WO2020094709A2 - Verfahren und computerprogrammprodukt zur oct-messstrahljustierung - Google Patents

Verfahren und computerprogrammprodukt zur oct-messstrahljustierung Download PDF

Info

Publication number
WO2020094709A2
WO2020094709A2 PCT/EP2019/080378 EP2019080378W WO2020094709A2 WO 2020094709 A2 WO2020094709 A2 WO 2020094709A2 EP 2019080378 W EP2019080378 W EP 2019080378W WO 2020094709 A2 WO2020094709 A2 WO 2020094709A2
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
processing
mirror scanner
workpiece
sensor
Prior art date
Application number
PCT/EP2019/080378
Other languages
English (en)
French (fr)
Other versions
WO2020094709A3 (de
Inventor
Martin Stambke
Jan-Patrick Hermani
Thomas Notheis
Alexander Sauter
Original Assignee
Trumpf Laser- Und Systemtechnik Gmbh
Trumpf Laser Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Laser- Und Systemtechnik Gmbh, Trumpf Laser Gmbh filed Critical Trumpf Laser- Und Systemtechnik Gmbh
Priority to KR1020217016223A priority Critical patent/KR20210075193A/ko
Priority to CN201980073763.XA priority patent/CN113015595B/zh
Priority to CA3118012A priority patent/CA3118012A1/en
Priority to US17/292,500 priority patent/US11951564B2/en
Publication of WO2020094709A2 publication Critical patent/WO2020094709A2/de
Publication of WO2020094709A3 publication Critical patent/WO2020094709A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/044Seam tracking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/242Fillet welding, i.e. involving a weld of substantially triangular cross section joining two parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors

