WO2020093695A1 - 一种提钒-脱碳双联转炉高效长寿喷吹方法及系统 - Google Patents

一种提钒-脱碳双联转炉高效长寿喷吹方法及系统 Download PDF

Info

Publication number
WO2020093695A1
WO2020093695A1 PCT/CN2019/090720 CN2019090720W WO2020093695A1 WO 2020093695 A1 WO2020093695 A1 WO 2020093695A1 CN 2019090720 W CN2019090720 W CN 2019090720W WO 2020093695 A1 WO2020093695 A1 WO 2020093695A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
gas
purity
blowing
vanadium extraction
Prior art date
Application number
PCT/CN2019/090720
Other languages
English (en)
French (fr)
Inventor
朱荣
胡绍岩
董凯
马浩冉
李伟峰
周赟
李志辉
武文合
韩宝臣
冯超
苏荣芳
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Publication of WO2020093695A1 publication Critical patent/WO2020093695A1/zh
Priority to US16/926,483 priority Critical patent/US10988818B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/76Gas phase processes, e.g. by using aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/16Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/285Plants therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • C21C5/40Offtakes or separating apparatus for converter waste gases or dust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/146Perfluorocarbons [PFC]; Hydrofluorocarbons [HFC]; Sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the technical field of vanadium-containing molten iron steelmaking, and particularly relates to a high-efficiency long-life injection method and system for a vanadium extraction-decarburization double converter.
  • the double-coupling process of vanadium extraction and decarburization is usually adopted at home and abroad.
  • the vanadium-containing iron water is converted into a special vanadium-extracting converter, and the vanadium in the vanadium-containing iron water is oxidized by blowing oxygen.
  • the vanadium slag is taken and the vanadium slag obtained from the vanadium extraction converter is used to produce vanadium compounds; the semi-steel molten steel treated with vanadium extraction is transferred to a decarburization converter for dephosphorization, decarburization and temperature increase treatment to obtain qualified molten steel for use in Normal steelmaking production.
  • the vanadium extraction-decarburization converter double steelmaking process can not only recover vanadium in vanadium-containing molten iron, but also rationally utilize vanadium-extracted semi-steel molten steel. It has become the most widely used vanadium-containing molten iron treatment process at home and abroad.
  • the hot metal vanadium extraction is a selective oxidation reaction process.
  • the key for vanadium extraction converter to achieve the ideal vanadium oxidation conversion rate and obtain the highest possible semi-steel residual carbon is to control the molten pool temperature in the vanadium extraction converter and enhance the vanadium extraction converter
  • the molten pool stirring creates good thermodynamic and kinetic conditions for vanadium extraction and carbon retention.
  • the researchers proposed a smelting method that uses nitrogen as a carrier gas to spray iron ore powder into the furnace.
  • nitrogen is an inert gas. After being injected into the furnace, no chemical reaction occurs and there is no chemical endotherm.
  • the vanadium extraction converter is usually installed with a plurality of bottom-blowing breathable bricks at the bottom of the furnace, and the bottom-blowing gas is nitrogen. In order to slow down the erosion rate of a single bottom-blowing breathable brick, each bottom-blowing The air supply flow rate of the air-permeable bricks is small, resulting in a large number of bottom-blowing air-permeable bricks.
  • the silicon and manganese in the molten iron are preferentially oxidized.
  • the oxidized silicon and manganese enter the vanadium slag.
  • the semi-steel molten steel after vanadium extraction contains almost no silicon and the manganese content is also very low.
  • the subsequent decarburization converter During the smelting process, due to the lack of silicon and manganese, the slag has a high alkalinity, the slag is difficult, and the dephosphorization is difficult. It is even necessary to add ferrosilicon to the furnace to ensure that the final phosphorus component is qualified.
  • Oxygen lances are prone to nodules, shorten the life of the oxygen lances, and may cause oxygen lances to leak and cause explosions. This problem has been difficult to solve effectively.
  • the best way to solve this problem is to blow lime powder from the bottom of the decarburized converter, and spray the lime powder directly from the bottom of the converter into the metal molten pool, which can significantly increase the slag-gold reaction area, greatly improve the dephosphorization effect, and enhance the molten pool stirring
  • the oxygen gun position has been improved, and the life span has also been extended.
  • the carrier gas for the bottom-blown lime powder is usually pure oxygen. Using pure oxygen as the carrier gas results in a higher furnace bottom temperature, faster burning loss of the furnace bottom refractory, and a shorter furnace bottom life.
  • the coal gas of vanadium extraction converter and decarburization converter is mainly composed of CO, CO 2 and N 2.
  • the vanadium extraction converter gas has low CO content and low calorific value, and is usually directly released, which not only causes energy waste, but also increases carbon emissions;
  • the CO content in the decarburized converter gas is high, and it is usually emitted as fuel after combustion.
  • the present invention combines a principle and effect of CO 2 application in steelmaking, and proposes a high efficiency and long life injection method and system of a vanadium extraction-decarburization double converter, using the converter produced by the vanadium extraction converter and the decarburization converter Coal gas, after a variety of combustion processes, obtains a variety of CO 2 gases in the purity range, which are used for the injection of vanadium converter and the decarburization converter, respectively.
  • the service life of the vanadium extraction converter and the decarburization converter is improved, which solves the poor stirring of the vanadium extraction converter, the low vanadium oxidation rate, the poor dephosphorization effect of the decarburization converter, and the life of the oxygen gun Short question.
  • a high-efficiency long-life injection method for vanadium extraction-decarburization double converters which adopts a staged control strategy in the smelting process of vanadium extraction converters and decarburization converters to adjust the distribution of different gas media in stages Ratio and flow, including the following steps:
  • the vanadium extraction converter gas is completely burned in an oxygen atmosphere to obtain a first purity CO 2 -N 2 mixed gas;
  • the first purity CO 2 -N 2 mixed gas is used for the bottom blowing of the vanadium extraction converter, and the second part of the second purity CO 2 -N 2 mixed gas is used as the carrier gas for blowing the iron ore powder in the vanadium extraction converter ,
  • the second purity CO 2 -N 2 gas mixture, O 2 -CO 2 -N 2 gas mixture and the first purity CO 2 gas described in the third part are used for the decarburization converter bottom blowing and the decarburization converter bottom spraying lime powder Carrier gas.
  • the first-purity CO 2 -N 2 mixed gas is bottom blown throughout, and the bottom blowing strength is 0.03 ⁇ 0.3Nm 3 / t / min;
  • the second purity CO 2 -N 2 mixed gas described in the second part is used as the carrier gas to blow iron ore powder into the furnace to stabilize the temperature of the molten pool and the gas supply intensity is 0.1 ⁇ 0.5Nm 3 / t / min, iron ore powder supply strength is 0 ⁇ 2kg / t / min;
  • the gas supply intensity is 0.1 ⁇ 0.5Nm 3 / t / min, enhance the molten pool stirring, rely on the endothermic effect of CO 2 to suppress the temperature of the molten pool from rising too fast, increase the oxidation rate of vanadium, and reduce the iron oxide content in vanadium slag;
  • Air blowing strength is 0.5 ⁇ 1.5Nm 3 / t / min
  • bottom blowing powder strength is 0 ⁇ 5kg / t / min
  • top blowing oxygen supply strength is 2.0 ⁇ 4.0Nm 3 / t / min
  • top blowing gun position is 2.5 ⁇ 5.0m;
  • the first purity CO 2 gas and industrial pure O 2 are mixed as bottom blowing gas, and the bottom blowing gas supply intensity is 0.5 ⁇ 1.5Nm 3 / t / min ,
  • the strength of top blowing oxygen supply is 2.0 ⁇ 4.0Nm 3 / t / min, the position of top blowing gun is 2.0 ⁇ 4.0m, stop the top blowing oxygen supply 1 ⁇ 2min before the end of blowing, and blow the first purity CO 2 gas at the bottom End point control with industrial pure O 2 .
  • the volume content of CO 2 is 30-50%, the content of N 2 is 50-70%, and the total content of O 2 and CO is not higher than 2%;
  • the volume content of CO 2 is 50-80%, the content of N 2 is 20-50%, and the total content of O 2 and CO is not higher than 2%;
  • the gas composition of the O 2 -CO 2 -N 2 gas mixture is controlled by adjusting the degree of excess oxygen in the oxygen combustion atmosphere, wherein the volume fraction of O 2 is 20-60%, the CO 2 content is 20-65%, N 2 The content is 10-40%, and the CO content is less than 0.1%;
  • the volume content of CO 2 is higher than 99%, and the total content of O 2 and CO is not higher than 1%.
  • the stirring effect of CO 2 is better than that of N 2 under the same bottom blowing flow conditions, after using the first purity CO 2 -N 2 gas mixture as the bottom blowing gas for vanadium extraction converter, the stirring effect of the molten pool is maintained Under the same conditions, the number of bottom-blowing air-permeable bricks required for vanadium extraction converters is reduced.
  • Two to three groups of bottom-blowing block bricks are arranged on the bottom of the vanadium-lifting converter. Blow air-permeable bricks and provide bottom-blowing agitation. After the bottom-blowing air-permeable bricks erode to the lower safety limit, block the bottom-blowing bricks by quick-change bottom-blowing.
  • a high-efficiency long-life injection system for a vanadium extraction-decarburization double converter including an oxygen burner (1), a CO 2 purification device (2), a vanadium extraction converter (3), and decarburization Converter (4), iron ore powder injection tank (5) and lime powder injection tank (6),
