WO2018201552A1 - 脱磷转炉煤气质能转换循环多元喷吹高效脱磷方法和装置 - Google Patents

脱磷转炉煤气质能转换循环多元喷吹高效脱磷方法和装置 Download PDF

Info

Publication number
WO2018201552A1
WO2018201552A1 PCT/CN2017/087812 CN2017087812W WO2018201552A1 WO 2018201552 A1 WO2018201552 A1 WO 2018201552A1 CN 2017087812 W CN2017087812 W CN 2017087812W WO 2018201552 A1 WO2018201552 A1 WO 2018201552A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
dephosphorization
blowing
mass
energy conversion
Prior art date
Application number
PCT/CN2017/087812
Other languages
English (en)
French (fr)
Inventor
朱荣
吕明
王雪亮
武文合
Original Assignee
北京科技大学
西安建筑科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学, 西安建筑科技大学 filed Critical 北京科技大学
Priority to EP17908116.1A priority Critical patent/EP3620541B1/en
Publication of WO2018201552A1 publication Critical patent/WO2018201552A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • C21C5/40Offtakes or separating apparatus for converter waste gases or dust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2100/00Exhaust gas
    • C21C2100/02Treatment of the exhaust gas
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2100/00Exhaust gas
    • C21C2100/04Recirculation of the exhaust gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the field of iron and steel metallurgy process and energy saving and emission reduction, in particular to the dephosphorization pretreatment of steelmaking, and particularly relates to a 30-350 tons dephosphorization converter gas mass energy conversion cycle suitable for use in the double steelmaking process.
  • the dephosphorization process in the converter steelmaking process is mainly carried out under the low temperature conditions in the early stage of smelting. If the oxygen supply flow rate is large, the dephosphorization reaction is easily restricted by the thermodynamic conditions of the rapid heating of the molten pool after the desiliconization reaction, resulting in the temperature of the blowing process being difficult to control and dephosphorization. The rate is unstable. If the oxygen supply flow rate is small, the mixing conditions of the molten pool are poor. In order to produce high-quality steel, Japan Nippon Steel, China Baosteel, Shougang Jingtang and other enterprises use the converter double smelting process.
  • the double-smelting steel dephosphorization converter in order to control the temperature of the molten pool, low-flow oxygen supply is usually used.
  • the slag is controlled to achieve high-efficiency dephosphorization, but the stirring kinetic conditions in the dephosphorization converter are poor.
  • the molten steel is seriously oxidized, which leads to slag foaming, and the dephosphorization speed and efficiency are limited. If the molten pool stirring capacity of the dephosphorization process can be improved, it will be beneficial to increase the dephosphorization rate.
  • the dephosphorization converter can produce 20-40m 3 of gas per ton of steel, 5%-30% of CO, 10%-30% of CO 2 , and the rest is mainly N 2 and trace O 2 , due to the calorific value of dephosphorization converter gas. It is low and does not have the economic value of recycling. At present, domestic and foreign steel companies use the disposal process, which causes waste of resources and energy and pollutes the environment. If the dephosphorization converter gas can be converted into mass-energy, the resource recycling process applied to the dephosphorization converter smelting process will be beneficial to strengthen the dephosphorization kinetic conditions, increase the dephosphorization rate, and at the same time help reduce exhaust emissions.
  • the present invention provides a dephosphorization converter gas mass energy conversion cycle multi-ejection high-efficiency dephosphorization method and apparatus for converting double-smelting steel in a converter, and realizing material and energy conversion by means of combustion of dephosphorization converter gas Using the strong agitation and temperature control of N 2 and CO 2 in the mass-energy conversion gas, it provides good thermodynamic and kinetic conditions for the dephosphorization reaction, realizes the recycling of the dephosphorization converter gas mass energy, and achieves high-efficiency dephosphorization. purpose.
  • the invention relates to a method for dephosphorization converter gas mass energy conversion cycle multi-ejection high-efficiency dephosphorization, wherein the method comprises: in a dephosphorization converter of a double-smelting steel, the dephosphorization converter is discharged and the gas is cooled by using a combustion-supporting agent after cooling and dust removal.
  • the combustion of the CO component in the dissolved gas is converted into CO 2 , and the heat generated by the combustion is recovered, and the gas conversion energy of the dephosphorization converter gas is converted to obtain the mass conversion gas, and the mass conversion gas passes through the cooling and pressurization, and the part enters and takes off.
  • the phosphorus converter bottom blowing system is used as the bottom blowing gas, and the other part is mixed with oxygen and then enters the dephosphorization converter top blowing system as the top blowing gas to realize the multi-gas O 2 -N 2 -CO 2 blowing dephosphorization and realize through the bottom blowing system.
  • the mass-energy conversion bottom-bottom agitation replaces the O 2 and bottom-blowing Ar/N 2 of the existing dephosphorization converter to realize the conversion of the conversion gas for efficient dephosphorization.
  • the gas flow rate of each smelting stage is different when the mass-energy conversion gas is blown and dephosphorized, specifically:
  • the top blowing energy conversion gas intensity is 0-0.5Nm 3 /min/t
  • the top blowing O 2 intensity is 1.0-2.5Nm 3 /min/t.
  • Conversion gas strength 0.05-0.3Nm 3 /min / t;
  • the top blowing energy conversion gas intensity is 0.2-1.0Nm 3 /min/t
  • the top blowing O 2 intensity is 0.8-1.8Nm 3 /min/t
  • the bottom blowing mass energy conversion gas intensity is 0.1-0.5 Nm 3 /min / t;
  • the top blowing mass energy conversion gas is stopped, and the bottom blowing mass energy conversion gas intensity is 0.03-0.15 Nm 3 /min/t to protect the bottom blowing element.
  • the mass conversion gas pressure is ensured to be higher than the oxygen pressure by 0.01-0.5 MPa.
  • the cooled and dedusted dispersing gas is combusted in a combustion chamber
  • the combustion chamber includes a combustion-supporting nozzle and an ignition device
  • the combustion chamber lining is made of refractory material
  • the outer casing is vaporized cooling pipe
  • the vaporization cooling pipe is connected with a steam steam drum for recycling. The heat generated by the combustion process.
  • mass-energy conversion can access a nitrogen blanket gas top-blown converter pipe systems, dust removal systems and dosing systems, instead of N 2 completely sealed top-blowing lance for dephosphorization converter, dust hoods, feeding system device, Prevent air from entering the flue.
