーバ装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。
また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
また、上記してきた実施形態は、処理内容を矛盾させない領域で適宜組み合わせることが可能である。また、本実施形態のシーケンス図或いはフローチャートに示された各ステップは、適宜順序を変更することが可能である。
<<8.むすび>>
以上説明したように、本開示の一実施形態によれば、通信制御装置40は、通信システム1が使用する周波数帯の電波を利用して無線通信する基地局装置20が電波送信を開始または継続するためのリクエスト(例えば、ハートビートリクエスト)を基地局装置20又は基地局装置20を代理するプロキシ装置50から取得する。そして、通信制御装置40は、複数の基地局装置20のうちの所定の基地局装置20又は複数のプロキシ装置50のうちの所定のプロキシ装置50から送信されるリクエスト(例えば、ハートビートリクエスト)の送信インターバル(例えば、ハートビートインターバル)を決定する。そして、通信制御装置40は、所定の基地局装置20又は所定のプロキシ装置50に対して、決定した前記送信インターバルを通知する。
以上説明したように、本開示の一実施形態によれば、通信制御装置40は、通信システム1が使用する周波数帯の電波を利用して無線通信する基地局装置20が電波送信を開始または継続するためのリクエスト(例えば、ハートビートリクエスト)を基地局装置20又は基地局装置20を代理するプロキシ装置50から取得する。そして、通信制御装置40は、複数の基地局装置20のうちの所定の基地局装置20又は複数のプロキシ装置50のうちの所定のプロキシ装置50から送信されるリクエスト(例えば、ハートビートリクエスト)の送信インターバル(例えば、ハートビートインターバル)を決定する。そして、通信制御装置40は、所定の基地局装置20又は所定のプロキシ装置50に対して、決定した前記送信インターバルを通知する。
また、所定の基地局装置20又は所定のプロキシ装置50は、通信制御装置40から、通信制御装置40が決定した送信インターバルの情報を取得する。そして、取得した送信インターバルでリクエスト(例えば、ハートビートリクエスト)を送信する。
これにより、基地局装置20及び/又はプロキシ装置50が、固定のインターバルではなく、通信制御装置40が適宜決定したインターバルでリクエストを送信するようになるので、基地局装置20及び/又はプロキシ装置50を備えるシステムは、システム全体として、シグナリングの効率が高まる。その結果、システム全体の通信量や通信制御装置40の処理負荷が削減されるので、通信制御装置40は、種々の状況に迅速に対応できるようになる。結果として、電波資源の効率的な利用が実現する。
以上、本開示の各実施形態について説明したが、本開示の技術的範囲は、上述の各実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。
また、本明細書に記載された各実施形態における効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。
なお、本技術は以下のような構成も取ることができる。
(1)
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを、前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得する取得部と、
複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定する決定部と、
前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する通知部と、
を備える通信制御装置。
(2)
前記決定部は、複数の決定方法の中から選択される所定の決定方法を使って、前記送信インターバルを決定する、
前記(1)に記載の通信制御装置。
(3)
前記決定部は、前記第2無線システムに配分する干渉マージンに関する情報に基づき複数の決定方法の中から選択される所定の決定方法を使って、前記送信インターバルを決定する、
前記(1)又は(2)に記載の通信制御装置。
(4)
前記決定部は、前記第2無線システムに配分可能な剰余干渉マージンがある場合とない場合とで異なる決定方法を使って前記送信インターバルを決定する、
前記(1)~(3)のいずれか1つに記載の通信制御装置。
(5)
前記決定部は、前記第2無線システムに配分可能な剰余干渉マージンがない場合には、次の前記第1無線システムの周期的保護計算の後に前記リクエストが送信されるよう前記送信インターバルを決定する、
前記(4)に記載の通信制御装置。
(6)
前記決定部は、前記第2無線システムに配分可能な剰余干渉マージンがある場合には、前記所定の第2無線システムが前記剰余干渉マージンを使って電波送信するための前記第1無線システムの保護計算の後に、前記リクエストが送信されるよう前記送信インターバルを決定する、
前記(4)又は(5)に記載の通信制御装置。
(7)
前記決定部は、決定した前記送信インターバルに、所定の基準に従い決定されるマージン時間を付加する、
前記(1)~(6)のいずれか1つに記載の通信制御装置。
(8)
前記決定部は、次の前記第1無線システムの周期的保護計算の後に前記リクエストが送信されるよう前記送信インターバルを決定する場合には、次の前記周期的保護計算の後に前記リクエストを送信する他の1の前記第2無線システムの前記送信インターバルに付加するマージン時間とは異なるマージン時間を付加する、
前記(1)~(7)のいずれか1つに記載の通信制御装置。
(9)
前記決定部は、複数の前記第2無線システムを複数のグループに分類するとともに、同じグループに属する前記第2無線システムには、決定した前記送信インターバルに共通のマージン時間を付加する、
前記(1)~(8)のいずれか1つに記載の通信制御装置。
(10)
前記決定部は、前記第2無線システム毎にランダムに選択される時間を前記送信インターバルに付加するマージン時間として決定する、
前記(1)~(8)のいずれか1つに記載の通信制御装置。
(11)
前記決定部は、同じ前記プロキシシステムの配下にある複数の前記第2無線システムには、決定した前記送信インターバルに共通のマージン時間を付加する、
