WO2020093312A1 - 镜头组、指纹识别装置和电子设备 - Google Patents

镜头组、指纹识别装置和电子设备 Download PDF

Info

Publication number
WO2020093312A1
WO2020093312A1 PCT/CN2018/114580 CN2018114580W WO2020093312A1 WO 2020093312 A1 WO2020093312 A1 WO 2020093312A1 CN 2018114580 W CN2018114580 W CN 2018114580W WO 2020093312 A1 WO2020093312 A1 WO 2020093312A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
fingerprint
optical
identification device
Prior art date
Application number
PCT/CN2018/114580
Other languages
English (en)
French (fr)
Inventor
葛丛
李林欣
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2018/114580 priority Critical patent/WO2020093312A1/zh
Priority to CN202011308035.3A priority patent/CN112230403B/zh
Priority to CN201880002082.XA priority patent/CN109564338B/zh
Publication of WO2020093312A1 publication Critical patent/WO2020093312A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints

Definitions

  • the embodiments of the present application relate to the field of optical imaging, and more specifically, to a lens group, a fingerprint recognition device, and an electronic device.
  • Under-screen fingerprint recognition technology is to collect the reflected light formed by the light emitted from the light source by the optical fingerprint sensor and reflected by the finger.
  • the reflected light carries the fingerprint information of the finger, thereby realizing the under-screen fingerprint recognition.
  • the fingerprint identification device can guide the optical signal returned by the finger through the lens system, and the reflected light needs to pass through the lens system to reach the optical fingerprint sensor.
  • the embodiments of the present application provide a lens group, a fingerprint recognition device, and an electronic device, which can obtain an appropriate field of view size without increasing the length of the lens system, so as to realize the collection of fingerprint information in a large fingerprint collection area.
  • a lens group including: a first lens and a second lens arranged in order from the object side to the image side.
  • the first lens includes a first lens of negative power, the first lens is an S-shaped meniscus lens with a convex surface on the object side, and at least one of the two surfaces of the first lens is aspheric;
  • the second lens includes a positive power second lens, the second lens is a biconvex lens, and at least one of the two surfaces of the second lens is aspheric;
  • the parameters of the lens group satisfy the first relationship, so that the FOV of the lens group is greater than the first threshold, and the length of the lens group is less than the second threshold.
  • the parameters of the lens group include at least two of the following: the focal length f of the lens group, the focal length f 1 of the first lens, the focal length f 2 of the second lens, and the focal length of the first lens
  • a radius of curvature R1 toward the object side a radius of curvature R2 toward the image side of the first lens, a radius of curvature R3 toward the object side of the second lens, and a radius toward the image side of the second lens
  • the lens group of the embodiment of the present application arranges lenses with different powers, and each lens includes at least one aspherical surface, and the first relationship is satisfied by setting the lens group parameters, so that the lens group has a large FOV In order to realize the collection of fingerprint information in a larger fingerprint collection area, improve the fingerprint recognition performance of the optical fingerprint recognition device using the lens group.
  • the first relationship includes: 2.5 ⁇ f 1 / R1 ⁇ 4 and 0.5 ⁇ f 1 /R2 ⁇ 2.0.
  • the first relationship further includes: 2.5 ⁇ f 1 / R1 ⁇ 4 and 0.5 ⁇ f 1 /R2 ⁇ 2.0.
  • the first relationship further includes: -1 ⁇ f / f 1 ⁇ 0, 0 ⁇ f / f 2 ⁇ 1, -8 ⁇ f 1 / f 2 ⁇ -4.
  • the first relationship further includes: 0.2 ⁇ R1 / R2 ⁇ 0.5, -1 ⁇ R1 / R3 ⁇ -0.4, 2 ⁇ R1 / R4 ⁇ 4, -3 ⁇ R2 / R3 ⁇ -1, 5 ⁇ R2 / R4 ⁇ 12, -8 ⁇ R3 / R4 ⁇ -3.
  • the first threshold is 100 degrees.
  • the second threshold is 2.6 mm.
  • the thickness CT1 of the first lens along the optical axis and the thickness CT2 of the second lens along the optical axis satisfy: 0.5 ⁇ CT1 / CT2 ⁇ 1.5.
  • the distance TTL from the lower surface of the display screen to the imaging surface meets the focal length f of the lens group: 0.1 ⁇ f / TTL ⁇ 0.2.
  • the maximum image height Y ′ on the imaging surface of the lens group, the distance TTL from the lower surface of the display screen to the imaging surface, and the focal length f of the lens group satisfy: 0.45 ⁇ Y '/(f*TTL) ⁇ 0.6.
  • the refractive index of the material of the first lens n 1 1.54, and the dispersion coefficient of the material of the first lens v 1 > 55.50.
  • the refractive index of the material of the second lens n 2 1.54, and the dispersion coefficient of the material of the second lens v 2 > 55.98.
  • the lens group further includes: an aperture, disposed between the first lens and the second lens.
  • the TV distortion of the lens group is less than 5%
  • the relative illuminance of the lens group is greater than 30%
  • the F number of the lens group is less than 1.6.
  • a fingerprint identification device including a lens system, the lens system including a lens group as in the first aspect or any possible implementation manner of the first aspect, or including side-by-side arrangement along the radial Two of the lens groups.
  • the fingerprint identification device further includes an optical fingerprint sensor, which is disposed below the lens system and is used to receive the optical signal transmitted by the lens system and The optical signal is processed to obtain fingerprint information carried in the optical signal.
  • an optical fingerprint sensor which is disposed below the lens system and is used to receive the optical signal transmitted by the lens system and The optical signal is processed to obtain fingerprint information carried in the optical signal.
  • the fingerprint identification device further includes a bracket, wherein the lens system is interference-fitted into the bracket.
  • an electronic device including the fingerprint identification device in the second aspect or any possible implementation manner of the second aspect.
  • the electronic device further includes a screen assembly including a display screen, foam and copper foil, and is disposed above the lens system in the fingerprint identification device.
  • a screen assembly including a display screen, foam and copper foil, and is disposed above the lens system in the fingerprint identification device.
  • the corresponding regions of the foam and the copper foil above the lens system are perforated to allow the optical signal including fingerprint information to enter the lens system.
  • FIG. 1 is a schematic plan view of an electronic device to which this application can be applied.
  • Fig. 2 is a schematic partial cross-sectional view of the electronic device shown in Fig. 1 along A-A '.
  • FIG. 3 is a schematic structural diagram of a lens group according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an optical fingerprint identification module according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a layout of a lens group according to an embodiment of the present application.
  • FIG. 6 is a relative illuminance diagram of the lens group of the layout shown in FIG. 5.
  • 7 (a) and 7 (b) are astigmatism and distortion diagrams of the lens group of the layout shown in FIG. 5, respectively.
  • FIG. 8 is an MTF diagram of the lens group of the layout shown in FIG. 5.
  • FIG. 9 is a schematic diagram of another layout of a lens group according to an embodiment of the present application.
  • FIG. 10 is a relative illuminance diagram of the lens group of the layout shown in FIG. 9.
  • 11 (a) and 11 (b) are astigmatism and distortion diagrams of the lens group of the layout shown in FIG. 9, respectively.
  • FIG. 12 is an MTF diagram of the lens group of the layout shown in FIG. 9.
  • FIG. 13 is a schematic diagram of another layout of a lens group according to an embodiment of the present application.
  • FIG. 14 is a relative illuminance diagram of the lens group of the layout shown in FIG. 13.
  • 15 (a) and 15 (b) are astigmatism diagrams and distortion diagrams of the lens group of the layout shown in FIG. 13, respectively.
  • 16 is an MTF diagram of the lens group of the layout shown in FIG. 13.
  • FIG. 17 is a schematic structural diagram of a fingerprint identification device according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of the positions of two lens groups included in the fingerprint identification device.
  • 19 is a schematic block diagram of an electronic device according to an embodiment of the present application.
  • 20 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Under-screen fingerprint recognition technology refers to installing a fingerprint recognition device, such as an optical fingerprint recognition device, below the display screen, so as to realize fingerprint recognition operations in the display area of the display screen, and there is no need to set a fingerprint on the front of the electronic device except the display area Collection area.
  • the fingerprint recognition technology under the optical screen uses the light returned from the top surface of the device display screen to perform fingerprint sensing and other sensing operations.
  • the returned light carries information of an object (such as a finger) that is in contact with the top surface.
  • an object such as a finger
  • the design of the optical fingerprint sensor may be to achieve the desired optical imaging by appropriately configuring the optical elements for collecting and detecting the returned light.
  • FIG. 1 and 2 show a schematic diagram of an electronic device 100 to which the fingerprint identification device according to an embodiment of the present application can be applied, wherein FIG. 1 is a schematic front view of the electronic device 100, and FIG. 2 is along the electronic device 100 shown in FIG. AA 'partial cross-sectional structure diagram.
  • the electronic device 100 includes a display screen 120 and an optical fingerprint recognition device (hereinafter also simply referred to as a fingerprint recognition device) 130, wherein the optical fingerprint recognition device 130 has one or more sensors An array, the sensing array is at least disposed in a partial area below the display screen 120, so that the fingerprint collection area (or sensing area) 103 of the optical fingerprint recognition device 130 is at least partially located in the display area 102 of the display screen 120 .
  • a fingerprint recognition device 130 hereinafter also simply referred to as a fingerprint recognition device 130
  • the optical fingerprint recognition device 130 has one or more sensors An array, the sensing array is at least disposed in a partial area below the display screen 120, so that the fingerprint collection area (or sensing area) 103 of the optical fingerprint recognition device 130 is at least partially located in the display area 102 of the display screen 120 .
  • the area of the fingerprint collection area 103 may be different from the area of the sensing array of the optical fingerprint recognition device 130, for example, through optical path design such as lens imaging, reflective folding optical path design, or other optical path design such as light gathering or reflection ,
  • the area of the fingerprint collection area 103 of the optical fingerprint identification device 130 may be larger than the area of the sensing array of the optical fingerprint identification device 130.
  • the fingerprint collection area 103 of the optical fingerprint identification device 130 may also be designed to be consistent with the area of the sensing array of the optical fingerprint identification device 130.
  • the fingerprint collection area 103 is located in the display area 102 of the display screen 120. Therefore, when the user needs to unlock the electronic device or other fingerprint verification, he only needs to press his finger In the fingerprint collection area 103 located in the display screen 120, fingerprint input can be realized. Since fingerprint detection can be implemented within the screen, the electronic device 100 adopting the above structure does not require a special reserved space on the front to set fingerprint keys (such as the Home key), so that a full screen solution can be adopted, that is, the display area of the display screen 120 102 can be basically extended to the front of the entire electronic device 100.
  • the display screen 120 may be a self-luminous display screen, which uses a self-luminous display unit as a display pixel, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro light-emitting diode (Micro -LED) display screen.
  • a self-luminous display unit such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro light-emitting diode (Micro -LED) display screen.
  • OLED Organic Light-Emitting Diode
  • Micro -LED micro light-emitting diode
  • the optical fingerprint recognition device 130 may use the OLED display unit (ie, OLED light source) of the OLED display screen 120 located in the fingerprint recognition area 103 as an excitation light source for optical fingerprint detection.
  • the optical fingerprint recognition device 130 may also use an internal light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint recognition device 130 may be applicable to non-self-luminous display screens, such as liquid crystal display screens or other passive light-emitting display screens.
  • the optical fingerprint system of the electronic device 100 may further include an excitation light source for optical fingerprint detection.
  • the excitation light source may specifically be an infrared light source or a light source of a non-visible light of a specific wavelength, which may be provided under the backlight module of the liquid crystal display screen or the edge area under the protective cover of the electronic device 100, and the The optical fingerprint recognition device 130 may be disposed under the edge area of the liquid crystal panel or the protective cover and guided by the optical path so that the fingerprint detection light can reach the optical fingerprint recognition device 130; or, the optical fingerprint recognition device 130 may also be disposed at the Under the backlight module, and the backlight module allows the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the optics through openings or other optical design of the film layers such as the diffusion sheet, the brightness enhancement sheet, the reflection sheet, etc. Fingerprint recognition device 130.
  • the sensing array of the optical fingerprint recognition device 130 is specifically a photodetector array, which includes a plurality of photodetectors distributed in an array, and the photodetectors can be used as the optical sensing unit as described above .
  • touch a finger touches, presses, or approaches (for ease of description, this application is collectively referred to as touch) on the fingerprint recognition area 103
  • the light emitted by the display unit of the fingerprint recognition area 103 reflects on the fingerprint on the surface of the finger and forms reflected light
  • the reflected light of the ridges and valleys of the finger fingerprint is different.
  • the reflected light is received from the display screen 120 and received by the photodetector array and converted into a corresponding electrical signal, that is, a fingerprint detection signal. Based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, thereby implementing an optical fingerprint recognition function in the electronic device 100.