  • the invention relates to a dephosphorization converter gas mass energy conversion cycle multi-component injection high-efficiency dephosphorization device, the device comprises a dephosphorization converter for double steelmaking, a cooling device, a dust removal device, a discharge chimney; a dephosphorization converter for double steelmaking Connected to the cooling device, the dust removal device is connected to the cooling device, the exhaust chimney is connected to the dust removal device; the dephosphorization converter of the double steelmaking includes the top blowing system and the bottom blowing system The top blowing system and the bottom blowing system respectively blow the top blowing gas and the bottom blowing gas from the top and bottom of the converter to realize the dephosphorization process, and the gas generated in the dephosphorization process is cooled by the cooling device and the dust removing device in sequence, and then discharged into the dust. a pipe in front of the chimney;
  • the device further includes a combustion chamber, a cooling device 2, a compressor, a buffer device, and a mixing device;
  • the air inlet of the combustion chamber is connected to a dust removal device and a pipe between the exhaust chimneys;
  • the air outlet of the combustion chamber is connected to the cooling device 2;
  • the cooling device 2 the compressor and the buffer device are connected in sequence;
  • the buffer device is provided with two outlets, one of which is connected to the bottom blowing system and the other of which is connected to the inlet of the mixing device;
  • An oxygen supply device is also connected to the inlet of the mixing device
  • the mixing device is connected to the top blowing system
  • the cooled and dust-removed gas enters the combustion chamber, converts the CO component in the released gas into CO 2 to obtain the mass-energy conversion gas, and the mass-converting gas is cooled and pressurized into the buffer device, and then the mass conversion gas is partially introduced into the dephosphorization converter.
  • the bottom blowing system is used as the bottom blowing gas, and the other part is mixed with oxygen and then enters the dephosphorization converter top blowing system as the top blowing gas.
  • the combustion chamber includes a combustion-supporting nozzle and an ignition device
  • the combustion chamber inner liner is made of refractory material
  • the outer casing is made of a vaporization cooling pipe
  • the vaporization cooling pipe is connected with a steam steam drum to recover heat generated by the combustion process.
  • a gas analyzer is disposed at an air outlet of the combustion chamber.
  • a gas analyzer is disposed in the dust removing device.
  • the method is applicable to a dephosphorization converter of 30-350 tons, and the conversion energy of the gas per ton of steel gas is 10-50 Nm 3 , and the vaporization cooling device of the combustion chamber can recover the steam amount of 5-20 kg, N 2
  • the strong agitation and temperature control of CO 2 provide good thermodynamic and kinetic conditions for the dephosphorization converter and increase the dephosphorization rate by more than 5%.
  • Fig. 1 is a schematic diagram of a device for dephosphorization converter gas mass energy conversion cycle multi-ejection efficient dephosphorization
  • Converter 201. Vaporization cooling flue, 202. Cooler nozzle, 203. Evaporative cooler, 3. Electrostatic precipitator, 4. Fan, 5. Discharged chimney, 6. Combustion chamber, 601. Combustion burner Nozzle, 7. recovery steam device, 8. gas analyzer, 9. gas cooler, 10. compressor, 11. buffer device, 12. top blowing system, 13. bottom blowing system, 14. dissipating side bell valve, 15. Switching valve one, 16. switching valve two, 17. mixing device.
  • a method for dephosphorization converter gas mass energy conversion cycle multi-component injection high-efficiency dephosphorization is:
  • the dephosphorization converter In the dephosphorization converter of the double-sand steelmaking, the dephosphorization converter is discharged and the gas is burned in the combustion chamber by the combustion-supporting agent after being cooled and dedusted, and the CO component in the dissolving gas is burned and converted into CO 2 , and the combustion chamber includes the combustion-supporting nozzle.
  • the ignition device the lining of the combustion chamber is made of refractory material, the outer casing adopts a vaporization cooling pipeline, the vaporization cooling pipeline is connected with the steam steam drum, the heat generated by the combustion process is recovered, and the gas conversion energy of the dephosphorization converter gas is converted to obtain the mass energy conversion gas;
  • the mass-converting gas After the mass-converting gas is cooled and pressurized, part of it enters the dephosphorization converter bottom blowing system as the bottom blowing gas to realize the mass-energy conversion bottom-bottom agitation, and the other part is mixed with oxygen and enters the dephosphorization converter top-blowing system as the top-blowing gas.
  • the multi-gas O 2 -N 2 -CO 2 is sprayed and dephosphorized, and the O 2 and bottom blowing Ar/N 2 of the existing dephosphorization converter are replaced to realize the conversion of the conversion gas for efficient dephosphorization.
  • the gas flow rate of each smelting stage is different when the mass-energy conversion gas is blown and dephosphorized, specifically:
  • the oxidation reaction of the molten pool is heated to slag, the top blowing energy conversion gas intensity is 0-0.5Nm 3 /min/t, the top blowing O 2 intensity is 1.0-2.5Nm 3 /min/t, and the bottom blowing energy conversion gas Strength 0.05-0.3Nm 3 /min/t;
  • the top blowing energy conversion gas intensity is 0.2-1.0Nm 3 /min/t
  • the top blowing O 2 intensity is 0.8-1.8Nm 3 /min/t
  • the bottom blowing mass energy conversion gas intensity is 0.1-0.5 Nm 3 /min / t;
  • the top blowing mass energy conversion gas is stopped, and the bottom blowing mass energy conversion gas intensity is 0.03-0.15 Nm 3 /min/t to protect the bottom blowing element.
  • the pressure of the mass-energy conversion gas is guaranteed to be higher than the oxygen pressure by 0.01-0.5 MPa or more.
  • the mass-energy conversion gas can be connected to the nitrogen sealing pipeline of the converter top blowing system, the dust removing system and the feeding system, completely replacing the sealing of the N 2 for the dephosphorization converter top blowing spray gun, the dust collecting hood and the feeding system equipment, and preventing Air enters the flue, where the converter top blowing system, the dedusting system and the nitrogen sealing line of the charging system are both existing in the prior art converter.
  • the utility model relates to a dephosphorization converter gas mass energy conversion cycle multi-component injection high-efficiency dephosphorization device, which comprises a dephosphorization converter for double steelmaking, a cooling device, a dust removing device and a discharge chimney 5.
  • the cooling device 1 includes a vaporization cooling flue 201, a cooler nozzle 202, and an evaporative cooler 203 connected in sequence; the dust removing device uses an electric precipitator 3, and the electric precipitator includes a gas analyzer.