前記(1)~(8)のいずれか1つに記載の通信制御装置。
(12)
前記決定部は、同じ前記プロキシシステムの配下にある複数の前記第2無線システムを複数のグループに分類するとともに、同じグループに属する前記第2無線システムには、決定した前記送信インターバルに共通のマージン時間を付加する、
前記(1)~(8)のいずれか1つに記載の通信制御装置。
(13)
前記決定部は、複数の前記第2無線システムを相互に干渉を与えるか否かを基準に複数のグループに分類するとともに、同じグループに属する前記第2無線システムには、決定した前記送信インターバルに共通のマージン時間を付加する、
前記(1)~(8)のいずれか1つに記載の通信制御装置。
(14)
前記決定部は、前記所定の第2無線システムが電波送信のグラントを複数保有する場合には、グラント毎に前記送信インターバルを決定する、
前記(1)~(13)のいずれか1つに記載の通信制御装置。
(15)
前記決定部は、前記第2無線システムに与えられている電波送信のグラントに関する情報に基づき前記送信インターバルを決定する、
前記(1)~(14)のいずれか1つに記載の通信制御装置。
(16)
前記決定部は、前記グラントの状態の情報に基づき前記送信インターバルを決定する、
前記(15)に記載の通信制御装置。
(17)
前記決定部は、前記グラントが前記第1無線システムの周期的保護計算を通過したグラントか否かの情報に基づき前記送信インターバルを決定する、
前記(15)に記載の通信制御装置。
(18)
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得し、複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定し、前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する通信制御装置から前記送信インターバルの情報を取得する取得部と、
取得した前記送信インターバルで前記リクエストを送信する送信部と、を備える、
を備える通信装置。
(19)
前記通信装置は、前記プロキシシステムであり、
前記取得部は、配下の複数の前記第2無線システムが共通で使用する前記送信インターバルを取得し、
前記送信部は、前記配下の複数の前記第2無線システムの前記リクエストを前記送信インターバルでまとめて送信する、
前記(18)に記載の通信装置。
(20)
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを、前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得し、
複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定し、
前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する、
通信制御方法。
(21)
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを、前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得し、複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定し、前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する通信制御装置から前記送信インターバルの情報を取得し、
取得した前記送信インターバルで前記リクエストを送信する、
を備える通信方法。
(22)
コンピュータを、
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを、前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得する取得部、
複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定する決定部と、
前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する通知部、
として機能させるための通信制御プログラム。
(23)
コンピュータを、
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを、前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得し、複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定し、前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する通信制御装置から前記送信インターバルの情報を取得する取得部、
取得した前記送信インターバルで前記リクエストを送信する送信部、
として機能させるための通信プログラム。
(24)
通信制御装置と通信装置とを備える通信システムであって、
前記通信制御装置は、
第1無線システムが使用する周波数帯の電波を利用して無線通信する通信装置が電波送信を開始または継続するためのリクエストを、前記通信装置又は前記通信装置を代理するプロキシシステムから取得する取得部と、
複数の前記通信装置のうちの所定の通信装置又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定する決定部と、
前記所定の通信装置又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する通知部と、を備え、
前記通信装置は、前記通信制御装置が決定した前記送信インターバルを前記通信制御装置から或いは前記プロキシシステムから取得し、取得した前記送信インターバルで前記リクエストを送信する、
通信システム。
(1)
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを、前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得する取得部と、
複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定する決定部と、
