WO2020093507A1 - 一种可提高橡胶软管抗疲劳性的钢丝及其生产工艺 - Google Patents

一种可提高橡胶软管抗疲劳性的钢丝及其生产工艺 Download PDF

Info

Publication number
WO2020093507A1
WO2020093507A1 PCT/CN2018/120165 CN2018120165W WO2020093507A1 WO 2020093507 A1 WO2020093507 A1 WO 2020093507A1 CN 2018120165 W CN2018120165 W CN 2018120165W WO 2020093507 A1 WO2020093507 A1 WO 2020093507A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel wire
monofilament
wire
fatigue resistance
production process
Prior art date
Application number
PCT/CN2018/120165
Other languages
English (en)
French (fr)
Inventor
刘祥
张正裕
柯增光
陶彦鑫
Original Assignee
江苏兴达钢帘线股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811335229.5A external-priority patent/CN109622656A/zh
Priority claimed from CN201811335235.0A external-priority patent/CN109373063A/zh
Application filed by 江苏兴达钢帘线股份有限公司 filed Critical 江苏兴达钢帘线股份有限公司
Publication of WO2020093507A1 publication Critical patent/WO2020093507A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/02Drawing metal wire or like flexible metallic material by drawing machines or apparatus in which the drawing action is effected by drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C43/00Devices for cleaning metal products combined with or specially adapted for use with machines or apparatus provided for in this subclass
    • B21C43/02Devices for cleaning metal products combined with or specially adapted for use with machines or apparatus provided for in this subclass combined with or specially adapted for use in connection with drawing or winding machines or apparatus
    • B21C43/04Devices for de-scaling wire or like flexible work