  • the oxygen burner (1) includes a first combustion chamber, a second combustion chamber, and a third combustion chamber,
  • the vanadium extraction converter gas source is connected to the first combustion chamber through a first pipeline,
  • the decarburized converter gas source communicates with the second combustion chamber and the third combustion chamber through a second pipe,
  • the first industrial oxygen source communicates with the first combustion chamber, the second combustion chamber, and the third combustion chamber through a third pipe,
  • the first combustion chamber communicates with the vanadium extraction converter (3) through a first purity CO 2 -N 2 mixed gas pipeline,
  • the second combustion chamber communicates with the decarburization converter (4) through an O 2 -CO 2 -N 2 mixed gas pipeline, and the O 2 -CO 2 -between the second combustion chamber and the decarburization converter (4)
  • the second industrial oxygen source and lime powder injection tank (6) are connected to the N 2 mixed gas pipeline,
  • the third combustion chamber communicates with the vanadium extraction converter (3) through a second purity CO 2 -N 2 mixed gas pipeline, and the second purity CO 2 -between the third combustion chamber and the vanadium extraction converter (3)
  • An iron ore powder injection tank (5) is connected to the N 2 mixed gas pipeline,
  • the third combustion chamber is also communicated with the decarburization converter (4) through the second purity CO 2 -N 2 mixed gas pipeline, and the second purity CO 2 between the third combustion chamber and the decarburization converter (4) -The second industrial oxygen source and lime powder injection tank (6) are connected to the N 2 mixed gas pipeline,
  • the further third combustion chamber (2) communicates through the second purity CO 2 -N 2 mixture gas purification apparatus 2 with the duct CO, the CO.'S 2 purification unit (2) through a first conduit and the purity of the CO 2 gas converter decarburization (4) Connected, a second industrial oxygen source and a lime powder injection tank (6) are connected to the first purity CO 2 gas pipeline between the CO 2 purification device (2) and the decarburization converter (4).
  • the first purity CO 2 -N 2 mixed gas pipeline communicates with the bottom blowing device of the vanadium extraction converter (3).
  • the second purity CO 2 -N 2 mixed gas pipeline communicates with the air inlet of the iron ore powder injection tank (5), and the iron ore powder powder of the iron ore powder injection tank (5)
  • the gas flow outlet is connected to the iron ore powder injection device of the vanadium extraction converter (3) through a pipeline.
  • the O 2 -CO 2 -N 2 mixed gas pipeline, the second purity CO 2 -N 2 mixed gas pipeline, the first purity CO 2 gas pipeline, and the second industrial oxygen source and the lime powder injection tank (6) The air intake inlet is connected, and the lime powder powder gas flow outlet of the lime powder injection tank (6) is connected to the lime powder injection device of the decarburization converter (4) through a pipeline.
  • the flow valve group is arranged on the first pipe, the second pipe and the third pipe.
  • FIG. 1 shows a flow chart of a high efficiency long life injection method for vanadium extraction-decarburization double converter according to the present invention
  • FIG. 2 shows a schematic diagram of a high-efficiency long-life injection system for a vanadium extraction-decarburization double converter according to the present invention
  • Figure 3 shows a schematic diagram of the structure of an oxygen burner.
  • the invention uses the vanadium extraction converter gas and the decarburization converter gas produced by the vanadium extraction converter and the decarburization converter to obtain various purity ranges of CO after different combustion processes 2 gas, combined with the characteristics and needs of the injection process of the vanadium extraction converter and the decarburization converter, CO 2 gas of different purity is used in the bottom blowing stirring of the vanadium extraction converter, the iron ore powder injection of the vanadium extraction converter and the bottom blowing of the decarburization converter Lime powder, and adopt a staged control strategy in the smelting process of vanadium extraction converter and decarburization converter, and adjust the ratio and flow rate of different purity CO 2 gas in stages.
  • the present invention is suitable for 30 to 350 tons of vanadium extraction-decarburization double converter, efficiently and cost-effectively recycles vanadium extraction converter and decarburization converter gas, and is applied to different injection processes of vanadium extraction converter and decarburization converter, respectively.
  • the invention can improve the vanadium oxidation rate of the vanadium extraction converter, improve the dephosphorization effect of the decarburization converter, and at the same time increase the service life of the vanadium extraction converter and the decarburization converter.
  • a high efficiency and long life injection method for vanadium extraction-decarburization double converter includes:
  • step 101 the vanadium-extracting converter gas and the decarburized converter gas are separately introduced into an oxygen burner.
  • Step 102 completely burn the vanadium-exchanged converter gas in an oxygen atmosphere to obtain a first purity CO 2 -N 2 gas mixture; completely burn the decarburized converter gas in an oxygen atmosphere to obtain a second purity CO 2 -N 2 gas mixture;
  • the decarburized converter gas is combusted in an oxygen atmosphere to obtain an O 2 -CO 2 -N 2 mixed gas; the second purity CO 2 -N 2 mixed gas described in the first part is introduced into a purification device to obtain a first purity CO 2 gas.
  • the volume content of CO 2 is 30-50%, the content of N 2 is 50-70%, the total content of O 2 and CO is not higher than 2%;
  • the second purity CO 2 -In the N 2 mixed gas the volume content of CO 2 is 50 to 80%, the content of N 2 is 20 to 50%, the total content of O 2 and CO is not higher than 2%; by adjusting the degree of excess of oxygen to control the The gas composition of the O 2 -CO 2 -N 2 mixed gas, wherein the volume fraction of O 2 is 20-60%, the CO 2 content is 20-65%, the N 2 content is 10-40%, and the CO content is less than 0.1% ;
  • the volume content of CO 2 is higher than 99%, and the total content of O 2 and CO is not higher than 1%.
  • Step 103 the first purity CO 2 -N 2 mixed gas is used for bottom blowing of a vanadium extraction converter, and the second part of the second purity CO 2 -N 2 mixed gas is used as a vanadium extraction converter for blowing iron ore powder Carrier gas, the second purity CO 2 -N 2 mixture gas, O 2 -CO 2 -N 2 mixture gas and the first purity CO 2 gas described in the third part are used for the decarburization converter bottom blowing and the decarburization converter bottom Carrier gas sprayed with lime powder.
  • a high-efficiency long-life injection system for a vanadium extraction-decarburization double converter includes an oxygen burner (1), a CO 2 purification device (2), and a vanadium extraction converter (3 ), Decarburized converter (4), iron ore powder injection tank (5) and lime powder injection tank (6), vanadium extraction converter gas, decarbonized converter gas and industrial oxygen are connected to the oxygen burner (1) through pipes ,
  • the oxygen burner (1) produces a first purity CO 2 -N 2 gas mixture, a second purity CO 2 -N 2 gas mixture, and an O 2 -CO 2 -N 2 gas mixture, in which a part of the second purity CO 2-
  • the N 2 mixed gas enters the CO 2 purification device through the pipeline to produce the first purity CO 2 gas; the first purity CO 2 -N 2 mixed gas is connected with the bottom blowing device of the vanadium extraction converter (3) through the pipeline, and a part of the second purity CO
  • the 2 -N 2 mixed gas is connected to the iron ore powder injection tank
  • the method and system are applied to a 100-ton vanadium extraction-decarburization double converter process.
  • the converter gas produced by the vanadium extraction converter contains 20% CO and 15% CO 2 , and the rest is N 2. Due to the low calorific value of the gas, the vanadium extraction converter gas is directly released before the present invention is adopted; the decarburization The gas in the converter contains 60% CO and 20% CO 2 , and the rest is N 2 , which is stored in the gas cabinet.
  • the bottom of the vanadium-extracting converter was equipped with 8 bottom-blowing air-permeable bricks, and the gas supply intensity was 0.04Nm 3 / t / min.
  • the furnace side was equipped with 2 guns for blowing iron ore powder.
  • the intensity is 0.2Nm 3 / t / min
  • the powder spraying intensity is 1.0kg / t / min
  • the carrier gas of bottom blowing and side blowing is N 2 ;
  • the bottom of the decarburized converter is equipped with 4 pieces of lime powder blowing
  • the bottom blowing spray gun uses pure O 2 as the powder carrier gas, the bottom blowing gas supply strength is 0.8Nm 3 / t / min, and the maximum powder spraying strength is 3.0kg / t / min.
  • the vanadium-extracting converter gas and the decarburized converter gas are separately introduced into an oxygen burner, and the vanadium-extracting converter gas is completely combusted in an oxygen atmosphere (equivalent ratio is 1.0) to obtain a first purity CO 2 -N 2 mixed gas.
  • a first purity CO 2 -N 2 gas mixture in the CO 2 -containing about 35%, the balance being essentially N 2, CO 2, and O is the total content of less than 2%; decarburization converter gas for complete combustion in an oxygen atmosphere (an equivalent ratio of 1.0) to give the second purity CO.'s 2 -N 2 gas mixture, the second purity CO 2 -N 2 gas mixture in the CO 2 -containing about 80%, the balance being essentially N 2, CO 2, and the total content of O is less than 2%,
  • the first part of the second-purity CO 2 -N 2 mixed gas is used to prepare the first-purity CO 2 gas;
  • the decarburized converter gas is burned peroxygen in an oxygen atmosphere (equivalent ratio less than 1.0) to obtain O 2 -CO 2 -N 2 mixture Gas, by adjusting the excess degree of oxygen, the O 2 -CO 2 -N 2 mixed gas contains about 50% of O 2 and about 40% of CO 2 , the rest is mainly N 2 , and the CO content is less than 1%
