WO2020093623A1 - 一种适应不同钻孔直径的自行进窥视探头及窥视方法 - Google Patents

一种适应不同钻孔直径的自行进窥视探头及窥视方法 Download PDF

Info

Publication number
WO2020093623A1
WO2020093623A1 PCT/CN2019/075872 CN2019075872W WO2020093623A1 WO 2020093623 A1 WO2020093623 A1 WO 2020093623A1 CN 2019075872 W CN2019075872 W CN 2019075872W WO 2020093623 A1 WO2020093623 A1 WO 2020093623A1
Authority
WO
WIPO (PCT)
Prior art keywords
peeping
rocker arm
peeping probe
probe body
rocker
Prior art date
Application number
PCT/CN2019/075872
Other languages
English (en)
French (fr)
Inventor
冯晓巍
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2019375583A priority Critical patent/AU2019375583B2/en
Publication of WO2020093623A1 publication Critical patent/WO2020093623A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/002Survey of boreholes or wells by visual inspection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency

Definitions

  • the invention relates to a peeping probe and a method, in particular to a peeping probe and a peeping method suitable for self-advancing and suitable for different drilling diameters in the fields of geotechnical engineering, mining engineering and geological exploration.
  • the conditions inside the rock layer are relatively hidden, and it is difficult to find details such as cracks, delamination, and broken areas inside the rock layer through naked eye observation and empirical analogy.
  • engineers and technicians mostly use borehole peepers to detect rock formations in rock formations.
  • the borehole peeper can detect the range and variation of the surrounding rock loosening zone of the roadway, test the displacement change of the surrounding rock layer during the stress process, detect the lithology and thickness of the coal seam and its roof rock layer, detect the roadway roof detachment, Cracks, damage, etc.
  • the currently used borehole speculum is mainly composed of peeping host, peeping probe, stainless steel push rod, connecting wire and other accessories.
  • the peep probe is connected to the push rod, and then pushed into the borehole, and then the subsequent push rods are connected in sequence, and gradually advanced into the borehole.
  • the screen monitored by the peeping probe will be displayed on the peeping host in real time, and the speed and amplitude of the push rod can be controlled by peeping through the drilling pattern displayed on the host.
  • the pushing speed and amplitude of the push rod are limited by manual operation, which is easy to cause the image of the key position of the borehole inner wall to be unclear;
  • the push rod when the drilling depth is large, the push rod The stability is difficult to control, especially during the roof drilling peeping process, the push rod is easily caught by the fragmented rock in the drilling fracture zone, which sometimes causes difficulty in pushing;
  • the peeping probe is difficult to center in the drill hole, This leads to poor imaging accuracy, and the front edge of the peeping probe is easily scratched by the inner wall of the borehole, which accumulates rock debris on the peeping probe and deteriorates the imaging effect.
  • the peeping process has strict requirements on the diameter of the borehole. Peeping the probe, the operation process is complicated, and the equipment cost is increased.
  • the purpose of the present invention is to overcome the shortcomings in the prior art, and to provide a self-advancing peeping probe with simple structure, simplified operation process, strong stability, good peeping effect and adaptability to different drilling diameters and Peep method.
  • a self-advancing peeping probe adapted to different drilling diameters of the present invention includes a cylindrical peeping probe body, a convex camera on the top of the peeping probe body, and a connection on the bottom
  • the directional WIFI receiving line interface of the directional WIFI receiving line and the emergency rope connecting post connected to the emergency rope, the inside of the main body of the peeping probe is located under the camera in sequence, and the lens, the video processing module, the battery compartment, the control module and the WIFI module are arranged in turn.
  • the upper and lower parts of the main body are respectively provided with a group of symmetrically arranged side wall grooves, and the positions of the two groups of symmetrically arranged side wall grooves are perpendicular to each other.
  • Each group of side wall grooves is provided with a synchronously acting telescopic swing device.
  • the telescopic swing device includes a rocker arm hinged on the inner wall of the probe body through a main vertical shaft set, and a walking wheel connected to the rocker arm.
  • the main vertical shaft outer ring is provided with a torsion spring, and one end of the torsion spring is overlapped in the peeping probe body
  • On the auxiliary vertical shaft A, the other end is lapped on the auxiliary vertical shaft B in the rocker arm, and the main vertical shaft is simultaneously hinged with a gas spring, and the gas spring is the other Hinged on the vertical axis of the rocker arm located in the swing arm;
  • the rocker arm is provided with a driving motor connected to the walking wheel, the connecting end of the rocker arm and the walking wheel is curved, and the curved section fits the edge of the walking wheel.
  • the outer edge of the connecting end of the rocker arm and the peep probe body is attached with a rocker end detection contact piece.
  • the probe body end is provided at the position corresponding to the rocker end detection contact piece Detection contact piece; the rocker arm is provided with a square rocker lock hole on the outside, and the rocker arm lock block when the rocker arm is at the minimum opening angle is provided on the side of the side wall groove of the peep probe body at the corresponding lock hole position .
  • the diameter of the cylindrical peeping probe body is 35-45mm, and the height is 300-400mm.
  • the length of the emergency rope is 6-20m, and the emergency rope is affixed with a length label in meters.
  • the length of the directional WIFI receiving line is 2-3m, and the length of the directional WIFI transmitting line is 2-4m.
  • the distance between the upper and lower side wall grooves of the peeping probe body is 90-120 mm, the top of the side wall groove is at a right angle, the bottom is inclined, and the angle of inclination is 10 °.
  • the connecting end of the rocker arm and the peeping probe body 1 has an arc-shaped cross-section, and the outer edge of the connecting end and the outer edge of the connecting end of the walking wheel transition in a straight line.
  • the opening angle of the rocker arm under the double action of the torsion spring and the gas spring is up to 30 °.
  • a peeping method using the above self-advancing peeping probe adapted to different drilling diameters includes the following steps:
  • the gas measuring instrument uses the gas measuring instrument to measure the gas content in the peeping area first, to ensure that there is no gas distribution in the peeping area, select the location around the roadway that needs peeping, and then drill the rock layer to make the walking wheel connected to the rocker arm It can be well engaged with the inner wall of the borehole.
  • the diameter of the borehole should be less than the linear distance corresponding to the outer diameter of the walking wheel at the maximum angle of the symmetrical rocker arms on both sides to avoid that the walking wheel may be in contact with the borehole during the peeping probe travel
  • the inner wall is detached or there is an idling phenomenon
  • the electronic control signal is transmitted by controlling the directional WIFI receiving line and directional WIFI transmitting line between the host and the peeping probe body.
  • the receiving end is the peeping probe main body
  • the transmission path is the directional WIFI receiving line
  • the transmitting end is the controlling host.
  • the transmission path is a directional WIFI transmission line; the main body of the peeping probe collects signals and stores the peeping video, referring to the length label attached to the emergency rope in meters, and comparing with the advance distance of the peeping probe displayed by the operator's hand-held control host. ;
  • the main body of the peeping probe (1) can be advanced or retreated by manipulating the host and cooperating with the emergency rope, and the emergency rope can be pulled back.
  • the present invention is suitable for self-advancing peeping with different drilling diameters.
  • the connecting end of the rocker arm and the peeping probe body is an arc-shaped cross section. over.