Definitions

  • the invention relates to a method for determining translational and / or rotational deviations between the measurement coordinate system of a measurement mirror scanner which can be tilted about two axes and which deflects a measurement beam generated, for example, by a coherence tomograph, and the Machining coordinate system of a machining mirror scanner that can be tilted about two axes, which deflects both the measuring beam deflected by the measuring mirror scanner and a machining beam in two dimensions onto a workpiece, the measuring beam reflected on the workpiece running back the path of the incident measuring beam and being detected by a spatially resolving measuring sensor to determine location-resolving information of the workpiece, and the reflected measurement beam being mapped to a previously known image position in the sensor image of the measurement sensor when the measurement mirror scanner is in a zero position.
  • Such a method has become known, for example, from DE 10 2015 012 565 B3.
  • OCT optical coherence tomography
  • This method is based on the basic principle of the interference of light waves and enables height differences along a measuring beam axis to be recorded in the micrometer range.
  • a laser beam is generated by a coherence tomograph and separated into a measuring beam and a reference beam by means of a beam splitter.
  • the measuring beam is forwarded to a measuring arm and hits a surface of a workpiece to be machined.
  • the measuring beam is at least partially reflected on this surface and returned to the beam splitter.
  • the reference beam is forwarded to a reference arm and reflected at the end of the reference arm.
  • the reflected reference beam is also returned to the beam splitter.
  • the superimposition of the two reflected beams is finally detected in order to determine height information about the surface and / or the current depth of penetration of a machining beam into a workpiece, taking into account the length of the reference arm.
  • Both the processing beam and the measuring beam pass through various optical elements within the processing beam optics before being coupled into a common processing scanner, via which the measuring beam and processing beam can be deflected to different processing positions as well as the measuring beam optics.
  • the elements of the respective optics for the measuring beam and machining beam are set in such a way that when these optical elements and their associated deflection devices are reset to zero, the machining beam and the measuring beam on the workpiece are congruent within these optics.
  • the deflection devices assigned to the measuring beam optics and the machining beam optics i.e.
  • the machining scanner for jointly deflecting the machining beam and measuring beam, as well as an upstream measuring scanner Deflecting the measuring beam can be adjusted accordingly, leaving the original zero position. This leads to undesirable deviations from a target beam path in the machining process, despite previous calibration processes after leaving the zero position, so that there is no longer any congruence between the machining beam and the measuring beam.
  • the reason for these deviations in the relative position between the two scanners can be manufacturing-related inaccuracies, assembly and various influences, such as temperature fluctuations during processing. These deviations must be recorded and corrected.
  • the measuring beam position on the workpiece is determined by taking a long exposure in which the measuring beam position is on the workpiece when the processing and measuring scanners are zeroed in a preceding calibration process
  • Workpiece is highlighted on the workpiece by an optical marker that can be detected by the measuring sensor, and the image position of this optical marking in the sensor image of the measuring sensor is determined and stored.
  • the measuring beam position can, for example, be precisely adjusted to the image center during the calibration process.
  • an offset of the measuring beam position to the image center determined when the position is set to zero can be stored and taken into account as a corresponding error value in further calculation or control processes.
  • a deviation from the image center sets in unwanted relative offset of the processing beam position to the measuring beam position, which offset can be determined using known image evaluation algorithms and is compensated for by position control of the measuring scanner.
  • the reflected measuring beam can be deflected back in the direction of the measuring sensor, so that the actual measuring beam position can be recognized in the recorded sensor image and an offset is also compensated here by position regulation of the measuring scanner.
  • the object of the present invention is to determine translatory and / or rotational deviations between the machining coordinate system of the machining scanner and the measuring coordinate system of the measuring mirror scanner in a different manner in the method mentioned at the outset.
  • the processing beam is exactly aligned with the center of the pinhole and then the pinhole is scanned by means of the measuring beam deflected by the measuring mirror scanner.
  • the relative offset in the sensor image between the previously known image position and the height-determined pinhole center results in the translational deviation of the two scanner coordinate systems, which can then be compensated for, for example, by position control of the measurement scanner.
  • a linear height edge that is to say a three-dimensional one, is provided on the workpiece support plane by means of a line scan Surface feature, and the simultaneous deflection of the measuring and processing mirror scanner about a tilt axis each determines the rotational deviation of the two scanner coordinate systems, which can then be compensated for, for example, by position control of the measuring scanner
  • the processing and measuring mirror scanners can each have a two-axis mirror that can be tilted by two tilting axes, or two single-axis mirrors that can be tilted by one tilting axis.
  • the pinhole detector is particularly preferably arranged on the workpiece support level in the position in which the machining beam strikes the workpiece support level as perpendicularly as possible.
  • the known image position is furthermore preferably located in the image center of the sensor image of the measurement sensor. To do this, the known image position - e.g. during a previous calibration process - have been precisely adjusted to the image center.
  • step (b) the positive and negative fixed amounts are advantageously of the same size.
  • the height edge is very particularly preferably an edge which either has a component arranged on the workpiece support level or has previously been produced on a workpiece arranged on the workpiece support level by material removal by means of the machining beam.
  • the measuring beam reflected on the workpiece is preferably deflected between the measuring mirror scanner and a laser beam generator emitting the measuring beam, in particular a coherence tomograph, in the direction of the measuring sensor.
  • a translational and / or rotational deviation between the machining and the measurement coordinate system determined according to the invention can be corrected accordingly by position control of the measurement scanner, for example by a machine control.
  • the invention also relates to a computer program product which has code means which are adapted to carry out all the steps of the method described above when the program runs on a controller of a laser processing machine.
  • FIG. 1 schematically shows a laser processing machine which is suitable for carrying out the method according to the invention for determining translational and / or rotational deviations between the coordinate systems of a processing mirror scanner and a measuring mirror scanner;
  • Fig. 2a, 2b a pinhole detector arranged on a workpiece support plane for determining an x-y focus position deviation of a machining beam in a perspective view (FIG. 2a) and in a top view (FIG. 2b);
  • FIG. 3 shows the sensor image of a spatially resolving measurement sensor for determining a translational deviation between the machining and the measurement coordinate system
  • Fig. 4a, 4b a flea edge arranged on a workpiece support plane for determining the y-axis of a machining coordinate system (FIG. 4a) and for determining the y-axis of a measuring coordinate system (FIG. 4b); and
  • FIG. 5 shows the sensor image of a spatially resolving measurement sensor for determining a rotational deviation between the machining and the measurement coordinate system.
  • the laser processing machine 1 shown in FIG. 1 is used for processing workpieces 2 by means of a (laser) processing beam 3.
  • the laser processing machine 1 comprises a laser beam generator 4 for generating the processing beam 3, a first deflecting mirror 5 which converts the processing beam 3 e.g. Deflects 90 °, an optional second deflecting mirror 6, which redirects the processing beam 3 e.g. Deflected 90 °, and a machining mirror scanner 7 for two-dimensionally deflecting the machining beam 3 in the direction of a workpiece 2 arranged on a workpiece support plane 8.
  • the machining mirror scanner 7 is designed as a two-axis mirror 9 that can be tilted by two tilting axes A, B , but can alternatively also be formed by two mirrors that can be tilted by only one tilt axis A, B, that is to say uniaxial mirrors.
  • the machining coordinate system defined by the two tilting axes A, B is designated by 10.
  • the laser processing machine 1 further comprises a coherence tomograph as a measuring beam generator 11 for generating an OCT (laser) measuring beam 12, shown in dashed lines, and a measuring mirror scanner 13 for two-dimensionally deflecting the measuring beam 12 onto the first deflecting mirror 5, which is transparent to the measuring beam 12 on both sides.
  • the measuring mirror scanner In the exemplary embodiment shown, 13 is designed as a mirror 14 that can be tilted by two tilt axes C, D, but can alternatively also be formed by two mirrors that can be tilted by only one tilt axis C, D, that is to say uniaxial mirrors.
  • the measurement coordinate system defined by the two tilt axes C, D is designated by 15.
  • the tilt axes A and C run parallel to one another, in the exemplary embodiment shown in the X direction, and the tilt axes B and D run parallel to one another, in the exemplary embodiment shown in the Y direction.
  • FIG. 1 shows both the processing scanner 7 and the measuring scanner 13 in their so-called zero position.
  • the two axes A, B and C, D of the respective scanners 7, 13 each assume a neutral reference position (zero position) shown in FIG. 1, in which they do not effect any targeted beam deflections.
  • the measuring beam 12 is at the first Deflecting mirror 5 is collinearly coupled into the processing beam 3. Both the machining beam 3 and the measuring beam 12 are then deflected two-dimensionally in the direction of the workpiece 2 on the machining mirror scanner 7.
  • the laser processing machine 1 further comprises a deflection mirror 16 which is arranged between the measuring beam generator 11 and the measuring mirror scanner 13 and which is transparent to the measuring beam 12 coming from the measuring beam generator 11.
  • the measuring beam 12 'reflected on the workpiece 2 runs back the path of the incident measuring beam 12 and is deflected by the deflecting mirror 16, which is opaque or partially permeable in this direction, to a measuring sensor 17 which resolves the location.
  • the reflected measuring beam 12 ' is imaged in the sensor image 18 (FIG. 3) of the measuring sensor 17 onto a previously known image position 19, in FIG. 3 only the image center as an example.
  • the procedure for determining a translational deviation between the machining and the measurement coordinate system 10, 15 is as follows:
  • an x-y focus position deviation of the machining beam 3 relative to the center of the pinhole 20 of a pinhole detector 21 arranged on the workpiece support plane 8 is first determined using the method known from DE 10 2011 006 553 A1. This is done by scanning the pinhole 22 with the processing beam 3 deflected by the processing mirror scanner 7 in an x-y grid and by evaluating the laser power detected in each of the grid points 23 by a detector surface 24 arranged downstream of the pinhole 20. The processing mirror scanner 7 is then fixed in the scan position corrected on the basis of the determined x-y focus position deviation, in which the focus position of the processing beam 3 is exactly in the center of the pinhole 18.
  • the processing mirror scanner 7 When the processing mirror scanner 7 is fixed in this way, the height of the pinhole 22 is detected by the measuring sensor 17 in a location-resolving manner by scanning the pinhole 22 with the measuring beam 12 deflected by the measuring mirror scanner 13.
  • the translational deviation Dc, Ay can be determined between the processing and the measurement coordinate system 10, 15.
  • the pinhole detector 21 is preferably arranged on the workpiece support level 8 where the machining beam 3 strikes the workpiece support level 8 at a right angle.
  • a component 25 with a linear height edge 26 is first placed on the workpiece support plane 8, specifically at 27, where in the zero positions of the processing and measurement mirror scanner 7, 13 the measurement beam 12 strikes the workpiece support plane 8 .
  • the height edge 26 can also be formed on the pinhole detector 21.
  • the measuring beam 12 is deflected in each case by a positive and a negative fixed amount + dy, -dy in the workpiece support plane 8 by tilting the machining mirror scanner 7 about the tilt axis A and
  • the processing mirror scanner 7 is fixed in these tilted scan positions
  • the height edge 26 is detected by the measuring sensor 17 by a line scan 28a, 28b of the measuring beam 12 by deflecting the measuring mirror scanner 13 about the tilt axis D.
  • the yßKs axis of the machining coordinate system 10 can then be determined in the sensor image 18 of the measurement sensor 17 using the intersection points 29a, 29b of the two line scans 28a, 28b with the height edge 26 shown there.
  • the measuring beam 12 is deflected in each case by a positive and a negative fixed amount + dy, -dy in the workpiece support plane 8 by tilting the measuring mirror scanner 13 about the tilting axis C and in the latter tilted scan positions of respectively fixed measuring mirror scanners 13 Detect the height edge 26 by means of the measuring sensor 17 in each case by a line scan 30a, 30b of the measuring beam 12 by deflecting the processing mirror scanner 7 around the tilt axis B. As also shown in FIG. 5, the sensor image 18 of the measuring sensor 17 can then use the shown intersection points 31a, 31b of the two line scans 30a, 30b with the height edge 26 the yivisK axis of the measurement coordinate system 15 are determined.
  • a rotational deviation Da between the machining and measuring coordinate system 10, 15 is determined on the basis of the intersection angle of the determined axes yBKs, yMKs of the machining and measuring coordinate system 10, 15.
  • the translational and rotary deviations Dc, Ay, Da determined in this way can be corrected, for example, by a machine control of the laser processing machine 1 by shifting and rotating the measuring mirror scanner 13.
  • the linear height edge 26 can also be generated directly by a laser ablation process on a workpiece 2 located on the workpiece support plane 8, for example parallel to the B, D axes.
  • the processing and measuring mirror scanners 7, 13 can, instead of as a 2D scanner as described above, also be designed as a 3D scanner, so that the respective laser focus also along the processing or measuring beam 3, 12, ie in the Z direction.
  • a collimation lens 32 is arranged in the beam path of the processing beam 3 between the laser beam generator 4 and the processing mirror scanner 7, here only by way of example between the laser beam generator 4 and the first deflecting mirror 5 Machining beam 3 is displaceable.
  • a collimation lens 34 is arranged between the measuring beam generator 11 and the measuring mirror scanner 13, here only by way of example between the deflecting mirror 16 and the measuring mirror scanner 13, which can be displaced along the measuring beam 12 by means of a controlled axis 35.

