WO2020252752A1 - 镜头、指纹识别装置和电子设备 - Google Patents

镜头、指纹识别装置和电子设备 Download PDF

Info

Publication number
WO2020252752A1
WO2020252752A1 PCT/CN2019/092133 CN2019092133W WO2020252752A1 WO 2020252752 A1 WO2020252752 A1 WO 2020252752A1 CN 2019092133 W CN2019092133 W CN 2019092133W WO 2020252752 A1 WO2020252752 A1 WO 2020252752A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
curvature
radius
fingerprint
focal length
Prior art date
Application number
PCT/CN2019/092133
Other languages
English (en)
French (fr)
Inventor
葛丛
蔡斐欣
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2019/092133 priority Critical patent/WO2020252752A1/zh
Priority to CN201980004327.7A priority patent/CN111213080B/zh
Publication of WO2020252752A1 publication Critical patent/WO2020252752A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing

Definitions

  • the embodiments of the present application relate to the field of optical imaging, and more specifically, to lenses, fingerprint identification devices, and electronic equipment.
  • a typical under-screen optical fingerprint technology is an under-screen optical fingerprint technology based on the principle of optical collimation.
  • the optical collimation unit is a deep hole unit distributed periodically The ratio of the hole diameter to the depth of the deep hole unit is the aspect ratio.
  • the resolution of the optical fingerprint module is determined by the period and aspect ratio of the light collimation unit. If the size of the optical fingerprint module is limited, the fingerprint The resolution of recognition is low, which affects the accuracy and security of fingerprint recognition.
  • the present application provides a lens, fingerprint identification device and electronic equipment, which can realize the collection of a large range of fingerprint information when the size of the fingerprint module is limited, and can improve the resolution of fingerprint recognition, thereby improving the fingerprint Accuracy and safety of recognition.
  • a lens comprising: a first lens, a second lens, a diaphragm, a third lens, and a fourth lens arranged in order from the object side to the image side, wherein:
  • the first lens is a negative power lens, the paraxial area on the image side surface of the first lens is concave, and at least one of the object side surface and the image side surface of the first lens is aspherical ;
  • the second lens is a positive power lens, the paraxial area on the object side surface of the second lens is convex, the paraxial area on the image side surface is concave, and the object side surface of the second lens is At least one of the image side surfaces is aspherical;
  • the third lens is a positive power lens, the paraxial area on the object side surface of the third lens is convex, the paraxial area on the image side surface is convex, and the object side surface of the third lens is At least one of the image side surfaces is aspherical;
  • the fourth lens is a positive power lens, the paraxial area on the object side surface of the fourth lens is convex, and at least one of the object side surface and the image side surface of the fourth lens is aspherical.
  • the maximum image height Y'on the imaging surface of the lens, the overall focal length f of the lens, and the distance TTL from the object plane to the imaging surface satisfy the following relationship: 0.45 ⁇
  • the distribution of the refractive power of the lenses in the lens satisfies at least one of the following relationships: -0.47 ⁇ f 1 /f 2 ⁇ -0.11, 2.4 ⁇ f 2 /f 3 ⁇ 3.7 , 0.19 ⁇ f 3 /f 4 ⁇ 3.7, -8.35 ⁇ f 2 /f 12 ⁇ -0.21, 0.27 ⁇ f 3 /f 23 ⁇ 0.5, 0.27 ⁇ f 4 /f 34 ⁇ 5.3, -1.9 ⁇ f 12 /f ⁇ -1.7, 3.8 ⁇ f 23 /f ⁇ 16, 1.5 ⁇ f 34 /f ⁇ 5.6,
  • f 1 is the focal length of the first lens
  • f 2 is the focal length of the second lens
  • f 3 is the focal length of the third lens
  • f 4 is the focal length of the fourth lens
  • f 12 is the focal length of the fourth lens.
  • f 23 is the combined focal length of the second lens and the third lens
  • f 34 is the combined focal length of the third lens and the fourth lens
  • f is the overall focal length of the lens.
  • the lens of the embodiment of the present application adopts four lenses with at least one aspherical surface.
  • the resolution of optical fingerprint recognition can be improved, which meets the increasingly tight size restrictions of electronic devices and the impact of fingerprint recognition.
  • the demand for the field of view has improved the accuracy and recognition speed of optical fingerprint recognition.
  • the focal length of the lens in the lens and the radius of curvature of the lens satisfy at least one of the following relationships: -1 ⁇ f 1 /R 1 ⁇ 0.15, -3.2 ⁇ f 1 /R 2 ⁇ -1.6, 2.5 ⁇ f 2 /R 3 ⁇ 6.7, 0.79 ⁇ f 2 /R 4 ⁇ 5.2, 0.4 ⁇ f 3 /R 5 ⁇ 1.8, -1.6 ⁇ f 3 /R 6 ⁇ 0,
  • f 1 is the focal length of the first lens
  • f 2 is the focal length of the second lens
  • f 3 is the focal length of the third lens
  • f 4 is the focal length of the fourth lens
  • R 1 is the focal length of the fourth lens.
  • R 2 is the radius of curvature of the image side of the first lens
  • R 3 is the radius of curvature of the object side of the second lens
  • R 4 is the radius of curvature of the second lens.
  • the radius of curvature of the image side R 5 is the radius of curvature of the object side of the third lens
  • R 6 is the radius of curvature of the image side of the third lens.
  • the center thickness of the lens in the lens satisfies at least one of the following relationships: 1.0 ⁇ CT 1 /CT 2 ⁇ 1.1, 0.4 ⁇ CT 2 /CT 3 ⁇ 0.5, 1.8 ⁇ CT 3 /CT 4 ⁇ 2.1,
  • CT 1 is the central thickness of the first lens
  • CT 2 is the central thickness of the second lens
  • CT 3 is the central thickness of the third lens
  • CT 4 is the central thickness of the fourth lens.
  • the radius of curvature of the object side and the image side of the lens in the lens satisfies at least one of the following relationships: -15 ⁇ R 1 /R 2 ⁇ 69, 0.3 ⁇ R 3 / R 4 ⁇ 0.8, -3.5 ⁇ R 5 /R 6 ⁇ 0, -0.2 ⁇ R 7 /R 8 ⁇ 0.6,
  • R 1 is the radius of curvature of the object side of the first lens
  • R 2 is the radius of curvature of the image side of the first lens
  • R 3 is the radius of curvature of the second lens on the object side
  • R 4 is The radius of curvature of the image side of the second lens
  • R 5 is the radius of curvature of the object side of the third lens
  • R 6 is the radius of curvature of the image side of the third lens
  • R 7 is the fourth lens The radius of curvature of the object side
  • R 8 is the radius of curvature of the image side of the fourth lens.
  • the refractive index of the lens in the lens satisfies at least one of the following relationships:
  • n 1 >1.50, n 2 >1.50, n 3 >1.50, n 4 >1.50,
  • n 1 is the refractive index of the first lens
  • n 2 is the refractive index of the second lens
  • n 3 is the refractive index of the third lens
  • n 4 is the refractive index of the fourth lens.
  • the dispersion coefficient of the lens in the lens satisfies at least one of the following relationships:
  • v 1 >53.0, v 2 >53.0, v 3 >53.0, v 4 >53.0,
  • v 1 is the dispersion coefficient of the first lens
  • v 2 is the dispersion coefficient of the second lens
  • v 3 is the dispersion coefficient of the third lens
  • v 4 is the dispersion coefficient of the fourth lens.
  • the distortion of the lens is less than 5%
  • the FOV of the lens is greater than 100 degrees
  • the F number of the lens is less than 2.
  • the lens is used to be arranged below the display screen of the electronic device, and the lens is used to transmit light signals from a human finger above the display screen to the image sensor below the lens.
  • the optical signal is used to obtain fingerprint information of the human finger.
  • a fingerprint identification device including:
  • the image sensor is arranged under the lens, and is used to receive the optical signal transmitted through the lens, and the optical signal is used to obtain fingerprint information of a human finger.
  • the fingerprint identification device further includes:
  • the bracket is used to fix the lens.
  • the lens is interference-fitted in the bracket.
  • the fingerprint identification device further includes:
  • the infrared filter is arranged above the image sensor and is used to filter the infrared light entering the image sensor.
  • the fingerprint identification device further includes:
  • the flexible circuit board is used to transmit the electrical signal including fingerprint information output by the image sensor to the processing unit of the electronic device.
  • the flexible circuit board is disposed under the image sensor.
  • the fingerprint identification device further includes:
  • the reinforcing plate is arranged under the flexible circuit board.
  • an electronic device including:
  • the fingerprint identification device in the second aspect or any possible implementation of the second aspect wherein the fingerprint identification device is arranged under the display screen.
  • the electronic device further includes:
  • the foam is arranged on the lower surface of the display screen and above the lens in the fingerprint identification device;
  • the copper foil is arranged on the lower surface of the foam and above the lens in the fingerprint identification device;
  • the area corresponding to the foam and the copper foil above the lens is opened to allow the optical signal including fingerprint information to enter the lens.
  • the electronic device further includes:
  • the middle frame is arranged under the copper foil and used to support the display screen.
  • the display screen is an OLED display screen
  • the image sensor uses a part of the display unit of the OLED display screen as an excitation light source for optical fingerprint detection.
  • Fig. 1A is a schematic plan view of an electronic device to which the present application can be applied.
  • Fig. 1B is a schematic partial cross-sectional view of the electronic device shown in Fig. 1A along A'-A'.
  • Fig. 2 is a schematic structural diagram of a lens according to an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of an optical fingerprint recognition module according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a layout of a lens according to the first embodiment of the present application.
  • FIG. 5 is a curve of astigmatism and distortion of the lens according to the first embodiment shown in FIG. 4.
  • FIG. 6 is a curve of imaging quality of the lens according to the first embodiment shown in FIG. 4.
  • Fig. 7 is a schematic diagram of a layout of a lens according to a second embodiment of the present application.
  • FIG. 8 is a curve of astigmatism and distortion of the lens according to the second embodiment shown in FIG. 7.
  • FIG. 9 is a curve of imaging quality of the lens according to the second embodiment shown in FIG. 7.
  • Fig. 10 is a schematic diagram of a layout of a lens according to the third embodiment of the present application.
  • FIG. 11 is a curve of astigmatism and distortion of the lens according to the third embodiment shown in FIG. 10.
  • FIG. 12 is a curve of imaging quality of the lens according to the third embodiment shown in FIG. 10.
  • FIG. 13 is a schematic diagram of a layout of a lens according to the fourth embodiment of the present application.
  • FIG. 14 is a curve of astigmatism and distortion of the lens according to the fourth embodiment shown in FIG. 13.
  • FIG. 15 is a curve of imaging quality of the lens according to the fourth embodiment shown in FIG. 13.
  • Fig. 16 is a schematic structural diagram of a fingerprint identification device according to an embodiment of the present application.
  • the fingerprint identification device provided in the embodiments of this application can be applied to smart phones, tablet computers, and other mobile terminals with display screens or other terminal equipment; more specifically, in the above-mentioned terminal equipment, fingerprint identification
  • the device may specifically be an optical fingerprint device, which may be arranged in a partial area or an entire area under the display screen, thereby forming an under-display optical fingerprint system.
  • FIG. 1A and 1B show schematic diagrams of electronic devices to which the embodiments of the present application can be applied, wherein FIG. 1A is a schematic diagram of the orientation of the electronic device 10, and FIG. 1B is a part of the electronic device 10 shown in FIG. Schematic diagram of cross-sectional structure.
  • the electronic device 10 includes a display screen 120 and an optical fingerprint device 130, wherein the optical fingerprint device 130 is disposed in a partial area below the display screen 120, for example, the middle area of the display screen.
  • the optical fingerprint device 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array with a plurality of optical sensing units, and the area where the sensing array is located or the sensing area thereof is the fingerprint detection area 103 of the optical fingerprint device 130.
  • the fingerprint detection area 103 is located in the display area of the display screen 120.
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint device 130, for example, through optical path design such as lens imaging, reflective folding optical path design, or other optical path design such as light convergence or reflection, etc.
  • the area of the fingerprint detection area 103 of the optical fingerprint device 130 can be made larger than the area of the sensing array of the optical fingerprint device 130. Therefore, when the user needs to unlock the electronic device or perform other fingerprint verification, he only needs to press his finger on the fingerprint detection area 103 located in the display screen 120 to realize fingerprint input.
  • the electronic device 10 adopting the above structure does not need to reserve space on the front side for setting fingerprint buttons (such as the Home button), so that a full screen solution can be adopted, that is, the display area of the display screen 120 It can be basically extended to the front of the entire electronic device 10.
  • the optical fingerprint device 130 includes a light detecting part 134 and an optical component 132, and the light detecting part 134 includes the sensor array and is electrically connected to the sensor array.
  • the connected reading circuit and other auxiliary circuits can be fabricated on a chip (Die) by a semiconductor process, such as an optical imaging chip or an optical fingerprint sensor.
  • the sensing array is specifically a photodetector (Photodetector) array, which includes A plurality of photodetectors distributed in an array, the photodetector can be used as the optical sensing unit as described above; the optical component 132 can be arranged above the sensing array of the photodetecting part 134, which can specifically include A filter, a light guide layer or a light path guide structure and other optical elements.
  • the filter layer can be used to filter out ambient light penetrating the finger, for example, infrared light that interferes with imaging, and the light guide layer Or the optical path guiding structure is mainly used to guide the reflected light reflected from the finger surface to the sensing array for optical detection.
  • the optical assembly 132 and the light detecting part 134 may be packaged in the same optical fingerprint component.
  • the optical component 132 and the optical detection part 134 can be packaged in the same optical fingerprint chip, or the optical component 132 can be arranged outside the chip where the optical detection part 134 is located, for example, the optical component 132 is attached above the chip, or some components of the optical assembly 132 are integrated into the chip.
  • the light guide layer or light path guiding structure of the optical component 132 has multiple implementation solutions.
  • the light guide layer or light path guiding structure may also be an optical lens (Lens) layer, which has one or more lens units.