  • the first purity CO 2 -N 2 mixed gas is used for the bottom blowing of the vanadium extraction converter
  • the second part the second concentration CO 2 -N 2 mixed gas is used as the carrier gas for the vanadium extraction converter to blow iron ore powder
  • the third part The second-purity CO 2 -N 2 gas mixture, O 2 -CO 2 -N 2 gas mixture and the first-purity CO 2 gas are used for the decarburization converter bottom blowing and the decarburization converter bottom spraying lime powder carrier gas, specifically
  • the smelting process controlled in stages is as follows:
  • the first purity CO 2 -N 2 mixed gas is bottom blown throughout, with a bottom blowing strength of 0.03 Nm 3 / t / min;
  • the second part of the second purity CO 2 -N 2 mixed gas was used as the carrier gas to blow iron ore powder into the furnace to stabilize the temperature of the molten pool and the gas supply intensity was 0.2 Nm 3 / t / min, the iron ore powder supply strength is 1.0kg / t / min;
  • the gas supply intensity is 0.2Nm 3 / t / min, enhance the molten pool agitation, rely on the endothermic effect of CO 2 to restrain the molten pool temperature from rising too fast, increase the oxidation rate of vanadium, and reduce the iron oxide in vanadium slag;
  • the third part of the second purity CO 2 -N 2 mixed gas is blown at the bottom.
  • the O 2 -CO The 2 -N 2 mixed gas is sprayed with lime powder as the carrier gas.
  • the exothermic effect of O 2 is used to suppress the overgrowth of the mushroom head and to avoid the blockage of the bottom blowing spray gun.
  • the gas supply strength of the bottom blowing is 0.8 Nm 3 / t / min.
  • the powder spraying intensity is 3.0kg / t / min
  • the oxygen supply intensity of the top blowing lance is 2.5Nm 3 / t / min
  • the top blowing lance position is 3.5m;
  • the first purity CO 2 gas and industrial pure O 2 are mixed as bottom blowing gas, the bottom blowing gas supply strength is 0.8Nm 3 / t / min, and the top blowing gas supply
  • the oxygen intensity is 2.5Nm 3 / t / min
  • the top blowing gun position is 3.0m
  • the top blowing oxygen supply is stopped 1.5min before the end of the blowing, and the end blowing of the mixed gas of the first purity CO 2 and industrial pure O 2 is completed. control.
  • the stirring effect of CO 2 is better than that of N 2.
  • the stirring effect of the molten pool remains unchanged.
  • the number of bottom-blowing air-permeable bricks required for vanadium extraction converter was reduced from 8 to 6, and the bottom-blowing strength was reduced from 0.04Nm 3 / t / min to 0.03 Nm 3 / t / min.
  • a total of 12 were installed on the bottom of the vanadium extraction converter
  • Block bottom blowing bricks are divided into 2 groups. Use one group of bottom blowing bricks at a time. Drill and install bottom blowing bricks to provide bottom blowing agitation.
  • bottom blowing bricks After the bottom blowing bricks are eroded to the lower safety limit, pass the bottom blowing Quickly change the block of bottom-blown bricks, use another group of bottom-blown bricks, drill and install bottom-blown breathable bricks to provide bottom-blown agitation, and use two groups of bottom-blown bricks alternately to keep the vanadium converter stirring effect Under the premise of extending the overall life of the bottom of the vanadium converter.
  • the vanadium extraction converter gas and the decarburization converter gas can be recycled efficiently and cost-effectively, providing a variety of CO 2 gas sources for vanadium extraction converter and decarburization converter smelting, which can meet the vanadium extraction converter and decarbonization respectively
  • the vanadium oxidation rate of the vanadium extraction converter is increased from 89.4% to 92.0%
  • the T.Fe in the vanadium slag is reduced from 32.1% to 29.2%
  • the average end-point phosphorus content of the decarburized converter is reduced from 0.018% to 0.012%
  • the service life of the bottom of the vanadium converter and decarburized converter is increased by more than 30%.
  • the method and system are applied to a 150-ton vanadium extraction-decarburization double converter process.
  • the converter gas produced by the vanadium extraction converter contains 30% CO and 20% CO 2 and the rest is N 2. Due to the low calorific value of the gas, the vanadium extraction converter gas is directly released before the present invention is adopted; the decarburization The gas in the converter contains 55% CO and 25% CO 2 , and the rest is N 2 , which is stored in the gas cabinet.
  • the bottom of the vanadium-lifting converter was equipped with 9 bottom-blowing air-permeable bricks, and the gas supply intensity was 0.09Nm 3 / t / min.
  • the furnace side was equipped with 4 spray guns for blowing iron ore powder.
  • the intensity is 0.33Nm 3 / t / min
  • the powder spraying intensity is 2.0kg / t / min
  • the carrier gas of bottom blowing and side blowing is N 2
  • the bottom of the decarburized converter is equipped with 6 branches of lime powder blowing
  • the bottom blowing spray gun uses pure O 2 as the powder carrier gas
  • the bottom blowing gas supply strength is 1.0 Nm 3 / t / min
  • the maximum powder spraying strength is 5.0 kg / t / min.
  • the vanadium-extracting converter gas and the decarburized converter gas are separately introduced into an oxygen burner, and the vanadium-extracting converter gas is completely combusted in an oxygen atmosphere (equivalent ratio is 1.0) to obtain a first purity CO 2 -N 2 mixed gas.
  • a first purity CO 2 -N 2 gas mixture in the CO 2 -containing about 50%, the balance being essentially N 2, CO 2, and O is the total content of less than 2%; decarburization converter gas for complete combustion in an oxygen atmosphere (an equivalent ratio of 1.0) to give the second purity CO.'s 2 -N 2 gas mixture, the second purity CO 2 -N 2 gas mixture in the CO 2 -containing about 80%, the balance being essentially N 2, CO 2, and the total content of O is less than 2%,
  • the first part of the second-purity CO 2 -N 2 mixed gas is used to prepare the first-purity CO 2 gas;
  • the decarburized converter gas is burned peroxygen in an oxygen atmosphere (equivalent ratio is less than 1.0) to obtain O 2 -CO 2 -N 2 mixture Gas, by adjusting the excess degree of oxygen, the O 2 -CO 2 -N 2 mixed gas contains about 40% of O 2 and about 48% of CO 2 , the rest is mainly N 2 , and the CO content is less than
  • the first purity CO 2 -N 2 mixed gas is used for the bottom blowing of the vanadium extraction converter
  • the second part the second concentration CO 2 -N 2 mixed gas is used as the carrier gas for the vanadium extraction converter to blow iron ore powder
  • the third part The second-purity CO 2 -N 2 gas mixture, O 2 -CO 2 -N 2 gas mixture and the first-purity CO 2 gas are used for the decarburization converter bottom blowing and the decarburization converter bottom spraying lime powder carrier gas, specifically
  • the smelting process controlled in stages is as follows:
  • the first purity CO 2 -N 2 mixed gas is bottom blown throughout, the bottom blowing strength is 0.06 Nm 3 / t / min;
  • the second part of the second purity CO 2 -N 2 mixed gas was used as the carrier gas to blow iron ore powder into the furnace to stabilize the temperature of the molten pool and the gas supply intensity was 0.33Nm 3 / t / min, the iron ore powder supply strength is 2.0kg / t / min;
  • the gas supply intensity is 0.33Nm 3 / t / min, enhance the molten pool agitation, rely on the endothermic effect of CO 2 to restrain the molten pool temperature from rising too fast, increase the oxidation rate of vanadium, and reduce the iron oxide in vanadium slag;
  • the third part of the second purity CO 2 -N 2 mixed gas is blown at the bottom.
  • the O 2 -CO 2 -N 2 mixed gas is sprayed with lime powder as carrier gas, using the exothermic effect of O 2 to inhibit the over-growth of the mushroom head, to avoid clogging of the bottom blowing spray gun, and the gas supply intensity of the bottom blowing is 1.0 Nm 3 / t / min, bottom blowing
  • the powder spraying intensity is 5.0kg / t / min
  • the oxygen supply intensity of the top blowing oxygen gun is 3.0Nm 3 / t / min
  • the top blowing gun position is 4.0m;
  • the first purity CO 2 gas and industrial pure O 2 were mixed as bottom blowing gas
  • the bottom blowing gas supply intensity was 1.0 Nm 3 / t / min
  • the top blowing gas supply Oxygen intensity is 3.0Nm 3 / t / min
  • the top blowing gun position is 3.5m, 1.0min before the end of the blowing, stop the top blowing oxygen supply, bottom blowing the mixed gas of the first purity CO 2 and industrial pure O 2 to complete the end point control.
  • the stirring effect of CO 2 is better than that of N 2.
  • the stirring effect of the molten pool remains unchanged.
  • the number of required purging bottom blowing converter vanadium reduced from 9-6, bottom blowing intensity decreased from 0.09Nm 3 / t / min to 0.06Nm 3 / t / min, in the bottom of the converter total vanadium mounting 12
  • Block bottom blowing bricks are divided into 2 groups. Use one group of bottom blowing bricks at a time. Drill and install bottom blowing bricks to provide bottom blowing agitation.
  • bottom blowing bricks After the bottom blowing bricks are eroded to the lower safety limit, pass the bottom blowing Quickly change the block of bottom-blown bricks, use another group of bottom-blown bricks, drill and install bottom-blown breathable bricks to provide bottom-blown agitation, and use two groups of bottom-blown bricks alternately to keep the vanadium converter stirring effect Under the premise of extending the overall life of the bottom of the vanadium converter.
  • the vanadium extraction converter gas and the decarburization converter gas can be recycled efficiently and cost-effectively, providing a variety of CO 2 gas sources for vanadium extraction converter and decarburization converter smelting, which can meet the vanadium extraction converter and decarbonization respectively
  • the vanadium oxidation rate of the vanadium extraction converter is increased from 90.3% to 92.8%
  • the T.Fe in the vanadium slag is reduced from 30.8% to 28.3%
  • the average end-point phosphorus content of the decarburized converter is reduced from 0.016% to 0.009%
  • the service life of the bottom of the vanadium converter and decarburized converter is increased by more than 20%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