前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する通知部と、
を備える通信制御装置。
(2)
前記決定部は、複数の決定方法の中から選択される所定の決定方法を使って、前記送信インターバルを決定する、
前記(1)に記載の通信制御装置。
(3)
前記決定部は、前記第2無線システムに配分する干渉マージンに関する情報に基づき複数の決定方法の中から選択される所定の決定方法を使って、前記送信インターバルを決定する、
前記(1)又は(2)に記載の通信制御装置。
(4)
前記決定部は、前記第2無線システムに配分可能な剰余干渉マージンがある場合とない場合とで異なる決定方法を使って前記送信インターバルを決定する、
前記(1)~(3)のいずれか1つに記載の通信制御装置。
(5)
前記決定部は、前記第2無線システムに配分可能な剰余干渉マージンがない場合には、次の前記第1無線システムの周期的保護計算の後に前記リクエストが送信されるよう前記送信インターバルを決定する、
前記(4)に記載の通信制御装置。
(6)
前記決定部は、前記第2無線システムに配分可能な剰余干渉マージンがある場合には、前記所定の第2無線システムが前記剰余干渉マージンを使って電波送信するための前記第1無線システムの保護計算の後に、前記リクエストが送信されるよう前記送信インターバルを決定する、
前記(4)又は(5)に記載の通信制御装置。
(7)
前記決定部は、決定した前記送信インターバルに、所定の基準に従い決定されるマージン時間を付加する、
前記(1)~(6)のいずれか1つに記載の通信制御装置。
(8)
前記決定部は、次の前記第1無線システムの周期的保護計算の後に前記リクエストが送信されるよう前記送信インターバルを決定する場合には、次の前記周期的保護計算の後に前記リクエストを送信する他の1の前記第2無線システムの前記送信インターバルに付加するマージン時間とは異なるマージン時間を付加する、
前記(1)~(7)のいずれか1つに記載の通信制御装置。
(9)
前記決定部は、複数の前記第2無線システムを複数のグループに分類するとともに、同じグループに属する前記第2無線システムには、決定した前記送信インターバルに共通のマージン時間を付加する、
前記(1)~(8)のいずれか1つに記載の通信制御装置。
(10)
前記決定部は、前記第2無線システム毎にランダムに選択される時間を前記送信インターバルに付加するマージン時間として決定する、
前記(1)~(8)のいずれか1つに記載の通信制御装置。
(11)
前記決定部は、同じ前記プロキシシステムの配下にある複数の前記第2無線システムには、決定した前記送信インターバルに共通のマージン時間を付加する、
前記(1)~(8)のいずれか1つに記載の通信制御装置。
(12)
前記決定部は、同じ前記プロキシシステムの配下にある複数の前記第2無線システムを複数のグループに分類するとともに、同じグループに属する前記第2無線システムには、決定した前記送信インターバルに共通のマージン時間を付加する、
前記(1)~(8)のいずれか1つに記載の通信制御装置。
(13)
前記決定部は、複数の前記第2無線システムを相互に干渉を与えるか否かを基準に複数のグループに分類するとともに、同じグループに属する前記第2無線システムには、決定した前記送信インターバルに共通のマージン時間を付加する、
前記(1)~(8)のいずれか1つに記載の通信制御装置。
(14)
前記決定部は、前記所定の第2無線システムが電波送信のグラントを複数保有する場合には、グラント毎に前記送信インターバルを決定する、
前記(1)~(13)のいずれか1つに記載の通信制御装置。
(15)
前記決定部は、前記第2無線システムに与えられている電波送信のグラントに関する情報に基づき前記送信インターバルを決定する、
前記(1)~(14)のいずれか1つに記載の通信制御装置。
(16)
前記決定部は、前記グラントの状態の情報に基づき前記送信インターバルを決定する、
前記(15)に記載の通信制御装置。
(17)
前記決定部は、前記グラントが前記第1無線システムの周期的保護計算を通過したグラントか否かの情報に基づき前記送信インターバルを決定する、
前記(15)に記載の通信制御装置。
(18)
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得し、複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定し、前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する通信制御装置から前記送信インターバルの情報を取得する取得部と、
取得した前記送信インターバルで前記リクエストを送信する送信部と、を備える、
を備える通信装置。
(19)
前記通信装置は、前記プロキシシステムであり、
前記取得部は、配下の複数の前記第2無線システムが共通で使用する前記送信インターバルを取得し、
前記送信部は、前記配下の複数の前記第2無線システムの前記リクエストを前記送信インターバルでまとめて送信する、
前記(18)に記載の通信装置。
(20)
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを、前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得し、
複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定し、
前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する、
通信制御方法。
(21)
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを、前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得し、複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定し、前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する通信制御装置から前記送信インターバルの情報を取得し、
取得した前記送信インターバルで前記リクエストを送信する、
を備える通信方法。