  • a lens group composed of one or more aspheric lenses is used to converge the reflected light reflected from the finger to the sensing array of the light detection part 134 below it, so that the sensing array can be based on the reflected light Perform imaging to obtain a fingerprint image of the finger.
  • the optical lens layer may further have a pinhole formed in the optical path of the lens unit, and the pinhole may cooperate with the optical lens layer to expand the field of view of the optical fingerprint device to improve the optical The fingerprint imaging effect of the fingerprint device 130.
  • optical lens (Lens) layer can be used alone or in combination with other implementations.
  • a microlens layer can be further provided under the optical lens layer.
  • the optical lens layer is used in combination with the micro lens layer, the specific laminated structure or optical path may need to be adjusted according to actual needs.
  • the display screen 120 may be a display screen with a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display or a micro-LED (Micro-LED) display Screen.
  • OLED Organic Light-Emitting Diode
  • the optical fingerprint device 130 may use the display unit (ie, an OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
  • the display screen 120 emits a beam of light to the target finger above the fingerprint detection area 103. The light is reflected on the surface of the finger to form reflected light or is scattered inside the finger.
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Because the ridge and valley of the fingerprint have different light reflection capabilities, the reflected light from the fingerprint ridge and the emitted light from the fingerprint ridge have different light intensities. After the reflected light passes through the optical components, it is optically fingerprinted.
  • the sensing array in the device 130 receives and converts into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, thereby implementing the electronic device 10 Optical fingerprint recognition function.
  • the optical fingerprint device 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint device 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint device 130 may be suitable for non-self-luminous display screens, such as liquid crystal display screens or other passively-luminous display screens.
  • the optical fingerprint system of the electronic device 10 may also include an excitation light source for optical fingerprint detection.
  • the excitation light source may specifically be an infrared light source or a light source of non-visible light of a specific wavelength, which may be arranged under the backlight module of the liquid crystal display or in the edge area under the protective cover of the electronic device 10, and the The optical fingerprint device 130 can be arranged under the edge area of the liquid crystal panel or the protective cover and guided by the light path so that the fingerprint detection light can reach the optical fingerprint device 130; or, the optical fingerprint device 130 can also be arranged in the backlight module. Under the group, and the backlight module is designed to allow the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the optical fingerprint device 130 through openings or other optical designs on the film layers such as diffuser, brightness enhancement film, and reflective film. .
  • the optical fingerprint device 130 adopts a built-in light source or an external light source to provide an optical signal for fingerprint detection, the detection principle is the same as that described above.
  • the electronic device 10 further includes a transparent protective cover, which is located above the display screen 120 and covers the front surface of the electronic device 10. Because, in the embodiment of the present application, the so-called finger pressing on the display screen 120 actually refers to pressing on the cover plate above the display screen 120 or covering the surface of the protective layer of the cover plate.
  • the optical fingerprint device 130 may include only one optical fingerprint sensor.
  • the fingerprint detection area 103 of the optical fingerprint device 130 has a small area and a fixed position, so the user is performing fingerprint input At this time, it is necessary to press the finger to a specific position of the fingerprint detection area 103, otherwise the optical fingerprint device 130 may not be able to collect fingerprint images, resulting in poor user experience.
  • the optical fingerprint device 130 may specifically include multiple optical fingerprint sensors; the multiple optical fingerprint sensors may be arranged side by side in the middle area of the display screen 120 by splicing, and the multiple The sensing area of the optical fingerprint sensor together constitutes the fingerprint detection area 103 of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint collection area 103 of the optical fingerprint device 130 can be It extends to the main area of the middle part of the display screen, that is, extends to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
  • the fingerprint detection area 130 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • the optical fingerprint device 130 may further include a circuit board for transmitting signals (such as the fingerprint detection signal).
  • the circuit board may be a flexible printed circuit board (Flexible Printed Circuit Board). Circuit, FPC).
  • the optical fingerprint sensor can be connected to the FPC, and through the FPC, electrical interconnection and signal transmission with other peripheral circuits or other elements in the electronic device are realized.
  • the optical fingerprint sensor may receive the control signal of the processing unit of the electronic device through the FPC, and may also output a fingerprint detection signal (for example, a fingerprint image) to the processing unit of the electronic device through the FPC or Control unit, etc.
  • the sensing array in the optical fingerprint device may also be called an image sensor (Sensor), or a photoelectric sensor, which can be processed into a DIE through a semiconductor process.
  • an image sensor Sensor
  • a photoelectric sensor which can be processed into a DIE through a semiconductor process.
  • FOV Field Of View
  • the F number is used to characterize the amount of light entering the sensing array of the optical fingerprint device through the lens. The smaller the F number, the more light entering the lens, which is beneficial to the detection of weak fingerprint light signals.
  • TV distortion is used to measure the degree of visual distortion of the image. The smaller the TV distortion, the better the imaging effect.
  • This embodiment of the application provides a lens that can be used in a fingerprint recognition device.
  • the field of view (FOV) of the lens is greater than 100°, which can meet the increasing demands of electronic devices.
  • the tight size limitation and the requirement of fingerprint recognition for the field of view effectively improve the accuracy and recognition speed of optical fingerprint recognition.
  • Fig. 2 is a schematic structural diagram of a lens according to an embodiment of the present application.
  • the lens 40 includes: a first lens 401, a second lens 402, a diaphragm, and a Three lens 403 and fourth lens 404, of which:
  • the first lens 401 is a negative power lens, the paraxial area on the image side surface of the first lens is concave, and at least one of the object side surface and the image side surface of the first lens is non- Spherical
  • the second lens 402 is a positive power lens, the paraxial area on the object side surface of the second lens is convex, the paraxial area on the image side surface is concave, and the object side surface of the second lens At least one of the surface and the image side surface is aspherical;
  • the third lens 403 is a positive power lens, the paraxial area on the object side surface of the third lens is convex, the paraxial area on the image side surface is convex, and the object side surface of the third lens At least one of the surface and the image side surface is aspherical;
  • the fourth lens 404 is a positive power lens, the paraxial area on the object side surface of the fourth lens is convex, and at least one of the object side surface and the image side surface of the fourth lens is aspherical .
  • the lens 40 of the embodiment of the present application can be used in various scenarios, corresponding to different application scenarios, and the object side and the image side are also different.
  • the lens 40 can be set in an electronic device with fingerprint recognition function.
  • the electronic device can include a fingerprint recognition device, and the fingerprint recognition device includes the lens 40.
  • the object side can be the electronic device.
  • the surface of the display screen, the upper surface of the display screen is used to provide a touch interface for finger touch operations, the display screen can also be used to emit light to illuminate the finger and reflect or refract, thereby generating return light; and the electronic device
  • the image side of can refer to the image sensor in the fingerprint identification device, which can be used to receive return light, which is used to generate fingerprint data, and the fingerprint data can be used for fingerprint identification, but the embodiment of the present application is not limited to this.
  • the object side surface of the lens is the surface of the lens close to the object side
  • the image side surface of the lens is the surface of the lens close to the image side
  • paraxial area refers to the area near the optical axis of each lens.
  • the paraxial area of each lens meets the above requirements, but for non-paraxial areas, for example, the edge area of each lens can be of any shape. For example, it may be a regular or irregular concave or convex surface, and FIG. 2 only shows any one of them, and the embodiment of the present application is not limited thereto.
  • the first lens may be a concave lens, or may also be a group of lenses, as long as the combined refractive power of the group of lenses is negative.
  • the first lens The second lens can also be a convex lens, or it can be a group of lenses, as long as the combined refractive power of the group of lenses is positive, similarly, the same is true for the third lens and the fourth lens, here Do not repeat it.
  • the diaphragm or the aperture can be used to adjust the amount of light or the size of the imaging range.
  • the useful light signal with fingerprint information can be imaged to the greatest extent.
  • the surface of the image sensor simultaneously blocks interference light signals outside the imaging range to the greatest extent, so that the image sensor can obtain more useful light signals, thereby improving the resolution of fingerprint recognition.
  • the image side surface of the first lens has a meniscus shape.
  • the first lens, the second lens, the third lens, and the fourth lens may be made of resin materials or other light-transmitting materials. Not limited.
  • the FOV of the lens can be greater than a first threshold, for example, greater than 100°.
  • the optical parameters of the lens can be Include at least one of the following:
  • the overall focal length f of the lens The overall focal length f of the lens, the maximum image height Y'on the imaging surface of the lens, the distance from the object surface to the imaging surface TTL, the focal length of a single lens in the lens, and the distance between the lenses in the lens
  • the combined focal length of the lens, the radius of curvature of the lens in the lens, the center thickness of the lens in the lens, the effective diameter of the lens in the lens, the cone system of the lens in the lens, the lens in the lens The refractive index, the dispersion coefficient of the lens in the lens.
  • the maximum image height Y'on the imaging surface of the lens, the overall focal length f of the lens, and the distance TTL from the object surface to the imaging surface satisfy the first relationship, so that The FOV of the lens is greater than the first threshold.
  • the first relationship may be 0.45 ⁇
  • the size of TTL determines the size of the focal length of the lens, or the size of the lens.
  • the embodiment of the present application controls the Y', f and TTL to satisfy the above relationship, which can maximize the use of the sensing of the optical fingerprint sensor.
  • the area collects fingerprint information in the largest area to improve imaging resolution.
  • adopting the above setting method can make the lens have a larger FOV and a shorter focal length, so that the lens can be better applied to electronic devices that require size. .
  • the lens may be applied under the display screen of the electronic device to realize under-screen optical fingerprint recognition.
  • the TTL may be from the lower surface of the display screen to the imaging surface.
  • the imaging surface here may be the sensing surface of an image sensor, and the image sensor may correspond to the light detecting part 134 in FIG. 1B.
  • the optical power distribution of the first lens, the second lens, the third lens, and the fourth lens is set to reduce the depth of field of the lens, which is relative to the reduction of the lens. Thickness improves the image quality in a specific area (for example, fingerprint detection area).
  • the distribution of the refractive power of the lenses in the lens satisfies at least one of the following relationships:
  • f 1 is the focal length of the first lens
  • f 2 is the focal length of the second lens
  • f 3 is the focal length of the third lens
  • f 4 is the focal length of the fourth lens
  • f 12 is the focal length of the fourth lens.
  • f 23 is the combined focal length of the second lens and the third lens
  • f 34 is the combined focal length of the third lens and the fourth lens
  • f is the overall focal length of the lens.
  • the optical power distribution of the lens in the lens can be set to satisfy a certain relationship, so as to ensure the imaging quality of the lens on a specific area (for example, the fingerprint detection area on the display screen), and Reducing the overall thickness of the lens is conducive to meeting the needs of electronic devices that require size.
  • the FOV of the lens is greater than the first threshold.
  • the focal length of the lens in the lens and the radius of curvature of the lens satisfy at least one of the following relationships:
  • f 1 is the focal length of the first lens
  • f 2 is the focal length of the second lens
  • f 3 is the focal length of the third lens
  • f 4 is the focal length of the fourth lens
  • R 1 is the focal length of the fourth lens.
  • R 2 is the radius of curvature of the image side of the first lens
  • R 3 is the radius of curvature of the object side of the second lens
  • R 4 is the radius of curvature of the second lens.
  • the radius of curvature of the image side R 5 is the radius of curvature of the object side of the third lens
  • R 6 is the radius of curvature of the image side of the third lens.
  • the radius of curvature of any surface described in the embodiments of this application refers to the radius of curvature of the paraxial region on the corresponding surface.
  • the radius of curvature of the image side may be the radius of curvature of the paraxial region on the image side surface.
  • the radius of curvature may be the average radius of curvature of the paraxial region, or the radius of curvature of the paraxial region determined by other means, and the embodiment of the present application is not limited thereto.
  • the focal length of the second lens and the radius of curvature of the two surfaces of the second lens can satisfy 2.5 ⁇ f 2 /R 3 ⁇ 6.7, 0.79 ⁇ f 2 /R 4 ⁇ 5.2, the image of the lens can be reduced. Poor, and can effectively improve the imaging quality of the lens.
