WO2020095480A1 - 人口分布集計装置 - Google Patents
人口分布集計装置 Download PDFInfo
- Publication number
- WO2020095480A1 WO2020095480A1 PCT/JP2019/027969 JP2019027969W WO2020095480A1 WO 2020095480 A1 WO2020095480 A1 WO 2020095480A1 JP 2019027969 W JP2019027969 W JP 2019027969W WO 2020095480 A1 WO2020095480 A1 WO 2020095480A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- narrow area
- data
- area data
- narrow
- unit
- Prior art date
Links
- 238000004364 calculation method Methods 0.000 title claims abstract description 19
- 230000002776 aggregation Effects 0.000 title abstract description 19
- 238000004220 aggregation Methods 0.000 title abstract description 19
- 238000011156 evaluation Methods 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims description 30
- 230000002123 temporal effect Effects 0.000 claims description 21
- 238000007726 management method Methods 0.000 abstract description 36
- 238000013500 data storage Methods 0.000 abstract description 14
- 238000004891 communication Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 8
- 230000002596 correlated effect Effects 0.000 description 7
- 238000013523 data management Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000011664 signaling Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000010219 correlation analysis Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 230000004931 aggregating effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/029—Location-based management or tracking services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/021—Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/025—Services making use of location information using location based information parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
Definitions
- the present invention relates to a population distribution aggregation device that aggregates location information of user terminals.
- Patent Document 1 describes that the population distribution of users who carry a mobile terminal is analyzed to analyze the population distribution of the target area.
- Patent Document 1 it is not possible to calculate a population distribution with high geographical resolution while ensuring statistical reliability. That is, in the technique described in Patent Document 1, the position information of the user terminal is aggregated without considering the characteristics of the position positioning by the user terminal itself and the positioning means thereof, and the statistical reliability thereof is impaired. There is.
- an object of the present invention is to provide a population distribution aggregation device capable of calculating a population distribution with a high degree of geographical resolution while maintaining statistical reliability.
- the population distribution totaling device of the present invention uses a position information indicating the positions of the user terminals located in a plurality of user terminals to define a predefined wide area for a predetermined geographical area for each predetermined position information acquisition pattern.
- a narrow area data generation unit that acquires the number of user terminals located in each of a plurality of narrow areas divided by resolution and generates narrow area data, and a wide area that indicates the number of user terminals located in each wide area.
- a reliability calculation unit that calculates the reliability of the narrow area data for each of the position information acquisition patterns based on the data and the narrow area data, and the narrow area data and the wide area according to the reliability.
- a population estimation unit that estimates the number of terminals in the narrow area based on the data.
- FIG. 3 is a block diagram showing a functional configuration of the population distribution totalization device 100.
- FIG. FIG. 7 is a diagram showing a specific example of terminal positioning data positioned by the user terminal 200 and schematic positioning data positioned by the network. It is a figure which shows the specific example of the management table which matched the geographical resolution and the temporal resolution with resolution ID. It is a figure which shows the specific example of a narrow area mesh group management table. It is a figure which shows the specific example of a narrow area mesh data management table and a wide area mesh management table. It is a schematic diagram which showed the narrow area mesh data and the wide area mesh data typically.
- 3 is a flowchart showing an operation of the population distribution totalization device 100.
- 3 is a flowchart showing an operation of the population distribution totalization device 100. It is a figure showing an example of hardware constitutions of population distribution totalization device 100 concerning one embodiment of this indication.
- FIG. 1 is a diagram showing a system configuration of a communication system including a population distribution aggregation device 100 according to an embodiment of the present disclosure. As shown in FIG. 1, it is configured to include a population distribution collection device 100, a user terminal 200, a base station 250, and a position information server 300.
- the user terminal 200 is, for example, a mobile phone or a smartphone that performs communication using a mobile communication network.
- the user terminal 200 performs wireless communication with the base station 250 and communicates with the Internet or other communication terminals via the network.
- the location information server 300 is a server that manages the location of the user terminal 200.
- the position information server 300 is a server owned by a communication carrier of a mobile communication network to which the user terminal 200 subscribes, and is a server that manages the position of the user terminal 200.
- the position information server 300 acquires and stores the approximate position of the user terminal 200 in the base station 250.
- the user terminal 200 acquires highly accurate position information by performing GPS positioning, and transmits it to the population distribution aggregation device 100 or the position information server 300.
- the population distribution totaling device 100 calculates the population distribution in the narrow area mesh and the wide area mesh based on the rough position information of each user terminal 200 stored in the position information server 300 and the fine position information GPS-positioned by the user terminal 200. To do.
- FIG. 2 is a block diagram showing a functional configuration of the population distribution totalization apparatus 100.
- the population distribution aggregation device 100 includes a positioning data acquisition unit 101 (first position information acquisition unit, second position information acquisition unit), a positioning data storage unit 102 (position information storage unit), and wide area mesh generation.
- the user terminal 200 that communicates with the population distribution aggregation device 100 includes a terminal positioning unit 201, a positioning data storage unit 202, and a transmission unit 203.
- the population distribution totalization device 100 will be described.
- the positioning data acquisition unit 101 is a part that acquires general position information (second position information) of the user terminal 200 of the user terminal, which is obtained by communicating with the base station 250 in which the user terminal 200 is located.
- the position information of the user may be the position information of the base station 250 or the center position of the cell formed by the base station 250, as the general position information (second position information) of the user terminal 200.
- the rough position information is information stored in the position information server 300, and the positioning data acquisition unit 101 acquires the rough position information from the position information server 300. Further, the positioning data acquisition unit 101 acquires detailed position information such as GPS position information transmitted from the user terminal 200.
- the positioning data storage unit 102 is a unit that stores positioning data including the approximate position information acquired by the positioning data acquisition unit 101 or the GPS position information (detailed position information (first position information)) transmitted from the user terminal 200. ..
- FIG. 3A is a diagram showing a specific example of the positioning data (terminal positioning data) acquired by the user terminal 200 among the positioning data.
- the positioning data includes a time stamp, a user ID, coordinate information (latitude, longitude), and attribute information of the positioning data (OS of the user terminal, OS version, positioning application name, its version information, user terminal). Model name, positioning type, and positioning accuracy) are associated with each other. It is possible to narrow down the positioning data by using the attribute information of the positioning data as a key.
- FIG. 3B is a diagram showing a specific example of the positioning data (outline positioning data) acquired by the positioning data acquisition unit 101 among the positioning data.
- the positioning data associates a time stamp, a user ID, and coordinate information (latitude, longitude).
- the wide area mesh generation unit 103 is a portion that divides the map information according to a predetermined wide area division pattern to generate a plurality of wide area meshes (wide area).
- the narrow area mesh generation unit 104 is a unit that further divides the wide area mesh generated by the wide area mesh generation unit 103 into a predetermined narrow area division pattern to generate a narrow area mesh (narrow area). This narrow area division pattern is defined based on the geographical resolution described later.
- the geographical resolution designating unit 105 is a unit for designating the size (resolution) of the narrow area division pattern of the narrow area mesh generating unit 104. For example, it is specified that the narrow area mesh is divided into 100 m ⁇ 100 m division patterns. This designation is performed by a user operation.
- the temporal resolution designating unit 106 is a unit that designates the granularity of the position information in the unit of time aggregation in the narrow mesh group management unit 108.
- the temporal resolution designating unit 106 designates the granularity of time unit for totaling the number of position information (that is, the number of terminals) such as the number of position information of one hour unit or the number of position information of one day unit. To do. This granularity is set based on the temporal resolution defined in the resolution management table 107.
- the resolution management table 107 is a part that describes the geographical resolution and the temporal resolution in association with the resolution ID.
- the resolution management table 107 is referred to when the geographical resolution designating unit 105 and the temporal resolution designating unit 106 designate the geographical or temporal resolution.
- FIG. 4 is a specific example of the management table.
- the resolution ID0000000001 one month is defined as the temporal resolution and 100 m is defined as the geographical resolution.
- This geographical resolution indicates the size of the narrow area mesh, and when the narrow area mesh group described later is created, the narrow area mesh is created with 100 m ⁇ 100 m as the division pattern.
- this temporal resolution indicates that the acquisition time unit of the number of pieces of position information (the number of terminals) is one month.
- the narrow area mesh group management unit 108 is based on the output from each of the wide area mesh generation unit 103, the narrow area mesh generation unit 104, the geographical resolution designation unit 105, the temporal resolution designation unit 106, and the positioning data storage unit 102. In order to calculate a high-definition population distribution in a wide area mesh unit, this is a part that generates a narrow area mesh group and its narrow area mesh data, which is a preprocessing.
- the narrow area mesh data indicates the number of user terminals (corresponding to the number of position information) in each narrow area mesh.
