WO2020095442A1 - 化合物、樹脂前駆体、硬化物、光学素子、光学系、カメラ用交換レンズ、光学装置、接合レンズ、及び接合レンズの製造方法 - Google Patents

化合物、樹脂前駆体、硬化物、光学素子、光学系、カメラ用交換レンズ、光学装置、接合レンズ、及び接合レンズの製造方法 Download PDF

Info

Publication number
WO2020095442A1
WO2020095442A1 PCT/JP2018/041695 JP2018041695W WO2020095442A1 WO 2020095442 A1 WO2020095442 A1 WO 2020095442A1 JP 2018041695 W JP2018041695 W JP 2018041695W WO 2020095442 A1 WO2020095442 A1 WO 2020095442A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
lens
resin precursor
meth
Prior art date
Application number
PCT/JP2018/041695
Other languages
English (en)
French (fr)
Inventor
尚宏 染谷
雅之 四條
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2020556451A priority Critical patent/JP7078134B2/ja
Priority to PCT/JP2018/041695 priority patent/WO2020095442A1/ja
Priority to CN201880099349.1A priority patent/CN112969682B/zh
Priority to TW108115154A priority patent/TWI798429B/zh
Publication of WO2020095442A1 publication Critical patent/WO2020095442A1/ja
Priority to US17/314,230 priority patent/US20210395580A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • C09J133/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/65Halogen-containing esters of unsaturated acids
    • C07C69/653Acrylic acid esters; Methacrylic acid esters; Haloacrylic acid esters; Halomethacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F120/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/302Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and two or more oxygen atoms in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer

Definitions

  • the present invention relates to a compound, a resin precursor, a cured product, an optical element, an optical system, an interchangeable lens for a camera, an optical device, a cemented lens, and a method for manufacturing a cemented lens.
  • Patent Document 1 discloses a cemented lens in which an object-side lens having negative power and an image-side lens having positive power are adhered with a resin adhesive layer.
  • a resin adhesive layer used for such a cemented lens a material having a large ⁇ g, F value is required in order to satisfactorily correct chromatic aberration.
  • the first aspect of the present invention is a compound represented by the following formula (1).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom, a phenyl group, an alkyl group having 1 to 8 carbon atoms or a perfluoroalkyl group having 1 to 4 carbon atoms
  • X 1 Represents a hydrogen atom or a hydroxy group
  • Y 1 represents an alkylene group having 1 to 9 carbon atoms containing a fluorine atom or an alkylene group having 1 to 9 carbon atoms not containing a fluorine atom
  • n 1 represents 0 to 3 Represents an integer.
  • a second aspect of the present invention is a resin precursor containing the above compound and a curable composition.
  • the third aspect of the present invention is a cured product obtained by curing the above resin precursor.
  • the fourth aspect of the present invention is an optical element using the above-mentioned cured product.
  • the fifth aspect of the present invention is an optical system including the optical element described above.
  • the sixth aspect of the present invention is an interchangeable lens for a camera including the above-mentioned optical system.
  • a seventh aspect of the present invention is an optical device including the optical system described above.
  • the eighth aspect of the present invention is a cemented lens in which the first lens element and the second lens element are cemented together via the above-mentioned cured product.
  • a ninth aspect of the present invention is a contact step of bringing the first lens element and the second lens element into contact with each other via the resin precursor described above, and curing the resin precursor described above to provide the first lens element.
  • a cemented lens manufacturing method including a cementing step of cementing a lens element and a second lens element.
  • FIG. 1 is a perspective view of an example in which the optical device according to the present embodiment is used as an imaging device.
  • FIG. 2 is a front view of another example in which the optical device according to the present embodiment is used as an imaging device.
  • FIG. 3 is a rear view of the image pickup apparatus of FIG.
  • FIG. 4 is a block diagram showing an example in which the optical device according to the present embodiment is a multiphoton microscope.
  • FIG. 5 is a schematic diagram showing an example of the cemented lens according to the present embodiment.
  • the present embodiment a mode for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings unless otherwise specified.
  • the dimensional ratios in the drawings are not limited to the illustrated ratios.
  • acrylate and methacrylate may be collectively referred to as “(meth) acrylate”.
  • the compound according to this embodiment is a compound represented by the following formula (1).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom, a phenyl group, an alkyl group having 1 to 8 carbon atoms or a perfluoroalkyl group having 1 to 4 carbon atoms
  • X 1 Represents a hydrogen atom or a hydroxy group
  • Y 1 represents an alkylene group having 1 to 9 carbon atoms containing a fluorine atom or an alkylene group having 1 to 9 carbon atoms not containing a fluorine atom
  • n 1 represents 0 to 3 Represents an integer.
  • the compound represented by the formula (1) (hereinafter sometimes referred to as the compound (1)) is a novel compound.
  • the compound (1) can be suitably used as a component of a resin precursor which is a material for optical elements and the like. Then, by using such a compound, an optical element excellent in ⁇ g, F value can be obtained.
  • a multi-layered optical element that combines a concave lens and a convex lens, it is possible to exhibit excellent optical characteristics despite its thin shape, and to provide an excellent chromatic aberration correction effect. can do.
  • ⁇ g, F value means the refractive index of each of C line (wavelength 656.3 nm), F line (486.1 nm), and g line (435.8 nm) as n C , n F , and ng . when a value represented by (n g -n F) / ( n F -n C).
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a hydrogen atom, a phenyl group, an alkyl group having 1 to 8 carbon atoms, or a perfluoroalkyl group having 1 to 4 carbon atoms.
  • the alkyl group may be linear or branched.
  • the upper limit of the number of carbon atoms is preferably 5 and more preferably 4 from the viewpoint of suppressing the precipitation of insoluble components when prepared into a resin precursor and the like, stability and the like.
  • the upper limit of the carbon number of the perfluoroalkyl group is preferably 2 from the viewpoint of easy availability.
  • alkyl group for R 2 include, for example, alkyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n —Hexyl group, isohexyl group, neohexyl group, heptyl group, octyl group and the like.
  • a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-pentyl group, an isopentyl group, and a neopentyl group are preferable from the viewpoints of suppressing the precipitation of insoluble components when prepared as a resin precursor and stabilizing the stability. ..
  • perfluoroalkyl group of R 2 examples include, for example, perfluoromethyl group, perfluoroethyl group, n-perfluoropropyl group, isoperfluoropropyl group, n-perfluorobutyl group, isoperfluorobutyl group. , Tert-perfluorobutyl group and the like.
  • a perfluoromethyl group and a perfluoroethyl group are preferable from the viewpoint of easy availability.
  • Y 1 represents an alkylene group having 1 to 9 carbon atoms containing a fluorine atom or an alkylene group having 1 to 9 carbon atoms not containing a fluorine atom.
  • the alkylene group may be linear or branched.
  • the upper limit of the number of carbon atoms is preferably 6 and the lower limit is 3 from the viewpoints of suppressing the precipitation of insoluble components when prepared into a resin precursor and the like, and stability. preferable.
  • the upper limit of the number of carbon atoms is preferably 5, more preferably 4, and the lower limit is preferably 2.
  • Y 1 include, for example, methylene group, ethylene group, propylene group, isopropylene group, n-butylene group, isobutylene group, tert-butylene group, n-pentylene group, isopentylene group, neopentylene group, n-hexylene group.
  • ethylene group, propylene group, n-butylene group, n-pentylene group and neopentylene group are preferable from the viewpoints of suppressing the precipitation of insoluble components when prepared as a resin precursor and the like, and stability.
  • alkylene group containing a fluorine atom in Y 1 include, for example, 2,2-difluoro-n-propylene group, 2,2,3,3-tetrafluoro-n-butylene group, 2, 2,3,3,4,4-hexafluoro-n-pentylene group, 2,2,3,3,4,4,5,5-octafluoro-n-hexylene group, 2,2,3,3, 4,4,5,5,6,6-decafluoro-n-heptylene group, 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoro-n-octylene Groups and the like.
  • 2,2-difluoro-n-propylene group, 2,2,3,3-tetrafluoro-n-butylene group, 2,2,2 A 3,3,4,4-hexafluoro-n-pentylene group and a 2,2,3,3,4,4,5,5-octafluoro-n-hexylene group are preferred.
  • n 1 represents an integer of 0 to 3. From the viewpoint that precipitation of an insoluble component when prepared into a resin precursor or the like can be effectively suppressed and that it is easily available, n 1 is preferably 1 or 2, and more preferably 1.
  • a resin precursor containing the compound (1) and a curable composition can be obtained.
  • the resin precursor can be preferably used as a resin precursor for optical materials.
  • the resin precursor according to the present embodiment is preferably liquid at normal temperature and pressure.
  • the curable composition may be a photocurable type or a thermosetting type, but is preferably a photocurable composition.
  • a photocurable composition when a large amount of (meth) acrylate compound is contained, it is preferably a photocurable composition.
  • the curable composition is not particularly limited, but for example, a compound represented by the following formula (2), a fluorine-containing (meth) acrylate compound, a (meth) acrylate compound having a fluorene structure, and a di (meth) acrylate compound.
  • a compound represented by the following formula (2) a fluorine-containing (meth) acrylate compound, a (meth) acrylate compound having a fluorene structure, and a di (meth) acrylate compound.
  • One or more selected from the group consisting of can be used.
  • R 2 and R 3 each independently represent a hydrogen atom or a methyl group
  • Y 2 and Y 3 each independently represent an alkylene group having 1 to 9 carbon atoms
  • n 2 and n 3 Each independently represents an integer of 0 to 3.
  • Y 2 and Y 3 each independently represent an alkylene group having 1 to 9 carbon atoms.
  • the alkylene group may be linear or branched.
  • the upper limit of the number of carbon atoms is preferably 5 and more preferably 4 from the viewpoint of suppressing the precipitation of insoluble components when prepared into a resin precursor and the like, stability and the like.
  • the lower limit of carbon number is preferably 2.
  • Y 2 and Y 3 include, for example, methylene group, ethylene group, propylene group, isopropylene group, n-butylene group, isobutylene group, tert-butylene group, n-pentylene group, isopentylene group, neopentylene group, Examples thereof include n-hexylene group, isohexylene group, neohexylene group, heptylene group, octylene group and nonylene group.
  • methylene group, ethylene group, propylene group, isopropylene group, n-pentylene group, isopentylene group, and neopentylene group are preferable from the viewpoint of suppression of precipitation of insoluble components and stability when they are prepared into resin precursors and the like.
  • an ethylene group, a propylene group, an n-butylene group, an n-pentylene group and a neopentylene group are more preferable.
  • n 2 and n 3 each independently represent an integer of 0 to 3. From the viewpoint that the precipitation of the insoluble component when prepared into a resin precursor or the like can be suppressed and the availability is easy, n 2 and n 3 are preferably 1 or 2, and more preferably 1.
  • fluorine-containing (meth) acrylate compound examples include monofunctional, difunctional, and trifunctional or higher functional fluorine-containing (meth) acrylates. Among these, bifunctional fluorine-containing (meth) acrylates are easy to obtain. Is preferred. Examples of the bifunctional fluorine-containing (meth) acrylate include compounds represented by the following formula (3).
  • R 4 and R 5 each independently represent a hydrogen atom or a methyl group, and Y 4 represents a perfluoroalkylene group having 2 to 12 carbon atoms or — (CF 2 —O—CF 2 ) z—
  • n 4 and n 5 each independently represent an integer of 1 to 12, and z represents an integer of 1 to 4.
  • R 4 and R 5 each independently represent a hydrogen atom or a methyl group. Of these, a hydrogen atom is preferable.
  • Y 4 represents a perfluoroalkylene group having 2 to 12 carbon atoms or — (CF 2 —O—CF 2 ) z —, and z represents an integer of 1 to 4.
  • the perfluoroalkylene group may be linear or branched.
  • the perfluoroalkylene group may be-(CF 2 )-,-(CF 2 CF 2 )-,-(CF 2 CF 2 CF 2 )-, or-(CF 2 CF 2 CF 2 CF 2 )-. preferable.
  • n 4 and n 5 each independently represent an integer of 1 to 12.
  • the upper limit of n 4 and n 5 is preferably 6, and more preferably 4 from the viewpoint that precipitation of an insoluble component when prepared into a resin precursor or the like can be suppressed and is easily available. Is more preferable.
  • Z is preferably an integer of 1 to 3, and more preferably an integer of 1 or 2.
  • bifunctional fluorine-containing (meth) acrylate compound examples include 1,4-di (meth) acryloyloxy-2,2,3,3-tetrafluorobutane and 1,6-di (meth) acryloyloxy-3.
  • ethylene oxide-modified fluorinated bisphenol A di (meth) acrylate, propylene oxide-modified fluorinated bisphenol A di (meth) acrylate, and the like can also be used as the bifunctional fluorine-containing (meth) acrylate.
  • the bifunctional fluorine-containing (meth) acrylate compound is preferably 1,6-di (meth) acryloyloxy-2,2,3,3,4,4,5,5-octafluorohexane.
  • a compound represented by the following formula (3-1) (1,6-diacryloyloxy-2,2,3,3,4,4,5,5-octafluorohexane) is more preferable.
  • the content of the fluorine-containing (meth) acrylate compound in the resin precursor is not particularly limited, but the total amount of the fluorine-containing (meth) acrylate compound is from the viewpoint of optical properties such as Abbe number and compatibility with the compound (1). Is preferably 20 to 50% by mass, more preferably 30 to 45% by mass, and further preferably 35 to 42% by mass.
  • Examples of the (meth) acrylate compound having a fluorene structure include a monofunctional (meth) acrylate compound having a fluorene structure, a bifunctional (meth) acrylate compound having a fluorene structure, and a trifunctional or more functional (meth) acrylate having a fluorene structure.
  • a bifunctional (meth) acrylate compound having a fluorene structure is preferable from the viewpoint of easy availability.
  • Specific examples thereof include a compound represented by the following formula (4) and a compound represented by the following formula (5).
  • R 6 and R 7 each independently represent a hydrogen atom or a methyl group
  • R 8 and R 9 each independently represent a hydrogen atom, a methyl group, or an ethyl group
  • R 10 and R 9 11 , R 12 and R 13 may each independently be a hydrogen atom, a fluorine atom, an alkyl group having 1 to 6 carbon atoms, or a hydrogen atom may be substituted with a fluorine atom or an alkyl group having 1 to 6 carbon atoms.
  • n 6 and n 7 each independently represent an integer of 0 to 3.
  • R 14 represents a hydrogen atom or a methyl group
  • R 15 and R 16 each independently represent a hydrogen atom, a methyl group, or an ethyl group
  • R 17 , R 18 , R 19 and R 20 Each independently represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group in which a hydrogen atom may be substituted by a fluorine atom or an alkyl group having 1 to 6 carbon atoms
  • n 8 And n 9 each independently represent an integer of 0 to 3.
  • R 6 and R 7 each independently represent a hydrogen atom or a methyl group. Of these, a hydrogen atom is preferable.
  • R 8 and R 9 each independently represent a hydrogen atom, a methyl group, or an ethyl group. Among these, a hydrogen atom is preferable from the viewpoint of easy availability.
  • R 10 , R 11 , R 12 and R 13 are each independently a hydrogen atom, a fluorine atom, an alkyl group having 1 to 6 carbon atoms, or a hydrogen atom substituted with a fluorine atom or an alkyl group having 1 to 6 carbon atoms. Represents a phenyl group which may be present.
  • the alkyl group having 1 to 6 carbon atoms may be a linear, branched or cyclic alkyl group. From the viewpoint of easy availability, straight chain or branched chain is preferable.
  • Specific examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, Examples thereof include n-hexyl group, isohexyl group, neohexyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group. Among these, a methyl group and an ethyl group are preferable.
  • a phenyl group in which a hydrogen atom may be substituted by a fluorine atom or an alkyl group having 1 to 6 carbon atoms is a phenyl group in which some or all of the hydrogen atoms are substituted by a fluorine atom or an alkyl group having 1 to 6 carbon atoms. It was done.
  • the alkyl group having 1 to 6 carbon atoms a methyl group and an ethyl group are preferable from the viewpoint of easy availability.
  • n 6 and n 7 each independently represent an integer of 0 to 3. Among these, an integer of 0 to 2 is preferable, 0 or 1 is more preferable, and 1 is still more preferable, from the viewpoints of high hardness and transparency and excellent optical characteristics.
  • R 14 represents a hydrogen atom or a methyl group. Of these, a hydrogen atom is preferable.
  • R 15 and R 16 each independently represent a hydrogen atom, a methyl group, or an ethyl group. Among these, a hydrogen atom is preferable from the viewpoint of easy availability.
  • R 17 , R 18 , R 19 and R 20 are each independently a hydrogen atom, a fluorine atom, an alkyl group having 1 to 6 carbon atoms, or a hydrogen atom substituted with a fluorine atom or an alkyl group having 1 to 6 carbon atoms. Represents a phenyl group which may be present.
  • the alkyl group having 1 to 6 carbon atoms may be a linear, branched or cyclic alkyl group. From the viewpoint of easy availability, straight chain or branched chain is preferable.
  • Specific examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, Examples thereof include n-hexyl group, isohexyl group, neohexyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group. Among these, a methyl group and an ethyl group are preferable.
  • a phenyl group in which a hydrogen atom may be substituted by a fluorine atom or an alkyl group having 1 to 6 carbon atoms is a phenyl group in which some or all of the hydrogen atoms are substituted by a fluorine atom or an alkyl group having 1 to 6 carbon atoms. It was done.
  • the alkyl group having 1 to 6 carbon atoms a phenyl group, a methylphenyl group and an ethylphenyl group are preferable from the viewpoint of easy availability.
  • n 8 and n 9 each independently represent an integer of 0 to 3. Of these, an integer of 0 to 2 is preferable, 0 or 1 is more preferable, and 1 is still more preferable, from the viewpoints of high hardness and transparency and excellent optical characteristics.
  • (meth) acrylate compound having a fluorene structure a compound represented by the following formula (4-1) and a compound represented by the following formula (5-1) are preferable, and the following formula (4-1) is preferable.
  • the compound represented by (9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene) is more preferable.
  • the content of the (meth) acrylate compound having a fluorene structure in the resin precursor is not particularly limited, but as the total amount of the (meth) acrylate compound having a fluorene structure, from the viewpoint of suppressing cloudiness and suppressing the precipitation of insoluble components. It is preferably 20 to 50% by mass.
  • the upper limit of the content is more preferably 40% by mass, further preferably 35% by mass.
  • the lower limit of the content is more preferably 25% by mass, further preferably 26% by mass.
  • di (meth) acrylate compound compounds other than the above-mentioned components and having two (meth) acrylate structures can be mentioned.
  • Specific examples of the di (meth) acrylate compound include, for example, 2-ethyl, 2-butyl-propanediol (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, and 1,6-hexanediol di (meth) acrylate.
  • di (meth) acrylate compounds aliphatic di (meth) acrylate is preferable from the viewpoint of compatibility with the compound (1).
  • 2-ethyl-2-butyl-propanediol (meth) acrylate, 1,3-butylene glycol di (meth) acrylate and 1,6-hexanediol di (meth) acrylate are preferable, and 1,6-hexanediol is preferable.
  • Diacrylate (AHDN) is more preferred. Since the aliphatic di (meth) acrylate has a high compatibility with the compound (1) in terms of chemical structure, it can maintain a stable liquid state. As a result, it becomes possible to obtain a liquid resin precursor containing the compound (1) in a high concentration. The resin precursor containing the compound (1) in a high concentration can further enhance the effect on optical properties when used as an optical material.
  • the content of the di (meth) acrylate compound in the resin precursor is not particularly limited, but from the viewpoint of compatibility with the compound (1) and the like, the total amount of the di (meth) acrylate compound is 10 to 80% by mass. Is preferred.
  • the upper limit of the content is more preferably 60% by mass, further preferably 50% by mass.
  • the lower limit of the content is more preferably 20% by mass, further preferably 35% by mass.
  • the curable composition according to the present embodiment may contain components other than the above.
  • monofunctional (meth) acrylate, trifunctional (meth) acrylate, tetrafunctional (meth) acrylate and the like can be mentioned. By using these in combination, it is possible to adjust the hardness, transparency and optical characteristics of the resin.
  • monofunctional (meth) acrylates are preferable from the viewpoint of improving the compatibility with the compound (1).
  • Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, acetyl (meth) acrylate.
  • trifunctional (meth) acrylates examples include tris (acryloxyethyl) isocyanurate, tris (methacryloxyethyl) isocyanurate, epichlorohydrin-modified glycerol tri (meth) acrylate, ethylene oxide-modified glycerol tri (meth) acrylate, propylene oxide-modified.
  • Glycerol tri (meth) acrylate, caprolactone modified trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tri Methylolpropane tri (meth) acrylate and the like can be mentioned.
  • pentaerythritol tri (meth) acrylate is preferable from the structural viewpoint of compatibility with the compound (1) and the like.
  • Examples of the tetrafunctional (meth) acrylate include pentaerythritol tetra (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate, and ditrimethylolpropane tetra (meth) acrylate.
  • dipentaerythritol hydroxypenta (meth) acrylate is preferable from the structural viewpoint of compatibility with the compound (1).
  • the resin precursor may further contain a photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited as long as it can initiate the polymerization of the monomer component by light irradiation, and known ones used for photocuring a resin can be used.
  • the light used for light irradiation can be appropriately selected according to the photopolymerization initiator used, and visible light, ultraviolet rays, electron beams, etc. are usually used.
  • the content of the photopolymerization initiator depends on the type of components used and the type of light to be irradiated, but is usually preferably 0.1 to 5% by mass.
  • a phosphine-based or acetophenone-based photopolymerization initiator is preferable from the viewpoint of reactivity.
  • a phosphine-based photopolymerization initiator bis (2-4-6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and the like are preferable.
  • alkylphenyl ketones having a hydroxyl group at the ⁇ -position are preferable from the viewpoint of suppressing yellowing of the resin in addition to reactivity, and 1-hydroxy-cyclohexyl-phenyl-ketone, 2- Hydroxy-2-methyl-1-phenyl-propan-1-one and the like are more preferable.
  • the resin precursor according to this embodiment may further contain a light stabilizer.
  • a light stabilizer a known one can be used. Preferred examples thereof include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-biperidyl) sebacate, methyl-1,2. , 2,6,6-pentamethyl-4-piperidyl sebacate and the like.
  • the resin precursor according to this embodiment may further contain a polymerization inhibitor.
  • a polymerization inhibitor known compounds can be used.
  • known compounds can be used.
  • Preferable examples thereof include p-benzoquinone, hydroquinone, hydroquinone monomethyl ether, hydroquinones such as 2,5-diphenylparabenzoquinone, substituted catechols such as T-butylcatechol, amines such as phenothiazine and diphenylamine, tetramethylpiperidin
  • Examples thereof include N-oxy radicals such as nyl-N-oxy radical (TEMPO), nitrosobenzene, picric acid, molecular oxygen and sulfur.
  • TEMPO nyl-N-oxy radical
  • hydroquinones, phenothiazines, and N-oxy radicals are more preferable from the viewpoint of versatility and suppression of polymerization.
  • the resin precursor according to this embodiment may further contain an ultraviolet absorber.
  • an ultraviolet absorber known ones can be used. Preferable examples thereof include 2- (2-hydroxy-5-t-octylphenyl) -2H-benzotriazole and the like. When the UV absorber is used in combination with the light stabilizer, further excellent effects can be expected.
  • a fluorine-containing (meth) acrylate compound or a (meth) acrylate compound having a fluorene structure and a di (meth) acrylate compound. It is preferable to contain a fluorine-containing (meth) acrylate compound and a di (meth) acrylate compound, and an aliphatic fluorine-containing (meth) acrylate compound and an aliphatic di (meth) acrylate compound are preferable. It is even more preferable to contain
  • the combination of the specific components of the above-mentioned suitable combination as a curable composition is 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, methoxytripropylene glycol acrylate, 1,6- Di (meth) acryloyloxy-2,2,3,3,4,4,5,5-octafluorohexane, 1-hydroxy-cyclohexyl-phenyl-ketone, bis (2-4-6-trimethylbenzoyl) -phenyl Phosphine oxide, bis (1,2,2,6,6-pentamethyl-4-biperidyl) sebacate, methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate, 2- (2-hydroxy-5) From -t-octylphenyl) -2H-benzotriazole and 1,6-hexanediol diacrylate Preferably includes any one selected from the group that.