  • the electronic device 100 further includes a transparent protective cover 110, and the cover 110 may be specifically a transparent cover, such as a glass cover or a sapphire cover, which is located on the display screen 120 above and covering the front of the electronic device 100. Therefore, in the embodiment of the present application, the so-called finger touch, pressing or approaching on the display screen 120 actually refers to the finger touching, pressing or approaching the cover plate 110 above the display screen 120 or covering the cover plate 110 Surface of the protective layer.
  • the electronic device 100 may further include a touch sensor, and the touch sensor may be specifically a touch panel, which may be provided on the surface of the display screen 120, or may be partially or wholly integrated into the display screen 120, namely The display screen 120 is specifically a touch display screen.
  • the touch sensor may be specifically a touch panel, which may be provided on the surface of the display screen 120, or may be partially or wholly integrated into the display screen 120, namely The display screen 120 is specifically a touch display screen.
  • the optical fingerprint recognition device 130 includes an optical detection unit 134 and an optical component 132, and the optical detection unit 134 includes the sensing array and the sensor array.
  • the reading circuit and other auxiliary circuits that are sexually connected can be fabricated on a chip (Die) through a semiconductor process; that is, the optical detection unit 134 can be fabricated on an optical imaging chip or an image sensor chip (hereinafter also referred to as an optical fingerprint) Sensor or optical fingerprint sensor chip).
  • the optical component 132 may be disposed above the sensing array of the optical detection unit 134, which may specifically include an optical filter (or filter, filter), an optical path guiding structure, and other optical elements.
  • the filter can be used to filter out the ambient light penetrating the finger, and the light path guiding structure is mainly used to guide the light path such as collimating, modulating or converging the downward propagating light to realize the reflection from the finger surface
  • the reflected light is guided to the sensing array for optical detection.
  • the optical component 132 may be packaged with the optical detection unit 134 in the same optical fingerprint chip, or the optical component 132 may be disposed outside the chip where the optical detection unit 134 is located, such as The optical component 132 is attached to the chip, or a part of the components of the optical component 132 is integrated into the chip.
  • the optical path guiding structure of the optical component 132 has various implementation solutions, for example, it may be specifically an optical path modulator or an optical path collimator made of semiconductor silicon wafers or other substrates, which has multiple optical path modulation units or A collimating unit, the optical path modulation unit or the collimating unit may be specifically a micro-hole array.
  • the light guide layer may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses (hereinafter also referred to as a lens group).
  • the sensing array can detect the fingerprint image of the finger .
  • a circuit board 140 such as a flexible printed circuit (FPC) may also be provided under the optical fingerprint recognition device 130, and the optical fingerprint recognition device 130 may be soldered to the circuit board 140 through pads, for example.
  • the circuit board 140 realizes electrical interconnection and signal transmission with other peripheral circuits or other elements of the electronic device 100.
  • the optical fingerprint recognition device 130 may receive the control signal of the processing unit of the electronic device 100 through the circuit board 140, and may also output the fingerprint detection signal to the electronic device through the circuit board 140 100 processing unit or control unit.
  • the lens group is used to collect the optical signal reflected from the finger above the display screen, and the optical signal is guided to the optical fingerprint sensor below the lens group.
  • the optical signal carries the fingerprint information of the finger, thereby achieving optical Fingerprint recognition.
  • Field of view (Field of View): used to characterize the field of view of the lens.
  • FOV Field of view
  • the larger the FOV of the lens indicating that the lens can obtain information in a larger area, that is, using the lens can obtain The amount of information is greater.
  • Aperture value or F-number (F-number, Fno): the reciprocal of the lens relative aperture, used to characterize the amount of light entering the sensor array of the optical fingerprint device through the lens. The smaller the F number, the more light enters the lens.
  • TV distortion used to measure the degree of visual distortion of an image. It can be understood that the smaller the TV distortion, the better the imaging effect.
  • Relative Illumination refers to the ratio of the illuminance of different coordinate points on the imaging surface to the illuminance of the center point. The smaller the relative illuminance, the more uneven the illuminance on the imaging surface, which is likely to cause underexposure or overcenter in certain positions The problem of exposure affects the imaging quality; the greater the relative illuminance, the higher the imaging quality.
  • FIG. 3 is a schematic structural diagram of a lens group according to an embodiment of the present application.
  • the lens group 30 includes a first lens 31 and a second lens 32 that are arranged in order from the object side to the image side.
  • the first lens 31 includes a negative power first lens, the first lens is an S-shaped meniscus lens with a convex surface on the object side, and at least one of the two surfaces of the first lens is aspheric;
  • the second lens 32 includes a second lens of positive power, the second lens is a biconvex lens, and at least one of the two surfaces of the second lens is aspheric.
  • the first lens may be a lens, that is, a first lens, or may be a group of lenses, as long as the combined power of the group of lenses is negative power; the same
  • the second lens may also be a single lens, that is, a second lens, or a group of lenses, as long as the combined power of the group of lenses is positive power.
  • the following uses the first lens as the first lens and the second lens as the second lens as examples.
  • the first lens and the second lens may be made of resin material or other plastic materials, which is not limited here.
  • the parameters of the lens group satisfy the first relationship, so that the FOV of the lens group is greater than the first threshold, and the length of the lens group is less than the second threshold.
  • the parameters of the lens group include at least two of the following: the focal length f of the lens group, the focal length f 1 of the first lens, the focal length f 2 of the second lens, and the side of the first lens facing the object side Radius of curvature R1, radius of curvature R2 of the first lens facing the image side, radius of curvature R3 of the second lens facing the object side, and radius of curvature R4 of the second lens facing the image side.
  • the lens group is arranged with lenses of different powers, and each lens includes at least one aspherical surface, and the first relationship is satisfied by setting the lens group parameters, so that when the length of the lens group is constant It has a large FOV to realize the collection of fingerprint information in a large fingerprint collection area and improve the fingerprint recognition performance of the optical fingerprint recognition device using the lens group.
  • the length of the lens group is reduced, thereby reducing the longitudinal space occupied when the lens group is mounted on an electronic device.
  • the first relationship satisfied by the parameters of the lens group may include at least one of the following parameter relationships: the relationship between f 1 and R1 and R2, for example, f 1 / R2 is within a preset value range, f 1 / R2 is in the preset value range; the relationship between f 2 and R3 and R4, for example, f 2 / R3 is in the preset value range, f 2 / R4 is in the preset value range; f, The relationship between f 1 and f 2 , for example, f / f 1 is within the preset value range, f / f 2 is within the preset value range, f 1 / f 2 is within the preset value range; R1 , R2, R3 and R4, for example, R1 / R2 is in the preset value range, R1 / R3 is in the preset value range, R1 / R4 is in the preset value range, R2 / R3 is in Within the preset value range, R2 / R4
  • the FOV of the lens group is greater than the first threshold and the length of the lens group is less than the second threshold.
  • the first threshold may be, for example, 100 degrees
  • the second threshold may be, for example, 2.6 mm.
  • the first relationship includes: 2.5 ⁇ f 1 / R1 ⁇ 4 and / or 0.5 ⁇ f 1 /R2 ⁇ 2.0.
  • the first relationship includes: 0.2 ⁇ f 2 /R3 ⁇ 0.5 and / or -2 ⁇ f 2 / R4 ⁇ -1.
  • the first relationship includes at least one of the following: -1 ⁇ f / f 1 ⁇ 0, 0 ⁇ f / f 2 ⁇ 1, -8 ⁇ f 1 / f 2 ⁇ -4.
  • the first relationship includes at least one of the following: 0.2 ⁇ R1 / R2 ⁇ 0.5, -1 ⁇ R1 / R3 ⁇ -0.4, 2 ⁇ R1 / R4 ⁇ 4, -3 ⁇ R2 / R3 ⁇ -1 , 5 ⁇ R2 / R4 ⁇ 12, -8 ⁇ R3 / R4 ⁇ -3.
  • the lens group may satisfy all the above-mentioned parameter relationships, or may also satisfy some of the parameter relationships, and only needs to ensure that the FOV is greater than the first threshold.
  • the lens group can meet the requirement of FOV greater than 100 degrees, and effectively reduce the length of the lens group (from the lower surface of the screen to the image surface Distance), for example, the length of the lens group is less than 2.6mm, so as to reduce the longitudinal space occupied by the lens group when it is assembled in an electronic device; further, when 0.2 ⁇ f 2 /R3 ⁇ 0.5 and / or -2 ⁇ f 2 / R4 ⁇ -1, the aberration of the lens group can be effectively controlled to effectively improve the imaging quality of the lens group; further, when -1 ⁇ f / f 1 ⁇ 0, 0 ⁇ f / f 2 ⁇ 1 , -8 ⁇ f 1 / f 2 ⁇
  • the lens group can have the performance of large FOV, small working F number, small TV distortion and large relative illuminance, which is conducive to improving the fingerprint recognition mode using the lens group Group fingerprint recognition performance.
  • the thickness CT1 of the first lens in the optical axis direction and the thickness CT2 of the second lens in the optical axis direction also satisfy a preset relationship, for example, satisfy 0.5 ⁇ CT1 / CT2 ⁇ 1.5, by which the structure of the lens group becomes stronger, thereby increasing the service life of the lens group.
  • the distance between the lower surface of the display screen and the imaging plane (Total Trace Length, TTL) and the focal length f of the lens group satisfy a preset relationship, for example, satisfy 0.1 ⁇ f / TTL ⁇ 0.2 .
  • TTL Total Trace Length
  • the maximum image height Y ′ on the imaging surface of the lens group, the distance TTL from the lower surface of the display screen to the imaging surface, and the focal length f of the lens group also satisfy a preset relationship, For example, satisfy 0.45 ⁇ Y '/ (f * TTL) ⁇ 0.6. Since the size of TTL determines the size of the focal length f of the lens group, or the size of the size of the lens group, it is possible to make the lens group have With a shorter focal length and a larger FOV, it maximizes the effective photosensitive area of the optical fingerprint sensor, that is, the area of the sensing array, thereby improving imaging resolution.
  • the refractive index and dispersion coefficient of the material of the first lens also satisfy a preset relationship, for example, the directivity n 1 > 1.54 of the material of the first lens, the material of the material of the first lens
  • the dispersion coefficient v 1 > 55.50.
  • this configuration can provide a suitable balance of phase difference.
  • the refractive index and dispersion coefficient of the material of the second lens also satisfy a preset relationship, for example, the refractive index n 2 > 1.54 of the material of the second lens, the material of the second lens The dispersion coefficient v 2 > 55.98.
  • this configuration can provide a suitable balance of phase difference.
  • the parameters such as the F number, TV distortion, and relative illuminance of the lens group can also be in appropriate ranges.
  • the F number of the lens group is less than 1.5, which can allow enough light to enter the lens group, which is conducive to collecting weak fingerprint signals, and can also shorten the exposure time and reduce power consumption.
  • the TV distortion of the lens group is less than 5%, which is beneficial to avoid the influence of moiré fringes on fingerprint imaging.
  • the relative illuminance of the lens group is greater than 30%, which is conducive to improving imaging quality.
  • the lens group further includes an aperture (or may also be referred to as an aperture), and the aperture is disposed between the first lens and the second lens.
  • the diaphragm can be used to adjust the size of the optical signal or imaging range.
  • the optical signal carrying fingerprint information can be imaged to the optical fingerprint sensor to the greatest extent, so that the optical fingerprint sensor Can get more fingerprint information, further improve the resolution of fingerprint recognition.
  • physical parameters such as the radius of curvature, thickness, material, effective diameter, and conic coefficient of each structural member (eg, first lens, second lens, diaphragm) in the lens group can be controlled , And / or, the aspherical higher-order coefficients of the aspherical lenses in the lens group (such as the even-order terms in A2 to A16, etc.), so that the parameters of the lens group satisfy the first relationship described above, thereby making the lens
  • the FOV of the group is greater than 100 degrees, the TV distortion of the lens group is less than 5%, the relative illuminance of the lens group is greater than 30%, and the F number of the lens group is less than 1.5, which will be described in detail below in conjunction with specific embodiments.
  • the lens group of the embodiment of the present application can be applied to an optical fingerprint identification device, and the lens group can cooperate with the optical fingerprint sensor in the optical fingerprint identification device to realize the fingerprint of a larger fingerprint collection area in a limited space Information imaging; alternatively, the lens group can also be used in other devices or devices that require high optical imaging performance, which is not limited here.
  • the optical fingerprint recognition device 400 may include: infrared filter (Infrared Filter, IR) 401, IR filter bonding glue 402, chip (DIE) 403, DIE bonding glue 404, flexible A circuit board (Flexible Printed Circuit, FPC) 405, a reinforcement board 406, a bracket 407, and a lens group 409.
  • infrared filter Infrared Filter, IR
  • IR filter bonding glue 402
  • DIE chip
  • DIE bonding glue 404 DIE bonding glue
  • flexible A circuit board (Flexible Printed Circuit, FPC) 405 a reinforcement board 406, a bracket 407, and a lens group 409.
  • the IR Filter is used to filter infrared light to avoid infrared light affecting the fingerprint imaging;
  • the IR filter bonding glue 402 is used to bond the IR filter 401 and DIE403;
  • DIE 403 which can be an optical imaging chip, etc., which can specifically correspond to the light detection section 134 in FIG. 1, is used to convert an optical signal into an electrical signal to obtain a fingerprint image of a finger above the optical fingerprint recognition device; DIE 403 can Used in conjunction with lens group 409 to convert the optical signals imaged by the lens group 409 into electrical signals;
  • DIE bonding glue 404 is used to fix DIE 403 and FPC 405.
  • FPC405 used to connect the circuit in the electronic equipment installed in the DIE403 and the optical fingerprint recognition device
