WO2021100601A1 - 情報処理装置、情報処理方法、及び通信装置 - Google Patents

情報処理装置、情報処理方法、及び通信装置 Download PDF

Info

Publication number
WO2021100601A1
WO2021100601A1 PCT/JP2020/042246 JP2020042246W WO2021100601A1 WO 2021100601 A1 WO2021100601 A1 WO 2021100601A1 JP 2020042246 W JP2020042246 W JP 2020042246W WO 2021100601 A1 WO2021100601 A1 WO 2021100601A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
information
base station
wireless
interference
Prior art date
Application number
PCT/JP2020/042246
Other languages
English (en)
French (fr)
Inventor
匠 古市
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2021558334A priority Critical patent/JPWO2021100601A1/ja
Priority to US17/755,926 priority patent/US20220386248A1/en
Priority to CN202080078700.6A priority patent/CN114731682A/zh
Publication of WO2021100601A1 publication Critical patent/WO2021100601A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/343TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading taking into account loading or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3912Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/06Hybrid resource partitioning, e.g. channel borrowing
    • H04W16/08Load shedding arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • This disclosure relates to an information processing device, an information processing method, and a communication device.
  • DSA Dynamic Frequency Access
  • an information processing device an information processing method, and a communication device capable of appropriately allocating the interference margin are proposed.
  • the information processing device of one form according to the present disclosure includes an acquisition unit that acquires information about each of a plurality of second wireless systems that share the radio waves used by the first wireless system.
  • a calculation unit that calculates the distribution priority for each of the plurality of second wireless systems based on the information acquired by the acquisition unit, and the first unit based on the distribution priority calculated by the calculation unit.
  • the radio system includes a distribution unit that distributes the total amount of interference allowed by the wireless system to each of the plurality of second wireless systems as an interference amount.
  • a plurality of components having substantially the same functional configuration may be distinguished by adding different numbers or alphabets after the same reference numerals. For example, substantially distinguishes a plurality of configurations having the same function and structure, the communication control unit 60 1 as needed, and as 60 2. Further, a plurality of configurations having substantially the same functional configuration are distinguished as necessary, such as communication systems 2A and 2B. However, if it is not necessary to distinguish each of the plurality of components having substantially the same functional configuration, only the same reference numerals are given. For example, when it is not necessary to distinguish between the communication control devices 60 1 and 60 2 , it is simply referred to as the communication control device 60. When it is not necessary to distinguish between the communication systems 2A and 2B, the system is simply referred to as the communication system 2.
  • radio resources are generated by utilizing the temporal and spatial free radio waves (White Space) of existing wireless systems (for example, dynamic frequency sharing (DSA: Dynamic Spectrum Access)).
  • DSA Dynamic Spectrum Access
  • CBRS CBRS
  • CBRS which utilizes frequency sharing technology, aims to open the Federal use band (3.55-3.70GHz), which overlaps with the frequency bands of 3GPP bands 42 and 43 worldwide, to the general public.
  • Legalization and standardization of citizens Broadband Radio Service is accelerating.
  • Cognitive radio technology contributes not only to dynamic frequency sharing but also to improvement of frequency utilization efficiency by wireless systems.
  • ETSI EN 303 387 and IEEE 802.19.1-2014 stipulate coexistence technology between wireless systems that use free radio waves.
  • control of wireless system to realize frequency sharing >
  • the NRA sets an allowable interference reference value for the primary system, and the interference caused by sharing is lower than the allowable interference reference value for the wireless system (secondary system) of the secondary user (secondary user). You are asked to do that.
  • the "system” means a set of a plurality of components (devices, modules (parts), etc.). At this time, it does not matter whether all the components are in the same housing. For example, a plurality of devices housed in separate housings and connected via a network or the like, and one device in which a plurality of modules are housed in one housing are all “systems”. ". That is, each wireless system such as the primary system and the secondary system may be composed of a plurality of devices or may be composed of one device.
  • a communication control device controls communication of a secondary system so as not to cause fatal interference to the primary system.
  • the communication control device is a device that manages the communication of the communication device.
  • the communication control device is a system for managing radio wave resources (for example, frequency) such as GLDB (Geo-location Database) and SAS (Spectrum Access System).
  • the communication control device corresponds to the communication control device 60 described later.
  • the communication control device 60 will be described in detail later.
  • the primary system is, for example, a system (for example, an existing system) that preferentially uses a predetermined frequency band over other systems.
  • the secondary system is, for example, a system in which the frequency band used by the primary system is secondarily used (for example, dynamic frequency sharing).
  • Each of the primary system and the secondary system may be composed of a plurality of communication devices, or may be composed of one communication device.
  • the communication control device has 1 so that the cumulative interference of one or more communication devices constituting the secondary system with the primary system does not exceed the interference allowance (also referred to as interference margin) of the primary system.
  • the interference allowance is distributed to a plurality of communication devices.
  • the allowable interference amount may be a predetermined amount of interference by the operator of the primary system, a public organization that manages radio waves, or the like.
  • the term "interference margin" refers to the amount of interference allowed.
  • the accumulation of interference may be referred to as cumulative interference power.
  • FIG. 1 is an explanatory diagram showing an example of allocating an interference margin to each communication device constituting the secondary system.
  • the communication system 1 is the primary system and the communication system 2 is the secondary system.
  • Communication system 1 comprises a telecommunications device 10 1 and the like.
  • the communication system 2 comprises a base station apparatus 40 1, 40 2, 40 3, and the like.
  • the communication system 1 includes only one radio wave utilization device 10, but the communication system 1 may have a plurality of radio wave utilization devices 10.
  • the communication system 2 includes three base station devices 40, but the number of base station devices 40 included in the communication system 2 may be less than or more than three.
  • the wireless communication device included in the communication system 2 does not necessarily have to be a base station device.
  • the wireless communication device included in the communication system 2 does not necessarily have to be a base station device.
  • only one primary system (communication system 1 in the example of FIG. 1) and one secondary system (communication system 2 in the example of FIG. 1) are shown, but the primary system and the secondary system are shown. There may be more than one of each.
  • Telecommunications apparatus 10 1, and base station apparatus 40 1, 40 2, 40 3 are each capable of transmitting and receiving radio waves. Amount of interference telecommunications apparatus 10 1 is permitted is I the accept. Further, the amount of interference given to the predetermined protection point of base station apparatus 40 1, 40 2, 40 3 the communication system 1 (primary system) are the interfering amount I 1, I 2, I 3.
  • the protection point is an interference calculation reference point for protection of the communication system 1.
  • the communication control device includes a plurality of base station devices 40 so that the cumulative interference with a predetermined protection point of the communication system 1 (received interference amount I 1 + I 2 + I 3 shown in FIG. 1) does not exceed the interference margin I accident.
  • the interference margin I accident is allocated to.
  • the communication control device allocates the interference margin I accident to each base station device 40 so that the interference amounts I 1 , I 2 , and I 3 are I accident / 3, respectively.
  • the communication control device allocates an interference margin I-accept to each base station device 40 so that the interference amounts I 1 , I 2 , and I 3 are I- accept / 3, respectively.
  • the method of allocating the interference margin is not limited to this example.
  • the communication control device calculates the maximum transmission power (hereinafter referred to as the maximum allowable transmission power) allowed for each base station device 40 based on the distributed interference amount (hereinafter referred to as the distributed interference amount). For example, the communication control device calculates the maximum allowable transmission power of each base station device 40 by back-calculating from the distributed interference amount based on the propagation loss, the antenna gain, and the like. Then, the communication control device notifies each base station device 40 of the calculated maximum allowable transmission power information.
  • the distributed interference amount the distributed interference amount
  • an interference margin allocation algorithm called sequential allocation process (IAP: Iterative Allocation Process) is defined as a method for protecting Non-federal income and Priority Access Users from interference from low-rise users.
  • the sequential allocation process performs the process without giving superiority or inferiority to all the grants.
  • reasons (1), (2), etc. it cannot be said that it is appropriate to allocate the interference margin to all grants without giving superiority or inferiority.
  • Priority Access Tier needs to obtain a license (PAL) by auction, and the investment burden related to frequency use is larger than GAA Tier, so it is said that it is appropriate to treat PAL grant and GAA grant equally. It's hard.
  • the information processing apparatus can appropriately allocate the interference margin.
  • the information processing device that allocates the interference margin may be a frequency management server such as SAS (Spectrum Access System).
  • the frequency management server is the communication control device according to the present embodiment.
  • the communication control device which is an information processing device, executes the following processing. Specifically, the communication control device first acquires information about each of the plurality of second wireless systems (for example, secondary systems) that share the radio waves used by the first wireless system (for example, the primary system). ..
  • the information to be acquired is, for example, information on the hierarchy of CBRS, parameter information on communication such as required transmission power, required QoS, and coverage according to the use case.
  • the communication control device calculates the allocation priority for each second wireless system based on the acquired information. For example, in the communication control device, the higher the hierarchy in the CBRS, the higher the allocation priority of the second wireless system. Subsequently, the communication control device distributes the total interference amount allowed by the first wireless system as the interference amount to each of the plurality of second wireless systems based on the calculated allocation priority.
  • the amount of interference given by the Priority Access Tier in CBRS can be made larger than that of the GAA Tier. Therefore, according to the communication control device according to the present embodiment, the interference margin (interference amount) can be appropriately distributed.
  • the primary system for example, communication system 1
  • the secondary system for example, communication system 2
  • DSA Dynamic Spectrum Access
  • CBRS Chips Broadband Radio Service
  • FCC Federal Communications Commission
  • FIG. 2 is an explanatory diagram showing a hierarchical structure in CBRS.
  • each of the users in the shared frequency band falls into one of three groups. This group is called "tier".
  • the three groups are called the existing layer (Incumbent Tier), the priority access layer (Priority Access Tier), and the general authorized access layer (General Authorized Access Tier), respectively.
  • the priority access layer (Priority Access Tier) is located above the general authorized access layer (General Authorized Access Tier)
  • the existing layer (Incumbent Tier) is located above the priority access layer.
  • the system located in the existing layer becomes the primary system
  • the system located in the general authorization access layer and the priority access layer becomes the secondary system.
  • the existing layer is a group consisting of existing users who have conventionally used the frequency band defined as the shared frequency band. Existing users are sometimes referred to as primary users. In CBRS, the Department of Defense (DOD), fixed satellite operators, and wireless broadband licensees (GWBL: Grandfathered Wireless Broadband Licensee) exempt from the new rules are defined as existing users.
  • the existing layer (Incumbent Tier) is not required to avoid or suppress interference with the priority access layer (Priority Access Tier) and the general authorized access layer (GAA (General Authorized Access) Tier) having lower priority.
  • the existing layer (Incumbent Tier) is protected from interference by the priority access layer (Priority Access Tier) and the general authorization access layer (GAA Tier). That is, the user of "Incumbent Tier" can use the frequency band without considering the existence of other groups.
  • the Priority Access Tier is a group of users who use the above-mentioned shared frequency band based on a license called PAL (Priority Access License).
  • a user who uses the above-mentioned shared frequency band may be referred to as a secondary user.
  • PAL Priority Access License
  • a user who uses the above-mentioned shared frequency band may be referred to as a secondary user.
  • interference avoidance or suppression to the existing layer (Incumbent Tier) having a higher priority than the priority access layer (Priority Access Tier) is required, but the priority is lower. It is not required to avoid or suppress interference with the general licensed access layer (GAA Tier).
  • the priority access layer (Priority Access Tier) is not protected from interference by the existing layer (Incumbent Tier) having a higher priority, but is protected from interference by the general authorization access layer (GAA Tier) having a lower priority. To.
  • the general authorization access layer is a group consisting of other users who do not belong to the existing layer (Incumbent Tier) and the priority access layer (Priority Access Tier). Users in this layer may also be referred to as secondary users. However, this layer is sometimes called a low-priority secondary user because the priority of shared use is lower than that of the priority access layer (Priority Access Tier).
  • GAA Tier In the frequency sharing use in the general licensed access layer (GAA Tier), it is required to avoid or suppress the interference with the existing layer (Incumbent Tier) and the priority access layer (Priority Access Tier) having higher priority.
  • the general authorization access layer (GAA Tier) is not protected from interference by the existing layer (Incumbent Tier) having a higher priority and the priority access layer (Priority Access Tier). That is, the general licensed access layer (GAA Tier) is a "tier" that is required by law to use opportunistic shared frequencies.
  • the hierarchical structure is not limited to these definitions.
  • the CBRS is generally called a 3 Tier structure, but may have a 2 Tier structure.
  • a typical example is a 2-tier structure such as LSA (Licensed Shared Access) or TVWS (TV band White Space).
  • the LSA employs a structure equivalent to the combination of the existing layer (Incumbent Tier) and the priority access layer (Priority Access Tier).
  • a structure equivalent to the combination of the existing layer (Incumbent Tier) and the general licensed access layer (GAA Tier) is adopted.
  • 4 or more tiers may exist. Specifically, for example, an intermediate layer corresponding to the priority access layer (Priority Access Tier) may be further prioritized. Further, for example, the general authorization access layer (GAA Tier) may be prioritized in the same manner.
  • FIG. 3 is an explanatory diagram showing a CBRS band.
  • the primary system is a military radar system (Military Radar System), an existing wireless system (Grand fathered Wireless System), or a fixed satellite service (space-to-earth) (Fixed Satellite Service (space-to-earth)).
  • the military radar system is typically a carrier-based radar.
  • the secondary system will be a wireless network system consisting of base stations and terminals called CBSD (Citizens Broadband Radio Service Device) and EUD (End User Device).
  • CBSD Cas Broadband Radio Service Device
  • EUD End User Device
  • the secondary system has a higher priority, and a priority access license (PAL: Priority Access License) that allows the shared bandwidth to be licensed and a general authorized access (GAA: General Authorized Access) that is equivalent to no license required are defined.
  • PAL Priority Access License
  • GAA General Authorized Access
  • Layer 1 (Tier 1) shown in FIG. 3 corresponds to the existing layer shown in FIG.
  • the layer 2 (Tier 2) shown in FIG. 3 corresponds to the priority access layer shown in FIG.
  • the layer 3 (Tier 3) shown in FIG. 3 corresponds to the general authorization access layer shown in FIG.
  • the primary system and the secondary system are not limited to the above examples.
  • the wireless system included in the priority access layer may be regarded as the primary system
  • the system included in the general authorization access layer may be regarded as the secondary system.
  • the primary system (communication system 1) of the present embodiment is not limited to the example shown in FIG.
  • Another type of wireless system may be the primary system (communication system 1).
  • TV broadcasting TV broadcasting, fixed microwave line (FS: Fixed System), weather radar (Meteorological Radar), radio altimeter (RadioAltimeter), wireless train control system (Communications-based Train Control), Radio systems such as Radio Astronomy can be mentioned.
  • the primary system may be a television broadcasting system such as a DVB-T (Digital Video Broadcasting-Terrestrial) system, or a cellular communication system such as LTE (Long Term Evolution) or NR (New Radio). May be good.
  • DVB-T Digital Video Broadcasting-Terrestrial
  • a cellular communication system such as LTE (Long Term Evolution) or NR (New Radio). May be good.
  • the primary system may be an aeronautical radio system such as ARNS (Aeronautical Radio Navigation Service).
  • ARNS Autonautical Radio Navigation Service
  • the primary system is not limited to the above wireless system, and may be another type of wireless system.
  • Other wireless systems may be the primary system, depending on the country / region / frequency band to which it is applied.
  • the free radio wave (White Space) used by the communication system 2 is not limited to the radio wave of Federal use band (3.55-3.70 GHz).
  • the communication system 2 may use radio waves in a frequency band different from the Federal use band (3.55-3.70 GHz) as free radio waves.
  • the primary system (communication system 1) is a television broadcasting system
  • the communication system 2 may be a system that uses the TV white space as an empty radio wave.
  • the TV white space refers to a frequency band that is not used by the television broadcasting system among the frequency channels assigned to the television broadcasting system (primary system). At this time, the TV white space may be a channel that is not used depending on the region.
  • the relationship between the communication system 1 and the communication system 2 is not limited to the frequency sharing relationship in which the communication system 1 is the primary system and the communication system 2 is the secondary system.
  • the relationship between the communication system 1 and the communication system 2 may be a network coexistence relationship between the same or different wireless systems using the same frequency.
  • the application of this embodiment is not limited to the frequency sharing environment.
  • an existing system that uses the target band is called a primary system
  • a secondary user system is called a secondary system.
  • the system is called a secondary system.
  • These (primary system, secondary system) may be replaced by systems of different terms.
  • the macrocell base station in the heterogeneous network (HetNet) may be the primary system
  • the small cell or relay station may be the secondary system.
  • the base station may be the primary system
  • the Relay UE or Vehicle UE that realizes D2D or V2X existing in the coverage may be the secondary system.
  • the base station is not limited to the fixed type, and may be a portable type / mobile type.
  • the communication control device provided by the present invention may be provided in a core network, a base station, a relay station, a Relay UE, or the like.
  • frequency means “resource”, “resource block”, “resource element”, “resource pool”, “channel”, “component carrier”, “Bandwidth Part (BWP)", “carrier”, “sub”. It may be replaced by terms such as “carrier”, “BWP (Bandwidth Part)", “beam”, and terms having the same or similar meanings.
  • the communication system 1000 includes a communication system 1 and a communication system 2.
  • Communication system 1 (first wireless system) is a wireless communication system that wirelessly communicates by using (primary use) a predetermined frequency band.
  • the communication system 2 (second wireless system) is a wireless communication system that performs wireless communication by secondarily using the frequency band used by the communication system 1.
  • the communication system 2 is a wireless communication system that dynamically shares the free radio waves of the communication system 1.
  • the communication system 2 uses a predetermined radio access technology to provide a wireless service to a user or a device owned by the user.
  • the communication systems 1 and 2 may be cellular communication systems such as W-CDMA (Wideband Code Division Multiple Access), cdma2000 (Code Division Multiple Access 2000), LTE, and NR.
  • LTE includes LTE-A (LTE-Advanced), LTE-A Pro (LTE-Advanced Pro), and EUTRA (Evolved Universal Terrestrial Radio Access).
  • NR shall include NLAT (New Radio Access Technology) and FEUTRA (Further EUTRA).
  • NR is the next generation (5th generation) wireless access technology (RAT) of LTE.
  • RAT wireless access technology
  • LTE Long Term Evolution
  • NR is a wireless access technology that can support various use cases including eMBB (Enhanced Mobile Broadband), mMTC (Massive Machine Type Communications) and URLLC (Ultra-Reliable and Low Latency Communications).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communications
  • communication systems 1 and 2 are not limited to cellular communication systems.
  • the communication system 2 may be another wireless communication system such as a wireless LAN (Local Area Network) system, a television broadcasting system, an aeronautical wireless system, or a space wireless communication system.
  • the communication system 1 is the primary system and the communication system 2 is the secondary system. As described above, there may be a plurality of each of the communication system 1 and the communication system 2.
  • the communication system 1 is composed of one radio wave utilization device 10 (radio wave utilization device 101 shown in FIG. 1 ), but as described above, it is composed of a plurality of radio wave utilization devices 10. You may be.
  • the configuration of the radio wave utilization device 10 may be the same as or different from the configuration of the base station device 40 or the terminal device 30 described later.
  • the communication system 1000 is typically composed of the following entities.
  • Communication equipment for example, radio wave utilization equipment, base station equipment, intermediate equipment
  • Terminal device management device for example, communication control device
  • the entities that serve as communication devices are the radio wave utilization device 10, the base station device 40, and the intermediate device 50, but the entities that serve as communication devices are not limited to these devices, and other entities.
  • It may be a communication device (for example, a management device 20, a terminal device 30, a communication control device 60).
  • the external device described later may be regarded as a part of the communication system 1000.
  • the external device does not have to be a part of the communication system 1000.
  • the terminal device 30 may be regarded as an external device.
  • the terminal device 30 and the base station device 40 are entities constituting a secondary system that shares a part or all of the frequency bands assigned to the primary system, unless otherwise specified. In the present embodiment, it is assumed that there are two types of communication devices of different types in these communication devices constituting the secondary system.
  • a communication device that can access the communication control device 60 without using a wireless path with permission of the communication control device 60 is called a "communication device (Type A)".
  • a communication device capable of a wired Internet connection can be regarded as a “communication device (Type A)”.
  • a wireless backhaul link using a frequency that does not require permission from the communication control device 60 is provided with another communication device (Type A). If it is constructed, such a wireless relay device may be regarded as a "communication device (Type A)".
  • a communication device that cannot access the communication control device 60 without a wireless path with the permission of the communication control device 60 is called a "communication device (Type B)".
  • a wireless relay device that needs to construct a backhaul link using a frequency that requires the permission of the communication control device 60 can be regarded as a “communication device (Type B)”.
  • a terminal device such as a smartphone having a wireless network providing function represented by tethering, which uses a frequency that requires the permission of the communication control device 60 for both the backhaul link and the access link, is referred to as ". It may be treated as a "communication device (Type B)".
  • the communication device does not necessarily have to be fixedly installed, and may be installed in a moving object such as an automobile. In addition, it does not necessarily have to exist on the ground, and the communication device function is available for objects that exist in the air or space such as aircraft, drones, helicopters, and satellites, and objects that exist at sea or underwater such as ships and submarines. It may be provided.
  • a mobile communication device corresponds to a communication device (Type B), and secures an access route to the communication control device by performing wireless communication with another communication device (Type A). ..
  • a mobile communication device can be treated as a communication device (Type A). is there.
  • FIG. 4 is a diagram showing a configuration example of the communication system 1000 according to the embodiment of the present disclosure.
  • the communication system 1000 includes a communication system 1 and a communication system 2.
  • the device in the figure can also be considered as a device in a logical sense. That is, a part of the devices in the figure may be realized by a virtual machine (VM: Virtual Machine), a container (Container), a docker (Docker), etc., and they may be implemented on physically the same hardware.
  • VM Virtual Machine
  • Container Container
  • Docker docker
  • the communication system 1 includes a radio wave utilization device 10 and a management device 20.
  • the communication system 1 includes a telecommunications device 10 1, 10 2, and a management device 20 that manages them.
  • the communication system 1 does not necessarily have to have the management device 20. Further, the communication system 1 may have a plurality of radio wave utilization devices 10, or may have only one. In the case of the example of FIG. 4, it is also possible to regard each of the radio wave utilization devices 10 1 , 10 2 as one communication system 1.
  • the communication system 2 includes a terminal device 30, a base station device 40, an intermediate device 50, and a communication control device 60.
  • the communication system 2A and the communication system 2B are described as the communication system 2.
  • the communication system 2A includes a communication system 2a1, a communication system 2a2, and a communication system 2a3.
  • Communication system 2a1 comprises a terminal device 30 1, the base station apparatus 40 1, a.
  • Communication system 2a2 comprises a terminal device 30 2 to 30 3, the base station apparatus 40 2 to 40 3.
  • Communication system 2a3 comprises a terminal device 30 4-30 5, the base station apparatus 40 4-40 5, the intermediate device 50 1, the.
  • the communication system 2B is provided with a terminal device 30 6 and the base station apparatus 40 6.
  • a base station apparatus 40 1 to 40 2, 40 4 and 40 6 is the communication device (Type A)
  • the base station apparatus 40 3 is a communication device (Type B).
  • the communication system 2 does not necessarily have to have the communication control device 60.
  • the communication system 2a2 and the communication system 2a3 having the communication control device 60 externally may be regarded as one communication system 2 respectively.
  • the communication system 2 does not necessarily have to have the intermediate device 50.
  • the communication system 2a1 having no intermediate device 50 may be regarded as one communication system 2.
  • the communication systems 1 and 2 provide a wireless service to a user or a device owned by the user by operating in cooperation with each device (for example, a communication device such as a wireless communication device) constituting the communication systems 1 and 2.
  • a wireless communication device is a device having a wireless communication function.
  • the radio wave utilization device 10, the base station device 40, and the terminal device 30 correspond to wireless communication devices.
  • the intermediate device 50 and the communication control device 60 may have a wireless communication function.
  • the intermediate device 50 and the communication control device 60 can also be regarded as wireless communication devices.
  • the wireless communication device may be simply referred to as a communication device.
  • the communication device is not limited to the wireless communication device.
  • a device that does not have a wireless communication function and can only perform wired communication can be regarded as a communication device.
  • the concept of "communication device” includes not only a portable mobile device such as a mobile terminal (for example, a terminal device) but also a device installed on a structure or a mobile body.
  • the structure or the moving body itself may be regarded as a communication device.
  • the concept of a communication device includes not only a terminal device but also a base station device and a relay device.
  • a communication device is a type of processing device and information processing device.
  • the description of "communication device” appearing in the following description can be appropriately rephrased as “transmitting device” or “receiving device”.
  • the concept of "communication” includes “broadcasting".
  • the description of "communication device” can be appropriately rephrased as “broadcasting device”.
  • the description of "communication device” may be appropriately rephrased as “transmitting device” or “receiving device”.
  • the communication system 2 may include a plurality of terminal devices 30, a base station device 40, a communication control device 60, and an intermediate device 50, respectively.
  • the communication system 2 includes a terminal device 30 1, 30 2, 30 3, 30 4, 30 5 or the like as the terminal device 30.
  • the communication system 2 includes a base station apparatus 40 1, 40 2, 40 3, 40 4, 40 5, 40 6 or the like as a base station apparatus 40.
  • the communication system 2 includes communication control devices 60 1 , 60 2 and the like as the communication control device 60.
  • the wireless communication device may be referred to as a wireless system.
  • the terminal apparatus 30 1 to 30 5, respectively is one of a wireless system.
  • 1-40 6 telecommunications device 10 and the base station apparatus 40, respectively is one of a wireless system.
  • the communication system 1 is regarded as the first wireless system, but each of the one or more radio wave utilization devices 10 provided in the communication system 1 may be regarded as the first wireless system.
  • each of the one or more base station devices 40 included in the communication system 2 is regarded as the second wireless system, but the communication system 2 itself may be regarded as the second wireless system, and the communication system may be regarded as the second wireless system.
  • Each of the one or a plurality of terminal devices 30 included in the two may be regarded as a second wireless system. If the intermediate device 50 and the communication control device 60 have a wireless communication function, each of the intermediate device 50 or the communication control device 60 may be regarded as a second wireless system.
  • the wireless system may be one system composed of a plurality of communication devices including at least one wireless communication device.
  • a system composed of one or more base station devices 40 and one or more terminal devices 30 under the base station device 40 may be regarded as one wireless system.
  • each of the communication system 1 and the communication system 2 may be referred to as a wireless communication system or simply a communication system.
  • a system composed of a plurality of communication devices including one wireless communication device may be regarded as a first wireless system or a second wireless system.
  • the system means a set of a plurality of components (devices, modules (parts), etc.). At this time, all the components constituting the system may or may not be in the same housing. For example, a plurality of devices housed in separate housings and connected via wired and / or wireless are one system. Further, one device in which a plurality of modules are housed in one housing is also one system.
  • the radio wave utilization device 10 is a wireless communication device that constitutes the communication system 1 (primary system).
  • the radio wave utilization device 10 may be a radio wave emitting device such as a radar or a reflected wave receiving device.
  • the primary system is, for example, a military radar system, an existing system (eg, a television broadcasting system or an existing cellular communication system), or a system for fixed satellite services.
  • the radio wave utilization device 10 is, for example, a carrier-based radar.
  • the radio wave utilization device 10 is, for example, a broadcasting station (a broadcasting station as equipment) such as a broadcasting relay station.
  • the radio wave utilization device 10 is, for example, a parabolic antenna that receives radio waves from an artificial satellite.
  • the radio wave utilization device 10 is not limited to these.
  • the radio wave utilization device 10 may be a base station device.
  • the radio wave utilization device 10 may be able to communicate with other communication devices by using wireless access technology, similarly to the base station device 40 described later.
  • the wireless access technology used by the radio wave utilization device 10 may be a cellular communication technology or a wireless LAN technology.
  • the wireless access technology used by the base station apparatus 40 is not limited to these, and may be another wireless access technology.
  • the wireless access technology used by the radio wave utilization device 10 may be LPWA (Low Power Wide Area) communication technology.
  • LPWA communication is communication conforming to the LPWA standard. Examples of LPWA standards include ELTRES, ZETA, SIGFOX, LoRaWAN, NB-IoT and the like.
  • the LPWA standard is not limited to these, and other LPWA standards may be used.
  • the wireless communication used by the radio wave utilization device 10 may be wireless communication using millimeter waves.
  • the wireless communication used by the radio wave utilization device 10 may be wireless communication using radio waves, or wireless communication (optical wireless) using infrared rays or visible light.
  • the configuration of the radio wave utilization device 10 may be the same as that of the terminal device 30 and the base station device 40 described later.
  • the management device 20 is a device that manages the radio wave utilization device 10.
  • the management device 20 is a server or database owned by an operator or administrator of the communication system 1.
  • the management device 20 may be a server or database owned by a public institution.
  • the management device 20 may be a database (for example, a regulatory database) managed and operated by a national / regional radio wave administrative agency.
  • the regulatory database include ULS (Universal Licensing System) operated by FCC (Federal Communications Commissions).
  • the management device 20 may be a device for managing a wireless network.
  • the management device 20 may be a device that functions as an MME (Mobility Management Entity), an AMF (Access and Mobility Management Function), or an SMF (Session Management Function).
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • the management device 20 may be, for example, a network manager that integrally controls the radio wave utilization device 10 in the network.
  • the management device 20 is not limited to these examples.
  • the function of the management device 20 may be possessed by the radio wave utilization device 10.
  • the radio wave utilization device 10 can be regarded as the management device 20.
  • the management device 20 may have a function of a communication control device.
  • the management device 20 can be regarded as the communication control device 60.
  • the terminal device 30 is a communication device having a communication function.
  • the terminal device 30 is typically a communication device such as a smartphone.
  • the terminal device 30 may be a user terminal such as a mobile phone, a smart device (smartphone or tablet), a wearable terminal, an IoT (Internet of Things) device, a PDA (Personal Digital Assistant), or a personal computer.
  • the terminal device 30 may be a commercial camera provided with a communication function, or may be a communication device such as a wireless relay transmission device (FPU: Field Pickup Unit) for television broadcasting.
  • the terminal device 30 may be a motorcycle, a mobile relay vehicle, or the like equipped with a communication device such as an FPU (Field Pickup Unit).
  • a device called Customer Premises Equipment (CPE) provided to secure an Internet connection may act as a terminal.
  • the terminal device 30 may be an M2M (Machine to Machine) device or an IoT (Internet of Things) device.
  • the terminal device may be referred to as User Equipment, User Terminal, User Station, Mobile Terminal, Mobile Station, or the like.
  • the terminal device 30 may be referred to as, for example, MTC UE, NB-IoT UE, or Cat.M UE.
  • the terminal device 30 may be capable of side link communication with another terminal device 30.
  • the terminal device 30 may be able to use an automatic retransmission technique such as HARQ (Hybrid ARQ (Automatic Repeat reQuest)) when performing side link communication.
  • HARQ Hybrid ARQ (Automatic Repeat reQuest)
  • the wireless communication (including side link communication) used by the terminal device 30 may be wireless communication using radio waves or wireless communication using infrared rays or visible light (optical radio). Good.
  • the terminal device 30 may be a mobile device.
  • the mobile device is a mobile wireless communication device.
  • the terminal device 30 may be a wireless communication device installed on the mobile body or may be the mobile body itself.
  • the terminal device 30 may be a vehicle (Vehicle) moving on the road such as an automobile, a bus, a truck, or a motorcycle, or a wireless communication device mounted on the vehicle.
  • the moving body may be a mobile terminal, or may be a moving body that moves on land (ground in a narrow sense), in the ground, on the water, or in the water.
  • the moving body may be a moving body that moves in the atmosphere such as a drone or a helicopter, or may be a moving body that moves outside the atmosphere such as an artificial satellite.
  • the terminal device 30 may be connected to a plurality of base station devices or a plurality of cells at the same time to perform communication.
  • a plurality of cells for example, pCell, sCell
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • MC multi-connectivity
  • the terminal device 30 and the plurality of base station devices 40 can communicate with each other via the cells of different base station devices 40 by the coordinated multi-point transmission and reception (CoMP) technology.
  • CoMP coordinated multi-point transmission and reception
  • the terminal device 30 does not have to be used by a person.
  • the terminal device 30 may be a sensor installed in a factory machine or a building, such as a so-called MTC (Machine Type Communication). Further, the terminal device 30 may be an M2M (Machine to Machine) device or an IoT (Internet of Things) device. Further, the terminal device 30 may be a device having a relay communication function, as typified by D2D (Device to Device) and V2X (Vehicle to everything). Further, the terminal device 30 may be a device called CPE (Customer Premises Equipment) used in a wireless backhaul or the like. Further, the terminal device 30 may be a wireless communication device installed on the mobile body, or may be the mobile body itself.
  • MTC Machine Type Communication
  • M2M Machine to Machine
  • IoT Internet of Things
  • the terminal device 30 may be a device having a relay communication function, as typified by D2D (Device to Device) and V2X (V
  • the terminal device 30 corresponds to an entity to which a wireless link using a frequency requiring the permission of the communication control device 60 is terminated.
  • the terminal device 30 may operate in the same manner as the communication device.
  • the communication device may be referred to as a terminal device, or the terminal device may be referred to as a communication device, depending on the network topology.
  • the base station device 40 (second wireless system) is a wireless communication device that wirelessly communicates with the terminal device 30 or another communication device (another base station device 40, another intermediate device 50).
  • the base station device 40 is a wireless device that provides a communication service to a terminal.
  • the base station device 40 is a type of communication device.
  • the base station device 40 is, for example, a device corresponding to a radio base station (Base Station, Node B, eNB, gNB, etc.) or a radio access point (Access Point).
  • the base station device 40 When the base station device 40 is a wireless access point, the base station device 40 may be referred to as non-3GPP access.
  • the base station device 40 may be a radio relay station (Relay Node).
  • the base station device 40 may be a road base station device such as an RSU (Road Side Unit). Further, the base station device 40 may be an optical overhanging device called an RRH (Remote Radio Head). Further, the base station device 40 may be a receiving station device such as an FPU (Field Pickup Unit). Further, the base station apparatus 40 is an IAB (Integrated Access and Backhaul) donor node or an IAB relay node that provides a wireless access line and a wireless backhaul line by time division multiplexing, frequency division multiplexing, or spatial division multiplexing. You may.
  • IAB Integrated Access and Backhaul
  • the wireless access technology used by the base station device 40 may be a cellular communication technology or a wireless LAN technology.
  • the wireless access technology used by the base station apparatus 40 is not limited to these, and may be another wireless access technology.
  • the wireless access technology used by the base station device 40 may be LPWA (Low Power Wide Area) communication technology.
  • LPWA communication is communication conforming to the LPWA standard. Examples of LPWA standards include ELTRES, ZETA, SIGFOX, LoRaWAN, NB-IoT and the like. Of course, the LPWA standard is not limited to these, and other LPWA standards may be used.
  • the wireless communication used by the base station apparatus 40 may be wireless communication using millimeter waves. Further, the wireless communication used by the base station device 40 may be wireless communication using radio waves, or wireless communication (optical wireless) using infrared rays or visible light.
  • the base station of the wireless communication system may be referred to as a base station device.
  • the wireless access technology used by the base station device 40 may be a cellular communication technology or a wireless LAN technology.
  • the wireless access technology used by the base station apparatus 40 is not limited to these, and may be another wireless access technology.
  • the wireless communication used by the base station device 40 may be wireless communication using radio waves, or wireless communication (optical wireless) using infrared rays or visible light.
  • the base station device 40 does not necessarily have to be fixed, and may be installed in a moving device such as an automobile. Further, the base station device 40 does not necessarily have to exist on the ground, but exists in the air or in space such as an aircraft, drone, helicopter, satellite, or in the sea or in the sea such as a ship or submarine.
  • the object to be used may be provided with a communication device function. In such a case, the base station device 40 can perform wireless communication with another communication device that is fixedly installed.
  • the concept of a base station device includes not only a donor base station but also a relay base station (also referred to as a relay station or a relay station device).
  • the concept of a base station also includes access points.
  • the concept of a base station includes not only a structure having a function of a base station but also a device installed in the structure.
  • the structure is, for example, a building such as an office building, a house, a steel tower, a station facility, an airport facility, a port facility, or a stadium.
  • the concept of structure includes not only buildings but also non-building structures such as tunnels, bridges, dams, walls, and iron pillars, and equipment such as cranes, gates, and windmills.
  • the concept of a structure includes not only structures on land (above ground in a narrow sense) or underground, but also structures on water such as piers and mega floats, and structures underwater such as ocean observation facilities.
  • the base station device 40 may be a donor station or a relay station (relay station).
  • the device is not limited to the device on which the base station device 40 is mounted, as long as the relay function is satisfied.
  • the base station device 40 may be mounted on a terminal device such as a smartphone, a car or a rickshaw, a balloon, an airplane, a drone, a television, a game machine, or the like. It may be installed in home appliances such as air conditioners, refrigerators, and lighting fixtures. Of course, these devices themselves may be regarded as the base station device 40.
  • the base station device 40 may be a fixed station or a mobile station.
  • a mobile station is a wireless communication device (for example, a base station device) configured to be mobile.
  • the base station device 40 may be a device installed on the mobile body or may be the mobile body itself.
  • a relay station device having mobility can be regarded as a base station device 40 as a mobile station.
  • devices such as vehicles, drones, and smartphones that are originally mobile and equipped with the functions of the base station device (at least a part of the functions of the base station device) are also included in the base station device 40 as a mobile station. Applicable.
  • the mobile body may be a mobile terminal such as a smartphone or a mobile phone.
  • the moving body may be a moving body (for example, a vehicle such as a car, a bicycle, a bus, a truck, a motorcycle, a train, a linear motor car, etc.) that moves on land (ground in a narrow sense), or in the ground (for example, a vehicle).
  • a moving body for example, a subway moving in a tunnel.
  • the moving body may be a moving body moving on water (for example, a ship such as a passenger ship, a cargo ship, or a hovercraft), or a moving body moving underwater (for example, a submersible, a submarine, an unmanned submarine, etc.). Submersible).
  • the moving body may be a moving body moving in the atmosphere (for example, an aircraft such as an airplane, an airship, or a drone (Aerial Vehicle)), or a moving body moving outside the atmosphere (for example, an artificial satellite, a space). It may be an artificial celestial body such as a ship, a space station, or a spacecraft). A moving body that moves outside the atmosphere can be rephrased as a space moving body.
  • the base station device 40 may be a ground base station device (ground station device) installed on the ground.
  • the base station device 40 may be a base station device arranged on a structure on the ground, or may be a base station device installed on a mobile body moving on the ground.
  • the base station device 40 may be an antenna installed in a structure such as a building and a signal processing device connected to the antenna.
  • the base station device 40 may be a structure or a moving body itself. "Ground" is not only on land (ground in a narrow sense) but also on the ground in a broad sense including underground, water, and water.
  • the base station device 40 is not limited to the ground base station device.
  • the base station device 40 may be a non-ground base station device (non-ground station device) capable of floating in the air or in space.
  • the base station device 40 may be an aircraft station device or a satellite station device.
  • the aircraft station device is a wireless communication device that can float in the atmosphere (including the stratosphere) such as aircraft.
  • the aircraft station device may be a device mounted on an aircraft or the like, or may be an aircraft itself.
  • the concept of an aircraft includes not only heavy aircraft such as airplanes and gliders, but also light aircraft such as balloons and airships.
  • the concept of an aircraft includes not only heavy aircraft and light aircraft, but also rotary-wing aircraft such as helicopters and autogyros.
  • the aircraft station device (or the aircraft on which the aircraft station device is mounted) may be an unmanned aerial vehicle such as a drone.
  • unmanned aerial vehicle also includes unmanned aerial vehicle systems (UAS: Unmanned Aircraft Systems) and tethered unmanned aerial vehicles (tethered UAS).
  • UAS Unmanned Aircraft Systems
  • tethered UAS tethered unmanned aerial vehicles
  • unmanned aerial vehicle includes a light unmanned aerial vehicle system (LTA: Lighter than Air UAS) and a heavy unmanned aerial vehicle system (HTA: Heavier than Air UAS).
  • HAPs High Altitude UAS Platforms
  • the satellite station device is a wireless communication device that can float outside the atmosphere.
  • the satellite station device may be a device mounted on a space mobile body such as an artificial satellite, or may be a space mobile body itself. Satellites that serve as satellite station equipment are low orbit (LEO: Low Earth Orbiting) satellites, medium orbit (MEO: Medium Earth Orbiting) satellites, geostationary (GEO: Geostationary Earth Orbiting) satellites, and high elliptical orbit (HEO: Highly Elliptical Orbiting) It may be any satellite.
  • the satellite station device may be a device mounted on a low earth orbit satellite, a medium earth orbit satellite, a geostationary satellite, or a high elliptical orbit satellite.
  • the base station device 40 may be a relay station device.
  • the relay station device is, for example, an aviation station or an earth station.
  • the relay station device can be regarded as a kind of the above-mentioned relay device.
  • An aviation station is a radio station installed on the ground or on a mobile body moving on the ground to communicate with an aircraft station device.
  • the earth station is a radio station located on the earth (including the air) in order to communicate with the satellite station device.
  • the earth station may be a large earth station or a small earth station such as VSAT (Very Small Aperture Terminal).
  • VSAT Very Small Aperture Terminal
  • the earth station may be a VSAT controlled earth station (also referred to as a master station or a HUB station) or a VSAT earth station (also referred to as a slave station). Further, the earth station may be a radio station installed in a mobile body moving on the ground. For example, as an earth station mounted on a ship, an onboard earth station (ESV: Earth Stations on board Vessels) can be mentioned. In addition, the earth station may include an aircraft earth station installed on an aircraft (including a helicopter) and communicating with a satellite station. Further, the earth station may include an aviation earth station which is installed on a mobile body moving on the ground and communicates with an aircraft earth station via a satellite station.
  • the relay station device may be a portable mobile radio station that communicates with a satellite station or an aircraft station.
  • the size of the coverage of the base station apparatus 40 may be from a large one such as a macro cell to a small one such as a pico cell. Of course, the size of the coverage of the base station apparatus 40 may be extremely small, such as a femtocell. Various sizes of coverage of the base station apparatus 40 can be tolerated.
  • one cell may be formed by a plurality of base station devices 40, such as a distributed antenna system (DAS). Further, the base station apparatus 40 may have a beamforming capability. In this case, the base station apparatus 40 may form a cell or a service area for each beam.
  • DAS distributed antenna system
  • the base station device 40 can be used, operated, and / or managed by various entities.
  • the base station device 40 includes a mobile communication operator (MNO: Mobile Network Operator), a virtual mobile communication operator (MVNO: Mobile Virtual Network Operator), a mobile communication enabler (MNE: Mobile Network Enabler), and virtual movement.
  • MNO Mobile Network Operator
  • MVNO Mobile Virtual Network Operator
  • MNE Mobile Network Enabler
  • MVNE Mobile virtual network enabler
  • shared equipment operator neutral host network (NHN: Neutral Host Network) operator, broadcaster, enterprise, educational institution (school corporation, local government education committee, etc.) , Real estate (buildings, condominiums, etc.) managers, individuals, etc.
  • NTN Neutral Host Network
  • the subject of use, operation, and / or management of the base station apparatus 40 is not limited to these.
  • the base station device 40 may be installed and / or operated by one business operator, or may be installed and / or operated by one individual.
  • the installation / operation entity of the base station device 40 is not limited to these.
  • the base station device 40 may be jointly installed and operated by a plurality of businesses or a plurality of individuals.
  • the base station device 40 may be a shared facility used by a plurality of businesses or a plurality of individuals. In this case, the installation and / or operation of the equipment may be carried out by a third party different from the user.
  • the base station device 40 operated by the operator is typically connected to the Internet via a core network. Further, the base station apparatus 40 is operated and maintained by a function called OA & M (Operation, Administration & Maintenance).
  • the communication system 2 may have, for example, a network manager that integrally controls the base station apparatus 40 in the network.
  • a plurality of base station devices 40 may each form a cell.
  • the cell provided by the base station apparatus 40 is called, for example, a serving cell.
  • the serving cell may include pCell (Primary Cell) and sCell (Secondary Cell).
  • pCell Primary Cell
  • sCell Secondary Cell
  • MN Master Node
  • dual connectivity include EUTRA-EUTRA Dual Connectivity, EUTRA-NR Dual Connectivity (ENDC), EUTRA-NR Dual Connectivity with 5GC, NR-EUTRA Dual Connectivity (NEDC), and NR-NR Dual Connectivity.
  • the serving cell may include a PSCell (Primary Secondary Cell or Primary SCG Cell). That is, when dual connectivity is provided to the UE, the PSCell and sCell (s) provided by the SN (Secondary Node) are called SCG (Secondary Cell Group).
  • PSCell Primary Secondary Cell or Primary SCG Cell
  • SCG Secondary Cell Group
  • One downlink component carrier (Downlink Component Carrier) and one uplink component carrier (Uplink Component Carrier) may be associated with one cell.
  • the system bandwidth corresponding to one cell may be divided into a plurality of bandwidth parts (BWP: Bandwidth Part).
  • BWP Bandwidth Part
  • one or a plurality of BWPs may be set in the UE, and one BWP may be used in the UE as an active BWP (Active BWP).
  • the radio resources for example, frequency band, numerology (subcarrier spacing), slot format (Slot configuration)
  • one base station apparatus 40 may provide a plurality of cells.
  • the intermediate device 50 is a device that communicates with the communication control device 60 on behalf of (representatively) one or a plurality of communication devices (for example, the base station device 40).
  • the intermediate device 50 is a proxy device (proxy system).
  • the intermediate device 50 is also a type of communication device.
  • the intermediate device 50 may be a DP (Domain Proxy) defined in Non-Patent Document 2 or the like.
  • the DP is an entity that communicates with a communication control device such as SAS on behalf of each of the plurality of CBSDs, or an entity that communicates with a communication control device such as SAS on behalf of a network composed of a plurality of CBSDs.
  • the intermediate device 50 is not limited to the DP defined in Non-Patent Document 2 as long as it has a function of communicating with the communication control device 60 on behalf of (representative) one or a plurality of communication devices. ..
  • the network manager that integrally controls the base station device 40 in the network may be regarded as the intermediate device 50.
  • the proxy system may be composed of one device or a plurality of devices.
  • the communication between the intermediate device 50 and the base station device 40 may be wired communication or wireless communication.
  • the communication between the intermediate device 50 and the communication control device 60 may be wired communication or wireless communication.
  • the communication device represented (represented) by the intermediate device 50 is not limited to the base station device 40, and may be, for example, the terminal device 30.
  • one or more communication devices (for example, one or more base station devices 40) represented (represented) by the intermediate device 50 are referred to as subordinate communication devices (for example, subordinate base station devices 40).
  • subordinate communication devices for example, subordinate base station devices 40.
  • the communication control device 60 is a device that manages a communication device (for example, a base station device 40).
  • the communication control device 60 is a device that controls wireless communication of the base station device 40.
  • the communication control device 60 is a device that determines communication parameters (also referred to as operation parameters) used by the base station device 40 and gives permission or instruction to the base station device 40.
  • the communication control device 60 is, for example, a database server called TVWSDB (TV White Space Database), GLDB (Geolocation database), SAS (Spectrum Access System), and AFC (Automated Frequency Coordination). Further, the communication control device 60 may be a network manager that integrally controls wireless devices in the network. Further, taking ETSI EN 303 387 and IEEE 802.19.1-2018 as an example, the communication control device 60 may be a control device such as a Spectram Manager / Coexistence Manager that controls radio wave interference between wireless devices. Further, for example, the RLSS (Registered Location Secure Server) defined in IEEE 802.11-2016 can also be the communication control device 60.
  • TVWSDB TV White Space Database
  • GLDB Geographical Database
  • SAS Specific Access System
  • AFC Automatic Frequency Coordination
  • a database database server, device, system
  • GLDB Geographic-location Database
  • SAS Specific Access System
  • the communication control device 60 is not limited to these examples.
  • An entity may be referred to as a communication control device for determining and / or permitting, instructing, and managing communication parameters of a communication device related to frequency sharing.
  • the control target of the communication control device 60 is the base station device 40, but the terminal device 30 under the control target may be controlled.
  • the communication control device 60 may be a device that constitutes a core network.
  • the core network CN is, for example, EPC (Evolved Packet Core) or 5GC (5G Core network).
  • EPC Evolved Packet Core
  • 5GC 5G Core network
  • the communication control device 60 may be, for example, a device having a function as an MME (Mobility Management Entity).
  • MME Mobility Management Entity
  • the communication control device 60 may be, for example, a device having a function as an AMF (Access and Mobility Management Function) or an SMF (Session Management Function).
  • the communication control device 60 does not necessarily have to be a device that constitutes a core network.
  • the communication control device 60 may be a device having a function as an RNC (Radio Network Controller).
  • RNC Radio Network Controller
  • the communication control device 60 may have a gateway function.
  • the communication control device 60 may be a device having a function as an S-GW (Serving Gateway) or a P-GW (Packet Data Network Gateway).
  • the communication control device 60 may be a device having a function as an UPF (User Plane Function).
  • the communication control device 60 may be SMF, PCF, UDM, or the like.
  • the core network CN may include SMF, PCF, UDM and the like.
  • the communication control device 60 does not necessarily have to be a device that constitutes the core network.
  • the core network is a core network of W-CDMA (Wideband Code Division Multiple Access) or cdma2000 (Code Division Multiple Access 2000).
  • the communication control device 60 may be a device that functions as an RNC (Radio Network Controller).
  • the communication control device 60 may be connected to each of the plurality of base station devices 40.
  • the AMF and the NG-RAN are logically connected to each other via the NG interface.
  • the communication control device 60 manages the communication of the base station device 40.
  • the communication control device 60 may manage the position of the terminal device 30 for each terminal device 30 in an area unit (for example, Tracking Area, RAN Notification Area) composed of a plurality of cells.
  • the communication control device 60 determines which base station device 40 (or which cell) the terminal device 30 is connected to, and which base station device 40 (or which cell) is in the communication area. Etc. may be grasped and managed for each terminal device 30.
  • the control target of the communication control device 60 is the base station device 40, but the communication control device 60 may control the terminal device 30 under the control device 60. Further, the communication control device 60 may control a plurality of secondary systems. In this case, the communication system 2 can be regarded as a system including a plurality of secondary systems.
  • a plurality of communication control devices 60 may exist in one communication system 2.
  • at least one of the following three types of decision-making topologies can be applied to the communication control device 60. ⁇ Autonomous Decision-Making ⁇ Centralized Decision-Making ⁇ Distributed Decision-Making
  • Autonomous decision-making is a decision-making topology in which an entity that makes decisions (decision-making entity, in this case, a communication controller) makes decisions independently of another decision-making entity. That is.
  • the communication control device independently calculates the necessary frequency allocation and interference control.
  • FIG. 5 is a diagram showing a model in which the communication control devices 60 are arranged in a distributed manner.
  • the autonomous decision making can be applied, for example, when a plurality of communication control devices 60 are arranged in a distributed manner as shown in FIG. In this case, (in the example of FIG. 5, the communication control unit 60 3 and the communication control unit 60 4) a plurality of communication control device 60 to exchange information of the base station device 40 that manages one another, the required frequency allocation and interference Perform control calculations.
  • FIG. 6 is a diagram showing a model (so-called master-slave type model) in which one communication control device centrally controls a plurality of communication control devices.
  • a model as shown in FIG. 6 is assumed.
  • the communication control device 60 5 is the master communication control apparatus
  • communication control unit 60 6, 60 7 is the slave communications controller.
  • the master communication control device can control a plurality of slave communication control devices and make a centralized decision. Further, the master communication control device can transfer or destroy the decision-making authority to each slave communication control device for the purpose of load balancing (load balancing) or the like.
  • Distributed Decision-Making is a decision-making topology in which a decision-making entity makes decisions in collaboration with another decision-making entity.
  • a decision-making entity makes decisions in collaboration with another decision-making entity.
  • the master communication control device dynamically delegates / discards the decision-making authority to each slave communication control device for the purpose of load balancing. Doing can also be thought of as "distributed decision making.”
  • the master communication control device may exist outside, and the communication device (for example, the base station device 40) or the intermediate device (for example, the intermediate device 50) that bundles a plurality of communication devices may be implemented so as to behave as a slave communication control device. ..
  • the communication control device 60 can acquire necessary information from entities other than the base station device 40, the terminal device 30, and the intermediate device 50 for its role. Specifically, the communication control device 60 is necessary for protecting, for example, the location information of the primary system from a database (regulatory database) managed and operated by a national / regional radio wave administration (NRA: National Regulatory Authority). Information can be obtained.
  • a regulatory database is the ULS (Universal Licensing System) operated by the Federal Communications Commission (FCC).
  • FCC Federal Communications Commission
  • Examples of information required for protection include location information of the primary system, communication parameters of the primary system, out-of-band radiation limit (OOBE (Out-of-Band Emission) Limit), and adjacent channel leakage ratio (ACLR: Adjacent Channel).
  • Leakage Ratio may be included.
  • Adjacent Channel Selectivity may be included.
  • Fading Margin may be included.
  • PR Protection Ratio
  • the communication control device 60 acquires radio wave sensing information from a radio wave sensing system installed and operated for the purpose of detecting radio waves in the primary system.
  • the communication control device 60 acquires radio wave detection information of a carrier-based radar, which is a primary system, from a radio wave sensing system called an environmental sensing function (ESC: Environmental Sensing Capability) in the US CBRS.
  • ESC Environmental Sensing Capability
  • the communication control device 60 may acquire the radio wave detection information of the primary system from these.
  • FIG. 8 is a diagram showing a configuration example of the radio wave utilization device 10 according to the embodiment of the present disclosure.
  • the radio wave utilization device 10 is a device that primarily uses a predetermined frequency band.
  • the radio wave utilization device 10 is a communication device (wireless system) that wirelessly communicates with another wireless communication device.
  • the radio wave utilization device 10 can be regarded as a kind of communication device.
  • the radio wave utilization device 10 may be a radio wave emitting device or a reflected wave receiving device.
  • the radio wave utilization device 10 is a kind of information processing device.
  • the radio wave utilization device 10 includes a processing unit 11, a storage unit 12, and a control unit 13.
  • the configuration shown in FIG. 8 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the radio wave utilization device 10 may be distributed and implemented in a plurality of physically separated configurations.
  • the processing unit 11 is a processing unit for using radio waves in a predetermined frequency band.
  • the processing unit 11 is a signal processing unit that performs various processes for outputting and receiving radio waves in a predetermined frequency band.