一种提钒-脱碳双联转炉高效长寿喷吹方法及系统,包括:将提钒转炉煤气和脱碳转炉煤气导入氧气燃烧器;通过提钒转炉煤气得到第一纯度CO 2-N 2混合气;通过脱碳转炉煤气得到第二纯度CO 2-N 2混合气;通过脱碳转炉煤气得到O 2-CO 2-N 2混合气;通过第二纯度CO 2-N 2混合气得到第一纯度CO 2气体;第一纯度CO 2-N 2混合气用于提钒转炉底吹,第二纯度CO 2-N 2混合气用作提钒转炉喷吹铁矿粉载气,O 2-CO 2-N 2混合气和第一纯度CO 2气体用于脱碳转炉底吹和脱碳转炉底喷石灰粉载气。该方法和系统提高提钒转炉的钒氧化率,改善脱碳转炉的脱磷效果,提高提钒转炉和脱碳转炉的使用寿命。

Description

一种提钒-脱碳双联转炉高效长寿喷吹方法及系统 技术领域
本发明属于含钒铁水炼钢技术领域,特别涉及一种提钒-脱碳双联转炉高效长寿喷吹方法及系统。
背景技术
为了回收含钒铁水中的钒,国内外通常采用提钒-脱碳的转炉双联工艺,首先将含钒铁水兑入专用的提钒转炉,通过吹氧将含钒铁水中的钒氧化,制取钒渣,提钒转炉得到的钒渣被用于生产钒化合物;而经过提钒处理的半钢钢水被兑入脱碳转炉,进行脱磷、脱碳和升温处理,得到合格钢水,用于正常的炼钢生产。提钒-脱碳的转炉双联炼钢工艺既能回收含钒铁水中的钒,也能合理利用经过提钒的半钢钢水,目前已成为国内外应用最广泛的含钒铁水处理工艺。
铁水提钒是一个选择性氧化的反应过程,提钒转炉要实现理想的钒氧化转化率、得到尽量高的半钢余碳,关键在于控制提钒转炉内的熔池温度和增强提钒转炉的熔池搅拌,为提钒保碳创造良好的热力学和动力学条件。为了控制熔池温度,研究人员提出了以氮气为载气向炉内喷吹铁矿粉的冶炼方法,但是,氮气为惰性气体,喷入炉内后不发生任何化学反应,不具备化学吸热的效果,既不能有效地控制熔池温度,也不能在喷粉枪端部形成稳定的蘑菇头来保护喷粉枪;而且,铁矿粉的主要成分为氧化铁,如果铁矿粉喷吹制度不合理,将导致终渣氧化铁含量高,降低了钒渣品位,也造成了资源浪费。目前,为了增强提钒转炉的熔池搅拌,提钒转炉通常在炉底安装有多块底吹透气砖,底吹气体为氮气,为了减缓单块底吹透气砖的侵蚀速率,每块底吹透气砖的供气流量都较小,导致底吹透气砖数量较多。
在提钒过程中,铁水中的硅和锰优先氧化,氧化后的硅和锰进入钒渣,经过提钒的半钢钢水中几乎不含硅,锰含量也很低,在随后的脱碳转炉冶炼过程中,由于缺少硅和锰,导致炉渣碱度高,化渣困难,脱磷难度大,甚至需要向炉内补加硅铁才能保证终点磷成分合格,而且炉渣碱度高易返干,导致氧枪易结瘤,造成氧枪寿命缩短,还有可能导致氧枪漏水从而引发爆炸事故,该问题至今难以得到有效的解决。解决该问题的最佳方法是脱碳转炉底吹石灰粉,将石灰粉由转炉底部直接喷入金属熔池,可以显著增大渣-金反应面积,极大地改善脱磷效果,增强熔池搅拌,氧枪枪位得到提高,寿命也得以延长。但是底吹石灰粉的载气通常为纯氧气,以纯氧气为载气导致炉底温度较高,炉底耐火材料的烧损加快,炉 底寿命缩短。
大量研究表明,CO 2作为底吹气体产生的搅拌能高于N 2和Ar,而且CO 2喷入熔池后发生吸热反应,有利于平抑熔池温度,保护底吹透气砖和喷粉枪,以O 2-CO 2代替纯氧气作为底吹石灰粉的载气可以降低炉底温度,减轻炉底耐火材料的烧损,延长炉底寿命。
但是绝大多数的钢铁企业并不具备CO 2制备能力,无法获得CO 2气源;而且常规的二氧化碳回收设备投资大、运行成本高,使得二氧化碳的获取成本较高,降低了二氧化碳应用的经济效益。
提钒转炉和脱碳转炉的煤气都主要由CO、CO 2和N 2组成,提钒转炉煤气中CO含量低,热值低,通常被直接放散,既造成能源浪费,也增加了碳排放;脱碳转炉煤气中CO含量较高,通常作为燃料燃烧后排放。
发明内容
为了解决以上问题,本发明结合CO 2应用在炼钢中的原理和效果,提出一种提钒-脱碳双联转炉高效长寿喷吹方法及系统,利用提钒转炉和脱碳转炉产生的转炉煤气,经过不同燃烧工艺后获得多种纯度范围的CO 2气体,分别用于提钒转炉喷吹和脱碳转炉喷吹,提高提钒转炉的钒氧化率,改善脱碳转炉的脱磷效果,同时提高提钒转炉和脱碳转炉的使用寿命,从解决了提钒-脱碳转炉双联工艺中存在的提钒转炉搅拌差、钒氧化率低和脱碳转炉脱磷效果差、氧枪寿命短的问题。
根据本发明的第一方面,提供一种提钒-脱碳双联转炉高效长寿喷吹方法,在提钒转炉和脱碳转炉冶炼过程中采取分阶段控制策略,分阶段调节不同气体介质的配比和流量,包括以下步骤:
将提钒转炉煤气和脱碳转炉煤气分别导入氧气燃烧器;
将提钒转炉煤气在氧气气氛中完全燃烧得到第一纯度CO 2-N 2混合气;
将脱碳转炉煤气在氧气气氛中完全燃烧得到第二纯度CO 2-N 2混合气;
将脱碳转炉煤气在氧气气氛中过氧燃烧得到O 2-CO 2-N 2混合气;
将第一部分所述第二纯度CO 2-N 2混合气导入提纯装置得到第一纯度CO 2气体;
将所述第一纯度CO 2-N 2混合气用于提钒转炉底吹,将第二部分所述第二纯度CO 2-N 2混合气用作提钒转炉喷吹铁矿粉的载气,将第三部分所述第二纯度CO 2-N 2混合气、O 2-CO 2-N 2混合气和第一纯度CO 2气体用于脱碳转炉底吹和脱碳转炉底喷石灰粉的载气。
进一步地,不同纯度的气体介质分别用于提钒转炉和脱碳转炉的不同冶炼阶段,具体如下:
由于提钒转炉出钢对钢水氮含量要求不高,在提钒转炉的冶炼过程中,全程底吹所述的第一纯度CO 2-N 2混合气,底吹强度为0.03~0.3Nm 3/t/min;
在提钒转炉的冶炼前期和冶炼中期,以第二部分所述第二纯度CO 2-N 2混合气为载气向炉内喷吹铁矿粉,平抑熔池温度,供气强度为0.1~0.5Nm 3/t/min,铁矿粉供粉强度为0~2kg/t/min;
在提钒转炉的冶炼后期,停止喷吹铁矿粉,避免钒渣中氧化铁含量过高,继续喷吹第二部分第二纯度CO 2-N 2混合气,供气强度为0.1~0.5Nm 3/t/min,增强熔池搅拌,依靠CO 2的吸热作用抑制熔池温度过快升高,提高钒的氧化率,降低钒渣中氧化铁含量;
由于脱碳转炉出钢对钢水氮含量要求较高,在脱碳转炉的冶炼前期和冶炼中期,在不喷吹石灰粉时,底吹第三部分所述第二纯度CO 2-N 2混合气,在喷吹石灰粉时,以所述O 2-CO 2-N 2混合气为载气喷吹石灰粉,利用O 2的放热作用抑制蘑菇头的过度生长,避免底吹喷枪堵塞,底吹供气强度为0.5~1.5Nm 3/t/min,底吹喷粉强度为0~5kg/t/min,顶吹供氧强度为2.0~4.0Nm 3/t/min,顶吹枪位为2.5~5.0m;
在脱碳转炉的冶炼后期,为了避免钢水氮含量超标,将所述第一纯度CO 2气体和工业纯O 2混合作为底吹气体,底吹供气强度为0.5~1.5Nm 3/t/min,顶吹供氧强度为2.0~4.0Nm 3/t/min,顶吹枪位为2.0~4.0m,在吹炼结束前1~2min,停止顶吹供氧,底吹第一纯度CO 2气体和工业纯O 2完成终点控制。
进一步地,
所述第一纯度CO 2-N 2混合气中,CO 2的体积含量为30~50%,N 2含量为50~70%,O 2和CO的总含量不高于2%;
所述第二纯度CO 2-N 2混合气中,CO 2的体积含量为50~80%,N 2含量为20~50%,O 2和CO的总含量不高于2%;
通过调节氧气燃烧气氛中氧气的过剩程度来控制所述O 2-CO 2-N 2混合气的气体组成,其中O 2的体积分数为20~60%,CO 2含量为20~65%,N 2含量为10~40%,CO含量低于0.1%;
所述第一纯度CO 2气体中,CO 2的体积含量高于99%,O 2和CO的总含量不高于1%。
进一步地,由于相同底吹流量条件下,CO 2的搅拌效果优于N 2,采用所述的第一纯度CO 2-N 2混合气作为提钒转炉底吹气体后,在保持熔池搅拌效果不变的情况下,提钒转炉所需的底吹透气砖数量减少,在提钒转炉的炉底布置2~3组底吹座砖,每次使用一组底吹座砖,钻孔安装底吹透气砖,提供底吹搅拌,待该组底吹透气砖侵蚀至安全下限后,通过底吹快换的方式将该组底吹砖堵塞,使用另 一组底吹座砖,钻孔安装底吹透气砖,提供底吹搅拌,多组底吹座砖交替使用。在保持提钒转炉搅拌效果的前提下,延长提钒转炉炉底的整体寿命。