  • the dephosphorization converter 1 of the double steelmaking is connected to the vaporization cooling flue 201, the electrostatic precipitator 3 is connected to the evaporative cooler 203, the decanting chimney 5 is connected to the electrostatic precipitator 3, and the dephosphorization converter 1 of the double steelmaking includes the top blowing The system 12 and the bottom blowing system 13; the top blowing system 12 and the bottom blowing system 13 respectively blow the top blowing gas and the bottom blowing gas from the top and bottom of the converter 1 to realize the dephosphorization process, and the gas generated in the dephosphorization process is sequentially cooled by vaporization.
  • the flue 201, the cooler nozzle 202, the evaporative cooler 203, and the electrostatic precipitator 3 are cooled and dedusted and then enter the discharge chimney 5 The front pipe.
  • the electrostatic precipitator 3 and the discharge chimney 5 are connected by a pipe, the fan 4 is disposed near the side of the electrostatic precipitator 3, and the side bell valve 14 is disposed near the side of the dispersing chimney 4, and the side bell valve 14 and the chimney stack 5 are disposed.
  • the apparatus further includes a combustion chamber 6, a cooling device 2, a compressor 8, a buffer device 11, and a mixing device 17; the cooling device 2 employs a gas cooler 9.
  • the gas inlet of the combustion chamber 6 is connected to the other pipe, and the gas outlet of the combustion chamber 6 is connected to the gas cooler 9, and the gas cooler 9, the compressor 10, and the buffer device 11 are sequentially connected.
  • the buffer device 11 is provided with two outlets, one of which is connected to the bottom blowing system 13 and the other of which is connected to the top blowing system 12; the top blowing system 12 is provided with a mixing device 17, and the inlet of the mixing device 17 is also connected for Oxygen device.
  • the cooled and dust-removed gas enters the combustion chamber, converts the CO component in the released gas into CO 2 to obtain the mass-energy conversion gas, and the mass-converting gas is cooled and pressurized into the buffer device, and then the mass conversion gas is partially introduced into the dephosphorization converter.
  • the bottom blowing system is used as the bottom blowing gas, and the other part is mixed with oxygen and then enters the dephosphorization converter top blowing system as the top blowing gas.
  • the mass conversion gas is mixed with oxygen in the mixing device, and mixed to obtain the multicomponent gas O 2 -N 2 - CO 2 , top blowing into the converter 1.
  • the mixed multi-component gas O 2 -N 2 -CO 2 is sprayed into the dephosphorization converter 1 through a 3-7-hole supersonic top-blowing lance; the bottom blowing energy conversion gas can pass through a 4-16 ring-slot or porous plug The casing or casing type bottom blowing element is blown into the dephosphorization converter 1.
  • the combustion chamber 6 includes a combustion-supporting nozzle 601 and an ignition device.
  • the combustion chamber lining is made of refractory material
  • the outer casing is made of a vaporization cooling pipe
  • the vaporization cooling pipe is connected to the steam drum 7 to recover heat generated by the combustion process.
  • the combustion-supporting agent is injected into the combustion chamber 6 through the nozzle 601, and the combustion-supporting agent adopts oxygen.
  • a gas analyzer 8 is provided at the gas outlet of the combustion chamber 6.
  • the pressure of the mass transfer gas compressed by the compressor 8 is 0.01-0.5 MPa higher than that of the oxygen supply device to ensure a smooth transition of the mass energy. It is mixed with oxygen in the mixing device 17.
  • the principle of the invention is: the dephosphorization converter smelting process of the double steelmaking is a selective oxidation process of phosphorus and carbon, in order to achieve "dephosphorization and carbon preservation", the top blowing O 2 flow rate is small and the temperature is low, the decarburization reaction Limited, the CO content in the gas is only 5%-30%, the CO 2 content is 10%-30%, the gas calorific value is low, the economic value of recycling is not available, the CO content is low, the gas quality is poor, and it is not available.
  • the dephosphorization converter smelting process of the double steelmaking is a selective oxidation process of phosphorus and carbon, in order to achieve "dephosphorization and carbon preservation", the top blowing O 2 flow rate is small and the temperature is low, the decarburization reaction Limited, the CO content in the gas is only 5%-30%, the CO 2 content is 10%-30%, the gas calorific value is low, the economic value of recycling is not available, the CO content is low, the gas quality is poor
  • Mass energy conversion is the main component gas CO 2, N 2 and a small amount of residual O 2, wherein the CO 2 content of more than 35%, CO 2 are weakly oxidizing agent, at a temperature of steel, molten iron with C, Fe, Si, The Mn element can undergo oxidation reaction, and the reaction with C and Fe elements is an endothermic reaction, which is beneficial to control the dephosphorization temperature.
  • Embodiment 1 adopts the method and device in Embodiment 1, and the specific conditions are as follows:
  • the gas content changes during the blowing process are shown in Table 1.
  • the composition of the converter gas is shown in Table 1 below.
  • the mass-energy conversion gas is pressurized to 2.2 MPa or more by a compressor and stored in a buffer device, and the average composition is CO 2 : 39%, N 2 : 59.25%, and the balance is a small amount of residual gas.
  • the mass-energy conversion gas is blown into the multi-gas main pipe by spraying, and is mixed with oxygen through a gas mixing device, and the mixed multi-component gas O 2 -N 2 -CO 2 is sprayed into the dephosphorization converter through a 4-hole supersonic top-blowing lance.
  • the bottom blown mass transfer gas is blown into the dephosphorization converter through 16 ring-shaped bottom blowing elements.
  • the specific blowing includes the following steps:
  • the ratio of oxygen injection should be increased, which is beneficial to the temperature rise of the molten pool and rapid slag formation.
  • the top blowing energy conversion gas intensity is 0.2Nm 3 /min/t, and the top blowing O 2 intensity is 1.8Nm 3 /min/t.
  • the top blowing energy conversion gas intensity is 0.9Nm 3 /min/t
  • the top blowing O 2 intensity is 0.9Nm. 3 /min / t
  • the bottom blowing mass energy conversion gas intensity is 0.3 Nm 3 / min / t;
  • the temperature and composition of the molten pool are further dephosphorized, and the conversion gas strength is appropriately reduced.
  • the top blowing energy conversion gas intensity is 0.4Nm 3 /min/t
  • the top blowing O 2 intensity is 1.4Nm 3 /min/t.
  • the bottom blown mass transfer gas intensity is 0.3 Nm 3 /min/t;
  • the bottom blowing gas mass can be converted to intensity 0.05Nm 3 / min / t, the protective element bottom blowing.
  • the method of the invention is applied to a 300 dephosphorization converter, the conversion energy of the gas per ton of steel gas is 45 Nm 3 , and the vaporization cooling device of the combustion chamber can recover 12 kg of steam and increase the dephosphorization rate by 7.5%, and the mass conversion of the invention N 2 gas seal may completely replace the subsidiary converter for dephosphorization device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