  • the radio wave utilization device 10 is a wireless communication device
  • the processing unit 11 may be a wireless communication interface that wirelessly communicates with another communication device.
  • other communication devices include not only communication devices that perform cellular communication and the like, but also transmission devices that transmit broadcast waves such as television broadcasts and receiver devices that receive broadcast waves.
  • the storage unit 12 is a storage device capable of reading and writing data such as DRAM (Dynamic Random Access Memory), SRAM (Static Random Access Memory), flash memory, and hard disk.
  • the storage unit 12 functions as a storage means for the radio wave utilization device 10.
  • the control unit 13 is a controller that controls each unit of the radio wave utilization device 10.
  • the control unit 13 is realized by, for example, a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the control unit 13 is realized by the processor executing various programs stored in the storage device inside the radio wave utilization device 10 with a RAM (Random Access Memory) or the like as a work area.
  • the control unit 13 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the CPU, MPU, ASIC, and FPGA can all be regarded as controllers.
  • the radio wave utilization device 10 may have a function as a management device 20.
  • the control unit 13 may have each functional block of the control unit of the management device 20.
  • FIG. 9 is a diagram showing a configuration example of the management device 20 according to the embodiment of the present disclosure.
  • the management device 20 is a device that manages the radio wave utilization device 10.
  • the management device 20 may be a device that manages the radio wave output of the radio wave utilization device 10, or may be a device that manages information such as the installation mode of the radio wave utilization device 10 and the management entity.
  • the management device 20 is a type of information processing device.
  • the management device 20 includes a communication unit 21, a storage unit 22, and a control unit 23.
  • the configuration shown in FIG. 8 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the management device 20 may be distributed and implemented in a plurality of physically separated configurations.
  • the communication unit 21 is a communication interface for communicating with other devices.
  • the communication unit 21 may be a network interface or a device connection interface.
  • the communication unit 21 may be a LAN (Local Area Network) interface such as a NIC (Network Interface Card), or a USB interface composed of a USB (Universal Serial Bus) host controller, a USB port, or the like. May be good.
  • the communication unit 21 may be a wired interface or a wireless interface.
  • the communication unit 21 functions as a communication means of the management device 20.
  • the communication unit 21 communicates with the radio wave utilization device 10 under the control of the control unit 23.
  • the storage unit 22 is a storage device that can read and write data such as DRAM, SRAM, flash memory, and hard disk.
  • the storage unit 22 functions as a storage means for the management device 20.
  • the storage unit 22 stores the first identifier and the like. The first identifier will be described later.
  • the control unit 23 is a controller that controls each unit of the management device 20.
  • the control unit 23 is realized by, for example, a processor such as a CPU or MPU.
  • the control unit 23 is realized by the processor executing various programs stored in the storage device inside the management device 20 with the RAM or the like as a work area.
  • the control unit 23 may be realized by an integrated circuit such as an ASIC or FPGA.
  • the CPU, MPU, ASIC, and FPGA can all be regarded as controllers.
  • the radio wave utilization device 10 can be regarded as the management device 20.
  • the description of the "management device 20" appearing in the following description can be appropriately replaced with the "radio wave utilization device 10".
  • FIG. 10 is a diagram showing a configuration example of the terminal device 30 according to the embodiment of the present disclosure.
  • the terminal device 30 is a communication device (wireless system) that wirelessly communicates with the base station device 40 and / or the communication control device 60.
  • the terminal device 30 is a type of information processing device.
  • the terminal device 30 includes a wireless communication unit 31, a storage unit 32, an input / output unit 33, and a control unit 34.
  • the configuration shown in FIG. 10 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the terminal device 30 may be distributed and implemented in a plurality of physically separated configurations.
  • the wireless communication unit 31 is a wireless communication interface that wirelessly communicates with other communication devices (for example, a base station device 40 and another terminal device 30).
  • the wireless communication unit 31 operates according to the control of the control unit 34.
  • the wireless communication unit 31 corresponds to one or a plurality of wireless access methods.
  • the wireless communication unit 31 corresponds to both NR and LTE.
  • the wireless communication unit 31 may support other wireless access methods such as W-CDMA and cdma2000.
  • the wireless communication unit 31 includes a reception processing unit 311, a transmission processing unit 312, and an antenna 313.
  • the wireless communication unit 31 may include a plurality of reception processing units 311 and transmission processing units 312, and a plurality of antennas 313, respectively.
  • each unit of the wireless communication unit 31 may be individually configured for each wireless access method.
  • the reception processing unit 311 and the transmission processing unit 312 may be individually configured by LTE and NR.
  • the configurations of the reception processing unit 311 and the transmission processing unit 312 are the same as those of the reception processing unit 411 and the transmission processing unit 412 of the base station apparatus 40.
  • the storage unit 32 is a storage device that can read and write data such as DRAM, SRAM, flash memory, and hard disk.
  • the storage unit 32 functions as a storage means for the terminal device 30.
  • the input / output unit 33 is a user interface for exchanging information with the user.
  • the input / output unit 33 is an operation device for the user to perform various operations such as a keyboard, a mouse, operation keys, and a touch panel.
  • the input / output unit 33 is a display device such as a liquid crystal display (Liquid Crystal Display) or an organic EL display (Organic Electroluminescence Display).
  • the input / output unit 33 may be an audio device such as a speaker or a buzzer.
  • the input / output unit 33 may be a lighting device such as an LED (Light Emitting Diode) lamp.
  • the input / output unit 33 functions as an input / output means (input means, output means, operation means, or notification means) of the terminal device 30.
  • the control unit 34 is a controller that controls each unit of the terminal device 30.
  • the control unit 34 is realized by, for example, a processor such as a CPU or MPU.
  • the control unit 34 is realized by the processor executing various programs stored in the storage device inside the terminal device 30 with the RAM or the like as a work area.
  • the control unit 34 may be realized by an integrated circuit such as an ASIC or FPGA.
  • the CPU, MPU, ASIC, and FPGA can all be regarded as controllers.
  • the control unit 34 may have each functional block of the control unit of the base station apparatus 40.
  • the control unit 34 includes an acquisition unit 341 and a communication control unit 342.
  • Each block (acquisition unit 341 to communication control unit 342) constituting the control unit 34 is a functional block indicating the function of the control unit 34, respectively.
  • These functional blocks may be software blocks or hardware blocks.
  • each of the above-mentioned functional blocks may be one software module realized by software (including a microprogram), or may be one circuit block on a semiconductor chip (die).
  • each functional block may be one processor or one integrated circuit.
  • the method of configuring the functional block is arbitrary.
  • the control unit 34 may be configured in a functional unit different from the above-mentioned functional block.
  • FIG. 11 is a diagram showing a configuration example of the base station device 40 according to the embodiment of the present disclosure.
  • the base station device 40 is a communication device (wireless system) that wirelessly communicates with the terminal device 30 under the control of the communication control device 60.
  • the base station device 40 is a type of information processing device.
  • the base station device 40 includes a wireless communication unit 41, a storage unit 42, a network communication unit 43, and a control unit 44.
  • the configuration shown in FIG. 11 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the base station device 40 may be distributed and implemented in a plurality of physically separated devices.
  • the wireless communication unit 41 is a wireless communication interface that wirelessly communicates with other communication devices (for example, a terminal device 30, a communication control device 60, an intermediate device 50, and another base station device 40).
  • the wireless communication unit 41 operates according to the control of the control unit 44.
  • the wireless communication unit 41 may support a plurality of wireless access methods.
  • the wireless communication unit 41 may support both NR and LTE.
  • the wireless communication unit 41 may support other cellular communication methods such as W-CDMA and cdma2000.
  • the wireless communication unit 41 may support a wireless LAN communication method in addition to the cellular communication method. Of course, the wireless communication unit 41 may only support one wireless access method.
  • the wireless communication unit 41 includes a reception processing unit 411, a transmission processing unit 412, and an antenna 413.
  • the wireless communication unit 41 may include a plurality of reception processing units 411, transmission processing units 412, and antennas 413, respectively.
  • each unit of the wireless communication unit 41 may be individually configured for each wireless access method. For example, if the base station apparatus 40 corresponds to NR and LTE, the reception processing unit 411 and the transmission processing unit 412 may be individually configured by NR and LTE.
  • the reception processing unit 411 processes the uplink signal received via the antenna 413.
  • the reception processing unit 411 includes a wireless reception unit 411a, a multiple separation unit 411b, a demodulation unit 411c, and a decoding unit 411d.
  • the radio receiver 411a performs down-conversion, removal of unnecessary frequency components, control of amplification level, orthogonal demodulation, conversion to digital signal, removal of guard interval, and fast Fourier transform of the frequency domain signal for the uplink signal. Extract, etc.
  • the wireless access system of the base station device 40 is a cellular communication system such as LTE.
  • the multiplex separation unit 411b separates the uplink channel such as PUSCH (Physical Uplink Shared Channel) and PUCCH (Physical Uplink Control Channel) and the uplink reference signal from the signal output from the wireless reception unit 411a.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the demodulation unit 411c demodulates the received signal with respect to the modulation symbol of the uplink channel by using a modulation method such as BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase shift Keying).
  • the modulation method used by the demodulation unit 411c may be a multi-level QAM such as 16QAM (Quadrature Amplitude Modulation), 64QAM, or 256QAM.
  • the decoding unit 411d performs decoding processing on the coded bits of the demodulated uplink channel.
  • the decoded uplink data and uplink control information are output to the control unit 44.
  • the transmission processing unit 412 performs the transmission processing of the downlink control information and the downlink data.
  • the transmission processing unit 412 includes a coding unit 412a, a modulation unit 412b, a multiplexing unit 412c, and a wireless transmission unit 412d.
  • the coding unit 412a encodes the downlink control information and the downlink data input from the control unit 44 by using a coding method such as block coding, convolutional coding, or turbo coding.
  • the modulation unit 412b modulates the coding bits output from the coding unit 412a by a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM.
  • the multiplexing unit 412c multiplexes the modulation symbol of each channel and the downlink reference signal and arranges them in a predetermined resource element.
  • the wireless transmission unit 412d performs various signal processing on the signal from the multiplexing unit 412c.
  • the radio transmitter 412d converts to the time domain by fast Fourier transform, adds a guard interval, generates a baseband digital signal, converts to an analog signal, quadrature modulation, up-conversion, removes an extra frequency component, and so on. Performs processing such as power amplification.
  • the signal generated by the transmission processing unit 412 is transmitted from the antenna 413.
  • the storage unit 42 is a storage device that can read and write data such as DRAM, SRAM, flash memory, and hard disk.
  • the storage unit 42 functions as a storage means for the base station device 40.
  • the storage unit 42 stores desired transmission power information, operating parameters, possessed resource information, and the like.
  • the desired transmission power information is information on the transmission power required by the base station device 40 from the communication control device 60 as information on the transmission power required for transmitting radio waves.
  • the operation parameter is information (for example, setting information) related to the radio wave transmission operation of the base station device 40.
  • the communication operation parameter is information on the maximum value (maximum allowable transmission power) of the transmission power allowed in the base station apparatus 40.
  • the operating parameters are not limited to the information on the maximum allowable transmission power.
  • the possessed resource information is information regarding possession of the radio resource of the base station apparatus 40.
  • the possessed resource information is information on radio resources currently available to the base station apparatus 40.
  • the possessed resource information is information on the possessed amount of the interference margin allocated by the base station apparatus 40 from the communication control apparatus 60.
  • the information on the holding amount may be the information for each resource block described later. That is, the possessed resource information may be information about the resource block possessed by the base station apparatus 40 (for example, the resource block possession amount).
  • the network communication unit 43 is a communication interface for communicating with other devices (for example, a communication control device 60, an intermediate device 50, and another base station device 40).
  • the network communication unit 43 is a LAN (Local Area Network) interface such as a NIC (Network Interface Card).
  • the network communication unit 43 may be a USB interface composed of a USB (Universal Serial Bus) host controller, a USB port, and the like. Further, the network communication unit 43 may be a wired interface or a wireless interface.
  • the network communication unit 43 functions as a network communication means for the base station device 40.
  • the network communication unit 43 communicates with other devices according to the control of the control unit 44.
  • the control unit 44 is a controller that controls each unit of the base station device 40.
  • the control unit 44 is realized by, for example, a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the control unit 44 is realized by the processor executing various programs stored in the storage device inside the base station device 40 using a RAM (Random Access Memory) or the like as a work area.
  • the control unit 44 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the CPU, MPU, ASIC, and FPGA can all be regarded as controllers.
  • the control unit 44 includes an acquisition unit 441, a communication control unit 442, and a notification unit 443.
  • Each block (acquisition unit 441 to notification unit 443) constituting the control unit 44 is a functional block indicating the function of the control unit 44, respectively.
  • These functional blocks may be software blocks or hardware blocks.
  • each of the above-mentioned functional blocks may be one software module realized by software (including a microprogram), or may be one circuit block on a semiconductor chip (die).
  • each functional block may be one processor or one integrated circuit.
  • the method of configuring the functional block is arbitrary.
  • the control unit 44 may be configured in a functional unit different from the above-mentioned functional block.
  • control unit 34 of the terminal device 30 may have each functional block (acquisition unit 441 to notification unit 443) of the control unit 44 of the base station device 40.
  • the description of the "base station device 40" appearing in the following description can be appropriately replaced with the "terminal device 30".
  • control unit 44", acquisition unit 441", “communication control unit 442", and “notification unit 443" appearing in the following description can be appropriately replaced with "control unit 34".
  • FIG. 12 is a diagram showing a configuration example of the intermediate device 50 according to the embodiment of the present disclosure.
  • the intermediate device 50 is a communication device that communicates with the base station device 40 and the communication control device 60.
  • the intermediate device 50 is a type of information processing device.
  • the intermediate device 50 includes a wireless communication unit 51, a storage unit 52, a network communication unit 53, and a control unit 54.
  • the configuration shown in FIG. 12 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the intermediate device 50 may be distributed and implemented in a plurality of physically separated configurations.
  • the wireless communication unit 51 is a wireless communication interface that wirelessly communicates with other communication devices (for example, a base station device 40, a terminal device 30, a communication control device 60, and another intermediate device 50).
  • the wireless communication unit 51 operates according to the control of the control unit 54.
  • the wireless communication unit 51 corresponds to one or a plurality of wireless access methods.
  • the wireless communication unit 51 corresponds to both NR and LTE.
  • the wireless communication unit 51 may support other wireless access methods such as W-CDMA and cdma2000.
  • the configuration of the wireless communication unit 51 is the same as that of the wireless communication unit 41 of the base station device 40.
  • the storage unit 52 is a storage device that can read and write data such as DRAM, SRAM, flash memory, and hard disk.
  • the storage unit 52 functions as a storage means for the intermediate device 50.
  • the storage unit 52 may store unique information, communication parameters, and the like of each of the subordinate base station devices 40 (or the subordinate terminal devices 30 of the subordinate base station devices 40).
  • the network communication unit 53 is a communication interface for communicating with other devices (for example, a base station device 40, a communication control device 60, and another intermediate device 50).
  • the network communication unit 53 is a LAN interface such as a NIC.
  • the network communication unit 53 may be a USB interface composed of a USB host controller, a USB port, and the like. Further, the network communication unit 53 may be a wired interface or a wireless interface.
  • the network communication unit 53 functions as a network communication means of the intermediate device 50.
  • the network communication unit 53 communicates with other devices according to the control of the control unit 54.
  • the control unit 54 is a controller that controls each unit of the intermediate device 50.
  • the control unit 54 is realized by, for example, a processor such as a CPU or MPU.
  • the control unit 54 is realized by the processor executing various programs stored in the storage device inside the intermediate device 50 with the RAM or the like as a work area.
  • the control unit 54 may be realized by an integrated circuit such as an ASIC or FPGA.
  • the CPU, MPU, ASIC, and FPGA can all be regarded as controllers.
  • the control unit 54 includes an acquisition unit 541, a communication control unit 542, and a notification unit 543.
  • Each block (acquisition unit 541 to notification unit 543) constituting the control unit 54 is a functional block indicating the function of the control unit 54, respectively.
  • These functional blocks may be software blocks or hardware blocks.
  • each of the above-mentioned functional blocks may be one software module realized by software (including a microprogram), or may be one circuit block on a semiconductor chip (die).
  • each functional block may be one processor or one integrated circuit.
  • the method of configuring the functional block is arbitrary.
  • the control unit 54 may be configured in a functional unit different from the above-mentioned functional block. The operation of each block constituting the control unit 54 will be described later.
  • each block (acquisition unit 541 to notification unit 543) constituting the control unit 54 is the same as the operation of each block (acquisition unit 441 to notification unit 443) constituting the control unit 44 of the base station apparatus 40. May be good.
  • the description of the "intermediate device 50" appearing in the following description can be appropriately replaced with the "base station device 40".
  • the descriptions of "control unit 54", "acquisition unit 541", “communication control unit 542”, and “notification unit 543" appearing in the following description are appropriately described as “control unit 44" and "acquisition unit 441".
  • "Communication control unit 442", and “Notification unit 443" are appropriately described as "control unit 44" and "acquisition unit 441".
  • the communication control device 60 is a device that controls wireless communication of the base station device 40.
  • the communication control device 60 may control the wireless communication of the terminal device 30 via the base station device 40 or directly.
  • the communication control device 60 is a type of information processing device.
  • FIG. 13 is a diagram showing a configuration example of the communication control device 60 according to the embodiment of the present disclosure.
  • the communication control device 60 includes a wireless communication unit 61, a storage unit 62, a network communication unit 63, and a control unit 64.
  • the configuration shown in FIG. 13 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the communication control device 60 may be distributed and implemented in a plurality of physically separated configurations.
  • the communication control device 60 may be composed of a plurality of server devices.
  • the wireless communication unit 61 is a wireless communication interface that wirelessly communicates with other communication devices (for example, a base station device 40, a terminal device 30, an intermediate device 50, and another communication control device 60).
  • the wireless communication unit 61 operates according to the control of the control unit 64.
  • the wireless communication unit 61 corresponds to one or a plurality of wireless access methods.
  • the wireless communication unit 61 corresponds to both NR and LTE.
  • the wireless communication unit 61 may support other wireless access methods such as W-CDMA and cdma2000.
  • the configuration of the wireless communication unit 61 is the same as that of the wireless communication unit 41 of the base station apparatus 40.
  • the storage unit 62 is a storage device that can read and write data such as DRAM, SRAM, flash memory, and hard disk.
  • the storage unit 62 functions as a storage means for the base station device 40.
  • the storage unit 62 stores the operation parameters of each of the plurality of base station devices 40 constituting the communication system 2.
  • the storage unit 62 may store the resource information possessed by each of the plurality of base station devices 40 constituting the communication system 2. As described above, the possessed resource information is information regarding possession of the radio resource of the base station apparatus 40.
  • the network communication unit 63 is a communication interface for communicating with other devices (for example, the base station device 40, the intermediate device 50, and the other communication control device 60).
  • the network communication unit 63 may be a network interface or a device connection interface.
  • the network communication unit 63 may be a LAN (Local Area Network) interface such as a NIC (Network Interface Card).
  • the network communication unit 63 may be a USB interface composed of a USB (Universal Serial Bus) host controller, a USB port, and the like.
  • the network communication unit 63 may be a wired interface or a wireless interface.
  • the network communication unit 63 functions as a communication means of the communication control device 60.
  • the network communication unit 63 communicates with the base station device 40, the terminal device 30, and the intermediate device 50 under the control of the control unit 64.
  • the control unit 64 is a controller that controls each unit of the communication control device 60.
  • the control unit 64 is realized by, for example, a processor such as a CPU or MPU.
  • the control unit 64 is realized by the processor executing various programs stored in the storage device inside the communication control device 60 with the RAM or the like as a work area.
  • the control unit 64 may be realized by an integrated circuit such as an ASIC or FPGA.
  • the CPU, MPU, ASIC, and FPGA can all be regarded as controllers.
  • the control unit 64 includes an acquisition unit 641, a calculation unit 642, a distribution unit 643, a grouping unit 644, and a power calculation unit 645.
  • Each block (acquisition unit 641 to power calculation unit 645) constituting the control unit 64 is a functional block indicating the function of the control unit 64, respectively.
  • These functional blocks may be software blocks or hardware blocks.
  • each of the above-mentioned functional blocks may be one software module realized by software (including a microprogram), or may be one circuit block on a semiconductor chip (die).
  • each functional block may be one processor or one integrated circuit.
  • the method of configuring the functional block is arbitrary.
  • the control unit 64 may be configured in a functional unit different from the above-mentioned functional block. The operation of each block constituting the control unit 64 will be described later.
  • control unit 44 of the base station device 40 may have each functional block (acquisition unit 641 to power calculation unit 645) of the control unit 64 of the communication control device 60.
  • the description of the "communication control device 60" appearing in the following description can be appropriately replaced with the "base station device 40" or the “intermediate device 50".
  • the descriptions of "control unit 64", "acquisition unit 641", “calculation unit 642”, “distribution unit 643”, “grouping unit 644", and "power calculation unit 645" appearing in the following description are also appropriately described. It can be replaced with "control unit 44" or "control unit 54".
  • FIG. 14 is an explanatory diagram showing an example of an interference model assumed in the embodiment of the present disclosure.
  • the description of the base station device 40, which appears in the following description, can be replaced with a word indicating another communication device having a wireless communication function.
  • the interference model shown in FIG. 14 is applied, for example, when the primary system has a service area.
  • the communication system 1 primary system
  • the communication system 1 is a wireless communication system having a service area.
  • This service area becomes, for example, a protected area of the communication system 1.
  • a plurality of interference calculation reference points (hereinafter, referred to as interference calculation points or protection points) are set in the protected area.
  • the protection point is set by, for example, the operator of the communication system 1 or a public institution that manages radio waves (hereinafter referred to as an administrator).
  • the administrator may divide the protected area in a grid pattern and use the center of a predetermined grid as a protection point.
  • the method of determining the protection point is arbitrary.
  • the protection point may be set not only in the horizontal direction but also in the vertical direction. That is, the protection points may be arranged three-dimensionally.
  • the three-dimensionally arranged protection points that is, the protection points under the assumption of a three-dimensional space, not the protection points under the assumption of a horizontal plane
  • spatial protection points Spatial Protection Point
  • the interference margin of each protection point is set by the administrator or the like.
  • FIG. 14 shows the interference that the plurality of base station devices 40 constituting the communication system 2 (secondary system) give to the protection points.
  • the communication control device 60 of the communication system 2 controls the transmission power of the plurality of base station devices 40 so that the cumulative interference at each protection point does not exceed the set interference margin.
  • FIG. 15 is an explanatory diagram showing another example of the interference model assumed in the embodiment of the present disclosure.
  • the interference model shown in FIG. 15 is applied, for example, when the primary system performs only reception.
  • the communication system 1 primary system
  • the communication system 1 includes a receiving antenna as telecommunications apparatus 10 2.
  • Telecommunications device 10 2 is, for example, a receiving antenna of the satellite ground stations.
  • the communication control device 60 of the communication system 2 uses the position of the receiving antenna as a protection point, and controls the transmission power of the plurality of base station devices 40 so that the cumulative interference at that point does not exceed the interference margin.
  • the primary system protection method can be classified into the following two types, for example.
  • the interference margin simultaneous distribution type primary system protection method for example, the method disclosed in Non-Patent Document 3 (for example, the calculation method of the maximum allowable EIRP) can be mentioned.
  • the interference margin sequential allocation type primary system protection method for example, the sequential allocation process (IAP: Iterative Allocation Process) disclosed in Non-Patent Document 6 can be mentioned.
  • the “interference margin simultaneous distribution type” primary system protection method and the “interference margin sequential distribution type” primary system protection method will be described.
  • the description of the base station device 40 which appears in the following description, can be replaced with a word indicating another communication device having a wireless communication function.
  • FIG. 16 is an explanatory diagram for explaining a primary system protection method of the interference margin simultaneous distribution type.
  • the communication control device 60 calculates the maximum allowable transmission power of the secondary system using "a value uniquely obtained by the positional relationship between the protection reference point of the primary system and the secondary system" as a reference value.
  • the allowable interference threshold of the primary system is I accident .
  • This threshold value may be an actual threshold value, or may be a value set by considering a certain margin (for example, Protection Ratio) from the actual threshold value in consideration of calculation error and interference fluctuation.
  • interference control means determining the transmission power (EIRP, Conducted Power + Antenna gain, etc.) of the wireless device so as not to exceed the allowable interference threshold. At this time, if there are many base station devices 40 and each of them does not exceed the allowable interference threshold value, the interference power received in the communication system 1 (primary system) may exceed the allowable interference threshold value. .. Therefore, the interference margin (allowable interference amount) is "allocated” based on the number of base station devices 40 registered in the communication control device 60.
  • the total number of base station devices 40 is 5. Therefore, the permissible interference amount of I accident / 5 is allocated to each individual. Since the base station device 40 cannot recognize this distribution amount by itself, it recognizes it through the communication control device or acquires the transmission power determined based on this distribution amount. Since the communication control device cannot recognize the number of wireless devices managed by other communication control devices, the total number can be recognized and the allowable interference amount can be distributed by exchanging information with each other. Become. For example, the allowable interference quantity of 3I the accept / 5 is assigned by the communication control unit 60 within 3.
  • the interference margin not used by the base station apparatus 40 can be a residual interference margin.
  • FIG. 17 is a diagram showing how a residual interference margin is generated. 17, the total interference amount set to each of the two communication control unit 60 (communication control unit 60 3, 60 4) are shown. Further, in FIG. 17, two interference amount given to predetermined protection point of the plurality of base stations 40 (base station 40 7 to 40 11) the communication system 1 under control of the communication control device 60 (Interference Amount) is shown. The amount of interference obtained by subtracting the amount of interference by the base station device 40 from the total amount of interference of each of the two communication control devices 60 is the residual interference margin. In the following description, the surplus interference amount is referred to as a surplus interference margin.
  • the residual interference margin can be rephrased as the amount of residual interference.
  • each of the plurality of base station devices 40 stores desired transmission power information in the storage unit 42.
  • the desired transmission power information is information on the transmission power required by the base station device 40 from the communication control device 60 as information on the transmission power required for transmitting radio waves.
  • the base station devices 40 12 to 40 15 each hold desired transmission power information A to D.
  • the communication control device 60 allocates interference amounts A to D to the base station devices 40 12 to 40 15 , respectively, based on the desired transmission power information A to D.
  • the interference amounts A to D are distributed based on the distribution priority, and details of this point will be described later in ⁇ 6> shown below.
  • the registration procedure is a procedure for registering device parameters related to the base station device 40 in the communication control device 60.
  • the base station apparatus 40 or one or more communication systems including the plurality of base station apparatus 40 initiate the registration procedure by notifying the communication control apparatus 60 of a registration request including device parameters.
  • the registration request may be transmitted by a communication system (for example, a proxy system such as an intermediate device 50) representing (representing) one or a plurality of base station devices 40.
  • the communication system representing (representing) a plurality of base station devices 40 is the intermediate device 50, but the word of the intermediate device 50 appearing in the following description is another communication such as a proxy system. It can be replaced with a word indicating a communication system that represents (represents) the device.
  • the description of the base station device 40 can also be replaced with a word indicating another communication device having a wireless communication function.
  • the device parameter refers to, for example, the information shown below.
  • Communication device user information Communication device-specific information Location information Antenna information Wireless interface information Legal information Installer information
  • Communication device group information Other information may be treated as device parameters when implementing.
  • Communication device user information is information related to the user of the communication device. For example, a user ID, an account name, a user name, a user contact, a call sign, and the like can be assumed.
  • the user ID and account name may be independently generated by the communication device user, or may be issued in advance by the communication control device. It is desirable to use the callsign issued by NRA as the callsign.
  • Communication device user information can be used, for example, for the purpose of interference resolution.
  • the communication control device determines that the frequency usage is stopped while the communication device is in use and gives an instruction, but the frequency usage of the frequency continues to be used.
  • the notification request is notified, it is possible to suspect a malfunction of the communication device and contact the user contact information included in the communication device user information to request the behavior confirmation of the communication device.
  • the communication device user information can be used for communication.
  • Information specific to the communication device includes information that can identify the communication device, information on the product of the communication device, information on the hardware of the communication device, information on the software of the communication device, and the like. For example, a serial number, a product model number, etc. may be included.
  • the communication device is, for example, the base station device 40.
  • Information that can identify the communication device refers to communication device user information, communication device serial number (serial number), communication device ID, and the like.
  • a user ID, a call sign, or the like can be assumed as the communication device user information.
  • the user ID may be independently generated by the communication device user, or may be issued in advance by the communication control device 60.
  • the communication device ID may be, for example, uniquely assigned by the communication device user.
  • the communication device product information may include, for example, an authentication ID, a product model number, a manufacturer information, and the like.
  • the certification ID is an ID given by a certification body in each country / region, such as an FCC ID, CE number, and technical standard conformity certification (technical suitability).
  • An ID issued by an industry group or the like based on its own authentication program may be included.
  • Information specific to communication devices represented by these can be used, for example, for white list / blacklist applications.
  • the communication control device gives an instruction to stop using the frequency in the frequency use notification procedure described in ⁇ 5-4> described later. It is possible to take actions such as not canceling the suspension of use until the blacklist is lifted. Further, for example, when the communication device included in the blacklist performs the registration procedure, the communication control device can reject the registration. Further, for example, the communication device corresponding to the information included in the blacklist is not considered in the interference calculation described in the present specification, or only the communication device corresponding to the information included in the white list is considered in the interference calculation. It is also possible to perform such an operation.
  • Information on the hardware of the communication device may include, for example, transmission power class information, manufacturer information, and the like.
  • transmission power class information for example, in FCC C.F.R Part 96, two types of classes, Category A and Category B, are defined, and any information may be included.
  • some classes of eNodeB and gNodeB are specified in 3GPP TS 36.104 and TS 38.104, and these can also be used.
  • the transmission power class information can be used, for example, in the purpose of interference calculation. Interference calculation can be performed using the maximum transmission power specified for each class as the transmission power of the communication device.
  • the information about the software of the communication device may include, for example, version information and a build number related to the execution program in which the processing necessary for interaction with the communication control device 60 is described.
  • software version information and a build number for operating as the base station apparatus 40 may also be included.
  • the information related to the position is typically information that can specify the geographical position of the communication device (for example, the base station device 40).
  • it is coordinate information acquired by a positioning function represented by GPS (Global Positioning System), Beido, QZSS (Quasi-Zenith Satellite System), Galileo and A-GPS (Assisted Global Positioning System).
  • GPS Global Positioning System
  • Beido Beido
  • QZSS Quadasi-Zenith Satellite System
  • Galileo Galileo
  • A-GPS Assisted Global Positioning System
  • it may contain information about latitude, longitude, altitude, and positioning error.
  • it may be location information registered in an information management device managed by NRA (National Regulatory Authority) or its consignment organization.
  • the coordinates may be the X-axis, Y-axis, and z-axis having a specific geographical position as the origin. Further, an identifier indicating outdoor / indoor can be given together with such coordinate information.
  • the information related to the position may be information indicating an area in which the communication device (for example, the base station device 40) is located.
  • information determined by the government such as a zip code and an address, may be used.
  • a region may be indicated by a set of three or more geographic coordinates. Information indicating these regions may be provided together with the above coordinate information.
  • the information indicating the floor of the building may be added to the information related to the position. For example, the number of floors, an identifier indicating ground / underground, and the like may be assigned. Further, for example, information indicating a further closed space indoors may be added, such as a room number and a room name in the building.
  • the above-mentioned positioning function is typically provided by a communication device (for example, a base station device 40).
  • a communication device for example, a base station device 40.
  • the positioning function may be used by the installer. In such a case, it is desirable that the position information measured by the installer is written in the base station apparatus 40.
  • the antenna information is typically information indicating the performance, configuration, and the like of the antenna included in the communication device (for example, the base station device 40). Typically, it may include information such as antenna installation height, tilt angle (Downtilt), horizontal orientation (Azimuth), aiming (Boresight), antenna peak gain, and antenna model.
  • the antenna information may include information about the beam that can be formed. For example, information such as beam width, beam pattern, and analog / digital beamforming capabilities can be included.
  • the antenna information may include information on the performance and configuration of MIMO (Multiple Input Multiple Output) communication. For example, information such as the number of antenna elements and the maximum number of spatial streams may be included.
  • codebook information to be used unitary matrix obtained by weight matrix information (SVD (Singular Value Decomposition), EVD (Eigen Value Decomposition), BD (Block Diagonalization), etc., ZF (Zero-Forcing) matrix, MMSE (Minimum Mean Square Error) matrix) etc. can also be included.
  • MLD Maximum Likelihood Detection
  • MLD Maximum Likelihood Detection
  • the above antenna information may include ZoD (Zenith of Direction, Departure).
  • the ZoD is a kind of radio wave arrival angle.
  • the ZoD may be estimated by another communication device (for example, another base station device 40) from the radio waves radiated from the antenna of the communication device (for example, the base station device 40).
  • the communication device may be a terminal device that operates as a base station or an access point, a device that performs D2D communication, a moving relay base station, or the like.
  • ZoD can be estimated by a radio wave arrival direction estimation technique such as MUSIC (Multiple Signal Classification) or ESPRIT (Estimation of Signal Propagation via Rotation Invariance Techniques). It can be used by the communication control device 60 as measurement information.
  • MUSIC Multiple Signal Classification
  • ESPRIT Estimatiation of Signal Propagation via Rotation Invariance Techniques
  • the wireless interface information is typically information indicating a wireless interface technology included in a communication device (for example, a base station device 40).
  • a wireless interface technology included in a communication device (for example, a base station device 40).
  • identifier information indicating standard technologies such as compliant derivative technologies, MAN (Metropolitan Area Network) such as WiMAX and WiMAX2 +, and LTE 802.11 series wireless LAN.
  • the radio interface information may be identifier information indicating a proprietary radio technology. In addition, the version number or release number of the technical specification that defines these may also be assigned.
  • the wireless interface information may also include frequency band information supported by the communication device (for example, the base station device 40).
  • frequency band information supported by the communication device (for example, the base station device 40).
  • it can be represented by one or more combinations of upper limit frequencies and lower limit frequencies, one or more combinations of center frequencies and bandwidths, or one or more 3GPP Operating Band numbers.
  • the frequency band information supported by the communication device may also include capability information of band expansion technologies such as carrier aggregation (CA) and channel bonding (Channel Bonding).
  • band information that can be combined may be included.
  • carrier aggregation may include information on the band to be used as a primary component carrier (PCC: Primary Component Carrier) or a secondary component carrier (SCC: Secondary Component Carrier). It may also include the number of CCs that can be aggregated at the same time.
  • PCC Primary Component Carrier
  • SCC Secondary Component Carrier
  • the frequency band information supported by the communication device may further include combination information of the frequency bands supported by Dual Connectivity and Multi Connectivity. At the same time, information on other communication devices that cooperate with Dual Connectivity and Multi Connectivity may also be provided together.
  • information indicating the radio wave usage priority such as PAL and GAA may be included.
  • the wireless interface information may also include modulation method information supported by the communication device (for example, the base station device 40).
  • modulation method information supported by the communication device (for example, the base station device 40).
  • FSK Frequency Shift Keying
  • n-value PSK Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • n 4, 16, 64.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Scramble OFDM Scalable OFDM
  • DFT-s-OFDM DFT spread OFDM
  • GFDM Generalized Frequency Division Multiplexing
  • FBMC Fanter Information indicating a secondary modulation method such as Bank Multi Carrier
  • the wireless interface information may also include information on the error correction code.
  • it may include capabilities such as a Turbo code, an LDPC (Low Density Parity Check) code, a Polar code, and an erasure correction code, and code rate information to be applied.
  • LDPC Low Density Parity Check
  • Polar code a Polar code
  • erasure correction code a code rate information to be applied.
  • MCS Modulation and Coding Scheme
  • the wireless interface information may include information indicating a function peculiar to each wireless technical specification supported by the communication device (for example, the base station device 40).
  • TM Transmission Mode
  • LTE Long Term Evolution
  • those having two or more modes for a specific function can be included in the wireless interface information as in the above TM.
  • information indicating this may be included.
  • the wireless interface information may also include wireless access method (RAT: Radio Access Technology) information supported by the communication device (for example, the base station device 40).
  • RAT Radio Access Technology
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • OMA Orthogonal Multiple Access
  • PDMA Power Division Multiple Access, Superposition Coding (SPC)
  • SIC Successive Interference Canceller
  • CDMA Code Division Multiple Access
  • SMAC Session Code Multiple Access
  • IDMA Interleaver Division Multiple Access
  • SDMA Spatial Division Multiple
  • Opportunistic Access such as Non-Orthogonal Multiple Access (NOMA), CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance) and CSMA / CD (Carrier Sense Multiple Access / Collision Detection) ) Etc.
  • NOMA Non-Orthogonal Multiple Access
  • CSMA / CA Carrier Sense Multiple Access / Collision Avoidance
  • CSMA / CD Carrier Sense Multiple Access / Collision Detection
  • the wireless interface information includes information indicating an opportunistic connection method
  • information indicating details of the access method may be further included.
  • information indicating whether it is FBE (Frame Based Equipment) or LBE (Load Based Equipment) defined in ETSI EN 301 598 may be included.
  • the wireless interface information may further include LBE-specific information such as a priority class defined by ETSI EN 301 598.
  • the wireless interface information may also include information about the duplex mode supported by the communication device (eg, base station device 40).
  • the communication device eg, base station device 40
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • FD Frequel Duplex
  • TDD Frame Configuration information used / supported by the base station device 40 can be added. Further, information on the duplex mode may be included for each frequency band indicated by the above frequency band information.
  • information on the interference power detection level may be included.
  • the wireless interface information may also include information about the transmission diversity method supported by the communication device (eg, base station device 40). For example, spatiotemporal coding (STC: Space Time Coding) may be included.
  • STC Space Time Coding
  • the wireless interface information may also include guard band information.
  • it may contain information about the standard guard band size.
  • information about the guard band size desired by the base station apparatus 40 may be included.
  • the wireless interface information may be provided for each frequency band regardless of the above-described aspect.
  • Legal information is typically information about regulations that a communication device (for example, base station device 40) must comply with, which is set by a radio administration agency of each country / region or an equivalent agency, or a communication device (communication device). For example, it is the authentication information acquired by the base station device 40).
  • the information regarding the above regulation may typically include, for example, information on the upper limit of out-of-band radiation, information on the blocking characteristics of the receiver, and the like.
  • the above-mentioned certification information includes, for example, type approval information (FCC ID, technical standard conformity certification, etc.), legal and regulatory information (for example, FCC rule number, ETSI Harmonized Standard number, etc.) that is the basis for obtaining certification. ) Etc. may be included.
  • the information specified in the wireless interface technology standard may be substituted.
  • the upper limit value information of out-of-band radiation may be derived and used by using the adjacent channel leakage ratio (ACLR: Adjacent Channel Leakage Ratio).
  • ACLR Adjacent Channel Leakage Ratio
  • ACLR itself may be used.
  • adjacent channel selectivity ACS: Adjacent Channel Selectivity
  • ACIR Adjacent Channel Interference Ratio
  • ACIR Adjacent Channel Interference Ratio
  • ACIR Adjacent Channel Interference Ratio
  • the installer information may include information that can identify the person (installer) who installed the communication device (for example, the base station device 40), information unique to the installer, and the like. Typically, it may include information about an individual who is responsible for the location information of the communication device, which is called CPI (Certified Professional Installer) defined in Non-Patent Document 2. As information, CPIR-ID (Certified Professional Installer Registration ID) and CPI name are disclosed. Further, as unique information associated with the CPI, for example, a contact address (Mailing / Contact address), an e-mail address, a telephone number, a PKI (Public Key Identifier), and the like are disclosed. Not limited to these, other information about the installer may be included as needed.
  • CPI Cosmetic Professional Installer
  • CPIR-ID Certified Professional Installer Registration ID
  • unique information associated with the CPI for example, a contact address (Mailing / Contact address), an e-mail address, a telephone number, a PKI (Public Key Identifier), and the
  • the communication device group information may include information about the communication device group to which the communication device belongs. Specifically, for example, it may include information relating to the same or equivalent type of group as disclosed in WINNF-SSC-0010. Further, for example, when a telecommunications carrier manages communication devices in group units according to its own operation policy, the group information may be included.
  • the information listed up to this point may be inferred from other information provided by the communication control device without being provided by the communication device to the communication control device.
  • the guard band information can be inferred from the wireless interface specification information. If the wireless interface used by the communication device is E-UTRA or 5G NR, it can be estimated based on the transmission bandwidth specifications described in TS36.104 and the table described in TS38.104.
  • 19 to 24 are diagrams showing the specifications of the transmission bandwidth.
  • 19 and 20 are diagrams showing the specifications of the transmission bandwidth in the E-UTRA
  • FIGS. 21, 22, 23, and 24 are diagrams showing the specifications of the transmission bandwidth in the NR.
  • the communication device or an intermediate device acting on behalf of the communication device to provide the information listed so far to the communication control device.
  • Providing a communication device or an intermediate device acting on behalf of a plurality of communication devices to a communication control device is merely one means of providing information.
  • the information listed so far means that the communication control device can be required to normally complete this procedure, and the means for providing the information does not matter.
  • the transmission bandwidth of this embodiment is not limited to the examples shown in FIGS. 19 to 24.
  • FIG. 25 is a sequence diagram for explaining the registration procedure.
  • the base station device 40 or one or more communication systems including the plurality of base station devices 40 generate a registration request message using the device parameters (step S11) and notify the communication control device 60 (step S12).
  • the intermediate device 50 may generate and / or notify the message.
  • the registration request may be processed to prevent tampering by using this information.
  • a part or all of the information included in the registration request may be encrypted.
  • a process in which a public key peculiar to the installer is shared in advance between the installer and the communication control device 60, and the installer encrypts the information using the private key. can be implemented.
  • the encryption target include security-sensitive information such as location information.
  • the installer may directly write in the communication control device 60.
  • the communication control device 60 After receiving the registration request, the communication control device 60 executes the registration process of the base station device 40 (step S13), and returns a registration response according to the processing result (step S14). If there is no shortage or abnormality of the information required for registration, the communication control device 60 records the information in the storage unit 42 and notifies the completion of the normal operation. Otherwise, the communication control device 60 notifies the registration failure. When the registration is completed normally, the communication control device 60 may assign an ID to each communication device and notify the ID information by enclosing it at the time of response. If registration fails, typically one or more communication systems, including base station equipment 40 or multiple base station equipment 40, or operators (eg, mobile operators or individuals) or installers thereof. , Correct the registration request, etc., and try the registration procedure until it is completed normally.
  • the registration procedure may be executed multiple times. Specifically, the registration procedure can be re-executed when the position information is changed beyond a predetermined standard due to, for example, movement / accuracy improvement.
  • Predetermined standards are typically set by the legal system. For example, in 47 C.F.R Part 15, Mode II personal / portable white space device is obliged to access the database again when the location information changes by 100 meters or more.
  • the available frequency information inquiry procedure is a procedure in which the base station device 40 or the intermediate device 50 inquires the communication control device 60 for information on available frequencies. Typically, the base station device 40 or the intermediate device 50 notifies the communication control device 60 of an inquiry request including information that can identify the base station device 40 (or the base station device 40 under the intermediate device 50). This will start the procedure.
  • base station device 40 can be replaced with a word indicating another communication device having a wireless communication function.
  • intermediate device 50 can be replaced with a word indicating a communication system representing (representing) another communication device such as a proxy system.
  • the available frequency information is typically such that the base station device 40 (or the base station device 40 under the intermediate device 50) does not cause fatal interference to the primary system and is safely used. This is information indicating the frequencies that can be used next.
  • Example 1 The available frequency information is determined based on, for example, a secondary use prohibited area called an exclusion zone. Specifically, for example, when the base station apparatus 40 is installed in the secondary use prohibited area provided for the purpose of protecting the primary system using the frequency channel F1, the base station apparatus 40 is subjected to. , F1 frequency channel is not notified as an available channel.
  • the available frequency information can also be determined, for example, by the degree of interference with the primary system. Specifically, for example, even outside the secondary use prohibited area, if it is determined that the primary system will be fatally interfered with, the frequency channel may not be notified as an available channel. .. An area where such a judgment may be necessary is also called a neighborhood area. An example of a specific calculation method relating to the determination in the vicinity area is described in "Details of available frequency evaluation processing" described later.
  • Example 3 there may be a frequency channel in which the available frequency information is not notified as available due to conditions other than the primary system protection requirements described in Examples 1 and 2.
  • the base station apparatus 40 does not notify the frequency channel in use as an available channel.
  • the available frequency information set in consideration of interference with other communication devices may be set as, for example, "recommended frequency information for use” and provided together with the available frequency information. That is, it is desirable that the "recommended frequency information for use" be a subset of the available frequency information.
  • the communication control device 60 may transmit information on frequencies at which interference does not occur between the base station devices 40 as estimated frequency information, in addition to the usable frequencies referred to in Examples 1 and 2.
  • the available frequency information referred to in Examples 1 and 2 may be, for example, information on an available channel (Available Channel) shown in Non-Patent Document 13.
  • the recommended frequency information may be the information of the recommended channel (Recommended Channel) shown in Non-Patent Document 13.
  • the recommended frequency information can be regarded as a kind of available frequency.
  • Example 4 Even in the cases described in Examples 2 and 3, it is possible to notify the same frequency as the primary system or the nearby base station apparatus 40 as an available channel. In such cases, the maximum permissible transmit power information is typically included in the available frequency information.
  • the maximum allowable transmit power is typically expressed as Equivalent Isotropic Radiated Power (EIRP). It is not necessarily limited to this, and may be provided, for example, in a combination of antenna power and antenna gain. Further, as the antenna gain, an allowable peak gain may be set for each spatial direction.
  • EIRP Equivalent Isotropic Radiated Power
  • the information that can identify the base station device 40 for example, information unique to the communication device registered at the time of the registration procedure, ID information described in the above (details of the registration process), and the like can be assumed.
  • the inquiry request may also include inquiry requirement information.
  • the inquiry requirement information may include, for example, information indicating a frequency band for which it is desired to know whether or not it is available.
  • transmission power information may be included.
  • the base station device 40 or the intermediate device 50 may include the transmission power information, for example, when it is desired to know only the frequency information in which the desired transmission power can be used. Inquiry requirement information does not necessarily have to be included.
  • the inquiry request may also include a measurement report.
  • the measurement report includes the results of the measurement performed by the base station device 40 and / or the terminal device 30. For example, it can include processed information as well as raw data. For example, standardized metrics such as RSRP (Reference Signal Received Power), RSSI (Reference Signal Strength Indicator), and RSRQ (Reference Signal Received Quality) can be used.
  • RSRP Reference Signal Received Power
  • RSSI Reference Signal Strength Indicator
  • RSRQ Reference Signal Received Quality
  • FIG. 26 is a sequence diagram for explaining an available frequency information inquiry procedure.
  • the base station device 40 or the intermediate device 50 generates an inquiry request including information that can identify the base station device 40 (or the base station device 40 under the intermediate device 50) (step S21), and sends the communication control device 60 to the communication control device 60. Notify (step S22).
  • the communication control device 60 After receiving the inquiry request, the communication control device 60 evaluates the available frequency based on the inquiry requirement information (step S23). For example, as described in Examples 1 to 3 described above, it is possible to evaluate the available frequency in consideration of the existence of the primary system, its secondary use prohibited area, and the nearby base station device 40.
  • the communication control device 60 may derive the maximum permissible transmission power information.
  • the distance between P MaxTx (dBm) is the maximum permitted transmission power
  • I Th (dBm) is acceptable interference power
  • d is the reference position (Reference Point) and the base station apparatus 40
  • PL (d) (dB ) Is the propagation loss at the distance d.
  • the antenna gain in the transmitter / receiver is not explicitly shown in this formula, it can be used as a reference point for the maximum allowable transmission power (EIRP, Conducted power, etc.) and reception power (antenna input point, antenna output point, etc.). May be included accordingly.
  • a safety margin or the like for compensating for fluctuations due to fading may be included.
  • feeder loss and the like may be considered as necessary.
  • the above mathematical formula is described based on the assumption that the single base station device 40 is the interference source. For example, when it is necessary to consider cumulative interference from a plurality of base station devices 40 at the same time, a correction value may be added. Specifically, for example, the correction value can be determined based on the interference margin method of three types (Fixed / Predetermined, Flexible, Flexible Minimized) disclosed in Non-Patent Document 3 (ECC Report 186).
  • Method 1 when the transmission power information is included in the inquiry requirement information, the available frequency may be evaluated by a method different from the above method. It is possible. Specifically, for example, when it is assumed that the desired transmission power indicated by the transmission power information is used, the estimated interference amount is less than the allowable interference power in the primary system or its protection zone. Is determined that the frequency channel is available, and is notified to the base station device 40 (or intermediate device 50).
  • Evaluation of available frequencies does not necessarily have to be performed after receiving an inquiry request.
  • the communication control device 60 may independently execute the registration procedure without inquiring.
  • the communication control device 60 may create the REM or the look-up table exemplified in the method 2 or an information table similar to them.
  • the radio wave usage priority such as PAL and GAA may be evaluated.
  • the registered device parameter or the inquiry requirement includes information on the radio wave usage priority, it may be determined and notified whether the frequency can be used based on the priority.
  • the information regarding the base station apparatus 40 for example, PAL
  • Non-Patent Document 6 WINNF-TS-0112
  • Cluster List is registered in the communication control device 60, and evaluation may be performed based on the information.
  • the communication control device 60 After the evaluation of the available frequency is completed, the communication control device 60 notifies the base station device 40 (or the intermediate device 50) of the evaluation result (step S24).
  • the base station device 40 may select desired communication parameters by using the evaluation result received from the communication control device 60.
  • the frequency use permission procedure is a procedure for the base station device 40 to receive a secondary frequency use permission from the communication control device 60.
  • one or more communication systems including the base station apparatus 40 or a plurality of base station apparatus 40 communicate a frequency usage permission request containing information that can identify the base station apparatus 40.
  • the procedure is started by notifying the control device 60. This notification may be made by the intermediate device 50. Note that "after the normal completion of the registration procedure" also means that it is not always necessary to carry out the available frequency information inquiry procedure.
  • base station device 40 can be replaced with a word indicating another communication device having a wireless communication function.
  • intermediate device 50 can be replaced with a word indicating a communication system representing (representing) another communication device such as a proxy system.
  • the designation method is a request method in which the base station device 40 specifies at least the frequency band channel to be used and the maximum transmission power as desired communication parameters, and asks the communication control device 60 for permission to operate based on the desired communication parameters. It is not always necessary to be limited to these parameters, and parameters specific to the wireless interface technology (modulation method, duplex mode, etc.) may be specified. In addition, information indicating radio wave usage priority such as PAL and GAA may be included.
  • the flexible method is a request method in which the base station device 40 specifies only the requirements related to the communication parameters, and requests the communication control device 60 to specify the communication parameters that can be permitted to be used secondarily while satisfying the requirements.