  • the rocker lock hole and the rocker lock block After completing the peeping operation, when the external force presses the rocker arm into the outer groove of the peep probe, the rocker lock hole is entered by pushing the rocker lock block to avoid shaking
  • the arm pops up twice for easy storage.
  • the opening angle of the rocker arm under the double action of the torsion spring and the gas spring is up to 30 °, and the opening and closing angle of the rocker arm and the damping during the opening and closing angle are ensured by the torsion spring and the gas spring.
  • the torsion spring and the gas spring can ensure the opening and closing strength of the rocker arm, can adapt the peeping probe to drilling holes of different diameters, ensure the buckling force of the walking wheel and the inner wall of the drilling hole during the travel process, and prevent loose and idling situations.
  • the existing technology it has the following advantages:
  • the directional WIFI transmission line and the directional WIFI reception line ensure the directionality of signal transmission.
  • the directional WIFI receiving line connected to the directional WIFI receiving line interface at the bottom of the peeping probe, and the directional WIFI transmitting line connected to the control host the continuity, directivity and stable gain characteristics of the signal transmission are ensured, while the directional WIFI transmitting line One end is attached to the inner wall of the borehole at a distance of 5-10cm from the orifice, which enhances this transmission effect;
  • Figure 1 is a schematic view of the stereoscopic structure of the peeping probe of the present invention
  • FIG. 2 is a schematic view of the rocker arm structure in FIG. 1;
  • FIG. 3 is an enlarged schematic view of the rotating part of the rocker arm structure in FIG. 2;
  • FIG. 4 is a schematic cross-sectional structure diagram of FIG. 1;
  • FIG. 5 is an enlarged schematic view of the structure near the connection between the rocker arm structure and the probe body in FIG. 4;
  • FIG. 6 is a schematic diagram of the structure of the peep probe in practical application.
  • a self-advancing peeping probe adapted to different drilling diameters includes a cylindrical peeping probe body 1, a convex camera 2 is provided on the top of the peeping probe body 1, and a connecting directional WIFI is provided on the bottom
  • the travel control in the borehole 25 is completed by the control host 30, which is connected with a directional WIFI transmitting line 29, as shown in FIG.
  • the length of the directional WIFI receiving line 28 is 2-3m, and the directional WIFI
  • the length of the launch line 29 is 2-4m; the length of the emergency rope 27 is 6-20m, and the emergency rope is affixed with a length label in meters. As shown in FIG.
  • the inside of the peeping probe body 1 is located below the camera 2 in order to set the lens 18, the video processing module 19, the battery compartment 20, the control module 21 and the WIFI module 22, at the upper and lower parts of the peeping probe body 1
  • a set of symmetrically arranged side wall grooves 5 are respectively provided, and the positions of the two sets of symmetrically arranged side wall grooves 5 are perpendicular to each other, and each group of side wall grooves 5 is provided with a synchronously acting telescopic swing device.
  • the distance between the upper and lower side wall grooves 5 of the probe body 1 is 90-120 mm, the top of the side wall groove is at a right angle, the bottom is inclined, and the angle of inclination is 10 °. As shown in FIG.
  • the telescopic swing device includes a rocker arm 4 hinged on the inner wall of the probe body 1 through a main vertical shaft 13 and a walking wheel 3 connected to the rocker arm 4.
  • the rocker arm 4 is provided with a walking wheel 3
  • the connected drive motor 8 has a circular arc-shaped cross section at the connecting end of the rocker arm 4 and the peeping probe body 1. The two are superimposed on each other through the main vertical shaft fixed inside the peeping probe body 1.
  • the rocker arm 4 and the peeping probe body 1 The outer edge of the connecting end and the outer edge of the connecting end of the walking wheel 3 transition in a straight line.
  • the outer ring of the main vertical shaft 13 is provided with a torsion spring 12. As shown in FIG.
  • one end of the torsion spring 12 overlaps the auxiliary vertical shaft A14 in the main body 1 of the peeping probe, and the other end overlaps the auxiliary vertical shaft B15 in the rocker arm ,
  • the gas spring 16 is hinged on the main vertical shaft 13 at the same time, and the other end of the gas spring 16 is hinged on the rocker arm vertical shaft 17 in the swing arm 4; the torsion spring 12 and the gas spring 16 under the double action of the opening of the rocker arm 4
  • the angle can be up to 30 °.
  • the connecting end of the rocker arm 4 and the walking wheel 3 has an arc-shaped cross-section, and the arc-shaped cross-section fits the edge of the walking wheel 3.
  • the rocker arm 4 is attached to the outer edge of the connecting end of the peeping probe body 1.
  • the arm end detection contact 10, the peeping probe body 1 is provided with a probe body end detection contact 11 at the position corresponding to the rocker end detection contact 10 when the rocker 4 reaches the maximum opening angle, that is, the rocker 4 reaches the maximum At the opening angle, the rocker arm detection contact 10 is just engaged with the probe body end detection contact 11 fixed in the probe body 1;
  • the rocker arm 4 is provided with a square rocker arm locking hole 7 corresponding to the locking hole
  • a rocker arm lock block 6 is provided when the rocker arm 4 is at the minimum opening angle, and the rocker arm lock block 6 can be embedded in the rocker arm lock hole 7.
  • FIG. 6 A peeping method using the above-mentioned self-advancing peeping probe adapted to different drilling diameters is shown in FIG. 6, and the specific steps are as follows:
  • the gas measuring instrument uses the gas measuring instrument to measure the gas content in the peeping area first, to ensure that there is no gas distribution in the peeping area, select the location where peeping is needed around the roadway, and then drill the rock layer 26 to connect the rocker arm 4 for walking
  • the wheel 3 will be able to engage well with the inner wall of the borehole 25.
  • the diameter of the borehole 25 should be less than the linear distance corresponding to the outer diameter of the walking wheel 3 when the maximum angle of the symmetrical rocker arms 4 on both sides is extended to avoid peeping into the probe
  • the middle walking wheel 3 may be detached from the inner wall of the borehole 25 or the idle phenomenon may occur;
  • a group of rocker arms entering the rear of the borehole 25 have the same action as the front group of rocker arms.
  • the receiving end is the peeping probe main body 1, and the transmission path is the directional WIFI receiving line 28,
  • the transmitting end is the control host 30, and the transmission path is the directional WIFI transmission line 29;
  • the peeping probe body 1 collects the signal and stores the peeping video, referring to the length label attached to the emergency rope 27 in meters, and displaying it with the operator holding the control host 30
  • the peeping probe advance distance is compared and checked, and the traveling control of the peeping probe body 1 is completed by the control host 30;
  • the rocker arm 4 When the peeping probe encounters an area where the diameter of the borehole 25 becomes larger during travel, the rocker arm 4 will expand under the dual action of the torsion spring 12 and the gas spring 16, and when expanded to the maximum angle, the rocker arm detects the contact blade 10 will be engaged with the probe 11 of the probe body end, feedback warning signal, transmitted by the directional WIFI transmission line 29 to the handheld control host 30, the operator immediately takes measures; in the severely broken area of the borehole 25, when peeping the probe body 1 due to When the stuck rock occurs due to broken rock, pull and adjust the emergency rope 27 to retract the rocker arm 4 in the direction of the groove 5 to avoid the situation where the peeping probe body 1 cannot be retracted; The travel is completed by the walking wheel 3, which has a diameter of 10 mm and a height of 20 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electromagnetism (AREA)
  • Earth Drilling (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种适应不同钻孔直径的自行进窥视探头及方法,探头包括窥视探头主体(1)、摄像头(2)、行走轮(3)、连接行走轮(3)的摇臂(4)、以及操控主机(30),摇臂(4)在内部扭转弹簧(12)和气弹簧(16)的作用下能实现一定角度的阻尼性开合并具警示功能,摇臂(4)通过锁止孔(7)和锁止块(6)可固定在窥视探头侧的凹槽(5)内。该窥视探头通过内部的电源、驱动电机(8)、视频处理模块(19)、控制模块(21)、WIFI模块(22)以及外部操控主机(30)来实现窥视探头在钻孔内的自行进功能。其在钻孔窥视作业过程中具有钻孔居中、自行进、作业人数少的优势,降低了传统钻孔窥视作业中的复杂度,去除了推送杆和视频传输线,辅助配件大大减少。