Abstract

Ein Verfahren zum Bestimmen von translatorischen Abweichungen zwischen dem Messkoordinatensystem (15) eines um zwei Achsen (C, D) verkippbaren Messsiegelscanners (13), der einen Messstrahl (12) zweidimensional ablenkt, und dem Bearbeitungskoordinatensystem (10) eines um zwei Achsen (A, B) verkippbaren Bearbeitungsspiegelscanners (7), der sowohl den vom Messspiegelscanner (13) abgelenkten Messstrahl (12) als auch einen Bearbeitungsstrahl (3) zweidimensional auf ein Werkstück (2) ablenkt, wobei der am Werkstück (2) reflektierte Messstrahl (12') den Pfad des einfallenden Messstrahls (12) zurückläuft und von einem ortsauflösenden Messsensor (17) erfasst wird, um ortsauflösende Infomnationen des Werkstücks (2) zu ermitteln, und wobei in einer Nullstellung des Messspiegelscanners (13) der reflektierte Messstrahl (12') im Sensorbild (18) des Messsensors (17) auf eine vorbekannte Bildposition (19) abgebildet wird, umfasst folgende Verfahrensschritte: - Ermitteln der x-y-Fokuslagenabweichung des Bearbeitungsstrahls (3) relativ zur Lochblendenmitte (20) eines auf der Werkstückauflageebene (8) angeordneten Lochblendendetektors (21) durch Abscannen der Lochblende (22) mit dem vom Bearbeitungsspiegelscanner (7) abgelenkten Bearbeitungsstrahl (3) in einem x-y-Raster und durch Auswerten der in jedem der Rasterpunkte (24) detektierten Laserleistung, sowie Fixieren des Bearbeitungsspiegelscanners (7) in der anhand der ermittelten x-y-Fokuslagenabweichung korrigierten Scanstellung, in der sich die Fokuslage des Bearbeitungsstrahls (3) in einer vorbestimmten Position, insbesondere in der Lochblendenmitte (20), befindet; - bei in der korrigierten Scanstellung fixiertem Bearbeitungsspiegelscanner (7) Erfassen von ortsauflösenden Höheninformationen der Lochblende (22) mittels des Messsensors (17) durch Abscannen der Lochblende (22) mit dem vom Messspiegelscanner (13) abgelenkten Messstrahl (12); und - Bestimmen einer translatorischen Abweichung (Δχ, Ay) zwischen dem Bearbeitungs- und dem Messkoordinatensystem (10, 15) anhand der im Sensorbild (18) des Messsensors (17) vorhandenen Abweichung zwischen der der Fokuslage des Bearbeitungsstrahls (3) entsprechenden vorbekannten Bildposition (19) und der aus den Höheninformationen erfassten Lochblendenmitte (20').