- the narrow area mesh group is defined based on the attribute information of the positioning data.
- the narrow area mesh group management unit 108 acquires the positioning data from the positioning data storage unit 102, and groups the positioning data based on the OS type and / or the positioning type.
- FIG. 5 shows a specific example of the narrow area mesh group management table 108a describing the narrow area mesh group.
- the narrow area mesh group ID is assigned to each narrow area mesh group ID in association with the combination of the OS type and the positioning type.
- the narrow area mesh group management unit 108 calculates the narrow area mesh data for each narrow area mesh by aggregating the number of records of the positioning data in a unit of grouping.
- FIG. 6A shows a specific example of the narrow area mesh data management table 108b which describes the narrow area mesh data.
- the narrow area mesh data is data in which the narrow area mesh group ID, the resolution ID, the narrow area mesh ID, and the number of user terminals are associated with each other.
- the narrow area mesh group management unit 108 stores this information for each narrow area mesh group.
- the narrow area mesh group management unit 108 calculates wide area mesh data for each wide area mesh by aggregating the number of records of the positioning data for each wide area mesh.
- FIG. 6B shows a specific example of the wide area mesh data management table 108c which describes wide area mesh data. As shown in the figure, the wide area mesh data associates the wide area mesh ID with the number of user terminals.
- the reliability evaluation unit 109 is a unit that evaluates the narrow mesh data for each narrow mesh group generated by the narrow mesh group management unit 108. For example, the reliability evaluation unit 109 calculates which narrow mesh group generated by the narrow mesh group management unit 108 by calculating the correlation between the narrow mesh groups based on the narrow mesh data in the narrow mesh group. Decide whether to adopt. Furthermore, the narrow mesh group is evaluated by calculating the correlation coefficient between the narrow mesh data based on the adopted one or more narrow mesh groups and the wide mesh data in the wide mesh. The higher the correlation coefficient with the wide area mesh data, the higher the evaluation.
- the population distribution estimation unit 110 uses the narrow area mesh data to calculate the terminal number ratio for each narrow area mesh unit, and applies the wide area mesh data in the wide area mesh unit to the narrow area mesh terminal number ratio. , Calculate the population distribution in a narrow mesh unit.
- FIG. 7 shows a specific example of narrow area mesh data in a narrow area mesh in which a certain area is divided by a 3 ⁇ 3 wide area dividing pattern and further divided by a 2 ⁇ 2 narrow area dividing pattern. That is, it is a schematic diagram showing the number of terminals for each narrow area mesh obtained by dividing a certain area with a 6 ⁇ 6 narrow area dividing pattern.
- FIG. 7A shows a group 1 showing narrow mesh data in which the OS type is A, the positioning type is GPS, and the number of terminals is aggregated in narrow mesh units.
- FIG. 7B shows a group 2 showing the narrow area mesh data in which the OS type is A, the positioning type is Wi-Fi, and the number of terminals is aggregated in a narrow area mesh unit.
- FIG. 7C shows a group 3 indicating the narrow area mesh data in which the OS type is B, the positioning type is GPS, and the number of terminals is aggregated in a narrow area mesh unit.
- FIG. 7D shows a group 3 indicating the narrow area mesh data in which the OS type is B, the positioning type is WIFI, and the number of terminals is aggregated in a narrow area mesh unit.
- FIG. 7E is a schematic diagram showing wide area mesh data in which the number of terminals based on the network positioning data acquired by the positioning data acquisition unit 101 is aggregated in wide area mesh units.
- the reliability evaluation unit 109 calculates the correlation coefficient of the narrow area mesh data between the narrow area mesh groups shown in FIGS. 7A to 7D.
- the reliability evaluation unit 109 selects a narrow area mesh group having a correlation coefficient equal to or greater than a predetermined threshold. This correlation coefficient is calculated using a known calculation method such as cosine similarity.
- the narrow mesh groups shown in FIGS. 7A to 7C are determined to have a high correlation with each other, and the narrow mesh groups shown in FIG. It is determined that the mesh has low correlation with other narrow area mesh data.
- the determination may be made based on the ratio of the number of user terminals between meshes at the same position between groups. That is, the reliability evaluation unit 109 calculates the ratio of each mesh of the narrow area mesh data between the groups, and calculates the variance thereof. For example, the narrow area mesh data of group 1 in FIG. 7 is divided by the narrow area mesh data of group 2 for each mesh unit. Thereby, first, the ratio is calculated for each mesh. Then, the variance of this ratio is calculated. If this variance is less than or equal to a predetermined threshold, that group is adopted. This allows the selection of groups for evaluation. It should be noted that the variance being equal to or less than the threshold indicates that the degree of coincidence is the same, and is analyzed from the same viewpoint as the correlation analysis.
- priority may be given to the attribute information of the positioning data in advance, and when a plurality of groups are selected, the higher one may be adopted. For example, when it is determined that the groups A and B have a high correlation with each other and the groups C and D have a high correlation with each other, and the group A has been set with a high priority of the attribute information of the positioning data, the groups A and B have a high priority. To adopt.
- FIG. 8 is a schematic diagram showing the calculation process.
- FIG. 8A to FIG. 8C show the narrow area mesh groups determined to have a high correlation.
- FIG. 8D shows the evaluation narrow area mesh data.
- the narrow area mesh data for evaluation is data obtained by collecting the narrow area mesh data of each narrow area mesh group determined to have a high correlation for each narrow area mesh having the same position.
- the narrow-area mesh data of the narrow-area mesh p in FIG. 8D is the sum of the narrow-area mesh data of the narrow-area meshes p1 to p3 at the same position in FIGS. 8A to 8C. It is the total value of The same applies to other narrow area mesh data.
- FIG. 8E is a schematic diagram showing the evaluation wide area mesh data.
- the evaluation wide area mesh data is generated based on the evaluation narrow area mesh data.
- the wide area mesh data for evaluation is obtained by collecting the narrow area mesh data for evaluation in units of wide area mesh.
- the evaluation wide area mesh data of the wide area mesh t in FIG. 8E is calculated as the total value of the narrow area mesh data indicated by the narrow area meshes p, q, r, and s in FIG. 8D.
- FIG. 8F shows wide area mesh data based on the network positioning data acquired by the positioning data acquisition unit 101.
- the wide area mesh data is based on the position information obtained by the communication of the user terminal 200, and the population thereof is generally larger than the number of the GPS-positioned position information described above.
- the reliability evaluation unit 109 stores the evaluation wide area mesh data (FIG. 8E) and the wide area mesh data (FIG. 8F) based on the network positioning data acquired by the positioning data acquisition unit 101. Calculate the correlation of The correlation coefficient calculation process is performed using the cosine similarity as described above.
- the reliability evaluation unit 109 determines whether or not to use the evaluation narrow area mesh data, based on whether or not the correlation coefficient (cosine similarity) is equal to or larger than a predetermined threshold value. That is, if the correlation coefficient is greater than or equal to a predetermined value, the number of user terminals of the evaluation narrow area mesh data is adopted, and if it is less than the predetermined value, it is not adopted and the next different narrow area mesh data is acquired.
- Different narrow area mesh data is narrow area mesh data acquired by changing the geographical resolution (making the division pattern finer) or changing the temporal resolution (changing the aggregation time unit).
- the reliability evaluation unit 109 selects a necessary narrow area mesh group from the generated narrow area mesh groups, and based on the narrow area mesh data of the narrow area mesh group, obtains the narrow area mesh data for evaluation.
- the generated wide area mesh data is generated based on the generated narrow area mesh data, and the narrow area mesh data is evaluated. As a result, narrow-area mesh data with improved statistical reliability can be obtained.
- a ratio is calculated for each wide area mesh unit between the wide area mesh data for evaluation and the wide area mesh data, and when the variance is less than or equal to a predetermined value, It may be determined whether or not to use the evaluation narrow area mesh data.
- the user terminal 200 includes a terminal positioning unit 201, a positioning data storage unit 202, and a transmission unit 203.
- the terminal positioning unit 201 is a unit that measures the position of the user terminal 200, and acquires coordinate information (position information) by GPS positioning, for example.
- coordinate information position information
- the positioning data storage unit 202 is a unit that stores positioning data including the position information measured by the terminal positioning unit 201.
- the positioning data is the same as the items shown in FIG.
- the transmitting unit 203 is a unit that transmits the positioning data to the population distribution aggregation device 100.
- FIGS. 9 and 10 are flowcharts showing the operation of the population distribution totalization device 100.
- the operator operates the geographical resolution designating unit 105 and the temporal resolution designating unit 106 to designate the geographical resolution and the temporal resolution of the narrow area mesh (S101, S102).