  • the imaging surface can be increased Image height Y'and can effectively improve the image quality of the lens.
  • the sensitivity of the lens to size can be reduced, thereby improving the yield of the product .
  • the radii of curvature of the object side and the image side of the lens in the lens satisfy at least one of the following relationships:
  • R 1 is the radius of curvature of the object side of the first lens
  • R 2 is the radius of curvature of the image side of the first lens
  • R 3 is the radius of curvature of the second lens on the object side
  • R 4 is The radius of curvature of the image side of the second lens
  • R 5 is the radius of curvature of the object side of the third lens
  • R 6 is the radius of curvature of the image side of the third lens
  • R 7 is the fourth lens The radius of curvature of the object side
  • R 8 is the radius of curvature of the image side of the fourth lens.
  • the reliability of the lens can be improved, thereby increasing the service life of the lens.
  • the center thickness of the lens in the lens satisfies at least one of the following relationships:
  • CT 1 is the central thickness of the first lens
  • CT 2 is the central thickness of the second lens
  • CT 3 is the central thickness of the third lens
  • CT 4 is the central thickness of the fourth lens.
  • the lens can be made stronger, thereby improving the reliability of the fingerprint identification device using the lens.
  • the dispersion can be reduced, the aberration balance can be achieved, and the production cost can be reduced.
  • the refractive index of the lens in the lens satisfies at least one of the following relationships:
  • n 1 >1.50, n 2 >1.50, n 3 >1.50, n 4 >1.50,
  • n 1 is the refractive index of the first lens
  • n 2 is the refractive index of the second lens
  • n 3 is the refractive index of the third lens
  • n 4 is the refractive index of the fourth lens.
  • the dispersion coefficient of the lens in the lens satisfies at least one of the following relationships:
  • v 1 >53.0, v 2 >53.0, v 3 >53.0, v 4 >53.0,
  • v 1 is the dispersion coefficient of the first lens
  • v 2 is the dispersion coefficient of the second lens
  • v 3 is the dispersion coefficient of the third lens
  • v 4 is the dispersion coefficient of the fourth lens.
  • the lens of the embodiment of the present application adopts 4 aspherical lenses.
  • the resolution of optical fingerprint recognition can be improved, which is beneficial to meet the increasingly tight size restrictions of electronic devices and the impact of fingerprint recognition on the field of view.
  • the demand for optical fingerprint recognition has improved the accuracy and recognition speed of optical fingerprint recognition.
  • the performance of the lens can be further improved.
  • the FOV of the lens can be made to meet FOV>100°, so as to achieve a larger fingerprint recognition area under the limitation of a small module size;
  • the F-number of the lens can be less than 2.0 to detect weak fingerprint signals and shorten the exposure time;
  • the TV distortion of the lens is controlled within 5% to avoid the influence of moiré fringes caused by the imaging of the OLED module circuit structure.
  • the lens of the embodiment of the application is a wide-angle short-focus lens.
  • the wide-angle design enables the lens to collect fingerprint information in a larger area, and the short-focus design enables the lens to occupy less space, thereby
  • the lens can not only achieve better fingerprint recognition performance, but also meet the size requirements of electronic devices, which enhances the applicability of the lens.
  • the lens of the embodiment of the present application can be applied to a fingerprint identification device, and the lens can cooperate with the image sensor in the fingerprint identification device to realize the imaging of fingerprint information in a larger area in a limited space; or The lens can also be applied to other equipment or devices that require high optical imaging performance, which is not limited in the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a fingerprint identification device using the lens of the embodiment of the present application.
  • the fingerprint recognition device 200 may include: an infrared filter (Infrared Filter, IR Filter) 201, an IR filter bonding glue 202, a chip (DIE) 203, a DIE bonding glue 204, and a flexible circuit A board (Flexible Printed Circuit, FPC) 205, a reinforcing board 206, a bracket 207, and a lens 209.
  • the lens 209 may correspond to the lens 40 in FIG. 2, and the arrangement of each lens in the lens 209 can refer to the related description of the embodiment in FIG. 2, and details are not repeated here.
  • IR Filter 201 is used to filter infrared light to reduce the influence of infrared light fingerprint imaging.
  • the IR filter bonding glue 202 is used to fix the IR filter 201 on the DIE 203.
  • the IR Filter 201 may also be arranged above the lens 209, or it may be directly vapor-deposited or sputtered on the surface of the DIE 203, as long as it is arranged from the lower surface of the display to The light path between the DIE203 is sufficient, which is not limited in the embodiment of the present application.
  • DIE 203 corresponding to the light detection part 134 in Fig. 1B, is used to convert optical signals into electrical signals. It can cooperate with the lens 209 to convert the optical signals transmitted through the lens 209 into electrical signals, and then transmit to The processing unit or the control unit in the electronic device, so that the processing unit or the control unit in the electronic device can further process the electrical signal, for example, perform fingerprint recognition.
  • the DIE glue 204 is used to fix the DIE 203 and the Flexible Printed Circuit (FPC) 205.
  • the DIE 203 can be fixed on the upper surface of the FPC 205 through the DIE glue 204.
  • the FPC 205 may also be arranged on the outside of the DIE 203. In this case, the DIE lamination glue 204 may not be needed.
  • the embodiment of the application does not deal with the connection between the DIE 203 and the FPC 205. Specific restrictions.
  • the FPC205 is used to electrically connect the DIE 203 and the circuit in the electronic device installed in the fingerprint identification device.
  • the DIE 203 transmits the electrical signal including fingerprint information to the processing unit or control unit in the electronic device through the FPC205, So that the processing unit or control unit in the electronic device can further process the electrical signal, for example, perform fingerprint recognition.
  • the bracket 207 is used to fix the lens 209 to control the accuracy of defocusing and eccentricity.
  • the fingerprint identification device 200 is also provided with a display screen module above the fingerprint identification device 200, including a display screen 320, foam 310 and copper foil 300.
  • the lens 209 can be fitted into the bracket 207 by interference, so that the relative position of the lens 209 and the DIE 203 is fixed, and the various structural parts of the fingerprint identification device can be glued together, and further The fingerprint identification device can be fixed in the middle frame 208 of the electronic device.
  • the foam 310 and the aluminum foil 300 in the display module corresponding to the lens 209 need to be opened to make the lens 209 within the FOV range Light signals can pass.
  • Fig. 4, Fig. 7, Fig. 10 and Fig. 13 respectively show four layouts of the lens of the first embodiment to the fourth embodiment.
  • the display screen 20 from the object side to the image side, the display screen 20, the first lens 401, the second lens 402, the diaphragm, the third lens 403, the fourth lens 404, the IR filter, and the filter are arranged in sequence. glue.
  • the upper and lower surfaces of the display screen 20 are denoted as S1 and S2 respectively
  • the two surfaces of the first lens 401 are denoted as S3 and S4, respectively
  • the second lens 402 The two surfaces are denoted as S5 and S6, the surface of the diaphragm is denoted as S7
  • the two surfaces of the third lens 403 are denoted as S8 and S9
  • the two surfaces of the fourth lens 404 are denoted as S10 and S11.
  • IR filter The surface of the light sheet is marked as S12 and S13
  • the surface of the filter glue is marked as S14 and S15
  • the imaging surface is S16.
  • S13 and S14 can be regarded as a plane
  • Each parameter is the same
  • S15 and S16 can be regarded as a plane
  • each parameter is also the same.
  • the first lens 401 is a negative power lens
  • the second lens 402 is a positive power lens
  • the third lens 403 is a positive power lens
  • the fourth lens 404 is For a positive power lens
  • at least one surface of the lens is aspherical
  • the optical parameters of the lens in the lens satisfy the relationship described in the foregoing embodiment.
  • the optical parameters of each lens in the lens The parameters are shown in Table 1, Table 2 and Table 3.
  • the FOV of the lens is 125 degrees, and the working F number (or aperture value) is 1.39.
  • Figure 5 is the imaging quality collection curve of the lens in the first embodiment, where the optical transmission of the ordinate is Function (optical transfer function, OTF) modulus value can be used to express the analytical power of the optical system.
  • Function optical transfer function, OTF
  • the first lens 401 is a negative power lens
  • the second lens 402 is a positive power lens
  • the third lens 403 is a positive power lens
  • the fourth lens 404 is For a positive power lens
  • at least one surface of the lens is aspherical
  • the optical parameters of the lens in the lens satisfy the relationship described in the foregoing embodiment.
  • the optical parameters of each lens in the lens The parameters are shown in Table 4, Table 5 and Table 6.
  • the FOV of the lens is 140 degrees, and the working F number (or aperture value) is 1.48.
  • Figure 8 As shown in Figure 8, from left to right are the astigmatism and distortion collection curves of the lens in the second embodiment;
  • Figure 9 is the imaging quality collection curve of the lens in the second embodiment, where the OTF mode of the ordinate
  • the value can be used to represent the resolution of the optical system.
  • the first lens 401 is a negative power lens
  • the second lens 402 is a positive power lens
  • the third lens 403 is a positive power lens
  • the fourth lens 404 is For a positive power lens
  • at least one surface of the lens is aspherical
  • the optical parameters of the lens in the lens satisfy the relationship described in the foregoing embodiment.
  • the optical parameters of each lens in the lens The parameters are shown in Table 7, Table 8 and Table 9 respectively:
  • the FOV of the lens is 126 degrees, and the working F number (or aperture value) is 1.52.
  • Figure 11 As shown in Figure 11, from left to right are the astigmatism and distortion collection curves of the lens in the third embodiment;
  • Figure 12 is the imaging quality collection curve of the lens in the third embodiment, where the OTF mode of the ordinate The value can be used to represent the resolution of the optical system.
  • the first lens 401 is a negative power lens
  • the second lens 402 is a positive power lens
  • the third lens 403 is a positive power lens
  • the fourth lens 404 is For a positive power lens
  • at least one surface of the lens is aspherical
  • the optical parameters of the lens in the lens satisfy the relationship described in the foregoing embodiment.
  • the optical parameters of each lens in the lens The parameters are shown in Table 10, Table 11 and Table 12 respectively: Table 10
  • the FOV of the lens is 138 degrees, and the working F-number (or aperture value) is 1.49.
  • Figure 14 from left to right are the astigmatism and distortion collection curves of the lens in the fourth embodiment;
  • Figure 15 is the imaging quality collection curve of the lens in the fourth embodiment, where the OTF mode of the ordinate
  • the value can be used to represent the resolution of the optical system.
  • the embodiments of the present application provide a wide-angle short-focus lens, which can collect fingerprint information in a larger area, and the short-focus design enables the lens to be better applied to electronic devices that require size. The applicability of the lens.
  • FIG. 16 is a schematic block diagram of a fingerprint identification device according to an embodiment of the present application. As shown in FIG. 16, the fingerprint identification device 600 may include:
  • the image sensor 602 is arranged under the lens 601 and is used to receive the optical signal transmitted through the lens, and the optical signal is used to obtain fingerprint information of a human finger.
  • the lens 601 may be the lens 40 in the embodiment shown in FIG. 2.
  • the fingerprint identification device may be arranged below the display screen of the electronic device to realize under-screen fingerprint identification.
  • the display screen is an OLED display screen
  • the image sensor 602 uses a part of the display unit of the OLED display screen as an excitation light source for optical fingerprint detection.
  • the fingerprint identification device 600 further includes:
  • the bracket is used to fix the lens.
  • the lens is interference-fitted in the bracket.
  • the fingerprint identification device 600 further includes:
  • the infrared filter is arranged above the image sensor and is used to filter the infrared light entering the image sensor.
  • the fingerprint identification device 600 further includes:
  • the flexible circuit board is used to transmit the electrical signal including fingerprint information output by the image sensor to the processing unit of the electronic device.
  • the flexible circuit board is disposed under the image sensor.
  • the fingerprint identification device further includes:
  • the reinforcing plate is arranged under the flexible circuit board.
  • the fingerprint identification device 600 may be the fingerprint identification device 200 shown in FIG. 3, and the specific implementation of the various structural components of the fingerprint identification device 600 can refer to the relevant description of the fingerprint identification device 200. For the sake of brevity, details are not described here. .
  • An embodiment of the present application also provides an electronic device, which includes a display screen and a fingerprint identification device, and the fingerprint identification device is arranged below the display screen.
  • the fingerprint identification device may be the fingerprint identification device 600 in the embodiment shown in FIG. 16 or the fingerprint identification device 200 in the embodiment shown in FIG. 3.
  • the electronic device further includes:
  • the foam is arranged on the lower surface of the display screen and above the lens in the fingerprint identification device;
  • the copper foil is arranged on the lower surface of the foam and above the lens in the fingerprint identification device;
  • the area corresponding to the foam and the copper foil above the lens is opened to allow the optical signal including fingerprint information to enter the lens.
  • the electronic device further includes:
  • the middle frame is arranged under the copper foil and used to support the display screen.
  • the electronic device may be a mobile phone, a tablet computer, a notebook computer, a desktop computer, a vehicle-mounted electronic device or a wearable smart device, etc.
  • the wearable smart device includes full-featured, large-sized, and does not rely on smart phones. Realize complete or partial functions, such as smart watches or smart glasses, etc., and only focus on a certain type of application function, which needs to be used in conjunction with other devices such as smart phones, such as various types of smart bracelets for physical sign monitoring, smart jewelry, etc. equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Lenses (AREA)