Description

Verfahren und Com puterproq ramm Produkt zur OCT-Messstrahliustierunq
Die Erfindung betrifft ein Verfahren zum Bestimmen von translatorischen und/oder rotatorischen Abweichungen zwischen dem Messkoordinatensystem eines um zwei Achsen verkippbaren Messspiegelscanners, der einen z.B. von einem Kohä- renztomographen erzeugten Messstrahl zweidimensional ablenkt, und dem Bearbeitungskoordinatensystem eines um zwei Achsen verkippbaren Bearbei- tungsspiegelscanners, der sowohl den vom Messspiegelscanner abgelenkten Messstrahl als auch einen Bearbeitungsstrahl zweidimensional auf ein Werkstück ablenkt, wobei der am Werkstück reflektierte Messstrahl den Pfad des einfallen- den Messstrahls zurückläuft und von einem ortauflösenden Messsensor erfasst wird, um ortauflösende Informationen des Werkstücks zu ermitteln, und wobei in einer Nullstellung des Messspiegelscanners der reflektierte Messstrahl im Sensor- bild des Messsensors auf eine vorbekannte Bildposition abgebildet wird.
Ein derartiges Verfahren ist beispielsweise durch die DE 10 2015 012 565 B3 be- kannt geworden.
Beispielsweise zum Schweißen von Kehlnähten ist es erforderlich, die Relativposi- tion zwischen Laserbrennfleck und Werkstück zu regeln. Diese Nahtlageregelung kann mittels der sogenannten optischen Kohärenztomographie (engl.: Optical Co- herence Tomography, OCT) erfolgen. Dieses Verfahren basiert auf dem Grund- prinzip der Interferenz von Lichtwellen und ermöglicht es, Höhenunterschiede ent- lang einer Messstrahlachse im Mikrometerbereich zu erfassen. Dazu wird von ei- nem Kohärenztomographen ein Laserstrahl erzeugt und mittels eines Strahlteilers in einen Messstrahl und einen Referenzstrahl aufgetrennt. Der Messstrahl wird an einen Messarm weitergeleitet und trifft auf eine Oberfläche eines zu bearbeitenden Werkstücks. An dieser Oberfläche wird der Messstrahl zumindest teilweise reflek- tiert und an den Strahlteiler zurückgeführt. Der Referenzstrahl wird an einen Refe- renzarm weitergeleitet und am Ende des Referenzarms reflektiert. Der reflektierte Referenzstrahl wird ebenfalls an den Strahlteiler zurückgeführt. Die Überlagerung der beiden reflektierten Strahlen wird schließlich detektiert, um unter Berücksichti- gung der Länge des Referenzarms Höheninformationen über die Oberfläche und/oder die aktuelle Eindringtiefe eines Bearbeitungsstrahls in ein Werkstück zu ermitteln.
Sowohl der Bearbeitungsstrahl als auch der Messstrahl durchlaufen vor einer Ein- kopplung in einen gemeinsamen Bearbeitungsscanner, über den eine Auslenkung von Messstrahl und Bearbeitungsstrahl auf verschiedene Bearbeitungspositionen erfolgen kann, diverse optische Elemente innerhalb der Bearbeitungsstrahloptik sowie der Messstrahloptik. Typischerweise werden zwar in einem anfänglichen Kalibriervorgang die Elemente der jeweiligen Optiken für Messstrahl und Bearbei- tungsstrahl derart eingestellt, dass bei einer vorgegebenen Nullstellung dieser op- tischen Elemente und deren zugeordneten Ablenkvorrichtungen innerhalb dieser Optiken eine Deckungsgleichheit des Bearbeitungsstrahls und des Messstrahls auf dem Werkstück vorliegt. Wird dann aber nach dem Kalibriervorgang während des Bearbeitungsprozesses ein gewünschter Soll-Versatz von Messstrahlposition und Bearbeitungsposition eingestellt, so müssen die der Messstrahloptik und der Bearbeitungsstrahloptik zugeordneten Ablenkvorrichtungen, also der Bearbei- tungsscanner zum gemeinsamen Ablenken von Bearbeitungsstrahl und Mess- strahl sowie ein vorgeordneter Messscanner zum Ablenken des Messstrahls, ent- sprechend verstellt werden, wobei sie die ursprüngliche Nullstellung verlassen. Dies führt dazu, dass sich im Bearbeitungsprozess trotz vorangehender Kalibrier- vorgänge nach Verlassen der Nullstellung unerwünschte Abweichungen von ei- nem Soll-Strahlenverlauf ergeben, sodass keine Deckungsgleichheit mehr zwi- schen dem Bearbeitungsstrahl und dem Messstrahl vorliegt. Ursache für diese Ab- weichungen in der Relativposition zwischen beiden Scannern können fertigungs- bedingte Ungenauigkeiten, Montage und verschiedene Einflüsse, wie z.B. Tempe- raturschwankungen während der Bearbeitung, sein. Diese Abweichungen müssen erfasst und korrigiert werden.
Bei dem aus der eingangs genannten DE 10 2015 012 565 B3 bekannten Verfah- ren wird die Messstrahlposition auf dem Werkstück bei Einnahme der Nullstellun- gen der Bearbeitungs- und Messscanner in einem vorangehenden Kalibrierungs- verfahren durch eine Langzeitbelichtung ermittelt, bei der die Messstrahlposition auf dem Werkstück durch einen vom Messsensor erfassbaren optischen Marker auf dem Werkstück hervorgehoben und die Bildposition dieser optischen Markie- rung im Sensorbild des Messsensors bestimmt und gespeichert wird. Die Mess- strahlposition kann während des Kalibrierungsvorgangs beispielsweise exakt auf das Bildzentrum justiert werden. Alternativ kann ein bei der Nullstellung ermittelter Versatz der Messstrahlposition zum Bildzentrum hinterlegt und bei weiteren Be- rechnungs- oder Regelungsvorgängen als entsprechender Fehlerwert berücksich- tigt werden. Wird in der Folge die Bearbeitungsstrahlposition auf dem Werkstück koordinatenmäßig erfasst, so stellt eine Abweichung vom Bildzentrum einen unerwünschten Relativversatz der Bearbeitungsstrahlposition zu der Messstrahl- position dar, wobei dieser Versatz über bekannte Bildauswertalgorithmen ermittel- bar ist und durch eine Positionsregelung des Messscanners ausgeglichen wird. Al ternativ zum Kalibrierungsverfahren kann der reflektierte Messstrahl zurück in Richtung des Messsensors umgelenkt werden, sodass die tatsächliche Mess- strahlposition in dem erfassten Sensorbild erkennbar ist und auch hier ein Versatz durch eine Positionsregelung des Messscanners ausgeglichen wird.
Der vorliegenden Erfindung stellt sich die Aufgabe, bei dem eingangs genannten Verfahren translatorische und/oder rotatorische Abweichungen zwischen dem Be- arbeitungskoordinatensystem des Bearbeitungsscanners und dem Messkoordina- tensystem des Messspiegelscanners auf andere Art und Weise zu bestimmen.
Die Aufgabe wird bei dem eingangs genannten Verfahren erfindungsgemäß bzgl. einer translatorischen Abweichung durch folgende Verfahrensschritte (a) gelöst:
- Ermitteln der x-y-Fokuslagenabweichung des Bearbeitungsstrahls relativ zur Lochblendenmitte eines auf der Werkstückauflageebene angeordneten Loch- blendendetektors durch Abscannen der Lochblende mit dem vom Bearbeitungs- spiegelscanner abgelenkten Bearbeitungsstrahl in einem x-y-Raster und durch Auswerten der in jedem der Rasterpunkte detektierten Laserleistung gemäß dem in der DE 10 2011 006 553 A1 geschildeten Verfahrens, dessen gesamter Inhalt hiermit durch Bezugnahme einbezogen wird, sowie Fixieren des Bearbei- tungsspiegelscanners in der anhand der ermittelten x-y-Fokuslagenabweichung korrigierten Scanstellung, in der sich die Fokuslage des Bearbeitungsstrahls in einer vorbestimmten Position, insbesondere in der Lochblendenmitte, befindet;
- bei in der korrigierten Scanstellung fixiertem Bearbeitungsspiegelscanner Erfas- sen von ortsauflösenden Höheninformationen der Lochblende mittels des Mess- sensors durch Abscannen der Lochblende mit dem vom Messspiegelscanner abgelenkten Messstrahl; und