  • 1,6-di (meth) acryloyloxy-2,2,3,3,4 from the viewpoint of effectively suppressing the precipitation of insoluble components and easily preparing a stable liquid composition.
  • 4,5,5-octafluorohexane, 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, and at least one selected from the group consisting of 1,6-hexanediol diacrylate Is more preferable.
  • 1,6-di (meth) acryloyloxy-2,2,3,3,4,4,5,5-octafluorohexane, 9,9-bis [4- (2-acryloyloxyethoxy) phenyl ] It is more preferable to contain two or more kinds selected from the group consisting of fluorene and 1,6-hexanediol diacrylate, and 1,6-di (meth) acryloyloxy-2,2,3,3,4,4 Even more preferably, 5,5,5-octafluorohexane, 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, and 1,6-hexanediol diacrylate are included.
  • a component in combination with the compound (1), it is possible to more easily prepare a liquid composition having high stability at room temperature.
  • the content of the compound (1) in the resin precursor is not particularly limited, but is preferably 10 to 50 mass% from the viewpoint of maintaining high stability in a liquid state. From the above viewpoint, the upper limit of the content is more preferably 30% by mass, and further preferably 25% by mass. Further, the lower limit of the content is more preferably 15% by mass.
  • a cured product obtained by curing the resin precursor according to this embodiment can be obtained.
  • the curing method may be photo-curing or heat-curing, depending on the characteristics of the curable composition to be contained.
  • a curing method for example, a method of using an ultraviolet curable composition and irradiating with ultraviolet rays can be adopted.
  • the ⁇ g, F value is preferably 0.5 or more, more preferably 0.6 or more, and further preferably 0.7 or more.
  • the Abbe number ( ⁇ d ) is preferably 10 or more and 40 or less. Furthermore, it is preferable that the ⁇ g, F value and the Abbe number ( ⁇ d ) both satisfy the above numerical range.
  • the refractive index ( nd ) for the d-line can be 1.50 or more and 1.65 or less.
  • Optical materials such as glass materials and organic resins tend to have a lower refractive index as the wavelength becomes shorter.
  • ⁇ g, F value and Abbe number ( ⁇ d ) are used as an index showing the wavelength dispersibility of the refractive index.
  • ⁇ g, F value and Abbe number ( ⁇ d ) are used as an index showing the wavelength dispersibility of the refractive index.
  • ⁇ d Abbe number
  • the cured product according to the present embodiment has a high ⁇ g, F value and has a unique dispersion characteristic. Since the cured product according to the present embodiment has such characteristics, it has an excellent chromatic aberration correction function and can solve such a problem.
  • the internal transmittance of the cured product is preferably 80% or more over the wavelength range of 400 to 450 nm. According to this embodiment, a cured product having a high internal transmittance can be used as the optical material.
  • the cured product according to this embodiment can be used as an optical element.
  • the optical element containing such a cured product also includes mirrors, lenses, prisms, filters and the like. A preferred example is use as an optical lens.
  • the optical element according to this embodiment can be used as an optical system including the same.
  • the optical system according to this embodiment can be used as an interchangeable lens for a camera including the optical system.
  • the optical system according to this embodiment can be used as an optical device including the optical system.
  • the optical device including such an optical system is not particularly limited, but examples thereof include an imaging device such as a lens-interchangeable camera and a lens-non-interchangeable camera, and an optical microscope.
  • FIG. 1 is a perspective view of an example in which the optical device according to the present embodiment is used as an imaging device.
  • the image pickup apparatus 1 is a so-called digital single-lens reflex camera (lens interchangeable type camera), and the taking lens (optical system) 103 includes the cured product according to the present embodiment.
  • the lens barrel 102 is detachably attached to a lens mount (not shown) of the camera body 101. Then, the light passing through the lens 103 of the lens barrel 102 is imaged on the sensor chip (solid-state image sensor) 104 of the multichip module 106 arranged on the back side of the camera body 101.
  • the sensor chip 104 is a bare chip such as a so-called CMOS image sensor, and the multi-chip module 106 is, for example, a COG (Chip On Glass) type module in which the sensor chip 104 is bare-chip mounted on the glass substrate 105.
  • COG Chip On Glass
  • FIG. 2 is a front view of another example when the optical device according to the present embodiment is used as an imaging device
  • FIG. 3 is a rear view of the imaging device.
  • the imaging device CAM is a so-called digital still camera (lens non-interchangeable camera), and the taking lens (optical system) WL includes the cured product according to the present embodiment.
  • the image pickup apparatus CAM opens a shutter (not shown) of the photographing lens WL, collects light from a subject (object) by the photographing lens WL, and arranges the image on the image plane. An image is formed on the element.
  • the subject image formed on the image pickup device is displayed on the liquid crystal monitor M arranged behind the image pickup apparatus CAM.
  • the photographer decides the composition of the subject image while looking at the liquid crystal monitor M, presses the release button B1 to capture the subject image with the image sensor, and records and stores it in a memory (not shown).
  • the image pickup device CAM is provided with a fill light emitting section EF that emits fill light when a subject is dark, a function button B2 used for setting various conditions of the image pickup device CAM, and the like.
  • optical systems used in such digital cameras are required to have higher resolution, lighter weight, and smaller size.
  • it is effective to use optical glass having a high refractive index in the optical system.
  • the optical glass according to the present embodiment is suitable as a member of such an optical device.
  • the optical device applicable in the present embodiment is not limited to the above-described image pickup device, and may be, for example, a projector or the like.
  • the optical element is not limited to the lens, and may be a prism or the like.
  • FIG. 4 is a block diagram showing an example in which the optical device according to the present embodiment is a multiphoton microscope.
  • the multiphoton microscope 2 includes an objective lens 206, a condenser lens 208, and an imaging lens 210 as optical elements.
  • an objective lens 206 a condenser lens 208
  • an imaging lens 210 an imaging lens 210 as optical elements.
  • the optical system of the multiphoton microscope 2 will be mainly described.
  • the pulse laser device 201 emits ultrashort pulsed light having a near infrared wavelength (about 1000 nm) and a pulse width of a femtosecond unit (for example, 100 femtoseconds).
  • the ultrashort pulse light immediately after being emitted from the pulse laser device 201 is generally linearly polarized light polarized in a predetermined direction.
  • the pulse splitting device 202 splits the ultrashort pulsed light, raises the repetition frequency of the ultrashort pulsed light, and emits it.
  • the beam adjusting unit 203 has a function of adjusting the beam diameter of the ultrashort pulsed light incident from the pulse splitter 202 according to the pupil diameter of the objective lens 206, the wavelength of the multiphoton excitation light emitted from the sample S, and the ultrashort wavelength. Function to adjust the focusing and divergence angle of ultrashort pulsed light to correct axial chromatic aberration (focus difference) with the wavelength of pulsed light, group while the pulse width of ultrashort pulsed light passes through the optical system In order to correct the spread due to the velocity dispersion, it has a pre-chirp function (group velocity dispersion compensation function) for giving the opposite group velocity dispersion to the ultrashort pulsed light.
  • group velocity dispersion compensation function group velocity dispersion compensation function
  • the repetition frequency of the ultra-short pulsed light emitted from the pulse laser device 201 is increased by the pulse dividing device 202, and the above-mentioned adjustment is performed by the beam adjusting unit 203.
  • the ultrashort pulse light emitted from the beam adjusting unit 203 is reflected by the dichroic mirror 204 toward the dichroic mirror 205, passes through the dichroic mirror 205, is condensed by the objective lens 206, and is irradiated onto the sample S. ..
  • the observation surface of the sample S may be scanned by using a scanning means (not shown).
  • the fluorescent dye dyed on the sample S is multiphoton-excited in the ultra-short pulsed light irradiation region of the sample S and its vicinity, and the ultra-short wavelength which is an infrared wavelength. Fluorescence (hereinafter referred to as "observation light”) having a shorter wavelength than the pulsed light is emitted.
  • the observation light emitted from the sample S toward the objective lens 206 is collimated by the objective lens 206 and reflected by the dichroic mirror 205 or transmitted through the dichroic mirror 205 according to the wavelength thereof.
  • the observation light reflected by the dichroic mirror 205 enters the fluorescence detection unit 207.
  • the fluorescence detection unit 207 is composed of, for example, a barrier filter, a PMT (photomultiplier tube: photomultiplier tube), etc., receives the observation light reflected by the dichroic mirror 205, and outputs an electric signal according to the amount of light. .. Further, the fluorescence detection unit 207 detects the observation light over the observation surface of the sample S as the ultrashort pulsed light is scanned on the observation surface of the sample S.
  • the observation light transmitted through the dichroic mirror 205 is descanned by a scanning unit (not shown), transmitted through the dichroic mirror 204, condensed by the condensing lens 208, and placed at a position substantially conjugate with the focal position of the objective lens 206.
  • the light passes through the provided pinhole 209, the image forming lens 210, and enters the fluorescence detection unit 211.
  • the fluorescence detection unit 211 is composed of, for example, a barrier filter, a PMT, etc., receives the observation light imaged on the light receiving surface of the fluorescence detection unit 211 by the imaging lens 210, and outputs an electric signal according to the light amount. Further, the fluorescence detection unit 211 detects the observation light over the observation surface of the sample S as the ultrashort pulsed light is scanned on the observation surface of the sample S.
  • all the observation light emitted from the sample S toward the objective lens 206 may be detected by the fluorescence detection unit 211.
  • the observation light emitted from the sample S in the direction opposite to the objective lens 206 is reflected by the dichroic mirror 212 and enters the fluorescence detection unit 213.
  • the fluorescence detection unit 213 includes, for example, a barrier filter, a PMT, and the like, receives the observation light reflected by the dichroic mirror 212, and outputs an electric signal according to the light amount. Further, the fluorescence detection unit 213 detects the observation light over the observation surface of the sample S as the ultrashort pulsed light is scanned on the observation surface of the sample S.
  • the electric signals output from the fluorescence detection units 207, 211, and 213 are input to, for example, a computer (not shown), and the computer generates an observation image based on the input electric signal, and the generated observation Images can be displayed and data of observed images can be stored.
  • the compound, the resin precursor, and the cured product according to the present embodiment have been mainly described in the case of being used for a single-layer lens, but the compound, the resin precursor, and the cured product according to the present embodiment are Also, it can be suitably used as a cemented member for a cemented lens composed of multiple layers of lenses.
  • FIG. 5 is a schematic diagram showing an example of the cemented lens according to the present embodiment.
  • the cemented lens 3 is formed by cementing the first lens element 301 and the second lens element 302 via the cured product 303 according to this embodiment.
  • the lens forming the cemented lens may be referred to as “lens element” as described above from the viewpoint of clarifying that it is an element of the cemented lens.
  • the cured product 303 according to the present embodiment can function as the above-mentioned joining member.
  • the compound, the resin precursor or the cured product according to the present embodiment is used for a cemented lens having two lens elements, first, (1) the first lens element and the second lens element are used in the present embodiment. And a bonding step of bonding the first lens element and the second lens element by curing the resin precursor (2). Be done.
  • the resin precursor according to the present embodiment is interposed between the first lens element and the second lens element in an uncured state.
  • the resin precursor is a liquid composition
  • the resin precursor is applied to the contact surfaces of the first lens element and the second lens element, and both lens elements are superposed.
  • the method of curing the resin precursor in the bonding step may be either photo-curing or heat-curing, but it is preferable to cure the resin precursor by irradiating it with light.
  • the light is preferably applied to the resin precursor via the first lens element or the second lens element.
  • the compound, resin precursor and cured product according to the present embodiment can suppress yellowing due to aging and can maintain high transparency for a long period of time. From this point of view, the manufacturing method is also suitable.
  • the cemented lens thus obtained can be used in an optical system in the same manner as described for the single-layer lens. Further, the cemented lens according to the present embodiment can be used as an interchangeable lens for a camera or an optical device including an optical system, as in the case of the single-layer lens.
  • the cemented lens using two lens elements has been described in the above embodiment, the present invention is not limited to this, and a cemented lens using three or more lens elements may be used. Further, when a cemented lens using three or more lens elements is used, all of the cemented members between the lens elements may be the cured product according to the present embodiment, but the invention is not limited to this, and at least one of the cemented members is used. Any cured product according to this embodiment may be used.
  • the solid matter was removed by filtration, and the filtrate was concentrated under reduced pressure at 50 ° C.
  • the yield was 11.02 g (36.3 mmol), and the yield was 86.1%.
  • reaction liquid was checked by TLC, and it was confirmed that the intermediate compound (a2) disappeared. Therefore, 90 mL of a 2N ammonium chloride aqueous solution was added to the reaction solution. After separating the organic layer and the aqueous layer with a separating funnel, the aqueous layer was extracted twice with 30 mL of ethyl acetate. The organic layer and the extracted layer were combined, washed twice with 100 mL of saturated saline, transferred to a container, and anhydrous magnesium sulfate was added.
  • the solid matter was removed by filtration, and the filtrate was concentrated under reduced pressure at 50 ° C.
  • the yield was 9.36 g (27.3 mmol), and the yield was 78.6%.
  • the intermediate compound (b3) was synthesized using the intermediate compound (a2) described in Example 1. 11.31 g (37.3 mmol) of the intermediate compound (a2), 10.96 g (48.5 mmol) of 4-benzoylphenylboronic acid and 150 mL of dioxane were weighed into a 500 mL reaction vessel and stirred to obtain a uniform solution. To this was added 15.42 g (145.4 mmol) of sodium hydrogen carbonate in 75 mL of pure water, and 862 mg (0.746 mmol) of tetrakis (triphenylphosphine) palladium (0) complex. After stirring at 110 ° C. for 4 hours while flowing water of 5 ° C.
  • reaction liquid was checked by TLC, and it was confirmed that the intermediate compound (a2) disappeared. Therefore, 100 mL of 2N ammonium chloride aqueous solution was added to the reaction solution. After separating into an organic layer and an aqueous layer with a separating funnel, the aqueous layer was extracted twice with 35 mL of ethyl acetate. The organic layer and the extracted layer were combined, washed twice with 100 mL of saturated saline, transferred to a container, and anhydrous magnesium sulfate was added.
  • reaction liquid was checked by TLC, and it was confirmed that the intermediate compound (c2) disappeared. Therefore, 30 mL of a 2N ammonium chloride aqueous solution was added to the reaction solution. After separating the organic layer and the aqueous layer with a separating funnel, the aqueous layer was extracted twice with 15 mL of ethyl acetate. The organic layer and the extracted layer were collectively washed with 50 mL of saturated saline twice, transferred to a container, and anhydrous magnesium sulfate was added.
  • the solid matter was removed by filtration, and the filtrate was concentrated under reduced pressure at 50 ° C.
  • the yield was 4.14 g (13.6 mmol), and the yield was 62.5%.
  • the reaction liquid was checked by TLC, and it was confirmed that the intermediate compound (d2) disappeared. Therefore, 30 mL of a 2N ammonium chloride aqueous solution was added to the reaction solution. After separating the organic layer and the aqueous layer with a separating funnel, the aqueous layer was extracted twice with 15 mL of ethyl acetate. The organic layer and the extracted layer were collectively washed with 50 mL of saturated saline twice, transferred to a container, and anhydrous magnesium sulfate was added.
  • the intermediate compound (e2) was synthesized using the intermediate compound (a1) described in Example 1. 1.30 g (32.6 mmol) of sodium hydride (NaH; 60% concentration) and 75 mL of tetrahydrofuran (dehydrated) were weighed into a 300 mL reaction vessel and cooled to 0 ° C. To this, a dilute solution of 13.82 g (65.2 mmol) of 2,2,3,3,4,4-hexafluoro-1,5-pentanediol in 15 mL of tetrahydrofuran was slowly added dropwise.
  • NaH sodium hydride
  • tetrahydrofuran dehydrated
  • the solid matter was removed by filtration, and the filtrate was concentrated under reduced pressure at 50 ° C.
  • the yield was 7.62 g (15.6 mmol), and the yield was 72.0%.
  • reaction liquid was checked by TLC, and it was confirmed that the intermediate compound (e2) disappeared. Therefore, 40 mL of a 2N ammonium chloride aqueous solution was added to the reaction solution. After separating the organic layer and the aqueous layer with a separating funnel, the aqueous layer was extracted twice with 20 mL of ethyl acetate. The organic layer and the extracted layer were collectively washed with 50 mL of saturated saline twice, transferred to a container, and anhydrous magnesium sulfate was added.
  • reaction liquid was checked by TLC, and it was confirmed that the intermediate compound (a2) had completely disappeared. Therefore, 100 mL of 2N ammonium chloride aqueous solution was added to the reaction solution. After separating the organic layer and the aqueous layer with a separating funnel, the aqueous layer was extracted twice with 30 mL of ethyl acetate. The organic layer and the extracted layer were combined and washed twice with 100 mL of saturated saline. It moved to the container and anhydrous magnesium sulfate was added.
  • the intermediate compound (g2) was synthesized using the intermediate compound (a1) described in Example 1. 1.27 g (31.8 mmol) of sodium hydride (NaH; 60% concentration) and 75 mL of tetrahydrofuran (dehydrated) were weighed into a 300 mL reaction vessel and cooled to 0 ° C. A solution of ethylene glycol (3.95 g, 63.7 mmol) in tetrahydrofuran (15 mL) was slowly added dropwise thereto. After stirring for 1 hour at room temperature, a 10 mL diluted solution of the intermediate compound (a1) 5.94 g (21.2 mmol) in tetrahydrofuran was added all at once.
  • NaH sodium hydride
  • tetrahydrofuran dehydrated
  • the reaction mixture was checked by TLC to find that the intermediate compound (a1) had disappeared. Therefore, 100 mL of 2N hydrochloric acid was added to the reaction solution. After separating the organic layer and the aqueous layer with a separating funnel, the aqueous layer was extracted twice with 15 mL of ethyl acetate. The organic layer and the extracted layer were combined and washed twice with 50 mL of saturated saline. It moved to the container and anhydrous magnesium sulfate was added.
  • reaction liquid was checked by TLC, and the intermediate compound (g2) was completely disappeared. Then, 30 mL of 2N ammonium chloride aqueous solution was added to the reaction solution. After separating the organic layer and the aqueous layer with a separating funnel, the aqueous layer was extracted twice with 15 mL of ethyl acetate. The organic layer and the extracted layer were combined and washed twice with 50 mL of saturated saline. It moved to the container and anhydrous magnesium sulfate was added.
  • the deposited precipitate was collected by filtration, and the filtrate was separated into an organic layer and an aqueous layer.
  • the aqueous layer was washed twice with 50 mL of dichloromethane to recover the organic component dissolved in the aqueous layer.
  • the organic components recovered from the organic layer and the aqueous layer were put together to form a mixed solution.
  • the mixed solution was suction filtered. During suction filtration, the water freezes and the filtration stops, so the work was performed while warming from above the funnel.
  • the filtered material was added again, and 50 mL of tetrahydrofuran was added to suspend the suspension to obtain a suspension.
  • 200 mL of city water was added to the obtained suspension, and the deposited precipitate was collected by filtration.
  • the filtrate was washed with city water until the filtrate became neutral, and further washed with 20 mL of methanol.
  • the obtained white powder was dried under reduced pressure at 70 ° C. overnight to obtain an intermediate compound (iii-3).
  • the yield was 2.36 g (4.07 mmol), and the yield was 92.5%.
  • Intermediate compound (iii-4) was synthesized using intermediate compound (iii-3). Under an argon stream, 300 mL of tetrahydrofuran (dehydrated) and 2.33 g (58.5 mmol) of sodium hydride (60% concentration) were weighed out in a 1000 mL reaction vessel, and cooled with ice. A 100 mL diluted solution of tetrahydrofuran of 12.8 g (206 mmol) of ethylene glycol was added dropwise thereto, and the temperature was raised to room temperature. After stirring for 1 hour, 10 g (17.2 mmol) of intermediate compound (iii-3) was added at once and heated to 60 ° C.
  • Example 7 The compound (1A) was mixed with each of the components constituting the curable composition in the proportions shown in Table 2 to prepare a resin precursor (1A-1).
  • the obtained resin precursor was in a solution state at room temperature and atmospheric pressure.
  • the compounding ratio in the table is based on mass% unless otherwise specified.
  • Example 8 to 13 Each resin precursor was produced in the same manner as in Example 7, except that the components were mixed in the proportions shown in Table 2. The state of each resin precursor at normal temperature and pressure was confirmed.
  • Photopolymerization initiator 1 1-hydroxy-cyclohexyl-phenyl-ketone (formula (v))
  • LC8 high-intensity mercury-xenon lamp
  • Example 15 to 19 Each cured product was obtained in the same manner as in Example 14 except that the resin precursor shown in Table 3 was used. The state of each cured product at normal temperature and pressure was confirmed.
  • Table 4 shows the results of the internal transmittance (%) at each wavelength and the wavelength at which the internal transmittance becomes 80% ( ⁇ 80 ; unit nm) in Examples 20 to 25.
  • SYMBOLS 1 Imaging device (lens exchange type camera), 101 ... Camera body, 102 ... Lens barrel, 103 ... Lens, 104 ... Sensor chip, 105 ... Glass substrate, 106. ..Multi-chip module, CAM ... Imaging device (lens non-interchangeable camera), WL ... Photography lens, M ... Liquid crystal monitor, EF ... Auxiliary light emitting section, B1 ... Release button, B2 ... Function button, 2 ... Multiphoton microscope, 201 ... Pulse laser device, 202 ... Pulse splitting device, 203 ... Beam adjusting unit, 204, 205, 212 ... Dichroic mirror, 206 ...
  • Objective lens 207, 211, 213 ... Fluorescence detection part, 208 ... Condensing lens, 209 ... Pinhole, 210 ... Imaging lens, S ... Sample, 3 ... cemented lens, 301 ... first lens element, 302 ... second lens element, 303 ... cured