一种脱磷转炉煤气质能转换循环多元喷吹高效脱磷的方法和装置,将脱磷转炉煤气经过降温、除尘后进入燃烧室(6),在燃烧室(6)中将煤气CO组分转换为CO 2,同时回收燃烧产生的热量,实现脱磷转炉煤气质能转换,转换后的气体通过脱磷转炉顶吹系统(12)实现多元气体O 2-N 2-CO 2喷吹脱磷、通过底吹系统(13)实现质能转换气底吹搅拌,分阶段控制多元喷吹过程。该方法和装置适用于30-350吨脱磷转炉,利用质能转换气中N 2、CO 2的强搅拌及控温作用,为脱磷提供良好的热力学和动力学条件,提高脱磷率5%以上,资源化利用脱磷煤气10-50Nm 3/t钢,回收蒸汽量5-20kg/t钢。

Description

脱磷转炉煤气质能转换循环多元喷吹高效脱磷方法和装置 技术领域
本发明属于钢铁冶金工艺及节能减排领域,尤其是炼钢脱磷预处理方面,特别涉及一种适用于双联炼钢工艺中的30-350吨脱磷转炉煤气质能转换循环应用于脱磷过程多元顶吹及底吹、实现高效脱磷及煤气资源循环利用的方法和装置。
背景技术
转炉炼钢过程脱磷主要在冶炼前期的低温条件下进行,若供氧流量大,脱磷反应易受脱硅反应后熔池迅速升温的热力学条件限制,造成吹炼过程温度不易控制、脱磷率不稳定,若供氧流量小,熔池搅拌动力学条件较差。为生产高品质钢种,日本新日铁、我国宝钢、首钢京唐等企业采用转炉双联冶炼工艺,在双联炼钢脱磷转炉内,为控制熔池温度,通常采用低流量供氧造渣控温,实现高效脱磷,但脱磷转炉内搅拌动力学条件较差,钢液过氧化严重导致炉渣发泡,脱磷速度和效率受到限制。若能提高脱磷过程的熔池搅拌能力,将有利于提高脱磷率。
脱磷转炉每生产1吨钢可产生煤气20-40m3,煤气中含CO5%-30%,CO210%-30%,其余主要为N2以及微量O2,由于脱磷转炉煤气热值偏低,不具备回收利用的经济价值,目前国内外钢铁企业均采用放散处理,既造成资源和能源浪费,又污染环境。若能将脱磷转炉煤气进行质能转换,作为资源循环应用于脱磷转炉的冶炼过程,将有利于强化脱磷动力学条件,提高脱磷率,同时有利于减少废气排放。
发明内容
为解决上述问题,本发明提供一种转炉双联炼钢工艺的脱磷转炉煤气质能转换循环多元喷吹高效脱磷的方法和装置,将脱磷转炉煤气通过燃烧的方式实现物质和能量转换,利用质能转换气体中N2、CO2的强搅拌及控温作用,为脱磷反应提供良好的热力学和动力学条件,实现脱磷转炉煤气质能转化后循环利用、达到高效脱磷的目的。
本发明是通过以下技术方案实现的:
一种脱磷转炉煤气质能转换循环多元喷吹高效脱磷的方法,所述方法为:在双联炼钢的脱磷转炉内,将脱磷转炉放散煤气经过降温、除尘后利用助燃剂燃烧,将放散煤气中的CO组分燃烧转变为CO2,同时回收燃烧产生的热量,实现脱磷转炉煤气质能转换得到质能转换气,质能转换气通过降温、加压后,一部分进入脱磷转炉底吹系统作为底吹气体,另一部分和氧气混合后进入脱磷转炉顶吹系统作为顶吹气体,实现多元气体O2-N2-CO2喷吹脱磷、及通过底吹系统实现质能转换气底吹搅拌,替代现有脱磷转炉顶吹部分O2及底吹Ar/N2,实现转换气循环利用于高效脱磷。
进一步地,质能转换气体喷吹脱磷时各冶炼阶段气体流量不同,具体为:
吹炼前期,熔池氧化反应升温有利于造渣,顶吹质能转换气强度0-0.5Nm3/min/t,顶吹O2强度1.0-2.5Nm3/min/t,底吹质能转换气强度0.05-0.3Nm3/min/t;
吹炼中期,提高质能转换气强度,控制脱磷温度并强化搅拌,顶 吹质能转换气强度0.2-1.0Nm3/min/t,顶吹O2强度0.8-1.8Nm3/min/t,底吹质能转换气强度0.1-0.5Nm3/min/t;
吹炼后期,均匀熔池温度和成分,进一步脱磷,顶吹质能转换气强度0.1-0.6Nm3/min/t,顶吹O2强度1.0-2.0Nm3/min/t,底吹质能转换气强度0.05-0.4Nm3/min/t;
装料、出钢及等待过程,停止顶吹质能转换气,底吹质能转换气强度为0.03-0.15Nm3/min/t,保护底吹元件。
进一步地,所述的助燃剂为O2,助燃剂用量随脱磷转炉放散煤气中CO含量变化而变化,为保证煤气质能转换充分,应保持流量比O2:CO=0.5-1.5:1。
进一步地,质能转换气与氧气混合过程中,保证质能转换气压力高于氧气压力0.01-0.5MPa。
进一步地,降温、除尘后的放散煤气在燃烧室燃烧,所述燃烧室包括助燃剂喷嘴和点火装置,燃烧室内衬采用耐火材料、外壳采用汽化冷却管道,汽化冷却管道连接蒸汽汽包,回收燃烧过程产生的热量。
进一步地,所述质能转换气可接入转炉顶吹系统、除尘系统和加料系统的氮封管道,完全代替N2用于脱磷转炉顶吹喷枪、除尘烟罩、加料系统设备的密封,防止空气进入烟道。
一种脱磷转炉煤气质能转换循环多元喷吹高效脱磷的装置,所述装置包括双联炼钢的脱磷转炉、冷却装置一、除尘装置、放散烟囱;双联炼钢的脱磷转炉与冷却装置相连,除尘装置与冷却装置相连,放散烟囱与除尘装置相连;双联炼钢的脱磷转炉包括顶吹系统和底吹系 统;顶吹系统和底吹系统分别从转炉顶部和底部吹入顶吹气体和底吹气体实现脱磷过程,脱磷过程中产生的煤气依次通过冷却装置、除尘装置进行冷却、除尘后进入放散烟囱前的管道;