- Bestimmen einer translatorischen Abweichung zwischen dem Bearbeitungs- und dem Messkoordinatensystem anhand der im Sensorbild des Messsensors vorhandenen Abweichung zwischen der der Fokuslage des Bearbeitungsstrahls entsprechenden vorbekannten Bildposition und der aus den Höheninformatio- nen erfassten Lochblendenmitte. Erfindungsgemäß wird der Bearbeitungsstrahl exakt auf die Lochblendenmitte ausgerichtet und anschließend die Lochblende mittels des vom Messspiegelscan- ner abgelenkten Messstrahls abgescannt. Der Relativversatz im Sensorbild zwi- schen der vorbekannten Bildposition und der höhenmäßig erfassten Lochblenden- mitte ergibt die translatorische Abweichung der beiden Scannerkoordinatensys- teme, die dann beispielsweise durch eine Positionsregelung des Messscanners ausgeglichen werden kann.
Die Aufgabe wird bei dem eingangs genannten Verfahren erfindungsgemäß bzgl. einer rotatorischen Abweichung durch folgende Verfahrensschritte (b) gelöst:
- Ablenken des Messstrahls jeweils um einen positiven und einen negativen Fest- betrag in der Werkstückauflageebene durch Verkippen des Bearbeitungsspie- gelscanners um seine eine, erste Kippachse und bei in diesen verkippten Scan- stellungen jeweils fixiertem Bearbeitungsspiegelscanner Erfassen einer an der Werkstückauflageebene angeordneten linearen Höhenkante mittels des Mess- sensors jeweils durch einen Linienscan des Messstrahls durch Auslenken des Messspiegelscanners um seine eine, zweite Kippachse, sowie Ermitteln einer Achse des Bearbeitungskoordinatensystems anhand der erfassten Schnitt- punkte der beiden Linienscans mit der Höhenkante;
- Ablenken des Messstrahls jeweils um einen positiven und einen negativen Fest- betrag in der Werkstückauflageebene durch Verkippen des Messspiegelscan- ners um seine andere, erste Kippachse und bei in diesen verkippten Scanstel- lungen jeweils fixiertem Messspiegelscanner Erfassen der Höhenkante mittels des Messsensors jeweils durch einen Linienscan des Messstrahls durch Aus- lenken des Bearbeitungsspiegelscanners um seine zweite Kippachse, sowie Er- mitteln einer Achse des Messkoordinatensystems anhand der erfassten Schnitt- punkte der beiden Linienscans mit der Höhenkante; und
- Bestimmen einer rotatorischen Abweichung zwischen dem Bearbeitungs- und dem Messkoordinatensystem anhand der ermittelten Achsen des Bearbeitungs- und des Messkoordinatensystems.
Erfindungsgemäß wird durch einen Linienscan einer auf der Werkstückauflage- ebene vorgesehenen linearen Höhenkante, also eines dreidimensionalen Oberflächenmerkmals, und der gleichzeitigen Auslenkung des Mess- und des Be- arbeitungsspiegelscanners jeweils um eine Kippachse die rotatorische Abwei- chung der beiden Scannerkoordinatensysteme bestimmt, die dann beispielsweise durch eine Positionsregelung des Messscanners ausgeglichen werden kann
Der Bearbeitungs- und der Messspiegelscanner können jeweils einen um zwei Kippachsen verkippbaren, zweiachsigen Spiegel oder zwei jeweils um eine Kipp- achse verkippbare, einachsige Spiegel aufweisen.
Besonders bevorzugt wird im Verfahrensschritt (a) der Lochblendendetektor auf der Werkstückauflageebene in derjenigen Position angeordnet, in der der Bearbei- tungsstrahl möglichst rechtwinklig auf die Werkstückauflageebene auftrifft.
Weiterhin bevorzugt liegt im Verfahrensschritt (a) die vorbekannte Bildposition im Bildzentrum des Sensorbilds des Messsensors. Dazu kann die vorbekannte Bild- position - z.B. während eines vorangegangenen Kalibrierungsvorgangs - exakt auf das Bildzentrum justiert worden sein.
Vorteilhaft sind im Verfahrensschritt (b) der positive und der negative Festbetrag jeweils gleich groß.
Ganz besonders bevorzugt ist im Verfahrensschritt (b) die Höhenkante eine Kante, die entweder ein auf der Werkstückauflageebene angeordnetes Bauteil aufweist oder zuvor an einem auf der Werkstückauflageebene angeordneten Werkstück durch Materialabtragen mittels des Bearbeitungsstrahls erzeugt worden ist.
Vorzugsweise wird der am Werkstück reflektierte Messstrahl zwischen dem Mess- spiegelscanner und einem den Messstrahl aussendenden Laserstrahlerzeuger, insbesondere Kohärenztomograph, in Richtung auf den Messsensor abgelenkt.
Eine erfindungsgemäß bestimmte translatorische und/oder rotatorische Abwei- chung zwischen dem Bearbeitungs- und dem Messkoordinatensystem kann durch eine Positionsregelung des Messscanners, z.B. von einer Maschinensteuerung, entsprechend korrigiert werden. Die Erfindung betrifft auch ein Computerprogrammprodukt, welches Codemittel aufweist, die zum Durchführen aller Schritte des oben beschriebenen Verfahrens angepasst sind, wenn das Programm auf einer Steuerung einer Laserbearbei- tungsmaschine abläuft.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstands der Erfindung ergeben sich aus der Beschreibung, den Ansprüchen und den Zeichnungen.
Ebenso können die vorstehend genannten und die noch weiter aufgeführten Merk- male je für sich oder zu mehreren in beliebigen Kombinationen Verwendung fin den . Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschlie- ßende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung. Es zeigen:
Fig. 1 schematisch eine Laserbearbeitungsmaschine, die zum Durchführen des erfindungsgemäßen Verfahrens zur Bestimmung von translatori- schen und/oder rotatorischen Abweichungen zwischen den Koordi- natensystemen eines Bearbeitungsspiegelscanners und eines Mess- spiegelscanners geeignet ist;
Fign. 2a, 2b einen auf einer Werkstückauflageebene angeordneten Lochblenden- detektor zum Ermitteln einer x-y-Fokuslagenabweichung eines Bear- beitungsstrahls in einer perspektivischen Ansicht (Fig. 2a) und in ei- ner Draufsicht (Fig. 2b);
Fig. 3 das Sensorbild eines ortsauflösenden Messsensors zur Bestimmung einer translatorischen Abweichung zwischen dem Bearbeitungs- und dem Messkoordinatensystem;
Fign. 4a, 4b eine auf einer Werkstückauflageebene angeordnete Flöhenkante zum Ermitteln der y-Achse eines Bearbeitungskoordinatensystems (Fig. 4a) und zum Ermitteln der y-Achse eines Messkoordinatensys- tems (Fig. 4b); und
Fig. 5 das Sensorbild eines ortsauflösenden Messsensors zur Bestimmung einer rotatorischen Abweichung zwischen dem Bearbeitungs- und dem Messkoordinatensystem. Die in Fig. 1 gezeigte Laserbearbeitungsmaschine 1 dient zur Bearbeitung von Werkstücken 2 mittels eines (Laser)Bearbeitungsstrahls 3.
Die Laserbearbeitungsmaschine 1 umfasst einen Laserstrahlerzeuger 4 zum Er- zeugen des Bearbeitungsstrahls 3, einen ersten Umlenkspiegel 5, der den Bear- beitungsstrahl 3 um z.B. 90° umlenkt, einen optionalen zweiten Umlenkspiegel 6, der den Bearbeitungsstrahl 3 erneut um z.B. 90° umlenkt, sowie einen Bearbei- tungsspiegelscanner 7 zum zweidimensionalen Ablenken des Bearbeitungsstrahls 3 in Richtung auf ein auf einer Werkstückauflageebene 8 angeordnetes Werkstück 2. Der Bearbeitungsspiegelscanner 7 ist im gezeigten Ausführungsbeispiel als ein um zwei Kippachsen A, B verkippbarer, also zweiachsiger Spiegel 9 ausgeführt, aber kann alternativ auch durch zwei jeweils um nur eine Kippachse A, B verkipp- bare, also einachsige Spiegel gebildet sein. Das von den beiden Kippachsen A, B definierte Bearbeitungskoordinatensystem ist mit 10 bezeichnet.