  • Requirements for communication parameters may include bandwidth or desired maximum transmit power or desired minimum transmit power. It is not always necessary to be limited to these parameters, and parameters specific to the wireless interface technology (modulation method, duplex mode, etc.) may be specified. Specifically, for example, one or more of TDD Frame Configuration may be selected in advance and notified.
  • the Either method may include a measurement report.
  • the measurement report includes the results of the measurement performed by the base station device 40 and / or the terminal device 30. For example, it can include processed information as well as raw data. For example, standardized metrics such as RSRP (Reference Signal Received Power), RSSI (Reference Signal Strength Indicator), and RSRQ (Reference Signal Received Quality) can be used.
  • RSRP Reference Signal Received Power
  • RSSI Reference Signal Strength Indicator
  • RSRQ Reference Signal Received Quality
  • the method information used by the base station device 40 may be registered in the communication control device 60 at the time of the registration procedure described in ⁇ 5-1>.
  • FIG. 27 is a sequence diagram for explaining the frequency use permission procedure.
  • the base station device 40 or one or more communication systems including the plurality of base station devices 40 generate a frequency use permission request including information that can identify the base station device 40 (step S31), and notify the communication control device 60. (Step S32).
  • the intermediate device 50 may generate and / or notify the request.
  • the communication control device 60 After acquiring the frequency use permission request, the communication control device 60 performs the frequency use permission process based on the frequency use permission request method (step S33). For example, the communication control device 60 has ⁇ 5-2. By using the method described in the available frequency information inquiry procedure>, it is possible to perform the frequency use permission process in consideration of the existence of the primary system, its secondary use prohibited area, and the nearby base station device 40.
  • the communication control device 60 When the flexible method is used, the communication control device 60 is set to ⁇ 5-2.
  • the maximum allowable transmission power information may be derived by using the method described in "Details of the available frequency evaluation process" in the Available Frequency Information Inquiry Procedure>.
  • the communication control device 60 provides permissible interference power information in the primary system or its protection zone, reference point information on the interference power level suffered by the primary system, and base station device 40. Calculate the maximum allowable transmission power using the registration information and the propagation loss estimation model. For example, the communication control device 60 calculates the maximum allowable transmission power by the following formula.
  • P MaxTx (dBm) I Th (dBm) + PL (d) (dB)
  • the distance between P MaxTx (dBm) is the maximum permitted transmission power
  • I Th (dBm) is acceptable interference power
  • d is the reference position (Reference Point) and the base station apparatus 40
  • PL (d) (dB ) Is the propagation loss at the distance d.
  • the antenna gain in the transmitter / receiver is not explicitly shown in this formula, it can be used as a reference point for the maximum allowable transmission power (EIRP, Conducted power, etc.) and reception power (antenna input point, antenna output point, etc.).
  • the mathematical formula may be modified accordingly.
  • a safety margin or the like for compensating for fluctuations due to fading may be included.
  • feeder loss and the like may be considered as necessary.
  • the above mathematical formula is described based on the assumption that the single base station device 40 is the interference source. For example, when it is necessary to consider cumulative interference from a plurality of base station devices 40 at the same time, a correction value may be added. Specifically, for example, the correction value can be determined based on the three types (Fixed / Predetermined, Flexible, Flexible Minimized) disclosed in Non-Patent Document 3 (ECC Report 186).
  • Non-Patent Document 6 WINNF-TS-0112
  • a propagation loss model such as eHATA (Extended Hata) or ITM (Irregular Terrain Model) is adopted for each application.
  • the propagation loss model need not be limited to these.
  • the propagation loss estimation model requires information on the radio wave propagation path depending on the model. This may include, for example, information indicating the inside and outside of the line of sight (LOS / NLOS), topographical information (undulations, sea level, etc.), environmental information (Urban, Suburban, Rural, Open Sky, etc.) and the like. When using the propagation loss estimation model, this information may be inferred from the registration information of the communication device or the information of the primary system. Alternatively, if there are pre-specified parameters, it is desirable to use the pre-specified parameters for them.
  • the model is not specified for the specified purpose, it may be used properly as needed.
  • the coverage of the base station device 40 is estimated by using a model in which the loss is calculated to be small, such as a free space loss model. When doing so, it is possible to use a model in which the loss is calculated to be large.
  • the designated method when used, as an example, it is possible to perform frequency usage permission processing by evaluating the risk of interference. Specifically, for example, when it is assumed that the desired transmission power indicated by the transmission power information is used, the estimated interference amount is less than the allowable interference power in the primary system or its protection zone. Is determined that the use of the frequency channel can be permitted, and the base station device 40 (or the intermediate device 50) is notified.
  • the radio wave usage priority such as PAL and GAA may be evaluated.
  • the registered device parameter or the inquiry requirement includes information on the radio wave usage priority, it may be determined and notified whether the frequency can be used based on the priority.
  • the information regarding the base station apparatus 40 for example, PAL
  • Non-Patent Document 6 WINNF-TS-0112
  • Cluster List is registered in the communication control device 60, and evaluation may be performed based on the information.
  • the frequency usage permission process does not necessarily have to be performed when the request is received.
  • the communication control device 60 may independently carry out the operation without requesting the frequency use permission.
  • the frequency use permission determination process may be performed at regular intervals. In such a case, ⁇ 5-2. REM and look-up table illustrated in Method 2 of Available frequency information inquiry procedure> An information table similar to them may be created. That is, the communication control device 60 can quickly return a response after receiving the frequency use permission request.
  • the communication control device 60 After the frequency usage permission process is completed, the communication control device 60 notifies the base station device 40 of the determination result (step S34).
  • the frequency usage notification is a procedure in which the base station device 40 or the intermediate device 50 notifies the communication control device 60 of the frequency usage based on the communication parameters permitted to be used in the frequency usage permission procedure. .. This is also called a heartbeat.
  • the base station apparatus 40 or the intermediate apparatus 50 initiates the procedure by notifying the communication control apparatus 60 of a notification message including information that can identify the base station apparatus 40.
  • base station device 40 can be replaced with a word indicating another communication device having a wireless communication function.
  • intermediate device 50 can be replaced with a word indicating a communication system representing (representing) another communication device such as a proxy system.
  • this procedure be carried out periodically until the use of the frequency is rejected by the communication control device 60. If this procedure is normally completed, the base station apparatus 40 may start or continue radio wave transmission. For example, if the Grant status was Granted, the success of this procedure will shift the Grant status to Enhanced. Also, if the grant status is Enhanced, the grant status shifts to Granted or Idol due to the failure of this procedure.
  • the grant is an authorization for radio wave transmission given to the base station device 40 (for example, CBSD) by the communication control device 60 (for example, SAS). Grant is described, for example, in Non-Patent Document 2.
  • Non-Patent Document 2 standardizes a signaling protocol between a database (SAS) and a base station (CBSD) for frequency sharing of 3550-3700 MHz in the United States.
  • SAS database
  • CBSD base station
  • the operating parameters recognized by Grant are defined by the maximum allowable EIRP (Equivalent Isotropic Radiated Power) and the frequency channel. That is, in order to transmit radio waves using a plurality of frequency channels, the CBSD needs to acquire a plurality of grants from the SAS.
  • EIRP Equivalent Isotropic Radiated Power
  • the grant is defined with a state that indicates the permitted state of radio wave transmission.
  • Examples of the state indicating the permitted state of radio wave transmission include a Granted state and an Enhanced state.
  • FIG. 28 is a state transition diagram showing a permitted state of radio wave transmission.
  • the Granted state indicates a state in which a grant is possessed but radio waves must not be transmitted
  • the Enhanced state indicates a state in which radio wave transmission is permitted based on an operation parameter value defined by the grant.
  • the frequency usage notification may be referred to as a heartbeat request or simply a heartbeat.
  • the transmission interval of a heartbeat request may be called a heartbeat interval (Heartbeat Interval).
  • Heartbeat Request or Heartbeat appearing in the following description can be appropriately replaced with another description indicating "request for starting or continuing radio wave transmission".
  • the heartbeat interval can be replaced with another description (for example, transmission interval) indicating the transmission interval of the frequency utilization notification.
  • FIG. 29 is a sequence diagram for explaining the frequency usage notification procedure.
  • the base station apparatus 40 or one or more communication systems including the plurality of base station apparatus 40 generate a notification message including information that can identify the base station apparatus 40 (step S41), and notify the communication control apparatus 60 (step S41). Step S42).
  • the intermediate device 50 may generate and / or notify the message.
  • the communication control device 60 may determine whether the start / continuation of radio wave transmission is permitted (step S43).
  • a determination method for example, confirmation of frequency usage information of the primary system can be mentioned. Specifically, it is decided to start / continue permission or refusal of radio wave transmission based on changes in the frequency used by the primary system, changes in the frequency usage status of the primary system (for example, onboard radar) whose radio wave usage is not steady, etc. It is possible to do.
  • the communication control device 60 notifies the base station device 40 (or the intermediate device 50) of the determination result (step S44).
  • the communication control device 60 may issue a communication parameter reconfiguration command to the base station device 40 (or the intermediate device 50).
  • a communication parameter reconfiguration command may be issued to the base station device 40 (or the intermediate device 50).
  • it can be implemented in the response of the frequency utilization notification.
  • recommended communication parameter information may be provided. It is desirable that the base station device 40 (or the intermediate device 50) provided with the recommended communication parameter information re-perform the frequency use permission procedure described in ⁇ 5-4> using the recommended communication parameter information.
  • the procedures do not necessarily have to be implemented individually, as described below.
  • the above two different procedures may be realized by substituting a third procedure having the roles of two different procedures.
  • the registration request and the available frequency information inquiry request may be notified integrally.
  • the frequency use permission procedure and the frequency use notification may be carried out integrally.
  • the combination is not limited to these, and may be three or more.
  • the above procedure may be carried out separately.
  • the expression "acquire information” or an expression equivalent thereto in the present embodiment does not necessarily mean that the information is acquired according to the above procedure.
  • the position information of the base station device 40 is used in the available frequency evaluation process, it is not always necessary to use the information acquired in the registration procedure, and the position information is included in the available frequency information inquiry procedure request. If it is included, it means that the position information may be used. In other words, it means that the described parameters may be included in other procedures within the scope described in this embodiment and within the technical feasibility.
  • the information that can be included in the response from the communication control device 60 to the base station device 40 (or the intermediate device 50) shown in the above procedure may be push-notified.
  • available frequency information, recommended communication parameter information, radio wave transmission continuation refusal notification, and the like may be push-notified.
  • the terminal device 30 and the communication device (Type B) are also set with acceptable communication parameters for the purpose of protecting the primary system.
  • the communication control device 60 cannot know the position information and the like of these devices in advance. Also, these devices are likely to have mobility. That is, the position information is dynamically updated. Depending on the legal system, if the location information changes by a certain amount or more, re-registration to the communication control device 60 may be obligatory.
  • Specific Operational Parameters are communication parameters defined as "parameters that can be used by a specific slave WSD (White Space Device)" in the non-patent document.
  • it is a communication parameter calculated using the device parameters of the slave WSD corresponding to the terminal.
  • WSDB White Space Database
  • FIG. 30 is a sequence diagram for explaining a procedure for exchanging management information.
  • the communication control device 60 2 are exchanging information with the communication control device 60 1.
  • the communication control unit for exchanging information is not limited to two communication control device 60 1 and the communication control unit 60 2.
  • the information related to the communication device includes at least the registration information and the communication parameter information of the communication device (for example, the base station device 40) operating under the permission of the communication control device 60. It may include registration information for communication devices that do not have the permitted communication parameters.
  • the communication device registration information is typically a device parameter of the base station device 40 registered in the communication control device 60 in the above registration procedure. Not all registered information need to be exchanged. For example, information that may correspond to personal information does not need to be exchanged. Further, when exchanging the communication device registration information, the encrypted / ambiguous information may be exchanged. For example, information converted into a binary value or information signed using an electronic signature mechanism may be exchanged.
  • the communication device communication parameter information is typically information related to the communication parameters currently used by the base station device 40. At a minimum, it is desirable to include information indicating the frequency used and the transmission power. Other communication parameters may be included.
  • Area information is typically information that indicates a predetermined geographical area. This information may include domain information of various attributes in various aspects.
  • the protected area information of the base station device 40 which is a high priority secondary system such as PPA (PAL Protection Area) disclosed in Non-Patent Document 6 (WINNF-TS-0112) may be included.
  • the area information in this case can be represented by, for example, a set of three or more geographic location coordinates.
  • a plurality of communication control devices 60 can refer to a common external database, it can be represented by an ID indicating the information.
  • information indicating the coverage of the base station apparatus 40 may be included.
  • the area information in this case can also be represented by, for example, a set of three or more geographic location coordinates. Further, for example, assuming a circle whose origin is the geographical position of the base station apparatus 40, it can also be expressed by information indicating the radius size. Further, for example, when a plurality of communication control devices 60 can refer to a common external database for recording area information, it can be represented by an ID indicating the information.
  • information on area divisions predetermined by the government or the like may be included. Specifically, for example, it is possible to indicate a certain area by indicating an address. Further, for example, a license area and the like can be expressed in the same manner.
  • the area information does not necessarily have to represent a flat area, and may represent a three-dimensional space.
  • it may be expressed using a spatial coordinate system.
  • information indicating a predetermined closed space such as the number of floors of the building, the floor or the room number may be used.
  • the protected system information is, for example, information on a wireless system treated as an Incumbent. Examples of situations in which this information must be exchanged include cross-border coordination. It is quite possible that different Incumbents exist in the same band between neighboring countries / regions. Moreover, even if the Incumbent operates the same wireless system, it is not always possible to obtain the Incumbent information of the adjacent country / region. In such a case, the protected system information can be exchanged between communication control devices of different countries / regions to which they belong, if necessary.
  • the protected system information may include information on the secondary licensee and the wireless system operated under the secondary license.
  • the secondary licensee is specifically a licensed lessee, and it is assumed that, for example, PAL is borrowed from the holder and the wireless system owned by the driver is operated.
  • the communication control device manages the rental independently, it is possible to exchange information between the other communication control device 60 and the secondary licensee and the wireless system operated under the secondary license for the purpose of protection.
  • This information can be exchanged between the communication control devices 60 regardless of the decision-making topology applied to the communication control device 60.
  • the ID designation method is a method of acquiring information corresponding to the above ID by using an ID assigned in advance for specifying the information managed by the communication control device 60.
  • ID Assume the communication control device 60 1 to the base station apparatus 40 that AAA is managing.
  • the communication control device 60 2 makes an information acquisition request to the communication control device 60 1 by designating the ID: AAA.
  • the communication control device 60 1 with an ID performs AAA information retrieval, and notifies the registration information of the base station apparatus 40 applicable, the communication parameter information in response.
  • period designation method information that satisfies a predetermined period can be exchanged by designating a specific period.
  • the predetermined conditions include, for example, whether or not the information is updated. For example, when the acquisition of communication device information in a specific period is specified in the request, the registration information of the base station device 40 newly registered in the period and the registration information of the base station device 40 whose communication parameters have been changed are communicated with each other. Parameter information can be notified in the response.
  • the predetermined condition is, for example, whether or not the communication control device 60 is recording. For example, when the acquisition of communication device information in a specific period is specified in the request, the registration information of the base station device 40 and the communication parameter information recorded by the communication control device 60 in the period can be notified in the response. Furthermore, the latest information during the period may be notified. Alternatively, the update history may be notified for each information.
  • a specific area is designated and information belonging to the area is exchanged. For example, when the acquisition of communication device information in a specific area is specified in the request, the registration information and communication parameter information of the base station device 40 installed in the area can be notified in the response.
  • the dump method is a method of providing all the information recorded by the communication control device 60. At least, it is desirable that the information about the base station apparatus 40 and the area information are provided by the dump method.
  • the push method can be realized by the HTTP POST method as an example.
  • the communication control device 60 may execute commands and / or requests from each other. Specifically, as an example, reconfiguration of the communication parameter of the base station apparatus 40 can be mentioned. For example, when the communication control device 60 1 is the base station apparatus 40 1 for managing, it is determined that receiving great interference from the base station apparatus 40 4 managed by the communication control device 60 2, the communication control device 60 1 There the communication control device 60 2, may be a communication parameter change request of a base station apparatus 40 4.
  • Another example is the reconfiguration of area information. For example, if the deficiencies found in the calculation of the coverage information and the protection area information related to the base station apparatus 40 4 managed by the communication control device 60 2, the communication control device 60 1 to the communication control unit 60 2, of the area information You may request a reconstruction. In addition to this, the area information reconstruction request may be made for various reasons.
  • the notification from the communication device (for example, the base station device 40, the intermediate device 50) to the communication control device 60 may be performed, for example, at the application layer. For example, it may be carried out using HTTP (Hyper Text Transfer Protocol). Signaling can be performed by describing the required parameters in the message body of HTTP according to a predetermined format. Further, when HTTP is used, the notification from the communication control device 60 to the communication device is also executed according to the HTTP response mechanism.
  • HTTP Hyper Text Transfer Protocol
  • the notification from the communication device (for example, the base station device 40, the intermediate device 50) to the terminal device 30 is, for example, radio resource control (RRC: Radio Resource Control) signaling, system information (SI: System Information), downlink control information. It may be carried out using at least a part of (DCI: Downlink Control Information). Further, it may be carried out using at least a part of at least one of the downlink physical channels (PDCCH: Physical Downlink Control Channel, PDSCH: Physical Downlink Shared Channel, PBCH: Physical Broadcast Channel).
  • RRC Radio Resource Control
  • SI System Information
  • DCI Downlink Control Information
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • Notification from the terminal device 30 to the communication device may be performed using, for example, a part of RRC (Radio Resource Control) signaling or uplink control information (UCI: Uplink Control Information). Further, it may be carried out using an uplink physical channel (PUCCH: Physical Uplink Control Channel, PUSCH: Physical Uplink Shared Channel, PRACH: Physical Random Access Channel).
  • RRC Radio Resource Control
  • UCI Uplink Control Information
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • signaling may be performed in a higher layer.
  • signaling when implemented at the application layer, signaling may be implemented by describing required parameters in a message body of HTTP according to a predetermined format.
  • terminal-to-terminal communication As communication between the terminal device 30 and another terminal device 30, terminal-to-terminal communication, D2D (Device-to-Device), and V2X (Vehicle-to-Everything) are assumed.
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the communication parameter may be notified / acquired / set in the form of being linked with the side link resource pool (Resource Pool) in the target frequency channel.
  • Resource pools are specific frequency resources (eg Resource Blocks, Component Carriers, etc.) and time resources (eg Radio Frames, Subframes, Slots, Minis).
  • a radio resource for sidelinks set by slots (Mini-slots, etc.).
  • a resource pool is set in a frequency channel to be shared with a frequency, it is set by at least one of RRC signaling, system information, or downlink control information from a communication device to a terminal device.
  • the communication parameters to be applied in the resource pool and the side link are also set by at least one of RRC signaling, system information, or downlink control information from the communication device to the terminal device.
  • the notification of the resource pool setting and the notification of the communication parameter to be used in the side link may be simultaneous or individual.
  • FIG. 31 is a diagram showing an example of a signaling procedure when communication between terminal devices 30 is assumed as communication of the secondary system. Hereinafter, the signaling procedure will be described with reference to FIG. 31.
  • the communication control device 60 calculates the communication parameters to be used by the communication device (base station device 40 or intermediate device 50) of the secondary system (step S61). Then, the communication control device 60 notifies the communication device of the secondary system of the communication parameter (step S62). At this time, the communication device to which the communication parameter is notified from the communication control device 60 may be the base station device 40 or the intermediate device 50. Further, the communication device to which the communication parameter is notified from the communication control device 60 may be the terminal device 30. In the following description, it is assumed that the communication device to which the communication parameter is notified from the communication control device 60 is the base station device 40.
  • the base station device 40 acquires communication parameters to be used by the communication device (terminal device 30, base station device 40, or intermediate device 50) of the secondary system from the communication control device 60 (step S63). Then, the base station apparatus 40 sets the communication parameters to be used by itself (step S64). Then, the base station device 40 notifies the communication device under its control of the communication parameters to be used by the communication device under its control (step S65).
  • the subordinate communication device may be a terminal device 30 or another base station device 40. In the following description, it is assumed that the subordinate communication device is the terminal device 30.
  • the terminal device 30 acquires communication parameters to be used by itself from the base station device 40 (steps S66a, S66b). Then, the terminal device 30 sets the communication parameters to be used by itself (steps S67a, S67b). Then, the terminal device 30 communicates with another communication device (for example, another terminal device 30) of the secondary system (steps S68a, S68b).
  • FIG. 32 is a sequence diagram showing an example of the operation related to the grant. Specifically, FIG. 32 shows ⁇ 5-3. Frequency usage permission procedure> and ⁇ 5-4. It is a sequence diagram which shows the operation of the communication system 2 corresponding to the procedure of frequency use notification>.
  • the operation flow shown in FIG. 32 is just an example, and changes variously depending on the state in which the base station device 40, the communication control device 60, the intermediate device 50, and the like are placed.
  • the periodic process is a process of executing information synchronization between the communication control devices 60 and calculations related to the protection of the primary system.
  • the periodic treatment is, for example, CPAS (Coordinated Periodic Activities among SASs) shown in Non-Patent Document 10 and Non-Patent Document 11.
  • periodic processing may also be referred to as periodic protection calculation.
  • the execution timing of the periodic process is, for example, 24 hours after the previous execution of the periodic process. Of course, the execution interval of the periodic processing is not limited to 24 hours.
  • FIG. 33 is a diagram showing a specific processing content of the periodic processing.
  • the communication control device 60 1 and the communication control unit 60 2 is performing information synchronization and the primary system protection calculations.
  • the number of communication control devices 60 that perform periodic processing may be more than two.
  • each of the plurality of communication control devices 60 executes periodic processing (step S71). First, each of the plurality of communication control devices 60 synchronizes information with the other communication control devices 60 (step S71a). Then, each of the plurality of communication control devices 60 performs the primary system protection calculation (step S71b, step S71c). At this time, the communication control device 60 may calculate an estimated value of the amount of interference that each communication node (for example, the base station device 40) can individually give to the primary system, a surplus interference margin, and the like.
  • the base station apparatus 40 or the intermediate device 50 sends a grant request (Grant Request) to the communication control apparatus 60 1 (step S72).
  • the base station device 40 or the intermediate device 50 imparts information on the usage mode of the frequency resource (radio wave resource) allocated as a result of the grant request to the grant request.
  • the base station device 40 or the intermediate device 50 adds information indicating the use and details of the grant to the grant request.
  • the communication control device 60 1 obtains a grant request to use mode information is added.
  • the communication control device 60 1 performs processing relating to frequency resources based on the usage mode information (i.e., process related grant) (step S73). For example, the communication control device 60 1, the use permission determination processing performed for allocating the available frequency to the base station device 40 based on the usage mode information.
  • the communication control device 60 After assigning frequency, the communication control device 60 1, the base station apparatus 40 or the intermediate apparatus 50, transmits a grant response (Grant Response).
  • the communication control device 60 reporting the success of the grant request (Approve shown in FIG. 32) as a grant response (step S74).
  • Acquisition unit acquiring unit 441 or the intermediate apparatus 50 of base station 40 541 acquires the grant response from the communication control device 60 1. Due to the success of the grant request, the grant state of the base station apparatus 40 shifts from Idol to Granted, as shown in FIG. The base station apparatus 40 sets each part based on the assigned grant.
  • the base station apparatus 40 or the intermediate apparatus 50 transmits, to the communication control device 60 1 heartbeat request (Heartbeat Request) (step S75). Then, the communication control device 60 1 obtains a heartbeat request sent. Then, the communication control device 60 1 sends a heartbeat response (Heartbeat Response).
  • the grant assigned to the base station apparatus 40 has not yet passed the periodic processing (for example, CPAS). Therefore, in the example of FIG. 32, the communication control device 60 1 can not approve the start of the radio transmission. Therefore, the communication control device 60 1 sends a heartbeat response wave transmission instruction to stop the (Suspension instruction) (step S75).
  • the base station apparatus 40 or the intermediate apparatus 50 continues to send heartbeat requests heartbeat interval notified from the communication control device 60 1.
  • the communication control device 60 for this heartbeat request, the communication control device 60 1, until the next periodic processing is completed, continues to transmit a stop instruction of the radio wave transmitted as a heartbeat response.
  • each of the plurality of communication control devices 60 including the communication control device 60 1 executes the periodic processing (step S77). For example, as shown in FIG. 33, each of the plurality of communication control devices 60 synchronizes information with the other communication control devices 60 (step S77a). Then, each of the plurality of communication control devices 60 performs the primary system protection calculation (step S77b, step S77c). This protection calculation is an example of the interference calculation of the present embodiment.
  • the base station apparatus 40 or the intermediate device 50 sends a heartbeat request to the communication control apparatus 60 1 (step S78). Then, the communication control device 60 1 obtains a heartbeat request sent. Then, the communication control device 60 1 sends a heartbeat response. At this time, grant allocated to the base station apparatus 40 than passes through the periodic processing, the communication control device 60 1 can authorize the start of the radio wave transmitted to the base station apparatus 40 which has transmitted the heartbeat request. Therefore, the communication control device 60 1, as the heartbeat response, and transmits the success of the heartbeat response a (Authorize shown in FIG. 32) (step S78). Due to the success of the heartbeat request, the grant state of the base station apparatus 40 shifts from Granted to Used, as shown in FIG. 28. The base station device 40 performs wireless communication by controlling the wireless communication unit 41 based on the assigned grant.
  • the state of the grant changes depending on the result of the heartbeat procedure.
  • Various purposes are defined in the heartbeat procedure, and one of them is an instruction to stop the radio wave of the base station device 40 when using the radio wave of an existing system (for example, a carrier-based radar) in the same band.
  • the communication control device 60 is, for example, all base station devices 40 that can interfere within a predetermined time (for example, within 300 seconds) when it is determined that an existing system such as a communication system 1 is using radio waves. It is obligatory to stop the radio wave of.
  • the communication control device 60 may give the radio wave stop instruction using the heartbeat response.
  • the process for stopping the use of the frequency resource in the base station device 40 executed by the communication control device 60 is referred to as "frequency resource use stop process” or “grant stop process”.
  • the base station apparatus 40 or the intermediate device 50 sends a heartbeat request to the communication control apparatus 60 1 (step S70). Then, the communication control device 60 1 obtains a heartbeat request sent. Then, the communication control device 60 1, the primary system such as communication system 1 determines whether or not doing Telecommunications. If the primary system is determined to be performed telecommunications according to a predetermined frequency resource, the communication control device 60 1 sends a heartbeat response wave transmission instruction to stop the (Suspension instruction) (step S71 ). The base station device 40 stops the transmission of radio waves related to a predetermined frequency resource. As a result, as shown in FIG. 28, the grant state of the base station apparatus 40 shifts from Enhanced to Idle (or Granted). Alternatively, the grant state of the base station apparatus 40 shifts from Granted to Idol as shown in FIG. 28.
  • the interference margin is tentatively and evenly distributed to all the grants corresponding to the second wireless system (or protection point or protection area) to be calculated for interference. That is, the total interference margin allowed by the first wireless system is tentatively distributed to each of the plurality of second wireless systems that are the objects of interference calculation.
  • the interference amount estimated based on the grant (estimated interference amount) is tentatively distributed in the process of (a). If it is less than (margin) (less than or equal to the interference margin), the estimated interference amount is used as the interference margin allocation amount. Grants whose amount of interference is less than the provisional distribution interference margin are referred to as Satisfied Grants, and grants whose amount of interference is greater than the provisional allocation interference margin are referred to as Unsatisfied Grants. Further, in the following, the difference between the provisional distribution interference margin and the interference margin distribution amount will be referred to as a surplus margin (surplus interference amount).
  • the total amount of surplus margin is equally divided and redistributed to one or more Unsatisfied grants. Then, when the estimated interference amount is less than the provisional allocation interference margin after reallocation due to redistribution, the estimated interference amount is used as the interference margin allocation amount.
  • An Unsatisfied grant whose estimated interference amount is less than the provisional allocation interference margin after reallocation due to the process (c) is treated as a Satisfied grant.
  • the process of (d) is performed when the unsatisfied grant remains even after the process of (c). Specifically, in the process of (d), when a surplus margin is generated in the process of (c), the total amount of the surplus margin is equally divided and redistributed to the Unsatisfied grant, and the process of (c) is repeated. If no surplus margin is generated in the process of (c) (the grant treated as the unsatisfied grant does not appear), the transmission power of the unsatisfied grant is reduced by 1 dB, and the process of (c) is repeated again. The process (d) is repeated until there are no more Unsatisfied grants.
  • the authorization status is typically information indicating a tier such as PAL / GAA. That is, the authorization status is information about the second wireless system, and more specifically, information about the CBRS hierarchy. In addition, even if it is the same tier, the same rank may exist in the tier.
  • PAL / GAA is used in this description, it is not limited to these in practice. This example is expected to be effective in the following situations or similar situations. ⁇ Protection of existing layers ⁇ Protection of specific PALs from other PALs and GAA
  • the communication control device 60 first acquires information (Authorization status) regarding the second wireless system, and calculates the allocation priority based on the acquired information. Then, the communication control device 60 groups a plurality of second wireless systems into a higher group and a lower group according to the distribution priority. The number of groups to be grouped may be three or more. Further, as described above, it is preferable that the communication control device 60 has a higher allocation priority as the second wireless system has a higher hierarchy (PAL) in the CBRS.
  • PAL hierarchy
  • the processes of (a) to (d), which are the conventional IAPs, are applied to the grants of the upper group. That is, the communication control device 60 allocates the same amount of interference margin as the amount of interference estimated based on the grant by applying the conventional IAP to each of the plurality of second radio systems included in the upper group. To do. Further, as will be described in detail later, the interference margin (surplus margin) that is surplus in the upper group is redistributed to the lower group. That is, in the communication control device 60, among the plurality of groups, the higher group having the higher distribution priority, the larger the interference margin to be distributed. As a result, the chances of the interference margin being allocated to the group with the higher allocation priority increase, and the opportunity to use radio waves can be increased.
  • the communication control device 60 checks the surplus margin after the process of (b-1) is completed. Then, when a surplus margin is generated, that is, the communication control device 60 allocates the same amount of interference margin as the amount of interference given to all of the plurality of second radio systems included in the upper group, and the surplus margin. If there is, allocate the surplus margin to the subgroups. That is, the communication control device 60 tentatively distributes the total interference amount (total interference amount allowed by the first wireless system) to each of the plurality of second wireless systems included in the upper group, and tentatively distributes the total interference amount. When the amount of interference (temporary interference amount) exceeds the amount of interference given, the surplus margin is redistributed to another second radio system included in the lower group.
  • the conventional IAP processes (a) to (d) are applied. That is, the communication control device 60 allocates the same amount of interference margin as the amount of interference estimated based on the grant by applying the conventional IAP to each of the plurality of second radio systems included in the lower group. To do. As a result, the existence of the surplus margin is synonymous with the existence of spatial free radio waves, so that the frequency utilization efficiency can be improved.
  • the reallocation destination is Unsatisfied Grant. That is, the communication control device 60 redistributes the surplus margin to the second wireless system in which the provisional interference amount is less than the interference amount. This allows more Unsatisfied grants to be treated as Satisfied grants.
  • the communication control device may notify the communication device of the cancellation of the grant allocation as a response to the frequency usage notification request (for example, a heartbeat response). That is, when the communication control device 60 has a second radio system in the lower group (or upper group) in which there is no surplus margin and the provisional interference amount is less than the interference amount, the second wireless system Revokes the approval (grant) for radio wave transmission.
  • the interference margin may remain even after the above processes (a-1) to (c-1) are performed. is there.
  • the IAP for one protection point becomes a Satisfied grant without lowering the transmission power, but the other. This is because it is assumed that the IAP regarding the protection point of the above will become a Satisfied Grant only after the transmission power is reduced. In such a case, from the viewpoint of interference protection, the transmission power is limited to the lower side, and as a result, an excess margin is generated on the grant side that became the Satisfied Grant without lowering the transmission power. Become.
  • FIG. 34 is a diagram when there are a plurality of protection points to be calculated for interference.
  • the base station device 40a which is the second wireless system, shows a case where two protection points P1 and P2 to be calculated for interference exist.
  • the protection point P1 shows a case where the interference margins are equally distributed to the two base station devices 40a and 40b
  • the protection point P2 shows a case where the interference margins are evenly distributed to the three base station devices 40a, 40c and 40d.
  • the interference margin allocated to one base station device is inevitably small. .. Therefore, in the base station apparatus 40a, the maximum transmission power based on the interference margin is lower at the protection point P2 than at the protection point P1.
  • the base station apparatus 40a is limited to the maximum transmission power of the protection point P1 to the maximum transmission power of the protection point P2.
  • the base station apparatus 40a since the base station apparatus 40a has the transmission power of Ptx-2 dB, a surplus margin that is not utilized on the protection point P1 side is generated.
  • ECC Report 186 is used to improve the processing as described in (a-2) to (f-2) below.
  • FIG. 35 is a diagram showing the relationship between the grouped upper group base station devices (grant) and the protection points.
  • FIG. 35 shows a total number of M base station devices included in the upper group and a total number of protection points P.
  • the communication control device 60 is based on the acquired information about the second wireless system. , Calculate the maximum permissible transmission power in each of the plurality of first wireless systems.
  • the maximum allowable transmission power P TempMax, m, p (dBm) calculated from the positional relationship between the installation position of the base station equipment that owns the grant and each protection point. Is calculated using the following equation (2). That is, the communication control device 60 acquires information on the positional relationship between the first wireless system and the second wireless system, and calculates the maximum allowable transmission power.
  • 10log (M) (dB) is Fixed Margin
  • Ith, p (dBm) is the total interference margin.
  • Ith, p (dBm) -10log (M) (dB) can be regarded as the tentatively distributed interference margin.
  • Ith, p (dBm) may be a predetermined threshold value.
  • SM (dB) is the shadowing margin
  • PLm-p (dB) is the propagation loss between the protection point and the base station. Note that SM (dB) may not be present.
  • the maximum allowable transmission power is not calculated based on the positional relationship, but is carried out based on the transmission power associated with the grant. Therefore, for example, by calculating the maximum allowable transmission power based on the positional relationship, by first allocating the interference margin only to the PAL without including the lower group GAA, the amount excluding the GAA is 1
  • the interference margin that can be distributed per grant can be increased, while the surplus margin can also be increased.
  • the maximum allowable transmission power is calculated for all protection points, and the minimum maximum allowable transmission power P TempMax, m is calculated by the following equation (3). ).
  • the protection point p MostVictim, m that receives the largest interference from the m-th grant is calculated by the following equation (4).
  • the communication control device 60 sets the amount of interference in the first wireless system (protection point) having the smallest maximum allowable transmission power as the amount of interference in the other first wireless system.
  • the maximum allowable transmission power that serves as a reference is determined by the protection point that receives the largest interference as long as the positional relationship with the protection point does not change. Therefore, in the subsequent processing, it is estimated by the maximum allowable transmission power that serves as a reference.
  • the interference power can be treated as an appropriate interference margin allocation amount without surplus in the protection of each protection point.
  • the maximum transmission power on the device class or hardware is compared with the maximum allowable transmission power. That is, the communication control device 60 calculates the maximum transmission power of the second wireless system based on the information regarding the transmission characteristics of the second wireless system, and the maximum transmission power and the maximum permissible calculated by the process of (c-2). The interference margin is allocated based on the comparison result with the transmission power.
  • the maximum allowable transmission power is the maximum allowable transmission power between the protection point obtained by the above equation (4) and the m-th grant.
  • the maximum allowable transmission power may greatly exceed the maximum transmission power.
  • the calculation result of the maximum allowable transmission power may greatly exceed the transmission capacity of the base station apparatus. That is, since a surplus margin is generated in such a case, it can be redistributed to other grants by specifying such a surplus margin by comparing the maximum allowable transmission power and the maximum transmission power.
  • the maximum transmission power is smaller In such a case, the transmission power associated with the m-th grant and the maximum transmission power are compared.
  • the transmission power is smaller In such a case, the mth grant is treated as a Satisfied grant. Then, the interference margin allocation amount is calculated by the following equation (5).
  • the estimated value of the amount of interference generated by the current parameter of the grant can be used as the interference margin allocation amount, so that it is possible to avoid excessive allocation of the interference margin.
  • the surplus margin is calculated by the following formula (6).
  • the maximum allowable transmission power is smaller In such a case, the transmission power associated with the m-th grant and the maximum allowable transmission power are compared.
  • the estimated value of the amount of interference generated by the current parameter of the grant can be used as the interference margin allocation amount, so that it is possible to avoid excessive allocation of the interference margin.
  • the surplus margin is calculated by the following formula (8).
  • the estimated value of the amount of interference generated by the current parameter of the grant can be used as the interference margin allocation amount, so that it is possible to avoid excessive allocation of the interference margin.
  • the surplus margin after the process of (e-2) is checked.
  • the surplus margin is allocated to the subgroups.
  • the conventional IAP processes (a) to (d) are applied.
  • the initial value of the interference margin at each protection point is IM Surplus, p (dBm) .
  • the communication control device may notify the communication device of the cancellation of the grant allocation as a response to the frequency usage notification request (for example, a heartbeat response).
  • ⁇ Case 2 Allocation priority according to required parameters> 5G is highly expected as a communication method that realizes various use cases. However, depending on the use case, required parameters such as required transmission power, required QoS, coverage, etc. may differ between the use cases, so it cannot be said that it is appropriate to treat all grants equally.
  • the conventional IAP is improved as in the following processes (a-3) to (d-3).
  • the method of Case 2 may be applied as an alternative to IAP to GAA in Case 1 described above.
  • the required parameter is parameter information related to the communication of the second wireless system.
  • the required parameters described above are converted into the required transmission power. That is, the communication control device 60 calculates the transmission power based on the parameter information as the distribution priority. This makes the IAP easily applicable. For example, when the required SINR (Signal-to-Interference plus Noise power Ratio) is available, it is converted into the required transmission power by the following equation (10).
  • SINR Signal-to-Interference plus Noise power Ratio
  • PL is the propagation loss between the base station and an arbitrary point
  • SINR Required is the required SINR at an arbitrary point
  • I is the received interference power at an arbitrary point. is there.
  • the required transmission power can be calculated by the equation (10) with the above “arbitrary point” as the “coverage end”.
  • the required transport block size is estimated, the corresponding MCS is obtained, and the required SINR is derived (corresponding to the reverse operation of Effective SINR mapping). Then, the required transmission power is calculated by the above equation (10) using the derived required SINR.
  • all the grants to be calculated for interference are grouped into a plurality of groups based on the required transmission power calculated in (a-3). That is, the communication control device 60 treats the transmission power as a distribution priority and groups them. For example, it is grouped into a high output (high transmission power) upper group and a low output lower group.
  • the number of groupings may be 3 or more.
  • a device class may be used to group a group including a category B group and a group including a category A group.
  • a range of several dBm may be created and grouped. For example, it may be grouped into a group of 10-15 dBm and a group of 15-20 dBm.
  • the high output group is ranked higher. This allows preferential allocation to high power groups that require more interference margins. Further, in such a case, even if the surplus margin after allocation to the high output upper group is allocated to the low output lower group, the required interference margin is relatively small, so that it can be sufficiently dealt with.
  • the low output group may be ranked higher. This makes it possible to reliably allocate the interference margin to the low output group.
  • the conventional IAP processes (a) to (d) are applied in order from the highest group. That is, the communication control device 60 allocates the interference margin to each of the second wireless systems based on the transmission power. As a result, the chances of the interference margin being allocated to the group having the higher transmission power (high output), which is the allocation priority, can be increased, and the radio wave utilization opportunity can be increased.
  • the surplus margin after the process of (c-3) is checked.
  • the surplus margin is allocated to the subgroups.
  • the conventional IAP processes (a) to (d) are applied.
  • the existence of the surplus margin is synonymous with the existence of spatial free radio waves, so that the frequency utilization efficiency can be improved.
  • the communication control device may notify the communication device of the cancellation of the grant allocation as a response to the frequency usage notification request (for example, a heartbeat response).
  • FIG. 36 is a flowchart showing the procedure of the interference margin allocation process.
  • the communication control device 60 first acquires information on a plurality of second wireless systems that share the radio waves used by the first wireless system (step S101).
  • the communication control device 60 calculates the allocation priority for each of the plurality of second wireless systems based on the acquired information (step S102).
  • the communication control device 60 groups a plurality of second wireless systems into a plurality of groups based on the allocation priority (step S103).
  • the communication control device 60 allocates the total interference amount allowed by the first wireless system to the second wireless system included in the upper group as an interference margin (step S104).
  • the communication control device 60 determines whether or not there is a surplus margin as a result of the allocation (step S105), and if there is no surplus margin (step S105: No), the process ends.
  • step S105 when the communication control device 60 has a surplus margin (step S105: Yes), the communication control device 60 allocates the surplus margin to the lower group (step S106), and shifts the process to step S105.
  • the communication control device 60 of this embodiment is not limited to the device described in the above-described embodiment.
  • the communication control device 60 may be a device having a function other than controlling the base station device 40 that secondarily uses the frequency band in which the frequency is shared.
  • the network manager may have the function of the communication control device 60 of the present embodiment.
  • the network manager may be, for example, a C-BBU (Centralized Base Band Unit) having a network configuration called a C-RAN (Centralized Radio Access Network) or a device including the same.
  • the base station including the access point
  • These devices can also be regarded as communication control devices.
  • the communication control device 60 is a device belonging to the communication system 2, but it does not necessarily have to be a device belonging to the communication system 2.
  • the communication control device 60 may be an external device of the communication system 2.
  • the communication control device 60 may not directly control the base station device 40, but may indirectly control the base station device 40 via the devices constituting the communication system 2.
  • a plurality of secondary systems (communication systems 2) may exist.
  • the communication control device 60 may manage a plurality of secondary systems. In this case, each secondary system can be regarded as a second wireless system.
  • the existing system that uses the target band is called the primary system
  • the secondary user is called the secondary system
  • the macro cell in HetNET Heterogeneous Network
  • the small cell or relay station may be used as the secondary system
  • the base station may be the primary system
  • the Relay UE Relay User Equipment
  • the Vehicle UE Vehicle User Equipment
  • the base station is not limited to the fixed type, and may be a portable type / mobile type.
  • the interface between each entity may be wired or wireless.
  • the interface between each entity (communication device, communication control device, or terminal device) that appears in the present embodiment may be a wireless interface that does not depend on frequency sharing.
  • a wireless interface that does not depend on frequency sharing for example, a wireless communication line provided by a mobile communication operator via a licensed band or a wireless LAN that uses an existing license-exempt band. Communication, etc. can be mentioned.
  • the control device for controlling the radio wave utilization device 10, the management device 20, the terminal device 30, the base station device 40, the intermediate device 50, or the communication control device 60 of the present embodiment may be realized by a dedicated computer system. It may be realized by a general-purpose computer system.
  • a program for executing the above operation is stored and distributed in a computer-readable recording medium such as an optical disk, a semiconductor memory, a magnetic tape, or a flexible disk.
  • the control device is configured by installing the program on a computer and executing the above-mentioned processing.
  • the control device may be a radio wave utilization device 10, a management device 20, a terminal device 30, a base station device 40, an intermediate device 50, or an external device (for example, a personal computer) of the communication control device 60.
  • the control device is a radio wave utilization device 10, a management device 20, a terminal device 30, a base station device 40, an intermediate device 50, or an internal device of the communication control device 60 (for example, a control unit 13, a control unit 23, a control unit). 34, control unit 44, control unit 54, or control unit 64).
  • the above communication program may be stored in a disk device provided in a server device on a network such as the Internet so that it can be downloaded to a computer or the like.
  • the above-mentioned functions may be realized by collaboration between the OS (Operating System) and the application software.
  • the part other than the OS may be stored in a medium and distributed, or the part other than the OS may be stored in the server device so that it can be downloaded to a computer or the like.
  • each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or part of the device is functionally or physically dispersed / physically distributed in arbitrary units according to various loads and usage conditions. Can be integrated and configured.
  • the present embodiment includes a device or any configuration constituting the system, for example, a processor as a system LSI (Large Scale Integration) or the like, a module using a plurality of processors, a unit using a plurality of modules, or a unit. It can also be implemented as a set or the like (that is, a part of the configuration of the device) to which other functions are added.
  • a processor as a system LSI (Large Scale Integration) or the like, a module using a plurality of processors, a unit using a plurality of modules, or a unit. It can also be implemented as a set or the like (that is, a part of the configuration of the device) to which other functions are added.
  • LSI Large Scale Integration
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing.
  • a plurality of devices housed in separate housings and connected via a network or the like, and one device in which a plurality of modules are housed in one housing are both systems. is there.
  • the present embodiment can have a cloud computing configuration in which one function is shared and jointly processed by a plurality of devices via a network.
  • the communication control device 60 which is an information processing device, provides information on each of the plurality of second wireless systems that share the radio waves used by the first wireless system. Based on the acquisition unit that acquires the data, the calculation unit that calculates the allocation priority for each of the plurality of second wireless systems based on the information acquired by the acquisition unit, and the allocation priority calculated by the calculation unit. A distribution unit that distributes the total interference amount allowed by one wireless system to each of the plurality of second wireless systems as an interference amount is provided. As a result, the interference margin can be appropriately distributed.
  • the present technology can also have the following configurations.
  • An acquisition unit that acquires information about each of the plurality of second wireless systems that share the radio waves used by the first wireless system, and A calculation unit that calculates the allocation priority for each of the plurality of second wireless systems based on the information acquired by the acquisition unit, and a calculation unit.
  • a distribution unit that distributes the total interference amount allowed by the first wireless system as an interference amount to each of the plurality of second wireless systems based on the distribution priority calculated by the calculation unit is provided.
  • Information processing device (2)
  • the distribution unit The information processing apparatus according to (1), wherein the group having a higher distribution priority among the plurality of groups increases the amount of interference to be distributed. (3) The distribution unit The information processing apparatus according to (2), wherein the interference amount is distributed to each of the plurality of second wireless systems included in the group, which is the same amount as the interference amount estimated based on the desired transmission power. .. (4) The distribution unit The total interference amount is tentatively distributed to each of the plurality of second wireless systems included in the group, and when the tentatively distributed tentative interference amount exceeds the interference amount, the surplus interference amount is tentatively distributed to the group. The information processing apparatus according to (3) above, which redistributes to the other included second wireless system.
  • the distribution unit The information processing apparatus according to (3) or (4), wherein the excess interference amount is redistributed to the second wireless system in which the provisional interference amount is less than the interference amount.
  • the distribution unit When the interference amount equal to the interference amount is distributed to all of the plurality of second radio systems included in the group and the surplus interference amount is present, the surplus interference amount is used in another group.
  • the information processing apparatus according to any one of (3) to (5) above, which is allocated to.
  • the distribution unit When there is the second wireless system in which there is no surplus interference amount and the provisional interference amount is less than the interference amount, the permission for radio wave transmission is revoked for the second wireless communication system.
  • the information processing apparatus according to any one of 3) to (6).
  • the maximum permissible value in each of the plurality of first wireless systems is based on the information acquired by the acquisition unit. It also has a power calculation unit that calculates the transmission power.
  • the distribution unit Among the calculation results of the power calculation unit, the interference amount in the first wireless system having the smallest maximum allowable transmission power is defined as the interference amount in the other first wireless system.
  • the information processing apparatus according to any one of 7).
  • the acquisition unit Obtaining information on the positional relationship between the first wireless system and the second wireless system, The power calculation unit The information processing apparatus according to (8), wherein the maximum allowable transmission power is calculated based on the information regarding the positional relationship.
  • the acquisition unit Obtaining information on the transmission characteristics of the second wireless system, The calculation unit Based on the information regarding the transmission characteristics, the maximum transmission power of the second wireless system is calculated.
  • the distribution unit The information processing apparatus according to (8) or (9), wherein the interference amount of the second wireless system is distributed based on the comparison result of the maximum allowable transmission power and the maximum transmission power.
  • the acquisition unit Obtain parameter information related to the communication of the second wireless system, and obtain The calculation unit As the allocation priority, the transmission power based on the parameter information is calculated.
  • the distribution unit The information processing apparatus according to any one of (1) to (10), wherein the interference amount is distributed to each of the plurality of second wireless systems based on the transmission power.
  • the acquisition unit Get information about the hierarchy of CBRS (Citizens Broadband Radio Service) The calculation unit The information processing apparatus according to any one of (1) to (11), wherein the second wireless system having a higher hierarchy in the CBRS has a higher distribution priority.
  • (12) Acquire information about each of the plurality of second wireless systems that share the radio waves used by the first wireless system. Based on the acquired information, the allocation priority is calculated for each of the plurality of second wireless systems.
  • An information processing method in which a total interference amount allowed by the first wireless system is distributed as an interference amount to each of the plurality of second wireless systems based on the calculated allocation priority.
  • Computer An acquisition unit that acquires information about each of the plurality of second wireless systems that share the radio waves used by the first wireless system.
  • a calculation unit that calculates the allocation priority for each of the plurality of second wireless systems based on the information acquired by the acquisition unit.
  • Information processing program (15) Information on each of the plurality of second wireless systems that share the radio waves used by the first wireless system is acquired, and the allocation priority is calculated for each of the plurality of second wireless systems based on the acquired information. Based on the calculated allocation priority, the acquisition unit that acquires the total interference amount allowed by the first wireless system and the information of the interference amount allocated to each of the plurality of second wireless systems, and the acquisition unit.
  • a communication device including a communication control unit that transmits radio waves based on information on the amount of interference acquired by the acquisition unit.
  • Information on each of the plurality of second wireless systems that share the radio waves used by the first wireless system is acquired, and the allocation priority is calculated for each of the plurality of second wireless systems based on the acquired information. Based on the calculated allocation priority, the information on the total interference amount allowed by the first wireless system and the interference amount allocated to each of the plurality of second wireless systems is acquired.
  • a communication method in which radio waves are transmitted based on the acquired information on the amount of interference.
  • Computer Information on each of the plurality of second wireless systems that share the radio waves used by the first wireless system is acquired, and the allocation priority is calculated for each of the plurality of second wireless systems based on the acquired information.
  • An acquisition unit that acquires information on the total interference amount allowed by the first wireless system based on the calculated allocation priority and the interference amount allocated to each of the plurality of second wireless systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