  • a bracket 407 is used to fix the lens group 409 and DIE 403 to control the accuracy of defocus and eccentricity.
  • a screen assembly is further provided above the optical fingerprint recognition device 400, and the screen assembly includes a display screen 410, a foam 411, and a copper foil 412.
  • the lens group 409 can be fitted in the bracket 407 with interference, so that the lens group 409 and the DIE 403 fit together, and each structural part of the optical fingerprint identification device can be adhered to Together, further, the optical fingerprint identification device may be fixed in the middle frame 408 of the electronic device.
  • the foam 411 and the aluminum foil 412 in the screen assembly corresponding to the lens group 409 need to be opened to make the lens group 409 within the FOV range
  • the optical signal can pass.
  • the lens group includes two lenses (a first lens and a second lens) and an aperture.
  • FIG. 5 shows the layout of the lens group, in which the display side, the first lens, and the Aperture, second lens, IR filter, filter glue.
  • the first lens is a concave lens
  • the second lens is a convex lens.
  • the upper and lower surfaces of the display are denoted as S1 and S2
  • the two surfaces of the first lens are denoted as S3 and S4
  • the surface of the diaphragm is denoted as S5
  • the two surfaces of the second lens are denoted as S6 and S7
  • the surface of the IR filter is denoted as S8 and S9
  • the surface of the filter adhesive is denoted as S10 and S11
  • the imaging surface is S12.
  • the lens group by setting at least one of the radius of curvature, thickness, material, effective diameter, and conic coefficient of each face in the lens group, and / or the aspheric high-order term of the aspheric lens in the lens group Coefficients A2, A4, A6, A8, A10, A12, A14, A16, so that the parameters of the lens group satisfy the above first relationship, so that the FOV of the lens group is greater than 100 degrees, the TV distortion is less than 5%, and the F number is less than 1.5, and the relative illuminance is greater than 30%.
  • the parameters of the first lens group satisfies a predetermined relationship and the other relationship comprises: 2.5 ⁇ f 1 /R1 ⁇ 4,0.5 ⁇ f 1 /R2 ⁇ 2.0,2.5 ⁇ f 1 / R1 ⁇ 4, 0.5 ⁇ f 1 /R2 ⁇ 2.0, -1 ⁇ f / f 1 ⁇ 0, 0 ⁇ f / f 2 ⁇ 1, -8 ⁇ f 1 / f 2 ⁇ -4, 0.2 ⁇ R1 / R2 ⁇ 0.5, -1 ⁇ R1 / R3 ⁇ -0.4, 2 ⁇ R1 / R4 ⁇ 4, -3 ⁇ R2 / R3 ⁇ -1, 5 ⁇ R2 / R4 ⁇ 12, -8 ⁇ R3 / R4 ⁇ -3, 0.1 ⁇ f / TTL ⁇ 0.2, 0.45 ⁇ Y '/ (f * TTL) ⁇ 0.6, n 1 > 1.54, v 1 > 55.50, n 2 > 1.54, v 2 > 55.98
  • Example 1 the radius of curvature, thickness, material, effective diameter, and conic coefficient of each surface in S1 to S12 can be set using the corresponding parameters in Table 1.
  • the coefficients of higher order terms adopt the parameters shown in Table 2.
  • S9 and S10 can be regarded as the same surface
  • S11 and S12 can be regarded as the same surface
  • S10 and S9 correspond to the same parameter
  • the parameters of S12 and S11 correspond to the same parameter
  • the parameters corresponding to S10 and S11 are not shown.
  • FIG. 6 to FIG. 8 are the relative illuminance map, astigmatism map, TV distortion map, and modulation transfer function (MFT) map of the lens group in this order.
  • the FOV of the lens group is 105 degrees
  • the working F number is 1.47156
  • the TV distortion is 0.3268%
  • the relative illumination is 30%. Therefore, in the case where the parameters of the lens group satisfy the aforementioned first relationship, the lens group has the performance of large FOV, small working F-number, small TV distortion, and high relative illuminance.
  • the lens group includes two lenses (a first lens and a second lens) and an aperture.
  • FIG. 9 shows the layout of the lens group, in which the display screen, the first lens, and the Aperture, second lens, IR filter, filter glue.
  • the first lens is a concave lens
  • the second lens is a convex lens.
  • the upper and lower surfaces of the display are denoted as S1 and S2
  • the two surfaces of the first lens are denoted as S3 and S4
  • the surface of the diaphragm is denoted as S5
  • the two surfaces of the second lens are denoted as S6 and S7
  • the surface of the IR filter is denoted as S8 and S9
  • the surface of the filter adhesive is denoted as S10 and S11
  • the imaging surface is S12.
  • the lens group by setting at least one of the radius of curvature, thickness, material, effective diameter, and conic coefficient of each face in the lens group, and / or the aspheric high-order term of the aspheric lens in the lens group Coefficients A2, A4, A6, A8, A10, A12, A14, A16, so that the parameters of the lens group satisfy the above first relationship, so that the FOV of the lens group is greater than 100 degrees, the TV distortion is less than 5%, and the F number is less than 1.5, and the relative illuminance is greater than 30%.
  • the parameters of the first lens group satisfies a predetermined relationship and the other relationship comprises: 2.5 ⁇ f 1 /R1 ⁇ 4,0.5 ⁇ f 1 /R2 ⁇ 2.0,2.5 ⁇ f 1 / R1 ⁇ 4, 0.5 ⁇ f 1 /R2 ⁇ 2.0, -1 ⁇ f / f 1 ⁇ 0, 0 ⁇ f / f 2 ⁇ 1, -8 ⁇ f 1 / f 2 ⁇ -4, 0.2 ⁇ R1 / R2 ⁇ 0.5, -1 ⁇ R1 / R3 ⁇ -0.4, 2 ⁇ R1 / R4 ⁇ 4, -3 ⁇ R2 / R3 ⁇ -1, 5 ⁇ R2 / R4 ⁇ 12, -8 ⁇ R3 / R4 ⁇ -3, 0.1 ⁇ f / TTL ⁇ 0.2, 0.45 ⁇ Y '/ (f * TTL) ⁇ 0.6, n 1 > 1.54, v 1 > 55.50, n 2 > 1.54, v 2 > 55.98
  • the curvature radius, thickness, material, effective diameter, and conic coefficient of each surface in S1 to S12 can be set using the corresponding parameters in Table 3, and the aspheric surface in S1 to S12
  • the coefficients of higher order terms adopt the parameters shown in Table 4.
  • S9 and S10 can be regarded as the same surface
  • S11 and S12 can be regarded as the same surface, that is, S10 and S9 correspond to the same parameter
  • the parameters of S12 and S11 correspond to the same parameter
  • the parameters corresponding to S10 and S11 are not shown.
  • Figures 10 to 12 are the relative illuminance map, astigmatism map, TV distortion map, and MFT map of the lens group in this order.
  • the FOV of the lens group is 110 degrees
  • the working F number is 1.46254
  • the TV distortion is 0.0603%
  • the relative illumination is 30%. Therefore, in the case where the parameters of the lens group satisfy the aforementioned first relationship, the lens group has the performance of large FOV, small working F-number, small TV distortion, and high relative illuminance.
  • the lens group includes two lenses (a first lens and a second lens) and an aperture.
  • FIG. 13 shows the layout of the lens group, in which the display side, the first lens, and the Aperture, second lens, IR filter, filter glue.
  • the first lens is a concave lens
  • the second lens is a convex lens.
  • the upper and lower surfaces of the display are denoted as S1 and S2
  • the two surfaces of the first lens are denoted as S3 and S4
  • the surface of the diaphragm is denoted as S5
  • the two surfaces of the second lens are denoted as S6 and S7
  • the surface of the IR filter is denoted as S8 and S9
  • the surface of the filter adhesive is denoted as S10 and S11
  • the imaging surface is S12.
  • the lens group by setting at least one of the radius of curvature, thickness, material, effective diameter, and conic coefficient of each face in the lens group, and / or the aspheric high-order term of the aspheric lens in the lens group Coefficients A2, A4, A6, A8, A10, A12, A14, A16, so that the parameters of the lens group satisfy the above first relationship, so that the FOV of the lens group is greater than 100 degrees, the TV distortion is less than 5%, and the F number is less than 1.5, and the relative illuminance is greater than 30%.
  • the parameter of the first lens group satisfies a predetermined relationship and the other relationship comprises: 2.5 ⁇ f 1 /R1 ⁇ 4,0.5 ⁇ f 1 /R2 ⁇ 2.0,2.5 ⁇ f 1 / R1 ⁇ 4, 0.5 ⁇ f 1 /R2 ⁇ 2.0, -1 ⁇ f / f 1 ⁇ 0, 0 ⁇ f / f 2 ⁇ 1, -8 ⁇ f 1 / f 2 ⁇ -4, 0.2 ⁇ R1 / R2 ⁇ 0.5, -1 ⁇ R1 / R3 ⁇ -0.4, 2 ⁇ R1 / R4 ⁇ 4, -3 ⁇ R2 / R3 ⁇ -1, 5 ⁇ R2 / R4 ⁇ 12, -8 ⁇ R3 / R4 ⁇ -3, 0.1 ⁇ f / TTL ⁇ 0.2, 0.45 ⁇ Y '/ (f * TTL) ⁇ 0.6, n 1 > 1.54, v 1 > 55.50, n 2 > 1.54, v 2 > 55.98
  • the radius of curvature, thickness, material, effective diameter, and conic coefficient of each surface in S1 to S12 can be set using the corresponding parameters in Table 5, and the aspheric surface in S1 to S12
  • the coefficients of higher order terms adopt the parameters shown in Table 6.
  • S9 and S10 can be regarded as the same surface
  • S11 and S12 can be regarded as the same surface
  • S10 and S9 correspond to the same parameters
  • the parameters of S12 and S11 correspond to the same parameters
  • the parameters corresponding to S10 and S11 are not shown.
  • Figures 14 to 16 are the relative illuminance map, astigmatism map, TV distortion map and MFT map of the lens group in this order.
  • the FOV of the lens group is 105 degrees
  • the working F number is 1.41653
  • the TV distortion is 1.32%
  • the relative illumination is 30%. Therefore, in the case where the parameters of the lens group satisfy the aforementioned first relationship, the lens group has the performance of large FOV, small working F-number, small TV distortion, and high relative illuminance.
  • the positions corresponding to the parameters in Tables 1 to 6 are blank, indicating that there is no such parameter or the value of this parameter is 0.
  • the blank space in the column of material can represent air; for another example, the blank space at the coefficient A2 of the aspheric higher order term means that the coefficient is 0.
  • the lens group of the embodiment of the present application provides a wide-angle short-focus lens group, which can collect fingerprint information of a larger area, and the short-focus design makes the lens group better applicable to limited vertical space On the electronic device, the applicability of the lens group is enhanced.
  • FIG. 17 is a schematic block diagram of a fingerprint recognition apparatus according to an embodiment of the present application.
  • the fingerprint recognition apparatus 1700 includes a lens system 1710.
  • the lens system 1710 may include one lens group, or include two lens groups. Further expand the area of the fingerprint collection area.
  • Each lens group may be, for example, the lens group 30 in the foregoing embodiment.
  • the two lens groups are arranged side by side in the radial direction, for example, as shown in FIG. 18, to further expand the field of view and reduce the lens system
  • the total length of the fingerprint recognition device 1700 reduces the longitudinal space of the fingerprint recognition device 1700 occupied during assembly.
  • the fingerprint identification device in the embodiment of the present application uses the above lens group, and by arranging two side by side lens groups in the fingerprint identification device, it effectively solves the problem of expanding the area of the fingerprint collection area and reducing the length of the lens system Contradiction.
  • the total length of the lens system can be less than 2.6mm, and the field of view of 4 ⁇ 7mm can be realized, that is, the fingerprint collection area of the fingerprint recognition device can reach 4 ⁇ 7mm, so that more fingerprint information of the user ’s finger can be obtained and improved Reliability of fingerprint detection, and enhance user experience when performing fingerprint detection.
  • the fingerprint recognition device 1700 may include an optical fingerprint sensor 1720 such as DIE 403 shown in FIG. 4, which is disposed below the lens system 1710 and is used to receive the optical signal transmitted by the lens system 1710, and The optical signal is processed to obtain fingerprint information included in the optical signal.
  • an optical fingerprint sensor 1720 such as DIE 403 shown in FIG. 4, which is disposed below the lens system 1710 and is used to receive the optical signal transmitted by the lens system 1710, and The optical signal is processed to obtain fingerprint information included in the optical signal.
  • the fingerprint identification device 1700 may include an optical fingerprint sensor, and the optical fingerprint sensor 1720 may include two sensor arrays, each sensor array corresponds to a lens group, and each lens group corresponds to a sub-region in the fingerprint collection area Each lens group is used to guide the optical signal in its corresponding sub-region to the corresponding sensing array under the lens group.
  • the fingerprint identification device 1700 may include two optical fingerprint sensors, the two optical fingerprint sensors respectively corresponding to the two lens groups, wherein each lens group is used for light in the sub-region corresponding to the lens group The signal is directed to its corresponding optical fingerprint sensor and collected by the sensing array on the optical fingerprint sensor.
  • the fingerprint identification device 1700 may correspond to the optical fingerprint identification device 400 shown in FIG. 4, and the fingerprint identification device 1700 may further include the structure in the optical fingerprint identification device 400, such as an IR filter 301, a bracket 407, etc. , I wo n’t go into details here.
  • FIG. 18 is only a schematic illustration.
  • the above two lens groups arranged side by side may be disposed under the same display screen.
  • the imaging area of the two lens groups on the display screen constitutes a fingerprint collection area on the display screen
  • the two imaging areas may have a certain overlapping area.
  • the optical fingerprint sensor (or optical fingerprint sensor chip, optical imaging chip, image sensor chip, etc.) below the two lens groups can be correspondingly provided with two sensor arrays, and the two sensor arrays are covered above There are filters or IR filters.
  • the fingerprint collection range of the two sensor arrays may respectively correspond to the two imaging areas of the above lens group, and the two sensor arrays respectively detect the fingerprint image pressed on the fingerprint collection area of the display screen.
  • a part (called a sub-image), and the images collected in the overlapping area can be used to stitch the sub-images collected in the two imaging regions to obtain a fingerprint image of a larger area.
  • the embodiments of the present application only take the fingerprint identification device including one or two lens groups as an example for description, but may include more lens groups, which are not limited herein.
  • An embodiment of the present application further provides an electronic device.
  • the electronic device 1900 includes a fingerprint identification device 1910.
  • the fingerprint identification device 1910 may be the fingerprint identification device 1700 in the foregoing embodiment, or shown in FIG.
  • the electronic device may further include a screen assembly 1920, including a display screen, foam, and copper foil, which are disposed above the lens system in the fingerprint identification device 1910; wherein, the corresponding The foam and the area of the copper foil are perforated to enable the optical signal including fingerprint information to enter the lens system.
  • a screen assembly 1920 including a display screen, foam, and copper foil, which are disposed above the lens system in the fingerprint identification device 1910; wherein, the corresponding The foam and the area of the copper foil are perforated to enable the optical signal including fingerprint information to enter the lens system.
  • the electronic device 1900 may be a terminal device, a mobile phone, a tablet computer, a notebook computer, a desktop computer, an in-vehicle electronic device, or a wearable smart device.
  • a mobile phone a tablet computer
  • a notebook computer a desktop computer
  • an in-vehicle electronic device or a wearable smart device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Lenses (AREA)
  • Image Input (AREA)