所述装置还包括燃烧室、冷却装置二、压缩机、缓冲装置和混匀装置;
所述燃烧室的进气口和除尘装置及放散烟囱间的管道相连;
所述燃烧室的出气口和冷却装置二相连;
冷却装置二、压缩机、缓冲装置依次相连;
缓冲装置设有两个出口,其中一个出口和底吹系统相连,另一个出口和混匀装置的入口相连;
混匀装置的入口还连接有供氧装置;
混匀装置和顶吹系统相连;
经冷却除尘的煤气进入燃烧室,将放散煤气中的CO组分燃烧转变为CO2得到质能转换气,质能转换气经冷却加压进入缓冲装置,随后质能转换气一部分进入脱磷转炉底吹系统作为底吹气体,另一部分和氧气混合后进入脱磷转炉顶吹系统作为顶吹气体。
进一步地,燃烧室包括助燃剂喷嘴和点火装置,燃烧室内衬采用耐火材料、外壳采用汽化冷却管道,汽化冷却管道连接蒸汽汽包,回收燃烧过程产生的热量。
进一步地,所述燃烧室的出气口处设置有气体分析仪。
进一步地,所述除尘装置内设有气体分析仪。
本发明的有益技术效果:该方法适用于30-350吨脱磷转炉,吨 钢煤气质能转换量为10-50Nm3,同时利用燃烧室的汽化冷却装置可回收蒸汽量5-20kg,N2、CO2的强搅拌及控温作用为脱磷转炉提供良好的热力学和动力学条件,提高脱磷率5%以上。
附图说明
图1脱磷转炉煤气质能转换循环多元喷吹高效脱磷的装置示意图;
图中,1.转炉、201.汽化冷却烟道、202.冷却器喷嘴、203.蒸发冷却器、3.电除尘器、4.风机、5.放散烟囱、6.燃烧室、601.助燃器喷嘴、7.回收蒸汽装置、8.气体分析仪、9.气体冷却器、10.压缩机、11.缓冲装置、12.顶吹系统、13.底吹系统、14.放散侧钟型阀、15.切换阀一、16.切换阀二、17.混合装置。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
相反,本发明涵盖任何由权利要求定义的在本发明的精髓和范围上做的替代、修改、等效方法以及方案。进一步,为了使公众对本发明有更好的了解,在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。
实施例1
一种脱磷转炉煤气质能转换循环多元喷吹高效脱磷的方法, 所述方法为:
在双联炼钢的脱磷转炉内,将脱磷转炉放散煤气经过降温、除尘后利用助燃剂在燃烧室燃烧,将放散煤气中的CO组分燃烧转变为CO2,燃烧室包括助燃剂喷嘴和点火装置,燃烧室内衬采用耐火材料、外壳采用汽化冷却管道,汽化冷却管道连接蒸汽汽包,回收燃烧过程产生的热量,实现脱磷转炉煤气质能转换得到质能转换气;
质能转换气通过降温、加压后,一部分进入脱磷转炉底吹系统作为底吹气体实现质能转换气底吹搅拌,另一部分和氧气混合后进入脱磷转炉顶吹系统作为顶吹气体,实现多元气体O2-N2-CO2喷吹脱磷,替代现有脱磷转炉顶吹部分O2及底吹Ar/N2,实现转换气循环利用于高效脱磷。
质能转换气体喷吹脱磷时各冶炼阶段气体流量不同,具体为:
吹炼前期,熔池氧化反应升温造渣,顶吹质能转换气强度0-0.5Nm3/min/t,顶吹O2强度1.0-2.5Nm3/min/t,底吹质能转换气强度0.05-0.3Nm3/min/t;
吹炼中期,提高质能转换气强度,控制脱磷温度并强化搅拌,顶吹质能转换气强度0.2-1.0Nm3/min/t,顶吹O2强度0.8-1.8Nm3/min/t,底吹质能转换气强度0.1-0.5Nm3/min/t;
吹炼后期,均匀熔池温度和成分,进一步脱磷,顶吹质能转换气强度0.1-0.6Nm3/min/t,顶吹O2强度1.0-2.0Nm3/min/t,底吹质能转换气强度0.05-0.4Nm3/min/t;
装料、出钢及等待过程,停止顶吹质能转换气,底吹质能转换气 强度为0.03-0.15Nm3/min/t,保护底吹元件。
所述的助燃剂为O2,助燃剂的量随脱磷转炉放散煤气中CO含量变化而变化,为保证煤气质能转换充分,应保持流量比O2:CO=0.5-1.5:1。
质能转换气与氧气混合过程中,保证质能转换气压力高于氧气压力0.01-0.5MPa以上。
同时,所述质能转换气可接入转炉顶吹系统、除尘系统和加料系统的氮封管道,完全代替N2用于脱磷转炉顶吹喷枪、除尘烟罩、加料系统设备的密封,防止空气进入烟道,其中的转炉顶吹系统、除尘系统和加料系统的氮封管道是现有技术转炉既有的。
一种脱磷转炉煤气质能转换循环多元喷吹高效脱磷的装置,所述装置包括双联炼钢的脱磷转炉1、冷却装置一、除尘装置、放散烟囱5。
其中,冷却装置一包括依次相连的汽化冷却烟道201、冷却器喷嘴202、蒸发冷却器203;除尘装置采用电除尘器3,电除尘器中包括气体分析仪。
双联炼钢的脱磷转炉1与汽化冷却烟道201相连,电除尘器3与蒸发冷却器203相连,放散烟囱5与电除尘器3相连;双联炼钢的脱磷转炉1包括顶吹系统12和底吹系统13;顶吹系统12和底吹系统13分别从转炉1的顶部和底部吹入顶吹气体和底吹气体实现脱磷过程,脱磷过程中产生的煤气依次通过汽化冷却烟道201、冷却器喷嘴202、蒸发冷却器203、电除尘器3进行冷却、除尘后进入放散烟囱5 前的管道。
