WO2020093558A1 - 工程机械及其作业空间动态防碰撞方法、装置和系统 - Google Patents

工程机械及其作业空间动态防碰撞方法、装置和系统 Download PDF

Info

Publication number
WO2020093558A1
WO2020093558A1 PCT/CN2018/123604 CN2018123604W WO2020093558A1 WO 2020093558 A1 WO2020093558 A1 WO 2020093558A1 CN 2018123604 W CN2018123604 W CN 2018123604W WO 2020093558 A1 WO2020093558 A1 WO 2020093558A1
Authority
WO
WIPO (PCT)
Prior art keywords
collision
boom
information
obstacle
working space
Prior art date
Application number
PCT/CN2018/123604
Other languages
English (en)
French (fr)
Inventor
赵斌
刘建
柴君飞
阿尔贝托•巴约纳•戈麦斯
胡传正
Original Assignee
徐工集团工程机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐工集团工程机械有限公司 filed Critical 徐工集团工程机械有限公司
Priority to US15/734,430 priority Critical patent/US11975951B2/en
Priority to EP18939442.2A priority patent/EP3778464A4/en
Publication of WO2020093558A1 publication Critical patent/WO2020093558A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment
    • B66C23/905Devices for indicating or limiting lifting moment electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • B66C15/04Safety gear for preventing collisions, e.g. between cranes or trolleys operating on the same track
    • B66C15/045Safety gear for preventing collisions, e.g. between cranes or trolleys operating on the same track electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/94Safety gear for limiting slewing movements