Abstract

一种镜头组、指纹识别装置和电子设备,包括从物方到像方依次设置的第一镜头(31)和第二镜头(32),第一镜头包括负光焦度的第一透镜,第一透镜为物侧是凸面的S形弯月镜片,第一透镜的两个面中有至少一个面为非球面;第二镜头包括正光焦度的第二透镜,第二透镜为双凸面镜片,第二透镜的两个面中有至少一个面为非球面;其中,镜头组的参数满足第一关系,以使镜头组的视场角FOV大于第一阈值。

Description

镜头组、指纹识别装置和电子设备 技术领域
本申请实施例涉及光学成像领域,并且更具体地,涉及镜头组、指纹识别装置和电子设备。
背景技术
随着手机行业的高速发展,指纹识别技术越来越受到人们重视,屏下指纹识别技术的实用化已成为大众所需。光学屏下指纹识别技术是通过光学指纹传感器采集光源发出的光线在手指发生反射形成的反射光,反射光中携带手指的指纹信息,从而实现屏下指纹识别。其中,指纹识别装置中可以通过镜头系统对手指返回的光信号进行引导,反射光需经过镜头系统后到达光学指纹传感器。为了获得更多的指纹信息,需要尽可能扩大镜头系统的视场以采集更大面积的指纹图像,但这样就会导致所设计的镜头系统较长,在一定程度上占用了电子设备本身就小的纵向空间。因此,如何在不增加镜头系统长度的情况下获得合适的视场大小,成为亟待解决的问题。
发明内容
本申请实施例提供了一种镜头组、指纹识别装置和电子设备,能够在不增加镜头系统长度的情况下获得合适的视场大小,以实现较大的指纹采集区域内的指纹信息的采集。
第一方面,提供了一种镜头组,包括:包括从物方到像方依次设置的第一镜头和第二镜头。所述第一镜头包括负光焦度的第一透镜,所述第一透镜为物侧是凸面的S形弯月镜片,所述第一透镜的两个面中有至少一个面为非球面;所述第二镜头包括正光焦度的第二透镜,所述第二透镜为双凸面镜片,所述第二透镜的两个面中有至少一个面为非球面;
其中,所述镜头组的参数满足第一关系,以使所述镜头组的视场角FOV大于第一阈值,以及使所述镜头组的长度小于第二阈值。
其中,所述镜头组的参数包括以下中的至少两项:所述镜头组的焦距f、所述第一透镜的焦距f 1、所述第二透镜的焦距f 2、所述第一透镜的朝向物侧一面的曲率半径R1、所述第一透镜的朝向像侧一面的曲率半径R2、所述第 二透镜的朝向物侧一面的曲率半径R3和所述第二透镜的朝向像侧一面的曲率半径R4。
因此,本申请实施例的镜头组通过布局不同光焦度的镜头,且每个镜头中包括至少一个非球面,以及通过设置镜头组的参数满足第一关系,使得该镜头组具有较大的FOV,以实现较大指纹采集区域内的指纹信息的采集,提升采用该镜头组的光学指纹识别装置的指纹识别性能。
在一种可能的实现方式中,所述第一关系包括:2.5<f 1/R1<4和0.5<f 1/R2<2.0。
在一种可能的实现方式中,所述第一关系还包括:2.5<f 1/R1<4和0.5<f 1/R2<2.0。
在一种可能的实现方式中,所述第一关系还包括:-1<f/f 1<0、0<f/f 2<1、-8<f 1/f 2<-4。
在一种可能的实现方式中,所述第一关系还包括:0.2<R1/R2<0.5、-1<R1/R3<-0.4、2<R1/R4<4、-3<R2/R3<-1、5<R2/R4<12、-8<R3/R4<-3。
在一种可能的实现方式中,所述第一阈值为100度。
在一种可能的实现方式中,所述第二阈值为2.6毫米。
在一种可能的实现方式中,所述第一透镜沿光轴的厚度CT1与所述第二透镜沿光轴的厚度CT2之间满足:0.5<CT1/CT2<1.5。
在一种可能的实现方式中,显示屏的下表面到成像面的距离TTL与所述镜头组的焦距f之间满足:0.1<f/TTL<0.2。
在一种可能的实现方式中,所述镜头组的成像面上的最大像高Y’、显示屏的下表面到成像面的距离TTL和所述镜头组的焦距f之间满足:0.45<Y’/(f*TTL)<0.6。
在一种可能的实现方式中,所述第一透镜的材料的折射率n 1>1.54,所述第一透镜的材料的色散系数v 1>55.50。
在一种可能的实现方式中,所述第二透镜的材料的折射率n 2>1.54,所述第二透镜的材料的色散系数v 2>55.98。
在一种可能的实现方式中,所述镜头组还包括:光阑,设置于所述第一镜头和所述第二镜头之间。
在一种可能的实现方式中,所述镜头组的TV畸变小于5%,所述镜头组的相对照度大于30%,所述镜头组的F数小于1.6。
第二方面,提供了一种指纹识别装置,包括镜头系统,所述镜头系统包括一个如第一方面或第一方面的任一可能的实现方式中的镜头组,或者包括沿径向并排设置的两个所述镜头组。
在一种可能的实现方式中,所述指纹识别装置还包括光学指纹传感器,该光学指纹传感器设置于所述镜头系统的下方,用于接收经所述镜头系统传输后的光信号,并对所述光信号进行处理,以获取所述光信号中携带的指纹信息。
在一种可能的实现方式中,所述指纹识别装置还包括支架,其中,所述镜头系统过盈装配于所述支架中。
第三方面,提供了一种电子设备,包括如第二方面或第二方面的任一可能的实现方式中的指纹识别装置。
在一种可能的实现方式中,所述电子设备还包括屏幕组件,该屏幕组件包括显示屏、泡棉和铜箔,设置于所述指纹识别装置中的镜头系统的上方。其中,所述镜头系统上方对应的所述泡棉和所述铜箔的区域开孔,以使包括指纹信息的光信号进入所述镜头系统。
附图说明
图1是本申请可以适用的电子设备的平面示意图。
图2是图1所示的电子设备沿A-A’的部分剖面示意图。
图3根据本申请实施例的镜头组的结构示意图。
图4根据本申请实施例的光学指纹识别模组的结构示意图。
图5是根据本申请实施例的镜头组的一种布局的示意图。
图6是图5所示的布局的镜头组的相对照度图。
图7(a)和图7(b)分别是图5所示布局的镜头组的像散图和畸变图。
图8是图5所示的布局的镜头组的MTF图。
图9是根据本申请实施例的镜头组的另一种布局的示意图。
图10是图9所示的布局的镜头组的相对照度图。
图11(a)和图11(b)分别是图9所示布局的镜头组的像散图和畸变图。
图12是图9所示的布局的镜头组的MTF图。
图13是根据本申请实施例的镜头组的另一种布局的示意图。
图14是图13所示的布局的镜头组的相对照度图。
图15(a)和图15(b)分别是图13所示的布局的镜头组的像散图和畸变图。
图16是图13所示的布局的镜头组的MTF图。
图17是根据本申请实施例的指纹识别装置的结构示意图。
图18是指纹识别装置中包括的两个所述镜头组的位置示意图。
图19是根据本申请实施例的电子设备的示意性框图。
图20是根据本申请实施例的电子设备的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
随着电子设备步入全面屏时代,电子设备正面指纹采集区域受到全面屏的挤压,因此屏下(Under-display或者Under-screen)指纹识别技术越来越受到关注。屏下指纹识别技术是指将指纹识别装置例如光学指纹识别装置安装在显示屏下方,从而实现在显示屏的显示区域内进行指纹识别操作,不需要在电子设备正面除显示区域外的区域设置指纹采集区域。
光学屏下指纹识别技术使用从设备显示屏的顶面返回的光来进行指纹感应和其他感应操作。该返回的光携带与该顶面接触的物体(例如手指)的信息,通过采集和检测该返回的光,实现位于显示屏下方的特定光学指纹传感器。光学指纹传感器的设计可以为通过恰当地配置用于采集和检测返回的光的光学元件来实现期望的光学成像。
应理解,本申请实施例的技术方案可以应用于各种电子设备,例如智能手机、笔记本电脑、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备,但本申请实施例对此并不限定。
图1和图2示出了本申请实施例的指纹识别装置可以适用的一种电子设备100的示意图,其中图1为电子设备100的正面示意图,图2为图1所示的电子设备100沿A-A’的部分剖面结构示意图。
如图1所示和图2所示,该电子设备100包括显示屏120和光学指纹识别装置(后面也简称为指纹识别装置)130,其中,所述光学指纹识别装置130具有一个或多个感应阵列,所述感应阵列至少设置在所述显示屏120下 方的局部区域,从而使得所述光学指纹识别装置130的指纹采集区域(或感应区域)103至少部分位于所述显示屏120的显示区域102。
应当理解,所述指纹采集区域103的面积可以与所述光学指纹识别装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得所述光学指纹识别装置130的指纹采集区域103的面积大于所述光学指纹识别装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,所述光学指纹识别装置130的指纹采集区域103也可以设计成与所述光学指纹识别装置130的感应阵列的面积相一致。
如图1所示,所述指纹采集区域103位于所述显示屏120的显示区域102之中,因此,使用者在需要对所述电子设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹采集区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的电子设备100无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即所述显示屏120的显示区域102可以基本扩展到整个电子设备100的正面。
作为一种实施例中,所述显示屏120可以为自发光显示屏,其采用自发光显示单元作为显示像素,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,所述光学指纹识别装置130可以利用所述OLED显示屏120位于所述指纹识别区域103的OLED显示单元(即OLED光源)作为光学指纹检测的激励光源。
在其他实施例中,所述光学指纹识别装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。在这种情况下,所述光学指纹识别装置130可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,所述电子设备100的光学指纹系统还可以包括用于光学指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在所述电子设备100的保护盖板下方的边缘区域,而所述光学指纹识别装置130可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使 得指纹检测光可以到达所述光学指纹识别装置130;或者,所述光学指纹识别装置130也可以设置在所述背光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达所述光学指纹识别装置130。
并且,所述光学指纹识别装置130的感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的光学感应单元。当手指触摸、按压或者接近(为便于描述,本申请统称为触摸)在所述指纹识别区域103时,所述指纹识别区域103的显示单元发出的光线在手指表面的指纹发生反射并形成反射光,其中所述手指指纹的纹脊和纹谷的反射光是不同的,反射光从所述显示屏120并被所述光探测器阵列所接收并转换为相应的电信号,即指纹检测信号。基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述电子设备100实现光学指纹识别功能。
应当理解的是,在具体实现上,所述电子设备100还包括透明保护盖板110,所述盖板110可以具体为透明盖板,比如玻璃盖板或者蓝宝石盖板,其位于所述显示屏120的上方并覆盖所述电子设备100的正面。因此,本申请实施例中,所谓的手指触摸、按压或者接近在所述显示屏120实际上是指手指触摸、按压或者接近在所述显示屏120上方的盖板110或者覆盖所述盖板110的保护层表面。另外,所述电子设备100还可以包括触摸传感器,所述触摸传感器可以具体为触控面板,其可以设置在所述显示屏120表面,也可以部分或者整体集成到所述显示屏120内部,即所述显示屏120具体为触控显示屏。