(22)
コンピュータを、
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを、前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得する取得部、
複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定する決定部と、
前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する通知部、
として機能させるための通信制御プログラム。
(23)
コンピュータを、
第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを、前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得し、複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定し、前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する通信制御装置から前記送信インターバルの情報を取得する取得部、
取得した前記送信インターバルで前記リクエストを送信する送信部、
として機能させるための通信プログラム。
(24)
通信制御装置と通信装置とを備える通信システムであって、
前記通信制御装置は、
第1無線システムが使用する周波数帯の電波を利用して無線通信する通信装置が電波送信を開始または継続するためのリクエストを、前記通信装置又は前記通信装置を代理するプロキシシステムから取得する取得部と、
複数の前記通信装置のうちの所定の通信装置又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定する決定部と、
前記所定の通信装置又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する通知部と、を備え、
前記通信装置は、前記通信制御装置が決定した前記送信インターバルを前記通信制御装置から或いは前記プロキシシステムから取得し、取得した前記送信インターバルで前記リクエストを送信する、
通信システム。
1、2 通信システム
10 無線通信装置
20 基地局装置
30 端末装置
40 通信制御装置
50 プロキシ装置
21、31、41、51 無線通信部
22、32、42、52 記憶部
23、43、53 ネットワーク通信部
33 入出力部
24、34、44、54 制御部
211、311 受信処理部
212、312 送信処理部
241、441、541 取得部
242、542 設定部
243、543 送信部
442 判定部
443 決定部
444 通知部
10 無線通信装置
20 基地局装置
30 端末装置
40 通信制御装置
50 プロキシ装置
21、31、41、51 無線通信部
22、32、42、52 記憶部
23、43、53 ネットワーク通信部
33 入出力部
24、34、44、54 制御部
211、311 受信処理部
212、312 送信処理部
241、441、541 取得部
242、542 設定部
243、543 送信部
442 判定部
443 決定部
444 通知部
Claims (20)
- 第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを、前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得する取得部と、
複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定する決定部と、
前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する通知部と、
を備える通信制御装置。 - 前記決定部は、複数の決定方法の中から選択される所定の決定方法を使って、前記送信インターバルを決定する、
請求項1に記載の通信制御装置。 - 前記決定部は、前記第2無線システムに配分する干渉マージンに関する情報に基づき複数の決定方法の中から選択される所定の決定方法を使って、前記送信インターバルを決定する、
請求項2に記載の通信制御装置。 - 前記決定部は、前記第2無線システムに配分可能な剰余干渉マージンがある場合とない場合とで異なる決定方法を使って前記送信インターバルを決定する、
請求項3に記載の通信制御装置。 - 前記決定部は、前記第2無線システムに配分可能な剰余干渉マージンがない場合には、次の前記第1無線システムの周期的保護計算の後に前記リクエストが送信されるよう前記送信インターバルを決定する、
請求項4に記載の通信制御装置。 - 前記決定部は、前記第2無線システムに配分可能な剰余干渉マージンがある場合には、前記所定の第2無線システムが前記剰余干渉マージンを使って電波送信するための前記第1無線システムの保護計算の後に、前記リクエストが送信されるよう前記送信インターバルを決定する、
請求項5に記載の通信制御装置。 - 前記決定部は、決定した前記送信インターバルに、所定の基準に従い決定されるマージン時間を付加する、
請求項5に記載の通信制御装置。 - 前記決定部は、次の前記第1無線システムの周期的保護計算の後に前記リクエストが送信されるよう前記送信インターバルを決定する場合には、次の前記周期的保護計算の後に前記リクエストを送信する他の1の前記第2無線システムの前記送信インターバルに付加するマージン時間とは異なるマージン時間を付加する、
請求項7に記載の通信制御装置。 - 前記決定部は、複数の前記第2無線システムを複数のグループに分類するとともに、同じグループに属する前記第2無線システムには、決定した前記送信インターバルに共通のマージン時間を付加する、
請求項8に記載の通信制御装置。 - 前記決定部は、前記第2無線システム毎にランダムに選択される時間を前記送信インターバルに付加するマージン時間として決定する、
請求項8に記載の通信制御装置。 - 前記決定部は、同じ前記プロキシシステムの配下にある複数の前記第2無線システムには、決定した前記送信インターバルに共通のマージン時間を付加する、
請求項8に記載の通信制御装置。 - 前記決定部は、同じ前記プロキシシステムの配下にある複数の前記第2無線システムを複数のグループに分類するとともに、同じグループに属する前記第2無線システムには、決定した前記送信インターバルに共通のマージン時間を付加する、