Abstract

一种镜头(40,209,601)、指纹识别装置(200,600)和电子设备(10),该镜头(40,209,601)包括:从物方到像方依次设置的第一透镜(401)、第二透镜(402)、光阑、第三透镜(403)和第四透镜(404),其中:第一透镜(401)为负光焦度镜片,第一透镜(401)的像侧表面上的近轴区域为凹面,且第一透镜(401)的物侧表面和像侧表面中的至少一面为非球面;第二透镜(402)为正光焦度镜片,第二透镜(402)的物侧表面上的近轴区域为凸面,像侧表面上的近轴区域为凹面,且第二透镜(402)的物侧表面和像侧表面中的至少一面为非球面;第三透镜(403)为正光焦度镜片,第三透镜(403)的物侧表面上的近轴区域为凸面,像侧表面上的近轴区域为凸面,且第三透镜(403)的物侧表面和像侧表面中的至少一面为非球面;第四透镜(404)为正光焦度镜片,第四透镜(404)的物侧表面上的近轴区域为凸面,且第四透镜(404)的物侧表面和像侧表面中的至少一面为非球面。

Description

镜头、指纹识别装置和电子设备 技术领域
本申请实施例涉及光学成像领域,并且更具体地,涉及镜头、指纹识别装置和电子设备。
背景技术
随着指纹识别技术的发展,屏下光学指纹技术由于不占用电子设备上的物理位置,成为一种技术趋势。一种典型的屏下光学指纹技术是基于光准直原理的屏下光学指纹技术,基于光准直原理的屏下光学指纹模组中,光准直单元是由周期性分分布的深孔单元组成,深孔单元的孔直径和孔深度的比值为深宽比,光学指纹模组的分辨率由光准直单元的周期和深宽比决定,如果光学指纹模组的尺寸受限的话,指纹识别的解析力较低,影响指纹识别的准确率和安全性。
发明内容
本申请提供一种镜头、指纹识别装置和电子设备,能够在指纹模组的尺寸受限的情况下,实现对较大范围的指纹信息的采集,能够提升指纹识别的解析力,从而能够提升指纹识别的准确率和安全性。
第一方面,提供了一种镜头,包括:从物方到像方依次设置的第一透镜、第二透镜、光阑、第三透镜和第四透镜,其中:
所述第一透镜为负光焦度镜片,所述第一透镜的像侧表面上的近轴区域为凹面,且所述第一透镜的物侧表面和像侧表面中的至少一面为非球面;
所述第二透镜为正光焦度镜片,所述第二透镜的物侧表面上的近轴区域为凸面,像侧表面上的近轴区域为凹面,且所述第二透镜的物侧表面和像侧表面中的至少一面为非球面;
所述第三透镜为正光焦度镜片,所述第三透镜的物侧表面上的近轴区域为凸面,像侧表面上的近轴区域为凸面,且所述第三透镜的物侧表面和像侧表面中的至少一面为非球面;
所述第四透镜为正光焦度镜片,所述第四透镜的物侧表面上的近轴区域为凸面,且所述第四透镜的物侧表面和像侧表面中的至少一面为非球面。
在一些可能的实现方式中,所述镜头的成像面上的最大像高Y'、所述镜头的整体焦距f和从物体平面到成像面的距离TTL满足如下关系:0.45<|Y'/(f*TTL)|<0.6。
在一些可能的实现方式中,所述镜头中的透镜的光焦度的分配满足如下关系中的至少一项:-0.47<f 1/f 2<-0.11,2.4<f 2/f 3<3.7,0.19<f 3/f 4<3.7,-8.35<f 2/f 12<-0.21,0.27<f 3/f 23<0.5,0.27<f 4/f 34<5.3,-1.9<f 12/f<-1.7,3.8<f 23/f<16,1.5<f 34/f<5.6,
其中,f 1为所述第一透镜的焦距,f 2为所述第二透镜的焦距,f 3为所述第三透镜的焦距,f 4为所述第四透镜的焦距,f 12为所述第一透镜和所述第二透镜的组合焦距,f 23为所述第二透镜和所述第三透镜的组合焦距,f 34为所述第三透镜和所述第四透镜的组合焦距,f为所述镜头的整体焦距。
因此,本申请实施例的镜头,采用具有至少一个非球面的四个透镜,通过不同的光焦度分配,能够提高光学指纹识别的解析力,满足了电子设备日益紧张的尺寸限制以及指纹识别对视场的需求,提高了光学指纹识别的准确率和识别速度。
在一些可能的实现方式中,所述镜头中的透镜的焦距和所述透镜的曲率半径满足以下关系中的至少一项:-1<f 1/R 1<0.15,-3.2<f 1/R 2<-1.6,2.5<f 2/R 3<6.7,0.79<f 2/R 4<5.2,0.4<f 3/R 5<1.8,-1.6<f 3/R 6<0,
其中,f 1为所述第一透镜的焦距,f 2为所述第二透镜的焦距,f 3为所述第三透镜的焦距,f 4为所述第四透镜的焦距,R 1为所述第一透镜的物侧的曲率半径,R 2为所述第一透镜的像侧的曲率半径,R 3为所述第二透镜的物侧的曲率半径,R 4为所述第二透镜的像侧的曲率半径,R 5为所述第三透镜的物侧的曲率半径,R 6为所述第三透镜的像侧的曲率半径。
在一些可能的实现方式中,所述镜头中的透镜的中心厚度满足如下关系中的至少一项:1.0<CT 1/CT 2<1.1,0.4<CT 2/CT 3<0.5,1.8<CT 3/CT 4<2.1,
其中,CT 1为所述第一透镜的中心厚度,CT 2为所述第二透镜的中心厚度,CT 3为所述第三透镜的中心厚度,CT 4为所述第四透镜的中心厚度。
在一些可能的实现方式中,所述镜头中的透镜的物侧和像侧的曲率半径之间满足如下关系中的至少一项:-15<R 1/R 2<69,0.3<R 3/R 4<0.8,-3.5<R 5/R 6<0,-0.2<R 7/R 8<0.6,
其中,R 1为所述第一透镜的物侧的曲率半径,R 2为所述第一透镜的像侧 的曲率半径,R 3为所述第二透镜的物侧的曲率半径,R 4为所述第二透镜的像侧的曲率半径,R 5为所述第三透镜的物侧的曲率半径,R 6为所述第三透镜的像侧的曲率半径,R 7为所述第四透镜的物侧的曲率半径,R 8为所述第四透镜的像侧的曲率半径。
在一些可能的实现方式中,所述镜头中的透镜的折射率满足如下关系中的至少一项:
n 1>1.50,n 2>1.50,n 3>1.50,n 4>1.50,
其中,n 1为所述第一透镜的折射率,n 2为所述第二透镜的折射率,n 3为所述第三透镜的折射率,n 4为所述第四透镜的折射率。
在一些可能的实现方式中,所述镜头中透镜的色散系数满足如下关系中的至少一项:
v 1>53.0,v 2>53.0,v 3>53.0,v 4>53.0,
其中,v 1为所述第一透镜的色散系数,v 2为所述第二透镜的色散系数,v 3为所述第三透镜的色散系数,v 4为所述第四透镜的色散系数。
在一些可能的实现方式中,所述镜头的畸变小于5%,所述镜头的视场FOV大于100度,所述镜头的F数小于2。
在一些可能的实现方式中,述镜头用于设置在电子设备的显示屏的下方,所述镜头用于将来自显示屏上方的人体手指的光信号传输至所述镜头下方的图像传感器,所述光信号用于获取所述人体手指的指纹信息。
第二方面,提供了一种指纹识别装置,包括:
如第一方面或第一方面的任一可能的实现方式中的镜头;
图像传感器,设置于所述镜头的下方,用于接收经所述镜头传输后的光信号,所述光信号用于获取人体手指的指纹信息。
在一些可能的实现方式中,所述指纹识别装置还包括:
支架,用于固定所述镜头。
在一些可能的实现方式中,所述镜头过盈装配于所述支架中。
在一些可能的实现方式中,所述指纹识别装置还包括:
红外滤光片,设置在所述图像传感器上方,用于过滤进入所述图像传感器的红外光。
在一些可能的实现方式中,所述指纹识别装置还包括:
柔性电路板,用于将所述图像传感器输出的包括指纹信息的电信号传输 至电子设备的处理单元。
在一些可能的实现方式中,所述柔性电路板设置在所述图像传感器下方。
在一些可能的实现方式中,所述指纹识别装置还包括:
补强板,设置在所述柔性电路板下方。
第三方面,提供了一种电子设备,包括:
显示屏;
如第二方面或第二方面的任一可能的实现方式中的指纹识别装置,其中,所述指纹识别装置设置在所述显示屏的下方。
在一些可能的实现方式中,所述电子设备还包括:
泡棉,设置在所述显示屏的下表面,且位于所述指纹识别装置中的镜头的上方;
铜箔,设置于所述泡棉的下表面,且位于所述指纹识别装置中的镜头的上方;
其中,所述镜头上方对应的所述泡棉和所述铜箔的区域开孔以使包括指纹信息的光信号进入所述镜头。
在一些可能的实现方式中,所述电子设备还包括:
中框,设置在所述铜箔的下方,用于支撑所述显示屏。
在一些可能的实现方式中,所述显示屏为OLED显示屏,所述图像传感器利用所述OLED显示屏的部分显示单元作为光学指纹检测的激励光源。
附图说明
图1A是本申请可以适用的电子设备的平面示意图。
图1B是图1A所示的电子设备沿A’-A’的部分剖面示意图。
图2根据本申请实施例的镜头的结构示意图。
图3根据本申请实施例的光学指纹识别模组的结构示意图。
图4是根据本申请第一实施例的镜头的一种布局的示意图。
图5是根据图4所示的第一实施例的镜头的像散与畸变收差曲线。
图6是根据图4所示的第一实施例的镜头的成像质量收差曲线。
图7是根据本申请第二实施例的镜头的一种布局的示意图。
图8是根据图7所示的第二实施例的镜头的像散与畸变收差曲线。
图9是根据图7所示的第二实施例的镜头的成像质量收差曲线。
图10是根据本申请第三实施例的镜头的一种布局的示意图。
图11是根据图10所示的第三实施例的镜头的像散与畸变收差曲线。
图12是根据图10所示的第三实施例的镜头的成像质量收差曲线。
图13是根据本申请第四实施例的镜头的一种布局的示意图。
图14是根据图13所示的第四实施例的镜头的像散与畸变收差曲线。
图15是根据图13所示的第四实施例的镜头的成像质量收差曲线。
图16是根据本申请实施例的指纹识别装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
作为一种常见的应用场景,本申请实施例提供的指纹识别装置可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他终端设备;更具体地,在上述终端设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹系统。
图1A和图1B示出了本申请实施例可以适用的电子设备的示意图,其中,图1A为电子设备10的定向示意图,图1B为图1A所示的电子设备10沿A-A’的部分剖面结构示意图。
如图1A和图1B所示,所述电子设备10包括显示屏120和光学指纹装置130,其中,所述光学指纹装置130设置在所述显示屏120下方的局部区域,例如,显示屏中间区域的下方。所述光学指纹装置130包括光学指纹传感器,所述光学指纹传感器包括具有多个光学感应单元的感应阵列,所述感应阵列所在区域或者其感应区域为所述光学指纹装置130的指纹检测区域103。如图1A所示,所述指纹检测区域103位于所述显示屏120的显示区域之中。
应当理解,所述指纹检测区域103的面积可以与所述光学指纹装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得所述光学指纹装置130的指纹检测区域103的面积大于所述光学指纹装置130感应阵列的面积。因此,使用者在需要对所述电子设备进行解锁或者其他指纹验证的时候,只 需要将手指按压在位于所述显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的电子设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即所述显示屏120的显示区域可以基本扩展到整个电子设备10的正面。
作为一种可选的实现方式,如图1B所示,所述光学指纹装置130包括光检测部分134和光学组件132,所述光检测部分134包括所述感应阵列以及与所述感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die),比如光学成像芯片或者光学指纹传感器,所述感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的光学感应单元;所述光学组件132可以设置在所述光检测部分134的感应阵列的上方,其可以具体包括滤光层(Filter)、导光层或光路引导结构以及其他光学元件,所述滤光层可以用于滤除穿透手指的环境光,例如,干扰成像的红外光,而所述导光层或光路引导结构主要用于从手指表面反射回来的反射光导引至所述感应阵列进行光学检测。
在具体实现上,所述光学组件132可以与所述光检测部分134封装在同一个光学指纹部件。比如,所述光学组件132可以与所述光学检测部分134封装在同一个光学指纹芯片,也可以将所述光学组件132设置在所述光检测部分134所在的芯片外部,比如将所述光学组件132贴合在所述芯片上方,或者将所述光学组件132的部分元件集成在上述芯片之中。
其中,所述光学组件132的导光层或者光路引导结构有多种实现方案,比如,所述导光层或者光路引导结构也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,其用于将从手指反射回来的反射光汇聚到其下方的光检测部分134的感应阵列,以使得所述感应阵列可以基于所述反射光进行成像,从而得到所述手指的指纹图像。可选地,所述光学透镜层在所述透镜单元的光路中还可以形成有针孔,所述针孔可以配合所述光学透镜层扩大所述光学指纹装置的视场,以提高所述光学指纹装置130的指纹成像效果。
应当理解,上述光学透镜(Lens)层的实现方案可以单独使用也可以结合其他实现方案使用,比如,可以在所述光学透镜层下方进一步设置微透镜 层。当然,在所述光学透镜层与所述微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