情報処理装置(60)は、第1の無線システムが利用する電波を共用利用する複数の第2の無線システムそれぞれに関する情報を取得する取得部(641)と、取得部(641)によって取得された情報に基づいて複数の第2の無線システム毎に配分優先度を算出する算出部(642)と、算出部(642)によって算出された配分優先度に基づいて、第1の無線システムが許容する総干渉量を複数の第2の無線システムそれぞれに干渉量として配分する配分部(643)と、を備える。

Description

情報処理装置、情報処理方法、及び通信装置
 本開示は、情報処理装置、情報処理方法、及び通信装置に関する。
 無線システム(無線装置)に割り当て可能な電波資源(無線リソース)が枯渇するという問題が表面化している。そのため、近年では、特定の無線システムに割り当て済みの周波数帯域のうち、時間的・空間的な空き(White Space)を利活用する「動的周波数共用(DSA:Dynamic Spectrum Access)」が急速に注目を集めている。
WINNF-TS-0247-V1.2.0 CBRS Certified Professional Installer Accreditation Technical Specification. WINNF-TS-0016-V1.2.4 Signaling Protocols and Procedures for Citizens Broadband Radio Service (CBRS): Spectrum Access System (SAS) - Citizens Broadband Radio Service Device (CBSD) Interface Technical Specification ECC Report 186, Technical and operational requirements for the operation of white space devices under geo-location approach, CEPT ECC, 2013 January White Space Database Provider (WSDB) Contract, available at https://www.ofcom.org.uk/__data/assets/pdf_file/0026/84077/white_space_database_contract_for_operational_use_of_wsds.pdf WINNF-TS-0096-V1.3.1 Signaling Protocols and Procedures for Citizens Broadband Radio Service (CBRS): Spectrum Access System (SAS) - SAS Interface Technical Specification WINNF-TS-0112-V1.8.0 Requirements for Commercial Operation in the U.S. 3550-3700 MHz Citizens Broadband Radio Service Band IEEE Std 802.19.1aTM-2017 "Coexistence Methods for Geo-location Capable Devices Operating under General Authorization" 47 C.F.R Part 96 Citizens Broadband Radio Service,https://www.ecfr.gov/cgi-bin/text-idx?node=pt47.5.96#se47.5.96 WINNF-TS-0245-V1.0.0 Operations for Citizens Broadband Radio Service (CBRS): Priority Access License (PAL) Database Technical Specification WINNF-TS-0061-V1.5.1 Test and Certification for Citizens Broadband Radio Service (CBRS); Conformance and Performance Test Technical Specification; SAS as Unit Under Test (UUT) WINNF-SSC-0008 Spectrum Sharing Committee Policy and Procedure Coordinated Periodic Activities Policy ITU-R P.452-11, "Prediction procedure for the evaluation of microwave interference between stations on the surface of the Earth at frequencies above about 0.7 GHz", https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.452-11-200304-S!!PDF-E.pdf WINNF-TR-2004-V1.0.0 Operations for Citizens Broadband Radio Service (CBRS); GAA Spectrum Coordination - Approach 2
 ここで、CBRS(Citizens Broadband Radio Service)において、Non-federal incumbentsやPriority Access Usersを低層ユーザからの干渉から保護するための手法として、逐次配分処理(IAP:Iterative Allocation Process)という干渉マージン配分アルゴリズムが規定されている。
 しかしながら、逐次配分処理は、すべてのグラントに対して優劣をつけることなく処理を行うものであるため、基地局の状態やユースケースによっては、干渉マージンが適切に配分されないおそれがあった。
 そこで、本開示では、干渉マージンを適切に配分することができる情報処理装置、情報処理方法、及び通信装置を提案する。
 上記の課題を解決するために、本開示に係る一形態の情報処理装置は、第1の無線システムが利用する電波を共用利用する複数の第2の無線システムそれぞれに関する情報を取得する取得部と、前記取得部によって取得された情報に基づいて前記複数の第2の無線システム毎に配分優先度を算出する算出部と、前記算出部によって算出された前記配分優先度に基づいて、前記第1の無線システムが許容する総干渉量を前記複数の第2の無線システムそれぞれに干渉量として配分する配分部と、を備える。
セカンダリシステムを構成する各通信装置への干渉マージンの配分例を示す説明図である。 CBRSでの階層構造を示す説明図である。 CBRSの帯域を示す説明図である。 本開示の実施形態に係る通信システムの構成例を示す図である。 通信制御装置が分散的に配置されるモデルを示す図である。 1つの通信制御装置が中央制御的に複数の通信制御装置を統括するモデルを示す図である。 通信制御装置の配置モデルの他の一例を示す図である。 本開示の実施形態に係る電波利用装置の構成例を示す図である。 本開示の実施形態に係る管理装置の構成例を示す図である。 本開示の実施形態に係る端末装置の構成例を示す図である。 本開示の実施形態に係る基地局装置の構成例を示す図である。 本開示の実施形態に係るプロキシ装置の構成例を示す図である。 本開示の実施形態に係る通信制御装置の構成例を示す図である。 本開示の実施形態で想定する干渉モデルの一例を示す説明図である。 本開示の実施形態で想定する干渉モデルの他の例を示す説明図である。 干渉マージン一斉配分型のプライマリシステム保護方法を説明するための説明図である。 余剰マージンが発生した様子を示す図である。 干渉マージン逐次配分型のプライマリシステム保護方法を説明するための説明図である。 送信帯域幅の仕様を示す図である。 送信帯域幅の仕様を示す図である。 送信帯域幅の仕様を示す図である。 送信帯域幅の仕様を示す図である。 送信帯域幅の仕様を示す図である。 送信帯域幅の仕様を示す図である。 登録手続きを説明するためのシーケンス図である。 利用可能周波数情報問い合わせ手続きを説明するためのシーケンス図である。 周波数利用許可手続きを説明するためのシーケンス図である。 電波送信の許可状態を示す状態遷移図である。 周波数利用通知手続きを説明するためのシーケンス図である。 管理情報の交換手続きを説明するためのシーケンス図である。 セカンダリシステムの通信として端末装置間の通信を想定した場合のシグナリング手続きの一例を示す図である。 グラントに係る動作の一例を示すシーケンス図である。 周期的処理の具体的処理内容を示す図である。 干渉計算対象となる保護点が複数存在する場合の図である。 グルーピングされた上位グループの基地局装置と保護点との関係を示す図である。 干渉マージンの配分処理の手順を示すフローチャートである。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なる数字又はアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の構成を、必要に応じて通信制御装置60、及び60のように区別する。また、実質的に同一の機能構成を有する複数の構成を、必要に応じて通信システム2A、及び2Bのように区別する。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、通信制御装置60、及び60を特に区別する必要が無い場合には、単に通信制御装置60と称する。また、通信システム2A、及び2Bを特に区別する必要が無い場合には、単に通信システム2と称する。
 また、以下に示す項目順序に従って本開示を説明する。
 1.はじめに
  1-1.周波数共用実現のための無線システムの制御
  1-2.本実施形態の概要
  1-3.周波数と共用に関する用語について
 2.通信システムの構成
  2-1.通信システムの全体構成
  2-2.電波利用装置の構成
  2-3.管理装置の構成
  2-4.端末装置の構成
  2-5.基地局装置の構成
  2-6.中間装置の構成
  2-7.通信制御装置の構成
 3.干渉モデル
 4.プライマリシステム保護方法
  4-1.干渉マージン一斉配分型
  4-2.干渉マージン逐次配分型
 5.諸手続きの説明
  5-1.登録手続き
  5-2.利用可能周波数情報問い合わせ手続き
  5-3.周波数利用許可手続き
  5-4.周波数利用通知
  5-5.諸手続きの補足
  5-6.端末装置に関する諸手続き
  5-7.通信制御装置間で発生する手続き
  5-8.情報伝達手段
  5-9.代表的動作フロー
 6.干渉マージンの配分に係る動作
  6-1.従来のIAPに係る動作
  6-2.配分優先度付けのケース
 7.変形例
 8.むすび
<<1.はじめに>>
 近年の多様な無線システムが混在する無線環境及び、無線を介したコンテンツ量の増加と多様化により、無線システムに割り当て可能な電波資源(例えば、周波数)が枯渇するという問題が表面化している。しかしながら、どの電波帯域もすでに既存の無線システムが利用しているため、新規の電波資源割り当てが困難である。そこで、近年では、コグニティブ無線技術の活用による電波資源の更なる有効利用が注目されはじめている。
 コグニティブ無線技術では、既存の無線システムの時間的・空間的な空き電波(White Space)を利活用(例えば、動的周波数共用(DSA:Dynamic Spectrum Access))することにより、電波資源を捻出する。例えば、米国では、世界的には3GPP band 42、43とされている周波数帯とオーバーラップするFederal use band(3.55-3.70GHz)の一般国民への開放を目指し、周波数共用技術を活用するCBRS(Citizens Broadband Radio Service)の法制化・標準化が加速している。
 なお、コグニティブ無線技術は、動的周波数共用のみならず、無線システムによる周波数利用効率の向上にも寄与する。例えば、ETSI EN 303 387やIEEE 802.19.1-2014では、空き電波を利用する無線システム間の共存技術が規定されている。
<1-1.周波数共用実現のための無線システムの制御>
 一般に周波数共用においては、各国・地域の規制当局(NRA:National Regulatory Authority)によって、周波数帯域の利用に係る免許または認可を受けた1次利用者(プライマリユーザ)の無線システム(プライマリシステム)の保護が義務付けられる。典型的には、当該NRAによってプライマリシステムの許容干渉基準値が設けられ、二次利用者(セカンダリユーザ)の無線システム(セカンダリシステム)には、共用によって発生する与干渉が許容干渉基準値を下回ることを求められる。
 なお、以下の説明では、「システム」とは、複数の構成要素(装置、モジュール(部品)等)の集合を意味するものとする。このとき、全ての構成要素が同一筐体中にあるか否かは問わない。例えば、別個の筐体に収納され、ネットワーク等を介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、「システム」である。すなわち、プライマリシステム及びセカンダリシステム等の無線システムは、それぞれ、複数の装置で構成されていてもよいし、1つの装置で構成されていてもよい。
 周波数共用を実現するため、例えば、通信制御装置(例えば、周波数管理データベース)が、プライマリシステムに対して致命的な干渉を与えないようにセカンダリシステムの通信を制御する。通信制御装置は、通信装置の通信等を管理する装置である。例えば、通信制御装置は、GLDB(Geo-location Database)、SAS(Spectrum Access System)等の電波資源(例えば、周波数)の管理のためのシステムである。本実施形態の場合、通信制御装置は、後述の通信制御装置60に相当する。通信制御装置60については、後に詳述する。
 ここで、プライマリシステムとは、例えば、所定の周波数帯を他のシステムに優先して使用するシステム(例えば、既存のシステム)である。また、セカンダリシステムとは、例えば、プライマリシステムが使用する周波数帯を二次利用(例えば、動的周波数共用)するシステムである。プライマリシステム及びセカンダリシステムは、それぞれ、複数の通信装置で構成されていてもよいし、1つの通信装置で構成されていてもよい。通信制御装置は、セカンダリシステムを構成する1又は複数の通信装置のプライマリシステムへの干渉の累積(Interference Aggregation)が、プライマリシステムの干渉許容量(干渉マージンともいう。)を越えないように、1又は複数の通信装置に干渉許容量を配分する。このとき、干渉許容量は、プライマリシステムの運営者や電波を管理する公的機関等が予め定めた干渉量であってもよい。以下の説明では、干渉マージンといった場合は、干渉許容量のことを指す。また、干渉の累積のことを、累積与干渉電力と呼ぶことがある。
 図1は、セカンダリシステムを構成する各通信装置への干渉マージンの配分例を示す説明図である。図1の例では、通信システム1がプライマリシステムであり、通信システム2がセカンダリシステムである。通信システム1は電波利用装置10等を備える。また、通信システム2は基地局装置40、40、40等を備える。なお、図1の例では、通信システム1は電波利用装置10を1つしか備えていないが、通信システム1が備える電波利用装置10は複数であってもよい。また、図1の例では、通信システム2は基地局装置40を3つ備えているが、通信システム2が備える基地局装置40は3つより少なくてもよいし、多くてもよい。また、通信システム2が備える無線通信装置は、必ずしも基地局装置でなくてもよい。なお、図1の例では、プライマリシステム(図1の例では通信システム1)及びセカンダリシステム(図1の例では通信システム2)がそれぞれ1つしか示されていないが、プライマリシステム及びセカンダリシステムはそれぞれ複数あってもよい。
 電波利用装置10、及び基地局装置40、40、40は、それぞれ、電波を送受信可能である。電波利用装置10が許容する干渉量はIacceptである。また、基地局装置40、40、40が通信システム1(プライマリシステム)の所定の保護点に与える干渉量は、それぞれ、与干渉量I、I、Iである。ここで、保護点は、通信システム1の保護のための干渉算出基準点である。
 通信制御装置は、通信システム1の所定の保護点への干渉の累積(図1に示す受信干渉量I+I+I)が干渉マージンIacceptを超えないように、複数の基地局装置40に干渉マージンIacceptを配分する。例えば、通信制御装置は、与干渉量I、I、IがそれぞれIaccept/3となるように各基地局装置40に干渉マージンIacceptを配分する。或いは、通信制御装置は、与干渉量I、I、IがそれぞれIaccept/3以下となるように、各基地局装置40に干渉マージンIacceptを配分する。勿論、干渉マージンの配分方法はこの例に限定されない。
 通信制御装置は、配分された干渉量(以下、配分干渉量という。)に基づいて、各基地局装置40に許容される最大送信電力(以下、最大許容送信電力という。)を算出する。例えば、通信制御装置は、伝搬損失、アンテナゲイン等に基づいて、配分干渉量から逆算することによって、各基地局装置40の最大許容送信電力を算出する。そして、通信制御装置は、算出した最大許容送信電力の情報を各基地局装置40に通知する。
<1-2.本実施形態の概要>
 米国のFCC(Federal Communications Commission)が法整備したCBRS(Citizens Broadband Radio Service)では、PAL(Priority Access License)に基づく周波数利用権限の賃貸が認められている。また、英国のOfcom(Office of Communications)が発行したPublic consultation(https://www.ofcom.org.uk/consultations-and-statements/category-1/enabling-opportunities-for-innovation)によると、英国内で周波数のローカルライセンシングが検討されていることが明らかになっている。
 ここで、CBRSにおいて、Non-federal incumbentsやPriority Access Usersを低層ユーザからの干渉から保護するための手法として、逐次配分処理(IAP:Iterative Allocation Process)という干渉マージン配分アルゴリズムが規定されている。
 そして、逐次配分処理は、すべてのグラントに対して優劣をつけることなく処理を行うものである。しかしながら、例えば、以下の理由(1)、(2)等により、すべてのグラントに対して優劣をつけることなく干渉マージンを配分することが適切であるとは言えない。
 (1)Priority Access TierとGAA Tierの存在。
 Priority Access Tierは、オークションによって免許(PAL)を取得する必要があり、周波数利用に係る投資負担がGAA Tierよりも大きいため、PALグラントとGAAグラントとを同等に扱うことが適当であるとは言いがたい。
 (2)多様なユースケースの存在。
 CBRSでは、多様なユースケースを実現する通信方式としての期待が高い5Gが運用されると期待される。しかしながら、ユースケースによっては、所要送信電力や所要QoS(Quality of Service)、カバレッジといったパラメータがユースケース間で異なる可能性があるため、全てのグラントを同等に扱うことが適当であるとは言いがたい。
 そのような背景から、適切な干渉マージンの配分を情報処理装置が適切に実施できるようになることが望ましい。ここで、干渉マージンの配分を行う情報処理装置は、SAS(Spectrum Access System)のような周波数管理サーバであってもよい。周波数管理サーバは、本実施形態でいう通信制御装置である。
 そして、本実施形態では、情報処理装置である通信制御装置が以下の処理を実行する。具体的には、通信制御装置は、まず、第1の無線システム(例えば、プライマリシステム)が利用する電波を共用利用する複数の第2の無線システム(例えば、セカンダリシステム)それぞれに関する情報を取得する。取得する情報は、例えば、CBRSの階層に関する情報や、ユースケースに応じた所要送信電力や所要QoS、カバレッジ等の通信に関するパラメータ情報等である。
 つづいて、通信制御装置は、取得した情報に基づいて第2の無線システム毎に配分優先度を算出する。例えば、通信制御装置は、CBRSにおける階層が上位である第2の無線システムほど配分優先度を高くする。つづいて、通信制御装置は、算出した配分優先度に基づいて、第1の無線システムが許容する総干渉量を複数の第2の無線システムそれぞれに干渉量として配分する。
 これにより、例えば、CBRSにおけるPriority Access Tierの与干渉量をGAA Tierよりも多くすることができる。従って、本実施形態に係る通信制御装置によれば、干渉マージン(干渉量)を適切に配分することができる。
<1-3.周波数と共用に関する用語について>
 以上、本実施形態の概要を述べたが、以下、本実施形態を詳細に述べる。本実施形態を詳細な説明に入る前に、本実施形態で使用する、周波数と共用に関する用語について整理する。
 なお、本実施形態では、プライマリシステム(例えば、通信システム1)及びセカンダリシステム(例えば、通信システム2)は、動的周波数共用(DSA:Dynamic Spectrum Access)の環境下にあるものとする。以下、米国のFCC(Federal Communications Commission)が法整備したCBRS(Citizens Broadband Radio Service)を例にとり周波数と共用に関する用語について説明する。なお、本実施形態の通信システム1及び通信システム2は、CBRSにおけるシステムに限定されない。
 図2は、CBRSでの階層構造を示す説明図である。図2に示すように、共用周波数帯域のユーザの各々は3つのグループのうちのいずれかに分類される。このグループは、“tier”と呼ばれる。当該3つのグループは、それぞれ、既存層(Incumbent Tier)、優先アクセス層(Priority Access Tier)、及び一般認可アクセス層(General Authorized Access Tier)と呼ばれる。図2の例では、一般認可アクセス層(General Authorized Access Tier)の上位に優先アクセス層(Priority Access Tier)が位置し、優先アクセス層の上位に既存層(Incumbent Tier)が位置している。CBRSを例にとると、例えば、既存層に位置するシステム(既存システム)がプライマリシステムとなり、一般認可アクセス層及び優先アクセス層に位置するシステムがセカンダリシステムとなる。
 既存層(Incumbent Tier)は、共用周波数帯域として定められた周波数帯域を従来から利用する既存ユーザからなるグループである。既存ユーザは、プライマリユーザと呼ばれることがある。CBRSにおいては、国防総省(DOD:Department of Defense)、固定衛星事業者、新規則適用除外無線ブロードバンド免許人(GWBL:Grandfathered Wireless Broadband Licensee)が、既存ユーザとして定められる。既存層(Incumbent Tier)は、より低い優先度を有する優先アクセス層(Priority Access Tier)及び一般認可アクセス層(GAA(General Authorized Access) Tier)への干渉回避又は抑制を要求されない。また、既存層(Incumbent Tier)は、優先アクセス層(Priority Access Tier)及び一般認可アクセス層(GAA Tier)による干渉から保護される。即ち、“Incumbent Tier”のユーザは、他のグループの存在を考慮することなく、周波数帯域を使用することが可能である。
 優先アクセス層(Priority Access Tier)は、PAL(Priority Access License)と呼ばれる免許に基づいて上述の共用周波数帯域を利用するユーザからなるグループである。上述の共用周波数帯域を利用するユーザは、セカンダリユーザと呼ばれることがある。優先アクセス層(Priority Access Tier)における周波数共用においては、優先アクセス層(Priority Access Tier)より高い優先度を有する既存層(Incumbent Tier)への干渉回避又は抑制を要求されるが、より低い優先度を有する一般認可アクセス層(GAA Tier)への干渉回避又は抑制を要求されない。また、優先アクセス層(Priority Access Tier)は、より高い優先度を有する既存層(Incumbent Tier)による干渉から保護されないが、より低い優先度を有する一般認可アクセス層(GAA Tier)による干渉から保護される。
 一般認可アクセス層(GAA Tier)は、上記既存層(Incumbent Tier)および優先アクセス層(Priority Access Tier)に属さない他のユーザからなるグループである。この層のユーザも、セカンダリユーザと呼ばれることがある。ただし、この層は、優先アクセス層(Priority Access Tier)よりも共用利用の優先度が低いことから、低優先度セカンダリユーザと呼ばれることもある。一般認可アクセス層(GAA Tier)における周波数共用利用においては、より高い優先度を有する既存層(Incumbent Tier)及び優先アクセス層(Priority Access Tier)への干渉の回避又は抑制を要求される。また、一般認可アクセス層(GAA Tier)は、より高い優先度を有する既存層(Incumbent Tier)に及び優先アクセス層(Priority Access Tier)よる干渉から保護されない。即ち、一般認可アクセス層(GAA Tier)は、法制上、日和見的な(opportunistic)共用周波数利用が要求される“tier”である。
 なお階層構造はこれらの定義に限定されない。CBRSは一般に3Tier構造と呼ばれるが、2Tier構造であってもよい。代表的な一例として、LSA(Licensed Shared Access)やTVWS(TV band White Space)のような2Tier構造が挙げられる。LSAでは、前記既存層(Incumbent Tier)と優先アクセス層(Priority Access Tier)の組み合わせと同等の構造が採用されている。また、TVWSでは、前記既存層(Incumbent Tier)と一般認可アクセス層(GAA Tier)の組み合わせと同等の構造が採用されている。また、4以上のTierが存在してもよい。具体的には、例えば、優先アクセス層(Priority Access Tier)に相当する中間層を、さらに優先度付するなどしてもよい。また、例えば、一般認可アクセス層(GAA Tier)も同様に優先度付するなどしてもよい。
 図3は、CBRSの帯域を示す説明図である。上述のCBRSを例にとると、プライマリシステムは、軍事レーダシステム(Military Radar System)、既存無線システム(Grandfathered Wireless System)、或いは固定衛星業務(宇宙から地球)(Fixed Satellite Service (space-to-earth))となる。ここで、軍事レーダシステムは、代表的には艦載レーダである。また、セカンダリシステムはCBSD(Citizens Broadband Radio Service Device)、EUD(End User Device)と呼ばれる基地局、端末からなる無線ネットワークシステムとなる。セカンダリシステムにはさらに優先度が存在し、共用帯域を免許利用可能な優先アクセス免許(PAL:Priority Access License)と、免許不要と同等の一般認可アクセス(GAA:General Authorized Access)と、が定められている。図3に示す層1(Tier 1)は、図2に示す既存層に相当する。また、図3に示す層2(Tier 2)は、図2に示す優先アクセス層に相当する。また、図3に示す層3(Tier 3)は、図2に示す一般認可アクセス層に相当する。
 なお、プライマリシステム及びセカンダリシステムは上記の例に限定されない。例えば、優先アクセス層(Priority Access Tier)に含まれる無線システムをプライマリシステム、一般認可アクセス層(GAA Tier)に含まれるシステムをセカンダリシステムとみなしてもよい。
 また、本実施形態のプライマリシステム(通信システム1)は、図3に示した例に限られない。他の種類の無線システムをプライマリシステム(通信システム1)としてもよい。例えば、プライマリシステムの一例としては、TV放送、固定マイクロ波回線(FS:Fixed System)、気象レーダ(Meteorological Radar)、電波高度計(Radio Altimeter)、無線式列車制御システム(Communications-based Train Control)、電波天文学(Radio Astronomy)といった無線システムが挙げられる。その他、プライマリシステムは、DVB-T(Digital Video Broadcasting-Terrestrial)システム等のテレビジョン放送システムであってもよいし、LTE(Long Term Evolution)、NR(New Radio)等のセルラー通信システムであってもよい。また、プライマリシステムは、ARNS(Aeronautical Radio Navigation Service)等の航空無線システムであってもよい。勿論、プライマリシステムは、上記の無線システムに限定されず、他の種類の無線システムであってもよい。適用する国・地域・周波数帯域に応じて、他の無線システムをプライマリシステムとしてもよい。
 また、通信システム2が利用する空き電波(White Space)は、Federal use band(3.55-3.70GHz)の電波に限られない。通信システム2は、Federal use band(3.55-3.70GHz)とは異なる周波数帯の電波を空き電波として利用してもよい。例えば、プライマリシステム(通信システム1)がテレビジョン放送システムなのであれば、通信システム2はTVホワイトスペースを空き電波として利用するシステムであってもよい。ここで、TVホワイトスペースとは、テレビジョン放送システム(プライマリシステム)に割当てられている周波数チャネルのうち、当該テレビジョン放送システムにより利用されていない周波数帯のことをいう。このとき、TVホワイトスペースは、地域に応じて使用されていないチャネルであってもよい。
 また、通信システム1及び通信システム2の関係は、通信システム1をプライマリシステム、通信システム2をセカンダリシステムとした周波数共用関係に限られない。通信システム1及び通信システム2の関係は、同一周波数を利用する同一または異なる無線システム間のネットワーク共存(Network Coexistence)関係であってもよい。
 また、本実施形態の適用は、周波数共用環境に限定されない。一般に周波数共用または周波数二次利用においては、対象帯域を利用する既存システムをプライマリシステム、二次利用者のシステムをセカンダリシステムと呼ぶが、周波数共用環境以外に本実施形態を適用する場合には、これら(プライマリシステム、セカンダリシステム)は別の用語のシステムに置き換えられてもよい。例えば、ヘテロジーニアスネットワーク(HetNet)におけるマクロセル基地局をプライマリシステム、スモールセルやリレー局をセカンダリシステムとしてもよい。また、基地局をプライマリシステム、そのカバレッジ内に存在するD2DやV2Xを実現するRelay UEやVehicle UEをセカンダリシステムとしてもよい。基地局は固定型に限らず、可搬型/移動型であってもよい。そのような場合、例えば、本発明の提供する通信制御装置は、コアネットワーク、基地局、リレー局、Relay UE等に具備されてもよい。
 なお、以下の説明で登場する「周波数」という用語は、別の用語によって置き換えられてもよい。例えば、「周波数」という用語は、「リソース」、「リソースブロック」、「リソースエレメント」、「リソースプール」、「チャネル」、「コンポーネントキャリア」、「Bandwidth Part(BWP)」「キャリア」、「サブキャリア」、「BWP(Bandwidth Part)」、「ビーム」といった用語やこれらと同等又は類似の意味を有する用語によって置き換えられてよい。
<<2.通信システムの構成>>
 以下、本開示の実施形態に係る通信システム1000を説明する。通信システム1000は、通信システム1と、通信システム2と、を備える。通信システム1(第1の無線システム)は、所定の周波数帯を利用(一次利用)して無線通信する無線通信システムである。また、通信システム2(第2の無線システム)は、通信システム1が使用する周波数帯を二次利用して無線通信する無線通信システムである。例えば、通信システム2は、通信システム1の空き電波を動的周波数共用する無線通信システムである。通信システム2は、所定の無線アクセス技術(Radio Access Technology)を使って、ユーザ或いはユーザが有する装置に対し、無線サービスを提供する。
 ここで、通信システム1、2は、W-CDMA(Wideband Code Division Multiple Access)、cdma2000(Code Division Multiple Access 2000)、LTE、NR等のセルラー通信システムであってもよい。以下の説明では、「LTE」には、LTE-A(LTE-Advanced)、LTE-A Pro(LTE-Advanced Pro)、及びEUTRA(Evolved Universal Terrestrial Radio Access)が含まれるものとする。また、「NR」には、NRAT(New Radio Access Technology)、及びFEUTRA(Further EUTRA)が含まれるものとする。
 NRは、LTEの次の世代(第5世代)の無線アクセス技術(RAT)である。NRは、eMBB(Enhanced Mobile Broadband)、mMTC(Massive Machine Type Communications)及びURLLC(Ultra-Reliable and Low Latency Communications)を含む様々なユースケースに対応できる無線アクセス技術である。
 なお、通信システム1、2は、セルラー通信システムに限られない。例えば、通信システム2は、無線LAN(Local Area Network)システム、テレビジョン放送システム、航空無線システム、宇宙無線通信システム等の他の無線通信システムであってもよい。
 本実施形態では、通信システム1はプライマリシステムであり、通信システム2はセカンダリシステムであるものとする。上述したように、通信システム1及び通信システム2は、それぞれ、複数あってもよい。なお、図1の例では、通信システム1は1つの電波利用装置10(図1に示す電波利用装置10)で構成されていたが、上述したように、複数の電波利用装置10で構成されていてもよい。電波利用装置10の構成は、後述する基地局装置40又は端末装置30の構成と同じであってもよいし、異なっていてもよい。
<2-1.通信システムの全体構成>
 通信システム1000は、典型的には、以下のエンティティで構成される。
   通信装置(例えば、電波利用装置、基地局装置、中間装置)
   端末装置
   管理装置(例えば、通信制御装置)
 なお、以下の説明では、通信装置となるエンティティは、電波利用装置10、基地局装置40、及び中間装置50であるものとするが、通信装置となるエンティティはこれらの装置に限られず、他の通信装置(例えば、管理装置20、端末装置30、通信制御装置60)であってもよい。例えば、後述の外部装置を通信システム1000の一部とみなしてもよい。勿論、外部装置は通信システム1000の一部でなくてもよい。また、端末装置30を外部装置とみなしてもよい。
 本実施形態において、端末装置30及び基地局装置40は、特筆しない限り、プライマリシステムに割り当てられた周波数帯の一部又は全部の共用を行うセカンダリシステムを構成するエンティティである。本実施形態においては、セカンダリシステムを構成するこれら通信装置には、タイプが異なる2種類の通信装置が存在することを想定する。
 まず、通信制御装置60の許可を伴う無線経路を利用せずとも通信制御装置60へアクセス可能な通信装置を、『通信装置(Type A)』と呼ぶ。具体的には、例えば、有線インターネット接続が可能な通信装置は『通信装置(Type A)』とみなすことができる。また、例えば、有線インターネット接続機能をもたない無線リレー装置であっても、通信制御装置60の許可が不要な周波数を用いた無線バックホールリンクが他の通信装置(Type A)との間で構築されていれば、そのような無線リレー装置を『通信装置(Type A)』とみなしてもよい。
 また、通信制御装置60の許可を伴う無線経路なしには通信制御装置60へアクセスできない通信装置を、「通信装置(Type B)」と呼ぶ。例えば、通信制御装置60の許可を必要とする周波数を用いてバックホールリンクを構築する必要がある無線リレー装置は「通信装置(Type B)」と見なすことができる。また、例えば、テザリングに代表される無線ネットワーク提供機能を具備するスマートフォンのような端末装置であって、バックホールリンク・アクセスリンク共に通信制御装置60の許可を必要とする周波数を用いる端末装置を「通信装置(Type B)」として扱ってもよい。
 通信装置は、必ずしも固定設置される必要はなく、自動車のように動くものに設置されていてもよい。また、必ずしも地上に存在する必要はなく、航空機、ドローン、ヘリコプター、衛星などのように空中や宇宙に存在する物体や、船、潜水艦などのように海上・海中に存在する物体に通信装置機能が具備されてもよい。典型的には、このような移動型通信装置は通信装置(Type B)に該当し、他の通信装置(Type A)と無線通信を実施することで、通信制御装置へのアクセス経路を確保する。当然のことながら、通信装置(Type A)との無線通信で用いる周波数が通信制御装置の管理対象外であれば、移動型通信装置であっても通信装置(Type A)として扱うことは可能である。
 図4は、本開示の実施形態に係る通信システム1000の構成例を示す図である。上述したように、通信システム1000は、通信システム1と、通信システム2と、を備える。なお、図中の装置は、論理的な意味での装置と考えることも可能である。つまり、同図の装置の一部が仮想マシン(VM:Virtual Machine)、コンテナ(Container)、ドッカー(Docker)などで実現され、それらが物理的に同一のハードウェア上で実装されてもよい。
 通信システム1は、電波利用装置10と、管理装置20と、を備える。図4の例では、通信システム1は、電波利用装置10、10と、それらを管理する管理装置20とを備える。なお、通信システム1は、必ずしも管理装置20を有していなくてもよい。また、通信システム1は、電波利用装置10を複数有していてもよいし、1つのみ有していてもよい。図4の例の場合、電波利用装置10、10それぞれを1つの通信システム1とみなすことも可能である。
 通信システム2は、端末装置30と、基地局装置40と、中間装置50と、通信制御装置60と、を備える。図4の例では、通信システム2として、通信システム2Aと、通信システム2Bと、が記載されている。通信システム2Aは、通信システム2a1と、通信システム2a2と、通信システム2a3と、を備える。
 通信システム2a1は、端末装置30と、基地局装置40と、を備える。通信システム2a2は、端末装置30~30と、基地局装置40~40と、を備える。通信システム2a3は、端末装置30~30と、基地局装置40~40と、中間装置50と、を備える。また、通信システム2Bは、端末装置30と基地局装置40とを備える。図4の例では、基地局装置40~40、40~40が通信装置(Type A)であり、基地局装置40が通信装置(Type B)である。
 なお、通信システム2は、必ずしも通信制御装置60を有していなくてもよい。図4の例を使って説明すると、通信制御装置60を外部に有する通信システム2a2及び通信システム2a3を、それぞれ1つの通信システム2とみなしてもよい。また、通信システム2は、必ずしも中間装置50を有していなくてもよい。図4の例では、中間装置50を有していない通信システム2a1を1つの通信システム2とみなしてもよい。
 通信システム1、2は、通信システム1、2を構成する各装置(例えば、無線通信装置等の通信装置)が連携して動作することで、ユーザ或いはユーザが有する装置に対し、無線サービスを提供する。無線通信装置は、無線通信の機能を有する装置のことである。図4の例では、電波利用装置10と基地局装置40と端末装置30とが無線通信装置に該当する。
 なお、中間装置50及び通信制御装置60は、無線通信機能を有していてもよい。この場合には、中間装置50及び通信制御装置60も無線通信装置とみなすことができる。以下の説明では、無線通信装置のことを単に通信装置ということがある。なお、通信装置は無線通信装置に限られず、例えば、無線通信機能を有さず、有線通信のみ可能な装置も通信装置とみなすことができる。
 なお、本実施形態において、「通信装置」という概念には、携帯端末等の持ち運び可能な移動体装置(例えば、端末装置)のみならず、構造物や移動体に設置される装置も含まれる。構造物や移動体そのものを通信装置とみなしてもよい。また、通信装置という概念には、端末装置のみならず、基地局装置及び中継装置も含まれる。通信装置は、処理装置及び情報処理装置の一種である。以下の説明で登場する「通信装置」の記載は、適宜「送信装置」又は「受信装置」と言い換えることが可能である。なお、本実施形態において、「通信」という概念には、「放送」が含まれるものとする。この場合、「通信装置」の記載は、適宜、「放送装置」と言い換えることが可能である。勿論、「通信装置」の記載は、適宜「送信装置」又は「受信装置」と言い換えてもよい。
 通信システム2は、端末装置30と、基地局装置40と、通信制御装置60と、中間装置50と、をそれぞれ複数備えていてもよい。図4の例では、通信システム2は、端末装置30として端末装置30、30、30、30、30等を備えている。また、通信システム2は、基地局装置40として基地局装置40、40、40、40、405、40等を備えている。また、通信システム2は、通信制御装置60として通信制御装置60、60等を備えている。
 なお、以下の説明では、無線通信装置のことを無線システムと呼ぶことがある。例えば、端末装置30~30は、それぞれ、1つの無線システムである。また、電波利用装置10及び基地局装置40~40は、それぞれ、1つの無線システムである。なお、以下の説明では、通信システム1を第1の無線システムとするが、通信システム1が備える1又は複数の電波利用装置10それぞれを第1の無線システムとみなしてもよい。また、以下の説明では、通信システム2が備える1又は複数の基地局装置40それぞれを第2の無線システムとするが、通信システム2そのものを第2の無線システムとみなしてもよいし、通信システム2が備える1又は複数の端末装置30それぞれを第2の無線システムとみなしてもよい。中間装置50及び通信制御装置60が無線通信機能を有するのであれば、中間装置50それぞれ或いは通信制御装置60それぞれを第2の無線システムとみなしてもよい。
 なお、無線システムは、少なくとも1つの無線通信装置を含む複数の通信装置で構成される1つのシステムであってもよい。例えば、1又は複数の基地局装置40と、その配下にある1又は複数の端末装置30と、で構成されるシステムを1つの無線システムとみなしてもよい。また、通信システム1又は通信システム2を、それぞれ、1つの無線システムとみなすことも可能である。以下の説明では、少なくとも1つの無線通信装置を含む複数の通信装置で構成される通信システムのことを、無線通信システム、或いは、単に通信システムと呼ぶことがある。なお、1つの無線通信装置を含む複数の通信装置で構成される1つのシステムを第1の無線システム或いは第2の無線システムとみなしてもよい。
 なお、本実施形態において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味するものとする。このとき、システムを構成する全ての構成要素が同一筐体にあってもよいし、同一筐体になくてもよい。例えば、別個の筐体に収納され、有線、及び/又は無線を介して接続されている複数の装置は1つのシステムである。また、1つの筐体の中に複数のモジュールが収納されている1つの装置も1つのシステムである。
 (電波利用装置)
 電波利用装置10は、通信システム1(プライマリシステム)を構成する無線通信装置である。電波利用装置10は、レーダ等の電波発射装置や反射波受信装置であってもよい。上述したように、プライマリシステムは、例えば、軍事レーダシステム、既存システム(例えば、テレビジョン放送システムや既存のセルラー通信システム)、又は固定衛星業務用のシステムである。
 通信システム1を軍事レーダシステムとする場合、電波利用装置10は、例えば、艦載レーダである。通信システム1をテレビジョン放送システムとする場合、電波利用装置10は、例えば、放送中継局等の放送局(設備としての放送局)である。通信システム1を固定衛星業務用のシステムとする場合、電波利用装置10は、例えば、人工衛星からの電波を受信するパラボラアンテナである。勿論、電波利用装置10はこれらに限定されない。例えば、通信システム1を既存のセルラー通信システムとする場合、電波利用装置10は基地局装置であってもよい。
 電波利用装置10は、後述の基地局装置40と同様に、無線アクセス技術を使って他の通信装置と通信可能であってもよい。このとき、電波利用装置10が使用する無線アクセス技術は、セルラー通信技術であってもよいし、無線LAN技術であってもよい。勿論、基地局装置40が使用する無線アクセス技術は、これらに限定されず、他の無線アクセス技術であってもよい。例えば、電波利用装置10が使用する無線アクセス技術は、LPWA(Low Power Wide Area)通信技術であってもよい。ここで、LPWA通信は、LPWA規格に準拠した通信のことである。LPWA規格としては、例えば、ELTRES、ZETA、SIGFOX、LoRaWAN、NB-IoT等が挙げられる。勿論、LPWA規格はこれらに限定されず、他のLPWA規格であってもよい。その他、電波利用装置10が使用する無線通信は、ミリ波を使った無線通信であってもよい。また、電波利用装置10が使用する無線通信は、電波を使った無線通信であってもよいし、赤外線や可視光を使った無線通信(光無線)であってもよい。
 その他、電波利用装置10の構成は、後述の端末装置30や基地局装置40と同様であってもよい。
 (管理装置)
 管理装置20は、電波利用装置10を管理する装置である。例えば、管理装置20は、通信システム1の運営者や管理者が保有するサーバやデータベースである。
 なお、管理装置20は、公的機関が保有するサーバやデータベースであってもよい。例えば、管理装置20は、国・地域の電波行政機関が管理・運用するデータベース(例えば、レギュラトリデータベース)であってもよい。レギュラトリデータベースとしては、例えば、FCC(Federal Communications Commissions)が運用するULS(Universal Licensing System)が挙げられる。
 また、通信システム1を既存のセルラー通信システムとする場合、管理装置20は、無線ネットワークを管理する装置であってもよい。例えば、管理装置20は、MME(Mobility Management Entity)やAMF(Access and Mobility Management Function)、或いは、SMF(Session Management Function)として機能する装置であってもよい。
 通信システム2が電波利用装置10をノードの一つとするネットワークを構成する場合、管理装置20は、例えば、ネットワーク内の電波利用装置10を統合制御するネットワークマネージャであってもよい。
 勿論、管理装置20は、これらの例に限定されない。なお、管理装置20の機能は、電波利用装置10が有していてもよい。この場合、電波利用装置10を管理装置20とみなすことが可能である。
 また、管理装置20は通信制御装置の機能を有していてもよい。この場合、は、管理装置20は通信制御装置60とみなすことが可能である。
 (端末装置)
 端末装置30は、通信機能を備えた通信機器である。端末装置30は、典型的にはスマートフォン等の通信機器である。端末装置30は、携帯電話、スマートデバイス(スマートフォン、又はタブレット)、ウェアラブル端末、IoT(Internet of Things)デバイス、PDA(Personal Digital Assistant)、パーソナルコンピュータ等のユーザ端末であってもよい。また、端末装置30は、通信機能が具備された業務用カメラであってもよいし、テレビジョン放送用の無線中継伝送装置(FPU:Field Pickup Unit)等の通信機器であってもよい。また、端末装置30は、FPU(Field Pickup Unit)等の通信機器が搭載されたバイクや移動中継車等であってもよい。また、インターネット接続を確保するために設けられる顧客構内設備(CPE:Customer Premises Equipment)と呼ばれる機器が端末として振る舞ってもよい。また、端末装置30は、M2M(Machine to Machine)デバイス、又はIoT(Internet of Things)デバイスであってもよい。端末装置は、User Equipment、User Terminal、User Station、Mobile Terminal、Mobile Station、等と呼ばれることがある。また、端末装置30は、例えば、MTC UE、NB-IoT UE、Cat.M UEと呼ばれることもある。
 また、端末装置30は、他の端末装置30とサイドリンク通信が可能であってもよい。端末装置30は、サイドリンク通信を行う際、HARQ(Hybrid ARQ(Automatic Repeat reQuest))等の自動再送技術を使用可能であってもよい。なお、端末装置30が使用する無線通信(サイドリンク通信を含む。)は、電波を使った無線通信であってもよいし、赤外線や可視光を使った無線通信(光無線)であってもよい。
 また、端末装置30は、移動体装置であってもよい。ここで、移動体装置は、移動可能な無線通信装置である。このとき、端末装置30は、移動体に設置される無線通信装置であってもよいし、移動体そのものであってもよい。例えば、端末装置30は、自動車、バス、トラック、自動二輪車等の道路上を移動する車両(Vehicle)、或いは、当該車両に搭載された無線通信装置であってもよい。なお、移動体は、モバイル端末であってもよいし、陸上(狭義の地上)、地中、水上、或いは、水中を移動する移動体であってもよい。また、移動体は、ドローン、ヘリコプター等の大気圏内を移動する移動体であってもよいし、人工衛星等の大気圏外を移動する移動体であってもよい。
 端末装置30は、同時に複数の基地局装置または複数のセルと接続して通信を実施してもよい。例えば、1つの基地局装置が複数のセル(例えば、pCell、sCell)を介して通信エリアをサポートしている場合に、キャリアアグリゲーション(CA:Carrier Aggregation)技術やデュアルコネクティビティ(DC:Dual Connectivity)技術、マルチコネクティビティ(MC:Multi-Connectivity)技術によって、それら複数のセルを束ねて基地局装置40と端末装置30とで通信することが可能である。或いは、異なる基地局装置40のセルを介して、協調送受信(CoMP:Coordinated Multi-Point Transmission and Reception)技術によって、端末装置30とそれら複数の基地局装置40が通信することも可能である。
 なお、端末装置30は、人が利用するものである必要はない。端末装置30は、いわゆるMTC(Machine Type Communication)のように、工場の機械、建物に設置されるセンサであってもよい。また、端末装置30は、M2M(Machine to Machine)デバイス、又はIoT(Internet of Things)デバイスであってもよい。また、端末装置30は、D2D(Device to Device)やV2X(Vehicle to everything)に代表されるように、リレー通信機能を具備した装置であってもよい。また、端末装置30は、無線バックホール等で利用されるCPE(Customer Premises Equipment)と呼ばれる機器であってもよい。また、端末装置30は、移動体に設置される無線通信装置であってもよいし、移動体そのものであってもよい。
 本実施形態では、特筆しない限り、端末装置30は、通信制御装置60の許可を必要とする周波数を用いた無線リンクが終端(Terminate)するエンティティにあたる。ただし、端末装置30が具備する機能や適用されるネットワークトポロジによっては、端末装置30は通信装置と同等の動作をし得る。換言すれば、本実施形態で開示する技術を実施の際には、ネットワークトポロジに応じて、通信装置を端末装置と呼んでもよいし、端末装置を通信装置と呼んでもよい。
 (基地局装置)
 基地局装置40(第2の無線システム)は、端末装置30或いは他の通信装置(他の基地局装置40、他の中間装置50)と無線通信する無線通信装置である。例えば、基地局装置40は、端末に対して通信サービスを提供する無線装置である。基地局装置40は通信装置の一種である。基地局装置40は、例えば、無線基地局(Base Station、Node B、eNB、gNB、など)や無線アクセスポイント(Access Point)に相当する装置である。基地局装置40が無線アクセスポイントである場合、基地局装置40は、非3GPPアクセス(Non-3GPP Access)と称されてもよい。基地局装置40は、無線リレー局(Relay Node)であってもよい。また、基地局装置40は、RSU(Road Side Unit)等の路上基地局装置であってもよい。また、基地局装置40は、RRH(Remote Radio Head)と呼ばれる光張り出し装置であってもよい。また、基地局装置40は、FPU(Field Pickup Unit)等の受信局装置であってもよい。また、基地局装置40は、無線アクセス回線と無線バックホール回線を時分割多重、周波数分割多重、或いは、空間分割多重で提供するIAB(Integrated Access and Backhaul)ドナーノード、或いは、IABリレーノードであってもよい。
 なお、基地局装置40が使用する無線アクセス技術は、セルラー通信技術であってもよいし、無線LAN技術であってもよい。勿論、基地局装置40が使用する無線アクセス技術は、これらに限定されず、他の無線アクセス技術であってもよい。例えば、基地局装置40が使用する無線アクセス技術は、LPWA(Low Power Wide Area)通信技術であってもよい。ここで、LPWA通信は、LPWA規格に準拠した通信のことである。LPWA規格としては、例えば、ELTRES、ZETA、SIGFOX、LoRaWAN、NB-IoT等が挙げられる。勿論、LPWA規格はこれらに限定されず、他のLPWA規格であってもよい。その他、基地局装置40が使用する無線通信は、ミリ波を使った無線通信であってもよい。また、基地局装置40が使用する無線通信は、電波を使った無線通信であってもよいし、赤外線や可視光を使った無線通信(光無線)であってもよい。
 本実施形態では、無線通信システムの基地局のことを基地局装置ということがある。なお、基地局装置40が使用する無線アクセス技術は、セルラー通信技術であってもよいし、無線LAN技術であってもよい。勿論、基地局装置40が使用する無線アクセス技術は、これらに限定されず、他の無線アクセス技術であってもよい。また、基地局装置40が使用する無線通信は、電波を使った無線通信であってもよいし、赤外線や可視光を使った無線通信(光無線)であってもよい。