根据本发明的另一方面,提供一种提钒-脱碳双联转炉高效长寿喷吹系统,包括氧气燃烧器(1)、CO 2提纯装置(2)、提钒转炉(3)、脱碳转炉(4)、铁矿粉喷吹罐(5)和石灰粉喷吹罐(6),
氧气燃烧器(1)包括第一燃烧室、第二燃烧室以及第三燃烧室,
提钒转炉煤气源通过第一管道与所述第一燃烧室连接,
脱碳转炉煤气源通过第二管道与所述第二燃烧室和所述第三燃烧室连通,
第一工业氧气源通过第三管道与所述第一燃烧室、第二燃烧室以及第三燃烧室连通,
所述第一燃烧室通过第一纯度CO 2-N 2混合气管道与提钒转炉(3)连通,
所述第二燃烧室通过O 2-CO 2-N 2混合气管道与脱碳转炉(4)连通,在所述第二燃烧室与脱碳转炉(4)之间的O 2-CO 2-N 2混合气管道上连通有第二工业氧气源和石灰粉喷吹罐(6),
所述第三燃烧室通过第二纯度CO 2-N 2混合气管道与提钒转炉(3)连通,在所述第三燃烧室与提钒转炉(3)之间的第二纯度CO 2-N 2混合气管道上连通有铁矿粉喷吹罐(5),
所述第三燃烧室还通过第二纯度CO 2-N 2混合气管道与脱碳转炉(4)连通,在所述第三燃烧室与脱碳转炉(4)之间的第二纯度CO 2-N 2混合气管道上连通有第二工业氧气源和石灰粉喷吹罐(6),
所述第三燃烧室还通过第二纯度CO 2-N 2混合气管道与CO 2提纯装置(2)连通,所述CO 2提纯装置(2)通过第一纯度CO 2气体管道与脱碳转炉(4)连通,在所述CO 2提纯装置(2)与脱碳转炉(4)之间的第一纯度CO 2气体管道上连通有第二工业氧气源和石灰粉喷吹罐(6)。
进一步的,所述第一纯度CO 2-N 2混合气管道与提钒转炉(3)的底吹装置连通。
进一步的,所述第二纯度CO 2-N 2混合气管道与所述铁矿粉喷吹罐(5)的进气入口连通,所述铁矿粉喷吹罐(5)的铁矿粉粉气流出口通过管道与提钒转炉(3)的铁矿粉喷吹装置连接。
进一步的,所述O 2-CO 2-N 2混合气管道、第二纯度CO 2-N 2混合气管道、第一纯度CO 2气体管道和第二工业氧气源与所述石灰粉喷吹罐(6)的进气入口连通,所述石灰粉喷吹罐(6)的石灰粉粉气流出口通过管道与脱碳转炉(4)的石灰粉喷吹装置连接。
进一步的,流量阀门组设置在所述第一管道、第二管道和第三管道上。
进一步地,在提钒转炉的炉底布置2~3组底吹座砖。
本发明的有益效果包括:
(1)高效率、低成本地利用提钒转炉煤气和脱碳转炉煤气制备不同浓度范围的CO 2气体,既降低了CO 2的获取成本,也能为不同冶金需求提供多元化的喷吹介质;
(2)针对提钒转炉和脱碳转炉的冶炼特点和冶炼需求,选用不同浓度的CO 2气体,既改善了冶金效果,也降低了成本;
(3)利用CO 2的强搅拌和控温效果,提高提钒转炉的钒氧化率,改善脱碳转炉的脱磷效果,同时提高提钒转炉和脱碳转炉的使用寿命。
附图说明
图1示出根据本发明的一种提钒-脱碳双联转炉高效长寿喷吹方法的流程图;
图2示出根据本发明的一种提钒-脱碳双联转炉高效长寿喷吹系统的示意图;
图3示出氧气燃烧器的结构示意图。
图2中:1—氧气燃烧器,2—CO 2提纯装置,3—提钒转炉,4—脱碳转炉,5—铁矿粉喷吹罐,6—石灰粉喷吹罐。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合具体实施例和附图对本发明做进一步的描述。
本发明针对提钒-脱碳双联转炉炼钢工艺存在的问题,利用提钒转炉和脱碳转炉产生的提钒转炉煤气和脱碳转炉煤气,经过不同燃烧工艺后获得多种纯度范围的CO 2气体,结合提钒转炉和脱碳转炉的喷吹工艺特点及需求,将不同纯度的CO 2气体分别用于提钒转炉底吹搅拌、提钒转炉喷吹铁矿粉和脱碳转炉底吹石灰粉,并在提钒转炉和脱碳转炉冶炼过程中采取分阶段控制策略,分阶段调节不同纯度CO 2气体的配比和流量。本发明适用于30~350吨的提钒-脱碳双联转炉,高效低成本地循环利用提钒转炉和脱碳转炉煤气,并分别应用于提钒转炉和脱碳转炉的不同喷吹工序,本发明能够提高提钒转炉的钒氧化率,改善脱碳转炉的脱磷效果,同时提高提钒转炉和脱碳转炉的使用寿命。
如图1所示,根据本发明的一种提钒-脱碳双联转炉高效长寿喷吹方法,包括:
步骤101,将提钒转炉煤气和脱碳转炉煤气分别导入氧气燃烧器。
步骤102,将提钒转炉煤气在氧气气氛中完全燃烧得到第一纯度CO 2-N 2混合气;将脱碳转炉煤气在氧气气氛中完全燃烧得到第二纯度CO 2-N 2混合气;将脱 碳转炉煤气在氧气气氛中过氧燃烧得到O 2-CO 2-N 2混合气;将第一部分所述第二纯度CO 2-N 2混合气导入提纯装置得到第一纯度CO 2气体。
第一纯度CO 2-N 2混合气中,CO 2的体积含量为30~50%,N 2含量为50~70%,O 2和CO的总含量不高于2%;第二纯度CO 2-N 2混合气中,CO 2的体积含量为50~80%,N 2含量为20~50%,O 2和CO的总含量不高于2%;通过调节氧气的过剩程度来控制所述O 2-CO 2-N 2混合气的气体组成,其中O 2的体积分数为20~60%,CO 2含量为20~65%,N 2含量为10~40%,CO含量低于0.1%;第一纯度CO 2气体中,CO 2的体积含量高于99%,O 2和CO的总含量不高于1%。
步骤103,将所述第一纯度CO 2-N 2混合气用于提钒转炉底吹,将第二部分所述第二纯度CO 2-N 2混合气用作提钒转炉喷吹铁矿粉的载气,将第三部分所述第二纯度CO 2-N 2混合气、O 2-CO 2-N 2混合气和第一纯度CO 2气体用于脱碳转炉底吹和脱碳转炉底喷石灰粉的载气。
如图2和图3所示,根据本发明的一种提钒-脱碳双联转炉高效长寿喷吹系统,包括氧气燃烧器(1)、CO 2提纯装置(2)、提钒转炉(3)、脱碳转炉(4)、铁矿粉喷吹罐(5)和石灰粉喷吹罐(6),提钒转炉煤气、脱碳转炉煤气和工业氧气通过管道与氧气燃烧器(1)相连,氧气燃烧器(1)产生第一纯度CO 2-N 2混合气、第二纯度CO 2-N 2混合气、O 2-CO 2-N 2混合气,其中,一部分第二纯度CO 2-N 2混合气通过管道进入CO 2提纯装置,生产第一纯度CO 2气体;第一纯度CO 2-N 2混合气通过管道与提钒转炉(3)的底吹装置连接,一部分第二纯度CO 2-N 2混合气通过管道与铁矿粉喷吹罐(5)连接,铁矿粉粉气流通过管道与提钒转炉(3)的铁矿粉喷吹装置连接;一部分第二纯度CO 2-N 2混合气、O 2-CO 2-N 2混合气、第一纯度CO 2和工业氧气通过管道与石灰粉喷吹罐(6)连接,石灰粉粉气流通过管道与脱碳转炉(4)的石灰粉喷吹装置连接;所述系统中气体介质和固体粉剂的流量均可通过设置在管道上的阀门组进行调节和计量。
实施例1
在本实施例中,所述方法及系统应用在100吨提钒-脱碳双联转炉流程。
该提钒转炉产生的转炉煤气中含20%的CO和15%的CO 2,其余为N 2,由于该煤气热值低,在采用本发明之前,提钒转炉煤气被直接放散;该脱碳转炉的煤气中含60%的CO和20%的CO 2,其余为N 2,被储存于煤气柜中。在采用本发明前,该提钒转炉的炉底布置有8块底吹透气砖,供气强度为0.04Nm 3/t/min,炉侧布置有2支喷吹铁矿粉的喷枪,供气强度为0.2Nm 3/t/min,喷粉强度为1.0kg/t/min,底吹和侧吹的载气均为N 2;该脱碳转炉的炉底布置有4支喷吹石灰粉的底吹喷枪,以纯O 2作为喷粉载气,底吹供气强度为0.8Nm 3/t/min,最大喷粉强度为3.0kg/t/min。
在应用本发明后,将提钒转炉煤气和脱碳转炉煤气分别导入氧气燃烧器,提钒转炉煤气在氧气气氛中完全燃烧(当量比为1.0)得到第一纯度CO 2-N 2混合气,第一纯度CO 2-N 2混合气中含CO 2约35%,其余主要为N 2,CO和O 2的总含量不超过2%;脱碳转炉煤气在氧气气氛中完全燃烧(当量比为1.0)得到第二纯度CO 2-N 2混合气,第二纯度CO 2-N 2混合气中含CO 2约80%,其余主要为N 2,CO和O 2的总含量不超过2%,第一部分第二纯度CO 2-N 2混合气被用于制备第一纯度CO 2气体;脱碳转炉煤气在氧气气氛中过氧燃烧(当量比小于1.0)得到O 2-CO 2-N 2混合气,通过调节氧气的过剩程度,使得O 2-CO 2-N 2混合气中含O 2约50%,CO 2约40%,其余主要为N 2,CO含量低于1%。