Definitions

  • the invention relates to the technical field of stainless steel wire production, in particular to a steel wire capable of improving the fatigue resistance of a rubber hose and its production process.
  • Hose steel wire is a high-strength steel wire product coated with a layer of brass alloy. It is installed in the hose in a braided or wound form. It is mainly used in hydraulic oil pipes to increase the strength of the hose.
  • the hose installed with hose steel wire can withstand high temperature, high pressure and high impact, and can be used in machinery, aviation, automobile, marine, petroleum and other industries. The failure of the hose has a direct impact on production safety and production efficiency.
  • the object of the present invention is to provide an improved steel wire and its production process that can improve the fatigue resistance of the rubber hose, stabilize the structure of the steel wire, reduce process losses, improve the performance index of the steel wire, and improve the rubber softness Tube performance, thereby increasing the service life of rubber hoses.
  • a production process of a steel wire that can improve the fatigue resistance of a rubber hose includes the following steps:
  • Step 1 Wire rod pretreatment: wire rod is subjected to mechanical shelling treatment, water washing, ultrasonic acid washing, water washing, boron coating and drying treatment;
  • Step 2 Dry drawing: the pre-treated wire rod in step 1 is drawn in a straight wire drawing machine.
  • the die is drawn with a pressure double die to the diameter of the steel wire required by the design to form a rough and medium smooth surface wire;
  • Step 3 Heat treatment and copper plating: the rough and medium-finished surface wire in step 2 is subjected to copper plating after heat treatment to obtain copper-plated steel wire;
  • Step 4 Wet drawing.
  • the copper-plated steel wire in Step 3 is drawn on a reversing wire drawing machine to obtain a steel wire monofilament.
  • the vibration frequency of the ultrasonic is 20 kHz to 30 kHz, and the surface of the steel wire is silver-gray and no black traces; the temperature of the pickling solution is 30 ° C. to 70 ° C.
  • the pressure dual mode used includes a pressure die core and a taper working die core, and the gap ratio between the pressure die core and the taper working die core is 10% -40%.
  • the wet drawing process in step 4 is: continuous drawing of the copper-plated steel wire on the reversing drawing machine tool, the width of the sizing tape of the multi-pass drawing die is sequentially reduced, and the finished product The die adopts double die drawing.
  • the lubricant temperature during the wet drawing in step 4 is 30-50 ° C.
  • the production process further includes the step of knitting and twisting the monofilament obtained by the above steps into a multi-layer structure steel wire product.
  • the steel wire for improving fatigue resistance of a rubber hose includes at least one inner layer monofilament and a plurality of intermediate layer monofilaments uniformly arranged around the inner layer monofilament And a plurality of outer monofilaments evenly arranged in the outermost layer, the inner monofilament and the middle monofilament are braided into a core strand, and the multiple outer monofilaments and the core strand are braided into a steel wire
  • the inner layer monofilament, the middle layer monofilament and the outer layer monofilament are produced by the above-mentioned production process.
  • the diameters of the inner layer monofilament, the middle layer monofilament and the outer layer monofilament are 0.15mm-0.40mm.
  • the inner layer monofilament, the middle layer monofilament and the outer layer monofilament have the same diameter.
  • the inner layer monofilament and the middle layer monofilament are twisted in the same twist direction as the outer layer monofilament twisted around the core strand, and both are S-twisted.
  • the inner layer monofilament, the middle layer monofilament and the outer layer monofilament are low-strength, ordinary-strength, high-strength or ultra-high-strength steel wires.
  • the production process of the steel wire of the invention which can improve the fatigue resistance of the rubber hose adopts ultrasonic pickling in the pretreatment of the steel wire disc and the pressure die production in the dry drawing process to improve the lubrication effect of the steel wire drawing process and ensure the surface roughness of the steel wire ;
  • the wet drawing process uses the finished double-die to improve the surface quality of the structural steel wire, improve the flexibility of the steel wire, and improve the fatigue performance of the steel wire, thereby ensuring the fatigue resistance of the rubber hose.
  • FIG. 1 is a schematic flowchart showing the steps of the production process of the steel wire for improving the fatigue resistance of a hose according to the present invention
  • FIG. 2 is a schematic view of the core structure of the dry-drawing pressure dual mode of the production process of the steel wire for improving the fatigue resistance of the hose of the present invention
  • Figure 3 shows an enlarged schematic photomicrograph of the surface structure of the steel wire for hoses prepared by the existing production process
  • FIG. 4 shows an enlarged schematic photomicrograph of the surface structure of the steel wire for hose prepared by the production process of the present invention
  • Fig. 5 is an enlarged illustration of a micrograph of a steel wire edge for hoses prepared by the existing production process
  • FIG. 6 is an enlarged illustration of a micrograph of a steel wire edge for a hose prepared by the production process of the present invention.
  • FIG. 1 a schematic flowchart of the steps of a production process of a steel wire that can improve the fatigue resistance of a rubber hose of the present invention.
  • the production process includes the following steps:
  • Step 1 Wire rod pretreatment: wire rod is subjected to mechanical shelling treatment, water rinse, ultrasonic acid pickling, water washing, boron coating and drying treatment; specifically, the steel wire is subjected to ultrasonic pickling tank after mechanical shelling, ultrasonic There is a cleaning plate in the pickling tank.
  • the cleaning plate is connected to the transducer.
  • the ultrasonic generator is placed outside the ultrasonic pickling tank.
  • the transducer is driven by the ultrasonic generator.