- the narrow area mesh group management unit 108 classifies the terminal positioning data for each attribute and generates a narrow area mesh group (S103). For example, the OS type is classified into A, the positioning type is classified into GPS, and the like, and a narrow mesh group indicating a narrow mesh according to the resolution designated by the geographical resolution is generated for each OS type.
- the narrow mesh group management unit 108 aggregates the number of terminals for each narrow mesh in each narrow mesh group, and generates narrow mesh data (S104).
- the narrow area mesh group management unit 108 evaluates the reliability of each narrow area mesh group by performing a correlation analysis between the narrow area mesh groups and calculating a correlation coefficient (S105).
- the narrow area mesh group management unit 108 determines whether or not the correlation coefficient is greater than or equal to a predetermined threshold value (S106). When it is determined that the correlation coefficient is equal to or larger than the predetermined threshold value, the narrow area mesh data of the narrow area mesh group to be evaluated is adopted (S107). When it is determined that the correlation coefficient is less than the predetermined threshold value, the narrow area mesh data of the narrow area mesh group to be evaluated is not adopted (S108). This is repeated for all combinations of groups to calculate the correlation coefficient (S109). Instead of the determination based on the correlation coefficient as described above, it may be determined whether or not to adopt the narrow area mesh data based on the variance of the ratio of each mesh unit.
- the narrow area mesh group management unit 108 acquires the adopted narrow area mesh data (S110) and generates evaluation wide area mesh data from the narrow area mesh data (S111).
- the narrow area mesh group management unit 108 acquires the network positioning data acquired by the positioning data acquisition unit 101 from the positioning data storage unit 102 and generates wide area mesh data (S112).
- the reliability evaluation unit 109 performs a correlation analysis between the evaluation wide area mesh data and the wide area mesh data to perform reliability evaluation (S113).
- the reliability evaluation unit 109 determines whether the calculated correlation coefficient is greater than or equal to the threshold value (S114). If the correlation coefficient is greater than or equal to the threshold value, the narrow area mesh that is the original data of the evaluation wide area mesh data is determined. The data is adopted (S115), and if the correlation coefficient is less than the threshold value, the narrow area mesh data is not adopted (S116). Instead of the judgment based on the correlation coefficient as described above, it is judged whether or not to adopt the wide area mesh data for evaluation (and the narrow area mesh data which is the source thereof) based on the variance of the ratio of each wide area mesh unit. May be.
- the process it is judged whether or not the narrow area mesh data generated with the specified geographical resolution and temporal resolution is adopted. If it cannot be adopted, the process returns to S101 again, a different geographical resolution and temporal resolution are designated, and the above processing is repeated.
- the geographical resolution and the temporal resolution it is preferable that the minimum resolution is designated first, and the resolution is gradually increased.
- the population distribution estimation unit 110 applies the distribution ratio of the adopted narrow area mesh data to the wide area mesh data to calculate the number of user terminals (population distribution) in the narrow area mesh.
- the above-mentioned processing can be aggregated for each user attribute. That is, as the user attributes, sex, age (or age), place of residence, and hobbies and preferences are associated and stored in advance with the user ID, and when generating the narrow area mesh data and the wide area mesh data, It is also possible to aggregate for each user attribute.
- the population distribution totaling apparatus 100 of the present embodiment acquires detailed position information indicating the positions of the user terminals that have been positioned by the plurality of user terminals 200 according to the first method such as GPS, and also uses the network infrastructure to perform positioning methods and the like.
- Positioning data acquisition unit 101 that acquires general position information of a plurality of user terminals that are positioned by the second method, positioning data storage unit 102 that stores detailed position information and general position information for each user terminal 200, and positioning data. Details stored in the positioning data storage unit 102 by using the rough position information stored in the storage unit 102 to acquire the number of user terminals located for each predefined wide-area mesh to generate wide-area mesh data.
- a wide area mesh is divided at a predetermined geographical resolution for each predetermined position information acquisition pattern.
- Position information acquisition based on the narrow mesh data and the wide area mesh data, and the narrow area mesh group management unit 108 that acquires the number of user terminals located in each of the plurality of narrow area meshes and generates the narrow area mesh data.
- a reliability evaluation unit 109 that calculates the reliability of the narrow area mesh data for each pattern, and a population distribution estimation that estimates the number of user terminals of the narrow area mesh based on the narrow area mesh data and the wide area mesh data according to the reliability.
- a section 110 Using the position information, a wide area mesh is divided at a predetermined geographical resolution for each predetermined position information acquisition pattern.
- the positioning data storage unit 102 stores, as detailed position information, position information of the user terminal and attribute information indicating an attribute of the detailed position information, and the position information acquisition pattern is based on the attribute information. , Generate narrow area data.
- This attribute is, for example, the positioning type and the terminal type.
- the positioning deviation of the position of the position information differs depending on the positioning attribute, for example, the positioning type or the terminal type, and the positioning deviation of the position varies depending on the positioning situation and positioning time.
- the positioning attribute for example, the positioning type or the terminal type
- the positioning deviation of the position varies depending on the positioning situation and positioning time.
- by calculating the narrow area mesh data according to the positioning type or the terminal type it is possible to select the positioning data of the group having the same position positioning deviation. Therefore, the statistical reliability can be improved.
- the narrow area mesh group management unit 108 groups the detailed position information into a plurality of groups based on the position information acquisition pattern, and for each group, the narrow area area.
- Narrow area mesh data is generated by aggregating the number of detailed position information for each.
- the reliability evaluation unit 109 calculates the narrow range mesh data based on the narrow range mesh data for evaluation and the wide range mesh data based on the narrow range mesh data satisfying a predetermined condition among the narrow range mesh data generated for each group. Calculate the reliability.
- the reliability evaluation unit 109 performs a correlation analysis between the evaluation narrow area mesh data and the wide area mesh data to satisfy a predetermined condition such as a correlation coefficient higher than a predetermined value. Calculate the reliability of the narrow mesh data.
- the reliability evaluation unit 109 selects a plurality of narrow-area mesh data having a high mutual correlation based on the plurality of narrow-area mesh data generated for each group, and selects the plurality of narrow-area mesh data.
- the data is synthesized to generate the evaluation narrow area data.
- the narrow area mesh group management unit 108 determines the geographical resolution indicating the division unit and the total time. At least one of the temporal resolution that is a unit is changed, and the narrow area mesh data is generated again.
- the first method is a method of positioning at the user terminal
- the second method is a method of positioning at the network side.
- the position information of a method of positioning by a user terminal is detailed.
- the method of positioning on the network side can take a large number of parameters, although the position information is rough.
- each functional block may be realized by using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and may be implemented using these multiple devices.
- the functional blocks may be realized by combining the one device or the plurality of devices with software.
- Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, observation, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but not limited to these.
- a functional block (component) that functions for transmission is called a transmitting unit or a transmitter.
- the implementation method is not particularly limited.
- the population distribution totaling apparatus 100 may function as a computer that performs the processing of the population distribution totaling method of the present disclosure.
- FIG. 11 is a diagram illustrating an example of the hardware configuration of the population distribution totaling apparatus 100 according to the embodiment of the present disclosure.
- the population distribution aggregation device 100 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
- the word “device” can be read as a circuit, device, unit, or the like.
- the hardware configuration of the population distribution aggregation device 100 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
- Each function in the population distribution aggregation device 100 causes the processor 1001 to perform calculation by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and control communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
- the processor 1001 operates an operating system to control the entire computer, for example.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, a calculation device, a register, and the like.
- CPU central processing unit
- the wide area mesh generation unit 103, the narrow area mesh generation unit 104, the narrow area mesh group management unit 108, the reliability evaluation unit 109, the population distribution estimation unit 110, and the like may be realized by the processor 1001.
- the processor 1001 reads a program (program code), software module, data, and the like from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- a program program that causes a computer to execute at least a part of the operations described in the above-described embodiments is used.
- the narrow mesh group management unit 108, the reliability evaluation unit 109, and the like of the population distribution aggregation device 100 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and regarding other functional blocks. May be similarly realized.
- the various processes described above are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
- the processor 1001 may be implemented by one or more chips.
- the program may be transmitted from the network via an electric communication line.
- the memory 1002 is a computer-readable recording medium, and is configured by, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be done.
- the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store an executable program (program code), a software module, or the like for implementing the population distribution totaling method according to the embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disc). At least one of a (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, and a key drive), a floppy (registered trademark) disk, a magnetic strip, or the like.
- the storage 1003 may be called an auxiliary storage device.
- the storage medium described above may be, for example, a database including at least one of the memory 1002 and the storage 1003, a server, or another appropriate medium.