Definitions

  • the present disclosure relates to the field of construction machinery, and in particular, to a construction machinery and its working space dynamic anti-collision method, device and system.
  • Cranes are the most important construction machinery for hoisting operations, but their operating environments are complex and changeable, and their accident rates are high.
  • the main cause of the accident is the collision caused by the lifting overload and the limitation of the working field of view.
  • a method for dynamically preventing collision in a working space includes:
  • the execution device is instructed to issue a collision warning message outward.
  • the receiving obstacle information around the construction machinery boom includes:
  • the obstacle information including at least one of obstacle information in the direction of boom swing movement and obstacle information in the direction of boom swing movement.
  • the receiving boom motion information of the construction machinery includes:
  • Receive boom motion information acquired by the boom motion sensing device wherein the boom motion information includes at least one of boom swing angle, boom swing angle, boom telescopic length, and hook position information.
  • the determining the obstacle coordinates according to the obstacle information and the boom motion information includes:
  • the obstacle information is combined with the boom motion information, and the obstacle coordinates are converted into the obstacle coordinates of the current boom coordinate system.
  • the working space dynamic anti-collision method further includes:
  • presetting the predetermined warning area in advance includes:
  • a predetermined warning area is set around the boom, wherein the predetermined warning area includes at least one of an emergency braking area, a danger warning area, and a safety warning area.
  • presetting the predetermined warning area in advance includes:
  • an emergency braking zone In the horizontal and vertical directions of the boom, around the boom, an emergency braking zone, a danger warning zone, and a safety warning zone are set up from near to far.
  • the working space dynamic anti-collision method further includes:
  • the execution device is instructed to perform emergency braking on the crane boom.
  • a work space dynamic anti-collision device including:
  • the information fusion module is used to receive obstacle information around the boom of the construction machinery and boom movement information of the construction machinery; determine obstacle coordinates according to the obstacle information and the boom movement information;
  • the anti-collision control module is used for judging whether the obstacle coordinate is located in the predetermined warning area; and in the case that the obstacle coordinate is located in the predetermined warning area, instructing the execution device to issue a collision warning message outward.
  • the working space dynamic anti-collision device is used to perform operations to implement the working space dynamic anti-collision method as described in any of the above embodiments.
  • a work space dynamic anti-collision device including:
  • Memory used to store instructions
  • the processor is configured to execute the instruction, so that the work space dynamic anti-collision device executes an operation that implements the work space dynamic anti-collision method described in any one of the foregoing embodiments.
  • a work space dynamic anti-collision system including:
  • the environment awareness device is used to obtain obstacle information around the boom of the construction machinery, and send the obstacle information to the dynamic collision avoidance device in the working space;
  • Boom motion sensing device used to obtain the boom motion information of the construction machinery, and send the boom motion information to the dynamic anti-collision device in the working space;
  • the working space dynamic anti-collision device is the working space dynamic anti-collision device as described in any of the above embodiments;
  • the execution device is used to send out collision warning information according to the instructions of the dynamic anti-collision device in the work space.
  • the environment awareness device includes at least one of a horizontal detection device and a vertical detection device, where:
  • Horizontal detection equipment used to scan and detect obstacles in the direction of the arm's slewing motion
  • the vertical detection equipment is used to scan and detect obstacles in the boom movement direction of the boom.
  • the horizontal detection device is provided on the bottom surface of the boom; the vertical detection device is provided on the side of the boom.
  • the working space dynamic anti-collision device is also used to determine the angle detection range of the vertical detection device according to the ground clearance when the boom is horizontal and the farthest detection distance of the anti-collision system.
  • the boom motion sensing device includes at least one of a swing angle sensor, a variable angle sensor, a telescopic length sensor, and a hook length sensor.
  • the execution device includes at least one of an alarm device and a braking device, wherein:
  • the alarm device is used to send out corresponding collision warning information to the outside when the obstacle coordinates are located in different predetermined warning areas according to the instructions of the dynamic anti-collision device in the work space;
  • the braking device is used to perform emergency braking on the crane boom when the obstacle coordinate is located in the emergency braking zone according to the instructions of the dynamic collision avoidance device in the working space.
  • a construction machine including the working space dynamic anti-collision device according to any one of the above embodiments, or including the working space dynamic anti-collision system according to any one of the above embodiments.
  • a computer-readable storage medium stores computer instructions, and when the instructions are executed by a processor, the work space dynamics described in any of the foregoing embodiments are implemented Anti-collision method.
  • FIG. 1 is a schematic diagram of some embodiments of a working space dynamic collision prevention system of the present disclosure.
  • FIG. 2 is a schematic diagram of other embodiments of a dynamic anti-collision system for a working space of the present disclosure.
  • FIG. 3 is a schematic diagram of installation of further embodiments of the working space dynamic anti-collision system of the present disclosure.
  • FIG. 4 is a schematic diagram of some embodiments of a dynamic collision prevention method for a working space of the present disclosure.
  • FIG. 5 is a schematic diagram of some other embodiments of a dynamic collision prevention method for a working space of the present disclosure.
  • FIG. 6 is a schematic diagram of a horizontal warning area in some embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram of a vertical warning area in some embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram of a method for determining a detection range in a vertical direction in some embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram of some embodiments of a dynamic collision prevention device for a working space of the present disclosure.
  • the path planning before hoisting is to use the crane as a multi-degree-of-freedom manipulator, establish its kinematics and dynamics model, and calculate its anti-collision path through the optimal anti-collision algorithm in its configurable space.
  • the search algorithm is usually more complex and requires higher computer resources, it is difficult to implement on the vehicle-mounted controller.
  • the obstacle model used for path planning before hoisting is a static model, but the construction site is a dynamic environment, so its calculated anti-collision path is inconsistent with the actual situation.
  • the applicant also found that in some embodiments of the related art, the collision between the crane components is avoided by the protective device, and the interaction between the boom and the working space is not considered.
  • the hoisting work space only considers the static model, and does not consider the dynamic space model, which may result in a missed judgment of the collision state.
  • the method of detecting work space information is not all-weather, and is greatly affected by the environment, weather, dust, and so on.
  • the possibility of collision is detected by installing a sensor at a specific position in the working space. These embodiments are not suitable for dynamically changing construction sites.
  • the present disclosure proposes a method and system for dynamic collision prevention of working space, which will be further described below in conjunction with specific embodiments.
  • FIG. 1 is a schematic diagram of some embodiments of a working space dynamic collision prevention system of the present disclosure.
  • FIG. 2 is a schematic diagram of other embodiments of a dynamic anti-collision system for a working space of the present disclosure.
  • the working space dynamic anti-collision system may include an environment sensing device 100, a boom motion sensing device 200, a working space dynamic anti-collision device 300, and an execution device 400, where:
  • the environment sensing device 100 is connected to the working space dynamic collision avoidance device 300
  • the boom motion sensing device 200 is connected to the working space dynamic collision avoidance device 300
  • the working space dynamic anti-collision device 300 is connected to the execution device 400.
  • the environment sensing device 100 is installed on the construction machinery boom, and is used for acquiring obstacle information around the construction machinery boom, and sending the obstacle information to the work space dynamic anti-collision device 300.
  • the construction machine may be a crane.
  • the environment awareness apparatus 100 may include at least one of a horizontal detection device 110 and a vertical detection device 120, where:
  • the horizontal detection device 110 is used for scanning and detecting obstacles in the swing movement direction of the boom.
  • the vertical detection device 120 is used for scanning and detecting obstacles in the boom movement direction of the boom.
  • both the horizontal detection device 110 and the vertical detection device 120 may be implemented as millimeter wave radars.
  • the horizontal detection device 110 may be implemented as a horizontally scanned millimeter wave radar
  • the vertical detection device 120 may be implemented as a vertically scanned millimeter wave radar.
  • the horizontal detection device 110 and the vertical detection device 120 may also be implemented as at least one of electromagnetic detection devices, microwave radar sensors, laser sensors, and ultrasonic sensors.
  • the boom motion sensing device 200 is used for acquiring boom motion information of a construction machine, and sending the boom motion information to the dynamic collision prevention device 300 of the working space.
  • the boom motion information may include at least one of boom swing angle, boom swing angle, boom telescopic length, and hook position information.
  • the boom motion sensing device 200 may include at least one of a swing angle sensor 210, a variable angle sensor 220, a telescopic length sensor 230 and a hook length sensor 240 item.
  • the working space dynamic anti-collision device 300 is used to receive obstacle information around the boom of the construction machinery and boom movement information of the construction machinery; determine obstacle coordinates according to the obstacle information and the boom movement information; Whether the obstacle coordinates are located in the predetermined warning area; in the case where the obstacle coordinates are located in the predetermined warning area, the execution device 400 is instructed to issue collision warning information outward.
  • the working space dynamic anti-collision device may be an on-board computer.
  • control device 200 may also be implemented as an in-vehicle controller, an in-vehicle display, an in-vehicle force limiter, or other electronic components with data calculation and analysis functions.
  • the working space dynamic anti-collision device 300 may also be used to set a predetermined early warning area around the boom, where the predetermined early warning area may include an emergency braking zone from near to far from the boom, dangerous At least one of the early warning area and the security early warning area.
  • the execution device 400 is used to issue a collision warning message to the outside according to the instruction of the dynamic collision prevention device 300 in the working space.
  • the above-described embodiments of the present disclosure may use the CAN bus to implement communication between the work space dynamic collision avoidance device 300 and the environment sensing device 100, the boom motion sensing device 200, and the execution device 400.
  • the above embodiments of the present disclosure may also use other network forms with data transmission functions, such as Ethernet and the Internet, to implement the communication connection between the work space dynamic collision avoidance device 300 and the execution device 400.
  • data transmission functions such as Ethernet and the Internet
  • the execution device 400 may include at least one of an alarm device 410 and a braking device 420, where:
  • the alarm device 410 is used to send out corresponding collision warning information to the outside when the obstacle coordinates are located in different predetermined warning areas according to the instructions of the dynamic collision prevention device 300 in the work space.
  • the alarm device 410 may be implemented as at least one of an alarm device such as an audible and visual alarm device, a buzzer, an alarm indicator light, and the like.
  • the alarm device 410 may include a visual display module for collision warning information and a sound and light alarm module for collision warning information, where:
  • the collision information warning information visual display module is used to display the collision information in real time through the man-machine interaction interface composed of animation and graphics, so that the operator can intuitively know that a collision accident may occur and take corresponding measures.
  • Collision warning information sound and light alarm module is used to issue different frequency alarm sounds and warning lights according to the probability of collision accidents to remind the operator that a collision accident may occur, so that the operator will not miss the warning information.
  • the sound and light alarm module of the collision warning information may be implemented as a vehicle-mounted display for sound alarm and visual prompt.
  • the audible and visual alarm device may also be implemented as a tablet computer, a load-carrying notebook computer, or other components with human-machine interaction functions.
  • the alarm device 410 may be implemented as a human-computer interaction device.
  • the human-computer interaction device is a color screen display with a touch function.
  • the human-computer interaction functions played by the display are mainly: (1) setting or canceling the collision prevention function of the lifting work space. (2) Three-dimensional real-time display of the distance of the obstacle from the crane telescopic boom head or the object to be hung. (3) When the detection distance is less than the safe distance, a dialog box will pop up to prompt the operator to pay attention to the current state, and at the same time, make sound and light alarms to ensure the safety of lifting operations.
  • the braking device 420 is used to perform emergency braking on the crane boom when the obstacle coordinate is located in the emergency braking zone according to the instruction of the dynamic collision avoidance device 300 in the working space.
  • the braking device of the above embodiment of the present disclosure is used for emergency braking of the crane boom when a collision accident is about to occur, so as to avoid collision.
  • the braking device 420 may be implemented as a pump, valve, motor, or other braking device.
  • the braking device 420 and the alarm device 410 of the above embodiments of the present disclosure perform corresponding actions after receiving control commands through the CAN bus, including driving or stopping the operation of pumps, valves, motors, etc., and turning on or off the sound and light alarm devices, thereby preventing The danger of lifting collision is ensured, and the safety of lifting operation is guaranteed.
  • the above embodiments of the present disclosure are based on real-time dynamic space information and predicted cranes
  • the interaction between the arm and the work space develops a collision avoidance algorithm to avoid missing judgment of the collision state
  • the above embodiments of the present disclosure use millimeter-wave radar, which can adapt to various climates and can detect dynamics in rain and snow weather, foggy weather, and dusty environments Space information
  • the anti-collision device of the above embodiment of the present disclosure is installed on a crane and can work with the crane to any construction site.
  • the above-mentioned embodiments of the present disclosure can detect the surrounding obstacles during the movement of the construction machinery boom in real time and in real time, sense the dynamic information of the lifting space, and control the anti-collision warning, thereby ensuring the safety of the construction machinery during the lifting operation and reducing The intensity of the operator's work.
  • FIG. 3 is a schematic diagram of installation of further embodiments of the working space dynamic anti-collision system of the present disclosure.
  • the horizontal detection device 110 of the embodiment of FIG. 2 may be disposed on the bottom surface of the boom; the vertical detection device 120 of the embodiment of FIG. 2 may be disposed on the side of the boom.
  • the horizontal detection device 110 and the vertical detection device 120 may be implemented as millimeter wave radars.
  • the above-mentioned embodiments of the present disclosure use two detection devices and are arranged on the side and bottom of the crane telescopic boom according to the structural characteristics of the crane.
  • the layout method of the detection device of the above embodiment of the present disclosure enables visualization of all objects in the detection space, thereby preventing visual blind spots, accurately positioning the position of any obstacle, and planning and modeling obstacles with extreme positions and shapes.
  • the above embodiments of the present disclosure provide an early warning system for space anti-collision during the hoisting operation of a crane.
  • the anti-collision function includes the collision between the crane and the working environment, and between the suspended object and the working environment.
  • the above-mentioned embodiments of the present disclosure realize the automatic recognition and early warning of dangerous states through the recognition of the surrounding environment and the reconstruction of the three-dimensional space.
  • the three-dimensional space reconstruction refers to: the establishment of mathematics suitable for computer representation and processing of three-dimensional objects model.