  • the transducer converts the ultrasonic energy into the cleaning plate. Mechanical vibration, and radiate ultrasonic waves to the acid liquid in the pickling tank through the cleaning plate.
  • the vibration frequency of the ultrasonic wave is 20kHz ⁇ 30kHz, so that the scale on the surface of the first steel wire can be removed more effectively;
  • the temperature of the acid liquid is 30 °C ⁇ 70 °C, more preferably, the temperature of the pickling liquid is 30 °C ⁇ 45 °C pickling liquid at this temperature of the best cleaning effect of pretreatment wire.
  • the ultrasonic frequency and pickling temperature can be adjusted appropriately so that the surface of the steel wire after pickling is silver-gray and no black traces;
  • the formula of the pickling solution is water, hydrochloric acid and ferrous chloride. The dissolution rate is slow, and it is not easy to cause over-corrosion of the pretreated steel wire. Ferrous chloride has the effect of strengthening pickling.
  • Step 2 Dry drawing: The pre-treated wire rod in step 1 is drawn in a straight wire drawing machine.
  • the die adopts a pressure double die, and after multiple initial drawing, the wire diameter required by the design is formed.
  • Coarse and medium-stretched surface wire as shown in Figure 2, the pressure dual die 10 used in the initial drawing includes a pressure die core 12 and a tapered working die core 14, and a single wire drawing device containing a pressure dual die is used to ensure the acid pickling.
  • the lubrication of the monofilament during the initial drawing reduces the friction of the monofilament surface. There are no pull marks, cracks and scratches on the surface of multiple monofilaments.
  • the surface roughness grade of the steel wire reaches level 2; the pressure core and taper working core
  • the gap ratio is 10% -40%, and the so-called gap ratio here is (pressure die core diameter-working die core diameter) / working die core diameter) * 100%.
  • Step 3 Heat treatment and copper plating: the rough and medium-finished wire in step 2 is subjected to heat treatment by austenite furnace and AQ water quenching, and then copper plating and zinc plating are carried out by conventional techniques to obtain copper-plated steel wire;
  • Step 4 Wet drawing.
  • the copper-plated steel wire in Step 3 is drawn on a reversing wire drawing machine to obtain continuous steel wire monofilaments by dual-mode multi-pass drawing, and the width of the sizing tape of the multi-pass drawing die is sequentially reduced. small.
  • the dual-die drawing device is used to draw the finished monofilament after the initial drawing, and the original one pass is divided into two passes, so that the original one die has a larger compression rate distributed on the two die, each The corresponding compression rate of the die is small, which effectively improves the surface quality of the monofilament after the finished product is drawn, improves the flexibility of the monofilament, reduces the residual stress of the monofilament, and improves the fatigue resistance of the monofilament.
  • the lubricant temperature during wet drawing is preferably 30-50 ° C.
  • Step 5 the monofilaments obtained by the above-mentioned process are used as the monofilaments of each layer of the structural steel wire to be twisted to produce a multi-layer structured finished steel wire.
  • the finished steel wire includes at least one inner layer monofilament, a plurality of intermediate layer monofilaments uniformly arranged around the inner layer monofilament, and a plurality of outer layer monofilaments evenly arranged in the outermost layer.
  • the layer monofilament and the middle layer monofilament are braided and twisted into a core strand, and the plurality of outer layer monofilaments and the core strand are twisted and formed into a finished steel wire, and the inner layer monofilament, the middle layer monofilament and the outer layer monofilament pass through Produced by the above production process; in a preferred embodiment, the diameter of the inner layer monofilament, middle layer monofilament and outer layer monofilament is 0.15mm-0.40mm; the inner layer monofilament, middle The diameters of the layer monofilament and the outer layer monofilament are the same, or the middle layer monofilament and the outer layer monofilament have the same diameter, and the inner layer monofilament has a different diameter.
  • the inner layer monofilament and the middle layer monofilament are twisted in the same twist direction as the outer layer monofilament twisted around the core strand, both of which are S-twisted; the finished product
  • the diameter of the wire is 0.15-1.0mm.
  • the monofilament produced by the production process of the present invention can be low strength (tensile strength below 2000MPa), ordinary strength (tensile strength 2000-3275MPa), high strength (tensile strength 3275-3650MPa), ultra high Strength (tensile strength 3650-4000MPa) steel wire.
  • Comparative Example The production process of the present invention and the conventional production process were used to produce ordinary strength (0.3NT) steel wire with a diameter of 0.3 mm, and the performance of the steel wire produced by the two production processes was compared. The comparison results are shown in Table 1.
  • a common strength (0.3NT) steel wire with a diameter of 0.3 mm is used as the skeleton material to make a rubber hose with an inner diameter of 12.5 mm.
  • the steel wire can be directly wound on the outer circumference of the inner rubber tube of the rubber hose, or it can be After weaving the steel wire, a cord is formed and the outer periphery of the inner rubber tube is covered.
  • the rubber hose made of the steel wire produced by the production process of the present invention is compared with the rubber hose made of the steel wire produced by the conventional production process. The comparison results are shown in Table 2.
  • the production process of the present invention uses ultrasonic waves to pickle the steel wire, which improves the pickling effect and removes impurities such as oxide scale on the surface of the steel wire more efficiently; the production process of the present invention also uses pressure
  • the wire drawing device of the die reduces the quality defects of wire drawing, slubs, bright wires, cracks and the like; the steel wire produced by the production process of the invention has better flexibility and stronger fatigue resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Extraction Processes (AREA)
  • Ropes Or Cables (AREA)