- the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be composed of
- the communication device 1004 may implement the above-described part that transmits and receives the positioning data.
- the communication device 1004 may be implemented as physically or logically separated.
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
- the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
- Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
- the population distribution aggregation device 100 includes hardware such as a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array).
- the hardware may be configured to include some or all of the functional blocks.
- the processor 1001 may be implemented using at least one of these hardware.
- Information notification is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method.
- information notification includes physical layer signaling (eg, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, Notification information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof may be used.
- the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
- LTE Long Term Evolution
- LTE-A Long Term Evolution-Advanced
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- FRA Full Radio Access
- NR new Radio
- W-CDMA registered trademark
- GSM registered trademark
- CDMA2000 Code Division Multiple Access 2000
- UMB Universal Mobile Broadband
- IEEE 802.11 Wi-Fi (registered trademark)
- IEEE 802.16 WiMAX (registered trademark)
- IEEE 802.20 UWB (Ultra-WideBand
- Bluetooth registered trademark
- other systems using appropriate systems, and extensions based on these It may be applied to at least one of the next-generation systems.
- a plurality of systems may be combined and applied (for example, a combination of at least one of LTE and LTE-A and 5G).
- the specific operation that is performed by the base station in the present disclosure may be performed by its upper node in some cases.
- various operations performed for communication with a terminal include the base station and other network nodes other than the base station (eg, MME or S-GW and the like are conceivable, but not limited to these).
- MME or S-GW and the like are conceivable, but not limited to these.
- a combination of a plurality of other network nodes for example, MME and S-GW may be used.
- Information can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
- Information that has been input and output may be stored in a specific location (for example, memory), or may be managed using a management table. Information that is input / output may be overwritten, updated, or added. The output information and the like may be deleted. The input information and the like may be transmitted to another device.
- the determination may be performed based on a value represented by 1 bit (0 or 1), may be performed based on a Boolean value (Boolean: true or false), or may be compared by numerical values (for example, a predetermined value). (Comparison with the value).
- the notification of the predetermined information (for example, the notification of “being X”) is not limited to the explicit notification, but is performed implicitly (for example, the notification of the predetermined information is not performed). Good.
- software, instructions, information, etc. may be sent and received via a transmission medium.
- the software uses a wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and / or wireless technology (infrared, microwave, etc.) websites, When sent from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
- wired technology coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
- wireless technology infrared, microwave, etc.
- Information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description include voltage, current, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any of these. May be represented by a combination of
- At least one of the channel and the symbol may be a signal (signaling).
- the signal may also be a message.
- a component carrier CC may be called a carrier frequency, a cell, a frequency carrier, or the like.
- system and “network” used in this disclosure are used interchangeably.
- the information, parameters, etc. described in the present disclosure may be represented by using an absolute value, may be represented by using a relative value from a predetermined value, or by using other corresponding information. May be represented.
- the radio resources may be those indicated by the index.
- a mobile station can be a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless, by a person skilled in the art. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
- determining and “determining” as used in this disclosure may encompass a wide variety of actions.
- “Judgment” and “decision” are, for example, judgment, calculating, computing, processing, deriving, investigating, and looking up, search, inquiry. (Eg, searching in a table, database or another data structure), ascertaining what is considered to be “judgment” or “decision”, and the like.
- “decision” and “decision” include receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), access (accessing) (for example, accessing data in a memory) may be regarded as “judging” and “deciding”.