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

下記式(1)で表される化合物の提供。(式中、R1は、水素原子又はメチル基を表し、R2は、水素原子又はフェニル基又は炭素数1~8のアルキル基又は炭素数1~4のパーフルオロアルキル基を表し、X1は、水素原子又はヒドロキシ基を表し、Y1は、フッ素原子を含む炭素数1~9のアルキレン基又はフッ素原子を含まない炭素数1~9のアルキレン基を表し、n1は0~3の整数を表す。)

Description

化合物、樹脂前駆体、硬化物、光学素子、光学系、カメラ用交換レンズ、光学装置、接合レンズ、及び接合レンズの製造方法
 本発明は、化合物、樹脂前駆体、硬化物、光学素子、光学系、カメラ用交換レンズ、光学装置、接合レンズ、及び接合レンズの製造方法に関する。
 例えば、特許文献1には、負のパワーを備える物体側レンズと正のパワーを備える像側レンズとを、樹脂接着剤層で接着した接合レンズが開示されている。このような接合レンズに使用される樹脂接着剤層としては、色収差を良好に補正するため、θg,F値の大きい材料が求められている。
特開2016-095542号公報
 本発明の第一の態様は、下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、水素原子又はメチル基を表し、Rは、水素原子又はフェニル基又は炭素数1~8のアルキル基又は炭素数1~4のパーフルオロアルキル基を表し、Xは、水素原子又はヒドロキシ基を表し、Yは、フッ素原子を含む炭素数1~9のアルキレン基又はフッ素原子を含まない炭素数1~9のアルキレン基を表し、nは0~3の整数を表す。)
 本発明の第二の態様は、上述した化合物と、硬化性組成物と、を含む樹脂前駆体である。
 本発明の第三の態様は、上述した樹脂前駆体を硬化させてなる硬化物である。
 本発明の第四の態様は、上述した硬化物を用いた光学素子である。
 本発明の第五の態様は、上述した光学素子を含む光学系である。
 本発明の第六の態様は、上述した光学系を含むカメラ用交換レンズである。
 本発明の第七の態様は、上述した光学系を含む光学装置である。
 本発明の第八の態様は、第1のレンズ要素と第2のレンズ要素とが、上述した硬化物を介して接合されてなる、接合レンズである。
 本発明の第九の態様は、第1のレンズ要素と第2のレンズ要素とを、上述した樹脂前駆体を介して接触させる接触工程と、上述した樹脂前駆体を硬化させることで第1のレンズ要素と第2のレンズ要素とを接合する接合工程と、を有する接合レンズの製造方法である。
図1は、本実施形態に係る光学装置を撮像装置とした場合の一例の斜視図である。 図2は、本実施形態に係る光学装置を撮像装置とした場合の別の例の正面図である。 図3は、図2の撮像装置の背面図である。 図4は、本実施形態に係る光学装置を多光子顕微鏡とした場合の一例を示すブロック図である。 図5は、本実施形態に係る接合レンズの一例を示す概略図である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。なお、図面中、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。また、アクリレートとメタクリレートをあわせて「(メタ)アクリレート」と総称する場合がある。
 本実施形態に係る化合物は、下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは、水素原子又はメチル基を表し、Rは、水素原子又はフェニル基又は炭素数1~8のアルキル基又は炭素数1~4のパーフルオロアルキル基を表し、Xは、水素原子又はヒドロキシ基を表し、Yは、フッ素原子を含む炭素数1~9のアルキレン基又はフッ素原子を含まない炭素数1~9のアルキレン基を表し、nは0~3の整数を表す。)
 式(1)で表される化合物(以下、化合物(1)という場合がある。)は、新規な化合物である。化合物(1)は、光学素子等の材料である樹脂前駆体の一成分として好適に用いることができる。そして、かかる化合物を使用することでθg,F値に優れた光学素子とすることができる。特に、凹レンズと凸レンズを組み合わせた複層型光学素子(接合レンズ)の材料として使用する場合でも、薄い形状でありながら優れた光学特性を発揮することが可能であり、優れた色収差補正効果を付与することができる。なお、θg,F値とは、C線(波長656.3nm)、F線(486.1nm)、g線(435.8nm)について、それぞれの屈折率をn、n、nとしたとき、(n-n)/(n-n)で表される値である。
<化合物(1)>
 以下、化合物(1)の構造について説明する。
 Rは、水素原子又はメチル基を表す。
 Rは、水素原子又はフェニル基又は炭素数1~8のアルキル基又は炭素数1~4のパーフルオロアルキル基を表す。アルキル基は、直鎖状、分岐鎖状のいずれであってもよい。樹脂前駆体等に調製した際の不溶成分の析出抑制や安定性等の観点から、炭素数の上限は、5であることが好ましく、4であることがより好ましい。パーフルオロアルキル基は、入手のしやすさの観点から、炭素数の上限は、2であることが好ましい。
 Rのアルキル基の具体例としては、例えば、アルキル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、ネオヘキシル基、ヘプチル基、オクチル基等が挙げられる。これらの中でも、樹脂前駆体等に調製した際の不溶成分の析出抑制や安定性等の観点から、メチル基、エチル基、プロピル基、イソプロピル基、n-ペンチル基、イソペンチル基、ネオペンチル基が好ましい。
 Rのパーフルオロアルキル基の具体例としては、例えば、パーフルオロメチル基、パーフルオロエチル基、n-パーフルオロプロピル基、イソパーフルオロプロピル基、n-パーフルオロブチル基、イソパーフルオロブチル基、tert-パーフルオロブチル基等が挙げられる。これらの中でも、入手のしやすさの観点から、パーフルオロメチル基、パーフルオロエチル基が好ましい。
 Yは、フッ素原子を含む炭素数1~9のアルキレン基又はフッ素原子を含まない炭素数1~9のアルキレン基を表す。アルキレン基は、直鎖状、分岐鎖状のいずれであってもよい。樹脂前駆体等に調製した際の不溶成分の析出抑制や安定性等の観点から、フッ素原子を含むアルキレン基の場合、炭素数の上限は6であることが好ましく、下限は3であることが好ましい。また、フッ素原子を含まないアルキレン基の場合、炭素数の上限は5であることが好ましく、4であることが更に好ましく、下限は2であることが好ましい。
 Yの具体例としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、tert-ブチレン基、n-ペンチレン基、イソペンチレン基、ネオペンチレン基、n-ヘキシレン基、イソヘキシレン基、ネオヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基等が挙げられる。これらの中でも、樹脂前駆体等に調製した際の不溶成分の析出抑制や安定性等の観点から、エチレン基、プロピレン基、n-ブチレン基、n-ペンチレン基、ネオペンチレン基が好ましい。
 また、Yにおけるフッ素原子を含んでいるアルキレン基の具体例としては、例えば、2,2‐ジフルオロ-n-プロピレン基、2,2,3,3-テトラフルオロ-n-ブチレン基、2,2,3,3,4,4-ヘキサフルオロ-n-ペンチレン基、2,2,3,3,4,4,5,5-オクタフルオロ-n-ヘキシレン基、2,2,3,3,4,4,5,5,6,6-デカフルオロ-n-ヘプチレン基、2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロ-n-オクチレン基等が挙げられる。これらの中でも、樹脂前駆体に調製した際の安定性等の観点から、2,2-ジフルオロ-n-プロピレン基、2,2,3,3-テトラフルオロ-n-ブチレン基、2,2,3,3,4,4-ヘキサフルオロ-n-ペンチレン基、2,2,3,3,4,4,5,5-オクタフルオロ-n-ヘキシレン基が好ましい。
 nは、0~3の整数を表す。樹脂前駆体等に調製した際の不溶成分の析出を効果的に抑制でき、入手が容易である観点から、nは、1又は2であることが好ましく、1であることがより好ましい。
<樹脂前駆体>
 本実施形態によれば、化合物(1)と、硬化性組成物と、を含む、樹脂前駆体とすることができる。樹脂前駆体は、光学材料用の樹脂前駆体として好適に用いることができる。光学材料として用いる場合には、常温常圧下で、樹脂前駆体は液状として安定に存在することが望まれる。かかる観点から、本実施形態に係る樹脂前駆体は、常温常圧下で液状であることが好ましい。そして、後述する硬化性組成物を化合物(1)と併用することで、不溶成分の析出を効果的に抑制でき、安定な液状組成物となるよう容易に調製できる。
 硬化性組成物は、光硬化型であってもよいし、熱硬化型であってもよいが、光硬化性組成物であることが好ましい。例えば、(メタ)アクリレート系化合物を多く含有する場合には、光硬化性組成物であることが好ましい。
 硬化性組成物としては、特に限定されないが、例えば、下記式(2)で表される化合物、含フッ素(メタ)アクリレート化合物、フルオレン構造を有する(メタ)アクリレート化合物、及びジ(メタ)アクリレート化合物からなる群より選ばれる1種以上を用いることができる。かかる成分を化合物(1)と併用することで、不溶成分の析出を効果的に抑制でき、安定な液状組成物となるよう容易に調製できる。その結果、その保存中に析出物が発生することを抑制でき、当該組成物を使用する前に析出物を除く作業が不要となる。また、均質な低屈折率高分散の硬化物とすることができる。
Figure JPOXMLDOC01-appb-C000005
(式中、R及びRは、それぞれ独立に、水素原子又はメチル基を表し、Y及びYは、それぞれ独立に、炭素数1~9のアルキレン基を表し、n及びnは、それぞれ独立に、0~3の整数を表す。)
 式(2)で表される化合物(以下、化合物(2)という場合がある。)について、以下説明する。
 Y及びYは、それぞれ独立に、炭素数1~9のアルキレン基を表す。アルキレン基は、直鎖状、分岐鎖状のいずれであってもよい。樹脂前駆体等に調製した際の不溶成分の析出抑制や安定性等の観点から、炭素数の上限は5であることが好ましく、4であることがより好ましい。そして、炭素数の下限は、2であることが好ましい。
 Y及びYの具体例としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、tert-ブチレン基、n-ペンチレン基、イソペンチレン基、ネオペンチレン基、n-ヘキシレン基、イソヘキシレン基、ネオヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基等が挙げられる。これらの中でも、樹脂前駆体等に調製した際の不溶成分の析出抑制や安定性等の観点から、メチレン基、エチレン基、プロピレン基、イソプロピレン基、n-ペンチレン基、イソペンチレン基、ネオペンチレン基が好ましく、エチレン基、プロピレン基、n-ブチレン基、n-ペンチレン基、ネオペンチレン基がより好ましい。
 n及びnは、それぞれ独立に、0~3の整数を表す。樹脂前駆体等に調製した際の不溶成分の析出を抑制でき、入手が容易である観点から、n及びnは、1又は2であることが好ましく、1であることがより好ましい。
 含フッ素(メタ)アクリレート化合物としては、1官能、2官能、3官能以上の含フッ素(メタ)アクリレートが挙げられ、これらの中でも、入手が容易である観点から、2官能含フッ素(メタ)アクリレートが好ましい。2官能含フッ素(メタ)アクリレートとしては、下記式(3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000006
(式中、R及びRは、それぞれ独立に、水素原子又はメチル基を表し、Yは炭素数2~12のパーフルオロアルキレン基又は-(CF-O-CF-を表し、n及びnは、それぞれ独立に、1~12の整数を表し、zは1~4の整数を表す。)
 R及びRは、それぞれ独立に、水素原子又はメチル基を表す。これらの中でも水素原子であることが好ましい。
 Yは、炭素数2~12のパーフルオロアルキレン基又は-(CF-O-CF-を表し、zは、1~4の整数を表す。パーフルオロアルキレン基は直鎖状、分岐状のいずれであってもよい。パーフルオロアルキレン基としては、-(CF)-、-(CFCF)-、-(CFCFCF)-、-(CFCFCFCF)-であることが好ましい。
 n及びnは、それぞれ独立に、1~12の整数を表す。樹脂前駆体等に調製した際の不溶成分の析出を抑制でき、入手が容易である観点から、n及びnの上限は、6であることが好ましく、4であることがより好ましく、2であることが更に好ましい。
 zとしては、1~3の整数であることが好ましく、1又は2の整数であることがより好ましい。
 2官能含フッ素(メタ)アクリレート化合物の具体例としては、1,4-ジ(メタ)アクリロイルオキシ-2,2,3,3-テトラフルオロブタン、1,6-ジ(メタ)アクリロイルオキシ-3,3,4,4-テトラフルオロヘキサン、1,6-ジ(メタ)アクリロイルオキシ-2,2,3,3,4,4,5,5-オクタフルオロヘキサン、1,8-ジ(メタ)アクリロイルオキシ-3,3,4,4,5,5,6,6-オクタフルオロオクタン、1,8-ジ(メタ)アクリロイルオキシ-2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロオクタン、1,9-ジ(メタ)アクリロイルオキシ-2,2,3,3,4,4,5,5,6,6,7,7,8,8-テトラデカフルオロノナン、1,10-ジ(メタ)アクリロイルオキシ-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-ヘキサデカフルオロデカン、1,12-ジ(メタ)アクリロイルオキシ-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11-イコサフルオロドデカン等が挙げられる。さらに、エチレンオキシド変性フッ素化ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド変性フッ素化ビスフェノールAジ(メタ)アクリレート、等も、2官能含フッ素(メタ)アクリレートとして用いることができる。
 これらの中でも2官能含フッ素(メタ)アクリレート化合物としては、1,6-ジ(メタ)アクリロイルオキシ-2,2,3,3,4,4,5,5-オクタフルオロヘキサンであることが好ましく、下記式(3-1)で表される化合物(1,6-ジアクリロイルオキシ-2,2,3,3,4,4,5,5-オクタフルオロヘキサン)がより好ましい。
Figure JPOXMLDOC01-appb-C000007
 樹脂前駆体における含フッ素(メタ)アクリレート化合物の含有量は、特に限定されないが、アッベ数等の光学特性や化合物(1)との相溶性等の観点から、含フッ素(メタ)アクリレート化合物の総量として20~50質量%であることが好ましく、30~45質量%であることがより好ましく、35~42質量%であることが更に好ましい。
 フルオレン構造を有する(メタ)アクリレート化合物としては、例えば、フルオレン構造を有する1官能(メタ)アクリレート化合物、フルオレン構造を有する2官能(メタ)アクリレート化合物、フルオレン構造を有する3官能以上の(メタ)アクリレート化合物が挙げられ、これらの中でも、入手が容易である観点から、フルオレン構造を有する2官能(メタ)アクリレート化合物が好ましい。かかる具体例としては、下記式(4)で表される化合物、下記式(5)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
(式中、R及びRは、それぞれ独立に、水素原子又はメチル基を表し、R及びRは、それぞれ独立に、水素原子、メチル基、又はエチル基を表し、R10、R11、R12及びR13は、それぞれ独立に、水素原子、フッ素原子、炭素数1~6のアルキル基、又は水素原子がフッ素原子若しくは炭素数1~6のアルキル基によって置換されていてもよいフェニル基を表し、n及びnは、それぞれ独立に、0~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000009
       