 基地局装置40は、必ずしも固定されたものである必要もなく、自動車のように動くものに設置されていてもよい。また、基地局装置40は、必ずしも地上に存在する必要はなく、航空機、ドローン、ヘリコプター、衛星などのように、空中や宇宙に存在する物体や、船、潜水艦などのように海上・海中に存在する物体に通信装置機能が具備されてもよい。このような場合、基地局装置40は固定的に設置されている他の通信装置と無線通信を実施しうる。
 なお、基地局装置(基地局ともいう。)という概念には、ドナー基地局のみならず、リレー基地局(中継局、或いは中継局装置ともいう。)も含まれる。基地局という概念には、アクセスポイントも含まれる。また、基地局という概念には、基地局の機能を備えた構造物(Structure)のみならず、構造物に設置される装置も含まれる。
 構造物は、例えば、オフィスビル、家屋、鉄塔、駅施設、空港施設、港湾施設、スタジアム等の建物(Building)である。なお、構造物という概念には、建物のみならず、トンネル、橋梁、ダム、塀、鉄柱等の構築物(Non-building structure)や、クレーン、門、風車等の設備も含まれる。また、構造物という概念には、陸上(狭義の地上)又は地中の構造物のみならず、桟橋、メガフロート等の水上の構造物や、海洋観測設備等の水中の構造物も含まれる。
 基地局装置40は、ドナー局であってもよいし、リレー局(中継局)であってもよい。基地局装置40をリレー局とする場合、中継の機能が満たされるのであれば、基地局装置40が搭載される装置に限定されない。例えば、基地局装置40は、スマートフォン等の端末装置に搭載されてもよいし、自動車や人力車に搭載されてもよいし、気球や飛行機、ドローンに搭載されてもよいし、テレビやゲーム機、エアコン、冷蔵庫、照明器具などの家電に搭載されてもよい。勿論、これらの装置そのものを基地局装置40とみなしてもよい。
 また、基地局装置40は、固定局であってもよいし、移動局であってもよい。移動局は、移動可能に構成された無線通信装置(例えば、基地局装置)である。このとき、基地局装置40は、移動体に設置される装置であってもよいし、移動体そのものであってもよい。例えば、移動能力(Mobility)をもつリレー局装置は、移動局としての基地局装置40とみなすことができる。また、車両、ドローン、スマートフォンなど、もともと移動能力がある装置であって、基地局装置の機能(少なくとも基地局装置の機能の一部)を搭載した装置も、移動局としての基地局装置40に該当する。
 ここで、移動体は、スマートフォンや携帯電話等のモバイル端末であってもよい。また、移動体は、陸上(狭義の地上)を移動する移動体(例えば、自動車、自転車、バス、トラック、自動二輪車、列車、リニアモーターカー等の車両)であってもよいし、地中(例えば、トンネル内)を移動する移動体(例えば、地下鉄)であってもよい。
 また、移動体は、水上を移動する移動体(例えば、旅客船、貨物船、ホバークラフト等の船舶)であってもよいし、水中を移動する移動体(例えば、潜水艇、潜水艦、無人潜水機等の潜水船)であってもよい。
 また、移動体は、大気圏内を移動する移動体(例えば、飛行機、飛行船、ドローン等の航空機(Aerial Vehicle))であってもよいし、大気圏外を移動する移動体(例えば、人工衛星、宇宙船、宇宙ステーション、探査機等の人工天体)であってもよい。大気圏外を移動する移動体は宇宙移動体と言い換えることができる。
 また、基地局装置40は、地上に設置される地上基地局装置(地上局装置)であってもよい。例えば、基地局装置40は、地上の構造物に配置される基地局装置であってもよいし、地上を移動する移動体に設置される基地局装置であってもよい。より具体的には、基地局装置40は、ビル等の構造物に設置されたアンテナ及びそのアンテナに接続する信号処理装置であってもよい。勿論、基地局装置40は、構造物や移動体そのものであってもよい。「地上」は、陸上(狭義の地上)のみならず、地中、水上、水中も含む広義の地上である。
 なお、基地局装置40は、地上基地局装置に限られない。基地局装置40は、空中又は宇宙を浮遊可能な非地上基地局装置(非地上局装置)であってもよい。例えば、基地局装置40は、航空機局装置や衛星局装置であってもよい。
 航空機局装置は、航空機等、大気圏(成層圏を含む)内を浮遊可能な無線通信装置である。航空機局装置は、航空機等に搭載される装置であってもよいし、航空機そのものであってもよい。なお、航空機という概念には、飛行機、グライダー等の重航空機のみならず、気球、飛行船等の軽航空機も含まれる。また、航空機という概念には、重航空機や軽航空機のみならず、ヘリコプターやオートジャイロ等の回転翼機も含まれる。なお、航空機局装置(又は、航空機局装置が搭載される航空機)は、ドローン等の無人航空機であってもよい。
 なお、無人航空機という概念には、無人航空システム(UAS:Unmanned Aircraft Systems)、つなぎ無人航空システム(tethered UAS)も含まれる。また、無人航空機という概念には、軽無人航空システム(LTA:Lighter than Air UAS)、重無人航空システム(HTA:Heavier than Air UAS)が含まれる。その他、無人航空機という概念には、高高度無人航空システムプラットフォーム(HAPs:High Altitude UAS Platforms)も含まれる。
 衛星局装置は、大気圏外を浮遊可能な無線通信装置である。衛星局装置は、人工衛星等の宇宙移動体に搭載される装置であってもよいし、宇宙移動体そのものであってもよい。衛星局装置となる衛星は、低軌道(LEO:Low Earth Orbiting)衛星、中軌道(MEO:Medium Earth Orbiting)衛星、静止(GEO:Geostationary Earth Orbiting)衛星、高楕円軌道(HEO:Highly Elliptical Orbiting)衛星の何れであってもよい。勿論、衛星局装置は、低軌道衛星、中軌道衛星、静止衛星、又は高楕円軌道衛星に搭載される装置であってもよい。
 上述したように、基地局装置40は中継局装置であってもよい。中継局装置は、例えば、航空局や地球局である。中継局装置は上述の中継装置の一種とみなすことができる。航空局は、航空機局装置と通信を行うために、地上又は地上を移動する移動体に設置された無線局である。また、地球局は、衛星局装置と通信するために、地球(空中を含む。)に位置する無線局である。地球局は、大型地球局であってもよいし、VSAT(Very Small Aperture Terminal)等の小型地球局であってもよい。
 なお、地球局は、VSAT制御地球局(親局、HUB局ともいう。)であってもよいし、VSAT地球局(子局ともいう。)であってもよい。また、地球局は、地上を移動する移動体に設置される無線局であってもよい。例えば、船舶に搭載される地球局として、船上地球局(ESV:Earth Stations on board Vessels)が挙げられる。また、地球局には、航空機(ヘリコプターを含む。)に設置され、衛星局と通信する航空機地球局が含まれていてもよい。また、地球局には、地上を移動する移動体に設置され、衛星局を介して航空機地球局と通信する航空地球局が含まれていてもよい。なお、中継局装置は、衛星局や航空機局と通信する携帯移動可能な無線局であってもよい。
 基地局装置40のカバレッジの大きさは、マクロセルのような大きなものから、ピコセルのような小さなものであってもよい。勿論、基地局装置40のカバレッジの大きさは、フェムトセルのような極めて小さなものであってもよい。基地局装置40のカバレッジの大きさは多様な大きさが許容されうる。なお、分散アンテナシステム(DAS:Distributed Antenna System)のように、複数の基地局装置40によって1つのセルが形成されてもよい。また、基地局装置40はビームフォーミングの能力を有していてもよい。この場合、基地局装置40はビームごとにセルやサービスエリアが形成されてもよい。
 基地局装置40は、さまざまなエンティティによって利用、運用、及び/又は管理されうる。例えば、基地局装置40は、移動体通信事業者(MNO:Mobile Network Operator)、仮想移動体通信事業者(MVNO:Mobile Virtual Network Operator)、移動体通信イネーブラ(MNE:Mobile Network Enabler)、仮想移動体通信イネーブラ(MVNE:Mobile Virtual Network Enabler)、共用設備事業者、ニュートラルホストネットワーク(NHN:Neutral Host Network)事業者、放送事業者、エンタープライズ、教育機関(学校法人、各自治体教育委員会、等)、不動産(ビル、マンション等)管理者、個人などが想定されうる。勿論、基地局装置40の利用、運用、及び/又は管理の主体はこれらに限定されない。
 基地局装置40は一事業者が設置及び/又は運用を行うものであってもよいし、一個人が設置及び/又は運用を行うものであってもよい。勿論、基地局装置40の設置・運用主体はこれらに限定されない。例えば、基地局装置40は、複数の事業者または複数の個人が共同で設置・運用を行うものであってもよい。また、基地局装置40は、複数の事業者または複数の個人が利用する共用設備であってもよい。この場合、設備の設置及び/又は運用は利用者とは異なる第三者によって実施されてもよい。
 事業者によって運用される基地局装置40は、典型的には、コアネットワークを介してインターネット接続される。また、基地局装置40は、OA&M(Operation, Administration & Maintenance)と呼ばれる機能により、運用管理・保守がなされる。なお、通信システム2には、例えば、ネットワーク内の基地局装置40を統合制御するネットワークマネージャが存在しうる。
 基地局装置40が使用する無線アクセス技術はセルラー通信技術の場合、複数の基地局装置40がそれぞれセルを形成してもよい。基地局装置40により提供されるセルは、例えば、サービングセル(Serving cell)と呼ばれる。サービングセルはpCell(Primary Cell)及びsCell(Secondary Cell)を含んでいてもよい。デュアルコネクティビティ(Dual Connectivity)がUE(例えば、端末装置30)に提供される場合、マスターノード(MN:Master Node)によって提供されるpCell及びsCell(s)はマスターセルグループ(Master Cell Group)と呼ばれる。デュアルコネクティビティの例としては、EUTRA-EUTRA Dual Connectivity、EUTRA-NR Dual Connectivity(ENDC)、EUTRA-NR Dual Connectivity with 5GC、NR-EUTRA Dual Connectivity(NEDC)、NR-NR Dual Connectivityが挙げられる。
 さらに、サービングセルはPSCell(Primary Secondary Cell又はPrimary SCG Cell)を含んでもよい。すなわち、デュアルコネクティビティがUEに提供される場合、SN(Secondary Node)によって提供されるPSCell及びsCell(s)はSCG(Secondary Cell Group)と呼ばれる。
 1つのセルには、1つのダウンリンクコンポーネントキャリア(Downlink Component Carrier)と1つのアップリンクコンポーネントキャリア(Uplink Component Carrier)が対応付けられてもよい。また、1つのセルに対応するシステム帯域幅は、複数の帯域部分(BWP:Bandwidth Part)に分割されてもよい。この場合、1又は複数のBWPがUEに設定され、1つのBWPがアクティブBWP(Active BWP)として、UEに使用されてもよい。また、セルごと、コンポーネントキャリアごと、又はBWPごとに、端末装置30が使用できる無線資源(例えば、周波数帯域、ヌメロロジー(サブキャリアスペーシング)、スロットフォーマット(Slot configuration))が異なっていてもよい。また、一つの基地局装置40が複数のセルを提供してもよい。
 (中間装置)
 中間装置50は、1又は複数の通信装置(例えば、基地局装置40)を代理(代表)して通信制御装置60と通信する装置である。例えば、中間装置50は、プロキシ装置(プロキシシステム)である。中間装置50も通信装置の一種である。
 中間装置50は、非特許文献2等で規定されるDP(Domain Proxy)であってもよい。ここで、DPとは、複数のCBSDそれぞれに代わってSAS等の通信制御装置と通信するエンティティ、又は複数のCBSDで構成されるネットワークに代わってSAS等の通信制御装置と通信するエンティティのことをいう。なお、1又は複数の通信装置を代理(代表)して通信制御装置60と通信する機能を有しているのであれば、中間装置50は、非特許文献2で規定されるDPに限られない。ネットワーク内の基地局装置40を統合制御するネットワークマネージャを中間装置50とみなしてもよい。
 なお、プロキシシステムは、1つの装置で構成されていてもよいし、複数の装置で構成されていてもよい。中間装置50と基地局装置40との間の通信は有線通信であってもよいし、無線通信であってもよい。同様に、中間装置50と通信制御装置60との間の通信は有線通信であってもよいし、無線通信であってもよい。
 なお、中間装置50が代理(代表)する通信装置は基地局装置40に限られず、例えば、端末装置30であってもよい。以下の説明では、中間装置50が代理(代表)する1又は複数の通信装置(例えば、1又は複数の基地局装置40)のことを配下の通信装置(例えば、配下の基地局装置40)ということがある。
 (通信制御装置)
 通信制御装置60は、通信装置(例えば、基地局装置40)を管理する装置である。例えば、通信制御装置60は、基地局装置40の無線通信を制御する装置である。例えば、通信制御装置60は、基地局装置40が使用する通信パラメータ(動作パラメータともいう。)を決定し、基地局装置40に対して許可又は指示を行う装置である。
 通信制御装置60は、例えば、TVWSDB(TV White Space Database)、GLDB(Geolocation database)、SAS(Spectrum Access System)、AFC(Automated Frequency Coordination)と呼ばれるデータベースサーバである。また、通信制御装置60は、ネットワーク内の無線装置を統合制御するネットワークマネージャであってもよい。また、ETSI EN 303 387やIEEE 802.19.1-2018を例にとると、通信制御装置60は、無線機器間の電波干渉制御を行うSpectrum Manager/Coexistence Managerといった制御装置であってもよい。また、例えば、IEEE 802.11-2016にて規定されるRLSS(Registered Location Secure Server)も通信制御装置60となりうる。また、周波数共用環境下では、GLDB(Geo-location Database)やSAS(Spectrum Access System)といったデータベース(データベースサーバ、装置、システム)も通信制御装置60となりうる。勿論、通信制御装置60は、これらの例に限られない。周波数共用に係る通信装置の通信パラメータの決定および/または許可、指示、管理をエンティティを通信制御装置と呼んでよい。基本的には、通信制御装置60の制御対象は基地局装置40となるが、その配下の端末装置30を制御してもよい。
 なお、通信システム2がセルラー通信システムなのであれば、通信制御装置60は、コアネットワークを構成する装置であってもよい。コアネットワークCNは、例えば、EPC(Evolved Packet Core)や5GC(5G Core network)である。コアネットワークがEPCなのであれば、通信制御装置60は、例えば、MME(Mobility Management Entity)としての機能を有する装置であってもよい。また、コアネットワークが5GCなのであれば、通信制御装置60は、例えば、AMF(Access and Mobility Management Function)、或いは、SMF(Session Management Function)としての機能を有する装置であってもよい。なお、通信システム2がセルラー通信システムの場合であっても、通信制御装置60は必ずしもコアネットワークを構成する装置である必要はない。例えば、通信制御装置60はRNC(Radio Network Controller)としての機能を有する装置であってもよい。
 なお、通信制御装置60はゲートウェイの機能を有していてもよい。例えば、コアネットワークがEPCなのであれば、通信制御装置60は、S-GW(Serving Gateway)やP-GW(Packet Data Network Gateway)としての機能を有する装置であってもよい。また、コアネットワークが5GCなのであれば、通信制御装置60は、UPF(User Plane Function)としての機能を有する装置であってもよい。また、通信制御装置60は、SMF、PCF、UDMなどであってもよい。コアネットワークCNはSMF、PCF、UDMなどを含んでいてもよい。
 なお、通信制御装置60は必ずしもコアネットワークを構成する装置でなくてもよい。例えば、コアネットワークがW-CDMA(Wideband Code Division Multiple Access)やcdma2000(Code Division Multiple Access 2000)のコアネットワークであるとする。このとき、通信制御装置60はRNC(Radio Network Controller)として機能する装置であってもよい。
 通信制御装置60は、複数の基地局装置40それぞれと接続されてもよい。例えば5GCの場合、AMFとNG-RANとの間には、N2レファレンスポイントが存在し、NGインタフェースを介してAMFとNG-RANが互いに論理接続される。
 通信制御装置60は、基地局装置40の通信を管理する。例えば、通信制御装置60は、端末装置30が、どの位置に存在するかを、複数のセルからなるエリア単位(例えば、Tracking Area、RAN Notification Area)で端末装置30ごとに管理してもよい。なお、通信制御装置60は、は、端末装置30がどの基地局装置40(或いはどのセル)に接続しているか、どの基地局装置40(或いはどのセル)の通信エリア内に存在しているか、等を端末装置30ごとに把握して管理してもよい。
 基本的には、通信制御装置60の制御対象は基地局装置40となるが、通信制御装置60はその配下の端末装置30を制御してもよい。また、通信制御装置60は、複数のセカンダリシステムを制御してもよい。この場合、通信システム2は、複数のセカンダリシステムを備えるシステムとみなすことが可能である。
 また、通信制御装置60は、1つの通信システム2に複数存在していてもよい。通信制御装置が複数存在する場合、少なくとも以下の3種類の意思決定トポロジのうち、少なくとも1つが通信制御装置60に適用されうる。
 ・ 自律型意思決定(Autonomous Decision-Making)
 ・ 集中型意思決定(Centralized Decision-Making)
 ・ 分散型意思決定(Distributed Decision-Making)
 自律型意思決定(Autonomous Decision-Making)とは、意思決定を行うエンティティ(意思決定エンティティ、ここでは通信制御装置のこと)が、別の意思決定エンティティとは独立に意思決定を行う意思決定トポロジのことである。通信制御装置は、必要な周波数割り当てや干渉制御の計算を独自に行う。図5は、通信制御装置60が分散的に配置されるモデルを示す図である。自律型意思決定は、例えば、図5のように複数の通信制御装置60が分散的に配置される場合に適用されうる。この場合、複数の通信制御装置60(図5の例の場合、通信制御装置60及び通信制御装置60)は互いに管理する基地局装置40の情報を交換し、必要な周波数の割り当てや干渉制御の計算を行う。
 集中型意思決定(Centralized Decision-Making)とは、意思決定エンティティが、意思決定を別の意思決定エンティティに委任する意思決定トポロジのことである。図6は、1つの通信制御装置が中央制御的に複数の通信制御装置を統括するモデル(いわゆるマスタ-スレーブ型のモデル)を示す図である。中型意思決定を実施する場合には、例えば、図6のようなモデルが想定される。図6の例では、通信制御装置60がマスタ通信制御装置であり、通信制御装置60、60がスレーブ通信制御装置である。このようなシステムの場合、マスタ通信制御装置は複数のスレーブ通信制御装置を統括し、集中的に意思決定を行うことが可能である。また、マスタ通信制御装置は、負荷分散(ロードバランシング)などを目的として、各スレーブ通信制御装置に対して、意思決定権限の委譲・破棄等を実施することも可能である。
 分散型意思決定(Distributed Decision-Making)とは、意思決定エンティティが別の意思決定エンティティと連携して意思決定を行う意思決定トポロジのことである。例えば、図5のように複数の通信制御装置が配置される場合に、それぞれが意思決定を行ったあとに、意思決定結果の相互調整、交渉等を行うことが「分散型意思決定」に該当しうる。また、例えば、図6のようなモデルにおいて、負荷分散(ロードバランシング)などを目的として、マスタ通信制御装置が各スレーブ通信制御装置に対して、動的に意思決定権限の委譲・破棄等を実施することも「分散型意思決定」として考えることができる。
 集中型意思決定(Centralized Decision-Making)および分散型意思決定(Distributed Decision-Making)が適用されるシナリオにおいては、変形例として、図7のような実装も可能である。マスタ通信制御装置は外部に存在し、通信装置(例えば基地局装置40)や、複数の通信装置を束ねる中間装置(例えば中間装置50)がスレーブ通信制御装置として振る舞うような実装がなされてもよい。
 なお、通信制御装置60は、その役目のために、基地局装置40、端末装置30、及び中間装置50以外のエンティティからも必要な情報を取得しうる。具体的には、通信制御装置60は、例えば、国・地域の電波行政機関(NRA:National Regulatory Authority)が管理・運用するデータベース(レギュラトリデータベース)から、プライマリシステムの位置情報等、保護に必要な情報を取得しうる。レギュラトリデータベースの一例としては、米国連邦通信委員会(FCC:Federal Communications Commissions)が運用するULS(Universal Licensing System)などが挙げられる。保護に必要な情報の例としては、例えば、プライマリシステムの位置情報、プライマリシステムの通信パラメータ、帯域外輻射制限(OOBE(Out-of-Band Emission) Limit)、隣接チャネル漏洩比(ACLR:Adjacent Channel Leakage Ratio)、隣接チャネル選択性(Adjacent Channel Selectivity)、フェージングマージン、及び/又は保護比率(PR:Protection Ratio)等を含みうる。これらの例については、固定的な数値や取得・導出方法が法制等によって定められている場合には、それらを用いることが望ましい。
 また、その他の一例としては、通信制御装置60が、プライマリシステムの電波検知を目的に設置・運用される電波センシングシステムから電波センシング情報を取得することも想定されうる。具体的な一例としては、通信制御装置60は、米国CBRSにおける環境センシング機能(ESC:Environmental Sensing Capability)と呼ばれる電波センシングシステムから、プライマリシステムである艦載レーダの電波検知情報を取得する。また、通信装置や端末がセンシング機能を具備する場合、通信制御装置60は、これらからプライマリシステムの電波検知情報を取得してもよい。
 以下、通信システム1000が備える各装置の構成、及び外部装置を具体的に説明する。
<2-2.電波利用装置の構成>
 最初に、電波利用装置10の構成を説明する。図8は、本開示の実施形態に係る電波利用装置10の構成例を示す図である。電波利用装置10は、所定の周波数帯を一次利用する装置である。例えば、電波利用装置10は、他の無線通信装置と無線通信する通信装置(無線システム)である。この場合、電波利用装置10は、通信装置の一種とみなすことができる。なお、電波利用装置10は、電波発射装置や反射波受信装置であってもよい。電波利用装置10は、情報処理装置の一種である。
 電波利用装置10は、処理部11と、記憶部12と、制御部13と、を備える。なお、図8に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、電波利用装置10の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 処理部11は、所定の周波数帯の電波を利用するための処理部である。例えば、処理部11は、所定の周波数帯の電波の出力や受信をするための各種処理を行う信号処理部である。電波利用装置10が無線通信装置なのであれば、処理部11は、他の通信装置と無線通信する無線通信インタフェースであってもよい。ここで、他の通信装置には、セルラー通信等を行う通信装置のみならず、テレビ放送等の放送波を送信する送信装置や放送波を受信する受信装置も含まれる。
 記憶部12は、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部12は、電波利用装置10の記憶手段として機能する。
 制御部13は、電波利用装置10の各部を制御するコントローラ(Controller)である。制御部13は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサにより実現される。例えば、制御部13は、電波利用装置10内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部13は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
 なお、電波利用装置10は管理装置20としての機能を有していてもよい。この場合、制御部13は、管理装置20の制御部が有する各機能ブロックを有していてもよい。
<2-3.管理装置の構成>
 次に、管理装置20の構成を説明する。図9は、本開示の実施形態に係る管理装置20の構成例を示す図である。管理装置20は、電波利用装置10を管理する装置である。管理装置20は、電波利用装置10の電波出力を管理する装置であってもよいし、電波利用装置10の設置態様や管理主体等の情報を管理する装置であってもよい。管理装置20は、情報処理装置の一種である。
 管理装置20は、通信部21と、記憶部22と、制御部23と、を備える。なお、図8に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、管理装置20の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 通信部21は、他の装置と通信するための通信インタフェースである。通信部21は、ネットワークインタフェースであってもよいし、機器接続インタフェースであってもよい。例えば、通信部21は、NIC(Network Interface Card)等のLAN(Local Area Network)インタフェースであってもよいし、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、通信部21は、有線インタフェースであってもよいし、無線インタフェースであってもよい。通信部21は、管理装置20の通信手段として機能する。通信部21は、制御部23の制御に従って電波利用装置10と通信する。
 記憶部22は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部22は、管理装置20の記憶手段として機能する。記憶部22は、第1の識別子等を記憶する。第1の識別子については後述する。
 制御部23は、管理装置20の各部を制御するコントローラである。制御部23は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部23は、管理装置20内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部23は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
 上述したように、電波利用装置10を管理装置20とみなすことが可能である。この場合、以下の説明で登場する「管理装置20」の記載は、適宜「電波利用装置10」に置き換え可能である。
<2-4.端末装置の構成>
 次に、端末装置30の構成を説明する。図10は、本開示の実施形態に係る端末装置30の構成例を示す図である。端末装置30は、基地局装置40及び/又は通信制御装置60と無線通信する通信装置(無線システム)である。端末装置30は、情報処理装置の一種である。
 端末装置30は、無線通信部31と、記憶部32と、入出力部33と、制御部34と、を備える。なお、図10に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、端末装置30の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 無線通信部31は、他の通信装置(例えば、基地局装置40及び他の端末装置30)と無線通信する無線通信インタフェースである。無線通信部31は、制御部34の制御に従って動作する。無線通信部31は1又は複数の無線アクセス方式に対応する。例えば、無線通信部31は、NR及びLTEの双方に対応する。無線通信部31は、W-CDMAやcdma2000等、他の無線アクセス方式に対応していてもよい。
 無線通信部31は、受信処理部311と、送信処理部312と、アンテナ313と、を備える。無線通信部31は、受信処理部311、送信処理部312、及びアンテナ313をそれぞれ複数備えていてもよい。なお、無線通信部31が複数の無線アクセス方式に対応する場合、無線通信部31の各部は、無線アクセス方式毎に個別に構成されうる。例えば、受信処理部311及び送信処理部312は、LTEとNRとで個別に構成されてもよい。受信処理部311、及び送信処理部312の構成は、基地局装置40の受信処理部411、及び送信処理部412と同様である。
 記憶部32は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部32は、端末装置30の記憶手段として機能する。
 入出力部33は、ユーザと情報をやりとりするためのユーザインタフェースである。例えば、入出力部33は、キーボード、マウス、操作キー、タッチパネル等、ユーザが各種操作を行うための操作装置である。又は、入出力部33は、液晶ディスプレイ(Liquid Crystal Display)、有機ELディスプレイ(Organic Electroluminescence Display)等の表示装置である。入出力部33は、スピーカー、ブザー等の音響装置であってもよい。また、入出力部33は、LED(Light Emitting Diode)ランプ等の点灯装置であってもよい。入出力部33は、端末装置30の入出力手段(入力手段、出力手段、操作手段又は通知手段)として機能する。
 制御部34は、端末装置30の各部を制御するコントローラである。制御部34は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部34は、端末装置30内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部34は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。なお、制御部34は、基地局装置40の制御部が有する各機能ブロックを有していてもよい。
 制御部34は、図10に示すように、取得部341と、通信制御部342とを備える。制御部34を構成する各ブロック(取得部341~通信制御部342)はそれぞれ制御部34の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。機能ブロックの構成方法は任意である。なお、制御部34は上述の機能ブロックとは異なる機能単位で構成されていてもよい。
<2-5.基地局装置の構成>
 次に、基地局装置40の構成を説明する。図11は、本開示の実施形態に係る基地局装置40の構成例を示す図である。基地局装置40は、通信制御装置60の制御に従って端末装置30と無線通信する通信装置(無線システム)である。基地局装置40は、情報処理装置の一種である。
 基地局装置40は、無線通信部41と、記憶部42と、ネットワーク通信部43と、制御部44と、を備える。なお、図11に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、基地局装置40の機能は、複数の物理的に分離された装置に分散して実装されてもよい。
 無線通信部41は、他の通信装置(例えば、端末装置30、通信制御装置60、中間装置50、及び他の基地局装置40)と無線通信する無線通信インタフェースである。無線通信部41は、制御部44の制御に従って動作する。無線通信部41は複数の無線アクセス方式に対応してもよい。例えば、無線通信部41は、NR及びLTEの双方に対応してもよい。無線通信部41は、W-CDMAやcdma2000等の他のセルラー通信方式に対応してもよい。また、無線通信部41は、セルラー通信方式に加えて、無線LAN通信方式に対応してもよい。勿論、無線通信部41は、1つの無線アクセス方式に対応するだけであってもよい。
 無線通信部41は、受信処理部411と、送信処理部412と、アンテナ413と、を備える。無線通信部41は、受信処理部411、送信処理部412、及びアンテナ413をそれぞれ複数備えていてもよい。なお、無線通信部41が複数の無線アクセス方式に対応する場合、無線通信部41の各部は、無線アクセス方式毎に個別に構成されうる。例えば、基地局装置40がNRとLTEとに対応しているのであれば、受信処理部411及び送信処理部412は、NRとLTEとで個別に構成されてもよい。
 受信処理部411は、アンテナ413を介して受信された上りリンク信号の処理を行う。受信処理部411は、無線受信部411aと、多重分離部411bと、復調部411cと、復号部411dと、を備える。
 無線受信部411aは、上りリンク信号に対して、ダウンコンバート、不要な周波数成分の除去、増幅レベルの制御、直交復調、デジタル信号への変換、ガードインターバルの除去、高速フーリエ変換による周波数領域信号の抽出等を行う。例えば、基地局装置40の無線アクセス方式が、LTE等のセルラー通信方式であるとする。このとき、多重分離部411bは、無線受信部411aから出力された信号から、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)等の上りリンクチャネル及び上りリンク参照信号を分離する。復調部411cは、上りリンクチャネルの変調シンボルに対して、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase shift Keying)等の変調方式を使って受信信号の復調を行う。復調部411cが使用する変調方式は、16QAM(Quadrature Amplitude Modulation)、64QAM、又は256QAM等の多値QAMであってもよい。復号部411dは、復調された上りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された上りリンクデータ及び上りリンク制御情報は制御部44へ出力される。
 送信処理部412は、下りリンク制御情報及び下りリンクデータの送信処理を行う。送信処理部412は、符号化部412aと、変調部412bと、多重部412cと、無線送信部412dと、を備える。
 符号化部412aは、制御部44から入力された下りリンク制御情報及び下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化等の符号化方式を用いて符号化を行う。変調部412bは、符号化部412aから出力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。多重部412cは、各チャネルの変調シンボルと下りリンク参照信号とを多重化し、所定のリソースエレメントに配置する。無線送信部412dは、多重部412cからの信号に対して、各種信号処理を行う。例えば、無線送信部412dは、高速フーリエ変換による時間領域への変換、ガードインターバルの付加、ベースバンドのデジタル信号の生成、アナログ信号への変換、直交変調、アップコンバート、余分な周波数成分の除去、電力の増幅等の処理を行う。送信処理部412で生成された信号は、アンテナ413から送信される。
 記憶部42は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部42は、基地局装置40の記憶手段として機能する。記憶部42は、所望送信電力情報、動作パラメータ、保有リソース情報等を記憶する。
 所望送信電力情報は、基地局装置40が、電波の送信に必要な送信電力の情報として、通信制御装置60に要求する送信電力の情報である。
 動作パラメータは、基地局装置40の電波送信動作に関する情報(例えば、設定情報)である。例えば、通動作パラメータは、基地局装置40に許容された送信電力の最大値(最大許容送信電力)の情報である。勿論、動作パラメータは、最大許容送信電力の情報に限定されない。
 また、保有リソース情報は、基地局装置40の無線リソースの保有に関する情報である。例えば、保有リソース情報は、基地局装置40が現在使用可能な無線リソースの情報である。例えば、保有リソース情報は、基地局装置40が通信制御装置60から割り当てられた干渉マージンの保有量の情報である。保有量の情報は、後述のリソースブロック単位の情報であってもよい。すなわち、保有リソース情報は、基地局装置40が保有するリソースブロックに関する情報(例えば、リソースブロック保有量)であってもよい。
 ネットワーク通信部43は、他の装置(例えば、通信制御装置60、中間装置50、及び他の基地局装置40)と通信するための通信インタフェースである。例えば、ネットワーク通信部43は、NIC(Network Interface Card)等のLAN(Local Area Network)インタフェースである。ネットワーク通信部43は、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、ネットワーク通信部43は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部43は、基地局装置40のネットワーク通信手段として機能する。ネットワーク通信部43は、制御部44の制御に従って、他の装置と通信する。
 制御部44は、基地局装置40の各部を制御するコントローラ(Controller)である。制御部44は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサにより実現される。例えば、制御部44は、基地局装置40内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部44は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
 制御部44は、図11に示すように、取得部441と、通信制御部442と、通知部443と、を備える。制御部44を構成する各ブロック(取得部441~通知部443)はそれぞれ制御部44の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。機能ブロックの構成方法は任意である。なお、制御部44は上述の機能ブロックとは異なる機能単位で構成されていてもよい。
 なお、端末装置30の制御部34は、基地局装置40の制御部44が有する各機能ブロック(取得部441~通知部443)を有していてもよい。この場合、以下の説明で登場する「基地局装置40」の記載は、適宜「端末装置30」に置き換え可能である。また、以下の説明で登場する「制御部44」、「取得部441」、「通信制御部442」、及び「通知部443」の記載も、適宜「制御部34」に置き換え可能である。
<2-6.中間装置の構成>
 次に、中間装置50の構成を説明する。図12は、本開示の実施形態に係る中間装置50の構成例を示す図である。中間装置50は、基地局装置40及び通信制御装置60と通信する通信装置である。中間装置50は、情報処理装置の一種である。
 中間装置50は、無線通信部51と、記憶部52と、ネットワーク通信部53と、制御部54と、を備える。なお、図12に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、中間装置50の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 無線通信部51は、他の通信装置(例えば、基地局装置40、端末装置30、通信制御装置60、及び他の中間装置50)と無線通信する無線通信インタフェースである。無線通信部51は、制御部54の制御に従って動作する。無線通信部51は1又は複数の無線アクセス方式に対応する。例えば、無線通信部51は、NR及びLTEの双方に対応する。無線通信部51は、W-CDMAやcdma2000等、他の無線アクセス方式に対応していてもよい。無線通信部51の構成は、基地局装置40の無線通信部41と同様である。
 記憶部52は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部52は、中間装置50の記憶手段として機能する。記憶部52は、配下の基地局装置40(或いは、配下の基地局装置40の更に配下の端末装置30)それぞれの固有情報、通信パラメータ等を記憶していてもよい。
 ネットワーク通信部53は、他の装置(例えば、基地局装置40、通信制御装置60、及び、他の中間装置50)と通信するための通信インタフェースである。例えば、ネットワーク通信部53は、NIC等のLANインタフェースである。ネットワーク通信部53は、USBホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、ネットワーク通信部53は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部53は、中間装置50のネットワーク通信手段として機能する。ネットワーク通信部53は、制御部54の制御に従って、他の装置と通信する。
 制御部54は、中間装置50の各部を制御するコントローラである。制御部54は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部54は、中間装置50内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部54は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
 制御部54は、図12に示すように、取得部541と、通信制御部542と、通知部543と、を備える。制御部54を構成する各ブロック(取得部541~通知部543)はそれぞれ制御部54の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。機能ブロックの構成方法は任意である。なお、制御部54は上述の機能ブロックとは異なる機能単位で構成されていてもよい。制御部54を構成する各ブロックの動作は後述する。
 制御部54を構成する各ブロック(取得部541~通知部543)の動作は、基地局装置40の制御部44を構成する各ブロック(取得部441~通知部443)の動作と同じであってもよい。この場合、以下の説明で登場する「中間装置50」の記載は、適宜、「基地局装置40」に置き換え可能である。同様に、以下の説明で登場する「制御部54」、「取得部541」、「通信制御部542」、及び「通知部543」の記載は、適宜、「制御部44」、「取得部441」、「通信制御部442」、及び「通知部443」に置き換え可能である。
<2-7.通信制御装置の構成>
 通信制御装置60は、基地局装置40の無線通信を制御する装置である。通信制御装置60は、基地局装置40を介して、或いは直接、端末装置30の無線通信を制御してもよい。通信制御装置60は、情報処理装置の一種である。
 図13は、本開示の実施形態に係る通信制御装置60の構成例を示す図である。通信制御装置60は、無線通信部61と、記憶部62と、ネットワーク通信部63、制御部64と、を備える。なお、図13に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、通信制御装置60の機能は、複数の物理的に分離された構成に分散して実装されてもよい。例えば、通信制御装置60は、複数のサーバ装置により構成されていてもよい。
 無線通信部61は、他の通信装置(例えば、基地局装置40、端末装置30、中間装置50、及び他の通信制御装置60)と無線通信する無線通信インタフェースである。無線通信部61は、制御部64の制御に従って動作する。無線通信部61は1又は複数の無線アクセス方式に対応する。例えば、無線通信部61は、NR及びLTEの双方に対応する。無線通信部61は、W-CDMAやcdma2000等、他の無線アクセス方式に対応していてもよい。無線通信部61の構成は、基地局装置40の無線通信部41と同様である。
 記憶部62は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部62は、基地局装置40の記憶手段として機能する。記憶部62は、通信システム2を構成する複数の基地局装置40それぞれの動作パラメータを記憶する。なお、記憶部62は、通信システム2を構成する複数の基地局装置40それぞれの保有リソース情報を記憶していてもよい。上述したように、保有リソース情報は、基地局装置40の無線リソースの保有に関する情報である。
 ネットワーク通信部63は、他の装置(例えば、基地局装置40、中間装置50、及び、他の通信制御装置60)と通信するための通信インタフェースである。ネットワーク通信部63は、ネットワークインタフェースであってもよいし、機器接続インタフェースであってもよい。例えば、ネットワーク通信部63は、NIC(Network Interface Card)等のLAN(Local Area Network)インタフェースであってもよい。また、ネットワーク通信部63は、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、ネットワーク通信部63は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部63は、通信制御装置60の通信手段として機能する。ネットワーク通信部63は、制御部64の制御に従って基地局装置40、端末装置30及び中間装置50と通信する。
 制御部64は、通信制御装置60の各部を制御するコントローラである。制御部64は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部64は、通信制御装置60内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部64は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
 制御部64は、図13に示すように、取得部641と、算出部642と、配分部643と、グルーピング部644と、電力算出部645と、を備える。制御部64を構成する各ブロック(取得部641~電力算出部645)はそれぞれ制御部64の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。機能ブロックの構成方法は任意である。なお、制御部64は上述の機能ブロックとは異なる機能単位で構成されていてもよい。制御部64を構成する各ブロックの動作は後述する。
 なお、基地局装置40の制御部44は、通信制御装置60の制御部64が有する各機能ブロック(取得部641~電力算出部645)を有していてもよい。この場合、以下の説明で登場する「通信制御装置60」の記載は、適宜「基地局装置40」又は「中間装置50」に置き換え可能である。また、以下の説明で登場する「制御部64」、「取得部641」、「算出部642」、「配分部643」、「グルーピング部644」、「電力算出部645」の記載も、適宜、「制御部44」又は「制御部54」に置き換え可能である。
<<3.干渉モデル>>
 次に、本実施形態で想定する干渉モデルを説明する。図14は、本開示の実施形態で想定する干渉モデルの一例を示す説明図である。なお、以下の説明で登場する、基地局装置40の記載は、無線通信機能を有する他の通信装置を示すワードに置き換え可能である。
 図14に示す干渉モデルは、例えば、プライマリシステムがサービスエリアを持つ場合に適用される。図14の例では、通信システム1(プライマリシステム)はサービスエリアを有する無線通信システムとなっている。このサービスエリアが、例えば、通信システム1の保護エリアとなる。保護エリアには、干渉計算基準点(以下、干渉計算点、或いは保護点という。)は複数設定される。保護点(Protection Point)は、例えば、通信システム1の運営者や電波を管理する公的機関等(以下、管理者という。)により設定される。例えば、管理者は、保護エリアを格子状に区切り、所定の格子の中心を保護点としてもよい。保護点の決定方法は任意である。
 なお、保護点は、水平方向のみならず、垂直方向にも設定されてもよい。すなわち、保護点は、立体的に配置されてもよい。以下の説明では、立体的に配置された保護点(すなわち、水平面の想定の下での保護点ではなく、立体的空間の想定の下での保護点)のことを空間保護点(Spatial Protection Point)ということがある。
 各保護点の干渉マージンは管理者等により設定される。図14には、通信システム2(セカンダリシステム)を構成する複数の基地局装置40が、保護点に与える干渉が示されている。通信システム2の通信制御装置60は、各保護点における累積干渉が、設定された干渉マージンを超えないように、複数の基地局装置40の送信電力を制御する。
 図15は、本開示の実施形態で想定する干渉モデルの他の例を示す説明図である。図15に示す干渉モデルは、例えば、プライマリシステムが受信のみ行う場合に適用される。図15の例では、通信システム1(プライマリシステム)は、電波利用装置10として受信アンテナを有している。電波利用装置10は、例えば、衛星地上局の受信アンテナである。通信システム2の通信制御装置60は、受信アンテナの位置を保護点とし、その地点における累積干渉が干渉マージンを超えないように、複数の基地局装置40の送信電力を制御する。
<<4.プライマリシステム保護方法>>
 次に、プライマリシステム保護方法について説明する。上述したように、プライマリシステム保護方法は、例えば、以下の2種類に分類可能である。
 (1)干渉マージン一斉配分型
 (2)干渉マージン逐次配分型
 なお、干渉マージン一斉配分型のプライマリシステム保護方法の例としては、例えば、非特許文献3にて開示されている手法(例えば、最大許容EIRPの計算手法)が挙げられる。また、干渉マージン逐次配分型のプライマリシステム保護方法の例としては、例えば、非特許文献6で開示されている逐次配分処理(IAP:Iterative Allocation Process)が挙げられる。
 以下、「干渉マージン一斉配分型」のプライマリシステム保護方法と「干渉マージン逐次配分型」のプライマリシステム保護方法について説明する。なお、以下の説明で登場する、基地局装置40の記載は、無線通信機能を有する他の通信装置を示すワードに置き換え可能である。
<4-1.干渉マージン一斉配分型>
 最初に、干渉マージン一斉配分型のプライマリシステム保護方法について説明する。図16は、干渉マージン一斉配分型のプライマリシステム保護方法を説明するための説明図である。上述したように、干渉マージン一斉配分型では、通信制御装置60は、「プライマリシステムの保護基準点とセカンダリシステムの位置関係によって一意に求まる値」を基準値としてセカンダリシステムの最大許容送信電力を算出する。図16の例では、プライマリシステムの許容可能干渉閾値がIacceptとなっている。この閾値は、実際の閾値でもよいし、計算誤差や干渉変動を考慮して実際の閾値からある程度のマージン(例えば保護比率(Protection Ratio))を見込んで設定された値であってもよい。
 干渉マージン一斉配分型のプライマリシステム保護方法において、干渉制御とは、許容可能干渉閾値を越えないように、無線装置の送信電力(EIRP、Conducted Power+Antenna gain等)を決定することを意味する。このとき、基地局装置40が多数存在し、それぞれが許容可能干渉閾値を越えないようにすると、通信システム1(プライマリシステム)において受信される干渉電力が許容可能干渉閾値を越えてしまう恐れがある。そこで、通信制御装置60に登録されている基地局装置40の数に基づき、干渉マージン(許容可能干渉量)を「配分」する。
 例えば、図16の例では、基地局装置40の総数は5である。そのため、個々には、Iaccept/5の許容干渉量が配分される。基地局装置40は自身でこの配分量を認識することはできないので、通信制御装置を通じて認識する、またはこの配分量に基づいて決定された送信電力を取得する。通信制御装置は、他の通信制御装置が管理する無線装置の数を認識できないので、相互に情報をやりとりすることによって、総数を認識することができ、許容干渉量を配分することができるようになる。例えば、通信制御装置60内では3Iaccept/5の許容干渉量が割り当てられる。
 なお、この手法では、基地局装置40が使用しなかった干渉マージンは剰余干渉マージンとなり得る。図17は、剰余干渉マージンが発生した様子を示す図である。図17には、2つの通信制御装置60(通信制御装置60、60)のそれぞれに設定された総干渉量が示されている。また、図17には、2つの通信制御装置60の管理下にある複数の基地局装置40(基地局装置40~4011)が通信システム1の所定の保護点に与える干渉量(与干渉量)が示されている。2つの通信制御装置60それぞれの総干渉量から基地局装置40による干渉量を引いた干渉量が、剰余干渉マージンである。以下の説明では、余った干渉量のことを剰余干渉マージンという。剰余干渉マージンは剰余干渉量と言い換えることが可能である。
<4-2.干渉マージン逐次配分型>
 次に、干渉マージン逐次配分型のプライマリシステム保護方法について説明する。上述したように、干渉マージン逐次配分型では、通信制御装置60は、「セカンダリシステムの所望送信電力」を基準値としてセカンダリシステムの最大許容送信電力を算出する。図18は、干渉マージン逐次配分型のプライマリシステム保護方法を説明するための説明図である。干渉マージン逐次配分型では、例えば、複数の基地局装置40それぞれが、所望送信電力情報を記憶部42に記憶している。所望送信電力情報は、基地局装置40が、電波の送信に必要な送信電力の情報として、通信制御装置60に要求する送信電力の情報である。図18の例では、基地局装置4012~4015が、それぞれ、所望送信電力情報A~Dを保持している。通信制御装置60は、所望送信電力情報A~Dに基づいて、基地局装置4012~4015にそれぞれ干渉量A~Dを割り当てる。なお、本実施形態では、干渉量A~Dの配分を配分優先度に基づいて行うが、かかる点の詳細については、以下に示す<6>において後述する。
<<5.諸手続きの説明>>