作为一种可选的实施例,所述显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,所述光学指纹装置130可以利用所述OLED显示屏120位于所述指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指按压在所述指纹检测区域103时,显示屏120向所述指纹检测区域103上方的目标手指发出一束光,该光在手指的表面发生反射形成反射光或者经过所述手指内部散射而形成散射光,在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)与峪(vally)对于光的反射能力不同,因此,来自指纹嵴的反射光和来自指纹峪的发射光具有不同的光强,反射光经过光学组件后,被光学指纹装置130中的感应阵列所接收并转换为相应的电信号,即指纹检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述电子设备10实现光学指纹识别功能。在其他实施例中,所述光学指纹装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。
在其他实施例中,所述光学指纹装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。在这种情况下,所述光学指纹装置130可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,所述电子设备10的光学指纹系统还可以包括用于光学指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在所述电子设备10的保护盖板下方的边缘区域,而所述光学指纹装置130可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测光可以到达所述光学指纹装置130;或者,所述光学指纹装置130也可以设置在所述背光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达所述光学指纹装置130。当采用所述光学指纹装置130采用内置光源或者外置光源来提供用于进行指纹检测的光信号时,其检测原理与上面描 述内容是一致的。
应当理解的是,在具体实现上,所述电子设备10还包括透明保护盖板,其位于所述显示屏120的上方并覆盖所述电子设备10的正面。因为,本申请实施例中,所谓的手指按压在所述显示屏120实际上是指按压在所述显示屏120上方的盖板或者覆盖所述盖板的保护层表面。
另一方面,在某些实施例中,所述光学指纹装置130可以仅包括一个光学指纹传感器,此时光学指纹装置130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到所述指纹检测区域103的特定位置,否则光学指纹装置130可能无法采集到指纹图像而造成用户体验不佳。在其他替代实施例中,所述光学指纹装置130可以具体包括多个光学指纹传感器;所述多个光学指纹传感器可以通过拼接方式并排设置在所述显示屏120的中间区域,且所述多个光学指纹传感器的感应区域共同构成所述光学指纹装置130的指纹检测区域103。也就是说,所述光学指纹装置130的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将所述光学指纹装置130的指纹采集区域103可以扩展到所述显示屏的中间部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当所述光学指纹传感器数量足够时,所述指纹检测区域130还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
可选地,在本申请一些实施例中,该光学指纹装置130还可以包括用于传输信号(例如所述指纹检测信号)的电路板,例如,所述电路板可以为柔性电路板(Flexible Printed Circuit,FPC)。光学指纹传感器可以连接到FPC,并通过所述FPC实现与其他外围电路或者电子设备中的其他元件的电性互连和信号传输。比如,所述光学指纹传感器可以通过所述FPC接收所述电子设备的处理单元的控制信号,并且还可以通过所述FPC将指纹检测信号(例如指纹图像)输出给所述电子设备的处理单元或者控制单元等。
应理解,在本申请实施例中,该光学指纹装置中的感应阵列也可以称为图像传感器(Sensor),或光电传感器,经半导体工艺加工处理可以制作成一个DIE。
为便于更好的理解本申请实施例,首先介绍一下镜头的性能指标。
视场角(Field Of View,FOV),表征镜头的视野范围,在镜头尺寸相等 的情况下,镜头的FOV越大,表示该镜头能获得更大区域的信息,即采用该镜头能够获得的信息量更大,能够实现更大面积的指纹采集。
F数,用于表征透过镜头进入光学指纹装置的感应阵列的光线量,F数越小,表示进入镜头的光线量越多,有利于实现对微弱的指纹光信号的检测。
TV畸变,用于度量图像的视觉畸变程度,TV畸变越小,成像效果越好。
现有光学指纹识别的解析力受限,本申请实施例提供了一种可以用于指纹识别装置的镜头,该镜头的视场角(Field of view,FOV)大于100°,能够满足电子设备日益紧张的尺寸限制以及指纹识别对视场的需求,有效提高光学指纹识别的准确率和识别速度。
图2是根据本申请实施例的镜头的示意性结构图,如图2所示,该镜头40包括:从物方到像方依次设置的第一透镜401、第二透镜402、光阑、第三透镜403和第四透镜404,其中:
所述第一透镜401为负光焦度镜片,所述第一透镜的像侧表面上的近轴区域为凹面,且所述第一透镜的物侧表面和像侧表面中的至少一面为非球面;
所述第二透镜402为正光焦度镜片,所述第二透镜的物侧表面上的近轴区域为凸面,像侧表面上的近轴区域为凹面,且所述第二透镜的物侧表面和像侧表面中的至少一面为非球面;
所述第三透镜403为正光焦度镜片,所述第三透镜的物侧表面上的近轴区域为凸面,像侧表面上的近轴区域为凸面,且所述第三透镜的物侧表面和像侧表面中的至少一面为非球面;
所述第四透镜404为正光焦度镜片,所述第四透镜的物侧表面上的近轴区域为凸面,且所述第四透镜的物侧表面和像侧表面中的至少一面为非球面。
应理解,本申请实施例的镜头40可以用于各种场景中,对应不同的应用场景,物侧和像侧也不同。例如,可以将该镜头40设置在具有指纹识别功能的电子设备中,具体的,该电子设备可以包括指纹识别装置,该指纹识别装置包括该镜头40,对应的,该物侧可以为该电子设备的显示屏的表面,该显示屏的上表面用于为手指触摸操作提供触摸界面,该显示屏还可以用于发光以照亮手指并发生反射或者折射,从而产生返回光;而该电子设备中的像侧可以指指纹识别装置中的图像传感器,可以用于接收返回光,该返回光 用于生成指纹数据,该指纹数据可以用于指纹识别,但本申请实施例并不限于此。
应理解,在本申请实施例中,透镜的物侧表面为所述透镜靠近物方的表面,类似地,透镜像侧表面为所述透镜靠近像方的表面。
应理解,上述的近轴区域指的是在各个透镜光轴附近的区域,各个透镜的近轴区域分别满足上述要求,但是对于非近轴区域,例如,每个透镜的边缘区域可以为任意形状,例如,可以为规则或者不规则的凹面或者凸面,图2中仅为其中任意一种可能,本申请实施例并不限于此。
应理解,在本申请实施例中,该第一透镜可以为一个凹透镜,或者也可以为一组透镜,只要该一组透镜的组合光焦度为负光焦度即可,同理,该第二透镜也可以为一个凸透镜,或者也可以为一组透镜,只要该一组透镜的组合光焦度为正光焦度即可,类似地,对于该第三透镜和第四透镜亦是如此,这里不做赘述。
在本申请实施例中,光阑或者光圈可以用于调节通光量或成像范围的大小,通过设置光阑对通光量或成像范围进行调整,可以使得带有指纹信息的有用光信号最大程度成像于图像传感器的表面,同时使得成像范围外的干扰光信号最大程度被阻挡,从而使得该图像传感器能够获得更多的有用光信号,进而可以提升指纹识别的解析力。
可选地,在一些实施例中,所述第一透镜的像侧表面为弯月形。
可选地,在一些实施例中,所述第一透镜、所述第二透镜,所述第三透镜和所述第四透镜可以采用树脂材料,或者其他透光材质,本申请实施例对此不作限定。
在本申请实施例中,通过设置所述镜头中的透镜的光学参数满足一定关系,能够使得该镜头的FOV大于第一阈值,例如大于100°,作为示例而非限定,该透镜的光学参数可以包括以下中的至少一项:
所述镜头的整体焦距f,所述镜头的成像面上的最大像高Y',从物体表面到成像面的距离TTL,所述镜头中的单个透镜的焦距,所述镜头中的透镜之间的组合焦距,所述镜头中的透镜的曲率半径,所述镜头中的透镜的中心厚度,所述镜头中的透镜的有效直径,所述镜头中的透镜的圆锥系统,所述镜头中的透镜的折射率,所述镜头中的透镜的色散系数。
需要说明的是,以下镜头中的透镜的光学参数所满足的关系的具体范围 仅为示例,本申请实施例也可以根据具体的成像需求和该镜头所安装的电子设备对尺寸的要求进行调整,本申请实施例对此不作限定。
可选地,在本申请一些实施例中,所述镜头的成像面上的最大像高Y'、所述镜头的整体焦距f和从物体表面到成像面的距离TTL满足第一关系,以使该镜头的FOV大于第一阈值。
作为一个具体实施例,该第一关系可以为0.45<|Y'/(f*TTL)|<0.6。
应理解,TTL的大小决定了该镜头的焦距的大小,或者,该镜头的尺寸的大小,本申请实施例通过控制该Y'、f和TTL满足上述关系,能够最大限度利用光学指纹传感器的感应面积采集最大区域内指纹信息,提升成像分辨率。在另一方面来讲,采用上述设置方式,能够使得该镜头在具有较大的FOV的同时,还具有较短的焦距,从而使得该镜头能够更好的应用于对尺寸有要求的电子设备上。
可选地,在一些实施例中,所述镜头可以应用于电子设备的显示屏的下方,以实现屏下光学指纹识别,此情况下,所述TTL可以为从显示屏的下表面到成像面的距离,这里的成像面可以为图像传感器的感应面,该图像传感器可以对应于图1B中的光检测部分134。
可选地,在本申请一些实施例中,通过设置所述第一透镜、第二透镜、第三透镜和第四透镜的光焦度的分配,以降低镜头的景深,相对于降低了镜头的厚度,提升特定区域(例如,指纹检测区域)内的成像质量。
可选地,作为一个实施例,所述镜头中的透镜的光焦度的分配满足如下关系中的至少一项:
-0.47<f 1/f 2<-0.11,
2.4<f 2/f 3<3.7,
0.19<f 3/f 4<3.7,
-8.35<f 2/f 12<-0.21,
0.27<f 3/f 23<0.5,优选地,0.27<f 3/f 23<0.42,
0.27<f 4/f 34<5.3,
-1.9<f 12/f<-1.7,
3.8<f 23/f<16,
1.5<f 34/f<5.6,
其中,f 1为所述第一透镜的焦距,f 2为所述第二透镜的焦距,f 3为所述 第三透镜的焦距,f 4为所述第四透镜的焦距,f 12为所述第一透镜和所述第二透镜的组合焦距,f 23为所述第二透镜和所述第三透镜的组合焦距,f 34为所述第三透镜和所述第四透镜的组合焦距,f为所述镜头的整体焦距。
也就是说,本申请实施例可以通过设置镜头中的透镜的光焦度分配满足一定的关系,从而能够保证镜头对特定区域(例如,显示屏上的指纹检测区域)的成像质量时,并且能够降低镜头的整体厚度,有利于满足对尺寸有要求的电子设备的需求。
可选地,在本申请一个实施例中,通过设置所述镜头中的透镜的焦距和所述透镜的曲率半径,以使所述镜头的FOV大于第一阈值。
可选地,作为一个实施例,所述镜头中的透镜的焦距和所述透镜的曲率半径满足以下关系中的至少一项:
-1<f 1/R 1<0.15,
-3.2<f 1/R 2<-1.6,
2.5<f 2/R 3<6.7,
0.79<f 2/R 4<5.2,
0.4<f 3/R 5<1.8,
-1.6<f 3/R 6<0,优选地,-1.5<f 3/R 6<0,
其中,f 1为所述第一透镜的焦距,f 2为所述第二透镜的焦距,f 3为所述第三透镜的焦距,f 4为所述第四透镜的焦距,R 1为所述第一透镜的物侧的曲率半径,R 2为所述第一透镜的像侧的曲率半径,R 3为所述第二透镜的物侧的曲率半径,R 4为所述第二透镜的像侧的曲率半径,R 5为所述第三透镜的物侧的曲率半径,R 6为所述第三透镜的像侧的曲率半径。
应理解,本申请实施例中描述的任意一个表面的曲率半径指的是对应表面上近轴区域的曲率半径,例如,像侧的曲率半径可以为像侧表面上的近轴区域的曲率半径,可选地,该曲率半径可以为近轴区域的平均曲率半径,或者,通过其他方式确定的近轴区域的曲率半径,本申请实施例并不限于此。
通过设置所述第一透镜的焦距和所述第一透镜的两个面的曲率半径满足-1<f 1/R 1<0.15,-3.2<f 1/R 2<-1.6,能够满足在FOV内的成像需求,并且能够有效较低所述镜头的厚度。
通过设置所述第二透镜的焦距和所述第二透镜的两个面的曲率半径满足2.5<f 2/R 3<6.7,0.79<f 2/R 4<5.2,能够降低所述镜头的像差,并且能够有效 提升镜头的成像质量。
通过设置所述第三透镜的焦距和所述第三透镜的两个面的曲率半径满足0.4<f 3/R 5<1.8,-1.6<f 3/R 6<0,能够增大成像面的像高Y',并且能够有效提升镜头的成像质量。
可选地,在本申请一个实施例中,通过设置所述镜头中的透镜的物侧和像侧的曲率半径之间满足一定关系,能够降低镜头对尺寸的敏感度,从而提升产品的良率。
可选地,作为一个实施例,所述镜头中的透镜的物侧和像侧的曲率半径满足如下关系中的至少一项:
-15<R 1/R 2<69,
0.3<R 3/R 4<0.8,
-3.5<R 5/R 6<0,
-0.2<R 7/R 8<0.6,
其中,R 1为所述第一透镜的物侧的曲率半径,R 2为所述第一透镜的像侧的曲率半径,R 3为所述第二透镜的物侧的曲率半径,R 4为所述第二透镜的像侧的曲率半径,R 5为所述第三透镜的物侧的曲率半径,R 6为所述第三透镜的像侧的曲率半径,R 7为所述第四透镜的物侧的曲率半径,R 8为所述第四透镜的像侧的曲率半径。
通过上述设置方式,能够保证在镜头中的透镜的尺寸在一定误差范围内时,镜头的整体性能不受影响,从而能够提升产品的良率。
可选地,在本申请一个实施例中,通过设置所述镜头中的透镜的中心厚度满足一定关系,能够提升镜头的可靠性,从而提升镜头的使用寿命。
可选地,在本申请一个实施例中,所述镜头中的透镜的中心厚度满足如下关系中的至少一项:
1.0<CT 1/CT 2<1.1,
0.4<CT 2/CT 3<0.5,
1.8<CT 3/CT 4<2.1,
其中,CT 1为所述第一透镜的中心厚度,CT 2为所述第二透镜的中心厚度,CT 3为所述第三透镜的中心厚度,CT 4为所述第四透镜的中心厚度。
通过设置所述镜头中的透镜的中心厚度满足上述关系,能够使得镜头更为坚固,从而提升使用该镜头的指纹识别装置的可靠性。
可选地,在本申请一个实施例中,通过设置所述镜头中透镜的折射率和/或色散系数满足一定关系,能够减少色散,实现像差平衡,并且能够降低生产制备成本。
可选地,作为一个实施例,所述镜头中的透镜的折射率满足如下关系中的至少一项:
n 1>1.50,n 2>1.50,n 3>1.50,n 4>1.50,
其中,n 1为所述第一透镜的折射率,n 2为所述第二透镜的折射率,n 3为所述第三透镜的折射率,n 4为所述第四透镜的折射率。
可选地,作为一个实施例,所述镜头中的透镜的色散系数满足如下关系中的至少一项:
v 1>53.0,v 2>53.0,v 3>53.0,v 4>53.0,
其中,v 1为所述第一透镜的色散系数,v 2为所述第二透镜的色散系数,v 3为所述第三透镜的色散系数,v 4为所述第四透镜的色散系数。
因此,本申请实施例的镜头,采用4片非球面的透镜,通过不同的光焦度分配,能够提高光学指纹识别的解析力,有利于满足电子设备日益紧张的尺寸限制以及指纹识别对视场的需求,提高了光学指纹识别的准确率和识别速度。另外,通过设置各个透镜对应的光学参数,可以进一步提高该镜头的性能,例如,可以使透镜的FOV满足FOV>100°,以实现在狭小模组尺寸的限制下获得较大的指纹识别区域;该镜头的F数可以满足小于2.0,以实现探测微弱指纹信号并缩短曝光时间;该镜头的TV畸变控制在5%以内,以规避由OLED模组电路结构成像所造成莫尔条纹的影响。
从镜头的性能参数可以看出,本申请实施例的镜头是一种广角短焦镜头,广角设计使得该镜头能够采集更大区域的指纹信息,短焦设计使得该镜头占用更小的空间,从而该镜头在实现更优的指纹识别性能的同时,还可以满足电子设备对尺寸的要求,增强了该镜头的适用性。
应理解,本申请实施例的镜头可以应用于指纹识别装置中,该镜头可以与该指纹识别装置中的图像传感器配合,实现在有限的空间内对较大区域的指纹信息的成像;或者,该镜头也可以应用在其他对光学成像性能要求较高的设备或装置中,本申请实施例对此不作限定。
图3是采用本申请实施例的镜头的指纹识别装置的结构示意图。如图3所示,该指纹识别装置200可以包括:红外滤光片(Infrared Filter,IR Filter) 201、IR滤光片贴合胶202、芯片(DIE)203、DIE贴合胶204、柔性电路板(Flexible Printed Circuit,FPC)205、补强板206、支架207和镜头209。
该镜头209可以对应于图2中的镜头40,该镜头209中的各个透镜的设置方式可以参考图2中实施例的相关描述,这里不再赘述。
IR Filter 201用于过滤红外光,以降低红外光指纹成像的影响。
IR滤光片贴合胶202用于将该IR滤光片201固定在DIE 203上。
可选地,在其他实施例中,所述IR Filter 201也可以设置在所述镜头209的上方,或者也可以直接蒸镀或溅射在DIE 203的表面,只要设置在从显示屏下表面至所述DIE203之间的光路中即可,本申请实施例对此不作限定。
DIE 203,对应于图1B中的光检测部分134,用于将光信号转换为电信号,可以与镜头209配合,将经该镜头209传输的光信号转换为电信号,进一步通过FPC 205传输至电子设备中的处理单元或控制单元,从而所述电子设备中的处理单元或控制单元可以对所述电信号作进一步处理,例如,进行指纹识别。
DIE贴合胶204,用于固定DIE203与柔性电路板(Flexible Printed Circuit,FPC)205,例如,可以通过DIE贴合胶204将DIE 203固定在FPC205的上表面。在其他替代实施例中,所述FPC 205也可以设置在所述DIE203的外侧,此情况下,可以不需要该DIE贴合胶204,本申请实施例对于该DIE 203与FPC 205的连接方式不作具体限定。
FPC205,用于电连接该DIE 203和该指纹识别装置所安装的电子设备中的电路,所述DIE 203通过所述FPC205将包括指纹信息的电信号传输至电子设备中的处理单元或控制单元,以便于所述电子设备中的处理单元或控制单元可以对所述电信号作进一步处理,例如,进行指纹识别。
支架207,用于固定该镜头209,以控制离焦和偏心的精度。
该指纹识别装置200的上方还设置有显示屏模组,包括显示屏320、泡棉310和铜箔300。
在本申请实施例中,该镜头209可以过盈装配于该支架207中,以使该镜头209和DIE 203的相对位置固定,该指纹识别装置的各个结构件可以通过胶粘合在一起,进一步该指纹识别装置可以固定在电子设备的中框208中。
由于镜头209和显示屏320之间需要进行光信号的传递,因此,该镜头209所对应的显示屏模组中的泡棉310和铝箔300需要开孔,以使该镜头209 的FOV范围内的光信号能够通过。
以下,结合第一实施例至第四实施例,详细描述将本申请实施例的镜头40在指纹识别装置中的应用。
在第一实施例至第四实施例中,图4、图7,图10和图13分别示出了第一实施例至第四实施例的镜头的四种布局(layout),在该四种布局中,从物方到像方依次设置有:显示屏20、第一透镜401、第二透镜402、光阑、第三透镜403、第四透镜404、IR滤光片、滤光片贴合胶。
为便于区分和描述,按照从物方到像方的顺序,将显示屏20的上下表面分别记为S1和S2,第一透镜401的两个表面分别记为S3和S4,第二透镜402的两个表面分别记为S5和S6,光阑的表面记为S7,第三透镜403的两个表面分别记为S8和S9,第四透镜404的两个表面分别记为S10和S11,IR滤光片的表面分别记为S12和S13,滤光片贴合胶的表面记为S14和S15,成像面为S16,其中,由于滤光片贴合胶的作用,S13和S14可以看作一个平面,各个参数相同,S15和S16可以看作一个平面,各个参数也相同。
第一实施例:
在该第一实施例中,第一透镜401为负光焦度镜片,所述第二透镜402为正光焦度镜片,所述第三透镜403为正光焦度镜片,所述第四透镜404为正光焦度镜片,其所述镜头中至少有一个面为非球面,并且所述镜头中的透镜的光学参数满足前述实施例中所述的关系,具体地,所述镜头中的各个透镜的光学参数分别如表1,表2和表3所示。
表1
Figure PCTCN2019092133-appb-000001
Figure PCTCN2019092133-appb-000002
表2
表面 表面类型 曲率半径 厚度 材料 有效直径 圆锥系数
S1 物面 无限 1.575 BK7 4.496 0.000
S2 球面 无限 1.101   3.503 0.000
S3 非球面 -8.376 0.269 APL5014CL 1.173 -999.970
S4 非球面 0.560 0.353   0.622 -0.322
S5 非球面 0.900 0.253 APL5014CL 0.560 -0.044
S6 非球面 1.627 0.113   0.353 -244.641
S7 光阑面 无限 0.015   0.316 0.000
S8 非球面 2.057 0.569 APL5014CL 0.381 22.802
S9 非球面 -0.592 0.027   0.508 -0.515
S10 非球面 0.901 0.281 APL5014CL 0.738 -13.638
S11 非球面 2.306 0.519   0.687 7.551
S12 球面 无限 0.210 D263TECO 0.838 0.000
S14 球面 无限 0.020 BK7 0.896 0.000
S16 像面 无限 0.000   0.908 0.000
表3
表面 A4 A6 A8 A10 A12 A14 A16
S3 0.389 -0.296 0.386 -0.813 1.072 -0.670 0.162
S4 0.353 2.264 0.297 -14.852 -34.723 -43.474 140.539
S5 -3.64E-01 -2.80E+00 3.45E+00 1.58E+01 -5.75E+00 -6.03E+01 -5.63E+01
S6 3.28E+00 -2.75E+01 1.19E+02 1.25E+03 1.86E+04 -4.85E+05 2.52E+06
S8 -2.81E-01 -2.19E+01 3.75E+02 -3.96E+03 2.05E+04 -2.54E+04 -8.95E+04
S9 -2.21E+00 2.21E+01 -1.58E+02 6.31E+02 -1.38E+03 7.74E+02 2.44E+03
S10 5.36E-01 1.04E-01 -1.21E+01 1.51E+01 -7.49E+00 5.63E+01 -6.63E+01
S11 6.58E-01 -1.79E+00 -1.54E+00 -5.29E-01 7.36E+00 7.57E+00 -1.88E+01
在该第一实施例中,基于表1至表3所示的光学参数,可以确定镜头的参数如下:TTL=3.734毫米(即S2到S16的距离),镜头的整体焦距f为0.532毫米,该镜头的FOV为125度,工作F数(或称光圈值)为1.39。
如图5所示,从左至右分别为该第一实施例中镜头的像散与畸变收差曲线;图6为第一实施例的镜头的成像质量收差曲线,其中纵坐标的光学传递函数(optical transfer function,OTF)模值可以用于表示光学系统解析力。
第二实施例:
在该第二实施例中,第一透镜401为负光焦度镜片,所述第二透镜402为正光焦度镜片,所述第三透镜403为正光焦度镜片,所述第四透镜404为正光焦度镜片,其所述镜头中至少有一个面为非球面,并且所述镜头中的透镜的光学参数满足前述实施例中所述的关系,具体地,所述镜头中的各个透镜的光学参数分别如表4,表5和表6所示。
表4
Figure PCTCN2019092133-appb-000003
Figure PCTCN2019092133-appb-000004
表5
表面 表面类型 曲率半径 厚度 材料 有效直径 圆锥系数
S1 物面 无限 1.575 BK7 4.496 0.000
S2 球面 无限 1.101   3.503 0.000
S3 非球面 -8.376 0.269 APL5014CL 1.173 489.088
S4 非球面 0.560 0.353   0.622 -0.998
S5 非球面 0.900 0.253 APL5014CL 0.560 -6.103
S6 非球面 1.627 0.113   0.353 -765.303
S7 光阑面 无限 0.015   0.316 0.000
S8 非球面 2.057 0.569 APL5014CL 0.381 6.518
S9 非球面 -0.592 0.027   0.508 -532.272
S10 非球面 0.901 0.281 APL5014CL 0.738 -7.807
S11 非球面 2.306 0.519   0.687 -11.973
S12 球面 无限 0.210 D263TECO 0.838 0.000
S14 球面 无限 0.020 BK7 0.896 0.000
S16 像面 无限 0.000   0.908 0.000
表6
Figure PCTCN2019092133-appb-000005
在该第二实施例中,基于表4至表6所示的光学参数,可以确定镜头的参数如下:TTL=3.718毫米(即S2到S16的距离),镜头的整体焦距f为0.489毫米,该镜头的FOV为140度,工作F数(或称光圈值)为1.48。
如图8所示,从左至右分别为该第二实施例中镜头的像散与畸变收差曲线;图9为第二实施例的镜头的成像质量收差曲线,其中纵坐标的OTF模值可以用于表示光学系统解析力。
第三实施例:
在该第三实施例中,第一透镜401为负光焦度镜片,所述第二透镜402为正光焦度镜片,所述第三透镜403为正光焦度镜片,所述第四透镜404为正光焦度镜片,其所述镜头中至少有一个面为非球面,并且所述镜头中的透镜的光学参数满足前述实施例中所述的关系,具体地,所述镜头中的各个透镜的光学参数分别如表7,表8和表9所示:
表7
Figure PCTCN2019092133-appb-000006
Figure PCTCN2019092133-appb-000007
表8
表面 表面类型 曲率半径 厚度 材料 有效直径 圆锥系数
S1 物面 无限 1.500 BK7 4.240 0.000
S2 球面 无限 0.568   3.268 0.000
S3 非球面 1.188 0.401 APL5014CL 1.518 -11.354
S4 非球面 0.363 0.605   0.729 -1.172
S5 非球面 0.983 0.365 APL5014CL 0.656 -0.431
S6 非球面 3.123 0.105   0.439 -225.557
S7 光阑面 无限 0.042   0.385 0.000
S8 非球面 1.983 0.733 APL5014CL 0.549 -65.447
S9 非球面 -0.672 0.034   0.662 -1.287
S10 非球面 1.463 0.382 APL5014CL 0.756 -56.569
S11 非球面 2.676 0.686   0.919 3.078
S12 球面 无限 0.210 D263TECO 1.143 0.000
S14 球面 无限 0.020 BK7 1.220 0.000
S16 像面 无限 0.000   1.230 0.000
表9
Figure PCTCN2019092133-appb-000008