作为一种可选的实现方式,如图2所示,所述光学指纹识别装置130包括光学检测单元134和光学组件132,所述光学检测单元134包括所述感应阵列以及与所述感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die);即所述光学检测单元134可以制作在光学成像芯片或者图像传感芯片(后面也称为光学指纹传感器或光学指纹传感器芯片)。所述光学组件132可以设置在所述光学检测单元134的感应阵列的上方,其可以具体包括光学滤波器(或称滤波片、滤光片(Filter))、光路引导结构以及其他光学元件,所述滤光片可以用于滤除穿透手指的环境光,而所述光路引导结构主要用于对向下传播的光线进行准直、调制或者汇 聚等光路引导以实现将从手指表面反射回来的反射光导引至所述感应阵列进行光学检测。
在具体实现上,所述光学组件132可以与所述光学检测单元134封装在同一个光学指纹芯片,也可以将所述光学组件132设置在所述光学检测单元134所在的芯片外部,比如将所述光学组件132贴合在所述芯片上方,或者将所述光学组件132的部分元件集成在上述芯片之中。其中,所述光学组件132的光路引导结构有多种实现方案,比如可以具体为在半导体硅片或者其他基材制作而成的光路调制器或者光路准直器,其具有多个光路调制单元或者准直单元,所述光路调制单元或者准直单元可以具体为微孔阵列。或者,所述导光层也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组(下面也称为镜头组)。从手指反射回来的反射光经所述微孔阵列或者所述透镜单元进行光路准直或者汇聚之后,并被其下方的光学感应单元接收,据此,所述感应阵列可以检测出手指的指纹图像。
所述光学指纹识别装置130的下方还可以设置有电路板140,比如软性电路板(Flexible Printed Circuit,FPC),所述光学指纹识别装置130例如可以通过焊盘焊接到所述电路板140,并通过所述电路板140实现与其他外围电路或者所述电子设备100的其他元件的电性互连和信号传输。比如,所述光学指纹识别装置130可以通过所述电路板140接收所述电子设备100的处理单元的控制信号,并且还可以通过所述电路板140将所述指纹检测信号输出给所述电子设备100的处理单元或者控制单元等。
本申请实施例采用镜头组对来自显示屏上方的手指反射的光信号进行采集,并将该光信号引导至镜头组下方的光学指纹传感器,该光信号中携带该手指的指纹信息,从而实现光学指纹识别。
为便于更好的理解,首先简单介绍本申请实施例中设计的可用于评价该镜头组性能的参数指标。
视场角(Field Of View,FOV):用来表征镜头的视野范围,在镜头尺寸相等的情况下,镜头的FOV越大,表示该镜头能获得更大区域的信息,即采用该镜头能够获得的信息量更大。
光圈值或称F数(f-number,Fno):即镜头相对口径的倒数,用于表征透过镜头进入光学指纹装置的感应阵列的光线量。F数越小,表示进入镜头 的光线量越多。
TV畸变:用于度量图像的视觉畸变程度。可以理解,TV畸变越小,成像效果越好。
相对照度(Relative Illumination,RI):指成像面上的不同坐标点的照度和中心点的照度之比,相对照度越小,成像面的照度越不均匀,容易产生某些位置曝光不足或中心过曝光的问题,影响成像质量;相对照度越大,成像质量越高。
图3是根据本申请实施例的镜头组的示意性结构图,如图3所示,该镜头组30包括:从物方到像方依次设置的第一镜头31和第二镜头32。
其中,该第一镜头31包括负光焦度的第一透镜,该第一透镜为物侧是凸面的S形弯月镜片,该第一透镜的两个面中有至少一个面为非球面;该第二镜头32包括正光焦度的第二透镜,该第二透镜为双凸面镜片,该第二透镜的两个面中有至少一个面为非球面。
应理解,在本申请实施例中,该第一镜头可以为一个透镜即第一透镜,或者也可以为一组透镜,只要该组透镜的组合光焦度为负光焦度即可;同理,该第二镜头也可以为一个透镜即第二透镜,或者也可以为一组透镜,只要该组透镜的组合光焦度为正光焦度即可。下面均以第一镜头为第一透镜,以及第二镜头为第二透镜为例进行描述。该第一镜片和该第二镜片例如可以采用树脂材料或者其他塑料材质,这里不作限定。
进一步地,该镜头组的参数满足第一关系,以使该镜头组的视场角FOV大于第一阈值,以及使该镜头组的长度小于第二阈值。其中,该镜头组的参数包括以下中的至少两项:该镜头组的焦距f、该第一透镜的焦距f 1、该第二透镜的焦距f 2、该第一透镜的朝向物侧一面的曲率半径R1、该第一透镜的朝向像侧一面的曲率半径R2、该第二透镜的朝向物侧一面的曲率半径R3和该第二透镜的朝向像侧一面的曲率半径R4。
该实施例中,该镜头组通过布局不同光焦度的镜头,且每个镜头中包括至少一个非球面,以及通过设置镜头组的参数满足第一关系,使得在该镜头组的长度一定的情况下,具有较大的FOV,以实现较大的指纹采集区域内的指纹信息的采集,提升采用该镜头组的光学指纹识别装置的指纹识别性能。或者说,在获得相同大小的FOV的情况下,减小该镜头组的长度,从而降低该镜头组装配于电子设备时所占用的纵向空间。
该镜头组的参数所满足的第一关系可以包括以下中的至少一种参数关系:f 1分别与R1和R2之间的关系,例如,f 1/R2在预设的数值范围内,f 1/R2在预设的数值范围内;f 2分别与R3和R4之间的关系,例如,f 2/R3在预设的数值范围内,f 2/R4在预设的数值范围内;f、f 1和f 2之间的关系,例如,f/f 1在预设的数值范围内,f/f 2在预设的数值范围内,f 1/f 2在预设的数值范围内;R1、R2、R3和R4之间的关系,例如,R1/R2在预设的数值范围内,R1/R3在预设的数值范围内,R1/R4在预设的数值范围内,R2/R3在预设的数值范围内,R2/R4在预设的数值范围内,R3/R4在预设的数值范围内等。
以镜头组的FOV大于第一阈值以及该镜头组的长度小于第二阈值为目标,该第一阈值例如可以为100度,该第二阈值例如可以为2.6mm,通过对镜头组进行仿真,并结合经验值,可以得到上述参数之间应满足的该第一关系。
例如,该第一关系包括:2.5<f 1/R1<4和/或0.5<f 1/R2<2.0。
又例如,该第一关系包括:0.2<f 2/R3<0.5和/或-2<f 2/R4<-1。
又例如,该第一关系包括以下中的至少一种:-1<f/f 1<0、0<f/f 2<1、-8<f 1/f 2<-4。
又例如,该第一关系包括以下中的至少一种:0.2<R1/R2<0.5、-1<R1/R3<-0.4、2<R1/R4<4、-3<R2/R3<-1、5<R2/R4<12、-8<R3/R4<-3。
应理解,该镜头组可以满足上述全部参数关系,也可以满足部分参数关系,只需要保证FOV大于第一阈值即可。例如,当满足2.5<f 1/R1<4和0.5<f 1/R2<2.0时,该镜头组可以达到FOV大于100度的需求,并有效降低该镜头组的长度(屏幕下表面到像面的距离),例如该镜头组的长度小于2.6mm,从而降低该镜头组装配于电子设备时所占用的纵向空间;进一步地,当满足0.2<f 2/R3<0.5和/或-2<f 2/R4<-1时,该镜头组的像差可以得到有效控制,有效提升镜头组的成像质量;进一步地,当满足-1<f/f 1<0、0<f/f 2<1、-8<f 1/f 2<-4时,可以降低该镜头组的景深,借此提升针对特定面上的成像质量,例如针对屏幕上表面的成像质量;进一步地,当满足0.2<R1/R2<0.5、-1<R1/R3<-0.4、2<R1/R4<4、-3<R2/R3<-1、5<R2/R4<12、-8<R3/R4<-3时,可以降低该镜头组的敏感度,即制造误差对成像效果影响的程度,从而提高该镜头组制造过程中的良品率。
基于此可以看出,通过设置镜头组中的各个参数,可以使得该镜头组具 有FOV大、工作F数小、TV畸变小和相对照度大的性能,有利于提升采用该镜头组的指纹识别模组的指纹识别性能。
可选地,在一些实施例中,该第一透镜沿光轴方向的厚度CT1与该第二透镜沿光轴方向的厚度CT2之间也满足预设的关系,例如满足0.5<CT1/CT2<1.5,借此时该镜头组的结构更加坚固,从而提升该镜头组的使用寿命。
可选地,在一些实施例中,显示屏的下表面到成像面的距离(Total Trace Length,TTL)与该镜头组的焦距f之间满足预设关系,例如满足0.1<f/TTL<0.2。在满足镜头组的成像需求时,维持该镜头组的小型化,提升该镜头组在电子设备中装配的自由度。
可选地,在一些实施例中,该镜头组的成像面上的最大像高Y’、显示屏的下表面到成像面的距离TTL和该镜头组的焦距f之间也满足预设关系,例如满足0.45<Y’/(f*TTL)<0.6。由于TTL的大小决定了该镜头组的焦距f的大小,或者说该镜头组的尺寸的大小,因此通过控制Y'、f和TTL三者之间满足预设关系,能够使得该镜头组在具有较短焦距和较大FOV的同时,最大限度地利用光学指纹传感器的有效感光面积,即感应阵列的面积,从而提升成像分辨率。
可选地,在一些实施例中,该第一透镜的材料的折射率和色散系数也满足预设关系,例如该第一透镜的材料的直射率n 1>1.54,该第一透镜的材料的色散系数v 1>55.50。出于满足色散要求以及降低生产成本的考虑,这样的配置可以提供合适的相差平衡。
可选地,在一些实施例中,该第二透镜的材料的折射率和色散系数也满足预设关系,例如该第二透镜的材料的折射率n 2>1.54,该第二透镜的材料的色散系数v 2>55.98。出于满足色散要求以及降低生产成本的考虑,这样的配置可以提供合适的相差平衡。
本申请实施例中,该镜头组的参数满足第一关系时,除了可以使FOV大于第一阈值,还可以使该镜头组的例如F数、TV畸变、相对照度等参数处于合适的范围内。例如,该镜头组的F数小于1.5,能够使得足够多的光线进入到镜头组,有利于采集微弱的指纹信号,同时还可以缩短曝光时间,降低功耗。又例如,该镜头组的TV畸变小于5%,有利于规避莫尔条纹对指纹成像的影响。又例如,该镜头组的相对照度大于30%,有利于提升成像 质量。
可选地,在一些实施例中,该镜头组还包括光阑(或者也可以称为光圈),该光阑设置于该第一镜头和该第二镜头之间。
该光阑可以用于调节光信号或成像范围的大小,通过设置光阑对光信号或成像范围进行调整,使携带指纹信息的光信号能够最大程度地成像于光学指纹传感器,使得该光学指纹传感器能够获得更多的指纹信息,进一步提升指纹识别的解析力。
可选地,在一些实施例中,可以通过控制该镜头组中的各个结构件(例如第一透镜、第二透镜、光阑)的曲率半径、厚度、材料、有效直径和圆锥系数等物理参数,和/或,该镜头组中的非球面透镜的非球面高次项系数(例如A2~A16中的偶次项等),使该镜头组的参数满足上述的第一关系,进而使得该镜头组的FOV大于100度,该镜头组的TV畸变小于5%,该镜头组的相对照度大于30%,该镜头组的F数小于1.5,下文结合具体实施例详细描述。
应理解,本申请实施例的镜头组可以应用于光学指纹识别装置中,该镜头组可以与该光学指纹识别装置中的光学指纹传感器配合,实现在有限的空间内对较大指纹采集区域的指纹信息的成像;或者,该镜头组也可以应用在其他对光学成像性能要求较高的设备或装置中,这里不作限定。
图4是采用本申请实施例的镜头组的光学指纹识别装置的结构示意图。如图4所示,该光学指纹识别装置400可以包括:红外滤光片(Infrared Filter,IR Filter)401、IR滤光片贴合胶402、芯片(DIE)403、DIE贴合胶404、柔性电路板(Flexible Printed Circuit,FPC)405、补强板406、支架407和镜头组409。
其中,该IR Filter用于过滤红外光,以避免红外光影响指纹成像;
IR滤光片贴合胶402用于贴合该IR滤光片401和DIE403;
DIE 403,可以为光学成像芯片等,其可以具体对应于图1中的光检测部分134,用于将光信号转换为电信号从而获取到光学指纹识别装置上方的手指的指纹图像;DIE 403可以与镜头组409配合使用,将经该镜头组409成像的光信号转换为电信号;
DIE贴合胶404,用于固定DIE 403与FPC 405。
FPC405,用于连接该DIE403和该光学指纹识别装置所安装的电子设备 中的电路;
支架407,用于固定该镜头组409和DIE 403,以控制离焦和偏心的精度。
该光学指纹识别装置400的上方还设置有屏幕组件,该屏幕组件包括显示屏410、泡棉411和铜箔412。
在本申请实施例中,该镜头组409可以过盈装配于该支架407中,以使该镜头组409和DIE 403贴合在一起,该光学指纹识别装置的各个结构件可以通过胶粘合在一起,进一步该光学指纹识别装置可以固定在电子设备的中框408中。
由于镜头组409和显示屏410之间需要进行光信号的传递,因此,该镜头组409所对应的屏幕组件中的泡棉411和铝箔412需要开孔,以使该镜头组409的FOV范围内的光信号能够通过。
以下,结合实施例1、实施例2和实施例3,具体说明根据本申请实施例的镜头组的性能。
实施例1