 次に、本実施形態のシステム(例えば、通信システム2)を実施する際に用いることができる基本的な手続きについて説明する。なお、以下の説明で登場する、基地局装置40の記載は、無線通信機能を有する他の通信装置を示すワードに置き換え可能である。
<5-1.登録手続き(Registration Procedure)>
 登録手続きとは、基地局装置40に関するデバイスパラメータを通信制御装置60に登録する手続きのことである。典型的には、基地局装置40または複数の基地局装置40を含む1以上の通信システムが、デバイスパラメータを含む登録リクエストを通信制御装置60へ通知することで登録手続きが開始される。登録リクエストは1又は複数の基地局装置40を代理(代表)する通信システム(例えば、中間装置50等のプロキシシステム)が送信してもよい。
 以下の説明では、複数の基地局装置40を代理(代表)する通信システムは中間装置50であるものとするが、以下の説明で登場する中間装置50のワードは、プロキシシステム等、他の通信装置を代理(代表)する通信システムを示すワードに置き換え可能である。勿論、基地局装置40の記載も、無線通信機能を有する他の通信装置を示すワードに置き換え可能である。
 (所要パラメータの詳細)
 デバイスパラメータとは、例えば、以下に示す情報のことを指す。
   通信装置利用者情報
   通信装置固有の情報
   位置に係る情報
   アンテナ情報
   無線インタフェース情報
   法的情報
   設置者情報
   通信装置グループ情報
 実施の際には、これら以外の情報がデバイスパラメータとして扱われてもよい。
 通信装置利用者情報とは、通信装置の利用者に係る情報のことである。例えば、利用者ID、アカウント名、利用者名、利用者連絡先、コールサインなどが想定されうる。利用者IDおよびアカウント名は通信装置利用者が独自に生成してもよいし、通信制御装置が事前に発行したものであってもよい。コールサインは、NRAによって発行されるコールサインを用いることが望ましい。
 通信装置利用者情報は、例えば、干渉解決(Interference Resolution)の用途で用いられうる。具体的な一例として、通信制御装置が後述の<5-4>に記載の周波数利用通知手続きにおいて、通信装置が使用中の周波数利用停止判断を行い、指示をするも、引き続き当該周波数の周波数利用通知リクエストが通知される場合に、通信装置の不具合を疑って、通信装置利用者情報に含まれる利用者連絡先に対して、通信装置の挙動確認依頼の連絡を行うことができる。この例に限らず、通信装置が通信制御装置の行う通信制御に反する動作を行っていると判断される場合に、通信装置利用者情報を用いて連絡をすることができる。
 通信装置固有の情報とは、通信装置を特定可能な情報、通信装置製品情報、通信装置のハードウェアに関する情報、通信装置のソフトウェアに関する情報などである。例えば、シリアル番号、製品型番などが含まれうる。ここで、通信装置は、例えば、基地局装置40である。
 通信装置を特定可能な情報は、通信装置利用者情報、通信装置製造番号(シリアル番号)、通信装置IDなどを指す。例えば、通信装置利用者情報としては利用者ID、コールサインなどが想定されうる。利用者IDは通信装置利用者が独自に生成してもよいし、通信制御装置60が事前に発行したものであってもよい。通信装置IDは、例えば、通信装置利用者が独自に付与するものであってもよい。
 通信装置製品情報とは、例えば、認証ID、製品型番、製造者情報などが含まれうる。認証IDとは、例えば、FCC ID、CE番号、技術基準適合証明(技適)など、各国・地域の認証機関から付与されるIDのことである。業界団体等が独自の認証プログラムに基づいて発行するIDが含まれてもよい。
 これらに代表される通信装置固有の情報は、例えば、ホワイトリスト/ブラックリスト用途で用いられうる。例えば、動作中の通信装置に該当するいずれかの情報がブラックリストに含まれた場合に、通信制御装置は、後述の<5-4>に記載の周波数利用通知手続きにおいて、周波数利用停止の指示を行い、ブラックリストが解除されるまで、利用停止措置を解除しない、といったふるまいをすることが可能である。また、例えば、ブラックリストに含まれる通信装置が登録手続きを行う場合に、通信制御装置は登録を拒絶することが可能である。また、例えば、ブラックリストに含まれる情報に該当する通信装置を、本明細書に記載の干渉計算において考慮しない、または、ホワイトリストに含まれる情報に該当する通信装置のみを干渉計算で考慮する、といった動作を行うことも可能である。
 通信装置のハードウェアに関する情報は、例えば、送信電力クラス情報、製造者情報などが含まれうる。送信電力クラス情報は、例えば、FCC C.F.R Part 96においては、Category A、Category Bという2種類のクラスが規定されており、いずれかの情報が含まれうる。また、3GPP TS 36.104やTS 38.104において、eNodeB、gNodeBのクラスがいくつか規定されており、これらも用いられうる。
 送信電力クラス情報は、例えば、干渉計算の用途で用いられうる。クラスごとに規定される最大送信電力を通信装置の送信電力として干渉計算を行うことができる。
 通信装置のソフトウェアに関する情報は、例えば、通信制御装置60とのインタラクションに必要な処理が記述された実行プログラムに関するバージョン情報やビルド番号などが含まれうる。また、基地局装置40として動作するためのソフトウェアのバージョン情報やビルド番号なども含まれてもよい。
 位置に係る情報とは、典型的には、通信装置(例えば、基地局装置40)の地理位置を特定可能な情報である。例えば、GPS(Global Positioning System)、Beidou、QZSS(Quasi-Zenith Satellite System)、GalileoやA-GPS(Assisted Global Positioning System)に代表される位置測位機能によって取得される座標情報である。典型的には、緯度、経度、高度、測位誤差に関する情報が含まれうる。または、例えば、NRA(National Regulatory Authority)またはその委託機関によって管理される情報管理装置に登録される位置情報であってよい。または、例えば、特定の地理位置を原点とするX軸、Y軸、z軸の座標であってもよい。また、このような座標情報と一緒に屋外/屋内を示す識別子が付与されうる。
 また、位置に係る情報とは、通信装置(例えば、基地局装置40)が位置する領域を示す情報であってもよい。例えば、郵便番号、住所など、行政によって定められた情報が用いられてもよい。また、例えば、3以上の地理座標の集合によって領域が示されてもよい。これらの領域を示す情報は、上記座標情報と一緒に提供されてもよい。
 また、位置に係る情報には、通信装置(例えば、基地局装置40)が屋内に位置する場合に、建物のフロアを示す情報が付与されてもよい。例えば、階数、地上/地下を示す識別子などが付与されてもよい。また、例えば、建物内の部屋番号、部屋名のように、屋内のさらなる閉空間を示す情報が付与されてもよい。
 上述の位置測位機能は、典型的には、通信装置(例えば、基地局装置40)によって具備されることが望ましい。しかしながら、位置測位機能の性能や、設置位置によっては、必ずしも要求される精度を満たす位置情報が取得できるとは限らない。そのため、位置測位機能は、設置者によって用いられてもよい。そのような場合、設置者によって測定された位置情報が基地局装置40に書き込まれることが望ましい。
 アンテナ情報とは、典型的には、通信装置(例えば、基地局装置40)が具備するアンテナの性能や構成等を示す情報である。典型的には、例えば、アンテナ設置高、チルト角(Downtilt)、水平方向の向き(Azimuth)、照準(Boresight)、アンテナピークゲイン、アンテナモデルといった情報が含まれうる。
 また、アンテナ情報には、形成可能なビームに関する情報も含まれうる。例えば、ビーム幅、ビームパターン、アナログ/デジタルビームフォーミングのケイパビリティといった情報が含まれうる。
 また、アンテナ情報には、MIMO(Multiple Input Multiple Output)通信の性能や構成に関する情報も含まれうる。例えば、アンテナエレメント数、最大空間ストリーム数、といった情報が含まれうる。また、用いるコードブック(Codebook)情報や、ウェイト行列情報(SVD(Singular Value Decomposition)、EVD (Eigen Value Decomposition)、BD(Block Diagonalization)などによって得られるユニタリ行列、ZF(Zero-Forcing)行列、MMSE(Minimum Mean Square Error)行列)なども含まれうる。また、非線形演算を要するMLD(Maximum Likelihood Detection)等を具備する場合、それを示す情報が含まれてもよい。
 上記アンテナ情報には、ZoD(Zenith of Direction, Departure)が含まれてもよい。当該ZoDは、電波到来角度の一種である。上記ZoDは、通信装置(例えば、基地局装置40)のアンテナから放射される電波から他の通信装置(例えば、他の基地局装置40)により推定されてもよい。この場合に、通信装置は、基地局若しくはアクセスポイントとして動作する端末装置、D2D通信を行う装置、又はムービングリレー基地局などであってもよい。ZoDは、MUSIC(Multiple Signal Classification)又はESPRIT(Estimation of Signal Propagation via Rotation Invariance Techniques)などの電波到来方向推定技術により推定され得る。メジャメント情報として通信制御装置60によって用いられうる。
 無線インタフェース情報とは、典型的には、通信装置(例えば、基地局装置40)が具備する無線インタフェース技術を示す情報のことである。例えば、GSM(登録商標)、CDMA2000、UMTS、E-UTRA、E-UTRA NB-IoT、5G NRまたはさらなる次世代のセルラーシステムで用いられる技術や、MulteFire、LTE-U(LTE-Unlicensed)といったLTE準拠の派生技術、WiMAX、WiMAX2+といったMAN(Metropolitan Area Network)、IEEE 802.11系の無線LANといった標準技術を示す識別子情報が含まれる。無線インタフェース情報は、プロプライエタリな無線技術を示す識別子情報であってもよい。また、これらを定める技術仕様書のバージョン番号またはリリース番号も付与されうる。
 また、無線インタフェース情報には、通信装置(例えば、基地局装置40)がサポートする周波数帯域情報も含まれうる。例えば、上限周波数および下限周波数の組み合わせの1以上、中心周波数および帯域幅の組み合わせの1以上または、1以上の3GPP Operating Band番号などによって表現されうる。
 通信装置がサポートする周波数帯域情報として、さらに、キャリアアグリゲーション(CA:Carrier Aggregation)やチャネルボンディング(Channel Bonding)などの帯域拡張技術のケイパビリティ情報も含まれうる。例えば、組み合わせ可能な帯域情報などが含まれうる。また、キャリアアグリゲーションについては、プライマリコンポーネントキャリア(PCC:Primary Component Carrier)やセカンダリコンポーネントキャリア(SCC:Secondary Component Carrier)として利用したい帯域に関する情報も含まれうる。また、同時にアグリゲート可能なCC数も含まれうる。
 通信装置がサポートする周波数帯域情報として、さらに、Dual Connectivity、Multi Connectivityでサポートする周波数帯域の組み合わせ情報が含まれてもよい。併せて、Dual Connectivity、Multi Connectivityを協力して提供する他の通信装置の情報も同封して提供されてよい。
 通信装置がサポートする周波数帯域情報として、また、PAL、GAAのような電波利用優先度を示す情報が含まれてもよい。
 また、無線インタフェース情報には、通信装置(例えば、基地局装置40)がサポートする変調方式情報も含まれうる。例えば、代表的な一例として、FSK(Frequency Shift Keying)、n値PSK(Phase Shift Keying)(nは2、4、8等)やn値QAM(Quadrature Amplitude Modulation)(nは4,16,64,256等)といった一次変調方式を示す情報や、OFDM(Orthogonal Frequency Division Multiplexing)、スクランブルOFDM(Scalable OFDM)、DFT-s-OFDM(DFT spread OFDM)、GFDM(Generalized Frequency Division Multiplexing)、FBMC(Filter Bank Multi Carrier)といった二次変調方式を示す情報が含まれうる。
 また、無線インタフェース情報には、誤り訂正符号に関する情報も含まれうる。例えば、Turbo符号、LDPC(Low Density Parity Check)符号、Polar符号、消失訂正符号などのケイパビリティや適用する符号化率情報が含まれうる。
 変調方式情報や誤り訂正符号に関する情報は、別の態様として、MCS(Modulation and Coding Scheme)インデックスでも表現されうる。
 また、無線インタフェース情報には、通信装置(例えば、基地局装置40)がサポートする各無線技術仕様特有の機能を示す情報も含まれうる。例えば、代表的な一例として、LTEで規定されているTM(Transmission Mode)情報が挙げられる。この他にも、特定の機能に関して2以上のモードを有するものについては、上記TMのように無線インタフェース情報に含まれうる。また、技術仕様において、2以上のモードが存在しなくても仕様上必須でない機能を基地局装置40がサポートする場合には、これを示す情報も含まれうる。
 また、無線インタフェース情報には、通信装置(例えば、基地局装置40)がサポートする無線アクセス方式(RAT:Radio Access Technology)情報も含まれうる。例えば、TDMA(Time Division Multiple Access)、FDMA(Frequency Division Multiple Access)、OFDMA(Orthogonal Frequency Division Multiple Access)といった直交多元接続方式(OMA:Orthogonal Multiple Access)、PDMA(Power Division Multiple Access、Superposition Coding(SPC)とSuccessive Interference Canceller(SIC)との組み合わせによって実現される手法が代表例)、CDMA(Code Division Multiple Access)、SCMA(Sparse Code Multiple Access)、IDMA(Interleaver Division Multiple Access)、SDMA(Spatial Division Multiple Access)といった非直交多元接続方式(NOMA:Non Orthogonal Multiple Access)、CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)やCSMA/CD(Carrier Sense Multiple Access/Collision Detection)といった日和見的接続方式(Opportunistic Access)などを示す情報が含まれうる。
 無線インタフェース情報に日和見的接続方式を示す情報が含まれる場合、さらにアクセス方式の詳細を示す情報が含まれてもよい。具体的な一例として、ETSI EN 301 598で定義されているFBE(Frame Based Equipment)、LBE(Load Based Equipment)のどちらであるかを示す情報が含まれてもよい。
 上述の無線インタフェース情報がLBEを示す場合、さらに、ETSI EN 301 598で規定されるプライオリティクラス(Priority Class)といったLBE特有の情報を含んでもよい。
 また、無線インタフェース情報には、通信装置(例えば、基地局装置40)がサポートするデュプレクスモードに関する情報も含まれうる。代表的な一例として、例えば、FDD(Frequency Division Duplex)、TDD(Time Division Duplex)、FD(Full Duplex)が含まれうる。
 無線インタフェース情報として、TDDが含まれる場合、基地局装置40が使用する/サポートするTDD Frame Configuration情報が付与されうる。また、上記周波数帯域情報で示される周波数帯域ごとにデュプレクスモードに関する情報が含まれてもよい。
 無線インタフェース情報としてFDが含まれる場合、干渉電力検出レベルに関する情報が含まれてもよい。
 また、無線インタフェース情報には、通信装置(例えば、基地局装置40)がサポートする送信ダイバーシチ手法に関する情報も含まれうる。例えば、時空間符号化(STC:Space Time Coding)などが含まれてもよい。
 また、無線インタフェース情報には、ガードバンド情報も含まれうる。例えば、規格上定められるガードバンドサイズに関する情報が含まれうる。または、例えば、基地局装置40が所望するガードバンドサイズに関する情報が含まれてもよい。
 無線インタフェース情報は、上述の態様によらず、周波数帯域ごとに提供されてよい。
 法的情報とは、典型的には、各国・地域の電波行政機関またはそれに準ずる機関によって定められる、通信装置(例えば、基地局装置40)が順守しなければならない規制に関する情報や、通信装置(例えば、基地局装置40)が取得している認証情報などのことである。上記規制に関する情報として、典型的には、例えば、帯域外輻射の上限値情報、受信機のブロッキング特性に関する情報などが含まれうる。上記認証情報として、典型的には、例えば、型式認証(Type Approval)情報(FCC ID、技術基準適合証明など)、認証取得の基準となる法規制情報(例えばFCC規則番号、ETSI Harmonized Standard番号等)などが含まれうる。
 法的情報のうち、数値に関するものについては、無線インタフェース技術の規格書において定められているものを代用してもよい。例えば、帯域外輻射の上限値情報の代わりに、隣接チャネル漏洩比(ACLR:Adjacent Channel Leakage Ratio)を用いて、帯域外輻射の上限値を導出し利用してもよい。また、必要に応じて、ACLRそのものを用いてもよい。また、隣接チャネル選択性(ACS:Adjacent Channel Selectivity)をブロッキング特性の代わりに用いてもよい。また、これらを併用してもよいし、隣接チャネル干渉比(ACIR:Adjacent Channel Interference Ratio)を用いてもよい。なお、一般に、ACIRはACLR及びACSと以下の式(1)で示す関係を有する。
Figure JPOXMLDOC01-appb-M000001
 なお、上記式(1)では真値表現を用いているが、対数表現に適宜変換してもよい。
 設置者情報とは、通信装置(例えば、基地局装置40)の設置を行った者(設置者)を特定することが可能な情報、設置者に紐づく固有の情報などが含まれうる。代表的には、非特許文献2において定義されるCPI(Certified Professional Installer)という、通信装置の位置情報に責任を持つ個人に関する情報が含まれうる。情報として、CPIR-ID(Certified Professional Installer Registration ID)、CPI名が開示されている。また、CPIに紐づく固有の情報として、例えば、連絡用住所(Mailing/Contact address)、Eメールアドレス、電話番号、PKI(Public Key Identifier)などが開示されている。これらに限らず、必要に応じて設置者に関するその他の情報が含まれてもよい。
 通信装置グループ情報とは、通信装置が属する通信装置グループに関する情報が含まれうる。具体的には、例えば、WINNF-SSC-0010で開示されているものと同一または同等の種類のグループに係る情報が含まれうる。また、例えば、通信事業者が自身の運用ポリシーにてグループ単位で通信装置を管理している場合、そのグループ情報が含まれうる。
 ここまで列挙してきた情報は、通信装置が通信制御装置に提供せずに、通信制御装置が通信装置から提供される他の情報から推測されてもよい。具体的には、例えば、ガードバンド情報は、無線インタフェース仕様情報から推測可能である。もし、通信装置が用いる無線インタフェースがE-UTRAや5G NRである場合、TS36.104に記載の送信帯域幅仕様やTS38.104に記載の表に基づいて推測可能である。図19~図24は、送信帯域幅の仕様を示す図である。図19、図20は、E-UTRAでの送信帯域幅の仕様を示す図である図21、図22、図23、図24は、NRでの送信帯域幅の仕様を示す図である。
 換言すれば、これまで列挙してきた情報を必ずしも通信装置または複数の通信装置を代行する中間装置(例えば、ネットワークマネージャ)が通信制御装置へ提供する必要はない。通信装置または複数の通信装置を代行する中間装置が通信制御装置へ提供することは情報提供のあくまでも一手段に過ぎない。これまで列挙してきた情報は通信制御装置が本手続きを正常完了するために必要となりうる情報であることを意味し、情報の提供手段は問わない。
 なお、本実施形態の送信帯域幅は、図19~図24に示した例に限定されない。
 (所要パラメータの補足)
 登録手続きにおいて、実施形態によっては、基地局装置40のみならず端末装置30に関するデバイスパラメータを通信制御装置60に登録することも要求されることが想定される。そのような場合、上記(所要パラメータの詳細)で述べた説明中の「通信装置」という用語を「端末装置」またはそれに準ずる用語で置き換えて適用してもよい。また、上記(所要パラメータの詳細)では述べられていない「端末装置」特有のパラメータも登録手続きにおける所要パラメータとして扱われてよい。例えば、3GPPで規定されるUE(User Equipment)Categoryなどが挙げられる。
 (登録処理の詳細)
 図25は、登録手続きを説明するためのシーケンス図である。基地局装置40または複数の基地局装置40を含む1以上の通信システムは、上記デバイスパラメータを用いて登録リクエストメッセージを生成し(ステップS11)、通信制御装置60へ通知する(ステップS12)。メッセージの生成及び/又は通知は、中間装置50が行ってもよい。
 ここで、デバイスパラメータに設置者情報が含まれる場合、この情報を用いて、登録リクエストに改ざん防止の加工等を施してもよい。また、登録リクエストに含まれる情報の一部又は全部に暗号化処理が施されてもよい。具体的には、例えば、設置者と通信制御装置60との間で事前に設置者特有の公開鍵を共有しておき、設置者は秘密鍵を用いて情報の暗号化を施す、という処理が実施されうる。暗号化の対象としては、例えば、位置情報といった防犯上センシティブな情報が挙げられる。
 また、位置情報に関しては、非特許文献2で開示されているように、例えば、設置者が、直接、通信制御装置60に書き込んでもよい。
 登録リクエスト受信後、通信制御装置60は、基地局装置40の登録処理を実施し(ステップS13)、処理結果に応じて登録レスポンスを返す(ステップS14)。登録に必要な情報の不足、異常がなければ通信制御装置60は記憶部42に情報を記録し、正常完了を通知する。そうでなければ、通信制御装置60は登録失敗を通知する。登録が正常完了する場合、通信制御装置60は、通信装置個別にIDを割り振り、そのID情報を応答時に同封して通知してもよい。登録失敗となる場合、典型的には、基地局装置40または複数の基地局装置40を含む1以上の通信システム、またはこれらの運用者(例えば、移動体通信事業者や個人)や設置者は、登録リクエストの修正等を行い、正常完了するまで登録手続きを試行する。
 なお、登録手続きは、複数回実行されることがある。具体的には、例えば、移動・精度改善などにより、位置情報が所定の基準を超えて変更される場合に登録手続きが再実行されうる。所定の基準は、典型的には、法制度によって定められる。例えば、47 C.F.R Part 15において、Mode II personal/portable white space deviceは、100メートル以上位置情報が変わる場合には、再度データベースにアクセスすることが義務付けられている。
<5-2.利用可能周波数情報問い合わせ手続き(Available Spectrum Query Procedure)>
 利用可能周波数情報問い合わせ手続きとは、基地局装置40または中間装置50が、通信制御装置60に対して、利用可能な周波数に関する情報を問い合わせる手続きのことである。典型的には、基地局装置40または中間装置50が、当該基地局装置40(或いは当該中間装置50配下の基地局装置40)を特定可能な情報を含む問い合わせリクエストを通信制御装置60へ通知することで手続きが開始される。
 上述したように、「基地局装置40」の記載は、無線通信機能を有する他の通信装置を示すワードに置き換え可能である。また、「中間装置50」の記載も、プロキシシステム等、他の通信装置を代理(代表)する通信システムを示すワードに置き換え可能である。
 ここで、利用可能周波数情報とは、典型的には、当該基地局装置40(或いは当該中間装置50配下の基地局装置40)がプライマリシステムに対して致命的な干渉を与えず、安全に二次利用が可能な周波数を示す情報のことである。
 (1)例1
 利用可能周波数情報は、例えば、排除ゾーン(Exclusion Zone)と呼ばれる2次利用禁止エリアに基づいて決定される。具体的には、例えば、周波数チャネルF1を利用するプライマリシステムの保護を目的として設けられている二次利用禁止エリアに基地局装置40が設置されている場合、その基地局装置40に対しては、F1という周波数チャネルは利用可能チャネルとして通知されない。
 (2)例2
 利用可能周波数情報は、例えば、プライマリシステムに対する与干渉の度合いによっても決定されうる。具体的には、例えば、二次利用禁止エリア外であっても、プライマリシステムに対して致命的な干渉を与えると判断される場合には、当該周波数チャネルは利用可能チャネルとして通知されない場合がある。このような判断が必要となりうるエリアを近傍エリア(Neighborhood Area)ともいう。近傍エリアにおける判断に係る具体的な計算方法の一例は、後述の「利用可能周波数評価処理の詳細」に記載している。
 (3)例3
 また、利用可能周波数情報は、例1、例2で述べたプライマリシステム保護要件以外の条件によっても利用可能として通知されない周波数チャネルが存在しうる。具体的には、例えば、基地局装置40間で発生しうる干渉を事前に回避するために、当該基地局装置40(或いは当該中間装置50配下の基地局装置40)の近傍に存在する他の基地局装置40が利用中の周波数チャネルを、利用可能チャネルとして通知しない場合もある。このように、他通信装置との干渉を考慮して設定される利用可能周波数情報は、例えば、「利用推奨周波数情報」として設定し、前記利用可能周波数情報と一緒に提供されてよい。すなわち、「利用推奨周波数情報」は利用可能周波数情報の部分集合となることが望ましい。
 なお、通信制御装置60は、例1や例2でいう利用可能周波数とは別に、基地局装置40間で干渉が発生しない周波数の情報を推周波数情報として送信してもよい。ここで、例1や例2でいう利用可能周波数情報は、例えば、非特許文献13に示される利用可能チャネル(Available Channel)の情報であってもよい。また、推奨周波数情報は、非特許文献13に示される推奨チャネル(Recommended Channel)の情報であってもよい。なお、推奨周波数情報を、利用可能周波数の一種とみなすことが可能である。
 (4)例4
 例2、例3で説明した状況に該当する場合であっても、プライマリシステムや近傍の基地局装置40と同じ周波数を利用可能チャネルとして通知することは可能である。そのような場合には、典型的には、最大許容送信電力情報が利用可能周波数情報に含まれる。最大許容送信電力は、典型的には、等価等方輻射電力(EIRP:Equivalent Isotropic Radiated Power)で表現される。必ずしもこれに限られる必要はなく、例えば、空中線電力(Conducted Power)とアンテナゲインの組み合わせで提供されてもよい。さらに、アンテナゲインは、空間的な方向ごとに許容ピークゲインが設定されてもよい。
 (所要パラメータの詳細)
 基地局装置40を特定可能な情報とは、例えば、上記登録手続き時に登録した通信装置固有の情報や上述の(登録処理の詳細)で説明したID情報などが想定されうる。
 また、問い合わせリクエストには、問い合わせ要件情報も含まれうる。問い合わせ要件情報とは、例えば、利用可能か否かを知りたい周波数帯域を示す情報が含まれうる。また、例えば、送信電力情報も含まれうる。基地局装置40または中間装置50は、例えば、所望の送信電力を用いることができそうな周波数情報のみを知りたい場合に送信電力情報を含めうる。問い合わせ要件情報は必ずしも含まれる必要はない。
 また、問い合わせリクエストには、メジャメントレポートも含まれうる。メジャメントレポートは、基地局装置40および/または端末装置30が実施するメジャメントの結果が含まれる。例えば、生データのみならず、加工された情報も含まれうる。例えば、RSRP(Reference Signal Received Power)、RSSI(Reference Signal Strength Indicator)、RSRQ(Reference Signal Received Quality)に代表される標準化されたメトリックが用いられうる。
 (利用可能周波数評価処理の詳細)
 図26は、利用可能周波数情報問い合わせ手続きを説明するためのシーケンス図である。基地局装置40または中間装置50が、当該基地局装置40(或いは当該中間装置50配下の基地局装置40)を特定可能な情報を含む問い合わせリクエストを生成し(ステップS21)、通信制御装置60へ通知する(ステップS22)。
 問い合わせリクエスト受信後、通信制御装置60は、問い合わせ要件情報に基づいて、利用可能周波数の評価を行う(ステップS23)。例えば、上述の例1~例3で説明したようにプライマリシステムやその二次利用禁止エリア、近傍の基地局装置40の存在を考慮して利用可能周波数の評価を行うことが可能である。
 上述の例4で説明したように、通信制御装置60は、最大許容送信電力情報を導出してもよい。典型的には、プライマリシステムまたはその保護領域(Protection Zone)における許容可能干渉電力情報、プライマリシステムが被る干渉電力レベルの算定基準位置(Reference Point)情報、基地局装置40の登録情報、伝搬損失推定モデルを用いて算出される。具体的には、一例として、以下の式によって算出される。
 PMaxTx(dBm)=ITh(dBm)+PL(d)(dB)     
 ここで、PMaxTx(dBm)は最大許容送信電力、ITh(dBm)は許容可能干渉電力、dは基準位置(Reference Point)と基地局装置40との間の距離、PL(d)(dB)は距離dにおける伝搬損失である。本数式においては送受信機におけるアンテナゲインを明示的に示していないが、最大許容送信電力の表現方法(EIRP、Conducted power等)や受信電力の参照点(アンテナ入力点、アンテナ出力点、等)に応じて含めてよい。また、フェージングによる変動を補償するためのセーフティマージン等も含まれてよい。また、フィーダロス等、必要に応じて考慮されてよい。
 また、上記数式は、単体の基地局装置40が干渉源である仮定に基づいて記述されている。例えば、同時に複数の基地局装置40からの累積的な干渉(Aggregated Interference)を考慮しなければならない場合には、補正値を加味してもよい。具体的には、例えば、非特許文献3(ECC Report 186)で開示されている3種類(Fixed/Predetermined、Flexible、Flexible Minimized)の干渉マージン方式に基づいて補正値が決定されうる。
 なお、上記数式は、対数を用いて表現されているが、実施の際には、当然のことながら真数に変換して用いてもよい。また、本実施形態に記載される全ての対数表記のパラメータは、適宜真数に変換して用いてもよい。
 (1)手法1
 また、上述の「所要パラメータの詳細」の項で説明したように、送信電力情報が問い合わせ要件情報に含まれる場合には、上述の方法とは別の方法で利用可能周波数の評価を行うことが可能である。具体的には、例えば、送信電力情報で示される所望の送信電力を用いたと仮定した場合に、推定される与干渉量がプライマリシステムまたはその保護領域(Protection Zone)における許容可能干渉電力を下回る場合には、当該周波数チャネルが利用可能であると判断され、基地局装置40(又は中間装置50)へ通知される。
 (2)手法2
 上記他システム関連情報に基づいて、上記帯域使用条件が算出される例を説明したが、本開示は係る例に限定されない。例えば、REM(Radio Environment Map)のエリアと同様に、基地局装置40が共用帯域を使用可能なエリア/空間が予め定められている場合には、上記位置関連情報及び上記高さ関連情報のみに基づいて、利用可能周波数情報が導出されてもよい。また、例えば、位置及び高さと利用可能周波数情報とを関連付けるルックアップテーブルが用意されている場合にも、上記位置関連情報及び上記高さ関連情報のみに基づいて、上記利用可能周波数情報が導出されてもよい。
 利用可能周波数の評価は、必ずしも問い合わせリクエスト受信後に実施する必要はない。例えば、前述の登録手続きの正常完了後に、問い合わせリクエストなしに、通信制御装置60が主体的に実施してもよい。そのような場合、通信制御装置60は、手法2で例示したREMやルックアップテーブルまたはそれらと相似の情報テーブルを作成してもよい。
 いずれの手法においても、PALやGAAのような電波利用優先度についても評価を行ってもよい。例えば、登録済デバイスパラメータまたは問い合わせ要件に電波利用優先度に関する情報が含まれる場合、当該優先度に基づいて周波数利用が可能かどうかを判定し、通知してもよい。また、例えば、非特許文献2で開示されているように、事前にユーザから高優先度利用(例えば、PAL)を行う基地局装置40に関する情報(非特許文献6(WINNF-TS-0112)では、Cluster Listと呼ばれる。)が通信制御装置60に登録されている場合、その情報に基づいて評価を行ってもよい。
 利用可能周波数の評価完了後、通信制御装置60は評価結果を基地局装置40(又は中間装置50)へ通知する(ステップS24)。基地局装置40は、通信制御装置60から受け取った評価結果を用いて、所望通信パラメータの選定を行ってもよい。
<5-3.周波数利用許可手続き(Spectrum Grant Procedure)>
 周波数利用許可手続きとは、基地局装置40が通信制御装置60から周波数の二次利用許可を受けるための手続きである。典型的には、登録手続きの正常完了後、基地局装置40または複数の基地局装置40を含む1以上の通信システムが、当該基地局装置40を特定可能な情報を含む周波数利用許可リクエストを通信制御装置60へ通知することで手続きが開始される。この通知は、中間装置50が行ってもよい。なお、「登録手続きの正常完了後」というのは、必ずしも、利用可能周波数情報問い合わせ手続きを実施する必要がないことも意味する。
 上述したように、「基地局装置40」の記載は、無線通信機能を有する他の通信装置を示すワードに置き換え可能である。また、「中間装置50」の記載も、プロキシシステム等、他の通信装置を代理(代表)する通信システムを示すワードに置き換え可能である。
 本発明においては、少なくとも以下の2種類の周波数利用許可リクエストの方式が用いられうることを想定する。
   指定方式
   フレキシブル方式
 指定方式とは、基地局装置40が所望通信パラメータとして、少なくとも利用したい周波数帯域チャネル、最大送信電力を指定して、所望通信パラメータに基づく運用の許可を通信制御装置60に求めるリクエスト方式である。必ずしもこれらのパラメータに限定される必要はなく、無線インタフェース技術特有のパラメータ(変調方式やデュプレクスモードなど)が指定されてもよい。また、PAL、GAAのような電波利用優先度を示す情報が含まれてもよい。
 フレキシブル方式とは、基地局装置40が、通信パラメータに関する要件のみを指定し、当該要件を満たしつつ二次利用許可が可能な通信パラメータの指定を通信制御装置60に求めるリクエスト方式である。通信パラメータに関する要件は、帯域幅または所望最大送信電力または所望最小送信電力が含まれうる。必ずしもこれらのパラメータに限定される必要はなく、無線インタフェース技術特有のパラメータ(変調方式やデュプレクスモードなど)が指定されてもよい。具体的には、例えば、TDD Frame Configurationのうち、1以上を事前に選択して通知してもよい。
 いずれの方式であっても、メジャメントレポートが含まれてもよい。メジャメントレポートは、基地局装置40および/または端末装置30が実施するメジャメントの結果が含まれる。例えば、生データのみならず、加工された情報も含まれうる。例えば、RSRP(Reference Signal Received Power)、RSSI(Reference Signal Strength Indicator)、RSRQ(Reference Signal Received Quality)に代表される標準化されたメトリックが用いられうる。
 なお、基地局装置40が用いる方式情報については、<5-1>に記載の登録手続き時に通信制御装置60に登録されてもよい。
 (周波数利用許可処理の詳細)
 図27は、周波数利用許可手続きを説明するためのシーケンス図である。基地局装置40または複数の基地局装置40を含む1以上の通信システムが、当該基地局装置40を特定可能な情報を含む周波数利用許可リクエストを生成し(ステップS31)、通信制御装置60へ通知する(ステップS32)。リクエストの生成及び/又は通知は、中間装置50が行ってもよい。
 通信制御装置60は周波数利用許可リクエストの取得後、周波数利用許可リクエスト方式に基づいて、周波数利用許可処理を行う(ステップS33)。例えば、通信制御装置60は、<5-2.利用可能周波数情報問い合わせ手続き>で説明した手法を利用して、プライマリシステムやその二次利用禁止エリア、近傍の基地局装置40の存在を考慮して周波数利用許可処理を行うことが可能である。
 フレキシブル方式が用いられる場合、通信制御装置60は、<5-2.利用可能周波数情報問い合わせ手続き>の「利用可能周波数評価処理の詳細」で説明した手法を利用して、最大許容送信電力情報を導出してもよい。典型的には、通信制御装置60は、プライマリシステムまたはその保護領域(Protection Zone)における許容可能干渉電力情報、プライマリシステムが被る干渉電力レベルの算定基準位置(Reference Point)情報、基地局装置40の登録情報、伝搬損失推定モデルを用いて最大許容送信電力を算出する。例えば、通信制御装置60は、以下の式によって最大許容送信電力を算出する。
 PMaxTx(dBm)=ITh(dBm)+PL(d)(dB)     
 ここで、PMaxTx(dBm)は最大許容送信電力、ITh(dBm)は許容可能干渉電力、dは基準位置(Reference Point)と基地局装置40との間の距離、PL(d)(dB)は距離dにおける伝搬損失である。本数式においては送受信機におけるアンテナゲインを明示的に示していないが、最大許容送信電力の表現方法(EIRP、Conducted power等)や受信電力の参照点(アンテナ入力点、アンテナ出力点、等)に応じて数式を変形して用いてもよい。また、フェージングによる変動を補償するためのセーフティマージン等も含まれてよい。また、フィーダロス等、必要に応じて考慮されてよい。
 また、上記数式は、単体の基地局装置40が干渉源である仮定に基づいて記述されている。例えば、同時に複数の基地局装置40からの累積的な干渉(Aggregated Interference)を考慮しなければならない場合には、補正値を加味してもよい。具体的には、例えば、非特許文献3(ECC Report 186)で開示されている3種類(Fixed/Predetermined、Flexible、Flexible Minimized)の方式に基づいて補正値が決定されうる。
 伝搬損失推定モデルは、さまざまなモデルが用いられうる。用途ごとにモデルが指定される場合、指定されるモデルを用いることが望ましい。例えば、非特許文献6(WINNF-TS-0112)においては、その用途ごとに、eHATA(Extended Hata)やITM(Irregular Terrain Model)といった伝搬損失モデルが採用されている。当然ながら、本発明の実施の際には、伝搬損失モデルはこれらに限定する必要はない。
 伝搬損失推定モデルは、モデルによっては、電波伝播路に関する情報を必要とする。これには例えば、見通し内外を示す情報(LOS/NLOS)、地形情報(起伏、海抜等)、環境情報(Urban, Suburban, Rural, Open Skyなど)等が含まれうる。伝搬損失推定モデルの利用にあたって、これらの情報を通信装置の登録情報やプライマリシステムの情報から推測してもよい。または、事前指定されているパラメータがあれば、それについては事前指定されたパラメータを使用することが望ましい。
 所定の用途において、モデルが指定されていない場合、必要に応じて使い分けてもよい。具体的な一例として、例えば、他の基地局装置40への与干渉電力を推定する際には自由空間損失モデルのように損失が小さく計算されるモデルを用いる、基地局装置40のカバレッジを推定する際には損失が大きく計算されるモデルを用いる、といった使い分けが可能である。
 また、指定方式が用いられる場合、一例として、与干渉リスクの評価により周波数利用許可処理を行うことが可能である。具体的には、例えば、送信電力情報で示される所望の送信電力を用いたと仮定した場合に、推定される与干渉量がプライマリシステムまたはその保護領域(Protection Zone)における許容可能干渉電力を下回る場合には、当該周波数チャネルの利用が許可可能であると判断され、基地局装置40(又は中間装置50)へ通知される。
 いずれの手法においても、PALやGAAのような電波利用優先度についても評価を行ってもよい。例えば、登録済デバイスパラメータまたは問い合わせ要件に電波利用優先度に関する情報が含まれる場合、当該優先度に基づいて周波数利用が可能かどうかを判定し、通知してもよい。また、例えば、非特許文献2で開示されているように、事前にユーザから高優先度利用(例えば、PAL)を行う基地局装置40に関する情報(非特許文献6(WINNF-TS-0112)では、Cluster Listと呼ばれる。)が通信制御装置60に登録されている場合、その情報に基づいて評価を行ってもよい。
 周波数利用許可処理は、必ずしもリクエスト受信時に実施する必要はない。例えば、前述の登録手続きの正常完了後に、周波数利用許可リクエストなしに、通信制御装置60が主体的に実施してもよい。また、例えば、一定周期毎に周波数利用許可判定処理を実施してもよい。そのような場合、<5-2.利用可能周波数情報問い合わせ手続き>の手法2で例示したREMやルックアップテーブルそれらと相似の情報テーブルを作成してもよい。すなわち、通信制御装置60は周波数利用許可リクエスト受信後、迅速にレスポンスを返すことができるようになる。
 周波数利用許可処理の完了後、通信制御装置60は判定結果を基地局装置40へ通知する(ステップS34)。
<5-4.周波数利用通知(Spectrum Use Notification/Heartbeat)>
 周波数利用通知とは、基地局装置40または中間装置50が、通信制御装置60に対して、上記周波数利用許可手続きで利用が認められた通信パラメータに基づく周波数利用の通知を行う手続きのことである。これはハートビートとも呼ばれる。典型的には、基地局装置40または中間装置50が、当該基地局装置40を特定可能な情報を含む通知メッセージを通信制御装置60へ通知することで手続きが開始される。
 上述したように、「基地局装置40」の記載は、無線通信機能を有する他の通信装置を示すワードに置き換え可能である。また、「中間装置50」の記載も、プロキシシステム等、他の通信装置を代理(代表)する通信システムを示すワードに置き換え可能である。
 この手続きに関しては、周波数の利用が通信制御装置60から拒絶されるまでは周期的に実施されることが望ましい。この手続きが正常完了すれば、基地局装置40は、電波送信を開始または継続してもよい。例えば、グラント(Grant)の状態がGrantedだったのであれば、この手続きの成功によりグラントの状態はAuthorizedに移行する。また、グラントの状態がAuthorizedだったのであれば、この手続きの失敗によりグラントの状態はGranted或いはIdoleに移行する。
 ここで、グラントとは、通信制御装置60(例えば、SAS)が基地局装置40(例えば、CBSD)に与える電波送信の認可のことである。グラントについては、例えば、非特許文献2に記載されている。非特許文献2では、米国の3550-3700MHzの周波数共用のためのデータベース(SAS)-基地局(CBSD)間のシグナリングプロトコルが規格化されている。この規格では、SASがCBSDに与える電波送信の認可のことを“グラント(Grant)”と呼んでいる。グラントで認められる動作パラメータは、最大許容EIRP(Equivalent Isotropic Radiated Power)と周波数チャネルの2つで定義される。すなわち、複数の周波数チャネルを用いて電波送信を行うためには、CBSDはSASから複数のグラントを獲得する必要がある。
 グラントには、電波送信の許可状態を示すステート(State)が定義されている。電波送信の許可状態を示すステートとしては、Granted状態やAuthorized状態が挙げられる。図28は、電波送信の許可状態を示す状態遷移図である。図28において、Granted状態は、グラントを保有するものの電波送信をしてはいけない状態、Authorized状態はグラントで定義される動作パラメータ値に基づいて電波送信が許可されている状態を示す。この2つの状態は、同規格で規定されるハートビート手続き(Heartbeat Procedure)の結果によって遷移する。
 以下の説明では、周波数利用通知のことをハートビートリクエスト(Heartbeat Request)、或いは単にハートビート(Heartbeat)ということがある。また、ハートビートリクエストの送信間隔のことをハートビートインターバル(Heartbeat Interval)ということがある。なお、以下の説明で登場するハートビートリクエスト(Heartbeat Request)或いはハートビート(Heartbeat)の記載は、「電波送信を開始または継続するためのリクエスト」を示す他の記載に適宜置き換え可能である。同様に、ハートビートインターバルも周波数利用通知の送信間隔を示す他の記載(例えば、送信インターバル)に置き換え可能である。
 図29は、周波数利用通知手続きを説明するためのシーケンス図である。基地局装置40または複数の基地局装置40を含む1以上の通信システムが、当該基地局装置40を特定可能な情報を含む通知メッセージを生成し(ステップS41)、通信制御装置60へ通知する(ステップS42)。メッセージの生成及び/又は通知は、中間装置50が行ってもよい。
 周波数利用通知受信後、通信制御装置60は、電波送信の開始/継続が許容されるか判定してもよい(ステップS43)。判定方法として、例えば、プライマリシステムの周波数利用情報の確認が挙げられる。具体的には、プライマリシステムの利用周波数の変更、電波利用が定常的でないプライマリシステム(例えば、艦載レーダ)の周波数利用状況の変更、などに基づいて、電波送信の開始/継続許可または拒否を決定することが可能である。
 判定処理が完了したら、通信制御装置60は、判定結果を基地局装置40(又は中間装置50)へ通知する(ステップS44)。
 本手続きにおいて、通信制御装置60から基地局装置40(又は中間装置50)に対して通信パラメータの再構成(Reconfiguration)命令が行われてもよい。典型的には、周波数利用通知のレスポンスにおいて実施されうる。例えば、推奨される通信パラメータ情報が提供されうる。推奨通信パラメータ情報を提供された基地局装置40(又は中間装置50)は、推奨通信パラメータ情報を用いて、再度<5-4>に記載の周波数利用許可手続きを実施することが望ましい。
<5-5.諸手続きの補足>
 ここで、諸手続きは以降で説明する通りに、個別に実装される必要は必ずしもない。例えば、2つの異なる手続きの役割を備えた第3の手続きを代用することによって上記2つの異なる手続きを実現してもよい。具体的には、例えば、登録リクエストと利用可能周波数情報問い合わせリクエストが一体的に通知されてもよい。また、例えば、周波数利用許可手続きと周波数利用通知が一体的に実施されてもよい。当然のことながら、これらの組み合わせに限定されず、3つ以上であってもよい。また、上記手続きが分離されて実施されてもよい。
 また、本実施形態が既存システムとの周波数共用を目的として適用される場合、諸手続き又は同等の手続きは、本実施形態の技術が実施される国・地域における当該周波数帯域に係る電波法に基づいて適切なものが選定、利用されることが望ましい。例えば、特定の国・地域において特定の周波数帯の利用にあたって通信装置の登録が義務付けられる場合には、上記登録手続きが実施されることが望ましい。
 また、本実施形態における「情報を取得する」という表現またはそれに準ずる表現は、必ずしも、上記手続き通りに取得することを意味しているわけではない。例えば、利用可能周波数評価処理において基地局装置40の位置情報を用いることが記載されているが、必ずしも登録手続きで取得される情報を用いる必要はなく、利用可能周波数情報問い合わせ手続きリクエストに位置情報が含まれる場合、その位置情報を用いてもよい、ということを意味する。換言すれば、本実施形態に記載の範囲内、技術的な実現性の範囲内で、記載されているパラメータを他の手続きに含めてよいということを意味する。
 また、上記手続きで示した通信制御装置60から基地局装置40(又は中間装置50)へのレスポンスに含まれうる情報は、プッシュ通知されてもよい。具体的な一例として、利用可能周波数情報や推奨通信パラメータ情報、電波送信継続拒否通知などはプッシュ通知されてもよい。
<5-6.端末装置に関する諸手続き>
 ここまでは、主に通信装置(Type A)を想定して説明を進めてきた。しかしながら、実施形態によっては、通信装置(Type A)のみならず、端末装置30や端末装置30を含む通信装置(Type B)も通信制御装置60の管理下、すなわち通信制御装置60によって通信パラメータが決定されるシナリオが想定される。そのような場合であっても、基本的には、<5-1>から<5-4>で説明した各手続きを用いることが可能である。ただし、通信装置(Type A)と異なり、端末装置30や通信装置(Type B)は、バックホールリンクに通信制御装置60によって管理される周波数を用いる必要があり、勝手に電波送信をすることができない。そのため、サービング通信装置またはマスタ通信装置が送信する電波や認可信号(authorization signal)を検出してから初めて、通信制御装置60へのアクセスを目的としたバックホール通信を開始することが望ましい。
 一方、通信制御装置60の管理下ということは、端末装置30や通信装置(Type B)もプライマリシステム保護を目的として、許容可能通信パラメータが設定されることが望ましい。しかしながら、通信制御装置60は事前にこれらの装置の位置情報等を知ることはできない。また、これらの装置はモビリティを有する可能性が高い。すなわち、動的に位置情報が更新される。法制によっては、一定以上位置情報が変わる場合、通信制御装置60への再登録が義務付けられる場合もある。
 このような多様な端末・通信装置の利用形態を加味して、英国情報通信庁(Ofcom:Office of Communication)が定めるTVWSの運用形態(非特許文献4を参照)においては、以下に示す2種類の通信パラメータが規定されている。
   包括的可用パラメータ(Generic Operational Parameters)
   特定可用パラメータ(Specific Operational Parameters)
 包括的可用パラメータ(Generic Operational Parameters)とは、当該非特許文献において、「所定のマスタWSD(基地局装置40に相当)のカバレッジエリア内に位置するどのスレーブWSDも使用可能な動作パラメータ」として定義されている通信パラメータである。特徴としては、スレーブWSDの位置情報を用いずにWSDBによって計算されるということが挙げられる。
 包括的可用パラメータ(Generic Operational Parameters)は、通信制御装置60から既に電波送信を許可された通信装置(例えば基地局装置40)からユニキャスト/ブロードキャストによって提供されうる。例えば、FCC規則Part 15 Subpart Hで規定されるCVS(Contact Verification Signal)に代表されるブロードキャスト信号が用いられうる。または、無線インタフェース特有のブロードキャスト信号によって提供されてもよい。これにより、端末や通信装置(Type B)が、通信制御装置60へのアクセスを目的として電波送信に用いる通信パラメータとして扱うことが可能である。
 特定可用パラメータ(Specific Operational Parameters)とは、当該非特許文献において、「特定のスレーブWSD(White Space Device)が使用可能なパラメータ」として定義されている通信パラメータである。換言すれば、端末に相当するスレーブWSDのデバイスパラメータを用いて計算される通信パラメータのことである。特徴として、スレーブWSDの位置情報を用いてWSDB(White Space Database)によって計算されるということが挙げられる。
<5-7.通信制御装置間で発生する手続き>
 (情報交換)
 通信制御装置60は、他の通信制御装置60と管理情報の交換を行うことができる。図30は、管理情報の交換手続きを説明するためのシーケンス図である。図30の例では、通信制御装置60と通信制御装置60が情報を交換している。勿論、情報交換を行う通信制御装置は、通信制御装置60と通信制御装置60の2つに限られない。
 管理情報の交換手続きでは、少なくとも、以下の情報が交換されることが望ましい。
   通信装置に係る情報
   エリア情報
   保護対象システム情報
 通信装置に係る情報は、少なくとも、通信制御装置60の許可の下で動作中の通信装置(例えば、基地局装置40)の登録情報、通信パラメータ情報が含まれる。許可された通信パラメータを持たない通信装置の登録情報が含まれてもよい。
 通信装置登録情報とは、典型的には、上記登録手続きにおいて通信制御装置60に登録される基地局装置40のデバイスパラメータのことである。必ずしも、登録されている全ての情報が交換される必要はない。例えば、個人情報に該当する恐れのある情報は交換される必要はない。また、通信装置登録情報を交換する際に、暗号化・曖昧化された情報が交換されてもよい。例えば、バイナリ値に変換された情報や、電子署名の仕組みを用いて署名された情報が交換されてもよい。
 通信装置通信パラメータ情報とは、典型的には、基地局装置40が現在使用している通信パラメータに関する情報のことである。少なくとも、利用周波数、送信電力を示す情報が含まれることが望ましい。その他の通信パラメータが含まれてもよい。