  • the three-dimensional space reconstruction refers to the establishment of a suitable three-dimensional structure model that can be used for hazard prediction for obstacles in the lifting work space.
  • the above embodiments of the present disclosure use the crane system as a carrier to reasonably plan the installation positions of the two detection devices, and develop an algorithm that can accurately predict the position and shape information of obstacles.
  • the coordinate positions of the two detection sensors are known, and the relative distance between the obstacle and each sensor can be obtained, then the coordinate position of the obstacle is unique.
  • FIG. 3 is a schematic diagram of installation of some embodiments of a dynamic anti-collision system for a working space of the present disclosure.
  • the hardware of the working space dynamic anti-collision system is composed of a millimeter wave radar scanning horizontally, a millimeter wave radar scanning vertically, a boom motion sensing device, an on-board computer, a display, an early warning buzzer, and an alarm light And related cables and other equipment.
  • two millimeter-wave radars are used to realize the function of the environment awareness device 100 in the embodiment of FIG. 1 or FIG. 2;
  • the on-board computer is used to realize the function of the dynamic collision prevention device 300 of the working space in the embodiment of FIG. 1 or FIG. 2;
  • the early warning buzzer and the warning light are used to realize the function of the execution device 400 in the embodiment of FIG. 1 or FIG. 2.
  • two millimeter-wave radars are installed at the base of the crane near the hinge point of the luffing cylinder to collect information about obstacles around the boom.
  • the on-board computer, monitor, warning buzzer and warning light are installed in the operation room.
  • the vehicle-mounted computer is connected to the millimeter-wave radar and the boom motion sensing device through the CAN bus. It is used to read the millimeter-wave radar information and the boom motion information, filter and merge the information, run the anti-collision warning algorithm, and calculate the results according to the anti-collision warning Output corresponding signals and instructions.
  • the early warning buzzer is connected to the output port of the on-board computer through a cable, and emits sounds of different frequencies according to different alarm zones (as shown in the different alarm zones in the embodiments of FIGS. 6 and 7). The closer the boom is to the obstacle, the alarm sounds The faster the frequency.
  • the alarm light is connected to the output port of the on-board computer and emits lights of different colors according to the alarm area.
  • the color of the warning zone light is green
  • the color of the hazard warning zone light is yellow
  • the color of the emergency braking zone light is red.
  • the real-time control of the above-mentioned embodiments of the present disclosure during the hoisting process of the crane calculates the obstacle information in the hoisting path of the crane by sensing the on-site environment, judges the dangerous state in real time, and alarms or brakes in time.
  • the above embodiment of the present disclosure develops a dynamic anti-collision system for mobile crane hoisting work space based on millimeter wave radar technology, which avoids related technology systems that do not consider the interaction between the boom and the space, do not consider the dynamic information of the hoisting space, and cannot work around the clock And the need to install additional on-site environmental sensors and other defects, integrated with the crane, can be around the clock, real-time detection of the surrounding obstacles during the movement of the crane boom, sensing the dynamic information of the lifting space, and anti-collision warning can be controlled to ensure that The safety of the crane during the lifting operation reduces the work intensity of the operator.
  • FIG. 4 is a schematic diagram of some embodiments of a dynamic collision prevention method for a working space of the present disclosure.
  • this embodiment can be executed by the working space dynamic anti-collision system or the working space dynamic anti-collision device of the present disclosure.
  • the method includes the following steps:
  • Step 41 Receive information about obstacles around the boom of the construction machinery and movement information of the boom of the construction machinery.
  • the step of receiving obstacle information around the boom of the construction machinery may include: receiving obstacle information acquired by the environment sensing device 100, the obstacle information including boom rotation At least one item of obstacle information in the direction of movement and obstacle information in the direction of boom amplitude movement.
  • the step of receiving boom motion information of the construction machine may include: receiving boom motion information acquired by the boom motion sensing device 200, wherein the boom motion information includes At least one of boom rotation angle, boom swing angle, boom extension and extension, and hook position information.
  • Step 42 Determine obstacle coordinates according to the obstacle information and the boom motion information.
  • step 42 may include:
  • Step 421 Filter the obstacle information according to signal attributes, remove false information, and obtain real obstacle information.
  • step 422 the obstacle information and the boom motion information are fused, and the obstacle coordinates are converted into the obstacle coordinates of the current boom coordinate system.
  • Step 43 Determine whether the obstacle coordinates are located in a predetermined warning area.
  • Step 44 when the obstacle coordinate is located in a predetermined warning area, instruct the execution device 400 to issue a collision warning message outward.
  • the above embodiments of the present disclosure are based on real-time dynamic space information and predictive The interaction between the arm and the work space develops a collision avoidance algorithm to avoid missing judgment of the collision state;
  • the above embodiments of the present disclosure use millimeter-wave radar, which can adapt to various climates and can detect dynamics in rain and snow weather, foggy weather, and dusty environments Space information;
  • the anti-collision device of the above embodiment of the present disclosure is installed on a crane and can work with the crane to any construction site.
  • FIG. 5 is a schematic diagram of some other embodiments of a dynamic collision prevention method for a working space of the present disclosure.
  • this embodiment can be executed by the working space dynamic anti-collision system or the working space dynamic anti-collision device of the present disclosure.
  • the method includes the following steps:
  • Step 51 Set a predetermined warning area in advance.
  • step 51 may include: setting a predetermined warning area around the boom, wherein the predetermined warning area includes at least one of an emergency braking area, a danger warning area, and a safety warning area.
  • step 51 in the embodiment of FIG. 5 may include:
  • Step 511 in the horizontal direction and the vertical direction of the boom, around the boom, an emergency braking zone, a danger warning zone and a safety warning zone are respectively arranged from near to far.
  • the safety warning zone refers to the short distance between the boom and the obstacle, but according to the current speed, the collision between the boom and the obstacle will not occur, and the operator can continue to operate, but it needs to pay attention at all times.
  • the danger warning zone means that the distance between the boom and the obstacle is very close, and the collision will occur at the current speed, but it will take some time. During this time, the operator takes correct actions to avoid the collision.
  • the emergency braking zone means that the distance between the boom and the obstacle is very close, and a collision will occur immediately at the current speed. The operator does not have enough time to respond, so the controller automatically issues an emergency stop command.
  • Step 512 Set the parameters of each alarm zone as shown in FIG. 6 and FIG. 7, wherein the parameters include the closest distance and the farthest distance of each alarm from the boom, and the parameters such as the width of each alarm zone.
  • Step 52 Receive information about obstacles around the boom of the construction machinery and movement information of the boom of the construction machinery.
  • step 52 may include: after starting the system, reading the information of the millimeter wave radar, and the boom motion information acquired by the boom motion sensing device 200, wherein the boom motion information includes the boom At least one item of rotation angle, boom angle, boom telescopic length and hook position information.
  • Step 53 Determine obstacle coordinates according to the obstacle information and the boom motion information.
  • step 53 may include:
  • Step 531 Filter the obstacle information according to the signal attributes, remove false information, and obtain real obstacle information.
  • step 532 the obstacle information and the boom motion information are fused, and the obstacle coordinates are converted into the obstacle coordinates of the current boom coordinate system.
  • Step 54 Determine whether the obstacle coordinate is located in a predetermined warning area.
  • step 54 may include: comparing the obstacle coordinates with the parameters of the alarm zone, and determining whether the obstacle coordinates are located in the horizontal alarm zone and the vertical direction, respectively Alarm area.
  • Step 55 When the obstacle coordinate is located in the predetermined warning area, instruct the execution device 400 to issue a collision warning message or execute a corresponding instruction.
  • step 55 may include: in the case where the obstacle coordinate is located in the emergency braking zone, instruct the execution device 400 to perform emergency braking on the crane boom.
  • the above embodiment of the present disclosure develops a dynamic anti-collision method for the hoisting work space of the mobile crane based on millimeter wave radar technology.
  • This system overcomes the related art without considering the interaction between the boom and the space, the dynamic information of the hoisting space, the inability to work 24/7.
  • the installation of additional on-site environmental sensors and other defects, integrated with the crane can detect the surrounding obstacles during the movement of the crane boom in real time and in real time, sense the dynamic information of the lifting space, and control the anti-collision warning to ensure that the crane is in The safety during the lifting operation reduces the work intensity of the operator.
  • the dynamic anti-collision method for the working space shown in FIG. 4 or FIG. 5 may further include: determining the angle of the vertical detection device 120 of the vertical detection device 120 according to the ground clearance when the boom is horizontal and the farthest detection distance of the anti-collision system Detection range.
  • the angle of the detection range in the vertical direction needs to be limited, and the determination method is shown in FIG. 8.
  • h is the ground clearance height when the boom is horizontal
  • L is the farthest detection distance of the anti-collision system
  • is half of the angle range detected by the vertical millimeter wave radar, which can be obtained by formula (1).
  • the working space dynamic collision prevention method shown in FIG. 4 or FIG. 5 may further include: setting the working range of the vertical detection device 120 to be formed along the axial direction of the lifting telescopic arm and the lifting arm A sector area parallel to the side; the working range of setting the horizontal detection device 110 is to form a sector area parallel to the bottom surface of the boom along the axis of the crane telescopic arm.
  • FIG. 2 also provides schematic diagrams of some embodiments of the dynamic collision avoidance device for the working space of the present disclosure.
  • the working space dynamic anti-collision device 300 may include an information fusion module 310 and an anti-collision control module 320, where:
  • the information fusion module 310 is configured to receive obstacle information around the boom of the construction machinery and boom movement information of the construction machinery; determine obstacle coordinates according to the obstacle information and the boom movement information.
  • the information fusion module 310 may be used to filter radar information according to the properties of the signal, remove false information, obtain real obstacle information, and then fuse the coordinates of the obstacle with the motion information of the boom, Convert to the current boom coordinate system.
  • the anti-collision control module 320 is used to determine whether the obstacle coordinates are located in a predetermined warning area; and in the case where the obstacle coordinates are located in a predetermined warning area, instruct the execution device 400 to issue collision warning information outward.
  • the anti-collision control module 320 may be used to determine the possibility of collision according to the obstacle coordinate information and the set alarm area information, and then make anti-collision decisions based on the judgment result and output anti-collision protection Control instruction.
  • the working space dynamic anti-collision device 300 is used to perform operations for implementing the working space dynamic anti-collision method described in any of the above embodiments (eg, the embodiment of FIG. 4 or FIG. 5).
  • the working space dynamic anti-collision device 300 of the embodiment of FIG. 1 or FIG. 2 may include a memory 380 and a processor 390, where:
  • the memory 380 is used to store instructions.
  • the processor 390 is configured to execute the instruction, so that the working space dynamic anti-collision device 300 executes an operation that implements the working space dynamic anti-collision method described in any of the foregoing embodiments (for example, FIG. 4 or FIG. 5 embodiment) .
  • a collision avoidance algorithm is developed based on real-time dynamic space information and predicting the interaction between the boom and the work space to avoid missing judgment of the collision state;
  • the wave radar can adapt to various climates, and can detect dynamic spatial information in rain and snow weather, fog, and dust environments;
  • the anti-collision device of the above embodiment of the present disclosure is installed on a crane and can work with the crane to any construction site.
  • a construction machine including the dynamic collision avoidance device for a working space as described in any of the above embodiments (for example, the embodiment of FIG. 2 or FIG. 9), or including any of the above embodiments ( For example, the working space dynamic anti-collision system described in FIG. 1 or FIG. 2).
  • the construction machine may be a crane.
  • the working space dynamic anti-collision system of the present disclosure may be equipped with a hydraulic system and an electronic control system.
  • the hydraulic system's motor, luffing cylinder, telescopic cylinder, and slewing motor can be used as actuators to control the corresponding mechanisms of the crane to perform corresponding actions.
  • the hydraulic system can also include:
  • Motor-driven crane hoisting mechanism for lifting / lowering heavy objects in vertical direction.
  • a crane luffing mechanism which can be driven by a luffing cylinder, is used to change the distance between the suspended object and the center of the body.
  • a crane telescopic mechanism that can be driven by a telescopic cylinder is used to extend / shorten the boom.
  • the crane slewing mechanism which can be driven by a slewing motor, is used to change the lifting working angle in the horizontal plane.
  • the electric control system has a CAN bus network, which can provide information transmission function for each electric device.
  • the electronic control system is equipped with on-board display, with human-computer interaction function, and can carry out danger alarm and real-time data display.
  • the electronic control system is equipped with an on-board controller, which is responsible for data calculation and analysis and issuance of control commands.
  • the electronic control system is equipped with two millimeter-wave radars, which are used to build a space obstacle model.
  • the above embodiments of the present disclosure can dynamically scan the surrounding environment by adding an environment sensing device such as a millimeter wave radar to a construction machine such as a crane, and automatically recognize the state where a collision risk may occur, thereby effectively reducing the occurrence of lifting collision hazards and improving Crane service life.
  • an environment sensing device such as a millimeter wave radar
  • a construction machine such as a crane
  • a computer-readable storage medium storing computer instructions, which when executed by a processor implements any of the above embodiments (eg, FIG. 4 or FIG. 5 embodiment) described in the work space dynamic anti-collision method.
  • the above-mentioned embodiments of the present disclosure avoid the occurrence of collision hazards in the hoisting work space due to lack of vision. Since the detection equipment of the above embodiment of the present disclosure is randomly provided, the surrounding environment can be dynamically and quickly identified following the crane, thereby ensuring the identification of a rapid hazard source in any lifting work space.
  • the above embodiments of the present disclosure effectively reduce the occurrence of the danger of lifting collisions, increase the service life of the crane, reduce the frequency of accidents, and ensure the safety of lifting operations.
  • the work space dynamic anti-collision device described above can be implemented as a general-purpose processor, programmable logic control device (PLC), digital signal processor (DSP), application-specific integrated circuit (ASIC) for performing the functions described in this application , Field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • PLC programmable logic control device
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA Field programmable gate array
  • FPGA field programmable gate array
  • the method and system of the present disclosure may be implemented in many ways.
  • the methods and systems of the present disclosure can be implemented by software, hardware, firmware, or any combination of software, hardware, and firmware.
  • the above order of steps for the method is for illustration only, and the steps of the method of the present disclosure are not limited to the order specifically described above unless otherwise specifically stated.
  • the present disclosure may also be implemented as programs recorded in a recording medium, the programs including machine-readable instructions for implementing the method according to the present disclosure.
  • the present disclosure also covers the recording medium storing the program for executing the method according to the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)
  • Jib Cranes (AREA)