(式中、R14は、水素原子又はメチル基を表し、R15及びR16は、それぞれ独立に、水素原子、メチル基、又はエチル基を表し、R17、R18、R19及びR20は、それぞれ独立に、水素原子、フッ素原子、炭素数1~6のアルキル基、又は水素原子がフッ素原子若しくは炭素数1~6のアルキル基によって置換されていてもよいフェニル基を表し、n及びnは、それぞれ独立に、0~3の整数を表す。)
 式(4)について説明する。
 R及びRは、それぞれ独立に、水素原子又はメチル基を表す。これらの中でも水素原子であることが好ましい。
 R及びRは、それぞれ独立に、水素原子、メチル基、又はエチル基を表す。これらの中でも、入手が容易である観点から、水素原子であることが好ましい。
 R10、R11、R12及びR13は、それぞれ独立に、水素原子、フッ素原子、炭素数1~6のアルキル基、又は水素原子がフッ素原子若しくは炭素数1~6のアルキル基によって置換されていてもよいフェニル基を表す。
 炭素数1~6のアルキル基としては、直鎖状、分岐鎖状、環状アルキル基のいずれであってもよい。入手が容易である観点から、直鎖状、分岐鎖状が好ましい。炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、ネオヘキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらの中でも、メチル基、エチル基が好ましい。
 水素原子がフッ素原子若しくは炭素数1~6のアルキル基によって置換されていてもよいフェニル基は、フェニル基の水素原子の一部又は全部が、フッ素原子又は炭素数1~6のアルキル基によって置換されたものである。かかる炭素数1~6のアルキル基としては、入手が容易である観点から、メチル基、エチル基が好ましい。
 n及びnは、それぞれ独立に、0~3の整数を表す。これらの中でも、硬度や透明度が高く、光学特性に優れる観点から、0~2の整数であることが好ましく、0又は1であることがより好ましく、1が更に好ましい。
 式(5)について説明する。
 R14は、水素原子又はメチル基を表す。これらの中でも水素原子であることが好ましい。
 R15及びR16は、それぞれ独立に、水素原子、メチル基、又はエチル基を表す。これらの中でも、入手が容易である観点から、水素原子であることが好ましい。
 R17、R18、R19及びR20は、それぞれ独立に、水素原子、フッ素原子、炭素数1~6のアルキル基、又は水素原子がフッ素原子若しくは炭素数1~6のアルキル基によって置換されていてもよいフェニル基を表す。
 炭素数1~6のアルキル基としては、直鎖状、分岐鎖状、環状アルキル基のいずれであってもよい。入手が容易である観点から、直鎖状、分岐鎖状が好ましい。炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、ネオヘキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらの中でも、メチル基、エチル基が好ましい。
 水素原子がフッ素原子若しくは炭素数1~6のアルキル基によって置換されていてもよいフェニル基は、フェニル基の水素原子の一部又は全部が、フッ素原子又は炭素数1~6のアルキル基によって置換されたものである。かかる炭素数1~6のアルキル基としては、入手が容易である観点から、フェニル基、メチルフェニル基、エチルフェニル基が好ましい。
 n及びnは、それぞれ独立に、0~3の整数を表す。これらの中でも、硬度や透明度が高く、光学特性が優れるとの観点から、0~2の整数であることが好ましく、0又は1であることがより好ましく、1が更に好ましい。
 フルオレン構造を有する(メタ)アクリレート化合物の具体例としては、下記式(4-1)で表される化合物、下記式(5-1)で表される化合物が好ましく、下記式(4-1)で表される化合物(9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン)がより好ましい。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 樹脂前駆体におけるフルオレン構造を有する(メタ)アクリレート化合物の含有量は、特に限定されないが、白濁を抑制し、不溶成分の析出を抑制できる観点から、フルオレン構造を有する(メタ)アクリレート化合物の総量として20~50質量%であることが好ましい。含有量の上限は、40質量%であることがより好ましく、35質量%であることが更に好ましい。含有量の下限は、25質量%であることがより好ましく、26質量%であることが更に好ましい。
 ジ(メタ)アクリレート化合物としては、上述した各成分以外のもので、(メタ)アクリレート構造を2つ有する化合物が挙げられる。ジ(メタ)アクリレート化合物の具体例としては、例えば、2-エチル,2-ブチル-プロパンジオール(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオール(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、エチレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、プロピレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド変性ビスフェノールAジ(メタ)アクリレート、エチレンオキシド・プロピレンオキシド変性ビスフェノールAジ(メタ)アクリレート、ブチルエチルプロパンジオールジ(メタ)アクリレート等が挙げられる。
 ジ(メタ)アクリレート化合物の中でも、化合物(1)との相溶性等の観点から、脂肪族ジ(メタ)アクリレートが好ましい。その中でも、2-エチル-2-ブチル-プロパンジオール(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレートが好ましく、1,6-ヘキサンジオールジアクリレート(AHDN)がより好ましい。脂肪族ジ(メタ)アクリレートは、化学構造上、化合物(1)と高い相溶性を有するため、安定な液状を維持できる。その結果、化合物(1)を高濃度に含有する液状の樹脂前駆体とすることが可能となる。化合物(1)を高濃度に含有する樹脂前駆体は、光学材料として使用する際、光学特性上の効果をより一層高くすることができる。
 樹脂前駆体におけるジ(メタ)アクリレート化合物の含有量は、特に限定されないが、化合物(1)との相溶性等の観点から、ジ(メタ)アクリレート化合物の総量として10~80質量%であることが好ましい。含有量の上限は、60質量%であることがより好ましく、50質量%であることが更に好ましい。含有量の下限は、20質量%であることがより好ましく、35質量%であることが更に好ましい。
 本実施形態に係る硬化性組成物は、上述以外の成分も含有することができる。例えば、1官能(メタ)アクリレート、3官能(メタ)アクリレート、4官能(メタ)アクリレート等が挙げられる。これらを併用することで、樹脂の硬度、透明度、光学特性を調節することが可能である。これらの中でも、化合物(1)との相溶性を向上させる観点から、1官能(メタ)アクリレートが好ましい。
 1官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、アセチル(メタ)アクリレート、ステアリル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、イソステアリル(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ラウロキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコールアクリレート、メトキシトリプロピレングリコールアクリレート、エトキシジプロピレングリコールアクリレート、エトキシトリプロピレングリコールアクリレート、ポリプロピレングリコール(メタ)アクリレート、アクリロキシポリエチレングリコール(メタ)アクリレート、ステアロキシポリエチレングリコール(メタ)アクリレート、オクトキシポリエチレングリコール-ポリプロピレングリコール(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)(メタ)アクリレート、ポリ(エチレングリコール-テトラメチレングリコール)(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。これらの中でも、化合物(1)との相溶性等について構造上の観点から、メトキシトリプロピレングリコールアクリレート、エトキシトリプロピレングリコールアクリレートであることが好ましい。
 3官能(メタ)アクリレートとしては、例えば、トリス(アクリロキシエチル)イソシアヌレート、トリス(メタクリロキシエチル)イソシアヌレート、エピクロルヒドリン変性グリセロールトリ(メタ)アクリレート、エチレンオキシド変性グリセロールトリ(メタ)アクリレート、プロピレンオキシド変性グリセロールトリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等が挙げられる。これらの中でも、化合物(1)との相溶性等について構造上の観点から、ペンタエリスリトールトリ(メタ)アクリレートであることが好ましい。
 4官能(メタ)アクリレートとしては、例えば、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等が挙げられる。これらの中でも、化合物(1)との相溶性等について構造上の観点から、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレートであることが好ましい。
 本実施形態に係る樹脂前駆体が光硬化型である場合には、樹脂前駆体は、さらに光重合開始剤を含有してもよい。かかる光重合開始剤としては、光照射によって単量体成分の重合を開始することができるものであれば特に限定されず、樹脂の光硬化に使用される公知のものを使用することができる。光照射に用いられる光としては、使用する光重合開始剤に応じて適宜選択することができ、通常、可視光、紫外線、電子線等が用いられる。
 光重合開始剤の含有量については、使用成分の種類や照射する光の種類にもよるが、通常0.1~5質量%であることが好ましい。
 光重合開始剤としては、例えば、反応性の観点から、ホスフィン系やアセトフェノン系の光重合開始剤が好ましい。ホスフィン系光重合開始剤としては、ビス(2-4-6-トリメチルベンゾイル)-フェニルホスフィンオキシド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド等が好ましい。アセトフェノン系光重合開始剤としては、反応性に加えて樹脂の黄変を抑制できる観点から、α位にヒドロキシル基を有するアルキルフェニルケトン類が好ましく、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン等がより好ましい。
 本実施形態に係る樹脂前駆体は、さらに光安定剤を含有してもよい。かかる光安定剤としては、公知のものを使用することができる。その好適例としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ビペリジル)セバケート、メチル-1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート等のヒンダードアミン系材料等が挙げられる。
 本実施形態に係る樹脂前駆体は、さらに重合禁止剤を含有してもよい。かかる重合禁止剤としては、公知のものを使用することができる。その好適例としては、p-ベンゾキノン、ヒドロキノン、ヒドロキノンモノメチルエーテル、2,5-ジフェニルパラベンゾキノン等のヒドロキノン類、T-ブチルカテコール等の置換カテコール類、フェノチアジン、ジフェニルアミン等のアミン類、テトラメチルピペリジニル-N-オキシラジカル(TEMPO)等のN-オキシラジカル類、ニトロソベンゼン、ピクリン酸、分子状酸素、硫黄等が挙げられる。これらの中でも、汎用性や重合抑制の観点から、ヒドロキノン類、フェノチアジン、N-オキシラジカル類がより好ましい。
 本実施形態に係る樹脂前駆体は、さらに紫外線吸収剤を含有してもよい。かかる紫外線吸収剤としては、公知のものを使用することができる。その好適例としては、2-(2-ヒドロキシ-5-t-オクチルフェニル)-2H-ベンゾトリアゾール等が挙げられる。紫外線吸収剤は、光安定剤と併用するとより一層優れた効果が期待できる。
 化合物(1)と併用する硬化性組成物について、これまで説明した各成分の好適な組み合わせとして、含フッ素(メタ)アクリレート化合物又はフルオレン構造を有する(メタ)アクリレート化合物と、ジ(メタ)アクリレート化合物とを含有することが好ましく、含フッ素(メタ)アクリレート化合物とジ(メタ)アクリレート化合物とを含有することがより好ましく、脂肪族含フッ素(メタ)アクリレート化合物と脂肪族ジ(メタ)アクリレート化合物とを含有することがより更に好ましい。
 硬化性組成物としての、上述した好適な組み合わせの具体的な成分の組み合わせは、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、メトキシトリプロピレングリコールアクリレート、1,6-ジ(メタ)アクリロイルオキシ-2,2,3,3,4,4,5,5-オクタフルオロヘキサン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、ビス(2-4-6-トリメチルベンゾイル)-フェニルホスフィンオキシド、ビス(1,2,2,6,6-ペンタメチル-4-ビペリジル)セバケート、メチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート、2-(2-ヒドロキシ-5-t-オクチルフェニル)-2H-ベンゾトリアゾール及び1,6-ヘキサンジオールジアクリレートからなる群より選ばれるいずれかを含むことが好ましい。
 これらの中でも、不溶成分の析出を効果的に抑制でき、安定な液状組成物となるよう容易に調製できる観点から、1,6-ジ(メタ)アクリロイルオキシ-2,2,3,3,4,4,5,5-オクタフルオロヘキサン、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、及び1,6-ヘキサンジオールジアクリレートからなる群より選ばれるいずれかを少なくとも含むことがより好ましい。さらには、1,6-ジ(メタ)アクリロイルオキシ-2,2,3,3,4,4,5,5-オクタフルオロヘキサン、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、及び1,6-ヘキサンジオールジアクリレートからなる群より選ばれる2種以上を含むことが更に好ましく、1,6-ジ(メタ)アクリロイルオキシ-2,2,3,3,4,4,5,5-オクタフルオロヘキサン、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、及び1,6-ヘキサンジオールジアクリレートを含むことがより更に好ましい。かかる成分を化合物(1)と併用することで、常温状態下において高い安定性を有する液状組成物となるよう一層容易に調製できる。
 上述した硬化性組成物の組み合わせに加えて、化合物(2)も更に併用することが好ましい。これにより、達成可能な光学特性の領域が広がり、これを用いる製品設計の自由度を向上させることができる。
 樹脂前駆体における化合物(1)の含有量は、特に限定されないが、液状で高い安定性を維持するという観点から、10~50質量%であることが好ましい。また、上述の観点から、その含有量の上限は、30質量%であることがより好ましく、25質量%であることが更に好ましい。また、含有量の下限は、15質量%であることがより好ましい。
<硬化物>
 本実施形態に係る樹脂前駆体を硬化させてなる硬化物とすることができる。硬化の手法については、含有する硬化性組成物の特性に応じて、光硬化としてもよいし、熱硬化としてもよい。硬化手法としては、例えば、紫外線硬化型の組成物を用い、紫外線を照射する手法を採用できる。
 硬化物の物性として、θg,F値は、0.5以上であることが好ましく、0.6以上であることがより好ましく、0.7以上であることが更に好ましい。アッベ数(ν)は、10以上40以下であることが好ましい。さらに、θg,F値とアッベ数(ν)は、上述した数値範囲をいずれも満たすことが好ましい。また、d線に対する屈折率(n)は、1.50以上1.65以下とすることができる。
 ガラス材料や有機樹脂等からなる光学材料は、短波長側になるにつれてその屈折率が低下する傾向にある。屈折率の波長分散性を示す指標として、θg,F値やアッベ数(ν)が用いられる。これらは光学材料特有の値であるが、屈折光学系においては、分散特性の異なる光学材料を適宜組み合わせることで、色収差を低減することが試みられている。しかしながら、設計要求等の観点から、レンズの構成や枚数が制限される場合、色収差を十分に補正することが困難な場合がある。この点、本実施形態に係る硬化物は、θg,F値が高く、特異な分散特性を有するものである。本実施形態に係る硬化物はかかる特性を有するため、優れた色収差補正機能を有し、かかる問題を解消することができる。
 さらに、硬化物の内部透過率は、波長400~450nmの範囲に亘って80%以上であることが好ましい。本実施形態によれば、光学材料として、高い内部透過率を有する硬化物とすることができる。
<光学素子・光学系・カメラ用交換レンズ・光学装置等>
 本実施形態に係る硬化物は、これを光学素子として用いることができる。かかる硬化物を含む光学素子には、ミラー、レンズ、プリズム、フィルタといったものも包含される。好適例としては、光学レンズとして使用することが挙げられる。さらに、本実施形態に係る光学素子は、これを含む光学系として用いることができる。
 本実施形態に係る光学系は、これを含むカメラ用交換レンズとして用いることができる。このような光学素子、光学レンズ、カメラ用交換レンズの構成については、公知のものを採用できる。さらには、本実施形態に係る光学系は、これを含む光学装置として用いることができる。かかる光学系を含む光学装置としては、特に限定されないが、例えば、レンズ交換式カメラ、レンズ非交換式カメラ等の撮像装置や光学顕微鏡等が挙げられる。
(撮像装置)
 図1は、本実施形態に係る光学装置を撮像装置とした場合の一例の斜視図である。
 撮像装置1はいわゆるデジタル一眼レフカメラ(レンズ交換式カメラ)であり、撮影レンズ(光学系)103は本実施形態に係る硬化物を備えたものである。カメラボディ101のレンズマウント(不図示)にレンズ鏡筒102が着脱自在に取り付けられる。そして該レンズ鏡筒102のレンズ103を通した光がカメラボディ101の背面側に配置されたマルチチップモジュール106のセンサーチップ(固体撮像素子)104上に結像される。このセンサーチップ104は、いわゆるCMOSイメージセンサー等のベアチップであり、マルチチップモジュール106は、例えばセンサーチップ104がガラス基板105上にベアチップ実装されたCOG(Chip On Glass)タイプのモジュールである。
 図2は、本実施形態に係る光学装置を撮像装置とした場合の別の例の正面図であり、図3は、当該撮像装置の背面図である。
 撮像装置CAMはいわゆるデジタルスチルカメラ(レンズ非交換式カメラ)であり、撮影レンズ(光学系)WLは本実施形態に係る硬化物を備えたものである。撮像装置CAMは、不図示の電源ボタンを押すと、撮影レンズWLの不図示のシャッタが開放されて、撮影レンズWLで被写体(物体)からの光が集光され、像面に配置された撮像素子に結像される。撮像素子に結像された被写体像は、撮像装置CAMの背後に配置された液晶モニターMに表示される。撮影者は、液晶モニターMを見ながら被写体像の構図を決めた後、レリーズボタンB1を押し下げて被写体像を撮像素子で撮像し、不図示のメモリーに記録保存する。撮像装置CAMには、被写体が暗い場合に補助光を発光する補助光発光部EF、撮像装置CAMの種々の条件設定等に使用するファンクションボタンB2等が配置されている。
 このようなデジタルカメラ等に用いられる光学系には、より高い解像度、軽量化、小型化が求められる。これらを実現するには光学系に高屈折率な光学ガラスを用いることが有効である。かかる観点から、本実施形態に係る光学ガラスは、かかる光学機器の部材として好適である。なお、本実施形態において適用可能な光学機器としては、上述した撮像装置に限らず、例えばプロジェクタ等も挙げられる。光学素子についても、レンズに限らず、例えばプリズム等も挙げられる。
(多光子顕微鏡)
 図4は、本実施形態に係る光学装置を多光子顕微鏡とした場合の一例を示すブロック図である。
 多光子顕微鏡2は、光学素子として、対物レンズ206、集光レンズ208、結像レンズ210を備える。以下、多光子顕微鏡2の光学系を中心に説明する。
 パルスレーザ装置201は、例えば、近赤外波長(約1000nm)であって、パルス幅がフェムト秒単位の(例えば、100フェムト秒の)超短パルス光を射出する。パルスレーザ装置201から射出された直後の超短パルス光は、一般に所定の方向に偏光された直線偏光となっている。
 パルス分割装置202は、超短パルス光を分割し、超短パルス光の繰り返し周波数を高くして射出する。
 ビーム調整部203は、パルス分割装置202から入射される超短パルス光のビーム径を、対物レンズ206の瞳径に合わせて調整する機能、試料Sから発せられる多光子励起光の波長と超短パルス光の波長との軸上の色収差(ピント差)を補正するために超短パルス光の集光及び発散角度を調整する機能、超短パルス光のパルス幅が光学系を通過する間に群速度分散により広がってしまうのを補正するために、逆の群速度分散を超短パルス光に与えるプリチャープ機能(群速度分散補償機能)等を有する。
 パルスレーザ装置201から射出された超短パルス光は、パルス分割装置202によりその繰り返し周波数が大きくされ、ビーム調整部203により上述した調整が行われる。そして、ビーム調整部203から射出された超短パルス光は、ダイクロイックミラー204によりダイクロイックミラー205の方向に反射され、ダイクロイックミラー205を通過し、対物レンズ206により集光されて試料Sに照射される。このとき、走査手段(不図示)を用いることにより、超短パルス光を試料Sの観察面上に走査させてもよい。
 例えば、試料Sを蛍光観察する場合には、試料Sの超短パルス光の被照射領域及びその近傍では、試料Sが染色されている蛍光色素が多光子励起され、赤外波長である超短パルス光より波長が短い蛍光(以下、「観察光」という。)が発せられる。
 試料Sから対物レンズ206の方向に発せられた観察光は、対物レンズ206によりコリメートされ、その波長に応じて、ダイクロイックミラー205により反射されたり、あるいは、ダイクロイックミラー205を透過したりする。
 ダイクロイックミラー205により反射された観察光は、蛍光検出部207に入射する。蛍光検出部207は、例えば、バリアフィルタ、PMT(photo multiplier tube:光電子増倍管)等により構成され、ダイクロイックミラー205により反射された観察光を受光し、その光量に応じた電気信号を出力する。また、蛍光検出部207は、超短パルス光が試料Sの観察面において走査されるのに合わせて、試料Sの観察面にわたる観察光を検出する。
 一方、ダイクロイックミラー205を透過した観察光は、走査手段(不図示)によりデスキャンされ、ダイクロイックミラー204を透過し、集光レンズ208により集光され、対物レンズ206の焦点位置とほぼ共役な位置に設けられているピンホール209を通過し、結像レンズ210を透過して、蛍光検出部211に入射する。
 蛍光検出部211は、例えば、バリアフィルタ、PMT等により構成され、結像レンズ210により蛍光検出部211の受光面において結像した観察光を受光し、その光量に応じた電気信号を出力する。また、蛍光検出部211は、超短パルス光が試料Sの観察面において走査されるのに合わせて、試料Sの観察面にわたる観察光を検出する。
 なお、ダイクロイックミラー205を光路から外すことにより、試料Sから対物レンズ206の方向に発せられた全ての観察光を蛍光検出部211で検出するようにしてもよい。
 また、試料Sから対物レンズ206と逆の方向に発せられた観察光は、ダイクロイックミラー212により反射され、蛍光検出部213に入射する。蛍光検出部213は、例えば、バリアフィルタ、PMT等により構成され、ダイクロイックミラー212により反射された観察光を受光し、その光量に応じた電気信号を出力する。また、蛍光検出部213は、超短パルス光が試料Sの観察面において走査されるのに合わせて、試料Sの観察面にわたる観察光を検出する。
 蛍光検出部207、211、213からそれぞれ出力された電気信号は、例えば、コンピュータ(不図示)に入力され、そのコンピュータは、入力された電気信号に基づいて、観察画像を生成し、生成した観察画像を表示したり、観察画像のデータを記憶したりすることができる。
<接合レンズ及びその製造方法>
 ここまでは、本実施形態に係る化合物、樹脂前駆体及び硬化物等を、単層レンズに用いた場合を中心に説明してきたが、本実施形態に係る化合物、樹脂前駆体及び硬化物等は、複層のレンズからなる接合レンズの接合部材としても好適に用いることができる。
 図5は、本実施形態に係る接合レンズの一例を示す概略図である。
 接合レンズ3は、第1のレンズ要素301と第2のレンズ要素302とが、本実施形態に係る硬化物303を介して接合されてなるものである。なお、接合レンズを構成するレンズについては、接合レンズの要素であることを明確にする観点から、上述したように「レンズ要素」と称する場合がある。このように、本実施形態に係る硬化物303は、上述した接合部材として機能させることができる。
 2枚のレンズ要素を有する接合レンズに、本実施形態に係る化合物や樹脂前駆体や硬化物を用いる場合、まず、(1)第1のレンズ要素と第2のレンズ要素とを、本実施形態に係る樹脂前駆体を介して接触させる接触工程と、(2)樹脂前駆体を硬化させることで第1のレンズ要素と第2のレンズ要素とを接合する接合工程と、を行う製造方法が挙げられる。
 (1)接触工程では、本実施形態に係る樹脂前駆体は、未硬化の状態で第1のレンズ要素と第2のレンズ要素の間に介在している。例えば、樹脂前駆体が液状組成物である場合、第1のレンズ要素と第2のレンズ要素の接触面に樹脂前駆体を塗布し、両レンズ要素を重ね合わせる。
 (2)接合工程において樹脂前駆体を硬化させる手法については、光硬化、熱硬化のいずれであってもよいが、樹脂前駆体に光を照射することにより、これを硬化させることが好ましい。当該光は、第1のレンズ要素又は第2のレンズ要素を介して樹脂前駆体に照射されることが好ましい。本実施形態に係る化合物、樹脂前駆体及び硬化物は、経時変化による黄変を抑制でき、高い透明性を長期にわたり維持することができる。かかる観点からも好適な製造手法である。
 このようにして得られる接合レンズは、単層レンズにおいて述べたものと同様に、光学系に用いることができる。また、本実施形態に係る接合レンズは、単層レンズにおいて述べたものと同様に、カメラ用交換レンズや、光学系を含む光学装置として用いることができる。なお、上述の態様では2つのレンズ要素を用いた接合レンズについて説明したが、これに限られず、3つ以上のレンズ要素を用いた接合レンズとしてもよい。また、3つ以上のレンズ要素を用いた接合レンズとする場合、各レンズ要素間の接合部材の全てを本実施形態に係る硬化物としてよいが、これに限られず、接合部材のうち少なくとも1つが本実施形態に係る硬化物であればよい。
 以下の実施例及び比較例により本発明を更に詳しく説明するが、本発明は以下の実施例により何ら限定されるものではない。まず化合物を合成し、それを含む樹脂前駆体及びその硬化物を作製し、それぞれについて物性評価を行った。
I.化合物の作製及び物性評価
<実施例1(化合物(1A)の合成)>
(中間体化合物(a1)の合成)
 500mL反応容器に2-メトキシ-5-ブロモベンジルアルコール10.00g(46.1mmol)、トルエン(脱水)200mLを量り入れた。これを撹拌して均一溶液としたのち、0℃に冷却した。これに三臭化リン(PBr)6.24g(23.0mmol)をゆっくりと滴下した。室温で3時間攪拌したのち、薄層クロマトグラフィー(TLC)で反応液をチェックすると、2-メトキシ-5-ブロモベンジルアルコールの消失が確認された。続いて、反応液に純水200mLを加えて引き続き30分間攪拌した。分液ロートで有機層と水層に分離したのち、水層をトルエン25mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水100mLで2回洗浄し、容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を70℃で減圧濃縮した。得られた微橙色液体を70℃で4時間減圧乾燥することにより中間体化合物(a1)を得た。収量は11.82g(42.2mmol)、収率は91.6%だった。
Figure JPOXMLDOC01-appb-C000012
(中間体化合物(a2)の合成)
 500mL反応容器に水素化ナトリウム(NaH;60%濃度)2.53g(63.3mmol)、テトラヒドロフラン(脱水)150mLを量り入れ、0℃に冷却した。これに2,2-ジメチル-1,3-プロパンジオール13.19g(126.7mmol)のテトラヒドロフラン30mL希釈液をゆっくりと滴下した。室温で1時間撹拌したのち、中間体化合物(a1)11.82g(42.2mmol)のテトラヒドロフラン20mL希釈液を一気に加えた。60℃で5時間攪拌したのち、TLCで反応液をチェックすると、中間体化合物(a1)の消失が確認された。続いて、反応液に2N塩酸200mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル50mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水100mLで2回洗浄し、容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を50℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=3:1)で精製して得られた微黄色液体を70℃で4時間減圧乾燥することにより中間体化合物(a2)を得た。収量は11.02g(36.3mmol)、収率は86.1%だった。
Figure JPOXMLDOC01-appb-C000013
(中間体化合物(a3)の合成)