电除尘器3与放散烟囱5间通过管道连接,管道靠近电除尘器3侧设置有风机4,靠近放散烟囱4侧设置有放散侧钟型阀14,放散侧钟型阀14与放散烟囱5设有两个切换阀15、16,当脱磷转炉煤气中CO和CO2总量小于18%时,切换阀15使通过放散侧钟型阀14的煤气进入放散烟囱5,通过放散烟囱5排出,当煤气中CO和CO2总量大于18%时,切换阀16使通过放散侧钟型阀14的煤气进入另一管道。
所述装置还包括燃烧室6、冷却装置二、压缩机8、缓冲装置11和混匀装置17;冷却装置二采用气体冷却器9。
所述燃烧室6的进气口和上述另一管道相连,所述燃烧室6的出气口和气体冷却器9相连,气体冷却器9、压缩机10、缓冲装置11依次相连。
缓冲装置11设有两个出口,其中一个出口和底吹系统13相连,另一个出口和顶吹系统12相连;顶吹系统12设置有混匀装置17,混匀装置17的入口还连接有供氧装置。
经冷却除尘的煤气进入燃烧室,将放散煤气中的CO组分燃烧转变为CO2得到质能转换气,质能转换气经冷却加压进入缓冲装置,随后质能转换气一部分进入脱磷转炉底吹系统作为底吹气体,另一部分和氧气混合后进入脱磷转炉顶吹系统作为顶吹气体在混匀装置内将质能转换气与氧气混合,混合后得到多元气体O2-N2-CO2,顶吹进入转炉1。
混匀后的多元气体O2-N2-CO2通过3-7孔超音速顶吹喷枪喷入脱 磷转炉1内;底吹质能转换气可通过4-16支环缝式或多孔塞式或套管式底吹元件吹入脱磷转炉1内。
燃烧室6包括助燃剂喷嘴601和点火装置,燃烧室内衬采用耐火材料、外壳采用汽化冷却管道,汽化冷却管道连接蒸汽汽包7,回收燃烧过程产生的热量。
助燃剂经喷嘴601喷入燃烧室6,助燃剂采用氧气,助燃剂用量依据除尘后煤气成分而变化,保持流量比O2:CO=0.5-1.5:1,保证煤气质能转换充分。
为了监控经燃烧室排出气体的成分,所述燃烧室6的出气口处设置有气体分析仪8。
因混匀装置17混合时氧气的量显著高于质能转换气,经压缩机8压缩后的质能转换气的压力比供氧装置内氧气高0.01-0.5MPa,以保证质能转换气顺利和氧气在混匀装置17内混合。
本发明的原理是:双联炼钢的脱磷转炉冶炼过程是磷和碳的选择性氧化过程,为实现“脱磷保碳”,顶吹O2流量较小且温度较低,脱碳反应受到限制,煤气中CO含量仅为5%-30%、CO2含量为10%-30%,煤气热值偏低,不具备回收利用的经济价值,CO含量较低,煤气品质差,不具备作为燃料回收的价值,目前钢铁企业均对脱磷转炉煤气进行放散处理,既造成资源和能源浪费,又污染环境。
本发明利用燃烧室中设置的助燃剂喷嘴喷吹O2,发生反应2CO+O2=2CO2,将低品质脱磷转炉煤气中的CO转化为CO2,同时回收燃烧产生的能量,实现质能转换。质能转换气主要成分为CO2、 N2及少量残余O2,其中CO2含量达到35%以上,CO2属于弱氧化性物质,在炼钢温度下,与铁水中C、Fe、Si、Mn元素均能发生氧化反应,且与C、Fe元素反应是吸热反应,有利于控制脱磷温度,同时CO2与熔池元素反应产生的大量CO气泡上浮具有强烈的化学搅拌力,强化脱磷动力学条件;质能转换气中的N2不和熔池元素反应,但可加强脱磷熔池搅拌,促进脱磷反应进行。
实施例2
本实施例采用实施例1中方法和装置,具体条件为:
对于300t脱磷转炉,吹炼过程煤气含量变化如表1所示。煤气瞬时流量为160000-190000Nm3/h,煤气经过汽化冷却烟道及干法除尘系统降温、除尘后,通过放散管道进入燃烧室,采用8支燃烧喷嘴喷吹助燃剂,助燃剂流量随脱磷转炉煤气成分变化如下表1所示。
表1脱磷转炉煤气和助燃剂流量
Figure PCTCN2017087812-appb-000001
利用压缩机将质能转换气加压至2.2MPa以上储存于缓冲装置 中,平均成分为CO2:39%,N2:59.25%,其余为少量残余气体。将质能转换气以喷射方式吹入多元气体总管,并和氧气通过气体混匀装置,混匀后的多元气体O2-N2-CO2通过4孔超音速顶吹喷枪喷入脱磷转炉内;底吹质能转换气通过16支环缝式底吹元件吹入脱磷转炉内。
具体吹炼包括以下步骤:
吹炼前期,应提高氧气喷吹比例,有利于熔池升温及快速成渣,顶吹质能转换气强度0.2Nm3/min/t,顶吹O2强度1.8Nm3/min/t,顶吹多元气体比例为CO2:N2:O2=1:1.5:23,底吹质能转换气强度0.2Nm3/min/t;
吹炼中期,要求强化熔池搅拌,控制脱磷熔池温度,因此应提高质能转换气喷吹强度,顶吹质能转换气强度0.9Nm3/min/t,顶吹O2强度0.9Nm3/min/t,顶吹多元气体比例为CO2:N2:O2=1:1.5:2.6,底吹质能转换气强度0.3Nm3/min/t;
吹炼后期,均匀熔池温度和成分,进一步脱磷,适当降低转换气强度,顶吹质能转换气强度0.4Nm3/min/t,顶吹O2强度1.4Nm3/min/t,顶吹多元气体比例为CO2:N2:O2=1:1.5:9,底吹质能转换气强度0.3Nm3/min/t;
装料、出钢及等待过程,停止顶吹质能转换气,底吹质能转换气强度为0.05Nm3/min/t,保护底吹元件。
将本发明的方法应用于300脱磷转炉,吨钢煤气质能转换量为45Nm3,同时利用燃烧室的汽化冷却装置可回收蒸汽量12kg,提高脱磷率7.5%,本发明的质能转换气可完全代替N2用于脱磷转炉附属设 备的密封。