 エリア情報とは、典型的には、所定の地理領域を示す情報のことである。この情報には、様々な属性の領域情報が、様々な態様で含まれうる。
 例えば、非特許文献6(WINNF-TS-0112)で開示されているPPA(PAL Protection Area)のように高優先度セカンダリシステムとなる基地局装置40の保護領域情報が含まれてもよい。この場合のエリア情報は、例えば、3以上の地理位置座標の集合で表現されうる。また、例えば、複数の通信制御装置60が共通の外部データベースを参照可能な場合、当該情報を示すIDで表現されうる。
 また、例えば、基地局装置40のカバレッジを示す情報が含まれてもよい。この場合のエリア情報も、例えば、3以上の地理位置座標の集合で表現されうる。また、例えば、基地局装置40の地理位置を原点とする円を想定し、半径サイズを示す情報でも表現されうる。また、例えば、エリア情報を記録する共通の外部データベースを複数の通信制御装置60が参照可能な場合、当該情報を示すIDで表現されうる。
 また、別の態様として、行政などによりあらかじめ定められたエリア区画に関する情報も含まれうる。具体的には、例えば、住所を示すことで一定の領域を示すことが可能である。また、例えば、ライセンスエリアなども同様に表現し得る。
 また、さらなる別の態様として、エリア情報は必ずしも平面的なエリアを表現する必要はなく、3次元の空間を表現してもよい。例えば、空間座標系を用いて表現されてもよい。また、例えば、建物の階数、フロアや部屋番号など、所定の閉空間を示す情報が用いられてもよい。
 保護対象システム情報とは、例えば、Incumbentとして扱われる無線システムの情報のことである。この情報を交換しなければならない状況としては、例えば、国境間調整(Cross-border coordination)が挙げられる。隣接する国・地域間では、同一帯域に異なるIncumbentが存在することは十分に考えられる。また、同一の無線システムを運用するIncumbentであっても、隣接する国・地域のIncumbent情報を常に取得可能とは限らない。そのような場合に、必要に応じて属する国・地域の異なる通信制御装置間で保護対象システム情報が交換されうる。
 別の態様として、保護対象システム情報は、二次免許人および二次免許の下運用される無線システムの情報を含みうる。二次免許人とは、具体的には免許の賃借人のことであり、例えば、PALを保有者から借り受けて、自身の保有する無線システムを運用することが想定される。通信制御装置が独自に賃貸管理をする場合、保護を目的として他の通信制御装置60と二次免許人および二次免許の下運用される無線システムの情報を交換しうる。
 これらの情報は、通信制御装置60に適用される意思決定トポロジによらず、通信制御装置60間で交換されうる。
 また、これらの情報は、さまざまな方式により交換されうる。以下にその一例を示す。
   ID指定方式
   期間指定方式
   領域指定方式
   ダンプ方式
 ID指定方式とは、通信制御装置60が管理する情報を特定するためにあらかじめ付与されているIDを用いて、上記IDに該当する情報を取得する方式である。例えば、ID:AAAという基地局装置40を通信制御装置60が管理していると仮定する。このときに通信制御装置60が、通信制御装置60に対してID:AAAを指定して情報取得リクエストを行う。リクエスト受信後、通信制御装置60はID:AAAの情報検索を行い、該当する基地局装置40の登録情報、通信パラメータ情報をレスポンスで通知する。
 期間指定方式とは、特定の期間を指定し、当該期間に所定の条件を満たす情報が交換されうる。
 所定の条件とは、例えば、情報の更新の有無が挙げられる。例えば、特定期間における通信装置情報の取得をリクエストで指定された場合、当該期間に新規に登録された基地局装置40の登録情報や通信パラメータに変更があった基地局装置40の登録情報と通信パラメータの情報がレスポンスで通知されうる。
 所定の条件とは、例えば、通信制御装置60が記録しているかどうかが挙げられる。例えば、特定期間における通信装置情報の取得をリクエストで指定された場合、当該期間に通信制御装置60が記録していた基地局装置40の登録情報、通信パラメータの情報がレスポンスで通知されうる。さらには、当該期間における最新情報が通知されうる。または、情報ごとに更新履歴が通知されてもよい。
 領域指定方式とは、特定の領域を指定し、当該領域に属する情報が交換される。例えば、特定領域における通信装置情報の取得をリクエストで指定された場合、当該領域に設置されている基地局装置40の登録情報、通信パラメータの情報がレスポンスで通知されうる。
 ダンプ方式とは、通信制御装置60が記録している全ての情報を提供する方式である。少なくとも、基地局装置40に関する情報やエリア情報はダンプ方式で提供されることが望ましい。
 ここまでの通信制御装置60間情報交換についての説明は、全てプル方式に基づくものである。すなわち、リクエストで指定されたパラメータに該当する情報がレスポンスされる形態であり、一例として、HTTP GETメソッドで実現されうる。しかしながら、プル方式に限定される必要はなく、プッシュ方式で能動的に他の通信制御装置60に情報を提供してもよい。プッシュ方式は、一例として、HTTP POSTメソッドで実現されうる。
 (命令・依頼手続き)
 通信制御装置60は、互いに命令及び/又は依頼を実施してもよい。具体的には、一例として、基地局装置40の通信パラメータの再構成(Reconfiguration)が挙げられる。例えば、通信制御装置60が管理する基地局装置40が、通信制御装置60の管理する基地局装置40から多大な干渉を受けていると判断される場合に、通信制御装置60が通信制御装置60に対して、基地局装置40の通信パラメータ変更依頼をしてもよい。
 別の一例として、エリア情報の再構成(Reconfiguration)が挙げられる。例えば、通信制御装置60の管理する基地局装置40に関するカバレッジ情報や保護領域情報の計算に不備が見られる場合、通信制御装置60が通信制御装置60に対して、当該エリア情報の再構成を依頼してもよい。これ以外にも、さまざまな理由からエリア情報の再構成依頼が行われてもよい。
<5-8.情報伝達手段>
 これまで説明したエンティティ間のシグナリングは、さまざまな媒体を介して実現されうる。E-UTRAまたは5G NRを例に説明する。当然のことだが、実施の際にはこれらに限定されない。
 (通信制御装置-通信装置間シグナリング)
 通信装置(例えば、基地局装置40、中間装置50)から通信制御装置60への通知は、例えば、アプリケーション層で実施されてよい。例えば、HTTP(Hyper Text Transfer Protocol)を用いて実施してもよい。HTTPのメッセージボディに所要パラメータを所定の様式に従って記述することで、シグナリングが実施されうる。さらに、HTTPを用いる場合には、通信制御装置60から通信装置への通知もHTTPレスポンスの仕組みに従って実施される。
 (通信装置-端末間シグナリング)
 通信装置(例えば、基地局装置40、中間装置50)から端末装置30への通知は、例えば、無線リソース制御(RRC:Radio Resource Control)シグナリング、システム情報(SI:System Information)、下りリンク制御情報(DCI:Downlink Control Information)の少なくともいずれかの一部を用いて実施してもよい。また、下りリンク物理チャネル(PDCCH:Physical Downlink Control Channel、PDSCH:Physical Downlink Shared Channel、PBCH:Physical Broadcast Channel)の少なくともいずれかの一部を用いて実施してもよい。
 端末装置30から通信装置への通知については、例えば、RRC(Radio Resource Control)シグナリングの一部または上りリンク制御情報(UCI:Uplink Control Information)を用いて実施してもよい。また、上りリンク物理チャネル(PUCCH:Physical Uplink Control Channel、PUSCH:Physical Uplink Shared Channel、PRACH:Physical Random Access Channel)を用いて実施してもよい。
 前述した物理層シグナリングに限らず、さらに上位層でシグナリングが実施されてもよい。例えば、アプリケーション層で実施の際には、HTTPのメッセージボディに所要パラメータを所定の様式に従って記述することで、シグナリングが実施されてもよい。
 (端末間シグナリング)
 端末装置30と他の端末装置30の通信として、端末間通信、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)が想定される。端末間通信・D2D・V2Xについては、物理サイドリンクチャネル(PSCCH:Physical Sidelink Control Channel、PSSCH:Physical Sidelink Shared Channel、PSBCH:Physical Sidelink Broadcast Channel)を用いて実施してもよい。
 サイドリンクで周波数共用の対象周波数チャネルを用いる場合、その通信パラメータは、対象周波数チャネル内のサイドリンク用リソースプール(Resource Pool)と紐づく形で通知・取得・設定をしてもよい。リソースプールは、特定の周波数リソース(例えばリソースブロック(Resource Block)、コンポーネントキャリア(Component Carrier)、など)および時間リソース(例えば無線フレーム(Radio Frame)、サブフレーム(Subframe)、スロット(Slot)、ミニスロット(Mini-slot)、など)によって設定されるサイドリンク用の無線リソースである。周波数共用の対象となる周波数チャネル内にリソースプールを設定する場合には、通信装置から端末装置へRRCシグナリング、システム情報、または下りリンク制御情報の少なくともいずれかによって設定される。そして、リソースプールおよびサイドリンクで適用すべき通信パラメータについても、通信装置から端末装置へRRCシグナリング、システム情報、または下りリンク制御情報の少なくともいずれかによって設定される。リソースプールの設定の通知と、サイドリンクで用いるべき通信パラメータの通知は、同時でもよいし、個別でもよい。
 (シグナリング手続きの例)
 図31は、セカンダリシステムの通信として端末装置30間の通信を想定した場合のシグナリング手続きの一例を示す図である。以下、図31を参照しながらシグナリング手続きを説明する。
 通信制御装置60は、セカンダリシステムの通信装置(基地局装置40又は中間装置50)が用いるべき通信パラメータを計算する(ステップS61)。そして、通信制御装置60は、セカンダリシステムの通信装置へ通信パラメータを通知する(ステップS62)。このとき、通信制御装置60から通信パラメータが通知される通信装置は、基地局装置40であってもよいし、中間装置50であってもよい。また、通信制御装置60から通信パラメータが通知される通信装置は、端末装置30であってもよい。以下の説明では、通信制御装置60から通信パラメータが通知される通信装置は、基地局装置40であるものとする。
 基地局装置40は、通信制御装置60から、セカンダリシステムの通信装置(端末装置30、基地局装置40、又は中間装置50)が用いるべき通信パラメータを取得する(ステップS63)。そして、基地局装置40は、自身が用いるべき通信パラメータを設定する(ステップS64)。そして、基地局装置40は、自身の配下の通信装置に対して、配下の通信装置が用いるべき通信パラメータを通知する(ステップS65)。配下の通信装置は、端末装置30であってもよいし、他の基地局装置40であってもよい。以下の説明では、配下の通信装置は、端末装置30であるものとする。
 端末装置30は、基地局装置40から、自身が用いるべき通信パラメータを取得する(ステップS66a、S66b)。そして、端末装置30は、自身が用いるべき通信パラメータを設定する(ステップS67a、S67b)。そして、端末装置30は、セカンダリシステムの他の通信装置(例えば、他の端末装置30)と通信を行う(ステップS68a、S68b)。
<5-9.代表的動作フロー>
 次に、干渉制御計算に係る代表的な動作フローを説明する。
 図32は、グラントに係る動作の一例を示すシーケンス図である。具体的には、図32は、<5-3.周波数利用許可手続き>および<5-4.周波数利用通知>の手続きに相当する通信システム2の動作を示すシーケンス図である。なお、図32に示す動作フローはあくまで一例であり、基地局装置40、通信制御装置60、及び中間装置50が置かれた状態等により様々に変化する。
 まず、通信制御装置60は、周期的処理の実行タイミングとなったら、周期的処理を実行する(ステップS71)。周期的処理は、通信制御装置60間の情報同期、及び、プライマリシステム保護に関わる計算を実行する処理である。周期的処理は、例えば、非特許文献10と非特許文献11に示されるCPAS(Coordinated Periodic Activities among SASs)である。以下の説明では、周期的処理のことを周期的保護計算ということもある。周期的処理の実行タイミングは、例えば、前回の周期的処理実行から24時間後である。勿論、周期的処理の実行間隔は24時間に限定されない。
 図33は、周期的処理の具体的処理内容を示す図である。図33の例では、通信制御装置60と通信制御装置60とが情報同期及びプライマリシステム保護計算を行っている。勿論、周期的処理(情報同期等)を行う通信制御装置60は2つより多くてもよい。
 図33に示すように、複数の通信制御装置60は、それぞれ、周期的処理を実行する(ステップS71)。まず、複数の通信制御装置60は、それぞれ、他の通信制御装置60と情報の同期をとる(ステップS71a)。そして、複数の通信制御装置60は、それぞれ、プライマリシステム保護計算を行う(ステップS71b、ステップS71c)。このとき、通信制御装置60は、個々の通信ノード(例えば、基地局装置40)がプライマリシステムに対して個別に与えうる干渉量の推定値や剰余干渉マージン等を計算してもよい。
 図32に戻り、基地局装置40或いは中間装置50は、通信制御装置60に対してグラントリクエスト(Grant Request)を送信する(ステップS72)。本実施形態では、基地局装置40或いは中間装置50は、グラントリクエストに、当該グラントリクエストの結果割り当てられる周波数リソース(電波資源)の利用態様に関する情報を付与する。例えば、基地局装置40或いは中間装置50は、グラントリクエストに、グラントの用途や詳細を示す情報を付加する。
 通信制御装置60は、利用態様情報が付加されたグラントリクエストを取得する。通信制御装置60は、利用態様情報に基づいて周波数リソースに関する処理(すなわち、グラントに関する処理)を行う(ステップS73)。例えば、通信制御装置60は、利用態様情報に基づいて基地局装置40に利用可能周波数を割り当てるための利用許可判定処理を行う。
 周波数を割り当てたら、通信制御装置60は、基地局装置40或いは中間装置50に対し、グラントレスポンス(Grant Response)を送信する。図32の例では、通信制御装置60は、グラントレスポンスとしてグラントリクエストの成功(図32に示すApprove)を通知している(ステップS74)。基地局装置40の取得部441又は中間装置50の取得部541は、通信制御装置60からグラントレスポンスを取得する。グラントリクエストの成功により、基地局装置40のグラント状態は、図28に示すように、IdoleからGrantedに移行する。基地局装置40は、割り当てられたグラントに基づいて各部の設定を行う。
 続いて、基地局装置40或いは中間装置50は、通信制御装置60に対してハートビートリクエスト(Heartbeat Request)を送信する(ステップS75)。そして、通信制御装置60は、送信されたハートビートリクエストを取得する。そして、通信制御装置60は、ハートビートレスポンス(Heartbeat Response)を送信する。
 なお、図32の例では、基地局装置40に割り当てられたグラントは未だ周期的処理(例えば、CPAS)を通過していない。そのため、図32の例では、通信制御装置60は電波送信の開始を承認できない。そこで、通信制御装置60は、ハートビートレスポンスとして、電波送信の停止指示(Suspension instruction)を送信する(ステップS75)。
 以降、基地局装置40或いは中間装置50は、通信制御装置60から通知されたハートビートインターバルでハートビートリクエストを送信し続ける。このハートビートリクエストに対して、通信制御装置60は、次回の周期的処理が完了するまで、ハートビートレスポンスとして電波送信の停止指示を送信し続ける。
 周期的処理の実行タイミングとなったら、通信制御装置60を含む複数の通信制御装置60は、それぞれ、周期的処理を実行する(ステップS77)。例えば、複数の通信制御装置60は、図33に示すように、それぞれ、他の通信制御装置60と情報の同期をとる(ステップS77a)。そして、複数の通信制御装置60は、それぞれ、プライマリシステム保護計算を行う(ステップS77b、ステップS77c)。この保護計算が、本実施形態の干渉計算の一例である。
 続いて、基地局装置40或いは中間装置50は、通信制御装置60に対してハートビートリクエストを送信する(ステップS78)。そして、通信制御装置60は、送信されたハートビートリクエストを取得する。そして、通信制御装置60は、ハートビートレスポンスを送信する。このとき、基地局装置40に割り当てられたグラントは周期的処理を通過しているで、通信制御装置60はハートビートリクエストを送信した基地局装置40に対して電波送信の開始を承認できる。そこで、通信制御装置60は、ハートビートレスポンスとして、ハートビートレスポンスの成功(図32に示すAuthorize)を送信する(ステップS78)。ハートビートリクエストの成功により、基地局装置40のグラント状態は、図28に示すように、GrantedからAuthorizedに移行する。基地局装置40は、割り当てられたグラントに基づいて無線通信部41を制御することで、無線通信を行う。
 上述したように、グラントの状態(電波送信の許可状態を示すステート)は、ハートビート手続きの結果によって遷移する。ハートビート手続きには、さまざまな目的が定義されているが、その一つに、同帯域の既存システム(例えば、艦載レーダ)の電波利用時の基地局装置40の電波停止指示がある。通信制御装置60は、例えば、通信システム1等の既存システムが電波利用を行っていると判断される場合に、所定時間以内(例えば、300秒以内)に干渉を与えうる全ての基地局装置40の電波を停止しなければならないと義務付けられる。このとき、停止指示をプッシュ通知することが実装上複雑になると想定されることから、通信制御装置60はハートビートレスポンスを用いて電波停止指示を行ってもよい。以下の説明では、通信制御装置60が実行する基地局装置40に周波数リソースの利用を停止させるための処理のことを「周波数リソースの利用停止処理」或いは「グラントの停止処理」という。
 例えば、基地局装置40或いは中間装置50は、通信制御装置60に対してハートビートリクエストを送信する(ステップS70)。そして、通信制御装置60は、送信されたハートビートリクエストを取得する。そして、通信制御装置60は、通信システム1等のプライマリシステムが電波利用を行っているか否か判別する。プライマリシステムが所定の周波数リソースに係る電波利用を行っていると判断される場合には、通信制御装置60は、ハートビートレスポンスとして、電波送信の停止指示(Suspension instruction)を送信する(ステップS71)。基地局装置40は、所定の周波数リソースに係る電波の送信を停止する。これにより、基地局装置40のグラント状態は、図28に示すように、AuthorizedからIdle(或いはGranted)に移行する。又は、基地局装置40のグラント状態は、図28に示すように、GrantedからIdoleに移行する。
<<6.干渉マージンの配分に係る動作>>
 次に、通信制御装置60の動作を例に、本実施形態の干渉マージンの配分に係る動作を説明する。
<6-1.従来のIAPに係る動作>
 まず、従来のIAPに係る動作について説明する。従来のIAPでは、以下に示す(a)~(d)の処理を行う。
 (a)の処理
 (a)の処理では、まず、干渉計算対象となる第2の無線システム(あるいは保護点、保護エリア)に対応する全てのグラントに対して干渉マージンを仮で等配分する。つまり、第1の無線システムが許容する総干渉マージンを干渉計算対象である複数の第2の無線システムそれぞれに対して仮等配分する。
 (b)の処理
 つづいて、(b)の処理では、グラントに基づいて推定される与干渉量(推定与干渉量)が、(a)の処理で仮等配分された干渉マージン(仮配分干渉マージン)を下回る(干渉マージン以下となる)場合には、推定与干渉量を干渉マージン配分量とする。なお、与干渉量が仮配分干渉マージンを下回るグラントをサティスファイドグラント(Satisfied Grant)と称し、与干渉量が仮配分干渉マージンを上回るグラントをアンサティスファイドグラント(Unsatisfied Grant)と称することとする。また、以下では、仮配分干渉マージンと干渉マージン配分量との差分を余剰マージン(余剰干渉量)と称することとする。
 (c)の処理
 つづいて、(c)の処理では、1以上のアンサティスファイドグラントに対して、余剰マージンの総量を等分して再配分する。そして、再配分により推定与干渉量が再配分後の仮配分干渉マージンを下回る場合、推定与干渉量を干渉マージン配分量とする。なお、(c)の処理により、推定与干渉量が再配分後の仮配分干渉マージンを下回るアンサティスファイドグラントについては、サティスファイドグラントとして扱う。
 (d)の処理
 つづいて、(d)の処理は、(c)の処理を経てもアンサティスファイドグラントが残る場合に行われる。具体的には、(d)の処理では、(c)の処理で余剰マージンが発生する場合、余剰マージン総量を等分してアンサティスファイドグラントに再配分し、(c)の処理を繰り返す。なお、(c)の処理で余剰マージンが発生しない(サティスファイドグラント扱いとなるグラントが出てこなくなる)場合、アンサティスファイドグラントの送信電力を1dB下げて,再度(c)の処理を繰り返す。なお、(d)の処理は、アンサティスファイドグラントが無くなるまで繰り返す。
<6-2.配分優先度付けのケース>
 本実施形態では、配分優先度付けを行うことで、従来のIAPを改良する。なお、配分優先度付けは以下の2通りのケースが想定される。
 ケース1:Authorization statusによる配分優先度付け
 ケース2:所要パラメータによる配分優先度付け
<ケース1:Authorization statusによる配分優先度付け>
 ここで,Authorization statusとは典型的には、PAL/GAAのようなTierを示す情報である。つまり、Authorization statusとは、第2の無線システムに関する情報であり、より詳細には、CBRSの階層に関する情報である。なお、同一Tierであっても、Tier内に同等のランクが存在してもよい。本説明では、PAL/GAAという用語を用いるが、実施の際にはこれらに限定されない。この例は例えば以下のような状況またはこれらに準ずる状況で効果が期待される。
・既存層の保護
・特定のPALについて、他のPALやGAAからの保護
 Authorization statusによる配分優先度付けを行う場合、IAPを以下の(a-1)~(c-1)の処理のように改良する。
 (a-1)の処理
 (a-1)の処理では、まず、干渉計算対象の全てのグラントを、Authorization statusで上位と下位にグルーピングする。例えば、PALを上位グループに、GAAを下位グループにグルーピングする。具体的には、通信制御装置60は、まず、第2の無線システムに関する情報(Authorization status)を取得し、取得した情報に基づいて配分優先度を算出する。そして、通信制御装置60は、配分優先度に応じて複数の第2の無線システムを上位グループおよび下位グループにグルーピングする。なお、グルーピングするグループ数は、3つ以上であってもよい。また、上述したように、通信制御装置60は、CBRSにおける階層が上位(PAL)である第2の無線システムほど配分優先度を高くすることが好ましい。
 (b-1)の処理
 (b-1)の処理では、上位グループのグラントに対して、従来のIAPである(a)~(d)の処理を適用する。すなわち、通信制御装置60は、上位グループに含まれる複数の第2の無線システムそれぞれについて、従来のIAPを適用することで、グラントに基づいて推定された与干渉量と同じ量の干渉マージンを配分する。また、詳細は後述するが、上位グループで余剰となった干渉マージン(余剰マージン)を下位グループへ再配分する。すなわち、通信制御装置60は、複数のグループのうち、配分優先度が高い上位グループほど、配分される干渉マージンを多くする。これにより、配分優先度が上位のグループに干渉マージンが配分される機会が増えることで、電波利用機会を増加させることができる。
 (c-1)の処理
 (c-1)の処理では、通信制御装置60は、(b-1)の処理完了後の余剰マージンをチェックする。そして、通信制御装置60は、余剰マージンが発生する場合、すなわち、上位グループに含まれる複数の第2の無線システムすべてに対して与干渉量と同じ量の干渉マージンを配分し、かつ、余剰マージンがある場合、下位グループに対して余剰マージンを配分する。すなわち、通信制御装置60は、上位グループに含まれる複数の第2の無線システムそれぞれに対して総干渉量(第1の無線システムが許容する全干渉量)を仮等配分し、仮等配分した干渉量(仮干渉量)が与干渉量を超える場合、余剰マージンを下位グループに含まれる他の第2の無線システムへ再配分する。
 なお、配分方法は、従来のIAPである(a)~(d)の処理を適用する。すなわち、通信制御装置60は、下位グループに含まれる複数の第2の無線システムそれぞれについて、従来のIAPを適用することで、グラントに基づいて推定された与干渉量と同じ量の干渉マージンを配分する。これにより、余剰マージンが存在することは、空間的な空き電波が存在することと同義であるため、周波数利用効率を向上させることができる。また、再配分先は、アンサティスファイドグラントである。すなわち、通信制御装置60は、仮干渉量が与干渉量未満である第2の無線システムに対して余剰マージンを再配分する。これにより、より多くのアンサティスファイドグラントをサティスファイドグラントとして扱うことができる。
 また、余剰マージンが発生しない場合、下位グループに対する干渉マージン配分を断念する。すなわち、グラント割り当てを取り消す(Terminate)。なお、グラント割り当てを取り消す場合、周波数利用通知リクエストに対する応答(例えば、ハートビートレスポンス)として、通信制御装置から通信装置にグラント割り当ての取消通知がされてもよい。つまり、通信制御装置60は、下位グループ(あるいは上位グループ)において、余剰マージンが無く、かつ、仮干渉量が与干渉量未満である第2の無線システムが有る場合、かかる第2の無線システムについては、電波送信の認可(グラント)を取り消す。
 なお、干渉計算対象となる保護点(あるいは、第2の無線システム)が複数存在する場合には、上記(a-1)~(c-1)の処理を行っても干渉マージンが余る場合がある。これは、例えば、あるグラントについて干渉計算対象となる保護点(Protection point)が2つ存在するときに、一方の保護点についてのIAPでは送信電力を下げずともサティスファイドグラントとなるものの、もう一方の保護点についてのIAPでは送信電力を下げて初めてサティスファイドグラントとなる、という状況が想定されるためである。そのような場合には、干渉保護の観点から、送信電力が低いほうに制限され、結果的に、送信電力を下げずにサティスファイドグラントとなったグラント側で余剰マージンが発生してしまうことになる。
 図34は、干渉計算対象となる保護点が複数存在する場合の図である。図34において、第2の無線システムである基地局装置40aは、干渉計算対象となる保護点P1、P2が2つ存在する場合を示している。また、保護点P1は、2つの基地局装置40a、40bに干渉マージンを等配分し、保護点P2は、3つの基地局装置40a、40c、40dに干渉マージンを等配分する場合を示す。
 図34に示すように、保護点P2は、配分対象である基地局装置の数が保護点P1に比べて多いため、必然的に、1つの基地局装置あたりに配分される干渉マージンは少なくなる。そのため、基地局装置40aは、干渉マージンに基づく最大送信電力が保護点P1に比べて保護点P2の方が低くなる。
 そのため、かかる場合には、基地局装置40aは、保護点P1の最大送信電力が保護点P2の最大送信電力に制限されてしまう。図34に示す例では、基地局装置40aは、Ptx-2dBの送信電力となるため、保護点P1側において活用されない余剰マージンが発生してしまうこととなる。
 そこで、保護点が複数存在する場合には、ECC Report 186に記載の方法を活用して以下の(a-2)~(f-2)の処理のように改良する。
 (a-2)の処理
 (a-2)の処理では、まず、干渉計算対象の全てのグラントを、Authorization statusで上位と下位にグルーピングする。
 (b-2)の処理
 つづいて、(b-2)の処理について、図35を用いて説明する。図35は、グルーピングされた上位グループの基地局装置(グラント)と保護点との関係を示す図である。図35では、上位グループに含まれる総数Mの基地局装置と、総数Pの保護点とを示している。通信制御装置60は、(b-2)の処理では、第2の無線システムが複数の第1の無線システムが利用する電波を共用利用する場合、取得した第2の無線システムに関する情報に基づいて、複数の第1の無線システムそれぞれにおける最大許容送信電力を算出する。具体的には、上位グループのm番目のグラントについて、そのグラントを保有する基地局装置の設置位置と各保護点との位置関係から算出される最大許容送信電力PTempMax, m, p (dBm)を下記の式(2)を用いて計算する。つまり、通信制御装置60は、第1の無線システムと第2の無線システムとの位置関係に関する情報を取得し、最大許容送信電力を算出する。
Figure JPOXMLDOC01-appb-M000002
 上記の式(2)において、10log(M)(dB)は、Fixed Marginであり、Ith,p(dBm)は、総干渉マージンである。つまり、Ith,p(dBm)-10log(M)(dB)を仮配分された干渉マージンとみなせる。なお、Ith,p(dBm)は、所定の閾値であってもよい。また、SM(dB)は、Shadowing marginであり、PLm-p(dB)は、保護点と基地局との間の伝搬損失である。なお、SM(dB)は無くてもよい。
 従来のIAPの処理では、位置関係に基づく最大許容送信電力の算出は行わず、グラントに紐づく送信電力に基づいて実施されていた。従って、例えば、位置関係に基づく最大許容送信電力の算出を行うことで、下位グループであるGAAを含めずに、PALのみに干渉マージン配分を先に実施することで、GAAを除いた分、1グラントあたりに配分可能な干渉マージンが増え、一方で、余剰マージンも増やすことができる。
 (c-2)の処理
 つづいて、(c-2)の処理では、すべての保護点について最大許容送信電力の計算を行い、最小となる最大許容送信電力PTempMax,mを下記の式(3)で導出する。また、m番目のグラントから最も大きな与干渉を受ける保護点pMostVictim,mを下記の式(4)で求める。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 すなわち、通信制御装置60は、最大許容送信電力が最も小さい第1の無線システム(保護点)における干渉量を他の第1の無線システムにおける干渉量とする。これにより、基準となる最大許容送信電力は保護点との位置関係が変わらない限りは、最も大きな干渉を受ける保護点によって決まるため、以降の処理において、この基準となる最大許容送信電力によって推定される与干渉電力を、それぞれの保護点の保護において、余剰のない適切な干渉マージン配分量として扱うことができるようになる。
 (d-2)の処理
 つづいて、(d-2)の処理では、デバイスクラスまたはハードウェア上の最大送信電力と最大許容送信電力と比較する。つまり、通信制御装置60は、第2の無線システムの送信特性に関する情報に基づいて第2の無線システムの最大送信電力を算出し、最大送信電力および(c-2)の処理で算出した最大許容送信電力との比較結果に基づいて、干渉マージンを配分する。なお、かかる最大許容送信電力は、上記の式(4)で求めた保護点とm番目のグラントとの間における最大許容送信電力である。
 そして、この比較において、計算結果によっては、最大許容送信電力が最大送信電力を大きく上回る可能性がある。換言すれば、最大許容送信電力の計算結果が基地局装置の送信能力を大きく超えるおそれがある。すなわち、かかる場合には余剰マージンが発生してしまうため、最大許容送信電力および最大送信電力を比較することによりそのような余剰マージンを特定することで、他のグラントに再配分できる。
 (d-2)の処理における比較結果は、以下の(1)または(2)のいずれかとなる。以下、(1)および(2)それぞれの場合における動作を説明する。
(1)最大送信電力の方が小さい
(2)最大許容送信電力の方が小さい
(1)最大送信電力の方が小さい
 かかる場合、m番目のグラントに紐づく送信電力と最大送信電力とを比較する。
 (1-1)送信電力の方が小さい
 かかる場合、m番目のグラントをサティスファイドグラントとして扱う。そして、干渉マージン配分量を下記の式(5)で算出する。
Figure JPOXMLDOC01-appb-M000005
 これにより、グラントの現パラメータで発生する与干渉量の推定値を干渉マージン配分量とできるため、過剰に干渉マージンを配分することを回避できる。
 また、余剰マージンを下記の式(6)で算出する。
Figure JPOXMLDOC01-appb-M000006
 (1-2)最大送信電力の方が小さい
 かかる場合、m番目のグラントをアンサティスファイドグラントとして扱う。
(2)最大許容送信電力の方が小さい
 かかる場合、m番目のグラントに紐づく送信電力と最大許容送信電力とを比較する。
 (2-1)送信電力の方が小さい
 かかる場合、m番目のグラントをサティスファイドグラントとして扱う。そして、干渉マージン配分量を下記の式(7)で算出する。
Figure JPOXMLDOC01-appb-M000007
 これにより、グラントの現パラメータで発生する与干渉量の推定値を干渉マージン配分量とできるため、過剰に干渉マージンを配分することを回避できる。
 また、余剰マージンを下記の式(8)で算出する。
Figure JPOXMLDOC01-appb-M000008
 (2-2)最大許容送信電力の方が小さい
 かかる場合、m番目のグラントをアンサティスファイドグラントとして扱う。
 (e-2)の処理
 つづいて、(e-2)の処理では、上記の(a-2)~(d-2)の処理において生じる総余剰マージンを用いて、アンサティスファイドグラントに対して、従来のIAPである(a)~(d)の処理を適用する。なお、各保護点における総余剰マージンは、下記の式(9)により算出される。
Figure JPOXMLDOC01-appb-M000009
 これにより、グラントの現パラメータで発生する与干渉量の推定値を干渉マージン配分量とできるため、過剰に干渉マージンを配分することを回避できる。
 (f-2)の処理
 つづいて、(f-2)の処理では、(e-2)の処理後の余剰マージンをチェックする。余剰マージンが発生する場合、下位グループに対して余剰マージンを配分する。配分方法は、従来のIAPである(a)~(d)の処理を適用する。なお、各保護点の干渉マージン初期値はIMSurplus,p(dBm)とする。
 また、余剰マージンが発生しない場合、下位グループに対する干渉マージン配分を断念する。すなわち、グラント割り当てを取り消す(Terminate)。なお、グラント割り当てを取り消す場合、周波数利用通知リクエストに対する応答(例えば、ハートビートレスポンス)として、通信制御装置から通信装置にグラント割り当ての取消通知がされてもよい。
 このように、(a-2)~(f-2)の処理を行うことで、上位グループに対してより効率的に、かつ、優先的に、干渉マージンを配分することができる。
<ケース2:所要パラメータによる配分優先度付け>
 5Gは、多様なユースケースを実現する通信方式としての期待が高い。しかしながら、ユースケースによっては、所要送信電力や所要QoS、カバレッジ等といった所要パラメータがユースケース間で異なる可能性があるため、全てのグラントを同等に扱うことが適当であるとは言いがたい。
 そこで、ケース2では、所要パラメータによる配分優先度付けを行う場合、従来のIAPを以下の(a-3)~(d-3)の処理のように改良する。なお、ケース2の手法は、上述したケース1におけるGAAへのIAPの代わりとして適用されてもよい。なお、所要パラメータとは、第2の無線システムの通信に関するパラメータ情報である。
 (a-3)の処理
 (a-3)の処理では、まず、上述した所要パラメータを、所要送信電力に変換する。つまり、通信制御装置60は、配分優先度として、パラメータ情報に基づく送信電力を算出する。これにより、IAPを容易に適用可能となる。例えば、所要SINR(Signal-to-Interference plus Noise power Ratio)が利用可能な場合、下記の式(10)により所要送信電力に変換する。
Figure JPOXMLDOC01-appb-M000010
 上記の式(10)において、PLは、基地局と任意の地点との間の伝搬損失であり、SINRRequiredは、任意の地点における所要SINRであり、Iは、任意の地点における受信干渉電力である。
 また、例えば、所要カバレッジが利用可能な場合、上記の「任意の地点」を「カバレッジ端」として、式(10)により所要送信電力を算出することができる。
 また、例えば、所要スループットが利用可能な場合、必要なトランスポートブロックサイズを見積もり、対応するMCSを求めて、所要SINRを導出する(Effective SINR mappingの逆操作に相当)。そして、導出した所要SINRを用いて、上記の式(10)により所要送信電力を算出する。これにより、位置によって、必ずしもスループットと所要SINRが比例しない状況を考慮した配分を行うことができる。
 (b-3)の処理
 (b-3)の処理では、干渉計算対象の全てのグラントを、(a-3)で算出した所要送信電力に基づいて複数のグループにグルーピングする。つまり、通信制御装置60は、送信電力を配分優先度として扱いグルーピングする。例えば、高出力(高送信電力)の上位グループと、低出力の下位グループとにグルーピングする。
 なお、グルーピングの数は、3つ以上であってもよい。また、例えば、デバイスクラスを用いて、カテゴリBになるものを含むグループと、カテゴリAになるものを含むグループとにグルーピングしてもよい。
 また、例えば、数dBm単位の範囲を作って、グルーピングしてもよい。例えば、10-15dBmのグループと、15-20dBmのグループとにグルーピングしてもよい。
 なお、複数のグループのうち、例えば、高出力グループを上位とすることが好ましい。これにより、より多くの干渉マージンを必要とする高出力グループに対して優先的に配分できるようになる。また、かかる場合、高出力の上位グループへの配分後の余剰マージンを、低出力の下位グループへの配分したとしても必要となる干渉マージンが比較的少ないため十分に対応することができる。
 なお、低出力のグループを上位としてもよい。これにより、低出力のグループに確実に干渉マージンを配分することができる。
 (c-3)の処理
 (c-3)の処理では、最上位グループから順に、従来のIAPである(a)~(d)の処理を適用する。つまり、通信制御装置60は、送信電力に基づいて、第2の無線システムそれぞれへ干渉マージンを配分する。これにより、配分優先度である送信電力が上位(高出力)のグループに干渉マージンが配分される機会が増えることで、電波利用機会を増加させることができる。
 (d-3)の処理
 (d-3)の処理では、(c-3)の処理後の余剰マージンをチェックする。余剰マージンが発生する場合、下位グループに対して余剰マージンを配分する。配分方法は、従来のIAPである(a)~(d)の処理を適用する。これにより、余剰マージンが存在することは、空間的な空き電波が存在することと同義であるため、周波数利用効率の向上を図ることができる。
 また、余剰マージンが発生しない場合、下位グループに対する干渉マージン配分を断念する。すなわち、グラント割り当てを取り消す(Terminate)。なお、グラント割り当てを取り消す場合、周波数利用通知リクエストに対する応答(例えば、ハートビートレスポンス)として、通信制御装置から通信装置にグラント割り当ての取消通知がされてもよい。
 次に、図36を用いて、実施形態に係る通信制御装置60が実行する干渉マージンの配分処理の手順について説明する。図36は、干渉マージンの配分処理の手順を示すフローチャートである。
 図36に示すように、通信制御装置60は、まず、第1の無線システムが利用する電波を共用利用する複数の第2の無線システムに関する情報を取得する(ステップS101)。
 つづいて、通信制御装置60は、取得した情報に基づいて、複数の第2の無線システム毎に配分優先度を算出する(ステップS102)。
 つづいて、通信制御装置60は、配分優先度に基づいて、複数の第2の無線システムを複数のグループにグルーピングする(ステップS103)。
 つづいて、通信制御装置60は、第1の無線システムが許容する総干渉量を上位グループに含まれる第2の無線システムに干渉マージンとして配分する(ステップS104)。
 つづいて、通信制御装置60は、配分の結果、余剰マージンが有るか否かを判定し(ステップS105)、余剰マージンが無い場合(ステップS105:No)、処理を終了する。
 一方、通信制御装置60は、余剰マージンが有る場合(ステップS105:Yes)、下位グループに余剰マージンを配分し(ステップS106)、処理をステップS105へ移行する。
<<7.変形例>>
 本実施形態の通信制御装置60は、上述の実施形態で説明した装置に限定されない。例えば、通信制御装置60は、周波数共用が行われる周波数帯域を二次利用する基地局装置40を制御する以外の機能を有する装置であってもよい。例えば、本実施形態の通信制御装置60の機能をネットワークマネージャが具備してもよい。このとき、ネットワークマネージャは、例えば、C-RAN(Centralized Radio Access Network)と呼ばれるネットワーク構成のC-BBU(Centralized Base Band Unit)またはこれを備える装置であってもよい。また、ネットワークマネージャの機能を基地局(アクセスポイントを含む。)が具備してもよい。これらの装置(ネットワークマネージャ等)も通信制御装置とみなすことが可能である。
 また、上述の実施形態では、通信制御装置60は、通信システム2に属する装置であるものとしたが、必ずしも通信システム2に属する装置でなくてもよい。通信制御装置60は、通信システム2の外部の装置であてもよい。通信制御装置60は、基地局装置40を直接制御せず、通信システム2を構成する装置を介して間接的に基地局装置40を制御してもよい。また、セカンダリシステム(通信システム2)は複数存在していてもよい。このとき、通信制御装置60は、複数のセカンダリシステムを管理してもよい。この場合、セカンダリシステムそれぞれを第2の無線システムとみなすことができる。
 なお、一般に周波数共用において、対象帯域を利用する既存システムをプライマリシステム、二次利用者をセカンダリシステムと呼ぶが、プライマリシステム及びセカンダリ詩システムは、別の用語に置き換えてもよい。HetNET(Heterogeneous Network)におけるマクロセルをプライマリシステム、スモールセルやリレー局をセカンダリシステムとしてもよい。また、基地局をプライマリシステム、そのカバレッジ内に存在するD2DやV2X(Vehicle-to-Everything)を実現するRelay UE(Relay User Equipment)やVehicle UE(Vehicle User Equipment)をセカンダリシステムとしてもよい。基地局は固定型に限らず、可搬型/移動型であってもよい。
 さらに、各エンティティ間のインタフェースは、有線・無線問わない。例えば、本実施形態で登場した各エンティティ(通信装置、通信制御装置、又は端末装置)間のインタフェースは、周波数共用に依存しない無線インタフェースであってもよい。周波数共用に依存しない無線インタフェースとしては、例えば、移動体通信事業者が免許帯域(Licensed band)を介して提供する無線通信回線や、既存の免許不要帯域(License-exempt band)を利用する無線LAN通信、等が挙げられる。
 本実施形態の電波利用装置10、管理装置20、端末装置30、基地局装置40、中間装置50、又は通信制御装置60を制御する制御装置は、専用のコンピュータシステムで実現してもよいし、汎用のコンピュータシステムで実現してもよい。
 例えば、上述の動作を実行するためのプログラムを、光ディスク、半導体メモリ、磁気テープ、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に格納して配布する。そして、例えば、該プログラムをコンピュータにインストールし、上述の処理を実行することによって制御装置を構成する。このとき、制御装置は、電波利用装置10、管理装置20、端末装置30、基地局装置40、中間装置50、又は通信制御装置60の外部の装置(例えば、パーソナルコンピュータ)であってもよい。また、制御装置は、電波利用装置10、管理装置20、端末装置30、基地局装置40、中間装置50、又は通信制御装置60の内部の装置(例えば、制御部13、制御部23、制御部34、制御部44、制御部54、又は制御部64)であってもよい。
 また、上記通信プログラムをインターネット等のネットワーク上のサーバ装置が備えるディスク装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。また、上述の機能を、OS(Operating System)とアプリケーションソフトとの協働により実現してもよい。この場合には、OS以外の部分を媒体に格納して配布してもよいし、OS以外の部分をサーバ装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。
 また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
 また、上記してきた実施形態は、処理内容を矛盾させない領域で適宜組み合わせることが可能である。また、本実施形態のシーケンス図或いはフローチャートに示された各ステップは、適宜順序を変更することが可能である。
 また、例えば、本実施形態は、装置またはシステムを構成するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット、ユニットにさらにその他の機能を付加したセット等(すなわち、装置の一部の構成)として実施することもできる。
 なお、本実施形態において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。例えば、別個の筐体に収納され、ネットワーク等を介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 また、例えば、本実施形態は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
<<8.むすび>>
 以上説明したように、本開示の一実施形態によれば、情報処理装置である通信制御装置60は、第1の無線システムが利用する電波を共用利用する複数の第2の無線システムそれぞれに関する情報を取得する取得部と、取得部によって取得された情報に基づいて複数の第2の無線システム毎に配分優先度を算出する算出部と、算出部によって算出された配分優先度に基づいて、第1の無線システムが許容する総干渉量を複数の第2の無線システムそれぞれに干渉量として配分する配分部と、を備える。これにより、干渉マージンを適切に配分することができる。
 以上、本開示の各実施形態について説明したが、本開示の技術的範囲は、上述の各実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。
 また、本明細書に記載された各実施形態における効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 第1の無線システムが利用する電波を共用利用する複数の第2の無線システムそれぞれに関する情報を取得する取得部と、
 前記取得部によって取得された情報に基づいて前記複数の第2の無線システム毎に配分優先度を算出する算出部と、
 前記算出部によって算出された前記配分優先度に基づいて、前記第1の無線システムが許容する総干渉量を前記複数の第2の無線システムそれぞれに干渉量として配分する配分部と、を備える、情報処理装置。
(2)
 前記算出部によって算出された前記配分優先度に応じて、前記複数の第2の無線システムを複数のグループにグルーピングするグルーピング部をさらに備え、
 前記配分部は、
 前記複数のグループのうち、前記配分優先度が高いグループほど、配分される前記干渉量を多くする、前記(1)に記載の情報処理装置。
(3)
 前記配分部は、
 前記グループに含まれる前記複数の第2の無線システムそれぞれについて、所望の送信電力に基づいて推定された与干渉量と同じ量の前記干渉量を配分する、前記(2)に記載の情報処理装置。
(4)
 前記配分部は、
 前記グループに含まれる前記複数の第2の無線システムそれぞれに対して前記総干渉量を仮等配分し、仮等配分した仮干渉量が前記与干渉量を超える場合、余剰干渉量を前記グループに含まれる他の前記第2の無線システムへ再配分する、前記(3)に記載の情報処理装置。
(5)
 前記配分部は、
 前記仮干渉量が前記与干渉量未満である前記第2の無線システムに対して前記余剰干渉量を再配分する、前記(3)または(4)に記載の情報処理装置。
(6)
 前記配分部は、
 前記グループに含まれる前記複数の第2の無線システムすべてに対して前記与干渉量と同じ量の前記干渉量を配分し、かつ、前記余剰干渉量が有る場合、当該余剰干渉量を他のグループへ配分する、前記(3)~(5)のいずれか1つに記載の情報処理装置。
(7)
 前記配分部は、
 前記余剰干渉量が無く、かつ、前記仮干渉量が前記与干渉量未満である前記第2の無線システムが有る場合、当該第2の無線通信システムについては、電波送信の認可を取り消す、前記(3)~(6)のいずれか1つに記載の情報処理装置。
(8)
 前記第2の無線システムが複数の前記第1の無線システムが利用する電波を共用利用する場合、前記取得部によって取得された前記情報に基づいて、前記複数の第1の無線システムそれぞれにおける最大許容送信電力を算出する電力算出部をさらに備え、
 前記配分部は、
 前記電力算出部の算出結果のうち、前記最大許容送信電力が最も小さい前記第1の無線システムにおける前記干渉量を他の前記第1の無線システムにおける前記干渉量とする、前記(1)~(7)のいずれか1つに記載の情報処理装置。
(9)
 前記取得部は、
 前記第1の無線システムと前記第2の無線システムとの位置関係に関する情報を取得し、
 前記電力算出部は、
 前記位置関係に関する情報に基づいて、前記最大許容送信電力を算出する、前記(8)に記載の情報処理装置。
(10)
 前記取得部は、
 前記第2の無線システムの送信特性に関する情報を取得し、
 前記算出部は、
 前記送信特性に関する情報に基づいて、前記第2の無線システムの最大送信電力を算出し、
 前記配分部は、
 前記最大許容送信電力および前記最大送信電力の比較結果に基づいて、前記第2の無線システムの前記干渉量を配分する、前記(8)または(9)に記載の情報処理装置。
(11)
 前記取得部は、
 前記第2の無線システムの通信に関するパラメータ情報を取得し、
 前記算出部は、
 前記配分優先度として、前記パラメータ情報に基づく送信電力を算出し、
 前記配分部は、
 前記送信電力に基づいて、前記複数の第2の無線システムそれぞれへ前記干渉量を配分する、前記(1)~(10)のいずれか1つに記載の情報処理装置。
(12)
 前記取得部は、
 CBRS(Citizens Broadband Radio Service)の階層に関する情報を取得し、
 前記算出部は、
 前記CBRSにおける階層が上位である前記第2の無線システムほど前記配分優先度を高くする、前記(1)~(11)のいずれか1つに記載の情報処理装置。
(13)
 第1の無線システムが利用する電波を共用利用する複数の第2の無線システムそれぞれに関する情報を取得し、
 取得した情報に基づいて前記複数の第2の無線システム毎に配分優先度を算出し、
 算出した前記配分優先度に基づいて、前記第1の無線システムが許容する総干渉量を前記複数の第2の無線システムそれぞれに干渉量として配分する、情報処理方法。
(14)
 コンピュータを、
 第1の無線システムが利用する電波を共用利用する複数の第2の無線システムそれぞれに関する情報を取得する取得部、
 前記取得部によって取得された情報に基づいて前記複数の第2の無線システム毎に配分優先度を算出する算出部、
 前記算出部によって算出された前記配分優先度に基づいて、前記第1の無線システムが許容する総干渉量を前記複数の第2の無線システムそれぞれに干渉量として配分する配分部、として機能させるための情報処理プログラム。
(15)
 第1の無線システムが利用する電波を共用利用する複数の第2の無線システムそれぞれに関する情報を取得し、取得した情報に基づいて前記複数の第2の無線システム毎に配分優先度を算出し、算出した前記配分優先度に基づいて、前記第1の無線システムが許容する総干渉量を前記複数の第2の無線システムそれぞれに配分された干渉量の情報を取得する取得部と、
 前記取得部によって取得された前記干渉量の情報に基づいて電波送信を行う通信制御部と、を備える、通信装置。
(16)
 第1の無線システムが利用する電波を共用利用する複数の第2の無線システムそれぞれに関する情報を取得し、取得した情報に基づいて前記複数の第2の無線システム毎に配分優先度を算出し、算出した前記配分優先度に基づいて、前記第1の無線システムが許容する総干渉量を前記複数の第2の無線システムそれぞれに配分された干渉量の情報を取得し、
 取得した前記干渉量の情報に基づいて電波送信を行う、通信方法。
(17)
 コンピュータを、
 第1の無線システムが利用する電波を共用利用する複数の第2の無線システムそれぞれに関する情報を取得し、取得した情報に基づいて前記複数の第2の無線システム毎に配分優先度を算出し、算出した前記配分優先度に基づいて、前記第1の無線システムが許容する総干渉量を前記複数の第2の無線システムそれぞれに配分された干渉量の情報を取得する取得部、
 前記取得部によって取得された前記干渉量の情報に基づいて電波送信を行う通信制御部、として機能させるための通信プログラム。
 1、2、1000 通信システム
 10 電波利用装置
 20 管理装置
 30 端末装置
 40 基地局装置
 50 中間装置
 60 通信制御装置
 11 処理部
 12、22、32、42、52、62 記憶部
 13、23、34、44、54、64 制御部
 21 通信部
 31、41、51、61 無線通信部
 33 入出力部
 43、53、63 ネットワーク通信部
 311、411 受信処理部
 312、412 送信処理部
 313、413 アンテナ
 341、441、541 取得部
 342、442、542 通信制御部
 443、543、645 通知部
 641 取得部
 642 算出部
 643 配分部
 644 グルーピング部
 645 電力算出部