 500mL反応容器に中間体化合物(a2)10.55g(34.8mmol)、4-アセチルフェニルボロン酸7.42g(45.2mmol)、ジオキサン140mLを量り入れた。撹拌しても均一溶液にはならなかった。これに、炭酸水素ナトリウム14.38g(135.7mmol)の純水70mL希釈液、テトラキス(トリフェニルホスフィン)パラジウム(0)錯体804mg(0.696mmol)を加えた。冷却管に5℃の水を流しながら110℃で4時間攪拌したのち、TLCで反応液をチェックすると、中間体化合物(a2)の消失が確認された。そこで、反応液に2N塩化アンモニウム水溶液90mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル30mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水100mLで2回洗浄し、容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を50℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=2:1)で精製して得られた微黄色液体を70℃で4時間減圧乾燥することにより中間体化合物(a3)を得た。収量は9.36g(27.3mmol)、収率は78.6%だった。
Figure JPOXMLDOC01-appb-C000014
(目的化合物(1A)の合成)
 200mL反応容器に中間体化合物(a3)7.57g(22.1mmol)、トリエチルアミン(EtN)5.59g(55.3mmol)、4-メトキシフェノール(MEHQ)151mg(1.22mmol)、テトラヒドロフラン(脱水)70mLを量り入れた。これを撹拌して均一溶液としたのち、0℃に冷却した。これに塩化メタクリロイル4.62g(44.2mmol)をゆっくりと滴下した。そのまま2時間攪拌したのち、TLCで反応液をチェックすると、中間体化合物(a3)がほぼ消失していたことが確認された。そこで、反応液に2N水酸化ナトリウム水溶液70mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル20mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水100mLで2回洗浄し、容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を40℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=3:1)で精製して得られた微黄色液体にMEHQの1mg/mLクロロホルム溶液2mLを加え、40℃で3時間減圧乾燥することにより目的化合物(1A)を得た。収量は8.19g(20.0mmol)、収率は90.2%だった。
Figure JPOXMLDOC01-appb-C000015
 化合物(1A)のH-NMR(ブルカー社製「AVANCE III HD」)の測定結果を以下に示す。
 H-NMR(500MHz,DMSO-d6):δ0.94(6H,s),1.81(3H,s),2.60(3H,s),3.30(2H,s),3.84(3H,s),3.93(2H,s),4.53(2H,s),5.59(1H,s),5.97(1H,s),7.10-7.11(1H,d),7.67-7.76(2H,m),7.74-7.75(2H,d),8.00-8.02(2H,d)
<実施例2(化合物(1B)の合成)>
(中間体化合物(b3)の合成)
 実施例1で説明した中間体化合物(a2)を用いて、中間体化合物(b3)を合成した。500mL反応容器に中間体化合物(a2)11.31g(37.3mmol)、4-ベンゾイルフェニルボロン酸10.96g(48.5mmol)、ジオキサン150mLを量り入れ、撹拌して均一溶液とした。これに、炭酸水素ナトリウム15.42g(145.4mmol)の純水75mL希釈液、テトラキス(トリフェニルホスフィン)パラジウム(0)錯体862mg(0.746mmol)を加えた。冷却管に5℃の水を流しながら110℃で4時間攪拌したのち、TLCで反応液をチェックすると、中間体化合物(a2)の消失が確認された。そこで、反応液に2N塩化アンモニウム水溶液100mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル35mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水100mLで2回洗浄し、容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を50℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=2:1)で精製して得られた白色固体を70℃で4時間減圧乾燥することにより中間体化合物(b3)を得た。収量は11.89g(29.4mmol)、収率は78.8%だった。
Figure JPOXMLDOC01-appb-C000016
(目的化合物(1B)の合成)
 300mL反応容器に中間体化合物(b3)11.89g(29.4mmol)、トリエチルアミン(EtN)7.44g(73.5mmol)、4-メトキシフェノール(MEHQ)238mg(1.92mmol)、テトラヒドロフラン(脱水)100mLを量り入れた。これを撹拌して均一溶液としたのち、0℃に冷却した。これに塩化メタクリロイル6.15g(58.8mmol)をゆっくりと滴下した。そのまま2時間攪拌したのち、TLCで反応液をチェックすると、中間体化合物(b3)がほぼ消失したことが確認された。そこで、反応液に2N水酸化ナトリウム水溶液100mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル30mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水100mLで2回洗浄し、容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を40℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=3:1)で精製して得られた微黄色液体にMEHQの1mg/mLクロロホルム溶液2.5mLを加え、40℃で3時間減圧乾燥することにより目的化合物(1B)を得た。収量は11.65g(24.7mmol)、収率は83.9%だった。
Figure JPOXMLDOC01-appb-C000017
 化合物(1B)のH-NMR(ブルカー社製「AVANCE III HD」)の測定結果を以下に示す。
 H-NMR(500MHz,DMSO-d6):δ0.94(6H,s),1.81(3H,s),3.30(2H,s),3.84(3H,s),3.94(2H,s),4.54(2H,s),5.59(1H,s),5.96(1H,s),7.11-7.12(1H,d),7.56-7.82(11H,m)
<実施例3(化合物(1C)の合成)>
(中間体化合物(c2)の合成)
 実施例1で説明した中間体化合物(a1)を用いて、中間体化合物(c2)を合成した。300mL反応容器に水素化ナトリウム(NaH;60%濃度)1.30g(32.6mmol)、テトラヒドロフラン(脱水)75mLを量り入れ、0℃に冷却した。これに1,5-ペンタンジオール6.79g(65.2mmol)のテトラヒドロフラン15mL希釈液をゆっくりと滴下した。室温で1時間撹拌したのち、中間体化合物(a1)6.08g(21.7mmol)のテトラヒドロフラン10mL希釈液を一気に加えた。60℃で5時間攪拌したのち、TLCで反応液をチェックすると、中間体化合物(a1)の消失が確認された。そこで、反応液に2N塩酸100mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル25mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水50mLで2回洗浄し、容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を50℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=1:1)で精製して得られた微黄色液体を70℃で4時間減圧乾燥することにより中間体化合物(c2)を得た。収量は4.14g(13.7mmol)、収率は62.9%だった。
Figure JPOXMLDOC01-appb-C000018
(中間体化合物(c3)の合成)
300mL反応容器に中間体化合物(c2)4.14g(13.7mmol)、4-ベンゾイルフェニルボロン酸4.01g(17.8mmol)、ジオキサン50mLを量り入れ、撹拌して均一溶液とした。これに炭酸水素ナトリウム5.64g(53.2mmol)の純水25mL希釈液、テトラキス(トリフェニルホスフィン)パラジウム(0)錯体316mg(0.273mmol)を加えた。冷却管に5℃の水を流しながら110℃で4時間攪拌したのち、TLCで反応液をチェックすると、中間体化合物(c2)の消失が確認された。そこで、反応液に2N塩化アンモニウム水溶液30mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル15mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水50mLで2回洗浄し、容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を50℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=1:1)で精製して得られた淡黄色液体を70℃で4時間減圧乾燥することにより中間体化合物(c3)を得た。収量は3.73g(9.22mmol)、収率は67.5%だった。
Figure JPOXMLDOC01-appb-C000019
(目的化合物(1C)の合成)
 100mL反応容器に中間体化合物(c3)3.73g(9.22mmol)、トリエチルアミン(EtN)2.33g(23.1mmol)、4-メトキシフェノール(MEHQ)74.6mg(0.601mmol)、テトラヒドロフラン(脱水)30mLを量り入れた。これを撹拌して均一溶液としたのち、0℃に冷却した。これに塩化メタクリロイル1.93g(18.4mmol)をゆっくりと滴下した。そのまま2時間攪拌したのち、TLCで反応液をチェックすると中間体化合物(c3)は消失していた。そこで、反応液に2N水酸化ナトリウム水溶液30mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル10mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水50mLで2回洗浄し、容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を40℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=3:1)で精製して得られた微黄色液体にMEHQの1mg/mLクロロホルム溶液1mLを加え、40℃で3時間減圧乾燥することにより目的化合物(1C)を得た。収量は3.71g(7.85mmol)、収率は85.1%だった。
Figure JPOXMLDOC01-appb-C000020
 化合物(1C)のH-NMR(ブルカー社製「AVANCE III HD」)の測定結果を以下に示す。
 H-NMR(500MHz,DMSO-d6):δ1.39-1.45(2H,m),1.56-1.67(4H,m),1.83(3H,s),3.50-3.52(2H,t),3.85(3H,s),4.07-4.10(2H,t),4.52(2H,s),5.60(1H,s),5.98(1H,s),7.12-7.14(1H,d),7.57-7.83(11H,m)
<実施例4(化合物(1D)の合成)>
(中間体化合物(d2)の合成)
 実施例1で説明した中間体化合物(a1)を用いて、中間体化合物(d2)を合成した。300mL反応容器に水素化ナトリウム(NaH;60%濃度)1.30g(32.6mmol)、テトラヒドロフラン(脱水)75mLを量り入れ、0℃に冷却した。これにジエチレングリコール6.91g(65.2mmol)のテトラヒドロフラン15mL希釈液をゆっくりと滴下した。室温で1時間撹拌したのち、中間体化合物(a1)6.08g(21.7mmol)のテトラヒドロフラン10mL希釈液を一気に加えた。60℃で3時間攪拌したのち、TLCで反応液をチェックすると、中間体化合物(a1)の消失が確認された。そこで、反応液に2N塩酸100mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル25mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水50mLで2回洗浄し、容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を50℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=1:4)で精製して得られた微黄色液体を70℃で4時間減圧乾燥することにより中間体化合物(d2)を得た。収量は4.14g(13.6mmol)、収率は62.5%だった。
Figure JPOXMLDOC01-appb-C000021
(中間体化合物(d3)の合成)
 300mL反応容器に中間体化合物(c2)4.14g(13.6mmol)、4-ベンゾイルフェニルボロン酸3.99g(17.6mmol)、ジオキサン50mLを量り入れ、撹拌して均一溶液とした。これに炭酸水素ナトリウム5.61g(52.9mmol)の純水25mL希釈液、テトラキス(トリフェニルホスフィン)パラジウム(0)錯体314mg(0.271mmol)を加えた。冷却管に5℃の水を流しながら110℃で4時間攪拌したのち、TLCで反応液をチェックすると、中間体化合物(d2)の消失が確認された。そこで、反応液に2N塩化アンモニウム水溶液30mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル15mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水50mLで2回洗浄し、容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を50℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=1:4)で精製して得られた淡黄色液体を70℃で4時間減圧乾燥することにより中間体化合物(d3)を得た。収量は3.87g(9.52mmol)、収率は70.2%だった。
Figure JPOXMLDOC01-appb-C000022
(目的化合物(1D)の合成)
 100mL反応容器に中間体化合物(d3)3.87g(9.52mmol)、トリエチルアミン(EtN)2.41g(23.8mmol)、4-メトキシフェノール(MEHQ)77.4mg(0.623mmol)、テトラヒドロフラン(脱水)30mLを量り入れた。これを撹拌して均一溶液としたのち、0℃に冷却した。これに塩化メタクリロイル1.99g(19.0mmol)をゆっくりと滴下した。そのまま2時間攪拌したのち、TLCで反応液をチェックすると、中間体化合物(d3)の消失が確認された。そこで、反応液に2N水酸化ナトリウム水溶液30mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル10mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水50mLで2回洗浄し、容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を40℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=2:1)で精製して得られた微黄色液体にMEHQの1mg/mLクロロホルム溶液1mLを加え、40℃で3時間減圧乾燥することにより目的化合物(1D)を得た。収量は4.02g(8.47mmol)、収率は88.9%だった。
Figure JPOXMLDOC01-appb-C000023
 化合物(1D)のH-NMR(ブルカー社製「AVANCE III HD」)の測定結果を以下に示す。
 H-NMR(500MHz,DMSO-d6):δ1.82(3H,s),3.65-3.70(6H,m),3.85(3H,s),4.21-4.23(2H,t),4.57(2H,s),5.60(1H,s),5.98(1H,s),7.12-7.13(1H,d),7.57-7.81(11H,m)
<実施例5(化合物(1E)の合成)>
(中間体化合物(e2)の合成)
 実施例1で説明した中間体化合物(a1)を用いて、中間体化合物(e2)を合成した。300mL反応容器に水素化ナトリウム(NaH;60%濃度)1.30g(32.6mmol)、テトラヒドロフラン(脱水)75mLを量り入れ、0℃に冷却した。これに2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタンジオール13.82g(65.2mmol)のテトラヒドロフラン15mL希釈液をゆっくりと滴下した。室温で1時間撹拌したのち、中間体化合物(a1)6.08g(21.7mmol)のテトラヒドロフラン10mL希釈液を一気に加えた。60℃で3時間攪拌したのち、TLCで反応液をチェックすると、中間体化合物(a1)の消失が確認された。そこで、反応液に2N塩酸100mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル25mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水50mLで2回洗浄し、容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を50℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=3:1)で精製して得られた微黄色液体を70℃で4時間減圧乾燥することにより中間体化合物(e2)を得た。収量は7.62g(15.6mmol)、収率は72.0%だった。
Figure JPOXMLDOC01-appb-C000024
(中間体化合物(e3)の合成)
 300mL反応容器に中間体化合物(e2)7.62g(15.6mmol)、4-ベンゾイルフェニルボロン酸34.60g(20.3mmol)、ジオキサン60mLを量り入れ、撹拌して均一溶液とした。これに、炭酸水素ナトリウム6.46g(61.0mmol)の純水30mL希釈液、テトラキス(トリフェニルホスフィン)パラジウム(0)錯体361mg(0.313mmol)を加えた。冷却管に5℃の水を流しながら110℃で4時間攪拌したのち、TLCで反応液をチェックすると、中間体化合物(e2)の消失が確認された。そこで、反応液に2N塩化アンモニウム水溶液40mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル20mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水50mLで2回洗浄し、容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を50℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=2:1)で精製して得られた淡黄色液体を70℃で4時間減圧乾燥することにより中間体化合物(e3)を得た。収量は7.11g(13.9mmol)、収率は88.7%だった。
Figure JPOXMLDOC01-appb-C000025
(目的化合物(1E)の合成)
 100mL反応容器に中間体化合物(e3)7.11g(13.9mmol)、トリエチルアミン(EtN)3.51g(34.7mmol)、4-メトキシフェノール(MEHQ)142mg(1.14mmol)、テトラヒドロフラン(脱水)40mLを量り入れた。これを撹拌して均一溶液としたのち、0℃に冷却した。これに塩化メタクリロイル2.90g(27.7mmol)をゆっくりと滴下した。そのまま2時間攪拌したのち、TLCで反応液をチェックすると、中間体化合物(e3)が完全に消失していたことが確認された。そこで、反応液に2N水酸化ナトリウム水溶液40mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル15mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水50mLで2回洗浄し、容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を40℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=3:1)で精製して得られた微黄色液体にMEHQの1mg/mLクロロホルム溶液1.5mLを加え、40℃で3時間減圧乾燥することにより目的化合物(1E)を得た。収量は6.63g(11.4mmol)、収率は82.3%だった。なお、目的化合物(1E)を室温で放置するとゆっくりと結晶化した。融点は44℃だった。
Figure JPOXMLDOC01-appb-C000026
 化合物(1E)のH-NMR(ブルカー社製「AVANCE III HD」)の測定結果を以下に示す。
 H-NMR(500MHz,DMSO-d6):δ1.89(3H,s),3.87(3H,s),4.19-4.25(2H,t),4.74(2H,s),4.80-4.86(2H,t),5.79(1H,s),6.10(1H,s),7.16-7.18(1H,d),7.57-7.84(11H,m)
<実施例6(化合物(1F)の合成)>
(中間体化合物(f3)の合成)
 実施例1で説明した中間体化合物(a2)を用いて、中間体化合物(f3)を合成した。500mL反応容器に中間体化合物(a2)10.07g(33.2mmol)、4-ホルミルフェニルボロン酸6.47g(43.2mmol)、ジオキサン150mLを量り入れ、撹拌して均一溶液とした。これに炭酸水素ナトリウム13.73g(129.5mmol)の純水75mL希釈液、テトラキス(トリフェニルホスフィン)パラジウム(0)錯体768mg(0.664mmol)を加えた。冷却管に5℃の水を流しながら110℃で4時間攪拌したのち、TLCで反応液をチェックすると、中間体化合物(a2)が完全に消失していたことが確認された。そこで、反応液に2N塩化アンモニウム水溶液100mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル30mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水100mLで2回洗浄した。容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を50℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=2:1)で精製して得られた白色固体を70℃で4時間減圧乾燥することにより中間体化合物(f3)を得た。収量は7.68g(23.4mmol)、収率は70.4%だった。
Figure JPOXMLDOC01-appb-C000027
(目的化合物(1F)の合成)
 100mL反応容器に中間体化合物(f3)3.77g(11.5mmol)、トリエチルアミン(EtN)2.90g(28.7mmol)、4-メトキシフェノール(MEHQ)75.4mg(0.607mmol)、テトラヒドロフラン(脱水)40mLを量り入れた。これを撹拌して均一溶液としたのち、0℃に冷却した。これに塩化メタクリロイル2.40g(23.0mmol)をゆっくりと滴下した。そのまま2時間攪拌したのち、TLCで反応液をチェックすると、中間体化合物(f3)はほぼ消失していたことが確認された。そこで、反応液に2N水酸化ナトリウム水溶液40mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル20mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水50mLで2回洗浄した。容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を40℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=3:1)で精製して得られた微黄色液体にMEHQの1mg/mLクロロホルム溶液1mLを加え、40℃で3時間減圧乾燥することにより目的化合物(1F)を得た。収量は3.77g(9.51mmol)、収率は82.8%だった。
Figure JPOXMLDOC01-appb-C000028
 化合物(1F)のH-NMR(ブルカー社製「AVANCE III HD」)の測定結果を以下に示す。
 H-NMR(500MHz,DMSO-d6):δ0.93(6H,s),1.80(3H,s),3.29(2H,s),3.83(3H,s),3.92(2H,s),4.52(2H,s),5.57(1H,s),5.95(1H,s),7.09-7.11(1H,d),7.67-7.69(2H,m),7.81-7.82(2H,d)、7.94-7.96(2H,d)、10.02(1H,s)
<実施例7(化合物(1G)の合成)>
(中間体化合物(g2)の合成)
 実施例1で説明した中間体化合物(a1)を用いて、中間体化合物(g2)を合成した。300mL反応容器に水素化ナトリウム(NaH;60%濃度)1.27g(31.8mmol)、テトラヒドロフラン(脱水)75mLを量り入れ、0℃に冷却した。これにエチレングリコール3.95g(63.7mmol)のテトラヒドロフラン15mL希釈液をゆっくりと滴下した。室温で1時間撹拌したのち、中間体化合物(a1)5.94g(21.2mmol)のテトラヒドロフラン10mL希釈液を一気に加えた。60℃で22時間攪拌したのち、TLCで反応液をチェックすると中間体化合物(a1)は消失していた。そこで反応液に2N塩酸100mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル15mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水50mLで2回洗浄した。容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を50℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=1:1)で精製して得られた黄色液体を70℃で4時間減圧乾燥することにより中間体化合物(g2)を得た。収量は3.52g(13.4mmol)、収率は63.5%だった。
Figure JPOXMLDOC01-appb-C000029
(中間体化合物(g3)の合成)
 300mL反応容器に中間体化合物(g2)3.52g(13.4mmol)、4-アセチルフェニルボロン酸2.20g(13.4mmol)、ジオキサン40mLを量り入れ、撹拌して均一溶液とした。これに炭酸水素ナトリウム4.19g(40.5mmol)の純水20mL希釈液、テトラキス(トリフェニルホスフィン)パラジウム(0)錯体239mg(0.206mmol)を加えた。冷却管に5℃の水を流しながら110℃で4時間攪拌したのち、TLCで反応液をチェックすると中間体化合物(g2)は完全に消失していた。そこで反応液に2N塩化アンモニウム水溶液30mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル15mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水50mLで2回洗浄した。容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を50℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=1:2)で精製して得られた黄色液体を70℃で4時間減圧乾燥することにより中間体化合物(g3)を得た。収量は2.83g(9.42mmol)、収率は69.9%だった。
Figure JPOXMLDOC01-appb-C000030
(目的化合物(1G)の合成)
 100mL反応容器に中間体化合物(g3)2.83g(9.42mmol)、トリエチルアミン(EtN)2.38g(23.6mmol)、4-メトキシフェノール(MEHQ)56.6mg(0.456mmol)、テトラヒドロフラン(脱水)30mLを量り入れた。これを撹拌して均一溶液としたのち、0℃に冷却した。これに塩化メタクリロイル1.97g(18.8mmol)をゆっくりと滴下した。そのまま1時間攪拌したのち、TLCで反応液をチェックすると中間体化合物(g3)は完全に消失していた。そこで反応液に2N水酸化ナトリウム水溶液30mLを加えた。分液ロートで有機層と水層に分離したのち、水層を酢酸エチル10mLで2回抽出した。有機層と抽出層をまとめて飽和食塩水50mLで2回洗浄した。容器に移して無水硫酸マグネシウムを加えた。
 固形物をろ過で取り除き、ろ液を40℃で減圧濃縮した。シリカゲルカラム(展開溶媒は、n-ヘキサン:酢酸エチル=2:1)で精製して得られた微黄色液体にMEHQの1mg/mLクロロホルム溶液1mLを加え、40℃で3時間減圧乾燥することにより目的化合物(1G)を得た。収量は3.14g(8.52mmol)、収率は90.5%だった。
Figure JPOXMLDOC01-appb-C000031
 化合物(1G)のH-NMR(ブルカー社製「AVANCE III HD」)の測定結果を以下に示す。
 H-NMR(500MHz,DMSO-d6):δ1.85(3H,s),2.60(3H,s),3.74-3.76(2H,t),3.84(3H,s),4.29-4.31(2H,t),4.59(2H,s),5.64(1H,s),6.02(1H,s),7.10-7.12(1H,d),7.66-7.69(2H,m),7.74-7.76(2H,d),7.99-8.01(2H,d)
<化合物の物性評価>
(屈折率測定用サンプルの作製)
 得られた化合物を加熱、融解して液状とした後、冷却することにより固化し、屈折率測定用サンプルを得た。
(測定及び評価)
 屈折率は、多波長屈折率計(アントンパール・ジャパン社製)を用いて測定した。C線(波長656.3nm)、d線(587.6nm)、F線(486.1nm)、g線(435.8nm)について、それぞれの屈折率n、n、n、nを測定した。そして、θg,F値とν値を以下の式から算出した。