Abstract

一种工程机械及其作业空间动态防碰撞方法、装置和系统,该作业空间动态防碰撞方法包括:接收工程机械臂架周围的障碍物信息以及工程机械的臂架运动信息;根据障碍物信息和臂架运动信息确定障碍物坐标;判断障碍物坐标是否位于预定预警区域;在障碍物坐标位于预定预警区域的情况下,指示执行装置向外发出碰撞警报信息。该方法可以全天候、实时地检测工程机械臂架运动过程中周围障碍物情况,感知吊装空间动态信息,进行防碰撞预警可控制,从而保证了工程机械在吊装作业过程中的安全,减轻操作人员的工作强度。

Description

工程机械及其作业空间动态防碰撞方法、装置和系统
相关申请的交叉引用
本申请是以CN申请号为201811318246.8,申请日为2018年11月7日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及工程机械领域,特别涉及一种工程机械及其作业空间动态防碰撞方法、装置和系统。
背景技术
起重机是最主要的进行吊装作业的工程机械,但其作业环境复杂多变,其事故率较高。造成事故的主要原因是起吊过载和作业视野限制导致的碰撞。
发明内容
根据本公开的一个方面,提供一种作业空间动态防碰撞方法,包括:
接收工程机械臂架周围的障碍物信息以及工程机械的臂架运动信息;
根据所述障碍物信息和所述臂架运动信息确定障碍物坐标;
判断所述障碍物坐标是否位于预定预警区域;
在所述障碍物坐标位于预定预警区域的情况下,指示执行装置向外发出碰撞警报信息。
在本公开的一些实施例中,所述接收工程机械臂架周围的障碍物信息包括:
接收环境感知装置获取的障碍物信息,所述障碍物信息包括臂架回转运动方向的障碍物信息和臂架变幅运动方向的障碍物信息中的至少一项。
在本公开的一些实施例中,所述接收工程机械的臂架运动信息包括:
接收臂架运动感知装置获取的臂架运动信息,其中所述臂架运动信息包括臂架回转角度、臂架变幅角度、臂架伸缩长度和吊钩位置信息中的至少一项。
在本公开的一些实施例中,所述根据所述障碍物信息和所述臂架运动信息确定障碍物坐标包括:
根据信号属性对所述障碍物信息进行滤波,剔除虚假信息,获得真实障碍物信息;
将障碍物信息与臂架运动信息进行融合,将障碍物坐标转换为当前臂架坐标系的障碍物坐标。
在本公开的一些实施例中,所述作业空间动态防碰撞方法还包括:
预先设置预定预警区域。
在本公开的一些实施例中,预先设置预定预警区域包括:
围绕臂架设置预定预警区域,其中所述预定预警区域包括紧急制动区、危险预警区和安全预警区中的至少一个。
在本公开的一些实施例中,预先设置预定预警区域包括:
在臂架的水平方向和垂直方向,围绕臂架,由近到远分别设置紧急制动区、危险预警区和安全预警区。
在本公开的一些实施例中,所述作业空间动态防碰撞方法还包括:
在所述障碍物坐标位于紧急制动区的情况下,指示执行装置对起重机臂架进行紧急制动。
根据本公开的另一方面,提供一种作业空间动态防碰撞装置,包括:
信息融合模块,用于接收工程机械臂架周围的障碍物信息以及工程机械的臂架运动信息;根据所述障碍物信息和所述臂架运动信息确定障碍物坐标;
防碰撞控制模块,用于判断所述障碍物坐标是否位于预定预警区域;并在所述障碍物坐标位于预定预警区域的情况下,指示执行装置向外发出碰撞警报信息。
在本公开的一些实施例中,所述作业空间动态防碰撞装置用于执行实现如上述任一实施例所述的作业空间动态防碰撞方法的操作。
根据本公开的另一方面,提供一种作业空间动态防碰撞装置,包括:
存储器,用于存储指令;
处理器,用于执行所述指令,使得所述作业空间动态防碰撞装置执行实现如上述任一实施例所述的作业空间动态防碰撞方法的操作。
根据本公开的另一方面,提供一种作业空间动态防碰撞系统,包括:
环境感知装置,用于获取工程机械臂架周围的障碍物信息,并将所述障碍物信息发送给作业空间动态防碰撞装置;
臂架运动感知装置,用于获取工程机械的臂架运动信息,并将所述臂架运动信息发送给作业空间动态防碰撞装置;
作业空间动态防碰撞装置,为如上述任一实施例所述的作业空间动态防碰撞装置;
执行装置,用于根据作业空间动态防碰撞装置的指示,向外发出碰撞警报信息。
在本公开的一些实施例中,所述环境感知装置包括水平探测设备和垂直探测设备中的至少一项,其中:
水平探测设备,用于扫描探测臂架回转运动方向的障碍物;
垂直探测设备,用于扫描探测臂架变幅运动方向的障碍物。
在本公开的一些实施例中,所述水平探测设备设置在臂架底面;所述垂直探测设备设置在臂架侧面。
在本公开的一些实施例中,作业空间动态防碰撞装置,还用于根据臂架处于水平时的离地高度和防碰撞系统的最远检测距离确定垂直探测设备的角度探测范围。
在本公开的一些实施例中,所述臂架运动感知装置包括回转角度传感器、变幅角度传感器、伸缩长度传感器和吊钩长度传感器中的至少一项。
在本公开的一些实施例中,所述执行装置包括报警设备和制动设备中的至少一项,其中:
报警设备,用于根据作业空间动态防碰撞装置的指示,在所述障碍物坐标位于不同预定预警区域的情况下,向外发出相应的碰撞警报信息;
制动设备,用于根据作业空间动态防碰撞装置的指示,在所述障碍物坐标位于紧急制动区的情况下,对起重机臂架进行紧急制动。
根据本公开的另一方面,提供一种工程机械,包括如上述任一实施例所述的作业空间动态防碰撞装置,或包括如上述任一实施例所述的作业空间动态防碰撞系统。
根据本公开的另一方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行时实现如上述任一实施例所述的作业空间动态防碰撞方法。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开作业空间动态防碰撞系统一些实施例的示意图。
图2为本公开作业空间动态防碰撞系统另一些实施例的示意图。
图3为本公开作业空间动态防碰撞系统又一些实施例的安装示意图。
图4为本公开作业空间动态防碰撞方法一些实施例的示意图。
图5为本公开作业空间动态防碰撞方法另一些实施例的示意图。
图6为本公开一些实施例中水平预警区的示意图。
图7为本公开一些实施例中垂直预警区的示意图。
图8为本公开一些实施例中垂直方向检测范围确定方法的示意图。
图9为本公开作业空间动态防碰撞装置一些实施例的示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
申请人发现:相关技术为了防止吊装作业过程中的碰撞,采用了吊装前的路径规划的解决方法。
吊装前的路径规划是将起重机作为多自由度的机械手,建立其运动学和动力学模型,在其可配置空间内通过寻优防碰撞算法计算其防碰撞路径。但是,由于搜索算法通常较为复杂,对计算机资源要求较高,难以在车载控制器上实现。另外,吊装前路径规划所使用的障碍物模型是静态模型,但施工现场是动态环境,因此其计算防碰撞路径与实际情况不符。
申请人还发现:相关技术的一些实施例中,通过防护装置避免起重机部件间的碰撞,没有考虑吊臂与作业空间的交互。
相关技术的另一些实施例中,吊装作业空间只考虑静态模型,没有考虑动态空间模型,会造成碰撞状态的漏判。
相关技术的另一些实施例中,作业空间信息检测方式不具有全天候性,受环境、天气、灰尘等影响很大。
相关技术的另一些实施例中,通过在作业空间的特定位置安装传感器,检测碰撞可能。这些实施例不适用于动态变化的施工现场。
为解决以上至少一项技术问题,本公开提出了一种作业空间动态防碰撞方法和系统,下面结合具体实施例进行进一步说明。
图1为本公开作业空间动态防碰撞系统一些实施例的示意图。图2为本公开作业空间动态防碰撞系统另一些实施例的示意图。如图1和图2所示,所述作业空间动态防碰撞系统可以包括环境感知装置100、臂架运动感知装置200、作业空间动态防碰撞装置300和执行装置400,其中:
环境感知装置100与作业空间动态防碰撞装置300连接,臂架运动感知装置200与作业空间动态防碰撞装置300连接,作业空间动态防碰撞装置300与执行装置400连接。
环境感知装置100设置在工程机械臂架上,用于获取工程机械臂架周围的障碍物信息,并将所述障碍物信息发送给作业空间动态防碰撞装置300。
在本公开的一些实施例中,所述工程机械可以为起重机。
在本公开的一些实施例中,所述环境感知装置100可以包括水平探测设备110和垂直探测设备120中的至少一项,其中:
水平探测设备110,用于扫描探测臂架回转运动方向的障碍物。
垂直探测设备120,用于扫描探测臂架变幅运动方向的障碍物。
在本公开的一些实施例中,所述水平探测设备110和垂直探测设备120均可以实现为毫米波雷达。所述水平探测设备110可以实现为水平扫描毫米波雷达,所述垂直探测设备120可以实现为垂直扫描毫米波雷达。
在本公开的一些实施例中,所述水平探测设备110和垂直探测设备120也可以实现为电磁探测设备、微波雷达传感器、激光传感器、超声波传感器中的至少一项。
臂架运动感知装置200,用于获取工程机械的臂架运动信息,并将所述臂架运动信息发送给作业空间动态防碰撞装置300。
在本公开的一些实施例中,所述臂架运动信息可以包括臂架回转角度、臂架变幅角度、臂架伸缩长度和吊钩位置信息中的至少一项。
在本公开的一些实施例中,如图2所示,所述臂架运动感知装置200可以包括回转角度传感器210、变幅角度传感器220、伸缩长度传感器230和吊钩长度传感器240中的至少一项。