Die Laserbearbeitungsmaschine 1 umfasst weiterhin einen Kohärenztomographen als Messstrahlerzeuger 11 zum Erzeugen eines gestrichelt dargestellten OCT- (Laser)Messstrahls 12 sowie einen Messspiegelscanner 13 zum zweidimensiona- len Ablenken des Messstrahls 12 auf den für den Messstrahl 12 beidseitig durch- lässigen ersten Umlenkspiegel 5. Der Messspiegelscanner 13 ist im gezeigten Ausführungsbeispiel als ein um zwei Kippachsen C, D verkippbarer, also zweiach- siger Spiegel 14 ausgeführt, aber kann alternativ auch durch zwei jeweils um nur eine Kippachse C, D verkippbare, also einachsige Spiegel gebildet sein. Das von den beiden Kippachsen C, D definierte Messkoordinatensystem ist mit 15 bezeich- net. Die Kippachsen A und C verlaufen parallel zueinander, im gezeigten Ausfüh- rungsbeispiel in der X-Richtung, und die Kippachsen B und D verlaufen parallel zueinander, im gezeigten Ausführungsbeispiel in der Y-Richtung.
In Fig. 1 sind sowohl der Bearbeitungsscanner 7 als auch der Messscanner 13 in ihrer sogenannten Nullstellung gezeigt. Das heißt, die beiden Achsen A, B und C, D der jeweiligen Scanner 7, 13 nehmen jeweils eine in Fig. 1 gezeigte neutrale Referenzstellung (Nulllage) ein, in der sie keine gezielten Strahlauslenkungen be- wirken. In der Nulllage des Messscanners 13 wird der Messstrahl 12 am ersten Umlenkspiegel 5 kollinear in den Bearbeitungsstrahl 3 eingekoppelt. Am Bearbei- tungsspiegelscanner 7 werden dann sowohl der Bearbeitungsstrahl 3 als auch der Messstrahl 12 zweidimensional in Richtung auf das Werkstück 2 abgelenkt.
Die Laserbearbeitungsmaschine 1 umfasst ferner einen zwischen Messstrahler- zeuger 11 und Messspiegelscanner 13 angeordneten Umlenkspiegel 16, der für den vom Messstrahlerzeuger 11 kommenden Messstrahl 12 durchlässig ist. Der am Werkstück 2 reflektierte Messstrahl 12‘ läuft den Pfad des einfallenden Mess- strahls 12 zurück und wird von dem in dieser Richtung undurchlässigen oder teil- durchlässigen Umlenkspiegel 16 auf einen ortauflösenden Messsensor 17 umge- lenkt. In der Nullstellung des Messspiegelscanners 13 wird der reflektierte Mess- strahl 12‘ im Sensorbild 18 (Fig. 3) des Messsensors 17 auf eine vorbekannte Bild- position 19, in Fig. 3 lediglich beispielhaft die Bildmitte, abgebildet.
Zur Bestimmung einer translatorischen Abweichung zwischen dem Bearbeitungs- und dem Messkoordinatensystem 10, 15 wird wie folgt vorgegangen:
Wie in Fig. 2a, 2b gezeigt, wird zunächst nach dem aus DE 10 2011 006 553 A1 bekannten Verfahren eine x-y-Fokuslagenabweichung des Bearbeitungsstrahls 3 relativ zur Lochblendenmitte 20 eines auf der Werkstückauflageebene 8 angeord- neten Lochblendendetektors 21 ermittelt. Dies erfolgt durch Abscannen der Loch- blende 22 mit dem vom Bearbeitungsspiegelscanner 7 abgelenkten Bearbeitungs- strahl 3 in einem x-y-Raster und durch Auswerten der in jedem der Rasterpunkte 23 von einer der Lochblende 20 nachgeordneten Detektorfläche 24 detektierten Laserleistung. Der Bearbeitungsspiegelscanner 7 wird dann in der anhand der er- mittelten x-y-Fokuslagenabweichung korrigierten Scanstellung fixiert, in der sich die Fokuslage des Bearbeitungsstrahls 3 exakt in der Lochblendenmitte 18 befin- det.
Bei so fixiertem Bearbeitungsspiegelscanner 7 wird durch Abscannen der Loch- blende 22 mit dem vom Messspiegelscanner 13 abgelenkten Messstrahl 12 die Höhe der Lochblende 22 mittels des Messsensors 17 ortsauflösend erfasst.
Wie in Fig. 3 gezeigt, kann anhand der im Sensorbild 18 des Messsensors 17 vor- handenen Abweichung zwischen der der Fokuslage des Bearbeitungsstrahls 3 entsprechenden vorbekannten Bildposition 19 und der Lochblendenmitte 20’ der höhenmäßig erfassten Lochblende 22‘ eine translatorische Abweichung Dc, Ay zwischen dem Bearbeitungs- und dem Messkoordinatensystem 10, 15 bestimmt werden.
Vorzugsweise wird der Lochblendendetektor 21 auf der Werkstückauflageebene 8 dort angeordnet, wo der Bearbeitungsstrahl 3 möglichst rechtwinklig auf die Werk- stückauflageebene 8 auftrifft.
Zur Bestimmung einer rotatorischen Abweichung um die Z-Achse zwischen dem Bearbeitungs- und dem Messkoordinatensystem 10, 15 wird wie folgt vorgegan- gen:
Wie in Fig. 4a gezeigt, wird zunächst ein Bauteil 25 mit einer linearen Höhenkante 26 auf der Werkstückauflageebene 8 aufgelegt, und zwar bei 27, wo in den Nullla gen des Bearbeitungs- und des Messspiegelscanners 7, 13 der Messstrahl 12 auf die Werkstückauflageebene 8 auftrifft. Statt an einem separaten Bauteil 25 kann die Höhenkante 26 auch an dem Lochblendendetektor 21 ausgebildet sein.
In einem ersten Schritt wird, wie in Fig. 4a weiter gezeigt ist, der Messstrahl 12 je- weils um einen positiven und einen negativen Festbetrag +dy, -dy in der Werk- stückauflageebene 8 durch Verkippen des Bearbeitungsspiegelscanners 7 um die Kippachse A abgelenkt und bei in diesen verkippten Scanstellungen jeweils fixier tem Bearbeitungsspiegelscanner 7 die Höhenkante 26 mittels des Messsensors 17 jeweils durch einen Linienscan 28a, 28b des Messstrahls 12 durch Auslenken des Messspiegelscanners 13 um die Kippachse D erfasst. Wie in Fig. 5 gezeigt, kann dann im Sensorbild 18 des Messsensors 17 anhand der dort abgebildeten Schnittpunkte 29a, 29b der beiden Linienscans 28a, 28b mit der Höhenkante 26 die yßKs-Achse des Bearbeitungskoordinatensystems 10 ermittelt werden.
In einem zweiten Schritt wird, wie in Fig. 4b gezeigt ist, der Messstrahl 12 jeweils um einen positiven und einen negativen Festbetrag +dy, -dy in der Werkstückauf- lageebene 8 durch Verkippen des Messspiegelscanners 13 um die Kippachse C abgelenkt und bei in diesen verkippten Scanstellungen jeweils fixiertem Messspie- gelscanner 13 Erfassen die Höhenkante 26 mittels des Messsensors 17 jeweils durch einen Linienscan 30a, 30b des Messstrahls 12 durch Auslenken des Bear- beitungsspiegelscanners 7 um die Kippachse B erfasst. Wie ebenfalls in Fig. 5 ge- zeigt, kann dann im Sensorbild 18 des Messsensors 17 anhand der dort abgebildeten Schnittpunkte 31a, 31b der beiden Linienscans 30a, 30b mit der Hö- henkante 26 die yivisK-Achse des Messkoordinatensystems 15 ermittelt werden.
In einem dritten Schritt wird, wie in Fig. 5 gezeigt, eine rotatorische Abweichung Da zwischen dem Bearbeitungs- und dem Messkoordinatensystem 10, 15 anhand des Schnittwinkels der ermittelten Achsen yBKs, yMKs des Bearbeitungs- und des Messkoordinatensystems 10, 15 bestimmt.
Die so bestimmten translatorischen und rotatorischen Abweichungen Dc, Ay, Da können beispielsweise von einer Maschinensteuerung der Laserbearbeitungsma- schine 1 durch eine Verschiebung und Verdrehung des Messspiegelscanners 13 korrigiert werden.
Statt die Höhenkante 26 am Bauteil 25 oder am Lochblendendetektor 21 vorzuse- hen, kann die lineare Höhenkante 26 auch direkt durch einen Laserabtragprozess an einem auf der Werkstückauflageebene 8 befindlichen Werkstück 2 generiert werden, beispielsweise parallel zu den B, D-Achsen.
Der Bearbeitungs- und der Messspiegelscanner 7, 13 können, statt wie oben be- schrieben als 2D-Scanner, auch als 3D-Scanner ausgeführt sein, so dass der je- weilige Laserfokus auch entlang des Bearbeitungs- bzw. Messstrahls 3, 12, also in Z-Richtung, verstellt werden kann. Dazu ist im Strahlengang des Bearbeitungs- strahls 3 zwischen dem Laserstrahlerzeuger 4 und dem Bearbeitungsspiegelscan- ner 7, hier lediglich beispielhaft zwischen dem Laserstrahlerzeuger 4 und dem ers- ten Umlenkspiegel 5, eine Kollimationslinse 32 angeordnet, die mittels einer ge- steuerten Achse 33 entlang des Bearbeitungsstrahls 3 verschiebbar ist. Im Strah- lengang des Messstrahls 12 ist zwischen dem Messstrahlerzeuger 11 und dem Messspiegelscanner 13, hier lediglich beispielhaft zwischen dem Umlenkspiegel 16 und dem Messspiegelscanner 13, eine Kollimationslinse 34 angeordnet, die mittels einer gesteuerten Achse 35 entlang des Messstrahls 12 verschiebbar ist.