- judgment and “decision” are considered to be “judgment” and “decision” when things such as resolving, selecting, choosing, establishing, establishing, and comparing are done. May be included. That is, the “judgment” and “decision” may include considering some action as “judgment” and “decision”. In addition, “determination (decision)” may be read as “assuming,” “expecting,” “considering,” and the like.
- the phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” means both "based only on” and “based at least on.”
- references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements may be employed, or that the first element must precede the second element in any way.
- the term “A and B are different” may mean “A and B are different from each other”.
- the term may mean that “A and B are different from C”.
- the terms “remove”, “coupled” and the like may be construed as “different” as well.
- 100 ... Population distribution aggregation device, 101 ... Positioning data acquisition unit, 102 ... Positioning data storage unit, 103 ... Wide area mesh generation unit, 104 ... Narrow area mesh generation unit, 105 ... Geographical resolution designation unit, 106 ... Temporal resolution designation Part, 107 ... Resolution management table, 108 ... Narrow area mesh group management section, 108a ... Narrow area mesh group management table, 108b ... Narrow area mesh data management table, 108c ... Wide area mesh data management table, 109 ... Reliability evaluation section, 110 ... Population distribution estimation unit, 200 ... User terminal, 201 ... Terminal positioning unit, 202 ... Positioning data storage unit, 203 ... Transmission unit, 250 ... Base station, 300 ... Position information server.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Human Resources & Organizations (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mobile Radio Communication Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
高精度の人口分布を算出することができる人口分布集計装置を提供することを目的とする。 ユーザ端末200の概略位置情報を用いて、予め定義された広域メッシュごとに位置するユーザ端末数を取得して広域メッシュデータを生成し、測位データ蓄積部102に記憶されている詳細位置情報を用いて、所定の位置情報取得パターンごとに、広域メッシュを所定の地理的分解能で分割した複数の狭域メッシュのそれぞれに位置するユーザ端末数を取得して狭域メッシュデータを生成する狭域メッシュグループ管理部108と、狭域メッシュデータと広域メッシュデータとに基づいて、位置情報取得パターンごとの狭域メッシュデータの信頼度を算出する信頼度評価部109と、信頼度に従って、狭域メッシュデータと広域メッシュデータとに基づいて、狭域メッシュの端末数を推計する人口分布推計部110と、を備える。
Description
本発明は、ユーザ端末の位置情報を集計する人口分布集計装置に関する。
下記特許文献1には、携帯端末を携帯するユーザの人口分布を解析して、ターゲット地域の人口分布を解析することが記載されている。
しかしながら、特許文献1においては、統計的信頼度を確保しつつ地理的分解能の高い人口分布を算出することはできない。すなわち、特許文献1に記載の技術では、ユーザ端末自体およびその測位手段による位置測位の特性を考慮せずに、ユーザ端末の位置情報を集計しており、その統計的信頼度を損なう、という問題がある。
そこで、上述の問題を解決するために、本発明は、統計的信頼度を保ち地理的分解能の高い人口分布を算出することができる人口分布集計装置を提供することを目的とする。
本発明の人口分布集計装置は、複数のユーザ端末において測位された当該ユーザ端末の位置を示す位置情報を用いて、所定の位置情報取得パターンごとに、予め定義された広域エリアを所定の地理的分解能で分割した複数の狭域エリアのそれぞれに位置するユーザ端末数を取得して狭域エリアデータを生成する狭域エリアデータ生成部と、前記広域エリアごとに位置するユーザ端末数を示す広域エリアデータと前記狭域エリアデータとに基づいて、前記位置情報取得パターンごとの前記狭域エリアデータの信頼度を算出する信頼度算出部と、前記信頼度に従って、前記狭域エリアデータと前記広域エリアデータとに基づいて、前記狭域エリアの端末数を推計する人口推計部と、を備える。
この構成により、所定の位置情報取得パターンごとに狭域メッシュデータを生成し、それに基づいた狭域メッシュデータと広域メッシュデータとに基づいて狭域メッシュデータの信頼度の評価を行うことができる。従って、より統計的信頼度の高い狭域メッシュデータを選択することができ、それを用いた狭域メッシュの人口分布を高精度で推計することができる。
本発明によると、統計的信頼をもった地理的分解能の高い人口分布を算出することができる。
添付図面を参照しながら本開示の一実施形態を説明する。可能な場合には、同一の部分には同一の符号を付して、重複する説明を省略する。
図1は、本開示の一実施形態の人口分布集計装置100を含んだ通信システムのシステム構成を示す図である。図1に示されるとおり、人口分布集計装置100、ユーザ端末200、基地局250、および位置情報サーバ300を含んで構成されている。ユーザ端末200は、例えば、移動体通信網を使った通信を行う携帯電話、またはスマートフォンである。ユーザ端末200は、基地局250と無線通信を行い、ネットワークを介してインターネットまたはその他の通信端末と通信を行う。
位置情報サーバ300は、ユーザ端末200の位置管理を行うサーバである。この位置情報サーバ300は、ユーザ端末200が加入している移動体通信網の通信事業者が所有するサーバであり、ユーザ端末200の位置管理を行うサーバである。位置情報サーバ300は、基地局250におけるユーザ端末200が在圏する概略位置を取得し、記憶する。
また、ユーザ端末200は、GPS測位を行うことにより高精度の位置情報を取得し、人口分布集計装置100または位置情報サーバ300に送信する。
人口分布集計装置100は、位置情報サーバ300が記憶している各ユーザ端末200の概略位置情報およびユーザ端末200がGPS測位した精細位置情報に基づいて、狭域メッシュおよび広域メッシュにおける人口分布を算出する。
つぎに、人口分布集計装置100の機能構成について説明する。図2は、人口分布集計装置100の機能構成を示すブロック図である。図2に示されるとおり、人口分布集計装置100は、測位データ取得部101(第1位置情報取得部、第2位置情報取得部)、測位データ蓄積部102(位置情報記憶部)、広域メッシュ生成部103、狭域メッシュ生成部104、地理的分解能指定部105、時間的分解能指定部106、分解能管理テーブル107、狭域メッシュグループ管理部108(広域エリアデータ生成部、狭域エリアデータ生成部)、狭域メッシュグループ管理テーブル108a、狭域メッシュデータ管理テーブル108b、広域メッシュデータ管理テーブル108c、信頼度評価部109(信頼度算出部)、および人口分布推計部110(人口推計部)を含んで構成されている。また、この人口分布集計装置100と通信するユーザ端末200は、端末測位部201、測位データ蓄積部202、および送信部203を含んで構成されている。以下、人口分布集計装置100について説明する。
測位データ取得部101は、ユーザ端末200が在圏している基地局250と通信することにより得られるユーザ端末のユーザ端末200の概略位置情報(第2位置情報)を取得する部分である。なお、ユーザの位置情報は、その通信によって、当該基地局250の位置情報または当該基地局250が形成するセルの中心位置を、ユーザ端末200の概略位置情報(第2位置情報)としてもよい。それ以外においても、ネットワーク内において概略的にユーザ端末200の位置情報を取得することができる。この概略位置情報は、位置情報サーバ300に記憶されている情報であり、測位データ取得部101は、この位置情報サーバ300から概略位置情報を取得する。また、測位データ取得部101は、ユーザ端末200から送信されるGPS位置情報など詳細位置情報を取得する。
測位データ蓄積部102は、測位データ取得部101が取得した概略位置情報またはユーザ端末200から送信されたGPS位置情報(詳細位置情報(第1位置情報))を含む測位データを記憶する部分である。
図3(a)は、その測位データのうちユーザ端末200において取得された測位データ(端末測位データ)の具体例を示す図である。図に示される通り、測位データは、タイムスタンプ、ユーザID、座標情報(緯度、経度)、および測位データの属性情報(当該ユーザ端末のOS、OSバージョン、測位アプリケーション名、そのバージョン情報、ユーザ端末の機種名、測位種別、測位精度)を対応付けている。測位データの属性情報をキーにして、測位データを絞り込むことを可能にしている。
図3(b)は、測位データのうち測位データ取得部101により取得された測位データ(概略測位データ)の具体例を示す図である。図に示される通り、測位データは、タイムスタンプ、ユーザID、座標情報(緯度、経度)を対応付けている。
広域メッシュ生成部103は、所定の広域分割パターンで地図情報を分割して、複数の広域メッシュ(広域エリア)を生成する部分である。
狭域メッシュ生成部104は、広域メッシュ生成部103が生成した広域メッシュをさらに所定の狭域分割パターンで分割して、狭域メッシュ(狭域エリア)を生成する部分である。この狭域分割パターンは、後述する地理的分解能に基づいて定義される。
地理的分解能指定部105は、狭域メッシュ生成部104の狭域分割パターンの大きさ(分解能)を指定する部分である。例えば、狭域メッシュを100m×100mの分割パターンで分割するなどを指定する。この指定はユーザ操作により行われる。
時間的分解能指定部106は、狭域メッシュグループ管理部108において、位置情報の時間的な集計単位の粒度を指定する部分である。例えば、時間的分解能指定部106は、1時間単位の位置情報の数、または1日単位の位置情報の数など、位置情報の数(すなわち端末数)を集計するための時間単位の粒度を指定する。この粒度は、分解能管理テーブル107に定義された時間的分解能に基づいて設定される。