作业空间动态防碰撞装置300,用于接收工程机械臂架周围的障碍物信息以及工程机械的臂架运动信息;根据所述障碍物信息和所述臂架运动信息确定障碍物坐标;判断所述障碍物坐标是否位于预定预警区域;在所述障碍物坐标位于预定预警区域的情况下,指示执行装置400向外发出碰撞警报信息。
在本公开的一些实施例中,所述作业空间动态防碰撞装置可以为车载计算机。
在本公开的一些实施例中,控制设备200也可以实现为车载控制器、车载显示器、车载力限器或者其它具备数据计算分析功能的电子元器件。
在本公开的一些实施例中,作业空间动态防碰撞装置300还可以用于围绕臂架设置预定预警区域,其中所述预定预警区域可以包括距离臂架由近到远的紧急制动区、危险预警区和安全预警区中的至少一个。
执行装置400,用于根据作业空间动态防碰撞装置300的指示,向外发出碰撞警报信息。
本公开上述实施例可以采用CAN总线实现作业空间动态防碰撞装置300与环境感知装置100、臂架运动感知装置200和执行装置400之间的通信。
本公开上述实施例也可以采用以太网、因特网等其它具备数据传输功能的网络形式来实现作业空间动态防碰撞装置300与执行装置400之间的通信连接。
在本公开的一些实施例中,如图2所示,所述执行装置400可以包括报警设备410和制动设备420中的至少一项,其中:
报警设备410,用于根据作业空间动态防碰撞装置300的指示,在所述障碍物坐标位于不同预定预警区域的情况下,向外发出相应的碰撞警报信息。
在本公开的一些实施例中,所述报警设备410可以实现为声光报警装置、蜂鸣器、报警指示灯等报警设备中的至少一项。
在本公开的一些实施例中,报警设备410可以包括碰撞信息预警信息可视化显示模块和碰撞预警信息声光报警模块,其中:
碰撞信息预警信息可视化显示模块,用于将碰撞信息通过动画、图形等构成的人机交互界面实时显示碰撞预警信息,可以使操作员直观地知道碰撞事故可能发生,从而采取相应措施。
碰撞预警信息声光报警模块,用于根据碰撞事故的发生概率发出不同频率的报警声音和示警灯光,以提醒操作员碰撞事故可能发生,使操作员不会遗漏预警信息。
在本公开的一些实施例中,所述碰撞预警信息声光报警模块可以实现为用于声音报警和视觉提示的车载显示器。
在本公开的一些实施例中,所述声光报警装置也可以实现为平板电脑、随车负载笔记本电脑等其它具备人机交互功能的元件。
在本公开的一些实施例中,所述报警设备410可以实现为人机交互设备。所述人机交互设备为带有触摸功能的彩屏显示器,该显示器发挥的人机交互功能主要为:(1)设置或 者取消起重作业空间防碰撞功能。(2)立体实时显示障碍物距起重机伸缩臂头或者被吊物体的距离。(3)当探测距离小于安全距离时,弹出对话框提示操纵者注意当前状态,同时进行声光报警,以保证起重作业安全。
制动设备420,用于根据作业空间动态防碰撞装置300的指示,在所述障碍物坐标位于紧急制动区的情况下,对起重机臂架进行紧急制动。本公开上述实施例的制动设备用于在碰撞事故即将发生时对起重机臂架进行紧急制动,从而避免发生碰撞。
在本公开的一些实施例中,制动设备420可以实现为泵、阀、马达等制动设备。
本公开上述实施例的制动设备420和报警设备410通过CAN总线接收到控制指令后进行相应动作,包括驱动泵、阀、马达等工作或停止、驱动声光报警装置开启或关闭等,从而防止了起重碰撞危险的发生,保证了起重作业安全性。
基于本公开上述实施例提供的作业空间动态防碰撞系统,特别是一种基于毫米波雷达技术开发的移动式起重机吊装作业空间动态防碰撞系统,本公开上述实施例基于实时动态空间信息和预测吊臂与作业空间的交互行为开发避碰算法,避免了碰撞状态的漏判;本公开上述实施例使用毫米波雷达,可以适应各种气候,在雨雪天气、雾天、尘土环境均能检测动态空间信息;本公开上述实施例的防碰撞装置安装在起重机上,可以随起重机到任意施工现场工作。
本公开上述实施例可以全天候、实时地检测工程机械臂架运动过程中周围障碍物情况,感知吊装空间动态信息,进行防碰撞预警可控制,从而保证了工程机械在吊装作业过程中的安全,减轻了操作人员的工作强度。
图3为本公开作业空间动态防碰撞系统又一些实施例的安装示意图。如图3所示,图2实施例的水平探测设备110可以设置在臂架底面;图2实施例的垂直探测设备120可以设置在臂架侧面。
在本公开一些实施例中,水平探测设备110和垂直探测设备120可以实现为毫米波雷达。
本公开上述实施例采用2个探测设备,并根据起重机结构特征布局在起重伸缩臂侧面和底面位置。本公开上述实施例的探测设备布局方法使得探测空间内全部物体的可视化,从而可以防止出现视觉盲区,可精确定位任意障碍物位置,对具有极限位置和外形的障碍物进行规划建模。
本公开上述实施例提供一种起重机吊装作业过程中的空间防碰撞早期预警系统。其中,该防碰撞功能包括起重机与作业环境、被吊物体与作业环境之间的相互碰撞。本公开 上述实施例通过对周围环境的认知以及三维空间重构,实现了对于危险状态的自动识别及预警,其中,三维空间重构指的是:对三维物体建立适合计算机表示和处理的数学模型。本公开上述实施例中三维空间重构是指对于起重作业空间中的障碍物建立合适的可用于危险预测的三维结构模型。
本公开上述实施例以起重机系统为载体,合理规划2个探测设备安装位置,开发可精确预测障碍物位置及外形信息的算法。根据空间构造原理可知,已知两个探测传感器坐标位置,且障碍物距每个传感器的相对距离可求,则障碍物的坐标位置是唯一的。
图3为本公开作业空间动态防碰撞系统一些实施例的安装示意图。如图3所示,所述作业空间动态防碰撞系统的硬件由水平方向扫描的毫米波雷达、垂直扫描的毫米波雷达、臂架运动感知装置、车载计算机、显示器、预警蜂鸣器、报警灯和相关电缆等设备组成。其中,两个毫米波雷达用于实现图1或图2实施例中环境感知装置100的功能;车载计算机用于实现图1或图2实施例中作业空间动态防碰撞装置300的功能;显示器、预警蜂鸣器和报警灯用于实现图1或图2实施例中执行装置400的功能。
如图3所示,两个毫米波雷达安装在起重机基本臂靠近变幅油缸铰接点位置,采集臂架周围的障碍物信息。车载计算机、显示器、预警蜂鸣器和报警灯安装在操作室里。
车载计算机通过CAN总线与毫米波雷达和臂架运动感知装置连接,用于读取毫米波雷达信息、臂架运动信息,进行信息的滤波与融合,运行防碰撞预警算法,根据防碰撞预警计算结果输出相应的信号和指令。
预警蜂鸣器通过电缆与车载计算机的输出端口连接,根据不同报警区(如图6和图7实施例的不同报警区)发出不同频率的声音,臂架与障碍物的距离越近,报警声音的频率越快。
报警灯与车载计算机的输出端口连接,根据报警区发出不同颜色的灯光。在本公开的一些实施例中,针对如图6和图7实施例的不同报警区,预警区灯光的颜色为绿色,危险预警区灯光的颜色为黄色,紧急制动区灯光的颜色为红色。
本公开上述实施例在起重机吊装过程中的实时控制通过感知现场环境,计算起重机在吊装路径中的障碍物信息,实时判断危险状态,并及时报警或紧急制动。
本公开上述实施例基于毫米波雷达技术开发了移动式起重机吊装作业空间动态防碰撞系统,该系统避免了相关技术系统的没有考虑臂架与空间的交互、没有考虑吊装空间动态信息、不能全天候工作和需要安装额外的现场环境传感器等缺陷,与起重机集成在一起,可以全天候、实时地检测起重机臂架运动过程中周围障碍物情况,感知吊装空间动态信息, 进行防碰撞预警可控制,从而保证了起重机在吊装作业过程中的安全,减轻了操作人员的工作强度。
图4为本公开作业空间动态防碰撞方法一些实施例的示意图。优选的,本实施例可由本公开作业空间动态防碰撞系统或作业空间动态防碰撞装置执行。该方法包括以下步骤:
步骤41,接收工程机械臂架周围的障碍物信息以及工程机械的臂架运动信息。
在本公开的一些实施例中,步骤11中,所述接收工程机械臂架周围的障碍物信息的步骤可以包括:接收环境感知装置100获取的障碍物信息,所述障碍物信息包括臂架回转运动方向的障碍物信息和臂架变幅运动方向的障碍物信息中的至少一项。
在本公开的一些实施例中,步骤11中,所述接收工程机械的臂架运动信息的步骤可以包括:接收臂架运动感知装置200获取的臂架运动信息,其中所述臂架运动信息包括臂架回转角度、臂架变幅角度、臂架伸缩长度和吊钩位置信息中的至少一项。
步骤42,根据所述障碍物信息和所述臂架运动信息确定障碍物坐标。
在本公开的一些实施例中,步骤42可以包括:
步骤421,根据信号属性对所述障碍物信息进行滤波,剔除虚假信息,获得真实障碍物信息。
步骤422,将障碍物信息与臂架运动信息进行融合,将障碍物坐标转换为当前臂架坐标系的障碍物坐标。
步骤43,判断所述障碍物坐标是否位于预定预警区域。
步骤44,在所述障碍物坐标位于预定预警区域的情况下,指示执行装置400向外发出碰撞警报信息。
基于本公开上述实施例提供的作业空间动态防碰撞方法,特别是一种基于毫米波雷达技术开发的移动式起重机吊装作业空间动态防碰撞方法,本公开上述实施例基于实时动态空间信息和预测吊臂与作业空间的交互行为开发避碰算法,避免了碰撞状态的漏判;本公开上述实施例使用毫米波雷达,可以适应各种气候,在雨雪天气、雾天、尘土环境均能检测动态空间信息;本公开上述实施例的防碰撞装置安装在起重机上,可以随起重机到任意施工现场工作。