Claims (10)

  1. 一种脱磷转炉煤气质能转换循环多元喷吹高效脱磷的方法,其特征在于,所述方法为:
    在双联炼钢的脱磷转炉内,将脱磷转炉放散煤气经过降温、除尘后利用助燃剂燃烧,将放散煤气中的CO组分燃烧转变为CO2,同时回收燃烧产生的热量,实现脱磷转炉煤气质能转换得到质能转换气;
    质能转换气通过降温、加压后,一部分进入脱磷转炉底吹系统作为底吹气体进入转炉内实现质能转换气底吹搅拌,另一部分和氧气混合后进入脱磷转炉顶吹系统作为顶吹气体进入转炉内实现多元气体O2-N2-CO2喷吹脱磷,替代现有脱磷转炉顶吹部分O2及底吹N2,实现转换气循环利用于高效脱磷;多元喷吹高效脱磷采用分阶段的控制方式。
  2. 如权利要求1所述方法,其特征在于,质能转换气体喷吹脱磷时各冶炼阶段气体流量不同,具体为:
    吹炼前期,熔池氧化反应升温造渣,顶吹质能转换气强度0-0.5Nm3/min/t,顶吹O2强度1.0-2.5Nm3/min/t,底吹质能转换气强度0.05-0.3Nm3/min/t;
    吹炼中期,提高质能转换气强度,控制脱磷温度并强化搅拌,顶吹质能转换气强度0.2-1.0Nm3/min/t,顶吹O2强度0.8-1.8Nm3/min/t,底吹质能转换气强度0.1-0.5Nm3/min/t;
    吹炼后期,均匀熔池温度和成分,进一步脱磷,顶吹质能转换气强度0.1-0.6Nm3/min/t,顶吹O2强度1.0-2.0Nm3/min/t,底吹质能转换气强度0.05-0.4Nm3/min/t;
    装料、出钢及等待过程,停止顶吹质能转换气,底吹质能转换气强度为0.03-0.15Nm3/min/t,保护底吹元件。
  3. 如权利要求1所述方法,其特征在于,所述的助燃剂为O2,助燃剂用量随脱磷转炉放散煤气中CO含量变化而变化,为保证煤气质能转换充分,应保持流量比O2:CO=0.5-1.5:1。
  4. 如权利要求1所述方法,其特征在于,质能转换气与氧气混合过程中,保证质能转换气压力高于氧气压力0.01-0.5MPa。
  5. 如权利要求1所述方法,其特征在于,降温、除尘后的放散煤气在燃烧室燃烧,所述燃烧室包括助燃剂喷嘴和点火装置,燃烧室内衬采用耐火材料、外壳采用汽化冷却管道,汽化冷却管道连接蒸汽汽包,回收燃烧过程产生的热量。
  6. 如权利要求1所述方法,其特征在于,所述质能转换气可接入转炉顶吹系统、除尘系统和加料系统的氮封管道,完全代替N2用于脱磷转炉顶吹喷枪、除尘烟罩、加料系统设备的密封,防止空气进入烟道。
  7. 一种脱磷转炉煤气质能转换循环多元喷吹高效脱磷的装置,所述装置包括双联炼钢的脱磷转炉、冷却装置一、除尘装置、放散烟囱;双联炼钢的脱磷转炉与冷却装置相连,除尘装置与冷却装置相连,放散烟囱与除尘装置相连;双联炼钢的脱磷转炉包括顶吹系统和底吹系统;顶吹系统和底吹系统分别从转炉顶部和底部吹入顶吹气体和底吹气体实现脱磷过程,脱磷过程中产生的煤气依次通过冷却装置、除尘装置进行冷却、除尘后进入放散烟囱前的管道;其特征在于,
    所述装置还包括燃烧室、冷却装置二、压缩机、缓冲装置和混匀装置;
    所述燃烧室的进气口和除尘装置及放散烟囱间的管道相连;
    所述燃烧室的出气口和冷却装置二相连;
    冷却装置二、压缩机、缓冲装置依次相连;
    缓冲装置设有两个出口,其中一个出口和底吹系统相连,另一个出口和混匀装置的入口相连;
    混匀装置的入口还连接有供氧装置;
    混匀装置和顶吹系统相连;
    经冷却除尘的煤气进入燃烧室,将放散煤气中的CO组分燃烧转变为CO2得到质能转换气,质能转换气经冷却加压进入缓冲装置,随后质能转换气一部分进入脱磷转炉底吹系统作为底吹气体,另一部分和氧气混合后进入脱磷转炉顶吹系统作为顶吹气体。
  8. 如权利要求7所述装置,其特征在于,燃烧室包括助燃剂喷嘴和点火装置,燃烧室内衬采用耐火材料、外壳采用汽化冷却管道,汽化冷却管道连接蒸汽汽包,回收燃烧过程产生的热量。
  9. 如权利要求7所述装置,其特征在于,所述燃烧室的出气口处设置有气体分析仪。
  10. 如权利要求7所述装置,其特征在于,所述除尘装置内设有气体分析仪。
PCT/CN2017/087812 2017-05-02 2017-06-09 脱磷转炉煤气质能转换循环多元喷吹高效脱磷方法和装置 WO2018201552A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17908116.1A EP3620541B1 (en) 2017-05-02 2017-06-09 Method and apparatus for high-efficiency dephosphorization by mass-energy conversion cycling and multi-component blowing for dephosphorization converter gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710301930.4A CN107151724B (zh) 2017-05-02 2017-05-02 脱磷转炉煤气质能转换循环多元喷吹高效脱磷方法和装置
CN201710301930.4 2017-05-02

Publications (1)

Publication Number Publication Date
WO2018201552A1 true WO2018201552A1 (zh) 2018-11-08

Family

ID=59793550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087812 WO2018201552A1 (zh) 2017-05-02 2017-06-09 脱磷转炉煤气质能转换循环多元喷吹高效脱磷方法和装置

Country Status (3)