分解能管理テーブル107は、地理的分解能および時間的分解能を、分解能IDと対応付けて記述する部分である。この分解能管理テーブル107は、地理的分解能指定部105および時間的分解能指定部106が地理的または時間的分解能を指定する際に参照される。図4は、その管理テーブルの具体例である。例えば、分解能ID000000001には、時間的分解能として1ヵ月、地理的分解能として100mが定義されている。この地理的分解能は、狭域メッシュのサイズを示し、後述する狭域メッシュグループを生成する際において、100m×100mを分割パターンとして狭域メッシュが生成される。また、この時間的分解能は、位置情報の数(端末数)の取得時間単位を1ヵ月単位とすることを示す。オペレータは、この管理テーブルを参照して、分解能IDを指定することで、地理的分解能および時間的分解能を指定することができる。
狭域メッシュグループ管理部108は、広域メッシュ生成部103、狭域メッシュ生成部104、地理的分解能指定部105、時間的分解能指定部106、および測位データ蓄積部102のそれぞれからの出力に基づいて、広域メッシュ単位おける高精細人口分布を算出するために、その前処理となる狭域メッシュグループおよびその狭域メッシュデータを生成する部分である。ここで、狭域メッシュデータは、各狭域メッシュにおけるユーザ端末数(位置情報数に相当)を示す。狭域メッシュグループは、測位データの属性情報に基づいて定められる。
例えば、狭域メッシュグループ管理部108は、測位データ蓄積部102から測位データを取得し、OS種別および/または測位種別に基づいて、グループ化する。
図5は、狭域メッシュグループを記述する狭域メッシュグループ管理テーブル108aの具体例を示す。図に示されるとおり、狭域メッシュグループIDごとに、OS種別および測位種別の組合せに対応付けて、狭域メッシュグループIDが割り振られている。
狭域メッシュグループ管理部108は、グループ化した単位で、その測位データのレコード数を集計することにより、狭域メッシュごとの狭域メッシュデータを算出する。
図6(a)は、狭域メッシュデータを記述する狭域メッシュデータ管理テーブル108bの具体例を示す。図に示されるとおり、狭域メッシュデータは、狭域メッシュグループID、分解能ID、狭域メッシュID、およびユーザ端末数を対応付けたデータである。狭域メッシュグループ管理部108は、狭域メッシュグループごとにこれら情報を記憶している。
また、狭域メッシュグループ管理部108は、広域メッシュ単位で、その測位データのレコード数を集計することにより、広域メッシュごとの広域メッシュデータを算出する。
図6(b)は、広域メッシュデータを記述する広域メッシュデータ管理テーブル108cの具体例を示す。図に示されるとおり、広域メッシュデータは、広域メッシュID、およびユーザ端末数を対応付けている。
信頼度評価部109は、狭域メッシュグループ管理部108で生成された狭域メッシュグループごとの狭域メッシュデータに対する評価を行う部分である。例えば、信頼度評価部109は、狭域メッシュグループにおける狭域メッシュデータに基づいて狭域メッシュグループ間の相関を算出することにより、狭域メッシュグループ管理部108で生成したどの狭域メッシュグループを採用するか決定する。さらに、採用した一または複数の狭域メッシュグループに基づいた狭域メッシュデータと、広域メッシュにおける広域メッシュデータと、の相関係数を算出することにより、狭域メッシュグループの評価を行う。広域メッシュデータとの相関係数が高いほど、その評価は高いとする。
人口分布推計部110は、当該狭域メッシュデータを用いて、狭域メッシュ単位ごとの端末数比を算出し、広域メッシュ単位の広域メッシュデータを、狭域メッシュの端末数比に適用することにより、狭域メッシュ単位における人口分布を算出する。
つぎに、信頼度評価部109における信頼度評価の具体例について説明する。図7は、ある領域を、3×3の広域分割パターンで分割した広域メッシュをさらに、2×2の狭域分割パターンで分割した狭域メッシュにおける狭域メッシュデータの具体例を示す。すなわち、ある領域を6×6の狭域分割パターンで分割した狭域メッシュごとの端末数を示す模式図である。
図7(a)は、OS種別がAであり、測位種別がGPSで端末数を狭域メッシュ単位で集計した狭域メッシュデータを示すグループ1を示す。図7(b)は、OS種別がAであり、測位種別がWi-Fiで端末数を狭域メッシュ単位で集計した狭域メッシュデータを示すグループ2を示す。図7(c)は、OS種別がBであり、測位種別がGPSで端末数を狭域メッシュ単位で集計した狭域メッシュデータを示すグループ3を示す。図7(d)は、OS種別がBであり、測位種別がWIFIで端末数を狭域メッシュ単位で集計した狭域メッシュデータを示すグループ3を示す。図7(e)は、測位データ取得部101が取得したネットワーク測位データに基づいた端末数を広域メッシュ単位で集計した広域メッシュデータを示す模式図である。
これを用いて、狭域メッシュグループに対する信頼度評価の算出方法について説明する。
まず、信頼度評価部109は、図7(a)~図7(d)に示される各狭域メッシュグループ同士の狭域メッシュデータの相関係数を算出する。信頼度評価部109は、所定の閾値以上の相関係数である狭域メッシュグループを選択する。この相関係数は、例えば、コサイン類似度など公知の計算手法を用いて算出される。本実施形態においては、図7(a)~図7(c)に示される狭域メッシュグループが、相互に狭域メッシュデータの相関が高いと判断され、図7(d)に示される狭域メッシュが、他の狭域メッシュデータとの相関が低いと判断される。
相関係数が閾値以上となる狭域メッシュグループ同士が複数セットあり、それぞれのセットにおける狭域メッシュグループ同士は相関がない場合があり得る。例えば、グループA~Dがあったとして、グループAとBは相関があり、グループCとDは相関があるが、グループAとCとは相関がないなど、他のグループ間では相関がない場合である。この場合には、サンプル数を増やすために、狭域メッシュデータにおけるユーザ端末数が多いグループを採用とするのがよい。すなわち、グループAとBの全メッシュにおけるユーザ端末数と、グループCとDの全メッシュにおけるユーザ端末数を比較し、多い方のグループを採用する。
より具体的にグループ間の相関の有無の判断を説明すると、以下の通りとなる。
グループAと相関があるグループ:B
グループBと相関があるグループ:A
グループCと相関があるグループ:D
グループDと相関があるグループ:C
グループAと相関がないグループ:C、D
グループBと相関がないグループ:C、D
グループCと相関がないグループ:A、B
グループDと相関がないグループ:A、B
このように相関関係が把握されることにより、グループA、Bと、グループC、Dとが異なる相関セットにあることが把握できる。そして、上述したとおり、ユーザ端末数をより多く含んでいる相関セットのグループを採用するのがよい。
グループBと相関があるグループ:A
グループCと相関があるグループ:D
グループDと相関があるグループ:C
グループAと相関がないグループ:C、D
グループBと相関がないグループ:C、D
グループCと相関がないグループ:A、B
グループDと相関がないグループ:A、B
このように相関関係が把握されることにより、グループA、Bと、グループC、Dとが異なる相関セットにあることが把握できる。そして、上述したとおり、ユーザ端末数をより多く含んでいる相関セットのグループを採用するのがよい。
なお、グループ間の相関に基づいて判断することにかえて、グループ間の同一位置におけるメッシュ同士のユーザ端末数の比率に基づいて判断してもよい。すなわち、信頼度評価部109は、グループ間において狭域メッシュデータの各メッシュの比率を算出し、その分散を算出する。例えば、図7におけるグループ1の狭域メッシュデータをグループ2の狭域メッシュデータで、各メッシュ単位で除算する。これによって、まずは、それぞれメッシュ単位で比率が算出される。そして、この比率の分散を算出する。この分散が所定の閾値以下である場合には、そのグループを採用する。これによって、評価のためのグループを選択することができる。なお、分散が閾値以下ということは、その一致の程度が同じであることを示し、相関分析と同じ観点から分析したものである。
分散が所定値以下のグループ同士が複数セットあった場合には、上記同様、ユーザ端末数の多いグループ同士を採用する。
また、これらにかえて、事前に測位データの属性情報に優先度を与えておき、複数のグループが選択された場合、その上位のものを採用してもよい。例えばグループAとB、グループCとDが、それぞれ相関が高いと判断された場合、グループAが、その測位データの属性情報の優先度が高いと設定されていた場合には、グループAとBを採用する。
つぎに、信頼度評価部109は、各狭域グループのそれぞれを合計した評価用狭域メッシュデータと、広域メッシュデータとの相関係数を算出する。図8は、その算出処理を示す模式図である。図8(a)~図8(c)は、相関が高いと判断された狭域メッシュグループを示す。図8(d)は、評価用狭域メッシュデータを示す。この評価用狭域メッシュデータは、相関が高いと判断された各狭域メッシュグループの狭域メッシュデータを、その位置を同じにする狭域メッシュごとに集計したデータである。
例えば、図8(d)における狭域メッシュpの狭域メッシュデータは、図8(a)~図8(c)における、位置を同じにする狭域メッシュp1~p3の狭域メッシュデータを合計した合計値である。他の狭域メッシュデータも同様である。
図8(e)は、評価用広域メッシュデータを示す模式図である。評価用広域メッシュデータは、評価用狭域メッシュデータに基づいて生成される。評価用広域メッシュデータとは、広域メッシュ単位に、評価用狭域メッシュデータを集計したものである。
例えば、図8(e)における広域メッシュtの評価用広域メッシュデータは、図8(d)における狭域メッシュp、q、r、sで示される狭域メッシュデータの合計値として算出される。
図8(f)は、測位データ取得部101で取得されたネットワーク測位データに基づいた広域メッシュデータを示す。この広域メッシュデータは、ユーザ端末200が通信することにより得られる位置情報に基づいたものであり、その母集団は、一般的に上述したGPS測位した位置情報などの数よりも大きい。
つぎに、信頼度評価部109は、評価用広域メッシュデータ(図8(e))と、測位データ取得部101で取得されたネットワーク測位データに基づいた広域メッシュデータ(図8(f))との相関を算出する。相関係数の算出処理は、上述と同様にコサイン類似度を用いて行われる。信頼度評価部109は、この相関係数(コサイン類似度)が、所定の閾値以上であるか否かに基づいて、評価用狭域メッシュデータを採用するか否かを判断する。すなわち相関係数が所定以上であれば、その評価用狭域メッシュデータのユーザ端末数を採用し、所定値未満であれば、採用せず、つぎの異なる狭域メッシュデータを取得する。異なる狭域メッシュデータとは、地理的分解能を変え(その分割パターンをさらに細かくする)、または時間的分解能を変えて(集計時間単位を変える)取得された狭域メッシュデータである。
このようにして、信頼度評価部109は、生成された狭域メッシュグループから必要な狭域メッシュグループを選択し、その狭域メッシュグループの狭域メッシュデータに基づいて評価用狭域メッシュデータを生成し、この評価用狭域メッシュデータに基づいて評価用広域メッシュデータを生成し、狭域メッシュデータの評価を行う。これによって、統計的信頼度を向上させた狭域メッシュデータを得ることができる。
なお、相関係数に基づいた処理に代えて、評価用広域メッシュデータと、広域メッシュデータとの間で、各広域メッシュ単位で比率を算出し、その分散が所定値以下である場合には、評価用狭域メッシュデータを採用するか否かを判断してもよい。
つぎに、ユーザ端末200について説明する。ユーザ端末200は、端末測位部201、測位データ蓄積部202、および送信部203を含む。
端末測位部201は、ユーザ端末200の位置を測位する部分であり、例えば、GPS測位により座標情報(位置情報)を取得する。そのほか、WIFIにより測位する方法、ビーコンにより測位する方法などがある。
測位データ蓄積部202は、端末測位部201が測位した位置情報を含む測位データを記憶する部分である。測位データは、図3(a)に示される項目と同じである。