镜头组包括两个透镜(第一透镜和第二透镜)和光阑,图5示出该镜头组的布局(layout),其中,从物方到像方依次设置有:显示屏、第一透镜、光阑、第二透镜、IR滤光片、滤光片贴合胶。该第一透镜为凹透镜,该第二透镜为凸透镜。
为便于区分和描述,按照从物方到像方的顺序,将显示屏的上下表面分别记为S1和S2,第一镜头的两个表面分别记为S3和S4,光阑的表面记为S5,第二镜头的两个表面分别记为S6和S7,IR滤光片的表面分别记为S8和S9,滤光片贴合胶的表面记为S10和S11,成像面为S12。
进一步地,通过设置该镜头组中的每个面的曲率半径、厚度、材料、有效直径、圆锥系数中的至少一项,和/或,该镜头组中的非球面透镜的非球面高次项系数A2、A4、A6、A8、A10、A12、A14、A16,以使该镜头组的参数满足上述第一关系,从而使得该镜头组的FOV大于100度,TV畸变小于5%,F数小于1.5,以及相对照度大于30%。
在实施例1中,该镜头组的参数满足的第一关系以及其他预设关系包括:2.5<f 1/R1<4,0.5<f 1/R2<2.0,2.5<f 1/R1<4,0.5<f 1/R2<2.0,-1<f/f 1<0,0<f/f 2<1, -8<f 1/f 2<-4,0.2<R1/R2<0.5,-1<R1/R3<-0.4,2<R1/R4<4,-3<R2/R3<-1,5<R2/R4<12,-8<R3/R4<-3,0.1<f/TTL<0.2,0.45<Y’/(f*TTL)<0.6,n 1>1.54,v 1>55.50,n 2>1.54,v 2>55.98。
例如,在实施例1中,可以设置该S1~S12中的每个面的曲率半径、厚度、材料、有效直径、圆锥系数采用表1中对应的参数,S1~S12中的非球面的非球面高次项系数采用表2所示的参数。
表1
表面 表面类型 曲率半径 厚度 材料 有效直径 圆锥系数
S1 物面 无穷 1.500 BK7 2.800  
S2 球面 无穷 0.730   1.888  
S3 非球面 -0.917 0.369 APL5014CL 0.780 -0.793
S4 非球面 -3.314 0.209   0.334 -449.4978
S5 光阑面 无穷 0.029   0.198  
S6 非球面 1.105 0.383 APL5014CL 0.230 -12.050
S7 非球面 -0.318 0.428   0.300 -0.152
S8 球面 无穷 0.21 D263TECO 0.714  
S9 球面 无穷 0.020 BK7 0.714  
S12 像面       0.619  
需要说明的是,在该实施例1中,S9和S10可以认为是同一表面,S11和S12可以认为是同一表面,即S10和S9对应同样的参数,S12和S11的参数对应同样的参数,故S10和S11对应的参数未示出。
表2
表面 A2 A4 A6 A8 A10 A12 A14 A16
S3   2.376 -2.650 -15.248 103.052 -268.292 335.261 -162.505
S4   -6.043 827.466 -3.145e4 6.779e5 -8.129e5 5.054e7 -1.253e8
S6   1.219 -135.446 -1042.138 5.727e4 -4.766e4 -6.025e4 -9.217e7
S7   6.410 81.283 -996.731 9.470e4 -1.712e6 1.317e7 -3.648e7
基于表1和表2所示的参数,可以确定实施例1所示的镜头组的参数如下:TTL=2.37666mm(即S2到S12的距离),f 1=-2.4486,f 2=0.49849,f=0.444242mm,R1=-0.917,R2=-3.314,R3=1.105,R4=-0.318,Y’=0.61。 其中,f 1/R1=2.670229,f 1/R2=0.738865,f 2/R3=0.451122和f 2/R4=-1.56758,f/f 1=-0.181427,f/f 2=0.891175,f 1/f 2=-4.91203,R1/R2=0.276705、R1/R3=-0.82986、R1/R4=2.883648、R2/R3=-2.9991、R2/R4=10.42138、R3/R4=-3.47484,f/TTL=0.186919,n 1=n 2=1.5445,Y’/(f*TTL)=0.577754,CT1/CT2=0.963446,v 1=v 2=55.9867。可以看出,该镜头组的参数均满足前述第一关系和前述其他预设关系。在上述参数下,图6至图8依次为该镜头组的相对照度图、像散图、TV畸变图和调制传递函数(Modulation Transfer Function,MFT)图。
从图6至图8所示的仿真图可以得出,该镜头组的FOV为105度,工作F数为1.47156,TV畸变为0.3268%,相对照度为30%。因此,在镜头组的参数满足前述的第一关系的情况下,该镜头组具有FOV大、工作F数小、TV畸变小和相对照度高的性能。
实施例2
镜头组包括两个透镜(第一透镜和第二透镜)和光阑,图9示出该镜头组的布局(layout),其中,从物方到像方依次设置有:显示屏、第一透镜、光阑、第二透镜、IR滤光片、滤光片贴合胶。该第一透镜为凹透镜,该第二透镜为凸透镜。
为便于区分和描述,按照从物方到像方的顺序,将显示屏的上下表面分别记为S1和S2,第一镜头的两个表面分别记为S3和S4,光阑的表面记为S5,第二镜头的两个表面分别记为S6和S7,IR滤光片的表面分别记为S8和S9,滤光片贴合胶的表面记为S10和S11,成像面为S12。
进一步地,通过设置该镜头组中的每个面的曲率半径、厚度、材料、有效直径、圆锥系数中的至少一项,和/或,该镜头组中的非球面透镜的非球面高次项系数A2、A4、A6、A8、A10、A12、A14、A16,以使该镜头组的参数满足上述第一关系,从而使得该镜头组的FOV大于100度,TV畸变小于5%,F数小于1.5,以及相对照度大于30%。
在实施例2中,该镜头组的参数满足的第一关系以及其他预设关系包括:2.5<f 1/R1<4,0.5<f 1/R2<2.0,2.5<f 1/R1<4,0.5<f 1/R2<2.0,-1<f/f 1<0,0<f/f 2<1,-8<f 1/f 2<-4,0.2<R1/R2<0.5,-1<R1/R3<-0.4,2<R1/R4<4,-3<R2/R3<-1,5<R2/R4<12,-8<R3/R4<-3,0.1<f/TTL<0.2,0.45<Y’/(f*TTL)<0.6,n 1>1.54, v 1>55.50,n 2>1.54,v 2>55.98。
例如,在实施例2中,可以设置该S1~S12中的每个面的曲率半径、厚度、材料、有效直径、圆锥系数采用表3中对应的参数,S1~S12中的非球面的非球面高次项系数采用表4所示的参数。
表3
表面 表面类型 曲率半径 厚度 材料 有效直径 圆锥系数
S1 物面 无穷 1.5 BK7 2.800  
S2 球面 无穷 1.030   2.054  
S3 非球面 -0.765 0.352 APL5015AL 0.741 -2.086
S4 非球面 -1.646 0.198   0.328 -473.887
S5 光阑面 无穷 0.014   0.189  
S6 非球面 1.081 0.345 APL5014CL 0.234 2.872
S7 非球面 -0.288 0.372   0.303 -0.287
S8 球面 无穷 0.21 D263TECO 0.450  
S9 球面 无穷 0.02 BK7 0.553  
S12 像面       0.537  
需要说明的是,在该实施例2中,S9和S10可以认为是同一表面,S11和S12可以认为是同一表面,即S10和S9对应同样的参数,S12和S11的参数对应同样的参数,故S10和S11对应的参数未示出。
表4
表面 A2 A4 A6 A8 A10 A12 A14 A16
S3   2.993 -4.078 -28.910 222.140 -677.996 -1008.13 -586.197
S4   -11.368 1363.600 -5.817e4 1.460e6 -2.077e7 1.540e8 -4.570e8
S6   -3.335 -2.755 -1654.813 1.039e5 -1.132e6 -6.601e6 1.429e8
S7   9.852 -178.693 -1557.330 2.091e5 -4.405e6 3.892e7 -1.223e8
基于表3和表4所示的参数,可以确定实施例2所示的镜头组的参数如下:TTL=2.3775mm(即S2到S12的距离),f 1=-3.3167,f 2=0.47697,f=0.447816mm,R1=-0.765,R2=-1.646,R3=1.081,R4=-0.288,Y’=0.58。其中,f 1/R1=3.042844,f 1/R2=1.104462,f 2/R3=0.224562和f 2/R4=-1.70346,f/f 1=-0.135019,f/f 2=0.938877,f 1/f 2=-6.953687,R1/R2=0.36297、 R1/R3=-0.51318、R1/R4=3.89286、R2/R3=-1.41384、R2/R4=10.725、R3/R4=-7.58571,f/TTL=0.188356,n 1=n 2=1.5445,Y’/(f*TTL)=0.544763,CT1/CT2=0.89425,v 1=v 2=55.9867。可以看出,该镜头组的参数均满足前述的第一关系和前述其他预设关系。在上述参数下,图10至图12依次为该镜头组的相对照度图、像散图、TV畸变图和MFT图。
从图10至图12所示的仿真图可以得出,该镜头组的FOV为110度,工作F数为1.46254,TV畸变为0.0603%,相对照度为30%。因此,在镜头组的参数满足前述的第一关系的情况下,该镜头组具有FOV大、工作F数小、TV畸变小和相对照度高的性能。
实施例3
镜头组包括两个透镜(第一透镜和第二透镜)和光阑,图13示出该镜头组的布局(layout),其中,从物方到像方依次设置有:显示屏、第一透镜、光阑、第二透镜、IR滤光片、滤光片贴合胶。该第一透镜为凹透镜,该第二透镜为凸透镜。
为便于区分和描述,按照从物方到像方的顺序,将显示屏的上下表面分别记为S1和S2,第一镜头的两个表面分别记为S3和S4,光阑的表面记为S5,第二镜头的两个表面分别记为S6和S7,IR滤光片的表面分别记为S8和S9,滤光片贴合胶的表面记为S10和S11,成像面为S12。
进一步地,通过设置该镜头组中的每个面的曲率半径、厚度、材料、有效直径、圆锥系数中的至少一项,和/或,该镜头组中的非球面透镜的非球面高次项系数A2、A4、A6、A8、A10、A12、A14、A16,以使该镜头组的参数满足上述第一关系,从而使得该镜头组的FOV大于100度,TV畸变小于5%,F数小于1.5,以及相对照度大于30%。
在实施例3中,该镜头组的参数满足的第一关系以及其他预设关系包括:2.5<f 1/R1<4,0.5<f 1/R2<2.0,2.5<f 1/R1<4,0.5<f 1/R2<2.0,-1<f/f 1<0,0<f/f 2<1,-8<f 1/f 2<-4,0.2<R1/R2<0.5,-1<R1/R3<-0.4,2<R1/R4<4,-3<R2/R3<-1,5<R2/R4<12,-8<R3/R4<-3,0.1<f/TTL<0.2,0.45<Y’/(f*TTL)<0.6,n 1>1.54,v 1>55.50,n 2>1.54,v 2>55.98。
例如,在实施例3中,可以设置该S1~S12中的每个面的曲率半径、厚度、材料、有效直径、圆锥系数采用表5中对应的参数,S1~S12中的非球 面的非球面高次项系数采用表6所示的参数。
表5
表面 表面类型 曲率半径 厚度 材料 有效直径 圆锥系数
S1 物面 无穷 1.5 BK7 2.8  
S2 球面 无穷 0.940   1.903  
S3 非球面 -1.090 0.313 APL5014CL 0.611 -1.365
S4 非球面 -3.003 0.136   0.611 107.555
S5 光阑面 无穷 0.010   0.182  
S6 非球面 2.124 0.348 APL5014CL 0.205 65.410
S7 非球面 -0.280 0.400   0.287 -0.406
S8 球面 无穷 0.21 D263TECO 0.533  
S9 球面 无穷 0.02 BK7 0.591  