Abstract

一种可提高橡胶软管抗疲劳性的钢丝的生产工艺,其包括步骤:将盘条进行机械剥壳处理、水冲洗、超声波酸洗、水洗、涂硼和烘干处理;将经预处理的盘条在直进式拉丝机中进行拉拔,拉模采用压力双模,拉拔至设计所需的钢丝直径,形成粗中拉光面丝;热处理及镀铜,得到镀铜钢丝;将镀铜钢丝在翻转式拉丝机床上进行双模拉拔制得钢丝单丝;以及单丝编捻成品钢丝。上述钢丝的生产工艺,在钢丝盘条预处理时采用超声波酸洗,干拉过程采用压力模生产,改善钢丝拉拔过程润滑效果,保证钢丝表面粗糙度;湿拉过程使用成品双模,改善结构钢丝表面质量,提高钢丝柔韧性,提高钢丝疲劳性能,显著提高了橡胶软管的抗疲劳性能。

Description

一种可提高橡胶软管抗疲劳性的钢丝及其生产工艺 技术领域
本发明涉及不锈钢钢丝生产技术领域,特别涉及一种可提高橡胶软管抗疲劳性的钢丝及其生产工艺。
背景技术
胶管钢丝是一种高强度、表面镀有一层黄铜合金的钢丝产品,以编织或缠绕的形式安装于胶管中,主要用于液压油管中,目的是提高胶管的强度。安装有胶管钢丝的胶管能承受高温、高压力和高冲击,可供机械、航空、汽车、海洋、石油等行业使用,胶管失效对生产安全和生产效率有直接影响。
近年来,各行业对胶管的使用寿命提出了更高的要求,胶管的脉冲疲劳性能直接影响着液压胶管的使用寿命,液压胶管、高压胶管常采用结构钢丝作为骨架材料,结构钢丝的抗疲劳性就决定了胶管的抗疲劳性。目前的生产胶管用结构钢丝的生产工艺采用比较传统的制造工艺,存在比较大的问题,制造的结构钢丝损耗严重、钢丝表面质量差、钢丝柔韧性差、钢丝的抗疲劳性差,传统的生产工艺制得的钢丝已难以满足人们对胶管质量的高要求。
发明内容
针对现有技术存在的问题,本发明的目的是提供一种改进的可提高橡胶软管抗疲劳性的钢丝及其生产工艺,稳定钢丝结构状态,降低过程损耗,提升钢丝性能指标,改善橡胶软管性能,从而提高橡胶软管使用寿命。
为达到本发明的目的,本发明的一种可提高橡胶软管抗疲劳性的钢丝的生产工艺包括如下步骤:
步骤一、盘条预处理:将盘条进行机械剥壳处理、水冲洗、超声波酸洗、水洗、涂硼和烘干处理;
步骤二、干拉:将步骤一中经预处理的盘条在直进式拉丝机中进行拉拔,拉模采用压力双模,拉拔至设计所需的钢丝直径,形成粗中拉光面丝;
步骤三、热处理及镀铜:将步骤二中的粗中拉光面丝经热处理后进行镀铜,得到镀铜钢丝;
步骤四、湿拉,将步骤三中的镀铜钢丝在翻转式拉丝机床上进行双模拉拔制得钢丝单丝。
优选的,在所述的步骤一中,超声波酸洗时,超声波的振动频率为20kHz~30kHz,清洗至钢丝表面呈银灰色且无黑色痕迹;酸洗液的温度为30℃~70℃。
再优选的,所述步骤二的干拉过程中,采用的压力双模包括压力模芯和锥度工作模芯,所述压力模芯和锥度工作模芯的间隙比为10%-40%。
再优选的,所述步骤四的湿拉过程为:将镀铜钢丝在翻转式拉丝机床上进行多道次连续拉拔,所述多道次拉拔模具的定径带宽度依次减小,成品模具采用双模 拉拔。
再优选的,所述步骤四的湿拉过程中润滑剂温度为30~50℃。
再优选的,所述的生产工艺还包括将通过上述步骤制得的单丝编捻制得多层结构的钢丝成品的步骤。