Claims

Patentansprüche
1. Verfahren zum Bestimmen von translatorischen und/oder rotatorischen Abweichungen zwischen dem Messkoordinatensystem (15) eines um zwei Achsen (C, D) verkippbaren Messspiegelscanners (13), der einen Mess- strahl (12) zweidimensional ablenkt, und dem Bearbeitungskoordinaten- system (10) eines um zwei Achsen (A, B) verkippbaren Bearbeitungsspie- gelscanners (7), der sowohl den vom Messspiegelscanner (13) abgelenk- ten Messstrahl (12) als auch einen Bearbeitungsstrahl (3) zweidimensional auf ein Werkstück (2) ablenkt, wobei der am Werkstück (2) reflektierte Messstrahl (12‘) den Pfad des einfallenden Messstrahls (12) zurückläuft und von einem ortsauflösenden Messsensor (17) erfasst wird, um ortsauf- lösende Informationen des Werkstücks (2) zu ermitteln, und wobei in einer Nullstellung des Messspiegelscanners (13) der reflektierte Messstrahl (12‘) im Sensorbild (18) des Messsensors (17) auf eine vorbekannte Bild- position (19) abgebildet wird, gekennzeichnet durch folgende Verfahrens- schritte:
(a) - Ermitteln der x-y-Fokuslagenabweichung des Bearbeitungsstrahls (3) relativ zur Lochblendenmitte (20) eines auf der Werkstückauflage- ebene (8) angeordneten Lochblendendetektors (21 ) durch Abscan- nen der Lochblende (22) mit dem vom Bearbeitungsspiegelscanner (7) abgelenkten Bearbeitungsstrahl (3) in einem x-y-Raster und durch Auswerten der in jedem der Rasterpunkte (24) detektierten La- serleistung, sowie Fixieren des Bearbeitungsspiegelscanners (7) in der anhand der ermittelten x-y-Fokuslagenabweichung korrigierten Scanstellung, in der sich die Fokuslage des Bearbeitungsstrahls (3) in einer vorbestimmten Position, insbesondere in der Lochblenden- mitte (20), befindet;
- bei in der korrigierten Scanstellung fixiertem Bearbeitungsspiegel- scanner (7) Erfassen von ortsauflösenden Höheninformationen der Lochblende (22) mittels des Messsensors (17) durch Abscannen der Lochblende (22) mit dem vom Messspiegelscanner (13) abgelenkten Messstrahl (12); und
- Bestimmen einer translatorischen Abweichung (Dc, Ay) zwischen dem Bearbeitungs- und dem Messkoordinatensystem (10, 15) an- hand der im Sensorbild (18) des Messsensors (17) vorhandenen Ab- weichung zwischen der der Fokuslage des Bearbeitungsstrahls (3) entsprechenden vorbekannten Bildposition (19) und der aus den Hö- heninformationen erfassten Lochblendenmitte (20‘);
und/oder
(b) - Ablenken des Messstrahls (12) jeweils um einen positiven und einen negativen Festbetrag (+dy, -dy) in der Werkstückauflageebene (8) durch Verkippen des Bearbeitungsspiegelscanners (7) um seine eine, erste Kippachse (A) und bei in diesen verkippten Scanstellun- gen jeweils fixiertem Bearbeitungsspiegelscanner (7) Erfassen einer an der Werkstückauflageebene (8) angeordneten linearen Höhen- kante (26) mittels des Messsensors (17) jeweils durch einen Linien- scan (28a, 28b) des Messstrahls (12) durch Auslenken des Mess- spiegelscanners (13) um seine eine, zweite Kippachse (D), sowie Er- mitteln einer Achse (yBKs) des Bearbeitungskoordinatensystems (10) anhand der erfassten Schnittpunkte (29a, 29b) der beiden Linien- scans (28a, 28b) mit der Höhenkante (26);
- Ablenken des Messstrahls (12) jeweils um einen positiven und einen negativen Festbetrag (+dy, -dy) in der Werkstückauflageebene (8) durch Verkippen des Messspiegelscanners (13) um seine andere, erste Kippachse (C) und bei in diesen verkippten Scanstellungen je- weils fixiertem Messspiegelscanner (13) Erfassen der Höhenkante (26) mittels des Messsensors (17) jeweils durch einen Linienscan (30a, 30b) des Messstrahls (12) durch Auslenken des Bearbeitungs- spiegelscanners (7) um seine zweite Kippachse (B), sowie Ermitteln einer Achse (yMKs) des Messkoordinatensystems (15) anhand der er- fassten Schnittpunkte (31 a, 31 b) der beiden Linienscans (30a, 30b) mit der Höhenkante (26); und - Bestimmen einer rotatorischen Abweichung (Da) zwischen dem Be- arbeitungs- und dem Messkoordinatensystem (10, 15) anhand der ermittelten Achsen (YBKS, YMKS) des Bearbeitungs- und des Messko- ordinatensystems (10, 15).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Bearbei- tungsspiegelscanner (7) und der Messspiegelscanner (13) jeweils einen um zwei Kippachsen (A, B; C, D) verkippbaren Spiegel (9; 14) oder zwei jeweils um eine Kippachse verkippbare Spiegel aufweisen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Ver- fahrensschritt (a) der Lochblendendetektor (21 ) auf der Werkstückauflage- ebene (8) dort angeordnet wird, wo der Bearbeitungsstrahl (3) rechtwinklig auf die Werkstückauflageebene (8) auftrifft.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass im Verfahrensschritt (a) die vorbekannte Bildposition (19) im Bildzentrum des Sensorbildes (18) liegt.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass im Verfahrensschritt (b) der positive und der negative Fest- betrag jeweils gleich groß sind.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass vor dem Verfahrensschritt (b) ein Bauteil (25), das die Hö- henkante (26) aufweist, auf der Werkstückauflageebene (8) angeordnet wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass vor dem Verfahrensschritt (b) die Höhenkante (26) an einem auf der Werkstückauflageebene (8) angeordnetem Werkstück (2) durch Material- abtragen mittels des Bearbeitungsstrahls (3) erzeugt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass im Verfahrensschritt (b) der am Werkstück (2) reflektierte Messstrahl (12‘) zwischen dem Messspiegelscanner (13) und einem den Messstrahl (12) aussendenden Laserstrahlerzeuger (11 ), insbesondere Kohärenztomograph, in Richtung auf den Messsensor (17) abgelenkt wird
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass die bestimmte translatorische und/oder rotatorische Abwei- chung (Dc, Ay, Da) durch eine Positionsregelung des Bearbeitungsspie- gelscanners (7) und/oder des Messspiegelscanners (13) ausgeglichen wird.
10. Computerprogrammprodukt, welches Codemittel aufweist, die zum Durch- führen aller Schritte des Verfahrens nach einem der vorhergehenden An- sprüche angepasst sind, wenn das Programm auf einer Steuerung einer Laserbearbeitungsmaschine (1 ) abläuft.
PCT/EP2019/080378 2018-11-09 2019-11-06 Verfahren und computerprogrammprodukt zur oct-messstrahljustierung WO2020094709A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217016223A KR20210075193A (ko) 2018-11-09 2019-11-06 Oct 측정 빔 조정을 위한 방법 및 컴퓨터 프로그램 제품
CN201980073763.XA CN113015595B (zh) 2018-11-09 2019-11-06 用于oct测量射束调整的方法和计算机程序产品
CA3118012A CA3118012A1 (en) 2018-11-09 2019-11-06 Method and computer program product for oct measurement beam adjustment
US17/292,500 US11951564B2 (en) 2018-11-09 2019-11-06 Method and computer program product for OCT measurement beam adjustment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018219129.8 2018-11-09
DE102018219129.8A DE102018219129B3 (de) 2018-11-09 2018-11-09 Verfahren und Computerprogrammprodukt zur OCT-Messstrahljustierung

Publications (2)

Publication Number Publication Date
WO2020094709A2 true WO2020094709A2 (de) 2020-05-14
WO2020094709A3 WO2020094709A3 (de) 2020-07-02

Family

ID=68276663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/080378 WO2020094709A2 (de) 2018-11-09 2019-11-06 Verfahren und computerprogrammprodukt zur oct-messstrahljustierung

Country Status (6)