图5为本公开作业空间动态防碰撞方法另一些实施例的示意图。优选的,本实施例可由本公开作业空间动态防碰撞系统或作业空间动态防碰撞装置执行。该方法包括以下步骤:
步骤51,预先设置预定预警区域。
在本公开的一些实施例中,步骤51可以包括:围绕臂架设置预定预警区域,其中所述预定预警区域包括紧急制动区、危险预警区和安全预警区中的至少一个。
图6为本公开一些实施例中水平预警区的示意图。图7为本公开一些实施例中垂直预警区的示意图。如图6和图7所示,图5实施例的步骤51可以包括:
步骤511,在臂架的水平方向和垂直方向,围绕臂架,由近到远分别设置紧急制动区、危险预警区和安全预警区。
其中,安全预警区是指臂架与障碍物的距离较近,但根据当前速度还不会发生臂架与障碍物碰撞,操作员可以继续操作,但需要时刻注意。危险预警区是指臂架与障碍物的距离已很接近,按照当前速度将会发生碰撞,但还需一段时间,在这段时间内,操作员采取正确的操作,则可避免碰撞。紧急制动区是指臂架与障碍物的距离已非常接近,按照当前速度立即会发生碰撞,操作员没有足够的时间反应,所以控制器自动发出紧急停止指令。
步骤512,设置如图6和图7的各个报警区的参数,其中,所述参数包括各个报警器距离臂架的最近距离和最远距离,以及各个报警区的宽度等参数。
步骤52,接收工程机械臂架周围的障碍物信息以及工程机械的臂架运动信息。
在本公开的一些实施例中,步骤52可以包括:启动系统后,读取毫米波雷达的信息,以及臂架运动感知装置200获取的臂架运动信息,其中所述臂架运动信息包括臂架回转角度、臂架变幅角度、臂架伸缩长度和吊钩位置信息中的至少一项。
步骤53,根据所述障碍物信息和所述臂架运动信息确定障碍物坐标。
在本公开的一些实施例中,步骤53可以包括:
步骤531,根据信号属性对所述障碍物信息进行滤波,剔除虚假信息,获得真实障碍物信息。
步骤532,将障碍物信息与臂架运动信息进行融合,将障碍物坐标转换为当前臂架坐标系的障碍物坐标。
步骤54,判断所述障碍物坐标是否位于预定预警区域。
在本公开的一些实施例中,如图5所示,步骤54可以包括:将所述障碍物坐标与报警区的参数比较,分别判断所述障碍物坐标是否位于水平方向的报警区和垂直方向报警区。
步骤55,在所述障碍物坐标位于预定预警区域的情况下,指示执行装置400向外发出碰撞警报信息或执行相应的指令。
在本公开的一些实施例中,步骤55可以包括:在所述障碍物坐标位于紧急制动区的情况下,指示执行装置400对起重机臂架进行紧急制动。
本公开上述实施例基于毫米波雷达技术开发了移动式起重机吊装作业空间动态防碰撞方法,该系统克服了相关技术没有考虑臂架与空间的交互、没有考虑吊装空间动态信息、不能全天候工作和需要安装额外的现场环境传感器等缺陷,与起重机集成在一起,可以全天候、实时地检测起重机臂架运动过程中周围障碍物情况,感知吊装空间动态信息,进行防碰撞预警可控制,从而保证了起重机在吊装作业过程中的安全,减轻了操作人员的工作强度。
图8为本公开一些实施例中垂直方向检测范围确定方法的示意图。如图4或图5所示的作业空间动态防碰撞方法还可以包括:根据臂架处于水平时的离地高度和防碰撞系统的最远检测距离确定垂直探测设备120的垂直探测设备120的角度探测范围。
申请人发现:当雷达对地面进行照射时,由于多径反射效果,会产生很多杂波,影响防碰撞系统的计算。
本公开上述实施例为了避免多径反射的影响,垂直方向检测范围的角度需要进行限制,其确定方法如附图8所示。图8中h为臂架处于水平时的离地高度,L为防碰撞系统最远检测距离,α为垂直毫米波雷达检测的角度范围的一半,可由公式(1)求得。
α=arctan(h/L)           (1)
在本公开的一些实施例中,如图4或图5所示的作业空间动态防碰撞方法还可以包括:设置垂直探测设备120的工作范围为:沿起重伸缩臂轴向形成与起重臂侧面平行的扇形区域;设置水平探测设备110的工作范围为:沿起重伸缩臂轴向形成与起重臂底面平行的扇形区域。
图2实施例还给出了本公开作业空间动态防碰撞装置一些实施例的示意图。如图2所示,所述作业空间动态防碰撞装置300可以包括信息融合模块310和防碰撞控制模块320,其中:
信息融合模块310,用于接收工程机械臂架周围的障碍物信息以及工程机械的臂架运动信息;根据所述障碍物信息和所述臂架运动信息确定障碍物坐标。
在本公开的一些实施例中,信息融合模块310可以用于将雷达信息根据信号的属性进行滤波,剔除虚假信息,获得真实障碍物信息,然后将障碍物的坐标与臂架的运动信息融合,转换至当前臂架坐标系。
防碰撞控制模块320,用于判断所述障碍物坐标是否位于预定预警区域;并在所述障碍物坐标位于预定预警区域的情况下,指示执行装置400向外发出碰撞警报信息。
在本公开的一些实施例中,防碰撞控制模块320可以用于根据障碍物坐标信息和设置的报警区域信息进行判断碰撞发生的可能性,然后根据判断结果进行防碰撞决策,并输出防碰撞保护控制指令。
在本公开的一些实施例中,所述作业空间动态防碰撞装置300用于执行实现如上述任一实施例(例如图4或图5实施例)所述的作业空间动态防碰撞方法的操作。
图9为本公开作业空间动态防碰撞装置一些实施例的示意图。如图所示,图1或图2实施例的作业空间动态防碰撞装置300可以包括存储器380和处理器390,其中:
存储器380,用于存储指令。
处理器390,用于执行所述指令,使得所述作业空间动态防碰撞装置300执行实现如上述任一实施例(例如图4或图5实施例)所述的作业空间动态防碰撞方法的操作。
基于本公开上述实施例提供的作业空间动态防碰撞装置,基于实时动态空间信息和预测吊臂与作业空间的交互行为开发避碰算法,避免了碰撞状态的漏判;本公开上述实施例使用毫米波雷达,可以适应各种气候,在雨雪天气、雾天、尘土环境均能检测动态空间信息;本公开上述实施例的防碰撞装置安装在起重机上,可以随起重机到任意施工现场工作。
根据本公开的另一方面,提供一种工程机械,包括如上述任一实施例(例如图2或图9实施例)所述的作业空间动态防碰撞装置,或包括如上述任一实施例(例如图1或图2实施例)所述的作业空间动态防碰撞系统。
在本公开的一些实施例中,所述工程机械可以为起重机。本公开作业空间动态防碰撞系统可以具备液压系统和电控系统。
第一、液压系统。
液压系统的马达、变幅油缸、伸缩油缸和回转马达等可以作为执行装置,控制起重机相应机构进行相应动作。
液压系统还可以包括:
可通过马达驱动的起重机卷扬机构,用于垂直方向上起/落重物。
可通过变幅油缸驱动的起重机变幅机构,用于改变被吊物距车身中心距离。
可通过伸缩油缸驱动的起重机伸缩机构,用于伸长/缩短起重臂。
可通过回转马达驱动的起重机回转机构,用于改变水平面内起重工作角度。
第二、电控系统。
该电控系统具备CAN总线网络,可为各电器件提供信息传递功能。
该电控系统具备车载显示器,具备人机交互功能,可进行危险报警及实时数据显示。
该电控系统具备车载控制器,负责数据计算分析和控制命令的发布。
该电控系统配置两个毫米波雷达,用于进行空间障碍物模型搭建。
基于本公开上述实施例提供的工程机械,克服了现有系统和技术的没有考虑臂架与空间的交互、没有考虑吊装空间动态信息、不能全天候工作和需要安装额外的现场环境传感器等缺陷,可以全天候、实时地检测起重机臂架运动过程中周围障碍物情况,感知吊装空间动态信息,进行防碰撞预警可控制,从而保证了起重机在吊装作业过程中的安全,减轻了操作人员的工作强度。
本公开上述实施例通过在起重机等工程机械上增加诸如毫米波雷达的环境感知装置,可以动态扫描周围环境,自动识别可能发生碰撞危险的状态,从而有效减少了起重碰撞危险的发生,提高了起重机使用寿命。
根据本公开的另一方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行时实现如上述任一实施例(例如图4或图5实施例)所述的作业空间动态防碰撞方法。
本公开上述实施例避免了起重作业空间由于视觉所不及造成的碰撞危险的发生。由于本公开上述实施例探测设备随机附带,可跟随起重机动态快速识别周围环境,从而保证任意起重作业空间内快速危险源的识别。本公开上述实施例有效减少了起重碰撞危险的发生,提高了起重机使用寿命,降低了事故发生频率,确保了起重作业安全性。
在上面所描述的作业空间动态防碰撞装置可以实现为用于执行本申请所描述功能的通用处理器、可编程逻辑控制设备(PLC)、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。
可能以许多方式来实现本公开的方法和系统。例如,可通过软件、硬件、固件或 者软件、硬件、固件的任何组合来实现本公开的方法和系统。用于方法的步骤的上述顺序仅是为了进行说明,本公开的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本公开实施为记录在记录介质中的程序,这些程序包括用于实现根据本公开的方法的机器可读指令。因而,本公开还覆盖存储用于执行根据本公开的方法的程序的记录介质。
本公开的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本公开限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本公开的原理和实际应用,并且使本领域的普通技术人员能够理解本公开从而设计适于特定用途的带有各种修改的各种实施例。