Description

一种适应不同钻孔直径的自行进窥视探头及窥视方法 技术领域
本发明涉及一种窥视探头及方法,尤其是一种适用于岩土工程、矿山工程和地质勘探领域的自行进并适应不同钻孔直径的窥视探头及窥视方法。
背景技术
在岩土工程、矿山工程以及地质勘探工作中,岩层内部的情况相对隐蔽,肉眼观察及经验类比难以发现岩层内部的裂隙、离层、破碎区域等细节。基于此,工程技术人员多采用钻孔窥视仪在岩层中探测岩层的构造。此外,钻孔窥视仪可探测巷道围岩松动圈范围及其变化情况,测试围岩岩层在受力过程中位移变化量,探测煤层及其顶板岩层的岩性、厚度,探测巷道顶板离层、破裂、破坏情况等。
目前使用的钻孔窥视仪主要由窥视主机、窥视探头、不锈钢推送杆、连接线等附件组成。在实际操作过程中,将窥视探头连接上推送杆,然后推入钻孔,此后依次连接后续推送杆,并逐渐向钻孔内部推进。推进过程中,窥视探头所监测画面将实时显示在窥视主机上,通过窥视主机上显示的钻孔形态来控制推送杆的推进速度及幅度。
但在上述工序背景下,存在以下问题:第一,推送杆的推进速度和幅度受人工操作限制,容易致使钻孔内壁关键位置图像不清晰;第二,当钻孔深度较大时,推送杆的稳定性难以控制,尤其是在顶板钻孔窥视过程中,推送杆容易被钻孔破碎带区域碎裂岩块卡住,有时导致推送困难;第三,窥视探头在钻孔中的居中困难,这导致成像精度差,而且窥视探头前端边缘容易被钻孔内壁剐蹭,在窥视探头上堆积岩屑,恶化成像效果;第四,窥视过程对钻孔直径要求严格,不同直径钻孔需配备不同直径窥视探头,作业过程复杂,设备成本增高。
发明内容
技术问题:本发明的目的是要克服现有技术中的不足之处,提供一种结构简单、操作流程简化、稳定性强、窥视效果好的并能适应不同钻孔直径的自行进窥视探头及窥视方法。
技术方案:为了实现上述目标,本发明的一种适应不同钻孔直径的自行进窥视探头,包括圆柱形的窥视探头主体,所述窥视探头主体的顶部设有凸起的摄像头,底部设有连接定向WIFI接收线的定向WIFI接收线接口和连接应急绳的应急绳连接柱,窥视探头主体的内部位于摄像头的下方依次设有镜片、视频处理模块、电池仓、控制模块和WIFI模块,在窥视探头主体的上下部分别设有一组对称布置的侧壁凹槽,上下部对称布置的两组侧壁凹槽位置相互垂直,每组侧壁凹槽内均设有同步动作的伸缩摆动装置,所述伸缩摆动装置包括通过主立轴套装铰接在探头主体内壁上的摇臂、连接在摇臂上的行走轮,所述的主立轴外圈套有扭转 弹簧,扭转弹簧的一端搭接在窥视探头主体内的副立轴A上,另一端搭接在摇臂内副立轴B上,主立轴上同时铰接有气弹簧,气弹簧另一端铰接在摇臂内位于下摆的摇臂立轴上;摇臂内设有与行走轮相连的驱动电机,摇臂与行走轮连接端呈弧形断面,弧形断面与行走轮的边缘契合,所述的摇臂与窥视探头主体连接端的外缘上黏附有摇臂端检测触片,所述的窥视探头主体在摇臂达到最大开角时对应摇臂端检测触片的位置处设有探头主体端检测触片;所述的摇臂外侧设置有方形摇臂锁止孔,对应锁止孔位置处的窥视探头主体的侧壁凹槽侧设有摇臂为最小开角时的摇臂锁止块。
所述圆柱形的窥视探头主体的直径为35~45mm,高度为300-400mm。
所述应急绳的长度为6-20m,应急绳以米为单位贴附有长度标签。
所述定向WIFI接收线的长度为2-3m,所述的定向WIFI发射线长度为2-4m。
所述窥视探头主体的上下部侧壁凹槽的间距为90-120mm,侧壁凹槽的顶部为直角,底部倾斜,倾斜角度为10°。
所述摇臂与窥视探头主体1连接端为圆弧形断面,该连接端外缘与行走轮连接端外缘以直线过度。
所述扭转弹簧和气弹簧的双重作用下的摇臂的开角最大达30°。
一种使用上述适应不同钻孔直径的自行进窥视探头的窥视方法,包括如下步骤:
a.利用瓦斯测定仪先对窥视区域的瓦斯含量进行测定,确保窥视区域无瓦斯分布,选定巷道周边需要窥视的位置,然后对岩层进行钻孔,为使连接在摇臂上的行走轮将能够较好地与钻孔内壁接合,钻孔的直径应小于两侧对称摇臂张开的最大角度时行走轮外径对应的直线距离,以避免在窥视探头行进过程中行走轮可能与钻孔内壁脱离或者出现空转现象;
b.在窥视探头底部的定向WIFI接收线接口和应急绳连接柱上连接定向WIFI接收线和以米为单位贴附有长度标签的应急绳,先将窥视探头主体上部一组摇臂松开,推动侧壁凹槽侧面的摇臂锁止块解开其与摇臂锁止孔之间的扣合,进而释放摇臂,将窥视探头主体上部的一组摇臂按压收缩,然后将窥视探头推送进入钻孔中,进入钻孔的前部一组摇臂在扭转弹簧和气弹簧的双重作用下,摇臂缓慢向外扩展,顶靠在钻孔周围的侧壁上,再将窥视探头主体下部的一组摇臂松开,以上一组摇臂同样的方式推动摇臂锁止块释放摇臂,并按压摇臂后推送到钻孔中,进入钻孔的后部一组摇臂与前部一组摇臂动作相同,与前一组摇臂成十字支撑顶靠在钻孔周围的侧壁上;
c.继续将窥视探头推送进入钻孔中,在距离钻孔孔口5-10cm位置处用胶布固定定向WIFI发射线,使其紧贴钻孔内壁,将WIFI发射线的另一端与操控主机相连接,通过操控主机控制并监视窥视探头主体的工作状态;