Country Link
US (1) US11951564B2 (de)
KR (1) KR20210075193A (de)
CN (1) CN113015595B (de)
CA (1) CA3118012A1 (de)
DE (1) DE102018219129B3 (de)
WO (1) WO2020094709A2 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7262081B2 (ja) * 2019-08-29 2023-04-21 パナソニックIpマネジメント株式会社 レーザ加工装置および光学調整方法
CN111266684B (zh) * 2020-03-11 2022-07-29 华工法利莱切焊系统工程有限公司 激光填丝焊光丝对中监控方法、光丝对中监控装置及激光填丝焊装置
CN112230426A (zh) * 2020-09-28 2021-01-15 鹏城实验室 一种基于共聚焦成像的焊接熔池成像装置及方法
DE102020212847A1 (de) 2020-10-12 2022-04-14 Trumpf Laser Gmbh Kalibriervorrichtung, Bearbeitungssystem und Kalibrierverfahren
WO2022117207A1 (de) 2020-12-04 2022-06-09 Lessmueller Lasertechnik Gmbh Verfahren, vorrichtung und bearbeitungssystem zum überwachen eines bearbeitungsprozesses eines werkstücks mittels eines hochenergetischen bearbeitungsstrahls
DE102021116362A1 (de) 2021-06-24 2022-12-29 Blackbird Robotersysteme Gmbh Verfahren zum Betreiben einer Laserbearbeitungsvorrichtung zur Materialbearbeitung
DE102022116153A1 (de) 2022-06-29 2024-01-04 Trumpf Laser Gmbh Verfahren zur Korrektur von optischen Weglängenmessfehlern eines Mess-Scanners an einer Laserbearbeitungsoptik
WO2024010429A1 (ko) * 2022-07-08 2024-01-11 주식회사 엘지에너지솔루션 용접 장치
DE102022120834A1 (de) * 2022-08-18 2024-02-29 Trumpf Laser Gmbh Verfahren zur Kalibrierung eines Mess-Scanners an einer Laserbearbeitungsoptik
CN115815821B (zh) * 2022-12-08 2023-08-11 深圳铭创智能装备有限公司 激光加工连续图形的装置与方法及电子器件蚀刻装置与方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011006553A1 (de) 2011-03-31 2012-10-04 Trumpf Laser Gmbh + Co. Kg Verfahren zum Ermitteln der Fokuslage eines Laserstrahls in seinem Arbeitsfeld oder Arbeitsraum
DE102015012565B3 (de) 2015-09-25 2016-10-27 Lessmüller Lasertechnik GmbH Vorrichtung und Verfahren zur Erhöhung der Genauigkeit eines OCT-Messsystems für die Lasermaterialbearbeitung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521374A (en) * 1994-09-07 1996-05-28 Lumonics Corporation Focused laser beam measurement system and method of beam location
ATE188915T1 (de) 1995-10-19 2000-02-15 Sycolor Consulting Ag Farbmesser für eine farbkastenwalze einer druckmaschine
JP2008196980A (ja) * 2007-02-13 2008-08-28 Sumitomo Heavy Ind Ltd 照射位置検出装置及びその位置検出方法
EP2156918B1 (de) * 2008-08-21 2011-07-06 Bystronic Laser AG Verfahren zum Justieren einer Laserbearbeitungsanlage
CN103506757B (zh) * 2012-06-19 2016-12-21 先进科技新加坡有限公司 用于将激光对准于工件表面的激光装置和方法
WO2014138939A1 (en) * 2013-03-13 2014-09-18 Queen's University At Kingston Methods and systems for characterizing laser machining properties by measuring keyhole dynamics using interferometry
AU2015387450A1 (en) * 2015-03-25 2017-10-12 Optimedica Corporation Multiple depth optical coherence tomography system and method and laser eye surgery system incorporating the same
CN104808581A (zh) * 2015-04-20 2015-07-29 天津大学 一种复杂面型曲面制造的补偿加工方法
DE102015007142A1 (de) * 2015-06-02 2016-12-08 Lessmüller Lasertechnik GmbH Messvorrichtung für ein Laserbearbeitungssystem und Verfahren zum Durchführen von Positionsmessungen mittels eines Messstrahls auf einem Werkstück
DE102015109984A1 (de) * 2015-06-22 2016-12-22 Scanlab Ag Scannerkopf mit integriertem Strahllagesensor sowie Justageanordnung zur Offline-Justage
DE102016104318B3 (de) * 2016-03-09 2017-04-13 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zur Bestimmung einer Abweichung einer räumlichen Ausrichtung einer Strahlachse einer Strahlbearbeitungsmaschine von deren räumlichen Soll-Ausrichtung und Strahlbearbeitungsmaschine zum Bearbeiten eines Werkstücks
DE102017010055A1 (de) * 2017-10-27 2019-05-02 Lessmüller Lasertechnik GmbH Laserstrahlschweißen von geometrischen Figuren mit OCT-Nahtführung
CN108044408B (zh) * 2017-11-24 2019-06-28 中国科学院长春光学精密机械与物理研究所 适用于离子束抛光的工件定位误差标定及补偿方法
DE102018118501A1 (de) * 2018-07-31 2020-02-06 Precitec Gmbh & Co. Kg Messvorrichtung zur Bestimmung eines Abstands zwischen einem Laserbearbeitungskopf und einem Werkstück, Laserbearbeitungssystem mit derselben und Verfahren zur Bestimmung eines Abstands zwischen einem Laserbearbeitungskopf und einem Werkstück

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011006553A1 (de) 2011-03-31 2012-10-04 Trumpf Laser Gmbh + Co. Kg Verfahren zum Ermitteln der Fokuslage eines Laserstrahls in seinem Arbeitsfeld oder Arbeitsraum
DE102015012565B3 (de) 2015-09-25 2016-10-27 Lessmüller Lasertechnik GmbH Vorrichtung und Verfahren zur Erhöhung der Genauigkeit eines OCT-Messsystems für die Lasermaterialbearbeitung

Also Published As

Publication number Publication date
US20220016730A1 (en) 2022-01-20
US11951564B2 (en) 2024-04-09
CN113015595B (zh) 2023-05-30
CN113015595A (zh) 2021-06-22
CA3118012A1 (en) 2020-05-14
DE102018219129B3 (de) 2019-11-07
WO2020094709A3 (de) 2020-07-02
KR20210075193A (ko) 2021-06-22

Similar Documents

Publication Publication Date Title
WO2020094709A2 (de) Verfahren und computerprogrammprodukt zur oct-messstrahljustierung
EP1618426B1 (de) Verfahren und anordnung zur bestimmung der fokusposition bei der abbildung einer probe
DE19963010B4 (de) Verfahren und Vorrichtung zur Laserbearbeitung von Werkstücken
EP1393116B1 (de) Autofokussiereinrichtung für ein optisches gerät
DE102018105877B3 (de) Vorrichtung für die Bestimmung einer Ausrichtung einer optischen Vorrichtung eines Kohärenztomographen, Kohärenztomograph und Laserbearbeitungssystem
DE102011006553B4 (de) Verfahren zum Ermitteln der Fokuslage eines Laserstrahls in seinem Arbeitsfeld oder Arbeitsraum
DE102017126867A1 (de) Laserbearbeitungssystem und Verfahren zur Laserbearbeitung
DE102017215973A1 (de) Vorrichtung und Verfahren zur Bestimmung der Strahllage eines Laserstrahls
WO2002006765A1 (de) Verfahren zum berührungslosen messen von geometrien von gegenständen
EP1904260A1 (de) Verfahren und vorrichtung zur bestimmung einer lateralen relativbewegung zwischen einem bearbeitungskopf und einem werkstück
DE102014007201B4 (de) Vorrichtung und Verfahren zur geometrischen Vermessung eines Objekts
DE112014007223T5 (de) Abstandssensor, Abstandserfassungsvorrichtung und Abstandserfassungsverfahren
DE102015102111A1 (de) Mehrkopf-Laseranlage mit Sensoreinheit
DE102017010055A1 (de) Laserstrahlschweißen von geometrischen Figuren mit OCT-Nahtführung
EP0135673A2 (de) Verfahren und Vorrichtung zur Festlegung einer Koordinate auf einer Oberfläche eines Festkörpers
EP3953077B1 (de) Messvorrichtung zur bestimmung des biegewinkels
EP4010145B1 (de) Verfahren zum analysieren einer werkstückoberfläche für einen laserbearbeitungsprozess und eine analysevorrichtung zum analysieren einer werkstückoberfläche
WO2003052347A2 (de) Verfahren zur dreidimensionalen messung einer oberfläche
EP4067809A2 (de) Computerimplementiertes verfahren, verfahren, messgerät und computerprogrammprodukt
DE102017210098B4 (de) Scanvorrichtung mit einer Scankopfvorrichtung zum Reflektieren oder Transmittieren von Strahlen für einen Scanner sowie Verfahren zum Reflektieren oder Transmittieren von Strahlen für einen Scanner
DE102017007590B4 (de) Verfahren und Vorrichtung zur Erfassung von dreidimensionalen Objekten auf Basis des Lichtschnittverfahrens
DE3404901A1 (de) Vorrichtung und verfahren zur optischen pruefung eines objekts
EP4010656A1 (de) Verfahren zum anzeigen eines oct-abgetasteten bereichs einer werkstückoberfläche und/oder zum vermessen von oberflächenmerkmalen sowie zugehöriges oct-system
DE4325351A1 (de) Vorrichtung zur Bestimmung und Steuerung der relativen Position und des Durchmessers des Brennfleckes einer Röntgenröhre
DE10362244B4 (de) Verfahren zur Bestimmung der Fokusposition und der Verkippung der Fokusebene bei der Abbildung einer Probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808958

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 3118012

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217016223

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19808958

Country of ref document: EP

Kind code of ref document: A2