第一纯度CO 2-N 2混合气被用于提钒转炉底吹,第二部分第二浓度CO 2-N 2混合气被用作提钒转炉喷吹铁矿粉的载气,第三部分第二纯度CO 2-N 2混合气、O 2-CO 2-N 2混合气和第一纯度CO 2气体被用于脱碳转炉底吹和脱碳转炉底喷石灰粉的载气,具体的分阶段控制冶炼过程如下:
在提钒转炉的冶炼过程中,全程底吹所述的第一纯度CO 2-N 2混合气,底吹强度为0.03Nm 3/t/min;
在提钒转炉的冶炼前期和冶炼中期,以第二部分第二纯度CO 2-N 2混合气为载气向炉内喷吹铁矿粉,平抑熔池温度,供气强度为0.2Nm 3/t/min,铁矿粉供粉强度为1.0kg/t/min;
在提钒转炉的冶炼后期,停止喷吹铁矿粉,避免钒渣中氧化铁含量过高,继续喷吹第二部分第二纯度CO 2-N 2混合气,供气强度为0.2Nm 3/t/min,增强熔池搅拌,依靠CO 2的吸热作用抑制熔池温度过快升高,提高钒的氧化率,降低钒渣中氧化铁;
在脱碳转炉的冶炼前期和冶炼中期,在不喷吹石灰粉时,底吹第三部分第二纯度CO 2-N 2混合气,在喷吹石灰粉时,以所述的O 2-CO 2-N 2混合气为载气喷吹石灰粉,利用O 2的放热作用抑制蘑菇头的过度生长,避免底吹喷枪堵塞,底吹供气强度为0.8Nm 3/t/min,底吹喷粉强度为3.0kg/t/min,顶吹氧枪的供氧强度为2.5Nm 3/t/min,顶吹枪位为3.5m;
在脱碳转炉的冶炼后期,为了避免钢水氮含量超标,将第一纯度CO 2气体和工业纯O 2混合作为底吹气体,底吹供气强度为0.8Nm 3/t/min,顶吹供氧强度为2.5Nm 3/t/min,顶吹枪位为3.0m,在吹炼结束前1.5min,停止顶吹供氧,底吹第一纯度CO 2和工业纯O 2的混合气完成终点控制。
由于相同底吹流量条件下,CO 2的搅拌效果优于N 2,采用第一纯度CO 2-N 2混合气作为提钒转炉底吹气体后,在保持熔池搅拌效果不变的情况下,提钒转炉所需的底吹透气砖数量由8块减少至6块,底吹强度由0.04Nm 3/t/min降低至0.03 Nm 3/t/min,在提钒转炉的炉底共计安装12块底吹座砖,分为2组,每次使用一组底吹座砖,钻孔安装底吹透气砖,提供底吹搅拌,待该组底吹透气砖侵蚀至安全下限后,通过底吹快换的方式将该组底吹砖堵塞,使用另一组底吹座砖,钻孔安装底吹透气砖,提供底吹搅拌,2组底吹座砖交替使用,在保持提钒转炉搅拌效果的前提下,延长提钒转炉炉底的整体寿命。
采用本发明后,提钒转炉煤气和脱碳转炉煤气得以高效、低成本地循环利用,为提钒转炉和脱碳转炉冶炼提供了多样化的CO 2气源,分别满足提钒转炉和脱碳转炉的不同工艺要求,提钒转炉的钒氧化率由89.4%提高至92.0%,钒渣中T.Fe由32.1%降低至29.2%,脱碳转炉的平均终点磷含量由0.018%降低至0.012%,提钒转炉和脱碳转炉的炉底使用寿命均提高30%以上。
实施例2
在本实施例中,所述方法及系统应用在150吨提钒-脱碳双联转炉流程。
该提钒转炉产生的转炉煤气中含30%的CO和20%的CO 2,其余为N 2,由于该煤气热值低,在采用本发明之前,提钒转炉煤气被直接放散;该脱碳转炉的煤气中含55%的CO和25%的CO 2,其余为N 2,被储存于煤气柜中。在采用本发明前,该提钒转炉的炉底布置有9块底吹透气砖,供气强度为0.09Nm 3/t/min,炉侧布置有4支喷吹铁矿粉的喷枪,供气强度为0.33Nm 3/t/min,喷粉强度为2.0kg/t/min,底吹和侧吹的载气均为N 2;该脱碳转炉的炉底布置有6支喷吹石灰粉的底吹喷枪,以纯O 2作为喷粉载气,底吹供气强度为1.0Nm 3/t/min,最大喷粉强度为5.0kg/t/min。
在应用本发明后,将提钒转炉煤气和脱碳转炉煤气分别导入氧气燃烧器,提钒转炉煤气在氧气气氛中完全燃烧(当量比为1.0)得到第一纯度CO 2-N 2混合气,第一纯度CO 2-N 2混合气中含CO 2约50%,其余主要为N 2,CO和O 2的总含量不超过2%;脱碳转炉煤气在氧气气氛中完全燃烧(当量比为1.0)得到第二纯度CO 2-N 2混合气,第二纯度CO 2-N 2混合气中含CO 2约80%,其余主要为N 2,CO和O 2的总含量不超过2%,第一部分第二纯度CO 2-N 2混合气被用于制备第一纯度CO 2气体;脱碳转炉煤气在氧气气氛中过氧燃烧(当量比小于1.0)得到O 2-CO 2-N 2混合气,通过调节氧气的过剩程度,使得O 2-CO 2-N 2混合气中含O 2约40%,CO 2约48%,其余主要为N 2,CO含量低于1%。
第一纯度CO 2-N 2混合气被用于提钒转炉底吹,第二部分第二浓度CO 2-N 2混合气被用作提钒转炉喷吹铁矿粉的载气,第三部分第二纯度CO 2-N 2混合气、O 2-CO 2-N 2混合气和第一纯度CO 2气体被用于脱碳转炉底吹和脱碳转炉底喷石灰粉的载气,具体的分阶段控制冶炼过程如下:
在提钒转炉的冶炼过程中,全程底吹所述的第一纯度CO 2-N 2混合气,底吹 强度为0.06Nm 3/t/min;
在提钒转炉的冶炼前期和冶炼中期,以第二部分第二纯度CO 2-N 2混合气为载气向炉内喷吹铁矿粉,平抑熔池温度,供气强度为0.33Nm 3/t/min,铁矿粉供粉强度为2.0kg/t/min;
在提钒转炉的冶炼后期,停止喷吹铁矿粉,避免钒渣中氧化铁含量过高,继续喷吹第二部分第二纯度CO 2-N 2混合气,供气强度为0.33Nm 3/t/min,增强熔池搅拌,依靠CO 2的吸热作用抑制熔池温度过快升高,提高钒的氧化率,降低钒渣中氧化铁;
在脱碳转炉的冶炼前期和冶炼中期,在不喷吹石灰粉时,底吹第三部分第二纯度CO 2-N 2混合气,在喷吹石灰粉时,以所述的O 2-CO 2-N 2混合气为载气喷吹石灰粉,利用O 2的放热作用抑制蘑菇头的过度生长,避免底吹喷枪堵塞,底吹供气强度为1.0Nm 3/t/min,底吹喷粉强度为5.0kg/t/min,顶吹氧枪的供氧强度为3.0Nm 3/t/min,顶吹枪位为4.0m;
在脱碳转炉的冶炼后期,为了避免钢水氮含量超标,将第一纯度CO 2气体和工业纯O 2混合作为底吹气体,底吹供气强度为1.0Nm 3/t/min,顶吹供氧强度为3.0Nm 3/t/min,顶吹枪位为3.5m,在吹炼结束前1.0min,停止顶吹供氧,底吹第一纯度CO 2和工业纯O 2的混合气完成终点控制。
由于相同底吹流量条件下,CO 2的搅拌效果优于N 2,采用第一纯度CO 2-N 2混合气作为提钒转炉底吹气体后,在保持熔池搅拌效果不变的情况下,提钒转炉所需的底吹透气砖数量由9块减少至6块,底吹强度由0.09Nm 3/t/min降低至0.06Nm 3/t/min,在提钒转炉的炉底共计安装12块底吹座砖,分为2组,每次使用一组底吹座砖,钻孔安装底吹透气砖,提供底吹搅拌,待该组底吹透气砖侵蚀至安全下限后,通过底吹快换的方式将该组底吹砖堵塞,使用另一组底吹座砖,钻孔安装底吹透气砖,提供底吹搅拌,2组底吹座砖交替使用,在保持提钒转炉搅拌效果的前提下,延长提钒转炉炉底的整体寿命。
采用本发明后,提钒转炉煤气和脱碳转炉煤气得以高效、低成本地循环利用,为提钒转炉和脱碳转炉冶炼提供了多样化的CO 2气源,分别满足提钒转炉和脱碳转炉的不同工艺要求,提钒转炉的钒氧化率由90.3%提高至92.8%,钒渣中T.Fe由30.8%降低至28.3%,脱碳转炉的平均终点磷含量由0.016%降低至0.009%,提钒转炉和脱碳转炉的炉底使用寿命均提高20%以上。
应当理解的是,以下描述的具体实施例仅用于解释本发明,并不用于限定本发明。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围内。