Claims (14)

  1.  第1の無線システムが利用する電波を共用利用する複数の第2の無線システムそれぞれに関する情報を取得する取得部と、
     前記取得部によって取得された情報に基づいて前記複数の第2の無線システム毎に配分優先度を算出する算出部と、
     前記算出部によって算出された前記配分優先度に基づいて、前記第1の無線システムが許容する総干渉量を前記複数の第2の無線システムそれぞれに干渉量として配分する配分部と、を備える、
     情報処理装置。
  2.  前記算出部によって算出された前記配分優先度に応じて、前記複数の第2の無線システムを複数のグループにグルーピングするグルーピング部をさらに備え、
     前記配分部は、
     前記複数のグループのうち、前記配分優先度が高いグループほど、配分される前記干渉量を多くする、
     請求項1に記載の情報処理装置。
  3.  前記配分部は、
     前記グループに含まれる前記複数の第2の無線システムそれぞれについて、所望の送信電力に基づいて推定された与干渉量と同じ量の前記干渉量を配分する、
     請求項2に記載の情報処理装置。
  4.  前記配分部は、
     前記グループに含まれる前記複数の第2の無線システムそれぞれに対して前記総干渉量を仮等配分し、仮等配分した仮干渉量が前記与干渉量を超える場合、余剰干渉量を前記グループに含まれる他の前記第2の無線システムへ再配分する、
     請求項3に記載の情報処理装置。
  5.  前記配分部は、
     前記仮干渉量が前記与干渉量未満である前記第2の無線システムに対して前記余剰干渉量を再配分する、
     請求項4に記載の情報処理装置。
  6.  前記配分部は、
     前記グループに含まれる前記複数の第2の無線システムすべてに対して前記与干渉量と同じ量の前記干渉量を配分し、かつ、前記余剰干渉量が有る場合、当該余剰干渉量を他のグループへ配分する、
     請求項4に記載の情報処理装置。
  7.  前記配分部は、
     前記余剰干渉量が無く、かつ、前記仮干渉量が前記与干渉量未満である前記第2の無線システムが有る場合、当該第2の無線通信システムについては、電波送信の認可を取り消す、
     請求項4に記載の情報処理装置。
  8.  前記第2の無線システムが複数の前記第1の無線システムが利用する電波を共用利用する場合、前記取得部によって取得された前記情報に基づいて、前記複数の第1の無線システムそれぞれにおける最大許容送信電力を算出する電力算出部をさらに備え、
     前記配分部は、
     前記電力算出部の算出結果のうち、前記最大許容送信電力が最も小さい前記第1の無線システムにおける前記干渉量を他の前記第1の無線システムにおける前記干渉量とする、
     請求項1に記載の情報処理装置。
  9.  前記取得部は、
     前記第1の無線システムと前記第2の無線システムとの位置関係に関する情報を取得し、
     前記電力算出部は、
     前記位置関係に関する情報に基づいて、前記最大許容送信電力を算出する、
     請求項8に記載の情報処理装置。
  10.  前記取得部は、
     前記第2の無線システムの送信特性に関する情報を取得し、
     前記電力算出部は、
     前記送信特性に関する情報に基づいて、前記第2の無線システムの最大送信電力を算出し、
     前記配分部は、
     前記最大許容送信電力および前記最大送信電力の比較結果に基づいて、前記第2の無線システムの前記干渉量を配分する、
     請求項8に記載の情報処理装置。
  11.  前記取得部は、
     前記第2の無線システムの通信に関するパラメータ情報を取得し、
     前記算出部は、
     前記配分優先度として、前記パラメータ情報に基づく送信電力を算出し、
     前記配分部は、
     前記送信電力に基づいて、前記複数の第2の無線システムそれぞれへ前記干渉量を配分する、
     請求項1に記載の情報処理装置。
  12.  前記取得部は、
     CBRS(Citizens Broadband Radio Service)の階層に関する情報を取得し、
     前記算出部は、
     前記CBRSにおける階層が上位である前記第2の無線システムほど前記配分優先度を高くする、
     請求項1に記載の情報処理装置。
  13.  第1の無線システムが利用する電波を共用利用する複数の第2の無線システムそれぞれに関する情報を取得し、
     取得した情報に基づいて前記複数の第2の無線システム毎に配分優先度を算出し、
     算出した前記配分優先度に基づいて、前記第1の無線システムが許容する総干渉量を前記複数の第2の無線システムそれぞれに干渉量として配分する、
     情報処理方法。
  14.  第1の無線システムが利用する電波を共用利用する複数の第2の無線システムそれぞれに関する情報を取得し、取得した情報に基づいて前記複数の第2の無線システム毎に配分優先度を算出し、算出した前記配分優先度に基づいて、前記第1の無線システムが許容する総干渉量を前記複数の第2の無線システムそれぞれに配分した干渉量の情報を取得する取得部と、
     前記取得部によって取得された前記干渉量の情報に基づいて電波送信を行う通信制御部と、を備える、
     通信装置。
PCT/JP2020/042246 2019-11-19 2020-11-12 情報処理装置、情報処理方法、及び通信装置 WO2021100601A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021558334A JPWO2021100601A1 (ja) 2019-11-19 2020-11-12
US17/755,926 US20220386248A1 (en) 2019-11-19 2020-11-12 Information processing device, information processing method, and communication device
CN202080078700.6A CN114731682A (zh) 2019-11-19 2020-11-12 信息处理设备、信息处理方法和通信设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019209068 2019-11-19
JP2019-209068 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021100601A1 true WO2021100601A1 (ja) 2021-05-27

Family

ID=75981261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042246 WO2021100601A1 (ja) 2019-11-19 2020-11-12 情報処理装置、情報処理方法、及び通信装置

Country Status (4)

Country Link
US (1) US20220386248A1 (ja)
JP (1) JPWO2021100601A1 (ja)
CN (1) CN114731682A (ja)
WO (1) WO2021100601A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259388A1 (ja) * 2021-06-08 2022-12-15 日本電信電話株式会社 無線通信の干渉制御システム、干渉制御方法、中継装置および干渉制御用プログラム
US20230076071A1 (en) * 2021-09-09 2023-03-09 Qualcomm Incorporated Transmit diversity power leakage detection and filtering in antenna compensator power detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150303A1 (en) * 2017-02-14 2018-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Cumulative interference allocation
US20190007889A1 (en) * 2017-06-30 2019-01-03 Intel Corporation Access Node Controller, an Apparatus for an Access Node, an Access Node for a Mobile Communication System, a Mobile Communication System, a Method and a Computer Program for an Access Node

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150303A1 (en) * 2017-02-14 2018-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Cumulative interference allocation
US20190007889A1 (en) * 2017-06-30 2019-01-03 Intel Corporation Access Node Controller, an Apparatus for an Access Node, an Access Node for a Mobile Communication System, a Mobile Communication System, a Method and a Computer Program for an Access Node

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259388A1 (ja) * 2021-06-08 2022-12-15 日本電信電話株式会社 無線通信の干渉制御システム、干渉制御方法、中継装置および干渉制御用プログラム
US20230076071A1 (en) * 2021-09-09 2023-03-09 Qualcomm Incorporated Transmit diversity power leakage detection and filtering in antenna compensator power detector
US11901931B2 (en) * 2021-09-09 2024-02-13 Qualcomm Incorporated Transmit diversity power leakage detection and filtering in antenna compensator power detector

Also Published As

Publication number Publication date
CN114731682A (zh) 2022-07-08
US20220386248A1 (en) 2022-12-01
JPWO2021100601A1 (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
JP7415941B2 (ja) 通信制御装置、通信装置、通信制御方法、及び通信方法
WO2020230659A1 (ja) 情報処理装置、情報処理方法、及び通信装置
JP7367682B2 (ja) 通信制御装置、通信制御方法、及び通信システム
US11832288B2 (en) Communication control device, communication device, and communication control method
US20230262611A1 (en) Communication control device and communication control method
JPWO2020137922A1 (ja) 情報処理装置、情報処理方法、及び情報処理端末装置
WO2020202829A1 (ja) 通信制御装置、通信装置および通信制御方法
WO2021100601A1 (ja) 情報処理装置、情報処理方法、及び通信装置
US20220360997A1 (en) Communication control device, communication device, and communication control method
WO2020189022A1 (ja) 情報処理装置、情報処理方法、及び通信装置
WO2021085132A1 (ja) 情報処理装置、情報処理方法、及び通信装置
WO2021049353A1 (ja) 通信制御装置、通信装置、及び通信制御方法
JP7494736B2 (ja) 通信制御装置、通信装置、プロキシ装置、及び通信制御方法
WO2023063181A1 (ja) 通信制御装置、通信装置、及び通信制御方法、及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558334

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889697

Country of ref document: EP

Kind code of ref document: A1