請求項8に記載の通信制御装置。 - 前記決定部は、複数の前記第2無線システムを相互に干渉を与えるか否かを基準に複数のグループに分類するとともに、同じグループに属する前記第2無線システムには、決定した前記送信インターバルに共通のマージン時間を付加する、
請求項8に記載の通信制御装置。 - 前記決定部は、前記所定の第2無線システムが電波送信のグラントを複数保有する場合には、グラント毎に前記送信インターバルを決定する、
請求項1に記載の通信制御装置。 - 前記決定部は、前記第2無線システムに与えられている電波送信のグラントに関する情報に基づき前記送信インターバルを決定する、
請求項1に記載の通信制御装置。 - 前記決定部は、前記グラントの状態の情報に基づき前記送信インターバルを決定する、
請求項15に記載の通信制御装置。 - 前記決定部は、前記グラントが前記第1無線システムの周期的保護計算を通過したグラントか否かの情報に基づき前記送信インターバルを決定する、
請求項15に記載の通信制御装置。 - 第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを、前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得し、複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定し、前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する通信制御装置から前記送信インターバルの情報を取得する取得部と、
取得した前記送信インターバルで前記リクエストを送信する送信部と、を備える、
を備える通信装置。 - 前記通信装置は、前記プロキシシステムであり、
前記取得部は、配下の複数の前記第2無線システムが共通で使用する前記送信インターバルを取得し、
前記送信部は、前記配下の複数の前記第2無線システムの前記リクエストを前記送信インターバルでまとめて送信する、
請求項18に記載の通信装置。 - 第1無線システムが使用する周波数帯の電波を利用して無線通信する第2無線システムが電波送信を開始または継続するためのリクエストを、前記第2無線システム又は前記第2無線システムを代理するプロキシシステムから取得し、
複数の前記第2無線システムのうちの所定の第2無線システム又は複数の前記プロキシシステムのうちの所定のプロキシシステムから送信される前記リクエストの送信インターバルを決定し、
前記所定の第2無線システム又は前記所定のプロキシシステムに対して、決定した前記送信インターバルを通知する、
通信制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020556633A JP7415941B2 (ja) | 2018-11-07 | 2019-09-10 | 通信制御装置、通信装置、通信制御方法、及び通信方法 |
CN201980072291.6A CN113170314B (zh) | 2018-11-07 | 2019-09-10 | 通信控制装置、通信装置及通信控制方法 |
US17/289,145 US11930372B2 (en) | 2018-11-07 | 2019-09-10 | Communication control apparatus, communication apparatus, and communication control method |
EP19882147.2A EP3879868B1 (en) | 2018-11-07 | 2019-09-10 | Communication control device, communication device, and communication control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018210022 | 2018-11-07 | ||
JP2018-210022 | 2018-11-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020095532A1 true WO2020095532A1 (ja) | 2020-05-14 |
Family
ID=70611599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/035429 WO2020095532A1 (ja) | 2018-11-07 | 2019-09-10 | 通信制御装置、通信装置、及び通信制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11930372B2 (ja) |
EP (1) | EP3879868B1 (ja) |
JP (1) | JP7415941B2 (ja) |
CN (1) | CN113170314B (ja) |
WO (1) | WO2020095532A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11291038B2 (en) * | 2020-02-21 | 2022-03-29 | Arris Enterprises Llc | Dynamic grant switch |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220394491A1 (en) * | 2019-11-15 | 2022-12-08 | Nokia Solutions And Networks Oy | Test grants for base stations installed in protection areas |
US11690069B2 (en) * | 2020-02-25 | 2023-06-27 | Arris Enterprises Llc | Split-spectrum grant request |
US11490458B2 (en) * | 2020-08-04 | 2022-11-01 | Abl Ip Holding Llc | Wireless hub emulator |