d.通过操控主机和窥视探头主体二者之间的定向WIFI接收线和定向WIFI发射线来传输电控讯号,接收端为窥视探头主体,传输途径为定向WIFI接收线,发射端为操控主机,传输途径为定向WIFI发射线;,窥视探头主体采集信号并存储窥视视频,参考应急绳上以米为单位贴附的长度标签,与操作人员手持操控主机显示的窥视探头前进距离进行比对校核;
e.当窥视探头前进遇到岩层破碎区域时,通过操控主机并配合应急绳,使窥视探头主体(1)前进或后退,拉动应急绳)可实现窥视探头主体的快速后退;
f.当窥视探头在行进过程中遇到钻孔直径变大区域时,摇臂将在扭转弹簧和气弹簧的双重作用下扩展,当扩展到最大角度时,摇臂端检测触片将与探头主体端检测触片接合,反馈警示信号,由定向WIFI发射线传输到手持操控主机上,操作人员立即采取措施;
g.当窥视探头在行进过程中钻孔变形导致直径变小时,摇臂将收缩并压迫扭转弹簧和气弹簧,使窥视探头的整体有效直径变小,适应变形钻孔区域并穿过该区域。
在钻孔破碎严重区域,当窥视探头主体由于碎裂岩石导致卡死现象发生时,拉动并调整应急绳,使摇臂往凹槽的方向回缩,即可避免发生窥视探头主体无法回退的情况发生。
有益效果:由于采用了上述技术方案,本发明适应不同钻孔直径的自行进窥视,摇臂与窥视探头主体连接端为圆弧形断面,该连接端外缘与行走轮连接端外缘以直线过度。通过摇臂锁止孔与摇臂锁止块,完成窥视作业后,外力将摇臂按压进窥视探头外侧凹槽内时,通过推动摇臂锁止块来进入摇臂锁止孔,可避免摇臂二次弹出,方便收纳。采用扭转弹簧和气弹簧的双重作用下的摇臂的开角最大达30°,通过扭转弹簧与气弹簧来保证摇臂的开合角度以及开合角度过程中的阻尼性。此外,扭转弹簧与气弹簧能够保证摇臂的开合力度,能够使窥视探头适应不同直径的钻孔,保证在行进过程中行走轮与钻孔内壁的扣合力,防止出现松脱空转情形。与现有技术相比,具有以下优势:
1)能够适应不同钻孔直径。传统窥视探头直径无法改变,特定钻孔直径需要特定窥视探头。配合摇臂内的扭转弹簧及气弹簧,摇臂可以实现一定角度内的开合,进而适应不同钻孔直径。气弹簧保证了摇臂开合过程的阻尼性,扭转弹簧保证了轮子对钻孔内壁的抓合力,避免滑落;
2)避免接长推送杆,减轻劳动作业强度,加快了窥视作业效率。解决了传统窥视作业中为了使窥视探头到达岩层中特定位置,需要不断接长推送杆,推送速度难以控制的问题,本窥视探头可以实现均速前进,对岩层中的破碎、离层区域观测则可降低行进速度;对完整区域则可以加快行进速度;还能实现对已观测区域的倒退观测和重新采集;
3)作业人数减少。传统钻孔窥视作业中,一般而言需要三位操作人员,一名操作人员顶推送杆,一名操作人员辅助接长推送杆,最后一名操作人员操作操控主机。本发明中可将操 作人员降低至一名,应急情况需要拉动应急绳时需额外添加一名操作人员,多数情形下一名操作人员即可完成操作作业;
4)保证了窥视钻头的居中,避免了窥视探头剐蹭钻孔内壁以及岩屑黏附与探头上的情形发生;
5)定向WIFI发射线和定向WIFI接收线保证信号传输的方向性。通过在窥视探头底部的定向WIFI接收线接口所连接的定向WIFI接收线,以及在操控主机上连接的定向WIFI发射线,确保信号传输的连续性、方向性以及稳定增益特性,而定向WIFI发射线一端贴附在钻孔内壁距离孔口5-10cm处,更是增强了这种传输效果;
6)应急措施完善。通过在窥视探头底部的应急绳连接柱连接应急绳,保证在紧急状况下窥视探头的撤出;同时应急绳上以米为单位贴附有长度标签,依据应急绳标注能够实时与操作人员手持操控主机校核窥视探头所前进距离。
附图说明
图1是本发明的窥视探头立体结构示意图;
图2是图1中的摇臂结构示意图;
图3是图2中摇臂结构旋转部位的放大结构示意图;
图4是图1的剖面结构示意图;
图5是图4中摇臂结构与探头主体连接处附近的放大结构示意图;
图6是本窥视探头实际应用中的结构示意图。
图中:1-窥视探头主体,2-摄像头,3-行走轮,4-摇臂,5-侧壁凹槽,6-摇臂锁止块,7-摇臂锁止孔,8-驱动电机,9-检测触片导线,10-摇臂端检测触片,11-探头主体端检测触片,12-扭转弹簧,13-主立轴,14-副立轴A,15-副立轴B,16-气弹簧,17-摇臂立轴,18-镜片,19-视频处理模块,20-电池仓,21-控制模块,22-WIFI模块,23-定向WIFI接收线接口,24-应急绳连接柱,25-钻孔,26-岩层,27-应急绳,28-定向WIFI接收线,29-定向WIFI发射线,30-操控主机。
具体实施方式
下面结合附图中的实施例对本发明作进一步描述:
如图1所示,一种适应不同钻孔直径的自行进窥视探头,包括圆柱形的窥视探头主体1,所述窥视探头主体1的顶部设有凸起的摄像头2,底部设有连接定向WIFI接收线28的定向WIFI接收线接口23和连接应急绳27的应急绳连接柱24,所述圆柱形的窥视探头主体1的直径为35~45mm,高度为300-400mm;所述窥视探头主体1在钻孔25内的行进控制由操控主机30完成,操控主机上连接有定向WIFI发射线29,如图6所示;所述定向WIFI接收线 28的长度为2-3m,所述的定向WIFI发射线29长度为2-4m;所述应急绳27的长度为6-20m,应急绳以米为单位贴附有长度标签。如图4所示,所述窥视探头主体1的内部位于摄像头2的下方依次设有镜片18、视频处理模块19、电池仓20、控制模块21和WIFI模块22,在窥视探头主体1的上下部分别设有一组对称布置的侧壁凹槽5,上下部对称布置的两组侧壁凹槽5位置相互垂直,每组侧壁凹槽5内均设有同步动作的伸缩摆动装置,所述窥视探头主体1的上下部侧壁凹槽5的间距为90-120mm,侧壁凹槽的顶部为直角,底部倾斜,倾斜角度为10°。如图5所示,所述伸缩摆动装置包括通过主立轴13套装铰接在探头主体1内壁上的摇臂4、连接在摇臂4上的行走轮3,摇臂4内设有与行走轮3相连的驱动电机8,所述摇臂4与窥视探头主体1连接端为圆弧形断面,二者通过窥视探头主体1内部固定的主立轴相互叠加套在一起,摇臂4与窥视探头主体1连接端外缘与行走轮3连接端外缘以直线过度。所述的主立轴13外圈套有扭转弹簧12,如图2所示,扭转弹簧12的一端搭接在窥视探头主体1内的副立轴A14上,另一端搭接在摇臂内副立轴B15上,主立轴13上同时铰接有气弹簧16,气弹簧16另一端铰接在摇臂4内位于下摆的摇臂立轴17上;所述扭转弹簧12和气弹簧16的双重作用下的摇臂4的开角最大达30°。如图2所示,摇臂4与行走轮3连接端呈弧形断面,弧形断面与行走轮3的边缘契合,所述的摇臂4与窥视探头主体1连接端的外缘上黏附有摇臂端检测触片10,所述的窥视探头主体1在摇臂4达到最大开角时对应摇臂端检测触片10的位置处设有探头主体端检测触片11,即摇臂4达到最大开角时,摇臂端检测触片10正好与探头主体1内固定的探头主体端检测触片11相接合;所述的摇臂4外侧设置有方形摇臂锁止孔7,对应锁止孔7位置处的窥视探头主体1的侧壁凹槽5侧设有摇臂4为最小开角时的摇臂锁止块6,时摇臂锁止块6能够嵌入摇臂锁止孔7内部。
一种使用上述适应不同钻孔直径的自行进窥视探头的窥视方法,如图6所示,具体步骤如下:
a.利用瓦斯测定仪先对窥视区域的瓦斯含量进行测定,确保窥视区域无瓦斯分布,选定巷道周边需要窥视的位置,然后对岩层26进行钻孔,为使连接在摇臂4上的行走轮3将能够较好地与钻孔25内壁接合,钻孔25的直径应小于两侧对称摇臂4张开的最大角度时行走轮3外径对应的直线距离,以避免在窥视探头行进过程中行走轮3可能与钻孔25内壁脱离或者出现空转现象;
b.在窥视探头底部的定向WIFI接收线接口23和应急绳连接柱24上连接定向WIFI接收线28和以米为单位贴附有长度标签的应急绳27,先将窥视探头主体1上部一组摇臂4松开,推动侧壁凹槽5侧面的摇臂锁止块6解开其与摇臂锁止孔7之间的扣合,进而释放摇臂4,将窥视探头主体1上部的一组摇臂4按压收缩,然后将窥视探头推送进入钻孔25中,进入钻 孔25的前部一组摇臂4在扭转弹簧12和气弹簧16的双重作用下,摇臂4缓慢向外扩展,顶靠在钻孔25周围的侧壁上,再将窥视探头主体1下部的一组摇臂4松开,以上一组摇臂同样的方式推动摇臂锁止块6释放摇臂4,并按压摇臂4后推送到钻孔25中,进入钻孔25的后部一组摇臂与前部一组摇臂动作相同,与前一组摇臂成十字支撑顶靠在钻孔25周围的侧壁上;
c.继续将窥视探头推送进入钻孔25中,在距离钻孔25孔口5-10cm位置处用胶布固定定向WIFI发射线29,使其紧贴钻孔25内壁,将WIFI发射线29的另一端与操控主机30相连接,通过操控主机30控制并监视窥视探头主体1的工作状态;
d.通过操控主机30和窥视探头主体1二者之间的定向WIFI接收线28和定向WIFI发射线29来传输电控讯号,接收端为窥视探头主体1,传输途径为定向WIFI接收线28,发射端为操控主机30,传输途径为定向WIFI发射线29;窥视探头主体1采集信号并存储窥视视频,参考应急绳27上以米为单位贴附的长度标签,与操作人员手持操控主机30显示的窥视探头前进距离进行比对校核,窥视探头主体1的行进操控由操控主机30完成;
e.当窥视探头前进遇到岩层破碎区域时,通过操控主机30并配合应急绳27,使窥视探头主体1前进或后退,拉动应急绳27可实现窥视探头主体1的快速后退;
f.当窥视探头在行进过程中遇到钻孔25直径变大区域时,摇臂4将在扭转弹簧12和气弹簧16的双重作用下扩展,当扩展到最大角度时,摇臂端检测触片10将与探头主体端检测触片11接合,反馈警示信号,由定向WIFI发射线29传输到手持操控主机30上,操作人员立即采取措施;在钻孔25破碎严重区域,当窥视探头主体1由于碎裂岩石导致卡死现象发生时,拉动并调整应急绳27,使摇臂4往凹槽5的方向回缩,即可避免发生窥视探头主体1无法回退的情况发生;窥视探头主体1的行进由行走轮3完成,行走轮3直径为10mm,高度为20mm。
g.当窥视探头在行进过程中钻孔25变形导致直径变小时,摇臂4将收缩并压迫扭转弹簧12和气弹簧16,使窥视探头的整体有效直径变小,适应变形钻孔区域并穿过该区域。