根据本发明的另一目的,所述的一种可提高橡胶软管抗疲劳性的钢丝,其包括至少一根内层单丝、均匀排布在内层单丝周围的多根中间层单丝以及均匀排布在最外层的多根外层单丝,所述的内层单丝与中间层单丝编捻成芯股,所述多个外层单丝与芯股编捻成型为钢丝成品,所述的内层单丝、中间层单丝与外层单丝通过上述的生产工艺制得。
优选的,所述的内层单丝、中间层单丝与外层单丝的直径为0.15mm-0.40mm。
再优选的,所述的内层单丝、中间层单丝与外层单丝的直径相同。
再优选的,所述的内层单丝与中间层单丝编捻的捻向和外层单丝围绕芯股编捻的捻向相同,均为S捻。
再优选的,所述的内层单丝、中间层单丝与外层单丝为低强度、普通强度、高强度或超高强度钢丝。
本发明的可提高橡胶软管抗疲劳性的钢丝的生产工艺,在钢丝盘圆预处理时采用超声波酸洗,干拉过程采用压力模生产,改善钢丝拉拔过程润滑效果,保证钢丝表面粗糙度;湿拉过程使用成品双模,改善结构钢丝表面质量,提高钢丝柔韧性,提高钢丝疲劳性能,进而保证了橡胶软管的抗疲劳性能。
附图说明
通过下面结合附图的详细描述,本发明前述的和其他的目的、特征和优点将变得显而易见。其中:
图1所示为本发明的可提高胶管抗疲劳性的钢丝的生产工艺的步骤流程示意图;
图2所示为本发明的可提高胶管抗疲劳性的钢丝的生产工艺的干拉压力双模的模芯结构示意图;
图3所示为采用现有生产工艺制备的胶管用钢丝的表面结构显微照片放大图示;
图4所示为采用本发明的生产工艺制备的胶管用钢丝的表面结构显微照片放大图示;
图5所示为采用现有生产工艺制备的胶管用钢丝边缘显微照片放大图示;
图6所示为采用本发明的生产工艺制备的胶管用钢丝边缘显微照片放大图示。
具体实施方式
结合附图本发明的可提高胶管抗疲劳性的钢丝的生产工艺的特点及优点详述如下。
参照图1所示的本发明的一种可提高橡胶软管抗疲劳性的钢丝的生产工艺的步骤流程示意图,所述的生产工艺包括如下步骤:
步骤一、盘条预处理:将盘条进行机械剥壳处理、水冲洗、超声波酸洗、水洗、涂硼和烘干处理;具体的,将钢丝经机械剥壳后经过超声波酸洗槽,超声波酸洗槽中具有清洗板,清洗板与换能器连接,超声波发生器置于超声波酸洗槽外,通过超声波发生器驱动换能器,换能器将超声频电能转化成所述清洗板的机械振动,并通过清洗板向酸洗槽中的酸液辐射超声波,超声波的振动频率为20kHz~30kHz,如此可以更为有效地去除第一料钢丝表面的氧化皮;酸洗液的温度为30℃~70℃,更优地,酸洗液的温度为30℃~45℃此温度的酸洗液对预处理钢丝的清洗效果最好。实际生产时,可适当调节超声波频率及酸洗温度,使酸洗后的钢丝表面呈银灰色且无黑色痕迹;酸洗液的配方为水、盐酸和氯化亚铁,盐酸对预处理钢丝的溶解速度较慢,不易使预处理钢丝发生过腐蚀,氯化亚铁具有强化酸洗的作用。
步骤二、干拉:将步骤一中经预处理的盘条在直进式拉丝机中进行拉拔,拉模采用压力双模,经过多次初拉拉拔至设计所需的钢丝直径,形成粗中拉光面丝;参照图2所示,初拉采用的压力双模10包括压力模芯12以及锥度工作模芯14,采用含有压力双模的单丝拉拔装置保证了酸洗后的单丝在初拉过程中的润滑,减少了单丝表面的摩擦,多个单丝表面无拉痕、裂纹和刮伤,钢丝表面粗糙度等级达到2级;压力模芯和锥度工作模芯的间隙比为10%-40%,此处所谓的间隙比为(压力模芯直径-工作模芯直径)/工作模芯直径)*100%。
步骤三、热处理及镀铜:将步骤二中的粗中拉光面丝经奥氏体炉和AQ水淬火进行热处理,然后采用常规工艺进行镀铜、镀锌,得到镀铜钢丝;