在该第三实施例中,基于表7至表8所示的光学参数,可以确定镜头的参数如下:TTL=4.15毫米(即S2到S16的距离),镜头的整体焦距f为0.636毫米,该镜头的FOV为126度,工作F数(或称光圈值)为1.52。
如图11所示,从左至右分别为该第三实施例中镜头的像散与畸变收差曲线;图12为第三实施例的镜头的成像质量收差曲线,其中纵坐标的OTF模值可以用于表示光学系统解析力。
第四实施例:
在该第四实施例中,第一透镜401为负光焦度镜片,所述第二透镜402为正光焦度镜片,所述第三透镜403为正光焦度镜片,所述第四透镜404为正光焦度镜片,其所述镜头中至少有一个面为非球面,并且所述镜头中的透镜的光学参数满足前述实施例中所述的关系,具体地,所述镜头中的各个透镜的光学参数分别如表10,表11和表12所示: 表10
项目 参数
f 1/f 2 -0.119
f 2/f 3 2.846
f 3/f 4 3.685
f 2/f 12 -8.398
f 3/f 23 0.351
f 4/f 34 0.271
f 12/f -1.886
f 23/f 15.842
f 34/f 5.567
f 1/R 1 -0.027
f 1/R 2 -1.859
f 2/R 3 6.640
f 2/R 4 5.198
f 3/R 5 1.794
f 3/R 6 -0.038
|Y'/(f*TTL)| -0.594
CT 1/CT 2 1.021
CT 2/CT 3 0.471
CT 3/CT 4 1.805
R 1/R 2 68.538
R 3/R 4 0.783
R 5/R 6 -0.020932865
R 7/R 8 -0.122144035
表11
Figure PCTCN2019092133-appb-000009
Figure PCTCN2019092133-appb-000010
表12
Figure PCTCN2019092133-appb-000011
在该第四实施例中,基于表10至表12所示的光学参数,可以确定镜头的参数如下:TTL=3.721毫米(即S2到S16的距离),镜头的整体焦距f为0.498毫米,该镜头的FOV为138度,工作F数(或称光圈值)为1.49。
如图14所示,从左至右分别为该第四实施例中镜头的像散与畸变收差曲线;图15为第四实施例的镜头的成像质量收差曲线,其中纵坐标的OTF模值可以用于表示光学系统解析力。
因此,本申请实施例提供了一种广角短焦镜头,采用该镜头能够采集更大区域的指纹信息,并且短焦设计使得该镜头能够更好的应用于对尺寸有要求的电子设备上,增强了该镜头的适用性。
图16是根据本申请实施例的指纹识别装置的示意性框图,如图16所示,该指纹识别装置600可以包括:
镜头601;
图像传感器602,设置于所述镜头601的下方,用于接收经所述镜头传输后的光信号,所述光信号用于获取人体手指的指纹信息。
应理解,该镜头601可以为图2所示实施例中的镜头40,具体实现可以参考前述实施例中的相关描述,这里不再赘述。
可选地,在一些实施例中,所述指纹识别装置可以设置在电子设备的显示屏的下方,以实现屏下指纹识别。
可选地,在一些实施例中,所述显示屏为OLED显示屏,所述图像传感器602利用所述OLED显示屏的部分显示单元作为光学指纹检测的激励光源。
可选地,在一些实施例中,所述指纹识别装置600还包括:
支架,用于固定所述镜头。
可选地,在一些实施例中,所述镜头过盈装配于所述支架中。
可选地,在一些实施例中,所述指纹识别装置600还包括:
红外滤光片,设置在所述图像传感器上方,用于过滤进入所述图像传感器的红外光。
可选地,在一些实施例中,所述指纹识别装置600还包括:
柔性电路板,用于将所述图像传感器输出的包括指纹信息的电信号传输至电子设备的处理单元。
可选地,在一些实施例中,所述柔性电路板设置在所述图像传感器下方。
可选地,在一些实施例中,所述指纹识别装置还包括:
补强板,设置在所述柔性电路板下方。
可选地,该指纹识别装置600可以为图3所示的指纹识别装置200,该 指纹识别装置600的各个结构件的具体实现可以参考该指纹识别装置200的相关说明,为了简洁,这里不作赘述。
本申请实施例还提供了一种电子设备,该电子设备包括显示屏和指纹识别装置,该指纹识别装置设置在所述显示屏的下方。
可选地,该指纹识别装置可以为图16所示实施例中的指纹识别装置600,或图3所示实施例中的指纹识别装置200。
可选地,在一些实施例中,所述电子设备还包括:
泡棉,设置在所述显示屏的下表面,且位于所述指纹识别装置中的镜头的上方;
铜箔,设置于所述泡棉的下表面,且位于所述指纹识别装置中的镜头的上方;
其中,所述镜头上方对应的所述泡棉和所述铜箔的区域开孔以使包括指纹信息的光信号进入所述镜头。
可选地,在一些实施例中,所述电子设备还包括:
中框,设置在所述铜箔的下方,用于支撑所述显示屏。
作为示例而非限定,所述电子设备可以为手机、平板电脑、笔记本电脑、台式机电脑、车载电子设备或穿戴式智能设备等,该穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等设备。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围,本领域技术人员可以在上述实施例的基础上进行各种改进和变形,而这些改进或者变形均落在本申请的保护范围内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种镜头,其特征在于,包括:
    从物方到像方依次设置的第一透镜、第二透镜、光阑、第三透镜和第四透镜,其中:
    所述第一透镜为负光焦度镜片,所述第一透镜的像侧表面上的近轴区域为凹面,且所述第一透镜的物侧表面和像侧表面中的至少一面为非球面;
    所述第二透镜为正光焦度镜片,所述第二透镜的物侧表面上的近轴区域为凸面,像侧表面上的近轴区域为凹面,且所述第二透镜的物侧表面和像侧表面中的至少一面为非球面;
    所述第三透镜为正光焦度镜片,所述第三透镜的物侧表面上的近轴区域为凸面,像侧表面上的近轴区域为凸面,且所述第三透镜的物侧表面和像侧表面中的至少一面为非球面;
    所述第四透镜为正光焦度镜片,所述第四透镜的物侧表面上的近轴区域为凸面,且所述第四透镜的物侧表面和像侧表面中的至少一面为非球面。
  2. 根据权利要求1所述的镜头,其特征在于,所述镜头的成像面上的最大像高Y'、所述镜头的整体焦距f和从物体平面到成像面的距离TTL满足如下关系:0.45<|Y'/(f*TTL)|<0.6。
  3. 根据权利要求1或2所述的镜头,其特征在于,所述镜头中的透镜的光焦度的分配满足如下关系中的至少一项:
    -0.47<f 1/f 2<-0.11,
    2.4<f 2/f 3<3.7,
    0.19<f 3/f 4<3.7,
    -8.35<f 2/f 12<-0.21,
    0.27<f 3/f 23<0.5,
    0.27<f 4/f 34<5.3,
    -1.9<f 12/f<-1.7,
    3.8<f 23/f<16,
    1.5<f 34/f<5.6,
    其中,f 1为所述第一透镜的焦距,f 2为所述第二透镜的焦距,f 3为所述第三透镜的焦距,f 4为所述第四透镜的焦距,f 12为所述第一透镜和所述第二透镜的组合焦距,f 23为所述第二透镜和所述第三透镜的组合焦距,f 34为所 述第三透镜和所述第四透镜的组合焦距,f为所述镜头的整体焦距。
  4. 根据权利要求1至3中任一项所述的镜头,其特征在于,所述镜头中的透镜的焦距和所述透镜的曲率半径满足以下关系中的至少一项:
    -1<f 1/R 1<0.15,
    -3.2<f 1/R 2<-1.6,
    2.5<f 2/R 3<6.7,
    0.79<f 2/R 4<5.2,
    0.4<f 3/R 5<1.8,
    -1.6<f 3/R 6<0,
    其中,f 1为所述第一透镜的焦距,f 2为所述第二透镜的焦距,f 3为所述第三透镜的焦距,f 4为所述第四透镜的焦距,R 1为所述第一透镜的物侧的曲率半径,R 2为所述第一透镜的像侧的曲率半径,R 3为所述第二透镜的物侧的曲率半径,R 4为所述第二透镜的像侧的曲率半径,R 5为所述第三透镜的物侧的曲率半径,R 6为所述第三透镜的像侧的曲率半径。
  5. 根据权利要求1至4中任一项所述的镜头,其特征在于,所述镜头中的透镜的中心厚度满足如下关系中的至少一项:
    1.0<CT 1/CT 2<1.1,
    0.4<CT 2/CT 3<0.5,
    1.8<CT 3/CT 4<2.1,
    其中,CT 1为所述第一透镜的中心厚度,CT 2为所述第二透镜的中心厚度,CT 3为所述第三透镜的中心厚度,CT 4为所述第四透镜的中心厚度。
  6. 根据权利要求1至5中任一项所述的镜头,其特征在于,所述镜头中的透镜的物侧和像侧的曲率半径之间满足如下关系中的至少一项:
    -15<R 1/R 2<69,
    0.3<R 3/R 4<0.8,
    -3.5<R 5/R 6<0,
    -0.2<R 7/R 8<0.6,
    其中,R 1为所述第一透镜的物侧的曲率半径,R 2为所述第一透镜的像侧的曲率半径,R 3为所述第二透镜的物侧的曲率半径,R 4为所述第二透镜的像侧的曲率半径,R 5为所述第三透镜的物侧的曲率半径,R 6为所述第三透镜的像侧的曲率半径,R 7为所述第四透镜的物侧的曲率半径,R 8为所述第四透镜 的像侧的曲率半径。
  7. 根据权利要求1至6中任一项所述的镜头,其特征在于,所述镜头中的透镜的折射率满足如下关系中的至少一项:
    n 1>1.50,n 2>1.50,n 3>1.50,n 4>1.50,
    其中,n 1为所述第一透镜的折射率,n 2为所述第二透镜的折射率,n 3为所述第三透镜的折射率,n 4为所述第四透镜的折射率。
  8. 根据权利要求1至7中任一项所述的镜头,其特征在于,所述镜头中透镜的色散系数满足如下关系中的至少一项:
    v 1>53.0,v 2>53.0,v 3>53.0,v 4>53.0,
    其中,v 1为所述第一透镜的色散系数,v 2为所述第二透镜的色散系数,v 3为所述第三透镜的色散系数,v 4为所述第四透镜的色散系数。
  9. 根据权利要求1至8中任一项所述的镜头,其特征在于,所述镜头的畸变小于5%,所述镜头的视场FOV大于100度,所述镜头的F数小于2。
  10. 根据权利要求1至9中任一项所述的镜头,其特征在于,所述镜头用于设置在电子设备的显示屏的下方,所述镜头用于将来自显示屏上方的人体手指的光信号传输至所述镜头下方的图像传感器,所述光信号用于获取所述人体手指的指纹信息。
  11. 一种指纹识别装置,用于设置在电子设备的显示屏下方,其特征在于,包括:
    如权利要求1至10中任一项所述的镜头;
    图像传感器,设置于所述镜头的下方,用于接收经所述镜头传输后的光信号,所述光信号用于获取人体手指的指纹信息。
  12. 根据权利要求11所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:
    支架,用于固定所述镜头。
  13. 根据权利要求12所述的指纹识别装置,其特征在于,所述镜头过盈装配于所述支架中。
  14. 根据权利要求11至13中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:
    红外滤光片,设置在所述图像传感器上方,用于过滤进入所述图像传感器的红外光。
  15. 根据权利要求11至14中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:
    柔性电路板,用于将所述图像传感器输出的包括指纹信息的电信号传输至电子设备的处理单元。
  16. 根据权利要求15所述的指纹识别装置,其特征在于,所述柔性电路板设置在所述图像传感器下方。
  17. 根据权利要求15或16所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:
    补强板,设置在所述柔性电路板下方。
  18. 一种电子设备,其特征在于,包括:
    显示屏;
    如权利要求11至17中任一项所述的指纹识别装置,其中,所述指纹识别装置设置在所述显示屏的下方。
  19. 根据权利要求18所述的电子设备,其特征在于,所述电子设备还包括:
    泡棉,设置在所述显示屏的下表面,且位于所述指纹识别装置中的镜头的上方;
    铜箔,设置于所述泡棉的下表面,且位于所述指纹识别装置中的镜头的上方;
    其中,所述镜头上方对应的所述泡棉和所述铜箔的区域开孔以使包括指纹信息的光信号进入所述镜头。
  20. 根据权利要求19所述的电子设备,其特征在于,所述电子设备还包括:
    中框,设置在所述铜箔的下方,用于支撑所述显示屏。
  21. 根据权利要求18至20中任一项所述的电子设备,其特征在于,所述显示屏为OLED显示屏,所述图像传感器利用所述OLED显示屏的部分显示单元作为光学指纹检测的激励光源。
PCT/CN2019/092133 2019-06-20 2019-06-20 镜头、指纹识别装置和电子设备 WO2020252752A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/092133 WO2020252752A1 (zh) 2019-06-20 2019-06-20 镜头、指纹识别装置和电子设备
CN201980004327.7A CN111213080B (zh) 2019-06-20 2019-06-20 镜头、指纹识别装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/092133 WO2020252752A1 (zh) 2019-06-20 2019-06-20 镜头、指纹识别装置和电子设备