Claims (9)

  1. 一种适应不同钻孔直径的自行进窥视探头,其特征在于:它包括圆柱形的窥视探头主体(1),所述窥视探头主体(1)的顶部设有凸起的摄像头(2),底部设有连接定向WIFI接收线(28)的定向WIFI接收线接口(23)和连接应急绳(27)的应急绳连接柱(24),窥视探头主体(1)的内部位于摄像头(2)的下方依次设有镜片(18)、视频处理模块(19)、电池仓(20)、控制模块(21)和WIFI模块(22),在窥视探头主体(1)的上下部分别设有一组对称布置的侧壁凹槽(5),上下部对称布置的两组侧壁凹槽(5)位置相互垂直,每组侧壁凹槽(5)内均设有同步动作的伸缩摆动装置,所述伸缩摆动装置包括通过主立轴(13)套装铰接在探头主体(1)内壁上的摇臂(4)、连接在摇臂(4)上的行走轮(3),所述的主立轴(13)外圈套有扭转弹簧(12),扭转弹簧(12)的一端搭接在窥视探头主体(1)内的副立轴A(14)上,另一端搭接在摇臂内副立轴B(15)上,主立轴(13)上同时铰接有气弹簧(16),气弹簧(16)另一端铰接在摇臂(4)内位于下摆的摇臂立轴(17)上;摇臂(4)内设有与行走轮(3)相连的驱动电机(8),摇臂(4)与行走轮(3)连接端呈弧形断面,弧形断面与行走轮(3)的边缘契合,所述的摇臂(4)与窥视探头主体(1)连接端的外缘上黏附有摇臂端检测触片(10),所述的窥视探头主体(1)在摇臂(4)达到最大开角时对应摇臂端检测触片(10)的位置处设有探头主体端检测触片(11);所述的摇臂(4)外侧设置有方形摇臂锁止孔(7),对应锁止孔(7)位置处的窥视探头主体(1)的侧壁凹槽(5)侧设有摇臂(4)为最小开角时的摇臂锁止块(6)。
  2. 根据权利要求1所述的适应不同钻孔直径的自行进窥视探头,其特征在于:所述圆柱形的窥视探头主体(1)的直径为35~45mm,高度为300-400mm。
  3. 根据权利要求1所述的适应不同钻孔直径的自行进窥视探头,其特征在于:所述应急绳(27)的长度为6-20m,应急绳以米为单位贴附有长度标签。
  4. 根据权利要求1所述的适应不同钻孔直径的自行进窥视探头,其特征在于:所述定向WIFI接收线(28)的长度为2-3m,所述的定向WIFI发射线(29)长度为2-4m。
  5. 根据权利要求1所述的适应不同钻孔直径的自行进窥视探头,其特征在于:所述窥视探头主体(1)的上下部侧壁凹槽(5)的间距为90-120mm,侧壁凹槽的顶部为直角,底部倾斜,倾斜角度为10°。
  6. 根据权利要求1所述的适应不同钻孔直径的自行进窥视探头,其特征在于:所述摇臂(4)与窥视探头主体(1)连接端为圆弧形断面,该连接端外缘与行走轮(3)连接端外缘以直线过度。
  7. 根据权利要求1所述的适应不同钻孔直径的自行进窥视探头,其特征在于:所述扭转弹簧(12)和气弹簧(16)的双重作用下的摇臂(4)的开角最大达30°。
  8. 一种使用权利要求1所述适应不同钻孔直径的自行进窥视探头的窥视方法,其特征在于,包括如下步骤:
    a.利用瓦斯测定仪先对窥视区域的瓦斯含量进行测定,确保窥视区域无瓦斯分布,选定巷道周边需要窥视的位置,然后对岩层(26)进行钻孔,为使连接在摇臂(4)上的行走轮(3)将能够较好地与钻孔(25)内壁接合,钻孔(25)的直径应小于两侧对称摇臂(4)张开的最大角度时行走轮(3)外径对应的直线距离,以避免在窥视探头行进过程中行走轮(3)可能与钻孔(25)内壁脱离或者出现空转现象;
    b.在窥视探头底部的定向WIFI接收线接口(23)和应急绳连接柱(24)上连接定向WIFI接收线(28)和以米为单位贴附有长度标签的应急绳(27),先将窥视探头主体(1)上部一组摇臂(4)松开,推动侧壁凹槽(5)侧面的摇臂锁止块(6)解开其与摇臂锁止孔(7)之间的扣合,进而释放摇臂(4),将窥视探头主体(1)上部的一组摇臂(4)按压收缩,然后将窥视探头推送进入钻孔(25)中,进入钻孔(25)的前部一组摇臂(4)在扭转弹簧(12)和气弹簧(16)的双重作用下,摇臂(4)缓慢向外扩展,顶靠在钻孔(25)周围的侧壁上,再将窥视探头主体(1)下部的一组摇臂(4)松开,以上一组摇臂同样的方式推动摇臂锁止块(6)释放摇臂(4),并按压摇臂(4)后推送到钻孔(25)中,进入钻孔(25)的后部一组摇臂与前部一组摇臂动作相同,与前一组摇臂成十字支撑顶靠在钻孔(25)周围的侧壁上;
    c.继续将窥视探头推送进入钻孔(25)中,在距离钻孔(25)孔口5-10cm位置处用胶布固定定向WIFI发射线(29),使其紧贴钻孔(25)内壁,将WIFI发射线(29)的另一端与操控主机(30)相连接,通过操控主机(30)控制并监视窥视探头主体(1)的工作状态;
    d.通过操控主机(30)和窥视探头主体(1)二者之间的定向WIFI接收线(28)和定向WIFI发射线(29)来传输电控讯号,接收端为窥视探头主体(1),传输途径为定向WIFI接收线(28),发射端为操控主机(30),传输途径为定向WIFI发射线(29);,窥视探头主体(1)采集信号并存储窥视视频,参考应急绳(27)上以米为单位贴附的长度标签,与操作人员手持操控主机(30)显示的窥视探头前进距离进行比对校核;
    e.当窥视探头前进遇到岩层破碎区域时,通过操控主机(30)并配合应急绳(27),使窥视探头主体(1)前进或后退,拉动应急绳(27)可实现窥视探头主体(1)的快速后退;
    f.当窥视探头在行进过程中遇到钻孔(25)直径变大区域时,摇臂(4)将在扭转弹簧(12)和气弹簧(16)的双重作用下扩展,当扩展到最大角度时,摇臂端检测触片(10)将与探头主体端检测触片(11)接合,反馈警示信号,由定向WIFI发射线(29)传输到手持操控主机(30)上,操作人员立即采取措施;
    g.当窥视探头在行进过程中钻孔(25)变形导致直径变小时,摇臂(4)将收缩并压迫扭 转弹簧(12)和气弹簧(16),使窥视探头的整体有效直径变小,适应变形钻孔区域并穿过该区域。
  9. 根据权利要求8所述的使用权利要求1所述适应不同钻孔直径的自行进窥视探头的窥视方法,其特征在于:在钻孔(25)破碎严重区域,当窥视探头主体(1)由于碎裂岩石导致卡死现象发生时,拉动并调整应急绳(27),使摇臂(4)往凹槽(5)的方向回缩,即可避免发生窥视探头主体(1)无法回退的情况发生。
PCT/CN2019/075872 2018-11-05 2019-02-22 一种适应不同钻孔直径的自行进窥视探头及窥视方法 WO2020093623A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2019375583A AU2019375583B2 (en) 2018-11-05 2019-02-22 Self-propelled peeping probe adapted to different diameters of drill holes and peeping method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811305508.7A CN109162699B (zh) 2018-11-05 2018-11-05 一种适应不同钻孔直径的自行进窥视探头及窥视方法
CN201811305508.7 2018-11-05