US11317442B2 (en) | 2020-08-07 | 2022-04-26 | Abl Ip Holding Llc | Non-coordinated back-off timer assignment |
US12041589B2 (en) * | 2020-08-17 | 2024-07-16 | Charter Communications Operating, Llc | Methods and apparatus for spectrum utilization coordination between wireline backhaul and wireless systems |
US11582055B2 (en) | 2020-08-18 | 2023-02-14 | Charter Communications Operating, Llc | Methods and apparatus for wireless device attachment in a managed network architecture |
US11563593B2 (en) | 2020-08-19 | 2023-01-24 | Charter Communications Operating, Llc | Methods and apparatus for coordination between wireline backhaul and wireless systems |
US11844057B2 (en) | 2020-09-09 | 2023-12-12 | Charter Communications Operating, Llc | Methods and apparatus for wireless data traffic management in wireline backhaul systems |
US11363555B2 (en) * | 2020-10-02 | 2022-06-14 | Charter Communications Operating, Llc | Immediate authorization for high-power customer premises equipment in citizens broadband radio service systems |
US11716639B2 (en) | 2021-08-10 | 2023-08-01 | Abl Ip Holding Llc | Self-healing of repeater formation in a network |
CN116980088A (zh) * | 2022-04-15 | 2023-10-31 | 索尼集团公司 | 电子设备、通信方法和计算机程序产品 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007325260A (ja) * | 2006-05-30 | 2007-12-13 | Ntt Docomo Inc | 共存する複数の異種ネットワークにおけるダイナミックスペクトルリソース割当方法及び装置 |
JP2013545365A (ja) * | 2010-10-12 | 2013-12-19 | インターデイジタル パテント ホールディングス インコーポレイテッド | テレビジョンホワイトスペースネットワークのチャネル選択およびネットワーク構成に対するサービスベースの手法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102036252A (zh) * | 2010-12-27 | 2011-04-27 | 中国人民解放军理工大学 | 基于接收机信标发射的认知无线电自适应干扰保护方法 |
CN105163339B (zh) * | 2015-08-28 | 2019-06-07 | 上海斐讯数据通信技术有限公司 | 一种网络接入设备缓冲的非对称长连接方法及系统 |
JP6579884B2 (ja) * | 2015-09-24 | 2019-09-25 | キヤノン株式会社 | 通信装置、制御方法、及びプログラム |
JP6573391B2 (ja) * | 2015-10-07 | 2019-09-11 | キヤノン株式会社 | 無線通信装置、無線通信方法、およびプログラム |
EP3410760B1 (en) * | 2016-01-27 | 2020-10-21 | Sony Corporation | Communication control device, communication control method and program |
CA3029927A1 (en) * | 2016-07-27 | 2018-02-01 | Sony Corporation | Communication control device, wireless communication device, method and program |
US10299272B2 (en) * | 2016-11-04 | 2019-05-21 | Nokia Solutions And Networks Oy | Switching carrier frequency while user equipment is in off cycle |
EP3539313B1 (en) * | 2016-11-08 | 2021-01-06 | Telefonaktiebolaget LM Ericsson (publ) | A method and a controlling node for controlling resources in a shared channel |
WO2018150303A1 (en) | 2017-02-14 | 2018-08-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Cumulative interference allocation |
FR3064441B1 (fr) * | 2017-03-22 | 2019-03-22 | Red Technologies Sas | Ajustement dynamique de l'utilisation du spectre radioelectrique par des stations de base radio cbsd |