送信部203は、測位データを人口分布集計装置100に送信する部分である。
このように構成された人口分布集計装置100において、その動作について説明する。図9および図10は、人口分布集計装置100の動作を示すフローチャートである。事前に、オペレータは、地理的分解能指定部105および時間的分解能指定部106を操作することにより、狭域メッシュの地理的分解能および時間的分解能を指定する(S101、S102)。
狭域メッシュグループ管理部108は、端末測位データをその属性ごとに分類し、狭域メッシュグループを生成する(S103)。例えば、OS種別がA、測位種別がGPSなどで分類して、当該OS種別等ごとに、地理的分解能で指定された分解能に従った狭域メッシュを示した狭域メッシュグループを生成する。
狭域メッシュグループ管理部108は、各狭域メッシュグループにおける狭域メッシュごとの端末数を集計し、狭域メッシュデータを生成する(S104)。
狭域メッシュグループ管理部108は、各狭域メッシュグループ間の相関分析を行い、相関係数を算出することで各狭域メッシュグループの信頼度を評価する(S105)。
狭域メッシュグループ管理部108は、その相関係数が所定の閾値以上であるか否かを判断する(S106)。その相関係数が、所定の閾値以上であると判断されると、その評価対象となる狭域メッシュグループの狭域メッシュデータを採用する(S107)。その相関係数が、所定の閾値未満であると判断されると、その評価対象となる狭域メッシュグループの狭域メッシュデータを採用しない(S108)。これをすべてのグループの組合せについて繰り返し行い、相関係数の算出を行う(S109)。なお、上述したとおり相関係数に基づいた判断に変えて、各メッシュ単位の比率の分散に基づいて狭域メッシュデータの採用の有無を判断してもよい。
引き続き、図10に基づいて、その動作を説明する。狭域メッシュグループ管理部108は、採用した狭域メッシュデータを取得し(S110)、それら狭域メッシュデータから評価用広域メッシュデータを生成する(S111)。
一方で、狭域メッシュグループ管理部108は、測位データ取得部101が取得したネットワーク測位データを測位データ蓄積部102から取得して、広域メッシュデータを生成する(S112)。
そして、信頼度評価部109は、評価用広域メッシュデータと広域メッシュデータとの間の相関分析を行い、信頼度評価を行う(S113)。信頼度評価部109は、算出した相関係数が閾値以上であるか否かを判断し(S114)、相関係数が閾値以上であれば、評価用広域メッシュデータの元データである狭域メッシュデータを採用し(S115)、相関係数が閾値未満であれば、狭域メッシュデータを採用しない(S116)。なお、上述したとおり相関係数に基づいた判断に変えて、各広域メッシュ単位の比率の分散に基づいて評価用広域メッシュデータ(およびその元となる狭域メッシュデータ)の採用の有無を判断してもよい。
この処理により、指定された地理的分解能および時間的分解能で生成された狭域メッシュデータの採用の有無が判断される。採用できない場合には、再度、S101に戻り、異なる地理的分解能および時間的分解能を指定し、上記処理を繰り返し行う。なお、地理的分解能および時間的分解能については、最初は最小分解能で指定され、徐々にその分解能を大きくする方向で指定されるのがよい。
その後、人口分布推計部110は、採用した狭域メッシュデータの分布割合を、広域メッシュデータに適用して、狭域メッシュにおけるユーザ端末数(人口分布)を算出する。
この処理により、統計的信頼度を確保した人口分布を算出することができる。なお、上述処理は、ユーザ属性ごとに集計することもできる。すなわち、ユーザ属性として、事前に性別、年代(または年齢)、居住地、趣味嗜好を、ユーザIDに紐付けておき記憶しておき、狭域メッシュデータおよび広域メッシュデータを生成する際においては、それらユーザ属性ごとに集計することもできる。
つぎに、本実施形態の人口分布集計装置100の作用効果について説明する。本実施形態の人口分布集計装置100は、複数のユーザ端末200においてGPSなどの第1の方法に従って測位された当該ユーザ端末の位置を示す詳細位置情報を取得するとともに、ネットワークインフラによって測位法などの第2の方法により測位された複数のユーザ端末の概略位置情報を取得する測位データ取得部101と、ユーザ端末200ごとの詳細位置情報および概略位置情報を記憶する測位データ蓄積部102と、測位データ蓄積部102に記憶されている概略位置情報を用いて、予め定義された広域メッシュごとに位置するユーザ端末数を取得して広域メッシュデータを生成し、測位データ蓄積部102に記憶されている詳細位置情報を用いて、所定の位置情報取得パターンごとに、広域メッシュを所定の地理的分解能で分割した複数の狭域メッシュのそれぞれに位置するユーザ端末数を取得して狭域メッシュデータを生成する狭域メッシュグループ管理部108と、狭域メッシュデータと広域メッシュデータとに基づいて、位置情報取得パターンごとの狭域メッシュデータの信頼度を算出する信頼度評価部109と、信頼度に従って、狭域メッシュデータと広域メッシュデータとに基づいて、狭域メッシュのユーザ端末数を推計する人口分布推計部110と、を備える。
この構成により、所定の位置情報取得パターンごとに狭域メッシュデータを生成し、それに基づいた狭域メッシュデータと広域メッシュデータとに基づいて狭域メッシュデータの信頼度の評価を行うことができる。従って、より信頼度の高い狭域メッシュデータを選択することができ、狭域メッシュの人口分布を推計することができる。すなわち統計的信頼度の高い人口分布を算出することができる。
本実施形態においては、統計的信頼性を維持しつつ、地理的分解能の高い人口分布を算出することができる。。
また、測位データ蓄積部102は、詳細位置情報として前記ユーザ端末の位置情報に加えて、当該詳細位置情報の属性を示す属性情報を記憶し、位置情報取得パターンは、前記属性情報に基づくものとして、狭域エリアデータを生成する。この属性は、例えば、測位種別および端末種別とする。
一般的に、測位属性、例えば測位種別または端末種別によって、位置情報の位置の測位ずれは異なり、またその測位の状況、測位した時間によって、位置の測位ずれが異なる。本実施形態においては、測位種別または端末種別に応じた狭域メッシュデータを算出することで、位置の測位ずれが同じグループの測位データを選択することができる。従って、統計的信頼度を向上させることができる。
また、本実施形態の人口分布集計装置100において、狭域メッシュグループ管理部108は、位置情報取得パターンに基づいて、詳細位置情報を複数のグループにグループ化し、それぞれのグループごとに、狭域エリアごとの詳細位置情報数を集計した狭域メッシュデータを生成する。信頼度評価部109は、グループごとに生成された狭域メッシュデータのうち所定条件を満たす狭域メッシュデータに基づいた評価用狭域メッシュデータと広域メッシュデータとに基づいて、狭域メッシュデータの信頼度を算出する。
この構成により、グループ間で所定条件を満たす(例えば相関の高い)狭域メッシュデータを合成などして評価用メッシュデータを生成し、これに基づいて狭域メッシュデータの信頼度を評価することができる。したがって、相関が高いなど所定条件を満たす狭域メッシュデータを用いその母集団を大きくして評価をすることで、その信頼度の判断のための精度を向上させることができる。
また、人口分布集計装置100において、信頼度評価部109は、評価用狭域メッシュデータと広域メッシュデータとの間の相関分析を行うことにより、相関係数が所定値より高いなど所定条件を満たす狭域メッシュデータの信頼度を算出する。
より具体的には、信頼度評価部109は、グループごとに生成された複数の狭域メッシュデータに基づいて、相互に相関の高い複数の狭域メッシュデータを選択し、当該複数の狭域メッシュデータを合成して前記評価用狭域エリアデータを生成する。
この構成により、評価用狭域メッシュデータと広域メッシュデータと関係が所定条件(相関が高い)を満たすか否かなど、その狭域メッシュデータの信頼度を算出することができる。したがって、より信頼度の高い狭域メッシュデータを選択でき、信頼度の高く高精度の人口分布を算出することができる。
また、人口分布集計装置100において、信頼度評価部109により算出された信頼度が所定条件を満たさない場合には、狭域メッシュグループ管理部108は、分割単位を示す地理的分解能、および集計時間単位である時間的分解能の少なくともいずれか一方を変えて、再度、狭域メッシュデータを生成する。
この構成により、分解能を変えて、再度やり直すことができ、より適切な信頼度の高い狭域メッシュデータを生成することができる。細かい分解能から大きな分解能に変遷させることが効果的である。例えば、分解能を小さくしすぎると、ユーザ端末数が0となる狭域メッシュが出ることがある。そのような人口分布データを用いて統計処理を行おうとする場合、不適切となることがあり、適度に、人口分布がばらついていた方が、統計処理上都合がよいことがある。よって、分解能を大きくすることで、狭域メッシュ単位に0となる人口分布となることを防ぐことができる。なお、逆に、分解能を小さくする方向にすること都合がよい場合もある。
人口分布集計装置100において、第1の方法は、ユーザ端末において測位される方法であり、記第2の方法は、ネットワーク側において測位される方法とする。一般的にユーザ端末で測位される方法は、その位置情報は詳細である。一方で、ネットワーク側で測位される方法は、位置情報は概略的であるが、その母数を多くとることができる。人口分布を算出する場合には、ネットワーク側で測位される方法で得た情報を用いることで、精度のよい人口分布を算出することができる。
上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施の形態における人口分布集計装置100は、本開示の人口分布集計方法の処理を行うコンピュータとして機能してもよい。図11は、本開示の一実施の形態に係る人口分布集計装置100のハードウェア構成の一例を示す図である。上述の人口分布集計装置100は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。人口分布集計装置100のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
人口分布集計装置100における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の広域メッシュ生成部103、狭域メッシュ生成部104、狭域メッシュグループ管理部108,信頼度評価部109,人口分布推計部110などは、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、人口分布集計装置100の狭域メッシュグループ管理部108、および信頼度評価部109などは、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る人口分布集計方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の測位データを送受信する部分などは、通信装置1004によって実現されてもよい。通信装置1004は、物理的に、または論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、人口分布集計装置100は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
情報等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
100…人口分布集計装置、101…測位データ取得部、102…測位データ蓄積部、103…広域メッシュ生成部、104…狭域メッシュ生成部、105…地理的分解能指定部、106…時間的分解能指定部、107…分解能管理テーブル、108…狭域メッシュグループ管理部、108a…狭域メッシュグループ管理テーブル、108b…狭域メッシュデータ管理テーブル、108c…広域メッシュデータ管理テーブル、109…信頼度評価部、110…人口分布推計部、200…ユーザ端末、201…端末測位部、202…測位データ蓄積部、203…送信部、250…基地局、300…位置情報サーバ。
Claims (8)