Publications (1)

Publication Number Publication Date
WO2020093623A1 true WO2020093623A1 (zh) 2020-05-14

Family

ID=64876534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075872 WO2020093623A1 (zh) 2018-11-05 2019-02-22 一种适应不同钻孔直径的自行进窥视探头及窥视方法

Country Status (3)

Country Link
CN (1) CN109162699B (zh)
AU (1) AU2019375583B2 (zh)
WO (1) WO2020093623A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112612053A (zh) * 2020-12-28 2021-04-06 长江地球物理探测(武汉)有限公司 Tgp检波探头安装组件及安装方法
CN112709564A (zh) * 2020-11-28 2021-04-27 湖南科技大学 具有孔内镜头除污功能的围岩钻孔窥视装置及其使用方法
CN112796742A (zh) * 2020-12-31 2021-05-14 西安科技大学 一种地质钻孔窥视镜头
CN113945146A (zh) * 2021-10-27 2022-01-18 彬县水帘洞煤炭有限责任公司 一种煤矿巷道围岩变形特性联合监测系统
CN114075968A (zh) * 2021-11-16 2022-02-22 泰安泰烁岩层控制科技有限公司 一种钻孔窥视仪
CN116122803A (zh) * 2023-02-02 2023-05-16 山东省煤田地质局第三勘探队 一种钻孔内侧向地质勘探测试装置及测试方法
CN116335638A (zh) * 2023-04-21 2023-06-27 河南平宝煤业有限公司 一种自动化控速探杆自主清洗对中式钻孔成像装置
CN116335638B (zh) * 2023-04-21 2024-05-31 河南平宝煤业有限公司 一种自动化控速探杆自主清洗对中式钻孔成像装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109162699B (zh) * 2018-11-05 2020-02-14 中国矿业大学 一种适应不同钻孔直径的自行进窥视探头及窥视方法
CN109594976A (zh) * 2019-01-22 2019-04-09 南京大学 一种基于可视化摄影测量的钻孔三维电法随钻测试方法
CN109915024B (zh) * 2019-04-08 2020-06-30 无锡锡钻地质装备有限公司 一种勘探钻头及其制造工艺
CN110513101A (zh) * 2019-09-09 2019-11-29 中国矿业大学 一种无线钻孔窥视仪装置及方法
CN110480596B (zh) * 2019-09-23 2023-08-22 山东科技大学 一种新型钻孔图像采集机器人及其使用方法
CN111336906B (zh) * 2020-05-20 2020-08-14 广东电网有限责任公司东莞供电局 一种电力管道内变形测量装置
CN111997588B (zh) * 2020-09-03 2022-04-01 中国科学院武汉岩土力学研究所 一种岩体钻孔摄像探头居中装置
CN112664181B (zh) * 2020-12-25 2022-11-25 国家能源集团宁夏煤业有限责任公司 钻孔用成像装置和包含其的成像器
CN113047783A (zh) * 2021-03-04 2021-06-29 中煤科工开采研究院有限公司 用于彩色钻孔电视探头的可变孔径对中装置
CN113107392B (zh) * 2021-05-06 2023-05-26 绍兴文理学院 一种钻孔窥视用对中调节装置
CN113958307B (zh) * 2021-10-12 2023-12-01 中国矿业大学 一种智能化可伸缩钻孔窥视推送装置及其使用方法
CN114893139B (zh) * 2022-04-28 2023-02-24 东北大学 适用于多孔径多角度的钻孔成像仪可视化控制输送装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2496751B1 (zh) * 1980-12-24 1984-01-20 Petroles Cie Francaise
US20110297371A1 (en) * 2010-06-08 2011-12-08 Nathan Church Downhole markers
CN206655690U (zh) * 2017-04-05 2017-11-21 山东科技大学 一种具有支撑导向作用的钻孔窥视装置
CN108412480A (zh) * 2018-02-22 2018-08-17 中国恩菲工程技术有限公司 钻孔窥视刮探仪
CN109162699A (zh) * 2018-11-05 2019-01-08 中国矿业大学 一种适应不同钻孔直径的自行进窥视探头及窥视方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978924A (en) * 1975-10-28 1976-09-07 Dresser Industries, Inc. Hidden bow spring for calipers and centralizers
US6845817B2 (en) * 2002-09-27 2005-01-25 Weatherford/Lamb, Inc. Kick over tool for side pocket mandrel
CN1312487C (zh) * 2004-09-01 2007-04-25 崔志国 一种新型超声波检测装置及检测方法
CN204328336U (zh) * 2014-06-20 2015-05-13 北京石油化工学院 管道检测机器人
CN205743878U (zh) * 2016-07-12 2016-11-30 中国石油化工股份有限公司 水平井测井水力输送装置
CN206825442U (zh) * 2017-06-30 2018-01-02 中国科学院武汉岩土力学研究所 一种行走机构及岩体孔径测孔机器人
CN107655965A (zh) * 2017-10-19 2018-02-02 中国石油集团渤海钻探工程有限公司 钻杆漏磁检测探头部件及检测方法
CN207976416U (zh) * 2018-04-18 2018-10-16 刘庆伟 一种管道内腐蚀检测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2496751B1 (zh) * 1980-12-24 1984-01-20 Petroles Cie Francaise