S12 像面       0.597  
需要说明的是,在该实施例3中,S9和S10可以认为是同一表面,S11和S12可以认为是同一表面,即S10和S9对应同样的参数,S12和S11的参数对应同样的参数,故S10和S11对应的参数未示出。
表6
表面 A2 A4 A6 A8 A10 A12 A14 A16
S3   2.976 -3.625 -28.550 223.179 -676.039 1030.329 -651.376
S4   -5.917 1323.094 -5.719e4 1.414e6 -1.970e7 1.444e8 -4.283e8
S6   4.050 -182.362 -5319.101 1.587e5 3.753e5 1.918e7 -6.707e8
S7   6.008 -117.483 -1813.586 2.030e5 -4.438e6 3.874e7 -1.129e8
基于表5和表6所示的参数,可以确定实施例3所示的镜头组的参数如下:TTL=2.54mm(即S2到S12的距离),f 1=-3.0433mm,f 2=0.4557mm,f=0.397686mm,R1=-1.090,R2=-3.003,R3=2.124,R4=-0.280,Y’=0.501。其中,f 1/R1=3.97817,f 1/R2=1.848906,f 2/R3=0.421554和f 2/R4=-1.58229,f/f 1=-0.130676,f/f 2=0.872693,f 1/f 2=-6.678297,R1/R2=0.46474、R1/R3=-0.70768、R1/R4=2.65625、R2/R3=-1.52266、R2/R4=5.715278、R3/R4=-3.75347,f/TTL=0.156569,n 1=n 2=1.5445,Y’/(f*TTL)=0.495979,CT1/CT2=1.02029,v 1=v 2=55.9867。可以看出,该镜头组的参数均满足前述 的第一关系和前述其他预设关系。在上述参数下,图14至图16依次为该镜头组的相对照度图、像散图、TV畸变图和MFT图。
从图14至图16所示的仿真图可以得出,该镜头组的FOV为105度,工作F数为1.41653,TV畸变为1.32%,相对照度为30%。因此,在镜头组的参数满足前述的第一关系的情况下,该镜头组具有FOV大、工作F数小、TV畸变小和相对照度高的性能。
应理解,表1至表6中的参数所对应的位置为空白,则表示无此参数或该参数的值为0。例如,材料一栏中的空白处可以表示空气;又例如,非球面高次项系数A2处空白表示该系数为0。
综上,本申请实施例的镜头组提供了一种广角短焦镜头组,采用该镜头组能够采集更大区域的指纹信息,并且短焦设计使得该镜头组能够更好的应用于纵向空间有限的电子设备上,增强了该镜头组的适用性。
图17是根据本申请实施例的指纹识别装置的示意性框图,如图17所示,该指纹识别装置1700包括镜头系统1710,该镜头系统1710可以包括一个镜头组,或者包括两个镜头组以进一步扩大指纹采集区域的面积。其中,每个镜头组例如可以为前述实施例中的镜头组30。
当该指纹识别装置1700中包括两个所述镜头组时,这两个镜头组沿径向并排设置,例如可以按照图18所示的方式设置,以进一步地扩大视场范围,以及降低镜头系统的总长度,从而降低装配时所占用的指纹识别装置1700的纵向空间。
本申请实施例中的指纹识别装置由于使用了上述的镜头组,并通过在指纹识别装置内设置两个并排的该镜头组,有效地解决了扩大指纹采集区域面积以及减小镜头系统长度之间的矛盾。使得镜头系统的总长度可以小于2.6mm,并且可以实现4×7mm的视场范围,即该指纹识别装置的指纹采集区域可以达到4×7mm,从而可以获取用户手指的更多的指纹信息,提高指纹检测的可靠性,并提升用户进行指纹检测时的体验。
可选地,该指纹识别装置1700可以包括光学指纹传感器1720例如图4中所示的DIE 403,其设置在该镜头系统1710的下方,用于接收经该镜头系统1710传输后的光信号,并对该光信号进行处理,以获取该光信号中包括的指纹信息。
可选地,该指纹识别装置1700可以包括一个光学指纹传感器,该光学 指纹传感器1720可以包括两个感应阵列,每个感应阵列对应一个镜头组,每个镜头组对应指纹采集区域中的一个子区域,每个镜头组用于将其对应的子区域内的光信号,引导至该镜头组下方相对应的感应阵列。或者,该指纹识别装置1700中可以包括两个光学指纹传感器,该两个光学指纹传感器分别对应于该两镜头组,其中,每个镜头组用于将该镜头组所对应的子区域内的光信号引导至其对应的光学指纹传感器,并被该光学指纹传感器上的感应阵列采集。
可选地,该指纹识别装置1700可以对应于图4所示的光学指纹识别装置400,该指纹识别装置1700还可以包括光学指纹识别装置400中的结构,例如IR滤光片301、支架407等,这里不作赘述。
应理解,图18仅仅是一个示意性的图示。在具体实现中,上述两个并排设置的镜头组可以设置在同一个显示屏下方,如图20所示,上述两个镜头组在所述显示屏的成像区域构成在显示屏的指纹采集区域,且两个成像区域可以具有一定的交叠区。另一方面,上述两个镜头组下方的光学指纹传感器(或称光学指纹传感器芯片、光学成像芯片、图像传感芯片等)可以分别对应设置有两个感应阵列,且此两个感应阵列上方覆盖有滤波片或者IR滤光片。基于上述结构,所述两个感应阵列的指纹采集范围可以分别对应于上述镜头组的两个成像区域,所述两个感应阵列分别检测到按压在所述显示屏的指纹采集区域的指纹图像的一部分(称为子图像),且所述交叠区采集到的图像可以用来进行对两个成像区域采集到的子图像进行拼接从而获取到较大面积的指纹图像。
应理解,本申请实施例仅以指纹识别装置包括一个或两个镜头组为例进行描述,但还可以包括更多的镜头组,这里不做限定。
本申请实施例还提供了一种电子设备,如图19所示,该电子设备1900包括指纹识别装置1910,该指纹识别装置1910可以为前述实施例中的指纹识别装置1700,或图4所示实施例中的光学指纹识别装置400。
可选地,该电子设备还可以包括屏幕组件1920,包括显示屏、泡棉和铜箔,设置于所述指纹识别装置1910中的镜头系统的上方;其中,所述镜头系统上方对应的所述泡棉和所述铜箔的区域开孔,以使包括指纹信息的光信号能够进入所述镜头系统。
作为示例而非限定,所述电子设备1900可以为终端设备、手机、平板 电脑、笔记本电脑、台式机电脑、车载电子设备或穿戴式智能设备等,该穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等设备。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围,本领域技术人员可以在上述实施例的基础上进行各种改进和变形,而这些改进或者变形均落在本申请的保护范围内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种镜头组,其特征在于,包括从物方到像方依次设置的第一镜头和第二镜头,其中:
    所述第一镜头包括负光焦度的第一透镜,所述第一透镜为物侧是凸面的S形弯月镜片,所述第一透镜的两个面中有至少一个面为非球面;
    所述第二镜头包括正光焦度的第二透镜,所述第二透镜为双凸面镜片,所述第二透镜的两个面中有至少一个面为非球面;
    其中,所述镜头组的参数满足第一关系,以使所述镜头组的视场角FOV大于第一阈值,以及使所述镜头组的长度小于第二阈值,
    其中,所述镜头组的参数包括以下中的至少两项:所述镜头组的焦距f、所述第一透镜的焦距f 1、所述第二透镜的焦距f 2、所述第一透镜的朝向物侧一面的曲率半径R1、所述第一透镜的朝向像侧一面的曲率半径R2、所述第二透镜的朝向物侧一面的曲率半径R3和所述第二透镜的朝向像侧一面的曲率半径R4。
  2. 根据权利要求1所述的镜头组,其特征在于,所述第一关系包括:2.5<f 1/R1<4和/或0.5<f 1/R2<2.0。
  3. 根据权利要求1或2所述的镜头组,其特征在于,所述第一关系还包括:0.2<f 2/R3<0.5和/或-2<f 2/R4<-1。
  4. 根据权利要求1至3中任一项所述的镜头组,其特征在于,所述第一关系还包括以下中的至少一种:-1<f/f 1<0、0<f/f 2<1、-8<f 1/f 2<-4。
  5. 根据权利要求1至4中任一项所述的镜头组,其特征在于,所述第一关系还包括以下中的至少一种:0.2<R1/R2<0.5、-1<R1/R3<-0.4、2<R1/R4<4、-3<R2/R3<-1、5<R2/R4<12、-8<R3/R4<-3。
  6. 根据权利要求1至5中任一项所述的镜头组,其特征在于,所述第一阈值为100度。
  7. 根据权利要求1至6中任一项所述的镜头组,其特征在于,所述第二阈值为2.6毫米。
  8. 根据权利要求1至7中任一项所述的镜头组,其特征在于,所述第一透镜沿光轴方向的厚度CT1与所述第二透镜沿光轴方向的厚度CT2之间满足:0.5<CT1/CT2<1.5。
  9. 根据权利要求1至8中任一项所述的镜头组,其特征在于,显示屏 的下表面到成像面的距离TTL与所述镜头组的焦距f之间满足:0.1<f/TTL<0.2。
  10. 根据权利要求1至9中任一项所述的镜头组,其特征在于,所述镜头组的成像面上的最大像高Y’、显示屏的下表面到成像面的距离TTL和所述镜头组的焦距f之间满足:0.45<Y’/(f*TTL)<0.6。
  11. 根据权利要求1至10中任一项所述的镜头组,其特征在于,所述第一透镜的材料的折射率n 1>1.54,所述第一透镜的材料的色散系数v 1>55.50。
  12. 根据权利要求1至11中任一项所述的镜头组,其特征在于,所述第二透镜的材料的折射率n 2>1.54,所述第二透镜的材料的色散系数v 2>55.98。
  13. 根据权利要求1至12中任一项所述的镜头组,其特征在于,所述镜头组还包括:
    光阑,设置于所述第一镜头和所述第二镜头之间。
  14. 根据权利要求1至13中任一项所述的镜头组,其特征在于,所述镜头组的TV畸变小于5%,和/或所述镜头组的相对照度大于30%,和/或所述镜头组的F数小于1.5。
  15. 一种指纹识别装置,其特征在于,包括镜头系统,所述镜头系统包括一个如权利要求1至14中任一项所述的镜头组,或者包括沿径向并排设置的两个所述镜头组。
  16. 根据权利要求15所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:
    光学指纹传感器,设置于所述镜头系统的下方,用于接收经所述镜头系统传输后的光信号,并对所述光信号进行处理,以获取所述光信号中携带的指纹信息。
  17. 根据权利要求15或16所述的指纹识别装置,其特征在于,所述光学指纹传感器的指纹采集区域的面积大于4mm×7mm。
  18. 根据权利要求15至17中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:支架;
    其中,所述镜头系统过盈装配于所述支架中。
  19. 一种电子设备,其特征在于,包括:如权利要求15至18中任一项 所述的指纹识别装置。
  20. 根据权利要求19所述的电子设备,其特征在于,所述电子设备还包括:
    屏幕组件,包括显示屏、泡棉和铜箔,设置于所述指纹识别装置中的镜头系统的上方;
    其中,所述镜头系统上方对应的所述泡棉和所述铜箔的区域开孔,以使包括指纹信息的光信号进入所述镜头系统。
PCT/CN2018/114580 2018-11-08 2018-11-08 镜头组、指纹识别装置和电子设备 WO2020093312A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/114580 WO2020093312A1 (zh) 2018-11-08 2018-11-08 镜头组、指纹识别装置和电子设备
CN202011308035.3A CN112230403B (zh) 2018-11-08 2018-11-08 镜头组、指纹识别装置和电子设备
CN201880002082.XA CN109564338B (zh) 2018-11-08 2018-11-08 镜头组、指纹识别装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/114580 WO2020093312A1 (zh) 2018-11-08 2018-11-08 镜头组、指纹识别装置和电子设备