步骤四、湿拉,将步骤三中的镀铜钢丝在翻转式拉丝机床上进行双模多道次连续拉拔制得钢丝单丝,所述多道次拉拔模具的定径带宽度依次减小。采用双模拉拔装置对初拉后的单丝进行成品拉拔,将原本的一个道次分为两个道次,使原本一个模具上较大的压缩率分布于两个模具上,每个模具对应的压缩率较小,有效改善了成品拉拔后的单丝的表面质量,提高了单丝的柔韧性,减少了单丝的残余应力,提高了单丝的抗疲劳性。湿拉过程中润滑剂温度优选为30~50℃。
步骤五、根据用户需求,将通过上述的工艺制得的单丝作为结构钢丝的各层单丝进行编捻,制得多层结构的成品钢丝。所述的成品钢丝包括至少一根内层单丝、均匀排布在内层单丝周围的多根中间层单丝以及均匀排布在最外层的多根外层单丝,所述的内层单丝与中间层单丝编捻成芯股,所述多个外层单丝与芯股编捻成型为钢丝成品,所述的内层单丝、中间层单丝与外层单丝通过上述的生产工艺制得;在一优选的实施方案中,所述的内层单丝、中间层单丝与外层单丝的直径为0.15mm-0.40mm;所述的内层单丝、中间层单丝与外层单丝的直径相同,也可以是中间层单丝与外层单丝的直径相同,而内层单丝的直径不同。在另一优选的实施 方式中,所述的内层单丝与中间层单丝编捻的捻向和外层单丝围绕芯股编捻的捻向相同,均为S捻;制得的成品钢丝的直径在0.15-1.0mm。
本发明的生产工艺制得的单丝,可以是低强度(抗拉强度为2000MPa以下)、普通强度(抗拉强度为2000-3275MPa)、高强度(抗拉强度为3275-3650MPa)、超高强度(抗拉强度为3650-4000MPa)钢丝。
对比实施例:用本发明的生产工艺和常规生产工艺分别生产直径为0.3毫米的普通强度(0.3NT)结构钢丝,再对两种生产工艺生产出的钢丝作性能对比,对比结果见表1。
Figure PCTCN2018120165-appb-000001
由表1可以看出,本发明的生产工艺生产出来的结构钢丝的360°扭转次数、弯曲次数和亨特疲劳次数的上限均比常规生产工艺生产出来的结构钢丝高,说明本发明的生产工艺可以有效增强钢丝的抗疲劳性和韧性。
另外,以直径为0.3毫米的普通强度(0.3NT)结构钢丝作为骨架材料制作内径为12.5毫米的橡胶软管,钢丝可以是直接缠绕在橡胶软管的内层橡胶管的外周,也可以是将钢丝编制后形成帘布再包覆在内层橡胶管的外周。用本发明的生产工艺生产的钢丝制作的橡胶软管与用常规生产工艺生产出的钢丝制作的橡胶软管作性能对比,对比结果见表2。
Figure PCTCN2018120165-appb-000002
由表2可以看出,用本发明的生产工艺生产的钢丝制作的胶管脉冲疲劳次数相比用常规生产工艺生产出的钢丝制作的胶管大幅提升,显著增强了橡胶软管的抗疲劳性。
与现有技术相比,本发明的生产工艺采用超声波对钢丝进行酸洗,提高了酸洗效果,更为高效地去除了钢丝表面的氧化皮等杂质;本发明的生产工艺还使用了含有压力模的钢丝拉拔装置,减少了钢丝的拉痕、竹节、亮丝、裂纹等质量缺陷;利用本发明的生产工艺生产出来的钢丝柔韧性更好,抗疲劳性更强。
本发明并不局限于所述的实施例,本领域的技术人员在不脱离本发明的精神 即公开范围内,仍可作一些修正或改变,故本发明的权利保护范围以权利要求书限定的范围为准。