- 複数のユーザ端末において測位された当該ユーザ端末の位置を示す位置情報を用いて、所定の位置情報取得パターンごとに、予め定義された広域エリアを所定の地理的分解能で分割した複数の狭域エリアのそれぞれに位置するユーザ端末数を取得して狭域エリアデータを生成する狭域エリアデータ生成部と、
前記広域エリアごとに位置するユーザ端末数を示す広域エリアデータと前記狭域エリアデータとに基づいて、前記位置情報取得パターンごとの前記狭域エリアデータの信頼度を算出する信頼度算出部と、
前記信頼度に従って、前記狭域エリアデータと前記広域エリアデータとに基づいて、前記狭域エリアの端末数を推計する人口推計部と、
を備える、
人口分布集計装置。 - 前記位置情報取得パターンは、前記複数のユーザ端末の位置情報の属性を示す属性情報に基づく、請求項1に記載の人口分布集計装置。
- 前記属性情報は、測位種別および端末種別の少なくともいずれか一方を含む、請求項2に記載の人口分布集計装置。
- 前記狭域エリアデータ生成部は、
前記位置情報取得パターンに基づいて、前記位置情報を複数のグループにグループ化し、それぞれのグループごとに、狭域エリアごとの位置情報数を集計した狭域エリアデータを生成し、
前記信頼度算出部は、
前記グループごとに生成された前記狭域エリアデータのうち所定条件を満たす狭域エリアデータに基づいた評価用狭域エリアデータと前記広域エリアデータとに基づいて、前記狭域エリアデータの信頼度を算出する、
請求項1~3のいずれか一項に記載の人口分布集計装置。 - 前記信頼度算出部は、前記評価用狭域エリアデータと前記広域エリアデータとの間の一致の度合いを判断することにより、前記所定条件を満たす狭域エリアデータの信頼度を算出する、請求項4に記載の人口分布集計装置。
- 前記信頼度算出部は、
グループごとに生成された複数の狭域エリアデータに基づいて、相互に一致の程度の高い複数の狭域エリアデータを選択し、当該複数の狭域エリアデータを合成して前記評価用狭域エリアデータを生成する、請求項4または5に記載の人口分布集計装置。 - 前記信頼度算出部により算出された信頼度が所定条件を満たさない場合には、前記狭域エリアデータ生成部は、分割単位を示す地理的分解能、および集計時間単位である時間的分解能の少なくともいずれか一方を変えて、再度、前記狭域エリアデータを生成する、
請求項1~6のいずれか一項に記載の人口分布集計装置。 - 前記狭域エリアデータは、ユーザ端末において測位される方法に基づいて生成され、
前記広域エリアデータは、ネットワーク側において測位される方法に基づいて生成される、
請求項1~7のいずれか一項に記載の人口分布集計装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020556590A JP7455069B2 (ja) | 2018-11-06 | 2019-07-16 | 人口分布集計装置 |
US17/281,467 US11805393B2 (en) | 2018-11-06 | 2019-07-16 | Method for aggregation and calculation of a population distribution of devices over a predetermined geographic area |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-209074 | 2018-11-06 | ||
JP2018209074 | 2018-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020095480A1 true WO2020095480A1 (ja) | 2020-05-14 |
Family
ID=70612222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/027969 WO2020095480A1 (ja) | 2018-11-06 | 2019-07-16 | 人口分布集計装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11805393B2 (ja) |
JP (1) | JP7455069B2 (ja) |
WO (1) | WO2020095480A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112418925A (zh) * | 2020-11-18 | 2021-02-26 | 智慧足迹数据科技有限公司 | 人口数据统计方法、装置、计算机设备和可读存储介质 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116861197B (zh) * | 2023-09-01 | 2024-04-05 | 北京融信数联科技有限公司 | 一种基于大数据的流动人口监测方法、系统和存储介质 |
CN117131335A (zh) * | 2023-10-23 | 2023-11-28 | 北京艾瑞数智科技有限公司 | 一种基于信令数据的人口分析方法及相关产品 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012054921A (ja) * | 2010-08-05 | 2012-03-15 | Ntt Docomo Inc | 移動機分布算出システム及び移動機分布算出方法 |
US20150100373A1 (en) * | 2013-10-09 | 2015-04-09 | Vodafone Ip Licensing Limited | Demographics predictions using mobile devices |
JP2018073043A (ja) * | 2016-10-27 | 2018-05-10 | Kddi株式会社 | 移動開始終了情報に基づき通行量を推定する装置、プログラム及び方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003030373A (ja) | 2001-07-10 | 2003-01-31 | Fujitsu Ltd | 人口分布解析装置 |
US7751825B2 (en) * | 2002-06-27 | 2010-07-06 | Qualcomm Incorporated | Controlling geographic location information of devices operating in wireless communication systems |
WO2012105377A1 (ja) * | 2011-01-31 | 2012-08-09 | 株式会社エヌ・ティ・ティ・ドコモ | 端末数推計装置および端末数推計方法 |
US9100780B2 (en) * | 2013-03-01 | 2015-08-04 | Qualcomm Incorporated | Method and apparatus for managing positioning assistance data |
US9100772B2 (en) * | 2013-04-05 | 2015-08-04 | Nokia Technologies Oy | Method and apparatus for creating a multi-device media presentation |
-
2019
- 2019-07-16 US US17/281,467 patent/US11805393B2/en active Active
- 2019-07-16 JP JP2020556590A patent/JP7455069B2/ja active Active
- 2019-07-16 WO PCT/JP2019/027969 patent/WO2020095480A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012054921A (ja) * | 2010-08-05 | 2012-03-15 | Ntt Docomo Inc | 移動機分布算出システム及び移動機分布算出方法 |
US20150100373A1 (en) * | 2013-10-09 | 2015-04-09 | Vodafone Ip Licensing Limited | Demographics predictions using mobile devices |
JP2018073043A (ja) * | 2016-10-27 | 2018-05-10 | Kddi株式会社 | 移動開始終了情報に基づき通行量を推定する装置、プログラム及び方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112418925A (zh) * | 2020-11-18 | 2021-02-26 | 智慧足迹数据科技有限公司 | 人口数据统计方法、装置、计算机设备和可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
US20220007143A1 (en) | 2022-01-06 |
US11805393B2 (en) | 2023-10-31 |
JPWO2020095480A1 (ja) | 2021-09-24 |
JP7455069B2 (ja) | 2024-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chakraborty et al. | Specsense: Crowdsensing for efficient querying of spectrum occupancy | |
WO2020095480A1 (ja) | 人口分布集計装置 | |
US10321261B2 (en) | Techniques for wireless transmitter location detection | |
WO2020195148A1 (ja) | 情報処理装置 | |
CN108882165B (zh) | 一种导航方法和装置 | |
WO2019216046A1 (ja) | 情報処理装置 | |
JP2020150418A (ja) | 端末装置及び通信方法 | |
US11895559B2 (en) | Moving means determination device | |
JP7397738B2 (ja) | 集計装置 | |
WO2020213612A1 (ja) | 需要予測装置 | |
CN113395773B (zh) | 一种子载波间隔指示方法、终端及基站 | |
JP7366767B2 (ja) | 情報提供装置 | |
JP7360332B2 (ja) | 提案装置 | |
JP7308603B2 (ja) | 経済指標算出装置 | |
JP7297236B2 (ja) | 推定処理装置及び推定モデル構築装置 | |
WO2024166512A1 (ja) | 同行判別装置 | |
JP7295023B2 (ja) | ユーザ属性推定システム | |
JP6948221B2 (ja) | 在宅率推定装置 | |
JP7053371B2 (ja) | 行動推定装置 | |
WO2024111207A1 (ja) | 属性値推定装置 | |
JP7548912B2 (ja) | リランキング装置 | |
JP6723449B2 (ja) | 単独推定装置 | |
WO2024089954A1 (ja) | 情報処理装置 | |
WO2023218772A1 (ja) | 環境負荷管理装置 | |
JP2023012220A (ja) | 情報処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19883027 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020556590 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19883027 Country of ref document: EP Kind code of ref document: A1 |