Claims (19)

  1. 一种作业空间动态防碰撞方法,包括:
    接收工程机械臂架周围的障碍物信息以及工程机械的臂架运动信息;
    根据所述障碍物信息和所述臂架运动信息确定障碍物坐标;
    判断所述障碍物坐标是否位于预定预警区域;
    在所述障碍物坐标位于预定预警区域的情况下,指示执行装置向外发出碰撞警报信息。
  2. 根据权利要求1所述的作业空间动态防碰撞方法,其中,所述接收工程机械臂架周围的障碍物信息包括:
    接收环境感知装置获取的障碍物信息,所述障碍物信息包括臂架回转运动方向的障碍物信息和臂架变幅运动方向的障碍物信息中的至少一项。
  3. 根据权利要求1所述的作业空间动态防碰撞方法,其中,所述接收工程机械的臂架运动信息包括:
    接收臂架运动感知装置获取的臂架运动信息,其中所述臂架运动信息包括臂架回转角度、臂架变幅角度、臂架伸缩长度和吊钩位置信息中的至少一项。
  4. 根据权利要求1-3中任一项所述的作业空间动态防碰撞方法,其中,所述根据所述障碍物信息和所述臂架运动信息确定障碍物坐标包括:
    根据信号属性对所述障碍物信息进行滤波,剔除虚假信息,获得真实障碍物信息;
    将障碍物信息与臂架运动信息进行融合,将障碍物坐标转换为当前臂架坐标系的障碍物坐标。
  5. 根据权利要求1-3中任一项所述的作业空间动态防碰撞方法,还包括:
    预先设置预定预警区域。
  6. 根据权利要求5所述的作业空间动态防碰撞方法,其中,预先设置预定预警区域包括:
    围绕臂架设置预定预警区域,其中所述预定预警区域包括紧急制动区、危险预警区和安全预警区中的至少一个。
  7. 根据权利要求6所述的作业空间动态防碰撞方法,其中,预先设置预定预警区域包括:
    在臂架的水平方向和垂直方向,围绕臂架,由近到远分别设置紧急制动区、危险预警区和安全预警区。
  8. 根据权利要求6所述的作业空间动态防碰撞方法,还包括:
    在所述障碍物坐标位于紧急制动区的情况下,指示执行装置对起重机臂架进行紧急制动。
  9. 一种作业空间动态防碰撞装置,包括:
    信息融合模块,用于接收工程机械臂架周围的障碍物信息以及工程机械的臂架运动信息;根据所述障碍物信息和所述臂架运动信息确定障碍物坐标;
    防碰撞控制模块,用于判断所述障碍物坐标是否位于预定预警区域;并在所述障碍物坐标位于预定预警区域的情况下,指示执行装置向外发出碰撞警报信息。
  10. 根据权利要求9所述的作业空间动态防碰撞装置,其特征在于,所述作业空间动态防碰撞装置用于执行实现如权利要求1-8中任一项所述的作业空间动态防碰撞方法的操作。
  11. 一种作业空间动态防碰撞装置,包括:
    存储器,用于存储指令;
    处理器,用于执行所述指令,使得所述作业空间动态防碰撞装置执行实现如权利要求1-8中任一项所述的作业空间动态防碰撞方法的操作。
  12. 一种作业空间动态防碰撞系统,包括:
    环境感知装置,用于获取工程机械臂架周围的障碍物信息,并将所述障碍物信息发送给作业空间动态防碰撞装置;
    臂架运动感知装置,用于获取工程机械的臂架运动信息,并将所述臂架运动信息发送给作业空间动态防碰撞装置;
    作业空间动态防碰撞装置,为如权利要求9-11中任一项所述的作业空间动态防碰撞 装置;
    执行装置,用于根据作业空间动态防碰撞装置的指示,向外发出碰撞警报信息。
  13. 根据权利要求12所述的作业空间动态防碰撞系统,其中,所述环境感知装置包括水平探测设备和垂直探测设备中的至少一项,其中:
    水平探测设备,用于扫描探测臂架回转运动方向的障碍物;
    垂直探测设备,用于扫描探测臂架变幅运动方向的障碍物。
  14. 根据权利要求13所述的作业空间动态防碰撞系统,其中,所述水平探测设备设置在臂架底面;所述垂直探测设备设置在臂架侧面。
  15. 根据权利要求14所述的作业空间动态防碰撞系统,其中,
    作业空间动态防碰撞装置,还用于根据臂架处于水平时的离地高度和防碰撞系统的最远检测距离确定垂直探测设备的角度探测范围。
  16. 根据权利要求12-15中任一项所述的作业空间动态防碰撞系统,其中,所述臂架运动感知装置包括回转角度传感器、变幅角度传感器、伸缩长度传感器和吊钩长度传感器中的至少一项。
  17. 根据权利要求12-15中任一项所述的作业空间动态防碰撞系统,其中,所述执行装置包括报警设备和制动设备中的至少一项,其中:
    报警设备,用于根据作业空间动态防碰撞装置的指示,在所述障碍物坐标位于不同预定预警区域的情况下,向外发出相应的碰撞警报信息;
    制动设备,用于根据作业空间动态防碰撞装置的指示,在所述障碍物坐标位于紧急制动区的情况下,对起重机臂架进行紧急制动。
  18. 一种工程机械,包括如权利要求9-11中任一项所述的作业空间动态防碰撞装置,或包括如权利要求12-17中任一项所述的作业空间动态防碰撞系统。
  19. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行时实现如权利要求1-8中任一项所述的作业空间动态防碰撞方法。
PCT/CN2018/123604 2018-11-07 2018-12-25 工程机械及其作业空间动态防碰撞方法、装置和系统 WO2020093558A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/734,430 US11975951B2 (en) 2018-11-07 2018-12-25 Engineering machinery and dynamic anti-collision method, device, and system for operation space of the engineering machinery
EP18939442.2A EP3778464A4 (en) 2018-11-07 2018-12-25 CONSTRUCTION MACHINE AND METHOD, DEVICE AND SYSTEM FOR COLLISION AVOIDANCE IN A DYNAMIC WORKSPACE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811318246.8A CN109095356B (zh) 2018-11-07 2018-11-07 工程机械及其作业空间动态防碰撞方法、装置和系统
CN201811318246.8 2018-11-07

Publications (1)

Publication Number Publication Date
WO2020093558A1 true WO2020093558A1 (zh) 2020-05-14

Family

ID=64870131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123604 WO2020093558A1 (zh) 2018-11-07 2018-12-25 工程机械及其作业空间动态防碰撞方法、装置和系统

Country Status (4)