Claims (10)

  1. 一种提钒-脱碳双联转炉高效长寿喷吹方法,其特征在于,在提钒转炉和脱碳转炉冶炼过程中采取分阶段控制策略,分阶段调节不同纯度的气体介质的配比和流量,包括以下步骤:
    将提钒转炉煤气和脱碳转炉煤气分别导入氧气燃烧器;
    将提钒转炉煤气在氧气气氛中完全燃烧得到第一纯度CO 2-N 2混合气;
    将脱碳转炉煤气在氧气气氛中完全燃烧得到第二纯度CO 2-N 2混合气;
    将脱碳转炉煤气在氧气气氛中过氧燃烧得到O 2-CO 2-N 2混合气;
    将第一部分所述第二纯度CO 2-N 2混合气导入提纯装置得到第一纯度CO 2气体;
    将所述第一纯度CO 2-N 2混合气用于提钒转炉底吹,将第二部分所述第二纯度CO 2-N 2混合气用作提钒转炉喷吹铁矿粉的载气,将第三部分所述第二纯度CO 2-N 2混合气、O 2-CO 2-N 2混合气和第一纯度CO 2气体用于脱碳转炉底吹和脱碳转炉底喷石灰粉的载气。
  2. 根据权利要求1所述的方法,其特征在于,不同纯度的气体介质分别用于提钒转炉和脱碳转炉的不同冶炼阶段,具体如下:
    在提钒转炉的冶炼过程中,全程底吹所述的第一纯度CO 2-N 2混合气,底吹强度为0.03~0.3Nm 3/t/min;
    在提钒转炉的冶炼前期和冶炼中期,以第二部分所述第二纯度CO 2-N 2混合气为载气向炉内喷吹铁矿粉,平抑熔池温度,供气强度为0.1~0.5Nm 3/t/min,铁矿粉供粉强度为0~2kg/t/min;
    在提钒转炉的冶炼后期,停止喷吹铁矿粉,避免钒渣中氧化铁含量过高,继续喷吹第二部分第二纯度CO 2-N 2混合气,供气强度为0.1~0.5Nm 3/t/min,增强熔池搅拌,依靠CO 2的吸热作用抑制熔池温度过快升高,提高钒的氧化率,降低钒渣中氧化铁含量;
    在脱碳转炉的冶炼前期和冶炼中期,在不喷吹石灰粉时,底吹第三部分所述第二纯度CO 2-N 2混合气,在喷吹石灰粉时,以所述O 2-CO 2-N 2混合气为载气喷吹石灰粉,利用O 2的放热作用抑制蘑菇头的过度生长,避免底吹喷枪堵塞,底吹供气强度为0.5~1.5Nm 3/t/min,底吹喷粉强度为0~5kg/t/min,顶吹供氧强度为2.0~4.0Nm 3/t/min,顶吹枪位为2.5~5.0m;
    在脱碳转炉的冶炼后期,将所述第一纯度CO 2气体和工业纯O 2混合作为底吹气体,底吹供气强度为0.5~1.5Nm 3/t/min,顶吹供氧强度为2.0~4.0Nm 3/t/min,顶吹枪位为2.0~4.0m,在吹炼结束前1~2min,停止顶吹供氧,底吹第一纯度CO 2气体和工业纯O 2完成终点控制。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一纯度CO 2-N 2混合气中,CO 2的体积含量为30~50%,N 2含量为50~70%,O 2和CO的总含量不高于2%;
    所述第二纯度CO 2-N 2混合气中,CO 2的体积含量为50~80%,N 2含量为20~50%,O 2和CO的总含量不高于2%;
    通过调节氧气燃烧气氛中氧气的过剩程度来控制所述O 2-CO 2-N 2混合气的气体组成,其中O 2的体积分数为20~60%,CO 2含量为20~65%,N 2含量为10~40%,CO含量低于0.1%;
    所述第一纯度CO 2气体中,CO 2的体积含量高于99%,O 2和CO的总含量不高于1%。
  4. 根据权利要求1所述的方法,其特征在于,在提钒转炉的炉底布置2~3组底吹座砖,每次使用一组底吹座砖,钻孔安装底吹透气砖,提供底吹搅拌,待该组底吹透气砖侵蚀至安全下限后,通过底吹快换的方式将该组底吹砖堵塞,使用另一组底吹座砖,钻孔安装底吹透气砖,提供底吹搅拌,多组底吹座砖交替使用。
  5. 一种提钒-脱碳双联转炉高效长寿喷吹系统,其特征在于,包括氧气燃烧器(1)、CO 2提纯装置(2)、提钒转炉(3)、脱碳转炉(4)、铁矿粉喷吹罐(5)和石灰粉喷吹罐(6),
    氧气燃烧器(1)包括第一燃烧室、第二燃烧室以及第三燃烧室,
    提钒转炉煤气源通过第一管道与所述第一燃烧室连接,
    脱碳转炉煤气源通过第二管道与所述第二燃烧室和所述第三燃烧室连通,
    第一工业氧气源通过第三管道与所述第一燃烧室、第二燃烧室以及第三燃烧室连通,
    所述第一燃烧室通过第一纯度CO 2-N 2混合气管道与提钒转炉(3)连通,
    所述第二燃烧室通过O 2-CO 2-N 2混合气管道与脱碳转炉(4)连通,在所述第二燃烧室与脱碳转炉(4)之间的O 2-CO 2-N 2混合气管道上连通有第二工业氧气源和石灰粉喷吹罐(6),
    所述第三燃烧室通过第二纯度CO 2-N 2混合气管道与提钒转炉(3)连通,在所述第三燃烧室与提钒转炉(3)之间的第二纯度CO 2-N 2混合气管道上连通有铁矿粉喷吹罐(5),
    所述第三燃烧室还通过第二纯度CO 2-N 2混合气管道与脱碳转炉(4)连通,在所述第三燃烧室与脱碳转炉(4)之间的第二纯度CO 2-N 2混合气管道上连通有第二工业氧气源和石灰粉喷吹罐(6),
    所述第三燃烧室还通过第二纯度CO 2-N 2混合气管道与CO 2提纯装置(2)连通,所述CO 2提纯装置(2)通过第一纯度CO 2气体管道与脱碳转炉(4)连通, 在所述CO 2提纯装置(2)与脱碳转炉(4)之间的第一纯度CO 2气体管道上连通有第二工业氧气源和石灰粉喷吹罐(6)。
  6. 根据权利要求5所述的系统,其特征在于,所述第一纯度CO 2-N 2混合气管道与提钒转炉(3)的底吹装置连通。
  7. 根据权利要求5所述的系统,其特征在于,所述第二纯度CO 2-N 2混合气管道与所述铁矿粉喷吹罐(5)的进气入口连通,所述铁矿粉喷吹罐(5)的铁矿粉粉气流出口通过管道与提钒转炉(3)的铁矿粉喷吹装置连接。
  8. 根据权利要求5所述的系统,其特征在于,所述O 2-CO 2-N 2混合气管道、第二纯度CO 2-N 2混合气管道、第一纯度CO 2气体管道和第二工业氧气源与所述石灰粉喷吹罐(6)的进气入口连通,所述石灰粉喷吹罐(6)的石灰粉粉气流出口通过管道与脱碳转炉(4)的石灰粉喷吹装置连接。
  9. 根据权利要求5所述的系统,其特征在于,流量阀门组设置在所述第一管道、第二管道和第三管道上。
  10. 根据权利要求5所述的系统,其特征在于,在提钒转炉的炉底布置2~3组底吹座砖。
PCT/CN2019/090720 2018-11-07 2019-06-11 一种提钒-脱碳双联转炉高效长寿喷吹方法及系统 WO2020093695A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/926,483 US10988818B2 (en) 2018-11-07 2020-07-10 Efficient long-service-life blowing method and system for vanadium extraction-decarburization duplex converters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811319213.5A CN109234490B (zh) 2018-11-07 2018-11-07 一种提钒-脱碳双联转炉高效长寿喷吹方法及系统
CN201811319213.5 2018-11-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/926,483 Continuation-In-Part US10988818B2 (en) 2018-11-07 2020-07-10 Efficient long-service-life blowing method and system for vanadium extraction-decarburization duplex converters