θg,F=(n-n)/(n-n
ν=(n-1)/(n-n
Figure JPOXMLDOC01-appb-T000032
II.樹脂前駆体の作製及び物性評価
(主剤3の作製)
 まず、後述する主剤3(式(iii)で表される化合物)を、以下の方法に準拠して、作製した。
 まず、アルゴン気流下、300mLの反応容器に3-ホルミル-4-メトキシフェニルボロン酸10.00g(55.6mmol)、テトラヒドロフラン(THF、脱水)50mL、エタノール(脱水)50mLを量り入れ、0℃で攪拌した。これに水素化ホウ素ナトリウム(NaBH)1.36g(36.0mmol)を少量ずつ加えた。0℃で2時間攪拌後、TLCで反応チェックを行い、原料の消失を確認した。これに市水50mLを加えて反応を停止させると、直ちに白色沈殿が生じた。
 次に、懸濁液を減圧ろ過し、有機溶媒を除去した。懸濁液が中性になるまで2mol/L濃度の塩酸を加えた後、沈殿をろ取した。ろ取物を、酢酸エチル50mLで洗浄し、40℃で減圧乾燥して、ろ取物として中間体化合物(iii-1)((3-ヒドロキシメチル)-4-メトキシ-フェニル)ボロン酸)を得た。収量は9.27g(50.9mmol)、収率は91.5%であった。
Figure JPOXMLDOC01-appb-C000033
 続いて、500mL反応容器に4,4’-ジクロロベンゾフェノン3.30g(12.5mmol)、中間体化合物(a1)5.00g(27.5mmol)、炭酸水素ナトリウム3.57g(42.5mmol)、1,4-ジオキサン150mL、蒸留水75mLをそれぞれ量り入れ、室温で攪拌しながらアルゴンバブリングした。30分間攪拌した後、テトラキス(トリフェニルホスフィン)パラジウム(Pd(Ph)0.29g(0.25mmol)を反応系に添加した。そして、アルゴンバブリングをアルゴン気流下に切り替え、90℃で一晩攪拌した。その後、TLCで反応チェックを行い、原料の消失を確認し、加熱を停止した。反応溶液を室温まで放冷した後、飽和塩化アンモニウム水溶液25mL、市水150mLを添加し、30分間攪拌した。析出した沈殿をろ取し、水300mLで洗浄して、黄白色粉末を得た。
 得られた黄白色粉末を70℃で一晩減圧乾燥した。この粉末にテトラヒドロフラン:クロロホルム=1:9の混合液900mLを加え、60℃で加熱した。この溶液をシリカゲルカラム(展開溶媒は、テトラヒドロフラン:クロロホルム=1:9)で精製し、中間体化合物(iii-2)を得た。収量は4.86g(10.7mmol)、収率は85.6%であった。
Figure JPOXMLDOC01-appb-C000034
 そして、アルゴン気流下、200mL反応容器に中間体化合物(a2)2g(4.40mmol)、ジクロロメタン(脱水)80mLを量り入れ、0℃で冷却した。これに三臭化リン(PBr)1.01g(3.74mmol)を5分かけて滴下し、室温へ昇温させた。3時間攪拌後、TLC及びHPLC分析で反応チェックを行い、原料の消失を確認し、攪拌を停止した。これに10℃以下の市水80mLを加え、引き続き30分間攪拌した。そして、析出した沈殿をろ取した後、ろ液を有機層と水層に分離した。水層をジクロロメタン50mLで2回洗うことで、水層に溶け込んだ有機成分を回収した。続いて、有機層と水層から回収した有機成分をまとめて、混合溶液とした。この混合溶液を吸引ろ過した。なお、吸引ろ過する際には、水が凍ってろ過が止まるため、漏斗の上から温めながら作業を行った。
 得られたろ液を減圧濃縮後、再度ろ取物を加え、これにテトラヒドロフラン50mLを加えることで懸濁させ、懸濁液を得た。得られた懸濁液に市水200mLを加え、析出した沈殿をろ取した。ろ液については、市水でろ液が中性になるまで洗浄後、さらにメタノール20mLで洗浄した。得られた白色粉末を、70℃で一晩減圧乾燥することにより中間体化合物(iii-3)を得た。収量は2.36g(4.07mmol)、収率は92.5%であった。
Figure JPOXMLDOC01-appb-C000035
 中間体化合物(iii-3)を用いて、中間体化合物(iii-4)を合成した。アルゴン気流下、1000mL反応容器にテトラヒドロフラン(脱水)300mL、水素化ナトリウム(60%濃度)2.33g(58.5mmol)を量り取り、氷冷した。これにエチレングリコール12.8g(206mmol)のテトラヒドロフラン100mL希釈液を滴下し、室温まで昇温させた。1時間攪拌後、中間体化合物(iii-3)10g(17.2mmol)を一度に添加し、60℃に加熱した。一晩加熱攪拌後、TLCで反応チェックを行い、原料の消失を確認した。これに市水400mLを加えて反応を停止させた。反応溶液に酢酸エチル400mLを加えることで有機層と水層に分離させた。水層を酢酸エチル200mLで2回洗うことで水層から有機成分を回収した。そして、有機層と水層から回収した有機成分をまとめて混合溶液とした。得られた混合溶液を、水、飽和食塩水の順で洗浄した後、硫酸マグネシウムで乾燥させた。
 次に、乾燥させた混合溶液を減圧濃縮することで溶媒を留去し、薄黄色固体11.3gを得た。これをNHゲルカラム(展開:クロロホルム)で精製し、白色固体の中間体化合物(iii-3)を得た。得られた中間体化合物(iii-3)を80℃で一晩減圧乾燥した。収量は5.01g(9.23mmol)、収率は53.7%であった。
Figure JPOXMLDOC01-appb-C000036
 上述の工程を繰り返し、中間体化合物(iii-3)を合計で10.7g得た後、アルゴン気流下、200mL反応容器に中間体化合物(iii-3)10.7g、クロロホルム(脱水)90mL、トリエチルアミン18.9g(187mmol)、p-メトキシフェノール49.0mg(395μmol)添加を量り取り、0℃で冷却した。これにメタクリロイルクロライド7.00g(67.0mmol)を5分間かけて滴下すると、溶液色は桃色に変化し、トリエチルアミンハイドロクロライドが析出した。続いて、0℃から室温まで昇温させて1時間攪拌した後、TLC及びHPLC分析で反応チェックを行い、原料の消失を確認した。これに市水200mLを加えて反応を停止させた。続いて、反応溶液を有機層と水層に分離した。水層をクロロホルム60mLで2回洗うことで、水層に溶け込んだ有機成分を回収した。得られた有機層と水層から回収した有機成分をまとめて、混合溶液とした。この混合溶液を水、飽和食塩水の順で洗浄した後、硫酸ナトリウムで乾燥させた。
 次に、乾燥させた混合容器にp-メトキシフェノール49.0mg(395mmol)とトルエン20mLを加えた。そして、混合溶液を減圧濃縮することでトリエチルアミンと溶媒を留去し、粗体17.0gを得た。得られた粗体をシリカゲルカラム(展開溶媒は、酢酸エチル:トルエン=1:10)で精製した。
 さらに、前工程で得られたシリカゲルカラムのフラクションにp-メトキシフェノール49.0mg(395μmol)のクロロホルム溶液を加え、30℃以下で減圧濃縮し、濃縮物を得た。そして、得られた濃縮物をジエチルエーテルで洗浄してろ取し、得られたろ取物をクロロホルムで溶解させた。これにp-メトキシフェノール5.2mg(500ppm相当)のクロロホルム溶液をさらに加えた後、30℃以下で減圧濃縮することで溶媒を留去し、目的物である乳白色固体(主剤3(化合物(iii)))を得た。収量は10.4g(15.3mmol)、収率は77.6%であった。
Figure JPOXMLDOC01-appb-C000037
 主剤3(化合物(iii))のH-NMRの測定結果を以下に示す。
H-NMR(300MHz,DMSO-d6):δ1.86(6H,s),3.76(4H,t),3.86(6H,s),4.30(4H,t),4.61(4H,s),5.65and6.03(4H,s),7.13-7.15(2H,d),7.71-7.83(12H,m)
m.p.=80℃
<実施例7>
 表2に示す割合で、化合物(1A)と、硬化性組成物を構成する各成分とを混合して、樹脂前駆体(1A-1)を作製した。得られた樹脂前駆体は、常温常圧で溶液状態であった。なお、表中の配合比率は、特に断りがない限り、質量%基準である。
<実施例8~13>
 表2に示す割合で各成分を混合した点以外は、実施例7と同様にして、各樹脂前駆体を作製した。各樹脂前駆体について、常温常圧での状態を確認した。
 硬化性組成物として使用した成分を示す。
・主剤1
9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(式(i))
Figure JPOXMLDOC01-appb-C000038
・主剤2
1,6-ジアクリロイルオキシ-2,2,3,3,4,4,5,5-オクタフルオロヘキサン(式(ii))
Figure JPOXMLDOC01-appb-C000039
・主剤3
下記式(iii)で表される化合物(式(iii))
Figure JPOXMLDOC01-appb-C000040
・相溶化剤:
メトキシトリプロピレングリコールアクリレート(式(iv))
Figure JPOXMLDOC01-appb-C000041
・光重合開始剤1:
1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(式(v))
Figure JPOXMLDOC01-appb-C000042
・光重合開始剤2:
ビス(2-4-6-トリメチルベンゾイル)-フェニルホスフィンオキシド(式(vi))
Figure JPOXMLDOC01-appb-C000043
・ラジカル捕捉剤:
ビス(1,2,2,6,6-ペンタメチル-4-ビペリジル)セバケート(式(vii))+メチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート(式(viii)
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
・紫外線吸収剤:
2-(2-ヒドロキシ-5-t-オクチルフェニル)-2H-ベンゾトリアゾール(式(ix))
Figure JPOXMLDOC01-appb-C000046
<樹脂前駆体の物性評価>
(屈折率測定用サンプルの作製)
 樹脂物前駆体は、それを硬化させることなく、液状の状態で物性を測定した。
(測定及び評価)
 化合物の物性測定と同様の手法にて、それぞれの樹脂前駆体について屈折率n、n、n、nを測定し、θg,F値とν値を算出した。
Figure JPOXMLDOC01-appb-T000047
III.硬化物の作製及び物性評価
<実施例14>
 樹脂前駆体(1A-1)を合成石英(t=1mm)に挟み、385nm以下の波長カットフィルターを介して、高輝度水銀キセノンランプ(浜松ホトニクス社製、「LC8」)の光を照射することによって硬化させ、硬化物(1A-1)を得た。
<実施例15~19>
 表3に示す樹脂前駆体を用いた点以外は、実施例14と同様にして、各硬化物を得た。各硬化物について、常温常圧での状態を確認した。
<硬化物の物性評価>
(屈折率測定用サンプルの作製)
 石英ガラス基板上に矩形形状の開口部を有するシリコンゴムシートを載置し、開口部を樹脂前駆体で満たした後、石英ガラス基板で蓋をした。次いで、石英ガラス基板を介して樹脂前駆体に紫外線を照射し、硬化させた。そして、硬化物を離型することで、形状15mm×15mm、厚さ0.5mmの屈折率測定用サンプルを得た。
(測定及び評価)
 化合物の物性測定と同様の手法にて、屈折率n、n、n、nをそれぞれ測定し、θg,F値とアッベ数(ν値)を算出した。
Figure JPOXMLDOC01-appb-T000048
 以上より、実施例の化合物及びそれを含有する樹脂前駆体から得られた硬化物は、θg,F値が高く、かつ、屈折率の分散特性(ν値)が低いことが少なくとも確認された。
<実施例20~25>
 さらに、表4に記載の硬化物について、硬化から27日経過後の内部透過率、及び内部透過率が80%となる波長を測定した。
(透過率測定用サンプルの作製)
 上述の屈折率測定用サンプルの作製方法と同様にし、各硬化物について厚さ0.5mmのサンプルと厚さ1.0mmのサンプルを透過率測定用サンプルとして作製した。そして、樹脂前駆体の硬化後27日間静置したものを測定に供した。
(内部透過率の評価)
 透過率は、サンプル厚み0.5mm、1.0mmのそれぞれについて測定し、下記式で補正した。測定にあたっては、分光光度計(島津製作所社製、「UV-4700」)を用いた。