EP3831123A1 (en) * | 2018-07-31 | 2021-06-09 | Nokia Technologies OY | High availability access to shared spectrum using geo-redundant spectrum access systems |
-
2019
- 2019-09-10 EP EP19882147.2A patent/EP3879868B1/en active Active
- 2019-09-10 CN CN201980072291.6A patent/CN113170314B/zh active Active
- 2019-09-10 WO PCT/JP2019/035429 patent/WO2020095532A1/ja unknown
- 2019-09-10 JP JP2020556633A patent/JP7415941B2/ja active Active
- 2019-09-10 US US17/289,145 patent/US11930372B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007325260A (ja) * | 2006-05-30 | 2007-12-13 | Ntt Docomo Inc | 共存する複数の異種ネットワークにおけるダイナミックスペクトルリソース割当方法及び装置 |
JP2013545365A (ja) * | 2010-10-12 | 2013-12-19 | インターデイジタル パテント ホールディングス インコーポレイテッド | テレビジョンホワイトスペースネットワークのチャネル選択およびネットワーク構成に対するサービスベースの手法 |
Non-Patent Citations (1)
Title |
---|
WIRELESS INNOVATION FORUM: "Signaling Protocols and Procedures for Citizens Broadband Radio Service (CBRS) : Spectrum Access System (SAS) -Citizens Broadband Radio Service Device (CBSD) Interface Technical Specification", 3 January 2018 (2018-01-03), pages 1 - 60, XP055650977, Retrieved from the Internet <URL:https://winnf.memberclicks.net/assets/work_products/Specifications/WINNF-TS-0016-V1.2.1%20SAS%20to%20CBSD%20Technical%20Specification.pdf> [retrieved on 20191003] * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11291038B2 (en) * | 2020-02-21 | 2022-03-29 | Arris Enterprises Llc | Dynamic grant switch |
Also Published As
Publication number | Publication date |
---|---|
CN113170314B (zh) | 2024-05-28 |
JP7415941B2 (ja) | 2024-01-17 |
EP3879868B1 (en) | 2023-11-15 |
US20210385662A1 (en) | 2021-12-09 |
JPWO2020095532A1 (ja) | 2021-09-24 |
EP3879868A1 (en) | 2021-09-15 |
US11930372B2 (en) | 2024-03-12 |
CN113170314A (zh) | 2021-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7415941B2 (ja) | 通信制御装置、通信装置、通信制御方法、及び通信方法 | |
JP7517332B2 (ja) | 情報処理装置、情報処理方法、及びプログラム | |
JP7367682B2 (ja) | 通信制御装置、通信制御方法、及び通信システム | |
US20230262611A1 (en) | Communication control device and communication control method | |
JP7400736B2 (ja) | 情報処理装置、情報処理方法、及び情報処理端末装置 | |
WO2020202829A1 (ja) | 通信制御装置、通信装置および通信制御方法 | |
WO2020189022A1 (ja) | 情報処理装置、情報処理方法、及び通信装置 | |
WO2021085132A1 (ja) | 情報処理装置、情報処理方法、及び通信装置 | |
WO2021100601A1 (ja) | 情報処理装置、情報処理方法、及び通信装置 | |
WO2021131999A1 (ja) | 通信制御装置及び通信制御方法 | |
WO2020262266A1 (ja) | 通信制御装置、通信装置、及び通信制御方法 | |
WO2020137915A1 (ja) | 通信制御装置、通信装置、及びプロキシ装置 | |
WO2023063181A1 (ja) | 通信制御装置、通信装置、及び通信制御方法、及び通信方法 | |
JP2021108459A (ja) | 通信制御装置及び通信制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19882147 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020556633 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019882147 Country of ref document: EP Effective date: 20210607 |