Country Link
US (1) US11975951B2 (zh)
EP (1) EP3778464A4 (zh)
CN (1) CN109095356B (zh)
WO (1) WO2020093558A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415741A (zh) * 2021-11-25 2022-04-29 中联重科股份有限公司 用于工程设备臂架的控制方法、控制器及控制装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10883256B2 (en) * 2018-05-25 2021-01-05 Deere & Company Object responsive control system for a work machine
CN109095356B (zh) 2018-11-07 2024-03-01 江苏徐工国重实验室科技有限公司 工程机械及其作业空间动态防碰撞方法、装置和系统
EP3689807A1 (de) * 2019-02-04 2020-08-05 Siemens Aktiengesellschaft Kollisionsfreie wegführung einer an einem seil hängenden last
CN110058195A (zh) * 2019-05-24 2019-07-26 珠海格力电器股份有限公司 工业机器人的工作范围状态的确定方法及装置
CN110697580A (zh) * 2019-10-18 2020-01-17 中国电建集团山东电力建设第一工程有限公司 一种吊装防碰撞报警装置及方法
SG10201910363RA (en) * 2019-11-06 2021-06-29 Scientec Tech Pte Ltd Collision prevention system for lifting machinery
CN110950250B (zh) * 2019-11-13 2021-05-07 中联重科股份有限公司 用于检测空间障碍物的方法、系统及工程机械
CN113371614B (zh) * 2020-03-10 2023-01-31 长鑫存储技术有限公司 自动化天车防撞系统及方法
CN111593891A (zh) * 2020-04-26 2020-08-28 中联重科股份有限公司 工程机械臂架类设备的安全预警方法、装置及该工程机械
CN112182696B (zh) * 2020-09-08 2024-05-31 国家电网有限公司 一种顶盖检修吊装作业与风险辨识三维数字化推演方法
CN113147590B (zh) * 2021-04-08 2022-05-20 中国铁建重工集团股份有限公司 一种隧道环境机械臂实时碰撞预警系统及方法
CN113247771A (zh) * 2021-04-26 2021-08-13 国电南瑞科技股份有限公司 一种起重机防电缆触碰系统及方法
CN113378749B (zh) * 2021-06-22 2022-05-20 北京容联易通信息技术有限公司 一种基于大数据分析的视觉检测系统
CN113911908B (zh) * 2021-09-13 2023-06-02 杭州大杰智能传动科技有限公司 用于智能塔吊驾驶的物联网后台控制方法和系统
CN113959739B (zh) * 2021-09-29 2023-09-29 杭州集智机电股份有限公司 一种用于轮胎均动检测的合模防撞装置
CN113911911B (zh) * 2021-09-30 2022-08-30 国能黄骅港务有限责任公司 一种门座起重机及其控制方法、装置
JP2023069937A (ja) * 2021-11-08 2023-05-18 株式会社デンソー 物体認識装置及びプログラム
CN114275681B (zh) * 2021-11-15 2022-08-26 中联重科股份有限公司 用于起重机的控制方法及装置、控制器和起重机
CN114368693B (zh) * 2021-12-01 2023-06-02 中联重科股份有限公司 用于臂架的防碰撞方法、装置、处理器及起重机
CN114387760A (zh) * 2021-12-08 2022-04-22 国网上海市电力公司 一种带电区域吊装作业安全管控系统
CN114212745A (zh) * 2022-01-17 2022-03-22 徐工消防安全装备有限公司 一种高空作业平台、控制方法及存储介质
CN115497338B (zh) * 2022-10-17 2024-03-15 中国第一汽车股份有限公司 辅路路口的盲区预警系统、方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136781A (ja) * 1995-11-14 1997-05-27 Hitachi Building Syst Co Ltd エレベータドア係合装置の掛り代確認用治具
CN103559703A (zh) * 2013-10-08 2014-02-05 中南大学 基于双目视觉的起重机障碍物监测及预警方法及系统
JP2015009954A (ja) * 2013-06-28 2015-01-19 株式会社日立ビルシステム エレベータのドア制御装置
CN105303346A (zh) * 2015-10-20 2016-02-03 南京邮电大学 一种基于uwb的叉车防碰撞系统和方法
CN108732993A (zh) * 2017-04-21 2018-11-02 广东斐克科技有限公司 一种数控机床智能防碰撞系统
CN109095356A (zh) * 2018-11-07 2018-12-28 徐工集团工程机械有限公司 工程机械及其作业空间动态防碰撞方法、装置和系统

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112893A (ja) * 1993-10-18 1995-05-02 Shimizu Corp クレーンブームの衝突警報方法、衝突警報・防止方法、およびそれらの装置
AUPR257001A0 (en) * 2001-01-17 2001-02-08 Bhp Innovation Pty Ltd Anti-collision protection system
US6985085B1 (en) * 2003-04-24 2006-01-10 Eric Brown Safety view blind finder for a crane
US8909467B2 (en) * 2010-06-07 2014-12-09 Industry-Academic Cooperation Foundation, Yonsei University Tower crane navigation system
US9030332B2 (en) * 2011-06-27 2015-05-12 Motion Metrics International Corp. Method and apparatus for generating an indication of an object within an operating ambit of heavy loading equipment
CN202689566U (zh) * 2011-12-29 2013-01-23 中联重科股份有限公司 一种用于臂架的避障系统及包括该系统的工程机械设备
US9415976B2 (en) * 2012-05-10 2016-08-16 Trimble Navigation Limited Crane collision avoidance
US9868618B2 (en) * 2012-06-07 2018-01-16 Jaguar Land Rover Limited Crane and related method of operation
DE202012012116U1 (de) * 2012-12-17 2014-03-19 Liebherr-Components Biberach Gmbh Turmdrehkran
CN103613014B (zh) * 2013-11-21 2016-01-27 中联重科股份有限公司 塔式起重机防碰撞系统、方法、装置及塔式起重机
US9688518B2 (en) * 2014-07-31 2017-06-27 Trimble Inc. Three dimensional rendering of job site
CN104310224B (zh) * 2014-09-05 2016-10-05 徐州重型机械有限公司 工程机械作业目标定位方法和系统
CN104627842B (zh) * 2014-12-01 2016-08-31 长安大学 一种臂架式起重机吊装作业防碰撞方法及系统
US10822208B2 (en) * 2014-12-23 2020-11-03 Manitowoc Crane Companies, Llc Crane 3D workspace spatial techniques for crane operation in proximity of obstacles
CN106365046B (zh) * 2015-07-23 2019-04-02 徐工集团工程机械股份有限公司 倾翻控制方法、装置、系统和工程机械
CN105366574A (zh) * 2015-10-27 2016-03-02 张琳 一种塔吊安全控制装置
CN205151606U (zh) * 2015-12-01 2016-04-13 杭州中诚建筑设备租赁有限公司 基于摄像头双目视觉的塔机群防碰撞监控装置
JP6177400B1 (ja) * 2016-08-25 2017-08-09 株式会社タダノ クレーン車
CN106348173B (zh) * 2016-09-26 2018-02-16 徐州重型机械有限公司 一种起重机跨障碍吊装工况推荐系统及其方法
CN106586838B (zh) * 2016-12-27 2018-04-17 徐州重型机械有限公司 起重机的作业控制方法、系统及起重机
US11603294B2 (en) * 2016-12-27 2023-03-14 Xuzhou Heavy Machinery Co., Ltd Method and system for controlling operation of crane, and crane
CN106927369B (zh) * 2017-03-30 2018-10-09 徐工集团工程机械有限公司 随车起重机、及其作业安全保护方法、装置和系统
JP6581139B2 (ja) * 2017-03-31 2019-09-25 日立建機株式会社 作業機械の周囲監視装置
SE541180C2 (en) * 2017-04-03 2019-04-23 Cargotec Patenter Ab Driver assistance system for a vehicle provided with a crane using 3D representations
CN207129853U (zh) 2017-08-22 2018-03-23 李�诚 一种自动化集装箱起吊箱号拍照识别装置
CN108328478B (zh) * 2018-02-07 2020-06-19 徐州重型机械有限公司 多起重机协同起升作业方法、装置及起重机
CN108190771A (zh) * 2018-03-30 2018-06-22 上海振华重工(集团)股份有限公司 一种平台起重机防碰撞系统及方法
CN209291821U (zh) * 2018-11-07 2019-08-23 徐工集团工程机械有限公司 工程机械及其作业空间动态防碰撞系统
US20200140239A1 (en) * 2018-11-07 2020-05-07 Manitowoc Crane Companies, Llc System for determining crane status using optical and/or electromagnetic sensors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136781A (ja) * 1995-11-14 1997-05-27 Hitachi Building Syst Co Ltd エレベータドア係合装置の掛り代確認用治具
JP2015009954A (ja) * 2013-06-28 2015-01-19 株式会社日立ビルシステム エレベータのドア制御装置
CN103559703A (zh) * 2013-10-08 2014-02-05 中南大学 基于双目视觉的起重机障碍物监测及预警方法及系统
CN105303346A (zh) * 2015-10-20 2016-02-03 南京邮电大学 一种基于uwb的叉车防碰撞系统和方法
CN108732993A (zh) * 2017-04-21 2018-11-02 广东斐克科技有限公司 一种数控机床智能防碰撞系统
CN109095356A (zh) * 2018-11-07 2018-12-28 徐工集团工程机械有限公司 工程机械及其作业空间动态防碰撞方法、装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778464A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415741A (zh) * 2021-11-25 2022-04-29 中联重科股份有限公司 用于工程设备臂架的控制方法、控制器及控制装置

Also Published As

Publication number Publication date
EP3778464A1 (en) 2021-02-17
CN109095356A (zh) 2018-12-28
US11975951B2 (en) 2024-05-07
CN109095356B (zh) 2024-03-01
US20210171324A1 (en) 2021-06-10
EP3778464A4 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
WO2020093558A1 (zh) 工程机械及其作业空间动态防碰撞方法、装置和系统
CN109095355B (zh) 作业空间防碰撞方法和系统、探测设备和控制设备
JP7207848B2 (ja) リフトクレーンのための光学検出システム
CN209291821U (zh) 工程机械及其作业空间动态防碰撞系统
JP6572156B2 (ja) 建設機械の干渉防止装置
US11254547B2 (en) Work area monitoring system for lifting machines
CN111622296B (zh) 挖掘机安全避障系统和方法
KR102463556B1 (ko) 인양물의 크레인 충돌방지를 위한 감시 시스템
JP6389087B2 (ja) 作業機用ブーム衝突回避装置
WO2019092937A1 (ja) クレーンシステム、および、クレーンの制御方法
KR102109155B1 (ko) 굴삭기 안전제어 장치 및 방법
CN109970009B (zh) 高空作业车防碰撞装置及方法
CN110054099B (zh) 塔机防撞显示控制方法、控制装置、控制系统及存储介质
JP5380747B2 (ja) 吊荷下方の監視システム及び監視方法
US20210270013A1 (en) Shovel, controller for shovel, and method of managing worksite
JP2003118981A (ja) クレーン接近警報装置
CN116281635A (zh) 一种基于激光雷达的塔式起重机群防碰撞系统
CN115123932A (zh) 一种塔机机群防碰撞控制方法、系统及介质
CN111908342A (zh) 一种适用于塔机吊臂的辅助防碰撞方法和系统
JP2023181369A (ja) 建設機械の障害物検出装置
CA2781349C (en) Method and apparatus for generating an indication of an object within an operating ambit of heavy loading equipment
CN116514031A (zh) 臂架控制方法、臂架控制器、臂架控制系统及作业机械
CN105776042B (zh) 一种船坞平台上的起重机防撞监测方法
JPH0549600B2 (zh)
JPH0428640B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018939442

Country of ref document: EP

Effective date: 20201027

NENP Non-entry into the national phase

Ref country code: DE