Claims (10)

  1. 一种可提高橡胶软管抗疲劳性的钢丝的生产工艺,其特征在于,所述的生产工艺包括如下步骤:
    步骤一、盘条预处理:将盘条进行机械剥壳处理、水冲洗、超声波酸洗、水洗、涂硼和烘干处理;
    步骤二、干拉:将步骤一中经预处理的盘条在直进式拉丝机中进行拉拔,拉模采用压力双模,拉拔至设计所需的钢丝直径,形成粗中拉光面丝;
    步骤三、热处理及镀铜:将步骤二中的粗中拉光面丝经热处理后进行镀铜,得到镀铜钢丝;
    步骤四、湿拉,将步骤三中的镀铜钢丝在翻转式拉丝机床上进行双模拉拔制得钢丝单丝。
  2. 如权利要求1所述的一种可提高橡胶软管抗疲劳性的钢丝的生产工艺,其特征在于,在所述的步骤一中,超声波酸洗时,超声波的振动频率为20kHz~30kHz,清洗至钢丝表面呈银灰色且无黑色痕迹;酸洗液的温度为30℃~70℃。
  3. 如权利要求1或2所述的一种可提高橡胶软管抗疲劳性的钢丝的生产工艺,其特征在于,所述步骤二的干拉过程中,采用的压力双模包括压力模芯和锥度工作模芯,所述压力模芯和锥度工作模芯的间隙比为10%-40%。
  4. 如权利要求3所述的一种可提高橡胶软管抗疲劳性的钢丝的生产工艺,其特征在于,所述步骤四的湿拉过程为:将镀铜钢丝在翻转式拉丝机床上进行多道次连续拉拔,所述多道次拉拔模具的定径带宽度依次减小,成品模具采用双模拉拔。
  5. 如权利要求4所述的一种可提高橡胶软管抗疲劳性的钢丝的生产工艺,其特征在于,所述步骤四的湿拉过程中润滑剂温度为30~50℃。
  6. 如权利要求1所述的一种可提高橡胶软管抗疲劳性的钢丝的生产工艺,其特征在于,所述的生产工艺还包括将通过上述步骤制得的单丝编捻制得多层结构的钢丝成品的步骤。
  7. 一种可提高橡胶软管抗疲劳性的钢丝,其特征在于,所述的钢丝包括至少一根内层单丝、均匀排布在内层单丝周围的多根中间层单丝以及均匀排布在最外层的多根外层单丝,所述的内层单丝与中间层单丝编捻成芯股,所述多个外层单丝与芯股编捻成型为钢丝成品,所述的内层单丝、中间层单丝与外层单丝通过如权利要求1-5任一项所述的生产工艺制得。
  8. 如权利要求7所述的一种可提高橡胶软管抗疲劳性的钢丝,其特征在于,所述的内层单丝、中间层单丝与外层单丝的直径为0.15mm-0.40mm。
  9. 如权利要求7所述的一种可提高橡胶软管抗疲劳性的钢丝,其特征在于,所述的内层单丝与中间层单丝编捻的捻向和外层单丝围绕芯股编捻的捻向相同,均为S捻。
  10. 如权利要求7所述的一种可提高橡胶软管抗疲劳性的钢丝,其特征在于, 所述的内层单丝、中间层单丝与外层单丝为低强度、普通强度、高强度或超高强度钢丝。
PCT/CN2018/120165 2018-11-10 2018-12-10 一种可提高橡胶软管抗疲劳性的钢丝及其生产工艺 WO2020093507A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811335229.5 2018-11-10
CN201811335235.0 2018-11-10
CN201811335229.5A CN109622656A (zh) 2018-11-10 2018-11-10 一种可提高胶管抗疲劳性的钢丝的生产工艺
CN201811335235.0A CN109373063A (zh) 2018-11-10 2018-11-10 一种可提高胶管抗疲劳性的钢丝及其制备的橡胶软管

Publications (1)

Publication Number Publication Date
WO2020093507A1 true WO2020093507A1 (zh) 2020-05-14

Family

ID=70611470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120165 WO2020093507A1 (zh) 2018-11-10 2018-12-10 一种可提高橡胶软管抗疲劳性的钢丝及其生产工艺

Country Status (1)