内部透過率(%)=(A/B)[100/(a-b)]×100

 A:1.0mm厚の透過率
 B:0.5mm厚の透過率
 a:1.0mm厚のサンプルの板厚の実測寸法
 b:0.5mm厚のサンプルの板厚の実測寸法
※0.5mmの内部透過率換算データ
(内部透過率が80%となる波長(λ80))
 まず、12mm厚と2mm厚の平行研磨されたサンプルを用意し、厚み方向と平行に光が入射した際の波長200~700nmの範囲における内部透過率を測定し、厚さ10mmにおける内部透過率に換算した。そして、内部透過率が80%となる波長をλ80とした。
 実施例20~25の各波長における内部透過率(%)及び内部透過率が80%となる波長(λ80;単位nm)の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000049
1・・・撮像装置(レンズ交換式カメラ)、101・・・カメラボディ、102・・・レンズ鏡筒、103・・・レンズ、104・・・センサーチップ、105・・・ガラス基板、106・・・マルチチップモジュール、CAM・・・撮像装置(レンズ非交換式カメラ)、WL・・・撮影レンズ、M・・・液晶モニター、EF・・・補助光発光部、B1・・・レリーズボタン、B2・・・ファンクションボタン、2・・・多光子顕微鏡、201・・・パルスレーザ装置、202・・・パルス分割装置、203・・・ビーム調整部、204,205,212・・・ダイクロイックミラー、206・・・対物レンズ、207,211,213・・・蛍光検出部、208・・・集光レンズ、209・・・ピンホール、210・・・結像レンズ、S・・・試料、3・・・接合レンズ、301・・・第1のレンズ要素、302・・・第2のレンズ要素、303・・・硬化物

Claims (23)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、水素原子又はメチル基を表し、Rは、水素原子又はフェニル基又は炭素数1~8のアルキル基又は炭素数1~4のパーフルオロアルキル基を表し、Xは、水素原子又はヒドロキシ基を表し、Yは、フッ素原子を含む炭素数1~9のアルキレン基又はフッ素原子を含まない炭素数1~9のアルキレン基を表し、nは0~3の整数を表す。)
  2.  請求項1に記載の化合物と、硬化性組成物と、を含む、樹脂前駆体。
  3.  前記硬化性組成物は、光硬化性組成物である、請求項2に記載の樹脂前駆体。
  4.  前記硬化性組成物として、下記式(2)で表される化合物、含フッ素アクリレート化合物、含フッ素メタクリレート化合物、フルオレン構造を有するアクリレート化合物、フルオレン構造を有するメタクリレート化合物、ジアクリレート化合物、及びジメタクリレート化合物からなる群より選ばれる1種以上を含む、請求項2又は3に記載の樹脂前駆体。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRは、それぞれ独立に、水素原子又はメチル基を表し、Y及びYは、それぞれ独立に、炭素数1~9のアルキレン基を表し、n及びnは、それぞれ独立に、0~3の整数を表す。)
  5.  前記硬化性組成物として、1,6-ジアクリロイルオキシ-2,2,3,3,4,4,5,5-オクタフルオロヘキサン、1,6-ジメタアクリロイルオキシ-2,2,3,3,4,4,5,5-オクタフルオロヘキサン、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、及び1,6-ヘキサンジオールジアクリレートからなる群より選ばれる1種以上を含む、請求項2~4のいずれか一項に記載の樹脂前駆体。
  6.  前記式(1)で表される化合物の含有率が、10~50質量%である、請求項2~5のいずれか一項に記載の樹脂前駆体。
  7.  請求項2~6のいずれか一項に記載の樹脂前駆体を硬化させてなる硬化物。
  8.  θg,F値が、0.5以上である、請求項7に記載の硬化物。
  9.  d線に対する屈折率(n)が、1.50以上1.65以下である、請求項7又は8に記載の硬化物。
  10.  アッベ数(ν)が、10以上40以下である、請求項7~9のいずれか一項に記載の硬化物。
  11.  内部透過率が、波長400~450nmの範囲に亘って80%以上である、請求項7~10のいずれか一項に記載の硬化物。
  12.  請求項7~11のいずれか一項に記載の硬化物を用いた光学素子。
  13.  請求項12に記載の光学素子を含む光学系。
  14.  請求項13に記載の光学系を含むカメラ用交換レンズ。
  15.  請求項13に記載の光学系を含む光学装置。
  16.  第1のレンズ要素と第2のレンズ要素とが、請求項7~11のいずれか一項に記載の硬化物を介して接合されてなる、接合レンズ。
  17.  請求項16に記載の接合レンズを含む光学系。
  18.  請求項17に記載の光学系を含むカメラ用交換レンズ。
  19.  請求項17に記載の光学系を含む光学装置。
  20.  第1のレンズ要素と第2のレンズ要素とを、請求項2~6のいずれか一項に記載の樹脂前駆体を介して接触させる接触工程と、
     前記樹脂前駆体を硬化させることで前記第1のレンズ要素と前記第2のレンズ要素とを接合する接合工程と、
     を有する接合レンズの製造方法。
  21.  前記接合工程において、前記樹脂前駆体は光が照射されることにより硬化する、請求項20に記載の接合レンズの製造方法。
  22.  前記光は、前記第1のレンズ要素を介して前記樹脂前駆体に照射される、請求項21に記載の接合レンズの製造方法。
  23.  前記光は、前記第2のレンズ要素を介して前記樹脂前駆体に照射される、請求項21に記載の接合レンズの製造方法。
PCT/JP2018/041695 2018-11-09 2018-11-09 化合物、樹脂前駆体、硬化物、光学素子、光学系、カメラ用交換レンズ、光学装置、接合レンズ、及び接合レンズの製造方法 WO2020095442A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020556451A JP7078134B2 (ja) 2018-11-09 2018-11-09 化合物、樹脂前駆体、硬化物、光学素子、光学系、カメラ用交換レンズ、光学装置、接合レンズ、及び接合レンズの製造方法
PCT/JP2018/041695 WO2020095442A1 (ja) 2018-11-09 2018-11-09 化合物、樹脂前駆体、硬化物、光学素子、光学系、カメラ用交換レンズ、光学装置、接合レンズ、及び接合レンズの製造方法
CN201880099349.1A CN112969682B (zh) 2018-11-09 2018-11-09 化合物、树脂前驱体、固化物、光学元件、光学系统
TW108115154A TWI798429B (zh) 2018-11-09 2019-05-01 化合物、樹脂前驅物、硬化物、光學元件、光學系統、相機用交換鏡頭、光學裝置、接合透鏡及接合透鏡之製造方法
US17/314,230 US20210395580A1 (en) 2018-11-09 2021-05-07 Compound, resin precursor, cured object, optical element, optical system, interchangeable camera lens, optical device, cemented lens, and method for manufacturing cemented lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041695 WO2020095442A1 (ja) 2018-11-09 2018-11-09 化合物、樹脂前駆体、硬化物、光学素子、光学系、カメラ用交換レンズ、光学装置、接合レンズ、及び接合レンズの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/314,230 Continuation US20210395580A1 (en) 2018-11-09 2021-05-07 Compound, resin precursor, cured object, optical element, optical system, interchangeable camera lens, optical device, cemented lens, and method for manufacturing cemented lens

Publications (1)

Publication Number Publication Date
WO2020095442A1 true WO2020095442A1 (ja) 2020-05-14

Family

ID=70611674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041695 WO2020095442A1 (ja) 2018-11-09 2018-11-09 化合物、樹脂前駆体、硬化物、光学素子、光学系、カメラ用交換レンズ、光学装置、接合レンズ、及び接合レンズの製造方法

Country Status (5)

Country Link
US (1) US20210395580A1 (ja)
JP (1) JP7078134B2 (ja)
CN (1) CN112969682B (ja)
TW (1) TWI798429B (ja)
WO (1) WO2020095442A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145106A (ja) * 1993-11-24 1995-06-06 Sanko Chem Co Ltd アクリル酸誘導体
JP2012082387A (ja) * 2010-09-14 2012-04-26 Dic Corp 光学材料用高屈折組成物、及びその硬化物
JP2012167019A (ja) * 2011-02-09 2012-09-06 Canon Inc 光学素子用化合物、光学材料及び光学素子
WO2014021355A1 (en) * 2012-07-30 2014-02-06 Canon Kabushiki Kaisha (meth)acrylate compound, optical composition, molded article, and optical element
JP2017200979A (ja) * 2016-05-06 2017-11-09 キヤノン株式会社 光学用組成物、硬化物及び光学素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760201B2 (ja) * 1991-11-01 1995-06-28 日本油脂株式会社 光学用注型成形樹脂製レンズ
JP5057367B2 (ja) * 2007-03-29 2012-10-24 日本化薬株式会社 活性エネルギー線硬化型樹脂組成物及びその硬化物
GB2536345B (en) * 2010-11-17 2017-01-11 Nippon Kayaku Kk Epoxy Resin Composition for transparent sheets and cured product thereof
KR101626472B1 (ko) * 2011-09-05 2016-06-01 닛산 가가쿠 고교 가부시키 가이샤 수지 조성물
WO2013129345A1 (ja) * 2012-02-29 2013-09-06 出光興産株式会社 (メタ)アクリレート系組成物、樹脂、及び成形体
CN106459596A (zh) * 2014-06-20 2017-02-22 住友化学株式会社 水性乳液以及涂膜、固化物和层叠体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145106A (ja) * 1993-11-24 1995-06-06 Sanko Chem Co Ltd アクリル酸誘導体
JP2012082387A (ja) * 2010-09-14 2012-04-26 Dic Corp 光学材料用高屈折組成物、及びその硬化物
JP2012167019A (ja) * 2011-02-09 2012-09-06 Canon Inc 光学素子用化合物、光学材料及び光学素子
WO2014021355A1 (en) * 2012-07-30 2014-02-06 Canon Kabushiki Kaisha (meth)acrylate compound, optical composition, molded article, and optical element
JP2017200979A (ja) * 2016-05-06 2017-11-09 キヤノン株式会社 光学用組成物、硬化物及び光学素子

Also Published As

Publication number Publication date
US20210395580A1 (en) 2021-12-23
JP7078134B2 (ja) 2022-05-31
CN112969682B (zh) 2023-09-26
TWI798429B (zh) 2023-04-11
JPWO2020095442A1 (ja) 2021-10-21
CN112969682A (zh) 2021-06-15
TW202017897A (zh) 2020-05-16

Similar Documents

Publication Publication Date Title
KR101749504B1 (ko) 라디칼 중합성 조성물, 그 경화물 및 플라스틱 렌즈
US20220120937A1 (en) Compound, resin precursor, cured object, optical element, optical system, interchangeable camera lens, optical device, cemented lens, and method for manufacturing cemented lens
KR20120082413A (ko) 색소 다량체, 착색 경화성 조성물, 컬러필터 및 그 제조방법, 및 컬러필터를 구비한 고체촬상소자, 화상 표시 장치, 액정 표시 장치 및 유기 el 디스플레이
KR20120099401A (ko) 착색 경화성 조성물, 레지스트 액, 잉크젯 인쇄용 잉크, 컬러 필터, 컬러 필터의 제조 방법, 고체 촬상 소자, 액정 디스플레이, 유기 el 디스플레이, 화상 표시 디바이스 및 색소 화합물
US11440869B2 (en) Compound, resin precursor, cured product, optical element, optical system, interchangeable lens for camera, optical device, cemented lens, and production method for cemented lens
CN108473436A (zh) 化合物、固化性组合物、固化物、光学部件及透镜
EP3137930A1 (en) Bicarbazole compound, photo-curable composition, cured produc thereof, curable composition for plastic lens, and plastic lens
US11142636B2 (en) (Meth)acrylate compound, additive for optical resin, optical element, and optical device
JP7078134B2 (ja) 化合物、樹脂前駆体、硬化物、光学素子、光学系、カメラ用交換レンズ、光学装置、接合レンズ、及び接合レンズの製造方法
JP7298780B2 (ja) 化合物、樹脂前駆体、硬化物、光学素子、光学系、カメラ用交換レンズ、光学装置、接合レンズ、及び接合レンズの製造方法
WO2016104803A1 (ja) 分散剤
KR20150138090A (ko) 조염 염료 및 착색 경화성 수지 조성물
WO2021153600A1 (ja) インプリントパターン形成用組成物、硬化物、インプリントパターンの製造方法及びデバイスの製造方法
CN114437269B (zh) 光学元件、光学装置、成像装置和化合物
JP2021165360A (ja) 光学素子、光学機器、撮像装置
KR102060407B1 (ko) 착색 경화성 조성물, 착색 경화막, 컬러필터, 컬러필터의 제조방법, 표시 장치, 고체 촬상 소자, 및 화합물
US20230220183A1 (en) Cured product, optical element, optical apparatus, and imaging apparatus
JP2020070288A (ja) (メタ)アクリレート化合物
CN115403772A (zh) 固化物、光学元件、光学装置和摄像装置
JP2009221175A (ja) デカリン誘導体、それを含む樹脂組成物、それを用いた光半導体用封止剤、光学電子部材、レジスト材料、及びデカリン誘導体の製造方法
WO2015012250A1 (ja) 近赤外線吸収性化合物の製造方法、近赤外線吸収性組成物、近赤外線カットフィルタ、固体撮像素子および精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556451

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939169

Country of ref document: EP

Kind code of ref document: A1