Publications (1)

Publication Number Publication Date
WO2020252752A1 true WO2020252752A1 (zh) 2020-12-24

Family

ID=70790110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092133 WO2020252752A1 (zh) 2019-06-20 2019-06-20 镜头、指纹识别装置和电子设备

Country Status (2)

Country Link
CN (1) CN111213080B (zh)
WO (1) WO2020252752A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111598068B (zh) * 2020-07-24 2020-11-20 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
WO2022016547A1 (zh) 2020-07-24 2022-01-27 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN114815180B (zh) * 2020-09-23 2024-04-12 深圳市汇顶科技股份有限公司 红外成像镜头
CN112799217B (zh) * 2021-02-05 2023-02-10 玉晶光电(厦门)有限公司 光学成像镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7961408B2 (en) * 2008-02-11 2011-06-14 Create Electronic Optical Co., Ltd. Five-lens image lens system
CN103718079A (zh) * 2011-07-26 2014-04-09 柯尼卡美能达株式会社 广角透镜、摄像光学装置及数码设备
CN105527693A (zh) * 2014-10-24 2016-04-27 玉晶光电(厦门)有限公司 光学成像镜头及应用该镜头的电子装置
CN107219610A (zh) * 2017-07-25 2017-09-29 浙江舜宇光学有限公司 成像镜头
CN109196521A (zh) * 2018-08-21 2019-01-11 深圳市汇顶科技股份有限公司 镜头系统、指纹识别装置和终端设备
CN208921953U (zh) * 2018-02-13 2019-05-31 先进光电科技股份有限公司 光学成像系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101838988B1 (ko) * 2015-05-22 2018-03-16 주식회사 소모비전 광시야 비열화 적외선 렌즈모듈
TWI588531B (zh) * 2016-07-21 2017-06-21 Tan Cian Technology Co Ltd Wide angle imaging lens group
CN107167901B (zh) * 2017-07-25 2022-09-13 浙江舜宇光学有限公司 摄像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7961408B2 (en) * 2008-02-11 2011-06-14 Create Electronic Optical Co., Ltd. Five-lens image lens system
CN103718079A (zh) * 2011-07-26 2014-04-09 柯尼卡美能达株式会社 广角透镜、摄像光学装置及数码设备
CN105527693A (zh) * 2014-10-24 2016-04-27 玉晶光电(厦门)有限公司 光学成像镜头及应用该镜头的电子装置
CN107219610A (zh) * 2017-07-25 2017-09-29 浙江舜宇光学有限公司 成像镜头
CN208921953U (zh) * 2018-02-13 2019-05-31 先进光电科技股份有限公司 光学成像系统
CN109196521A (zh) * 2018-08-21 2019-01-11 深圳市汇顶科技股份有限公司 镜头系统、指纹识别装置和终端设备

Also Published As

Publication number Publication date
CN111213080A (zh) 2020-05-29
CN111213080B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
US11774708B2 (en) Lens system, fingerprint identification apparatus and terminal device
WO2020181493A1 (zh) 屏下指纹识别装置和电子设备
WO2020252752A1 (zh) 镜头、指纹识别装置和电子设备
WO2020220305A1 (zh) 屏下指纹识别装置和电子设备
US11366290B2 (en) Lens system, fingerprint identification apparatus and terminal device
CN214225933U (zh) 指纹识别的装置和电子设备
WO2020181552A1 (zh) 镜头组件和指纹识别模组
CN208888461U (zh) 镜头系统、指纹识别装置和终端设备
WO2021051737A1 (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
CN109564338B (zh) 镜头组、指纹识别装置和电子设备
CN208953768U (zh) 镜头组、指纹识别装置和电子设备
WO2020243936A1 (zh) 屏下生物特征识别装置和电子设备
CN210295111U (zh) 指纹识别装置和电子设备
CN219016681U (zh) 镜头系统、指纹识别装置和终端设备
CN208569169U (zh) 镜头系统、指纹识别装置和终端设备
EP3591578B1 (en) Under-screen biometric identification apparatus and electronic device
CN116125636A (zh) 镜头系统、指纹识别装置和终端设备
CN210038308U (zh) 镜头、指纹识别装置和电子设备
CN221426935U (zh) 镜头系统、指纹识别装置和终端设备
WO2023035277A1 (zh) 镜头系统、光学指纹识别装置和终端设备
CN113777754B (zh) 镜头系统、光学指纹识别装置和终端设备
CN219657940U (zh) 镜头系统、光学指纹装置和电子设备
CN212160210U (zh) 镜头系统、检测模组及光学检测装置
CN116500756A (zh) 镜头系统、光学指纹装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933460

Country of ref document: EP

Kind code of ref document: A1