Publications (1)

Publication Number Publication Date
WO2020093312A1 true WO2020093312A1 (zh) 2020-05-14

Family

ID=65872595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114580 WO2020093312A1 (zh) 2018-11-08 2018-11-08 镜头组、指纹识别装置和电子设备

Country Status (2)

Country Link
CN (2) CN109564338B (zh)
WO (1) WO2020093312A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI679449B (zh) 2018-12-03 2019-12-11 大立光電股份有限公司 光學取像透鏡組、取像裝置及電子裝置
CN110175536B (zh) * 2019-05-09 2021-05-07 维沃移动通信有限公司 一种指纹传感器、指纹模组及终端设备
CN113777754B (zh) * 2021-09-13 2023-01-20 迪克创新科技有限公司 镜头系统、光学指纹识别装置和终端设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147830A (ja) * 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd 超広角レンズおよびそれを搭載した認識デバイス
US20120105705A1 (en) * 2010-10-29 2012-05-03 Yoji Kubota Imaging device
CN102663381A (zh) * 2012-04-06 2012-09-12 天津理工大学 一种低畸变单指指纹采集系统及降低梯形畸变的方法
CN108596136A (zh) * 2018-05-02 2018-09-28 苏州大学 指纹及静脉双重生物特征提取光学成像系统
CN108710869A (zh) * 2018-07-25 2018-10-26 中山联合光电科技股份有限公司 一种手机屏幕下的指纹识别成像系统
CN109196519A (zh) * 2018-08-21 2019-01-11 深圳市汇顶科技股份有限公司 镜头系统、指纹识别装置和终端设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2900648B2 (ja) * 1991-08-07 1999-06-02 セイコーエプソン株式会社 超解像光学素子及び光メモリ装置
US6464375B2 (en) * 1998-03-12 2002-10-15 Matsushita Electric Industrial Co., Ltd. Lens element and illumination optical apparatus and projection display apparatus
JP3478265B2 (ja) * 2000-06-12 2003-12-15 ミノルタ株式会社 撮像レンズ装置
TW459160B (en) * 2000-08-01 2001-10-11 Taiwan Nissin Koki Co Ltd Super wide angle camera lens
TW508450B (en) * 2000-12-26 2002-11-01 Matsushita Electric Works Ltd Wide-angle lens
US6577456B2 (en) * 2001-03-29 2003-06-10 Fuji Photo Optical Co., Ltd. Single focus lens
JP5067863B2 (ja) * 2007-11-28 2012-11-07 キヤノン株式会社 光学系及びそれを有する光学機器
CN102486825A (zh) * 2010-12-06 2012-06-06 一品国际科技股份有限公司 指纹影像撷取装置
KR101503982B1 (ko) * 2012-12-21 2015-03-18 삼성전기주식회사 렌즈 모듈
JP6149411B2 (ja) * 2013-02-01 2017-06-21 コニカミノルタ株式会社 遠赤外線用結像光学系,撮像光学装置及びデジタル機器
US9225888B2 (en) * 2013-11-19 2015-12-29 Largan Precision Co., Ltd. Image capturing array system and fingerprint identification device
WO2016027783A1 (ja) * 2014-08-20 2016-02-25 コニカミノルタ株式会社 遠赤外線レンズ,撮像光学装置及びデジタル機器
WO2016205832A1 (en) * 2015-06-18 2016-12-22 Shenzhen Huiding Technology Co., Ltd. Multifunction fingerprint sensor having optical sensing capability
JP6670565B2 (ja) * 2015-07-31 2020-03-25 ソニーセミコンダクタソリューションズ株式会社 積層レンズ構造体の製造方法及び型
CN205486177U (zh) * 2016-03-25 2016-08-17 北京天诚盛业科技有限公司 一种指纹采集装置
CN107590425A (zh) * 2016-07-08 2018-01-16 北京日立北工大信息系統有限公司 静脉认证装置及其静脉认证方法
CN107728295B (zh) * 2017-11-21 2023-12-08 浙江舜宇光学有限公司 投影镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147830A (ja) * 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd 超広角レンズおよびそれを搭載した認識デバイス
US20120105705A1 (en) * 2010-10-29 2012-05-03 Yoji Kubota Imaging device
CN102663381A (zh) * 2012-04-06 2012-09-12 天津理工大学 一种低畸变单指指纹采集系统及降低梯形畸变的方法
CN108596136A (zh) * 2018-05-02 2018-09-28 苏州大学 指纹及静脉双重生物特征提取光学成像系统
CN108710869A (zh) * 2018-07-25 2018-10-26 中山联合光电科技股份有限公司 一种手机屏幕下的指纹识别成像系统
CN109196519A (zh) * 2018-08-21 2019-01-11 深圳市汇顶科技股份有限公司 镜头系统、指纹识别装置和终端设备

Also Published As

Publication number Publication date
CN109564338B (zh) 2020-12-11
CN112230403B (zh) 2022-09-30
CN112230403A (zh) 2021-01-15
CN109564338A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
CN109196521B (zh) 镜头系统、指纹识别装置和终端设备
WO2020082380A1 (zh) 指纹识别装置和电子设备
WO2020132974A1 (zh) 指纹识别装置和电子设备
WO2020082369A1 (zh) 屏下生物特征识别装置和电子设备
WO2020102949A1 (zh) 指纹识别装置和电子设备
CN111931659B (zh) 镜头系统、指纹识别装置和终端设备
TWI704386B (zh) 取像裝置
WO2020215187A1 (zh) 指纹识别的装置和电子设备
WO2020252752A1 (zh) 镜头、指纹识别装置和电子设备
CN210038312U (zh) 镜头系统、指纹识别装置和终端设备
WO2020093312A1 (zh) 镜头组、指纹识别装置和电子设备
CN210142333U (zh) 指纹识别的装置和电子设备
WO2022068129A1 (zh) 感测手指生物特征的光学感测装置及使用其的电子装置
WO2020243936A1 (zh) 屏下生物特征识别装置和电子设备
US20200049955A1 (en) Image capturing apparatus
CN208953768U (zh) 镜头组、指纹识别装置和电子设备
CN112799212A (zh) 镜头系统、光学感测装置和电子设备
WO2021147020A1 (zh) 指纹识别装置和电子设备
CN210864761U (zh) 光学式指纹感测装置和电子设备
CN214067796U (zh) 镜头系统、光学感测装置和电子设备
WO2023035277A1 (zh) 镜头系统、光学指纹识别装置和终端设备
CN113777754B (zh) 镜头系统、光学指纹识别装置和终端设备
CN210038308U (zh) 镜头、指纹识别装置和电子设备
CN111104864A (zh) 光学式指纹感测装置和电子设备
CN111106138A (zh) 光学式感测装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939162

Country of ref document: EP

Kind code of ref document: A1