Country Link
WO (1) WO2020093507A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010064178A (ko) * 1999-12-24 2001-07-09 홍영철 다층연 스트랜드심을 가진 와이어 로프
CN201519703U (zh) * 2009-10-30 2010-07-07 襄樊宇虹金属制品有限公司 拉拔模
CN101942686A (zh) * 2009-07-07 2011-01-12 襄樊宇虹金属制品有限公司 橡胶软管增强用镀铜钢丝生产工艺
CN105401473A (zh) * 2015-11-26 2016-03-16 天津冶金集团中兴盛达钢业有限公司 一种预应力镀锌钢绞线的制造方法
CN105537294A (zh) * 2015-12-07 2016-05-04 华勤钢丝绳有限公司 一种超高强度钢丝绳及其拉丝方法
CN108048632A (zh) * 2017-12-27 2018-05-18 中钢集团郑州金属制品研究院有限公司 一种汽车座椅骨架用钢丝的生产工艺
CN108300841A (zh) * 2018-03-16 2018-07-20 张家港市瑞特金属材料有限公司 高性能钢丝的生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010064178A (ko) * 1999-12-24 2001-07-09 홍영철 다층연 스트랜드심을 가진 와이어 로프
CN101942686A (zh) * 2009-07-07 2011-01-12 襄樊宇虹金属制品有限公司 橡胶软管增强用镀铜钢丝生产工艺
CN201519703U (zh) * 2009-10-30 2010-07-07 襄樊宇虹金属制品有限公司 拉拔模
CN105401473A (zh) * 2015-11-26 2016-03-16 天津冶金集团中兴盛达钢业有限公司 一种预应力镀锌钢绞线的制造方法
CN105537294A (zh) * 2015-12-07 2016-05-04 华勤钢丝绳有限公司 一种超高强度钢丝绳及其拉丝方法
CN108048632A (zh) * 2017-12-27 2018-05-18 中钢集团郑州金属制品研究院有限公司 一种汽车座椅骨架用钢丝的生产工艺
CN108300841A (zh) * 2018-03-16 2018-07-20 张家港市瑞特金属材料有限公司 高性能钢丝的生产方法

Similar Documents

Publication Publication Date Title
CN103352381A (zh) 一种高强度钢绳的生产方法
CN102517941A (zh) 接触网下锚钢丝绳的生产工艺
CN109622656A (zh) 一种可提高胶管抗疲劳性的钢丝的生产工艺
CN112439799B (zh) 一种极细特高强度同步带钢帘线的生产方法
CA2946443A1 (en) Steel wire rope for conveyor belt
WO2020113608A1 (zh) 一种橡胶软管用增强钢丝及其生产工艺
CN107442596B (zh) 一种钢帘线生产方法
JP2772627B2 (ja) ゴム補強用超高強度スチールワイヤおよびスチールコード
JP5701744B2 (ja) 鋼線の製造方法
CN106297960B (zh) 一种电缆用铜铝复合带的生产工艺
CN109338765A (zh) 一种具有高强度与防腐蚀性能的钢丝绳制作工艺
JP6199569B2 (ja) 高強度鋼線の製造方法
JP3844267B2 (ja) 鋼線の製造方法
JPH08325964A (ja) ゴム補強用スチールワイヤおよびスチールコード
WO2020093507A1 (zh) 一种可提高橡胶软管抗疲劳性的钢丝及其生产工艺
CN109518500A (zh) 一种镀镍钢丝绳及其生产工艺
JP5890149B2 (ja) ブラスめっき鋼線の製造方法
JP2022521950A (ja) ゴム補強のためのスチールコード
JP2920474B2 (ja) ゴム補強用超高強度スチールワイヤおよびスチールコード
JP2906025B2 (ja) ゴム製品補強用高強度スチールワイヤおよびスチールコード並びに高強度スチールの製造方法
CN111822540B (zh) 铝包钢线及其制备方法
CN105887528A (zh) 一种高强柔性复合钢丝绳
CN111346935A (zh) 高强度大伸长率铝包钢丝生产方法
CN105921914A (zh) 一种生产高强钢用桶装无镀铜实心焊丝的方法及其装置
CN111589893A (zh) 一种橡胶软管增强用钢丝及其生产工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939225

Country of ref document: EP

Kind code of ref document: A1