Publications (1)

Publication Number Publication Date
WO2020093695A1 true WO2020093695A1 (zh) 2020-05-14

Family

ID=65077251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090720 WO2020093695A1 (zh) 2018-11-07 2019-06-11 一种提钒-脱碳双联转炉高效长寿喷吹方法及系统

Country Status (3)

Country Link
US (1) US10988818B2 (zh)
CN (1) CN109234490B (zh)
WO (1) WO2020093695A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114854924A (zh) * 2022-04-22 2022-08-05 中国恩菲工程技术有限公司 高磷铁矿制备低磷铁水的方法及装置
CN114921607A (zh) * 2022-04-24 2022-08-19 安阳钢铁股份有限公司 一种降低转炉冶炼终点氧含量的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234490B (zh) * 2018-11-07 2020-06-26 北京科技大学 一种提钒-脱碳双联转炉高效长寿喷吹方法及系统
CN110184407A (zh) * 2019-06-04 2019-08-30 甘肃酒钢集团宏兴钢铁股份有限公司 一种系统提升转炉底喷使用寿命的方法
CN112522467B (zh) * 2020-11-30 2022-07-19 攀钢集团攀枝花钢铁研究院有限公司 转炉分段底吹co2提钒的方法
CN112430699B (zh) * 2021-01-26 2021-04-16 北京科技大学 底喷粉转炉炉底和底吹砖协同热更换的长炉龄服役方法
CN113234893B (zh) * 2021-04-14 2022-10-21 首钢集团有限公司 一种出钢钢液预精炼的方法
CN113234884A (zh) * 2021-04-23 2021-08-10 甘肃酒钢集团宏兴钢铁股份有限公司 一种解决转炉顶吹气体与底吹枪位置干涉的方法
CN114369698B (zh) * 2021-12-02 2023-03-17 首钢集团有限公司 一种转炉冶炼的方法
CN114275784B (zh) * 2021-12-24 2023-05-19 上海大学 一种利用co2制备co气体的系统及方法
CN114941048A (zh) * 2022-04-15 2022-08-26 包头钢铁(集团)有限责任公司 一种利用二氧化碳与氮气混合作为转炉底吹介质的方法
CN115522114B (zh) * 2022-09-26 2023-09-12 中国科学院过程工程研究所 一种短流程制备高洁净度中高碳钢液的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104673959A (zh) * 2015-03-16 2015-06-03 攀钢集团研究院有限公司 顶底复吹转炉提取钒铬的方法
CN104673956A (zh) * 2015-03-16 2015-06-03 攀钢集团研究院有限公司 转炉提取钒铬的方法
CN107130079A (zh) * 2017-05-31 2017-09-05 北京科技大学 一种利用转炉煤气制备co2及循环喷吹的方法和系统
CN109234490A (zh) * 2018-11-07 2019-01-18 北京科技大学 一种提钒-脱碳双联转炉高效长寿喷吹方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602617A (ja) * 1983-06-21 1985-01-08 Kawasaki Heavy Ind Ltd 転炉ガスの分別回収再利用方法
ATE544505T1 (de) * 2008-06-26 2012-02-15 Praxair Technology Inc Verbrennung von co und brennbaren stoffen in stahlofenabgasen
CN102127613A (zh) * 2011-02-25 2011-07-20 河北钢铁股份有限公司承德分公司 一种转炉复合喷吹提钒方法
CN102251070B (zh) * 2011-07-18 2012-11-07 北京科技大学 一种利用co2实现转炉高效提钒的方法
CN105907914B (zh) * 2016-06-22 2018-03-27 北京科技大学 一种利用co2延长底吹氧气转炉寿命的炼钢方法
CN107151724B (zh) * 2017-05-02 2019-03-29 北京科技大学 脱磷转炉煤气质能转换循环多元喷吹高效脱磷方法和装置
CN108425024A (zh) * 2018-04-16 2018-08-21 攀钢集团研究院有限公司 转炉分段式供气提钒方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104673959A (zh) * 2015-03-16 2015-06-03 攀钢集团研究院有限公司 顶底复吹转炉提取钒铬的方法
CN104673956A (zh) * 2015-03-16 2015-06-03 攀钢集团研究院有限公司 转炉提取钒铬的方法
CN107130079A (zh) * 2017-05-31 2017-09-05 北京科技大学 一种利用转炉煤气制备co2及循环喷吹的方法和系统
CN109234490A (zh) * 2018-11-07 2019-01-18 北京科技大学 一种提钒-脱碳双联转炉高效长寿喷吹方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114854924A (zh) * 2022-04-22 2022-08-05 中国恩菲工程技术有限公司 高磷铁矿制备低磷铁水的方法及装置
CN114854924B (zh) * 2022-04-22 2023-12-01 中国恩菲工程技术有限公司 高磷铁矿制备低磷铁水的方法及装置
CN114921607A (zh) * 2022-04-24 2022-08-19 安阳钢铁股份有限公司 一种降低转炉冶炼终点氧含量的方法

Also Published As

Publication number Publication date
US20200340070A1 (en) 2020-10-29
US10988818B2 (en) 2021-04-27
CN109234490A (zh) 2019-01-18
CN109234490B (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2020093695A1 (zh) 一种提钒-脱碳双联转炉高效长寿喷吹方法及系统
EP2380995B1 (en) Smelting vessel, steel making plant and steel production method
AU2009341533B2 (en) Method and equipment of producing iron by smelting-reduction
CN102952917B (zh) 转炉冶炼过程中防止干法除尘系统泄爆的控制方法
CN106282487B (zh) 一种铁水预脱磷方法
CN110205437B (zh) 降低半钢炼钢转炉终渣中TFe含量的方法
CN108048618A (zh) 一种转炉co2提钒的方法
WO2018201552A1 (zh) 脱磷转炉煤气质能转换循环多元喷吹高效脱磷方法和装置
CN109207672A (zh) 一种超低磷钢生产过程中的排渣方法以及超低磷钢的生产方法
CN111647708A (zh) 一种高磷铁水长寿命同步复吹脱磷冶炼方法
CN107365886B (zh) 一种转炉高温脱磷的方法
CN108179245A (zh) 一种复合供气转炉提钒方法
CN100560740C (zh) 一种利用co2气体减少炼钢烟尘产生的方法
CN108977620B (zh) 一种提高转炉废钢比的单流道二次燃烧氧枪及其使用方法
CN110564908A (zh) 半钢转炉双渣脱磷炼钢的方法
CN113234883B (zh) 一种转炉底吹喷粉的冶炼工艺
CN108842027B (zh) 一种脱磷转炉终渣气化脱磷方法以及冶炼方法
CN102312044A (zh) 电炉冶炼方法
CN113088617B (zh) 一种转炉炼钢方法
CN113234886B (zh) 一种实现转炉终点炉渣超低氧化铁的控制方法
CN110218841B (zh) 一种转炉生产超低磷钢的方法
CN111961797A (zh) 提高半钢炼钢转炉煤气中co含量的方法
JP2661478B2 (ja) 筒型炉およびこれを用いる溶銑の製造方法
JPH01195225A (ja) 製鉄原料の溶解方法
CN108425024A (zh) 转炉分段式供气提钒方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881230

Country of ref document: EP

Kind code of ref document: A1