Country Link
EP (1) EP3620541B1 (zh)
CN (1) CN107151724B (zh)
WO (1) WO2018201552A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913614A (zh) * 2019-02-01 2019-06-21 无锡红旗除尘设备有限公司 一种转炉一次干法除尘放散烟气的超低排放净化处理系统
CN115319417A (zh) * 2022-08-20 2022-11-11 欧萨斯能源环境设备(南京)有限公司 一种转炉水冷烟道制造工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI703219B (zh) * 2018-04-24 2020-09-01 日商日本製鐵股份有限公司 熔銑的脫磷方法
CN109234490B (zh) 2018-11-07 2020-06-26 北京科技大学 一种提钒-脱碳双联转炉高效长寿喷吹方法及系统
CN109837358B (zh) * 2019-03-26 2020-04-14 东北大学 一种炼钢烟气自循环复合吹炼系统和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998626A (en) * 1973-03-12 1976-12-21 Pennsylvania Engineering Corporation Method for air pollution control combined with safe recovery and control of gases from a bottom-blown steel converter vessel
JPS55104416A (en) * 1979-01-31 1980-08-09 Nippon Steel Corp Oxygen top blowing steel making method using converter non-combustion exhaust gas
SU1032023A2 (ru) * 1981-07-06 1983-07-30 Украинский Государственный Институт По Проектированию Металлургических Заводов Способ защиты кислородных форм в конверторах донного дуть
CN1664118A (zh) * 2005-03-25 2005-09-07 北京科技大学 一种喷吹co2气体的转炉炼钢工艺
CN101818227A (zh) * 2010-05-05 2010-09-01 北京科技大学 转炉炼钢煤气分离co2循环利用于顶吹及底吹的方法
CN201809374U (zh) * 2010-09-08 2011-04-27 北京科技大学 一种循环利用转炉低浓度co炉气产生转炉煤气的装置
CN104928439A (zh) * 2015-07-08 2015-09-23 北京科技大学 一种利用co2在双联转炉中提高脱磷效率的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772000A (en) * 1971-11-23 1973-11-13 Columbia Gas Syst Method for converting solid ferrous metal to steel
LU84390A1 (de) * 1982-09-27 1984-04-24 Arbed Verfahren und einrichtung zum beheizen eines mit schrott beschickten stahlbades
JP4779388B2 (ja) * 2004-03-25 2011-09-28 Jfeスチール株式会社 溶銑の脱りん方法
CN101694352A (zh) * 2009-09-17 2010-04-14 无锡市东方环境工程设计研究所有限公司 冶金转炉放散煤气余热回收系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998626A (en) * 1973-03-12 1976-12-21 Pennsylvania Engineering Corporation Method for air pollution control combined with safe recovery and control of gases from a bottom-blown steel converter vessel
JPS55104416A (en) * 1979-01-31 1980-08-09 Nippon Steel Corp Oxygen top blowing steel making method using converter non-combustion exhaust gas
SU1032023A2 (ru) * 1981-07-06 1983-07-30 Украинский Государственный Институт По Проектированию Металлургических Заводов Способ защиты кислородных форм в конверторах донного дуть
CN1664118A (zh) * 2005-03-25 2005-09-07 北京科技大学 一种喷吹co2气体的转炉炼钢工艺
CN101818227A (zh) * 2010-05-05 2010-09-01 北京科技大学 转炉炼钢煤气分离co2循环利用于顶吹及底吹的方法
CN201809374U (zh) * 2010-09-08 2011-04-27 北京科技大学 一种循环利用转炉低浓度co炉气产生转炉煤气的装置
CN104928439A (zh) * 2015-07-08 2015-09-23 北京科技大学 一种利用co2在双联转炉中提高脱磷效率的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3620541A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913614A (zh) * 2019-02-01 2019-06-21 无锡红旗除尘设备有限公司 一种转炉一次干法除尘放散烟气的超低排放净化处理系统
CN109913614B (zh) * 2019-02-01 2023-11-07 无锡红旗除尘设备有限公司 一种转炉一次干法除尘放散烟气的超低排放净化处理系统
CN115319417A (zh) * 2022-08-20 2022-11-11 欧萨斯能源环境设备(南京)有限公司 一种转炉水冷烟道制造工艺

Also Published As

Publication number Publication date
EP3620541B1 (en) 2021-10-06
EP3620541A4 (en) 2020-04-08
EP3620541A1 (en) 2020-03-11
CN107151724A (zh) 2017-09-12
CN107151724B (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
WO2018201552A1 (zh) 脱磷转炉煤气质能转换循环多元喷吹高效脱磷方法和装置
WO2020093695A1 (zh) 一种提钒-脱碳双联转炉高效长寿喷吹方法及系统
CN101638702B (zh) 一种煤气作还原气的直接还原工艺出口煤气的回用方法
CN101603104A (zh) 高炉和转炉煤气中co2分离回收和循环利用的方法
CN106103747A (zh) 用于操作顶部气体再循环鼓风炉装置的方法
CN111621612B (zh) 转炉尾气余热干馏煤炭裂解煤气预热炼钢系统及炼钢方法
CN111254250A (zh) 一种提高转炉废钢比的冶炼方法
WO2023240753A1 (zh) 基于高炉-炼钢炉流程耦合碳循环的低碳冶炼系统及方法
CN105238903A (zh) 一种用转炉煤气溅渣护炉作业的方法
CN106978517B (zh) 改质转炉放散煤气资源化应用于炼钢底吹的方法和装置
CN205347482U (zh) 一种利用电石炉尾气制还原气直接还原冶金的系统
CN113234883B (zh) 一种转炉底吹喷粉的冶炼工艺
CN104862444B (zh) 一种防止高拉碳转炉干法除尘系统泄爆的方法
CN213778596U (zh) 用于电弧炉可喷吹粉剂的加热电极装置
CN100560740C (zh) 一种利用co2气体减少炼钢烟尘产生的方法
CN108977620B (zh) 一种提高转炉废钢比的单流道二次燃烧氧枪及其使用方法
CN212713616U (zh) 转炉尾气余热干馏煤炭裂解煤气预热炼钢系统
CN206607251U (zh) 天然气水蒸汽重整后还原红土镍矿球团的系统
CN115522014A (zh) 转炉烟气的处理方法
CN207002781U (zh) 一种利用转炉煤气制备co2及循环喷吹的系统
CN113969329A (zh) 降低二氧化碳排放的金属还原冶炼方法及系统
CN101792844B (zh) 一种电弧炉部分铁水炼钢煤气的干式回收方法
CN112662824A (zh) 一种高效利用冶金废气的高炉富氢冶炼工艺
CN114657317B (zh) 一种低碳冶金方法
CN213113383U (zh) 一种利用热风炉烟道废气输送煤粉的高炉喷吹系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017908116

Country of ref document: EP

Effective date: 20191202