US20110297371A1 (en) * 2010-06-08 2011-12-08 Nathan Church Downhole markers
CN206655690U (zh) * 2017-04-05 2017-11-21 山东科技大学 一种具有支撑导向作用的钻孔窥视装置
CN108412480A (zh) * 2018-02-22 2018-08-17 中国恩菲工程技术有限公司 钻孔窥视刮探仪
CN109162699A (zh) * 2018-11-05 2019-01-08 中国矿业大学 一种适应不同钻孔直径的自行进窥视探头及窥视方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112709564A (zh) * 2020-11-28 2021-04-27 湖南科技大学 具有孔内镜头除污功能的围岩钻孔窥视装置及其使用方法
CN112709564B (zh) * 2020-11-28 2023-04-11 湖南科技大学 具有孔内镜头除污功能的围岩钻孔窥视装置及其使用方法
CN112612053A (zh) * 2020-12-28 2021-04-06 长江地球物理探测(武汉)有限公司 Tgp检波探头安装组件及安装方法
CN112796742A (zh) * 2020-12-31 2021-05-14 西安科技大学 一种地质钻孔窥视镜头
CN112796742B (zh) * 2020-12-31 2023-07-04 西安科技大学 一种地质钻孔窥视镜头
CN113945146B (zh) * 2021-10-27 2024-03-12 彬县水帘洞煤炭有限责任公司 一种煤矿巷道围岩变形特性联合监测系统
CN113945146A (zh) * 2021-10-27 2022-01-18 彬县水帘洞煤炭有限责任公司 一种煤矿巷道围岩变形特性联合监测系统
CN114075968A (zh) * 2021-11-16 2022-02-22 泰安泰烁岩层控制科技有限公司 一种钻孔窥视仪
CN114075968B (zh) * 2021-11-16 2024-05-14 泰安泰烁岩层控制科技有限公司 一种钻孔窥视仪
CN116122803A (zh) * 2023-02-02 2023-05-16 山东省煤田地质局第三勘探队 一种钻孔内侧向地质勘探测试装置及测试方法
CN116122803B (zh) * 2023-02-02 2023-08-22 山东省煤田地质局第三勘探队 一种钻孔内侧向地质勘探测试装置及测试方法
CN116335638A (zh) * 2023-04-21 2023-06-27 河南平宝煤业有限公司 一种自动化控速探杆自主清洗对中式钻孔成像装置
CN116335638B (zh) * 2023-04-21 2024-05-31 河南平宝煤业有限公司 一种自动化控速探杆自主清洗对中式钻孔成像装置

Also Published As

Publication number Publication date
CN109162699B (zh) 2020-02-14
AU2019375583A1 (en) 2020-11-19
AU2019375583B2 (en) 2021-10-07
CN109162699A (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
WO2020093623A1 (zh) 一种适应不同钻孔直径的自行进窥视探头及窥视方法
US4665995A (en) Wedging assembly for borehole steering or branching
US8791832B2 (en) Apparatus, system, and method for communicating while logging with wired drill pipe
US9243450B1 (en) System for operating a drilling rig with a retracting guide dolly and a top drive
CN105697023B (zh) 一种隧道地质勘探方法、系统及微型掘进机
US11746597B2 (en) Pressured horizontal directional drilling continuous coring device for engineering geological investigation
CN103827747A (zh) 在地下钻凿操作中使用的检查系统以及检查方法
US11753930B2 (en) Method and system for acquiring geological data from a bore hole
US9759012B2 (en) Multimode steering and homing system, method and apparatus
AU2022100122A4 (en) A method and system for acquiring geological data from a bore hole
CA2208681A1 (en) Drilling and pipe laying unit
CN102913169B (zh) 移动式钻孔倾斜仪探头捕捉器及其方法
CN105370263A (zh) 一种地下状况无线监测装置
CN204716227U (zh) 随钻测斜装置
CN104912543A (zh) 随钻测斜装置
CN105588539A (zh) 一种在线监测煤体横向变形装置及其监测方法
US6327919B1 (en) Method for taking a soil sample from a horizontal borehole
CN201218053Y (zh) 带远程控制的卸压钻机
CN210033281U (zh) 用于地下煤储层复合先导煤层气钻井装置及钻井
CN111980678A (zh) 一种剪切式水平定向钻进地质勘察孔内测井仪器保护装置
CN111272874A (zh) 一种巷道冒顶隐患自动检测装置
WO2022222200A1 (zh) 油气井开采用网络神经电缆及定向测量系统
AU2021107181B4 (en) Method and system for acquiring geological data from a bore hole
CN113356762B (zh) 一种用于页岩油水平井的钻井设备及钻探方法
CN114233224A (zh) 一种测井数控取心仪便携检测集成系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019375583

Country of ref document: AU

Date of ref document: 20190222

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881568

Country of ref document: EP

Kind code of ref document: A1